Vetter, Nora C; Altgassen, Mareike; Phillips, Louise; Mahy, Caitlin E V; Kliegel, Matthias
2013-01-01
Theory of mind, the ability to understand mental states, involves inferences about others' cognitive (cognitive theory of mind) and emotional (affective theory of mind) mental states. The current study explored the role of executive functions in developing affective theory of mind across adolescence. Affective theory of mind and three subcomponents of executive functions (inhibition, updating, and shifting) were measured. Affective theory of mind was positively related to age, and all three executive functions. Specifically, inhibition explained the largest amount of variance in age-related differences in affective theory of mind.
Emotion and Theory of Mind in Schizophrenia-Investigating the Role of the Cerebellum.
Mothersill, Omar; Knee-Zaska, Charlotte; Donohoe, Gary
2016-06-01
Social cognitive dysfunction, including deficits in facial emotion recognition and theory of mind, is a core feature of schizophrenia and more strongly predicts functional outcome than neurocognition alone. Although traditionally considered to play an important role in motor coordination, the cerebellum has been suggested to play a role in emotion processing and theory of mind, and also shows structural and functional abnormalities in schizophrenia. The aim of this systematic review was to investigate the specific role of the cerebellum in emotion and theory of mind deficits in schizophrenia using previously published functional neuroimaging studies. PubMed and PsycINFO were used to search for all functional neuroimaging studies reporting altered cerebellum activity in schizophrenia patients during emotion processing or theory of mind tasks, published until December 2014. Overall, 14 functional neuroimaging studies were retrieved. Most emotion studies reported lower cerebellum activity in schizophrenia patients relative to healthy controls. In contrast, the theory of mind studies reported mixed findings. Altered activity was observed across several posterior cerebellar regions involved in emotion and cognition. Weaker cerebellum activity in schizophrenia patients relative to healthy controls during emotion processing may contribute to blunted affect and reduced ability to recognise emotion in others. This research could be expanded by examining the relationship between cerebellum function, symptomatology and behaviour, and examining cerebellum functional connectivity in patients during emotion and theory of mind tasks.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Couture, Shannon M; Granholm, Eric L; Fish, Scott C
2011-02-01
Problems in real-world functioning are pervasive in schizophrenia and much recent effort has been devoted to uncovering factors which contribute to poor functioning. The goal of this study was to examine the role of four such factors: social cognition (theory of mind), neurocognition, negative symptoms, and functional capacity (social competence). 178 individuals with schizophrenia or schizoaffective disorder completed measures of theory of mind, neurocognition, negative symptoms, social competence, and self-reported functioning. Path models sought to determine the relationships among these variables. Theory of mind as indexed by the Hinting Task partially mediated the relationship between neurocognition and social competence, and negative symptoms and social competence demonstrated significant direct paths with self-reported functioning. Study results suggest theory of mind serves as an important mediator in addition to previously investigated social cognitive domains of emotional and social perception. The current study also highlights the need to determine variables which mediate the relationship between functional capacity and real-world functioning. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bull, Rebecca; Phillips, Louise H.; Conway, Claire A.
2008-01-01
Conflicting evidence has arisen from correlational studies regarding the role of executive control functions in Theory of Mind. The current study used dual-task manipulations of executive functions (inhibition, updating and switching) to investigate the role of these control functions in mental state and non-mental state tasks. The "Eyes"…
Identifying Support Functions in Developmental Relationships: A Self-Determination Perspective
ERIC Educational Resources Information Center
Janssen, Suzanne; van Vuuren, Mark; de Jong, Menno D. T.
2013-01-01
This study examines the content of developmental networks from the perspective of self-determination theory. We qualitatively examine 18 proteges' constellations of developmental relationships to identify specific types of developmental support functions. Our study shows that the adoption of self-determination theory leads to a theory-based…
[The cell theory. Progress in studies on cell-cell communications].
Brodskiĭ, V Ia
2009-01-01
Current data confirm the fundamental statement of the cell theory concerning the cell reproduction in a series of generations (omnis cellula e cellula). Cell communities or ensembles integrated by the signaling systems established in prokaryotes and protists and functioning in multicellular organisms including mammals are considered as the structural and functional unit of a multicellular organism. The cell is an elementary unit of life and basis of organism development and functioning. At the same time, the adult organism is not just a totality of cells. Multinucleated cells in some tissues, syncytial structure, and structural-functional units of organs are adaptations for optimal functioning of the multicellular organism and manifestations of cell-cell communications in development and definitive functioning. The cell theory was supplemented and developed by studies on cell-cell communications; however, these studies do not question the main generalizations of the theory.
Cook, Elizabeth A; Liu, Nancy H; Tarasenko, Melissa; Davidson, Charlie A; Spaulding, William D
2013-09-01
The purpose of this study was to examine relationships between neurocognition, theory of mind, and community functioning in a sample of 43 outpatients with serious mental illness (SMI). Relationships between baseline values and changes over time were analyzed using multilevel modeling. The results showed that a) neurocognition and theory of mind were each associated with community functioning at baseline, b) community functioning improved during approximately 12 months of treatment, c) greater improvement in neurocognition over time predicted higher rates of improvement in community functioning, d) theory of mind did not predict change in community functioning after controlling for neurocognition, and e) the effect of change in neurocognition on community functioning did not depend on the effect of baseline neurocognition. This study provides empirical support that individuals with SMI may experience improvement in community functioning, especially when they also experience improvement in neurocognition. Limitations and recommendations for future research are discussed.
Cook, Elizabeth A.; Liu, Nancy H.; Tarasenko, Melissa; Davidson, Charlie A.; Spaulding, William D.
2013-01-01
The purpose of this study was to examine relationships between neurocognition, theory of mind, and community functioning in a sample of 43 outpatients with serious mental illness (SMI). Relationships between baseline values and changes over time were analyzed using multilevel modeling. Results showed that: 1. Neurocognition and theory of mind were each associated with community functioning at baseline. 2. Community functioning improved over approximately 12 months of treatment. 3. Greater improvement in neurocognition over time predicted higher rates of improvement in community functioning. 4. Theory of mind did not predict change in community functioning after controlling for neurocognition. 5. The effect of change in neurocognition on community functioning did not depend on the effect of baseline neurocognition. This study provides empirical support that individuals with SMI may experience improvement in community functioning, especially when they also experience improvement in neurocognition. Limitations and recommendations for future research are discussed. PMID:23995035
Theory of mind and neurocognition in early psychosis: a quasi-experimental study.
Langdon, Robyn; Connors, Michael H; Still, Megan; Ward, Philip B; Catts, Stanley
2014-12-04
People with chronic psychosis often display theory of mind impairments that are not fully accounted for by other, more general neurocognitive deficits. In these patients, both theory of mind and neurocognitive deficits contribute to poor functioning, independently of psychotic symptoms. In young people with recent-onset psychosis, however, it is unclear the extent to which theory of mind impairment is independent of neurocognitive deficits. The primary aim of this study was to examine the evidence for specific theory of mind impairments in early psychosis. A secondary aim was to explore the relations between theory of mind, neurocognition, symptom severity, and functional outcomes. Twenty-three patients who were within two years of their first psychotic episode and 19 healthy controls completed theory of mind and neurocognitive batteries. Social functioning, quality of life, and symptom severity were also assessed in patients. Patients demonstrated deficits in tasks assessing theory of mind and neurocognition relative to controls. Patients' deficits in theory of mind were evident even after adjusting for their deficits in neurocognition. Neither theory of mind nor neurocognition predicted social functioning or quality of life in this early psychosis sample. Severity of negative symptoms, however, was a significant predictor of both outcomes. While a specific theory of mind impairment was evident in this early psychosis sample, severity of negative symptoms emerged as the best predictor of poor functional outcome. Further early psychosis research is needed to examine the longitudinal progression of theory of mind impairments - independent of neurocognitive deficits - and their impact on psychosocial function.
Basis convergence of range-separated density-functional theory.
Franck, Odile; Mussard, Bastien; Luppi, Eleonora; Toulouse, Julien
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. We study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N2, and H2O) with cardinal number X of the Dunning basis sets cc - p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.
Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.
Cantin, Rachelle H; Gnaedinger, Emily K; Gallaway, Kristin C; Hesson-McInnis, Matthew S; Hund, Alycia M
2016-06-01
The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. A sample of 93 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years. Copyright © 2016 Elsevier Inc. All rights reserved.
Humor theories and the physiological benefits of laughter.
Wilkins, Julia; Eisenbraun, Amy Janel
2009-01-01
There are 3 main theories used to explain the functions of humor: (1) the relief theory, (2) the incongruity theory, and (3) the superiority theory. While these theories focus on the specific role that humor plays for people in situations such as dealing with misfortune, making sense of rule violations, and bonding with others, we propose that underlying each of these theories are the physiological benefits of laughter. We draw on findings from empirical studies on laughter to demonstrate that these physiological benefits occur regardless of the theory that is used to explain the humor function. Findings from these studies have important implications for nurse practitioners working in hospice settings, long-term care facilities, nursing homes, and hospitals.
Fisher, Naomi; Happé, Francesca
2005-12-01
This study investigated the relationship between theory of mind and executive functioning in children with autistic spectrum disorders through a training study. Ten children were trained on theory of mind, whilst ten were trained in executive function. Seven children were assigned to a control group, receiving no intervention. Training programmes were administered individually, lasting for 25 minutes per day for 5-10 days. Children were tested before training, after training and at a two-month follow-up. Significant improvements were seen in performance on theory of mind tasks in both trained groups, whilst the control group showed no improvement. No improvement on the executive function tasks was seen in any of the groups. The implications of these findings are discussed.
Adsorbate Diffusion on Transition Metal Nanoparticles
2015-01-01
different sizes and shapes using density functional theory calculations. We show that nanoparticles bind adsorbates more strongly than the...structure theoretical methods, a quantitative study with accurate density functional theory (DFT) calculations is still missing. Here, we perform a...functional theory . The projector augmented wave (PAW) potentials29,30 were used for electron- ion interactions and the generalized gradient approximation
Basis convergence of range-separated density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franck, Odile, E-mail: odile.franck@etu.upmc.fr; Mussard, Bastien, E-mail: bastien.mussard@upmc.fr; CNRS, UMR 7616, Laboratoire de Chimie Théorique, F-75005 Paris
2015-02-21
Range-separated density-functional theory (DFT) is an alternative approach to Kohn-Sham density-functional theory. The strategy of range-separated density-functional theory consists in separating the Coulomb electron-electron interaction into long-range and short-range components and treating the long-range part by an explicit many-body wave-function method and the short-range part by a density-functional approximation. Among the advantages of using many-body methods for the long-range part of the electron-electron interaction is that they are much less sensitive to the one-electron atomic basis compared to the case of the standard Coulomb interaction. Here, we provide a detailed study of the basis convergence of range-separated density-functional theory. Wemore » study the convergence of the partial-wave expansion of the long-range wave function near the electron-electron coalescence. We show that the rate of convergence is exponential with respect to the maximal angular momentum L for the long-range wave function, whereas it is polynomial for the case of the Coulomb interaction. We also study the convergence of the long-range second-order Møller-Plesset correlation energy of four systems (He, Ne, N{sub 2}, and H{sub 2}O) with cardinal number X of the Dunning basis sets cc − p(C)V XZ and find that the error in the correlation energy is best fitted by an exponential in X. This leads us to propose a three-point complete-basis-set extrapolation scheme for range-separated density-functional theory based on an exponential formula.« less
Psychophysics of the probability weighting function
NASA Astrophysics Data System (ADS)
Takahashi, Taiki
2011-03-01
A probability weighting function w(p) for an objective probability p in decision under risk plays a pivotal role in Kahneman-Tversky prospect theory. Although recent studies in econophysics and neuroeconomics widely utilized probability weighting functions, psychophysical foundations of the probability weighting functions have been unknown. Notably, a behavioral economist Prelec (1998) [4] axiomatically derived the probability weighting function w(p)=exp(-() (0<α<1 and w(0)=1,w(
General dynamical density functional theory for classical fluids.
Goddard, Benjamin D; Nold, Andreas; Savva, Nikos; Pavliotis, Grigorios A; Kalliadasis, Serafim
2012-09-21
We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equation with additional nonlocal terms.
Robinson, Kristen E; Fountain-Zaragoza, Stephanie; Dennis, Maureen; Taylor, H Gerry; Bigler, Erin D; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A; Stancin, Terry; Yeates, Keith Owen
2014-11-15
This study examined whether executive function and theory of mind mediate the effects of pediatric traumatic brain injury (TBI) on social adjustment, relative to children with orthopedic injury (OI). Participants included 19 children with severe TBI, 41 children with complicated mild/moderate TBI, and 57 children with OI. They completed measures of executive function, as well as cognitive, affective, and conative theory of mind. Parents provided ratings of children's social adjustment. Children with severe TBI performed more poorly than children with OI on executive function and theory of mind tasks and were rated by parents as having more behavioral symptoms and worse communication and social skills. Executive function and theory of mind were positively correlated with social skills and communication skills, and negatively correlated with behavioral symptoms. In multiple mediator models, theory of mind and executive function were not significant direct predictors of any measure of social adjustment, but mediated the association between injury and adjustment for children with severe TBI. Theory of mind was a significant independent mediator when predicting social skills, but executive function was not. TBI in children, particularly severe injury, is associated with poor social adjustment. The impact of TBI on children's social adjustment is likely mediated by its effects on executive function and theory of mind.
Fountain-Zaragoza, Stephanie; Dennis, Maureen; Taylor, H. Gerry; Bigler, Erin D.; Rubin, Kenneth; Vannatta, Kathryn; Gerhardt, Cynthia A.; Stancin, Terry; Yeates, Keith Owen
2014-01-01
Abstract This study examined whether executive function and theory of mind mediate the effects of pediatric traumatic brain injury (TBI) on social adjustment, relative to children with orthopedic injury (OI). Participants included 19 children with severe TBI, 41 children with complicated mild/moderate TBI, and 57 children with OI. They completed measures of executive function, as well as cognitive, affective, and conative theory of mind. Parents provided ratings of children's social adjustment. Children with severe TBI performed more poorly than children with OI on executive function and theory of mind tasks and were rated by parents as having more behavioral symptoms and worse communication and social skills. Executive function and theory of mind were positively correlated with social skills and communication skills, and negatively correlated with behavioral symptoms. In multiple mediator models, theory of mind and executive function were not significant direct predictors of any measure of social adjustment, but mediated the association between injury and adjustment for children with severe TBI. Theory of mind was a significant independent mediator when predicting social skills, but executive function was not. TBI in children, particularly severe injury, is associated with poor social adjustment. The impact of TBI on children's social adjustment is likely mediated by its effects on executive function and theory of mind. PMID:25003478
Theory of mind and executive function during middle childhood across cultures.
Wang, Zhenlin; Devine, Rory T; Wong, Keri K; Hughes, Claire
2016-09-01
Previous studies with preschoolers have reported "East-West" contrasts in children's executive function (East>West) and theory of mind (East
2017-05-05
dependent density functional theory (TD-DFT). The size of the clusters considered is relatively large compared to those considered in previous studies...are characterized by many different geometries, which potentially can be optimized with respect to specific materials design criteria, i.e., molecular...SixOy molecular clusters using density functional theory (DFT). The size of the clusters considered, however, is relatively large compared to those
A case study in bifurcation theory
NASA Astrophysics Data System (ADS)
Khmou, Youssef
This short paper is focused on the bifurcation theory found in map functions called evolution functions that are used in dynamical systems. The most well-known example of discrete iterative function is the logistic map that puts into evidence bifurcation and chaotic behavior of the topology of the logistic function. We propose a new iterative function based on Lorentizan function and its generalized versions, based on numerical study, it is found that the bifurcation of the Lorentzian function is of second-order where it is characterized by the absence of chaotic region.
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
Theory of mind and switching predict prospective memory performance in adolescents.
Altgassen, Mareike; Vetter, Nora C; Phillips, Louise H; Akgün, Canan; Kliegel, Matthias
2014-11-01
Research indicates ongoing development of prospective memory as well as theory of mind and executive functions across late childhood and adolescence. However, so far the interplay of these processes has not been investigated. Therefore, the purpose of the current study was to investigate whether theory of mind and executive control processes (specifically updating, switching, and inhibition) predict prospective memory development across adolescence. In total, 42 adolescents and 41 young adults participated in this study. Young adults outperformed adolescents on tasks of prospective memory, theory of mind, and executive functions. Switching and theory of mind predicted prospective memory performance in adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.
Single case studies as a means for developing psychological theories.
Skvortsov, Anatoliy; Romashchuk, Alexander
2015-12-01
The Socratic function of single case studies (SCSs) is described in its relation to the problem of scientific theory development. Contrary to the traditional point of view, the single case study is not a demonstration or verification of theoretical concepts, but a method of their generation and opportunity for analysis of their interrelations. Considering the case study from the perspective of the Socratic function brings to light important conclusions about the ecological validity of theory development. The essential features of the Socratic function are illustrated using the example of the famous Romantic Essays of Alexandr Luria. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Representations of Complexity: How Nature Appears in Our Theories
2013-01-01
In science we study processes in the material world. The way these processes operate can be discovered by conducting experiments that activate them, and findings from such experiments can lead to functional complexity theories of how the material processes work. The results of a good functional theory will agree with experimental measurements, but the theory may not incorporate in its algorithmic workings a representation of the material processes themselves. Nevertheless, the algorithmic operation of a good functional theory may be said to make contact with material reality by incorporating the emergent computations the material processes carry out. These points are illustrated in the experimental analysis of behavior by considering an evolutionary theory of behavior dynamics, the algorithmic operation of which does not correspond to material features of the physical world, but the functional output of which agrees quantitatively and qualitatively with findings from a large body of research with live organisms. PMID:28018044
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory
NASA Astrophysics Data System (ADS)
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-01
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level Sc 2, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature Tc. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to Tc. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
Sullivan, Sarah; Lewis, Glyn; Mohr, Christine; Herzig, Daniela; Corcoran, Rhiannon; Drake, Richard; Evans, Jonathan
2014-01-01
There is some cross-sectional evidence that theory of mind ability is associated with social functioning in those with psychosis but the direction of this relationship is unknown. This study investigates the longitudinal association between both theory of mind and psychotic symptoms and social functioning outcome in first-episode psychosis. Fifty-four people with first-episode psychosis were followed up at 6 and 12 months. Random effects regression models were used to estimate the stability of theory of mind over time and the association between baseline theory of mind and psychotic symptoms and social functioning outcome. Neither baseline theory of mind ability (regression coefficients: Hinting test 1.07 95% CI -0.74, 2.88; Visual Cartoon test -2.91 95% CI -7.32, 1.51) nor baseline symptoms (regression coefficients: positive symptoms -0.04 95% CI -1.24, 1.16; selected negative symptoms -0.15 95% CI -2.63, 2.32) were associated with social functioning outcome. There was evidence that theory of mind ability was stable over time, (regression coefficients: Hinting test 5.92 95% CI -6.66, 8.92; Visual Cartoon test score 0.13 95% CI -0.17, 0.44). Neither baseline theory of mind ability nor psychotic symptoms are associated with social functioning outcome. Further longitudinal work is needed to understand the origin of social functioning deficits in psychosis.
ERIC Educational Resources Information Center
Fukuhara, Hirotaka; Kamata, Akihito
2011-01-01
A differential item functioning (DIF) detection method for testlet-based data was proposed and evaluated in this study. The proposed DIF model is an extension of a bifactor multidimensional item response theory (MIRT) model for testlets. Unlike traditional item response theory (IRT) DIF models, the proposed model takes testlet effects into…
Executive Function and Reading Aptitude: A Grounded Theory Analysis of Teacher Perspectives
ERIC Educational Resources Information Center
Nordman, Jenny
2013-01-01
This qualitative, grounded theory study investigated teacher perspectives on the relationship between executive function and reading aptitude. The influence of executive function may be underestimated in terms of its impact on reading aptitude, which could have significant implications on how reading aptitude is currently defined. The foundational…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept. /Boston U.; Dymarsky, Anatoly
2012-06-06
We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber.more » We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n > 2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.« less
Developing Thermal Density Functional Theory Using the Asymmetric Hubbard Dimer
NASA Astrophysics Data System (ADS)
Smith, Justin Clifford
In this dissertation, I introduce both ground-state and thermal density functional theory. Throughout I use the asymmetric two-site Hubbard model, called the Hubbard dimer for short, to better understand and/or develop these theories. This model is used because it can be solved analytically and it contains all the necessary physics while still being conceptually simple enough to tease apart the various aspects of density functional theory. Ground-state density functional theory has seen broad use in many disciplines including physics, chemistry, geology, and material science and has led to a number of important physical and technological successes. In the first two chapters I elucidate the behavior of the ground-state theory using the Hubbard dimer. The simplicity of the model allows me to showcase aspects of the theory that are common points of confusion within the electronic structure community, e.g. the fundamental gap problem. The next two chapters focus on thermal density functional theory which has been coming to prominence as the study of warm dense matter has become a growing interest at the national laboratories and in the astronomical body community. The Hubbard dimer allows me to do the first ever exact thermal density functional theory calculation. In this work I am better able to understand the approximations used in thermal density functional theory and can point to why they succeed and fail. This also allows me to illustrate old conditions and derive new ones. I conclude with an overview of the work and a few different directions in which the asymmetric Hubbard dimer could be used further.
Joint density-functional theory and its application to systems in solution
NASA Astrophysics Data System (ADS)
Petrosyan, Sahak A.
The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional theory for water which overcomes this difficulty and gives reasonable agreement with molecular dynamics simulation data for the solvation of hard spheres in water and sufficient agreement with experimental data for hydration of inert gas atoms to justify its use in a joint theory with standard approximate density functionals used in electronic structure calculations. The last study in the thesis combines the previous ideas and presenting an approximate model density functional which includes a description of cavitation effects through a classical density-functional theory; a description of dielectric effects through a non-local polarizability, and a description of the coupling of the solvent to the electrons of the solute through a pseudopotential. Without any empirical fitting of parameters to solvation data, this theory predicts solvation energies at least as well as state-of-the-art quantum-chemical cavity approaches, which do employ such fitting. Although this agreement without adjustable parameters is very encouraging and shows the promise of the joint density-functional approach, the functionals which we develop here are models and do not yet include all of the microscopic physics. The thesis concludes with a description of the directions future work should take to address this weakness.
Lee, Seung-Hwan; Sung, Kyongae; Lee, Kyong-Sang; Moon, Eunok; Kim, Chang-Gyu
2014-01-03
Mismatch negativity (MMN) is known to be associated with neurocognition, social cognition, and functional outcomes. The present study explored the relationships of MMN with neurocognition, theory of mind, and functional outcomes in patients with schizophrenia, first-degree relatives of patients with schizophrenia, and healthy controls. Twenty-five patients with schizophrenia, 21 first-degree relatives of patients with schizophrenia, and 29 healthy controls were recruited. We examined symptom severity, neurocognition, theory of mind, functional outcomes, and MMN. MMN amplitudes decreased in order of patients with schizophrenia, then first-degree relatives, then healthy controls. MMN amplitude was significantly correlated with measures of neurocognition, theory of mind, and functional outcome measurements in patients with schizophrenia. However, the most powerful correlations were those between MMN in the frontal region and measures of functional outcomes. The power and frequency of the correlations were weaker in first-degree relatives and healthy controls than in patients with schizophrenia. Hierarchical regression analysis revealed that functional outcomes (relative to measures of neurocognition and theory of mind) constituted the most powerful predictor of MMN. Our results suggest that MMN reflects functional outcomes more efficiently than do measures of neurocognition and theory of mind in patients with schizophrenia. © 2013.
ERIC Educational Resources Information Center
Bock, Allison M.; Gallaway, Kristin C.; Hund, Alycia M.
2015-01-01
The purpose of this study was to specify the development of and links between executive functioning and theory of mind during middle childhood. One hundred four 7- to 12-year-old children completed a battery of age-appropriate tasks measuring working memory, inhibition, flexibility, theory of mind, and vocabulary. As expected, spatial working…
Theory of Mind and Central Coherence in Adults with High-Functioning Autism or Asperger Syndrome
ERIC Educational Resources Information Center
Beaumont, Renae; Newcombe, Peter
2006-01-01
The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HFA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no…
USDA-ARS?s Scientific Manuscript database
In this study density functional theory (DFT) was used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previously reported Brønsted–Evans–Polanyi (BEP) correlations for small open chain molecules are found to be inadequate in estimating the reaction...
Geometry of Spin and SPINc Structures in the M-Theory Partition Function
NASA Astrophysics Data System (ADS)
Sati, Hisham
We study the effects of having multiple Spin structures on the partition function of the spacetime fields in M-theory. This leads to a potential anomaly which appears in the eta invariants upon variation of the Spin structure. The main sources of such spaces are manifolds with nontrivial fundamental group, which are also important in realistic models. We extend the discussion to the Spinc case and find the phase of the partition function, and revisit the quantization condition for the C-field in this case. In type IIA string theory in 10 dimensions, the (mod 2) index of the Dirac operator is the obstruction to having a well-defined partition function. We geometrically characterize manifolds with and without such an anomaly and extend to the case of nontrivial fundamental group. The lift to KO-theory gives the α-invariant, which in general depends on the Spin structure. This reveals many interesting connections to positive scalar curvature manifolds and constructions related to the Gromov-Lawson-Rosenberg conjecture. In the 12-dimensional theory bounding M-theory, we study similar geometric questions, including choices of metrics and obtaining elements of K-theory in 10 dimensions by pushforward in K-theory on the disk fiber. We interpret the latter in terms of the families index theorem for Dirac operators on the M-theory circle and disk. This involves superconnections, eta forms, and infinite-dimensional bundles, and gives elements in Deligne cohomology in lower dimensions. We illustrate our discussion with many examples throughout.
Time-dependence of graph theory metrics in functional connectivity analysis
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.
2016-01-01
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632
Time-dependence of graph theory metrics in functional connectivity analysis.
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M
2016-01-15
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Özenç, Emine Gül; Dogan, M. Cihangir
2014-01-01
This study aims to perform a validity-reliability test by developing the Functional Literacy Experience Scale based upon Ecological Theory (FLESBUET) for primary education students. The study group includes 209 fifth grade students at Sabri Taskin Primary School in the Kartal District of Istanbul, Turkey during the 2010-2011 academic year.…
Holographic non-Fermi-liquid fixed points.
Faulkner, Tom; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2011-04-28
Techniques arising from string theory can be used to study assemblies of strongly interacting fermions. Via this 'holographic duality', various strongly coupled many-body systems are solved using an auxiliary theory of gravity. Simple holographic realizations of finite density exhibit single-particle spectral functions with sharp Fermi surfaces, of a form distinct from those of the Landau theory. The self-energy is given by a correlation function in an infrared (IR) fixed-point theory that is represented by a two-dimensional anti de Sitter space (AdS(2)) region in the dual gravitational description. Here, we describe in detail the gravity calculation of this IR correlation function.
Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-
NASA Astrophysics Data System (ADS)
Sharma, Prachi; Truhlar, Donald G.; Gagliardi, Laura
2018-03-01
The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.
Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4.
Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura
2018-03-28
The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.
Density functional theory studies of etoricoxib
NASA Astrophysics Data System (ADS)
Sachdeva, Ritika; Kaur, Prabhjot; Singh, V. P.; Saini, G. S. S.
2016-05-01
Etoricoxib is a COX-2 selective inhibitor drug with molecular formula C18H15ClN2O2S. It is primarily used for the treatment of arthritis(rheumatoid, psoriatic, osteoarthritis), ankylosing spondylitis, gout and chronic low back pain. Theoretical studies of the molecule including geometry optimization and vibrational frequency calculations were carried out with the help of density functional theory calculations using 6-311++ g (d, p) basis set and B3LYP functional.
Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory.
Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra
2017-12-29
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level S_{c2}, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature T_{c}. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to T_{c}. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
On mini-superspace limit of boundary three-point function in Liouville field theory
NASA Astrophysics Data System (ADS)
Apresyan, Elena; Sarkissian, Gor
2017-12-01
We study the mini-superspace semiclassical limit of the boundary three-point function in the Liouville field theory. We compute also matrix elements for the Morse potential quantum mechanics. An exact agreement between the former and the latter is found. We show that both of them are given by the generalized hypergeometric functions.
Executive Function Mechanisms of Theory of Mind
ERIC Educational Resources Information Center
Ahmed, Fayeza S.; Miller, L. Stephen
2011-01-01
This study examined the relationship between Executive Function (EF) and Theory of Mind (ToM) using the Delis-Kaplan Executive Function System (D-KEFS) and three tests of ToM (Reading the Mind in the Eyes test (RMET), Strange Stories test, and Faux Pas test). Separate regression analyses were conducted, and EF predictors varied by ToM test. No EF…
Semantic Relevance, Domain Specificity and the Sensory/Functional Theory of Category-Specificity
ERIC Educational Resources Information Center
Sartori, Giuseppe; Gnoato, Francesca; Mariani, Ilenia; Prioni, Sara; Lombardi, Luigi
2007-01-01
According to the sensory/functional theory of semantic memory, Living items rely more on Sensory knowledge than Non-living ones. The sensory/functional explanation of category-specificity assumes that semantic features are organised on the basis of their content. We report here a study on DAT patients with impaired performance on Living items and…
ERIC Educational Resources Information Center
Caliskan, Zuhal Zeybekoglu; Simsek, Hasan; Kondakci, Yasar
2017-01-01
This study analyses the functioning of a school as a social system in an atypical context with the purpose of generating propositions to tackle educational problems confronted by socially and economically disadvantaged groups attending these schools. Adopting the constructivist grounded theory, the analysis suggests that there is a kind of…
ERIC Educational Resources Information Center
Willoughby, Michael T.; Wirth, R. J.; Blair, Clancy B.
2011-01-01
This study demonstrates the merits of evaluating a newly developed battery of executive function tasks, designed for use in early childhood, from the perspective of item response theory (IRT). The battery was included in the 48-month assessment of the Family Life Project, a prospective longitudinal study of 1292 children oversampled from…
Density functional theory study of the concerted pyrolysis mechanism for lignin models
Thomas Elder; Ariana Beste
2014-01-01
ABSTRACT: Studies on the pyrolysis mechanisms of lignin model compounds have largely focused on initial homolytic cleavage reactions. It has been noted, however, that concerted mechanisms may also account for observed product formation. In the current work, the latter processes are examined and compared to the former, by the application of density functional theory...
ERIC Educational Resources Information Center
Brisk, Maria Estela; Hodgson-Drysdale, Tracy; O'Connor, Cheryl
2011-01-01
This study examined the teaching of report writing in PreK-5 through the lens of systemic functional linguistics theory. Teachers were part of a university-public school collaboration that included professional development on teaching genres, text organization, and language features. Grounded in this knowledge, teachers explicitly taught report…
RG flow from Φ 4 theory to the 2D Ising model
Anand, Nikhil; Genest, Vincent X.; Katz, Emanuel; ...
2017-08-16
We study 1+1 dimensional Φ 4 theory using the recently proposed method of conformal truncation. Starting in the UV CFT of free field theory, we construct a complete basis of states with definite conformal Casimir, C. We use these states to express the Hamiltonian of the full interacting theory in lightcone quantization. After truncating to states with C≤C max, we numerically diagonalize the Hamiltonian at strong coupling and study the resulting IR dynamics. We compute non-perturbative spectral densities of several local operators, which are equivalent to real-time, infinite-volume correlation functions. These spectral densities, which include the Zamolodchikov C-function along themore » full RG flow, are calculable at any value of the coupling. Near criticality, our numerical results reproduce correlation functions in the 2D Ising model.« less
Schlüns, Danny; Franchini, Mirko; Götz, Andreas W; Neugebauer, Johannes; Jacob, Christoph R; Visscher, Lucas
2017-02-05
We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Molecular Modeling of Lipid Aggregates: Theory and Application
NASA Astrophysics Data System (ADS)
Fenner, Joel Stewart
The ability of cell membranes to perform a wide variety of biological functions stems from the organization and composition of its molecular constituents. There are many engineering applications, such as liposome drug delivery carriers, whose functionality takes advantage of the structure to function relationship of lipid membranes. The fundamental understanding of the relationship between the thermodynamic behavior and structure of lipid membranes and the molecular properties of their lipid constituents is crucial to the successful design of lipid related applications. However, information about how the local microscopic composition of lipid membranes responds to the presence of proteins and nanomaterials is challenging given the intrinsic experimental and theoretical difficulties of studying such small-scale systems. The present work generalizes a self consistent mean field theory for the study of the thermodynamic and structural behavior of lipid bilayers as a function of its molecular composition and physicochemical environments. This novel molecular theory provides with the ability of performing systematic thermodynamic calculations at relatively low computational costs while considering a detailed molecular description of the system under study. The competition of all relevant molecular interactions, such as electrostatics, vdW and chemical equilibria, in the membrane system is described. The developed molecular theory is applied to study how the protonation state of pH-sensitive amphiphiles in a membrane system affects the membrane's morphology. The molecular theory results demonstrate that the protonation state of ionizable groups within amphiphilic membranes shows a highly complex non-monotonic dependence on bulk salt concentration and pH strength. This result suggests that information about the pKa of the molecules is not sufficient to predict the protonation state of the ionizable groups in the membrane system. The molecular theory is also applied to study how the presence of proteins or functionalized nanoparticles near a multicomponent membrane surface leads to changes in its local membrane composition. The results support an electrostatic dependent recruitment mechanism of oncogenic RhoA proteins to the cell membrane. Finally, the molecular theory results describe how nanoparticle functionality and/or membrane molecular composition can be tuned to enhance or suppress nanoparticle adsorption on to phospholipid membranes.
Kikkinides, E S; Monson, P A
2015-03-07
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van der Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikkinides, E. S.; Monson, P. A.
Building on recent developments in dynamic density functional theory, we have developed a version of the theory that includes hydrodynamic interactions. This is achieved by combining the continuity and momentum equations eliminating velocity fields, so the resulting model equation contains only terms related to the fluid density and its time and spatial derivatives. The new model satisfies simultaneously continuity and momentum equations under the assumptions of constant dynamic or kinematic viscosity and small velocities and/or density gradients. We present applications of the theory to spinodal decomposition of subcritical temperatures for one-dimensional and three-dimensional density perturbations for both a van dermore » Waals fluid and for a lattice gas model in mean field theory. In the latter case, the theory provides a hydrodynamic extension to the recently studied dynamic mean field theory. We find that the theory correctly describes the transition from diffusive phase separation at short times to hydrodynamic behaviour at long times.« less
The metric on field space, functional renormalization, and metric–torsion quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuter, Martin, E-mail: reuter@thep.physik.uni-mainz.de; Schollmeyer, Gregor M., E-mail: schollmeyer@thep.physik.uni-mainz.de
Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modifiedmore » FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.« less
Limit cycles and conformal invariance
NASA Astrophysics Data System (ADS)
Fortin, Jean-François; Grinstein, Benjamín; Stergiou, Andreas
2013-01-01
There is a widely held belief that conformal field theories (CFTs) require zero beta functions. Nevertheless, the work of Jack and Osborn implies that the beta functions are not actually the quantites that decide conformality, but until recently no such behavior had been exhibited. Our recent work has led to the discovery of CFTs with nonzero beta functions, more precisely CFTs that live on recurrent trajectories, e.g., limit cycles, of the beta-function vector field. To demonstrate this we study the S function of Jack and Osborn. We use Weyl consistency conditions to show that it vanishes at fixed points and agrees with the generator Q of limit cycles on them. Moreover, we compute S to third order in perturbation theory, and explicitly verify that it agrees with our previous determinations of Q. A byproduct of our analysis is that, in perturbation theory, unitarity and scale invariance imply conformal invariance in four-dimensional quantum field theories. Finally, we study some properties of these new, "cyclic" CFTs, and point out that the a-theorem still governs the asymptotic behavior of renormalization-group flows.
Five-dimensional fermionic Chern-Simons theory
NASA Astrophysics Data System (ADS)
Bak, Dongsu; Gustavsson, Andreas
2018-02-01
We study 5d fermionic CS theory with a fermionic 2-form gauge potential. This theory can be obtained from 5d maximally supersymmetric YM theory by performing the maximal topological twist. We put the theory on a five-manifold and compute the partition function. We find that it is a topological quantity, which involves the Ray-Singer torsion of the five-manifold. For abelian gauge group we consider the uplift to the 6d theory and find a mismatch between the 5d partition function and the 6d index, due to the nontrivial dimensional reduction of a selfdual two-form gauge field on a circle. We also discuss an application of the 5d theory to generalized knots made of 2d sheets embedded in 5d.
Noncovalent Interactions of DNA Bases with Naphthalene and Graphene.
Cho, Yeonchoo; Min, Seung Kyu; Yun, Jeonghun; Kim, Woo Youn; Tkatchenko, Alexandre; Kim, Kwang S
2013-04-09
The complexes of a DNA base bound to graphitic systems are studied. Considering naphthalene as the simplest graphitic system, DNA base-naphthalene complexes are scrutinized at high levels of ab initio theory including coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] at the complete basis set (CBS) limit. The stacked configurations are the most stable, where the CCSD(T)/CBS binding energies of guanine, adenine, thymine, and cytosine are 9.31, 8.48, 8.53, 7.30 kcal/mol, respectively. The energy components are investigated using symmetry-adapted perturbation theory based on density functional theory including the dispersion energy. We compared the CCSD(T)/CBS results with several density functional methods applicable to periodic systems. Considering accuracy and availability, the optB86b nonlocal functional and the Tkatchenko-Scheffler functional are used to study the binding energies of nucleobases on graphene. The predicted values are 18-24 kcal/mol, though many-body effects on screening and energy need to be further considered.
Pei, Du; Ye, Ke
2016-11-02
Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere S b 3. Thismore » enables us to see clearly, at the level of partition function, to what extent G C complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less
Fluid and Crystallized Intelligence--Theory and Research in Later Adulthood.
ERIC Educational Resources Information Center
Willis, Sherry L.; Baltes, Paul B.
Two studies examined modifiability in intellectual functioning in older adults. The fluid-crystallized theory provided a theory base for the research. (Fluid intelligence follows a normative decline through adulthood, while crystallized intelligence remains stable or even increases.) In the first study thirty subjects (average age 69.2)…
One-loop β-function for an infinite-parameter family of gauge theories
NASA Astrophysics Data System (ADS)
Krasnov, Kirill
2015-03-01
We continue to study an infinite-parametric family of gauge theories with an arbitrary function of the self-dual part of the field strength as the Lagrangian. The arising one-loop divergences are computed using the background field method. We show that they can all be absorbed by a local redefinition of the gauge field, as well as multiplicative renormalisations of the couplings. Thus, this family of theories is one-loop renormalisable. The infinite set of β-functions for the couplings is compactly stored in a renormalisation group flow for a single function of the curvature. The flow is obtained explicitly.
Multiple utility constrained multi-objective programs using Bayesian theory
NASA Astrophysics Data System (ADS)
Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed
2018-03-01
A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.
Magnetic expansion of Nekrasov theory: The SU(2) pure gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Wei; Miao Yangang
It is recently claimed by Nekrasov and Shatashvili that the N=2 gauge theories in the {Omega} background with {epsilon}{sub 1}=({h_bar}/2{pi}), {epsilon}{sub 2}=0 are related to the quantization of certain algebraic integrable systems. We study the special case of SU(2) pure gauge theory; the corresponding integrable model is the A{sub 1} Toda model, which reduces to the sine-Gordon quantum mechanics problem. The quantum effects can be expressed as the WKB series written analytically in terms of hypergeometric functions. We obtain the magnetic and dyonic expansions of the Nekrasov theory by studying the property of hypergeometric functions in the magnetic and dyonicmore » regions on the moduli space. We also discuss the relation between the electric-magnetic duality of gauge theory and the action-action duality of the integrable system.« less
Ding, Xiao Pan; Wu, Si Jia; Liu, Jiangang; Fu, Genyue; Lee, Kang
2017-09-21
The present study examined how different brain regions interact with each other during spontaneous honest vs. dishonest communication. More specifically, we took a complex network approach based on the graph-theory to analyze neural response data when children are spontaneously engaged in honest or dishonest acts. Fifty-nine right-handed children between 7 and 12 years of age participated in the study. They lied or told the truth out of their own volition. We found that lying decreased both the global and local efficiencies of children's functional neural network. This finding, for the first time, suggests that lying disrupts the efficiency of children's cortical network functioning. Further, it suggests that the graph theory based network analysis is a viable approach to study the neural development of deception.
A theoretical study of the reaction of Ti+ with ethane
NASA Astrophysics Data System (ADS)
Moc, Jerzy; Fedorov, Dmitri G.; Gordon, Mark S.
2000-06-01
The doublet and quartet potential energy surfaces for the Ti++C2H6→TiC2H4++H2 and Ti++C2H6→TiCH2++CH4 reactions are studied using density functional theory (DFT) with the B3LYP functional and ab initio coupled cluster CCSD(T) methods with high quality basis sets. Structures have been optimized at the DFT level and the minima connected to each transition state (TS) by following the intrinsic reaction coordinate (IRC). Relative energies are calculated both at the DFT and coupled-cluster levels of theory. The relevant parts of the potential energy surface, especially key transition states, are also studied using multireference wave functions with the final energetics obtained with multireference second-order perturbation theory.
Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.
Domingo, Luis R; Ríos-Gutiérrez, Mar; Pérez, Patricia
2016-06-09
Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k - Parr functions, as the most relevant indices for the study of organic reactivity, are discussed.
NASA Astrophysics Data System (ADS)
Natarajan, Sundararajan
2014-12-01
The main objectives of the paper are to (1) present an overview of nonlocal integral elasticity and Aifantis gradient elasticity theory and (2) discuss the application of partition of unity methods to study the response of low-dimensional structures. We present different choices of approximation functions for gradient elasticity, namely Lagrange intepolants, moving least-squares approximants and non-uniform rational B-splines. Next, we employ these approximation functions to study the response of nanobeams based on Euler-Bernoulli and Timoshenko theories as well as to study nanoplates based on first-order shear deformation theory. The response of nanobeams and nanoplates is studied using Eringen's nonlocal elasticity theory. The influence of the nonlocal parameter, the beam and the plate aspect ratio and the boundary conditions on the global response is numerically studied. The influence of a crack on the axial vibration and buckling characteristics of nanobeams is also numerically studied.
A Unifying Theory of Biological Function.
van Hateren, J H
2017-01-01
A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological (or selected effects) theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism's fitness, and modulates the organism's variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories.
Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.
Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K
2018-03-13
Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.
Guidez, Emilie B; Gordon, Mark S
2015-03-12
The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.
Density functional theory of freezing of a system of highly elongated ellipsoidal oligomer solutions
NASA Astrophysics Data System (ADS)
Dwivedi, Shikha; Mishra, Pankaj
2017-05-01
We have used the density functional theory of freezing to study the liquid crystalline phase behavior of a system of highly elongated ellipsoidal conjugated oligomers dispersed in three different solvents namely chloroform, toluene and their equimolar mixture. The molecules are assumed to interact via solvent-implicit coarse-grained Gay-Berne potential. Pair correlation functions needed as input in the density functional theory have been calculated using the Percus-Yevick (PY) integral equation theory. Considering the isotropic and nematic phases, we have calculated the isotropic-nematic phase transition parameters and presented the temperature-density and pressure-temperature phase diagrams. Different solvent conditions are found not only to affect the transition parameters but also determine the capability of oligomers to form nematic phase in various thermodynamic conditions. In principle, our results are verifiable through computer simulations.
Rise and fall of the two visual systems theory.
Rossetti, Yves; Pisella, Laure; McIntosh, Robert D
2017-06-01
Among the many dissociations describing the visual system, the dual theory of two visual systems, respectively dedicated to perception and action, has yielded a lot of support. There are psychophysical, anatomical and neuropsychological arguments in favor of this theory. Several behavioral studies that used sensory and motor psychophysical parameters observed differences between perceptive and motor responses. The anatomical network of the visual system in the non-human primate was very readily organized according to two major pathways, dorsal and ventral. Neuropsychological studies, exploring optic ataxia and visual agnosia as characteristic deficits of these two pathways, led to the proposal of a functional double dissociation between visuomotor and visual perceptual functions. After a major wave of popularity that promoted great advances, particularly in knowledge of visuomotor functions, the guiding theory is now being reconsidered. Firstly, the idea of a double dissociation between optic ataxia and visual form agnosia, as cleanly separating visuomotor from visual perceptual functions, is no longer tenable; optic ataxia does not support a dissociation between perception and action and might be more accurately viewed as a negative image of action blindsight. Secondly, dissociations between perceptive and motor responses highlighted in the framework of this theory concern a very elementary level of action, even automatically guided action routines. Thirdly, the very rich interconnected network of the visual brain yields few arguments in favor of a strict perception/action dissociation. Overall, the dissociation between motor function and perceptive function explored by these behavioral and neuropsychological studies can help define an automatic level of action organization deficient in optic ataxia and preserved in action blindsight, and underlines the renewed need to consider the perception-action circle as a functional ensemble. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Senn, Florian; Krykunov, Mykhaylo
2015-10-22
For the polyacenes series from naphthalene to hexacene, we present the vertical singlet excitation energies 1 (1)La and 1 (1)Lb, as well as the first triplet excitation energies obtained by the all-order constricted variational density functional theory with orbital relaxation (R-CV(∞)-DFT). R-CV(∞)-DFT is a further development of variational density functional theory (CV(∞)-DFT), which has already been successfully applied for the calculation of the vertical singlet excitation energies (1)La and (1)Lb for polyacenes,15 and we show that one obtains consistent excitation energies using the local density approximation as a functional for singlet as well as for triplet excitations when going beyond the linear response theory. Furthermore, we apply self-consistent field density functional theory (ΔSCF-DFT) and compare the obtained excitation energies for the first triplet excitations T1, where, due to the character of the transition, ΔSCF-DFT and R-CV(∞)-DFT become numerically equivalent, and for the singlet excitations 1 (1)La and 1 (1)Lb, where the two methods differ.
Renormalizable Quantum Field Theories in the Large -n Limit
NASA Astrophysics Data System (ADS)
Guruswamy, Sathya
1995-01-01
In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.
Properties of resonance wave functions.
NASA Technical Reports Server (NTRS)
More, R. M.; Gerjuoy, E.
1973-01-01
Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.
Mothersill, Omar; Tangney, Noreen; Morris, Derek W; McCarthy, Hazel; Frodl, Thomas; Gill, Michael; Corvin, Aiden; Donohoe, Gary
2017-06-01
Resting-state functional magnetic resonance imaging (rs-fMRI) has repeatedly shown evidence of altered functional connectivity of large-scale networks in schizophrenia. The relationship between these connectivity changes and behaviour (e.g. symptoms, neuropsychological performance) remains unclear. Functional connectivity in 27 patients with schizophrenia or schizoaffective disorder, and 25 age and gender matched healthy controls was examined using rs-fMRI. Based on seed regions from previous studies, we examined functional connectivity of the default, cognitive control, affective and attention networks. Effects of symptom severity and theory of mind performance on functional connectivity were also examined. Patients showed increased connectivity between key nodes of the default network including the precuneus and medial prefrontal cortex compared to controls (p<0.01, FWE-corrected). Increasing positive symptoms and increasing theory of mind performance were both associated with altered connectivity of default regions within the patient group (p<0.01, FWE-corrected). This study confirms previous findings of default hyper-connectivity in schizophrenia spectrum patients and reveals an association between altered default connectivity and positive symptom severity. As a novel find, this study also shows that default connectivity is correlated to and predictive of theory of mind performance. Extending these findings by examining the effects of emerging social cognition treatments on both default connectivity and theory of mind performance is now an important goal for research. Copyright © 2016 Elsevier B.V. All rights reserved.
Uncertainty quantification and propagation in nuclear density functional theory
Schunck, N.; McDonnell, J. D.; Higdon, D.; ...
2015-12-23
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this study, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statisticalmore » analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.« less
NMR and NQR parameters of ethanol crystal
NASA Astrophysics Data System (ADS)
Milinković, M.; Bilalbegović, G.
2012-04-01
Electric field gradients and chemical shielding tensors of the stable monoclinic crystal phase of ethanol are computed. The projector-augmented wave (PAW) and gauge-including projector-augmented wave (GIPAW) models in the periodic plane-wave density functional theory are used. The crystal data from X-ray measurements, as well as the structures where either all atomic, or only hydrogen atom positions are optimized in the density functional theory are analyzed. These structural models are also studied by including the semi-empirical van der Waals correction to the density functional theory. Infrared spectra of these five crystal models are calculated.
Hemispheric asymmetry and theory of mind: is there an association?
Herzig, Daniela A; Sullivan, Sarah; Evans, Jonathan; Corcoran, Rhiannon; Mohr, Christine
2012-01-01
In autism and schizophrenia attenuated/atypical functional hemispheric asymmetry and theory of mind impairments have been reported, suggesting common underlying neuroscientific correlates. We here investigated whether impaired theory of mind performance is associated with attenuated/atypical hemispheric asymmetry. An association may explain the co-occurrence of both dysfunctions in psychiatric populations. Healthy participants (n=129) performed a left hemisphere (lateralised lexical decision task) and right hemisphere (lateralised face decision task) dominant task as well as a visual cartoon task to assess theory of mind performance. Linear regression analyses revealed inconsistent associations between theory of mind performance and functional hemisphere asymmetry: enhanced theory of mind performance was only associated with (1) faster right hemisphere language processing, and (2) reduced right hemisphere dominance for face processing (men only). The majority of non-significant findings suggest that theory of mind and functional hemispheric asymmetry are unrelated. Instead of "overinterpreting" the two significant results, discrepancies in the previous literature relating to the problem of the theory of mind concept, the variety of tasks, and the lack of normative data are discussed. We also suggest how future studies could explore a possible link between hemispheric asymmetry and theory of mind.
James Absher
1998-01-01
Studies that employ communication theories are rare in recreation resource management. One reason may be unfamiliarity with communication theories and their potential to provide useful results. A two-dimensional metatheoretical plane is proposed, selected recreation and communication theories are located in it, and functional comparisons are made among eight disparate...
Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming
2017-08-01
The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.
The temporolimbic system theory of positive schizophrenic symptoms.
Bogerts, B
1997-01-01
This article proposes that subtle structural and functional disturbance of limbic key structures in the medial temporal lobe-especially of the left hippocampal formation and parahippocampal gyrus-can explain the so-called positive symptoms of schizophrenia. After presenting pathophysiological considerations linking limbic dysfunction to schizophrenia, the article reviews evidence from structural, biochemical, and functional studies supporting the theory. Also discussed here are neurodevelopmental and laterality aspects, as well as predictions, questions, and future tasks derived from the theory.
Ma, Zimi; Jia, Chunhua; Guo, Jin; Gu, Haorong; Miao, Yanhuan
2014-02-01
To study the Chinese ancient five-element theory, one of the philosophical foundations of Traditional Chinese Medicine (TCM) theory construction, from the perspective of comtemporary cognitive science, and to reveal the important functions of five-element theory in the construction of TCM theory. The basic effects of five-element theory in the construction of TCM theory are intensively expounded and proved from the following aspects: embodiment of five-element theory in cognizing the world, quasi axiom of five-element theory in essence, classification thery of family resemblance and deductive inference pattern of five-element theory, and the openness and expansibility of five-element theory. If five-element theory is considered a cognitive pattern or cognitive system related to culture, then there should be features of cognitive embodiment in the cognitive system. If five-element theory is regarded as a symbolic system, however, then there should be a quasi-axiom for the system, and inferential deduction. If, however, five-element theory is taken as a theoretical constructive metaphor, then there should be features of opening and expansibility for the metaphor. Based on five-element theory, this study provides a cognitive frame for the construction of TCM (a medicine that originated in China, and is characterized by holism and treatment based on pattern identification differentiation) theory with the function of constructing a concept base, thereby implying further research strategies. Useful information may be produced from the creative inferences obtained from the incorporation of five-element theory.
NASA Astrophysics Data System (ADS)
Lahoche, Vincent; Ousmane Samary, Dine
2017-02-01
This paper is focused on the functional renormalization group applied to the T56 tensor model on the Abelian group U (1 ) with closure constraint. For the first time, we derive the flow equations for the couplings and mass parameters in a suitable truncation around the marginal interactions with respect to the perturbative power counting. For the second time, we study the behavior around the Gaussian fixed point, and show that the theory is nonasymptotically free. Finally, we discuss the UV completion of the theory. We show the existence of several nontrivial fixed points, study the behavior of the renormalization group flow around them, and point out evidence in favor of an asymptotically safe theory.
Nonclassical models of the theory of plates and shells
NASA Astrophysics Data System (ADS)
Annin, Boris D.; Volchkov, Yuri M.
2017-11-01
Publications dealing with the study of methods of reducing a three-dimensional problem of the elasticity theory to a two-dimensional problem of the theory of plates and shells are reviewed. Two approaches are considered: the use of kinematic and force hypotheses and expansion of solutions of the three-dimensional elasticity theory in terms of the complete system of functions. Papers where a three-dimensional problem is reduced to a two-dimensional problem with the use of several approximations of each of the unknown functions (stresses and displacements) by segments of the Legendre polynomials are also reviewed.
Theory of Mind and Executive Function in Chinese Preschool Children
ERIC Educational Resources Information Center
Duh, Shinchieh; Paik, Jae H.; Miller, Patricia H.; Gluck, Stephanie C.; Li, Hui; Himelfarb, Igor
2016-01-01
Cross-cultural research on children's theory of mind (ToM) understanding has raised questions about its developmental sequence and relationship with executive function (EF). The current study examined how ToM develops (using the tasks from Wellman & Liu, 2004) in relation to 2 EF skills (conflict inhibition, working memory) in 997 Chinese…
ERIC Educational Resources Information Center
Lera-Miguel, Sara; Rosa, Mireia; Puig, Olga; Kaland, Nils; Lázaro, Luisa; Castro-Formieles, Josefina; Calvo, Rosa
2016-01-01
Most individuals with autism spectrum disorders often fail in tasks of theory of mind (ToM). However, those with normal intellectual functioning known as high functioning ASD (HF-ASD) sometimes succeed in mentalizing inferences. Some tools have been developed to more accurately test their ToM abilities. The aims of this study were to examine the…
2004-03-01
phenomenology , ethnography , case study , and grounded theory (Creswell, 2003:183). These strategies help the researcher focus on data collection, data...was to select an appropriate tradition of inquiry (Creswell, 1998:21). The five traditions of inquiry are ethnography , grounded theory , case study ... Phenomenology A Grounded Theory An Ethnography Figure 7. Differentiating Tradition by Foci
Symmetric polynomials in information theory: Entropy and subentropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jozsa, Richard; Mitchison, Graeme
2015-06-15
Entropy and other fundamental quantities of information theory are customarily expressed and manipulated as functions of probabilities. Here we study the entropy H and subentropy Q as functions of the elementary symmetric polynomials in the probabilities and reveal a series of remarkable properties. Derivatives of all orders are shown to satisfy a complete monotonicity property. H and Q themselves become multivariate Bernstein functions and we derive the density functions of their Levy-Khintchine representations. We also show that H and Q are Pick functions in each symmetric polynomial variable separately. Furthermore, we see that H and the intrinsically quantum informational quantitymore » Q become surprisingly closely related in functional form, suggesting a special significance for the symmetric polynomials in quantum information theory. Using the symmetric polynomials, we also derive a series of further properties of H and Q.« less
Theories on anxiety in Freud and Melanie Klein. Their metapsychological status.
De Bianchedi, E T; Scalozub De Boschan, L; De Cortiñas, L P; De Piccolo, E G
1988-01-01
This paper presents a comparative study of the theories on anxiety formulated by Freud and Melanie Klein, with particular emphasis on the questions of its origin, its meaning for the individual and its function in both theoretical systems. The purpose of this comparative analysis is to offer an instrument which helps frame the theoretical discussions in psychoanalysis in an epistemological context. The authors hold that for Freud anxiety is considered as one more amongst the various manifestations of mental life, which his general theories try to explain, whereas for Melanie Klein anxiety and its destinies occupies a central place in her theories on mental functioning. The differences in both theories, which the authors of this paper describe, especially as to origin, function and meaning of anxiety, respond partially to the different metapsychological points of view with which both authors focus mental life--points of view which they have themselves investigated in a previous paper.
ERIC Educational Resources Information Center
Douglas, Pamela A.
2013-01-01
This quantitative, nonexperimental study used survey research design and nonparametric statistics to investigate Birnbaum's (1988) theory that there is a relationship between the constructs of leadership and organization, as depicted in his five higher education models of organizational functioning: bureaucratic, collegial, political,…
ERIC Educational Resources Information Center
Colvert, Emma; Rutter, Michael; Kreppner, Jana; Beckett, Celia; Castle, Jenny; Groothues, Christine; Hawkins, Amanda; Stevens, Suzanne; Sonuga-Barke, Edmund J. S.
2008-01-01
Theory of Mind (ToM) and Executive Function (EF) have been associated with autism and with attention-deficit hyperactivity disorder (ADHD), and hence might play a role in similar syndromes found following profound early institutional deprivation. In order to examine this possibility the current study included a group of 165 Romanian adoptees, of…
The integrated bispectrum in modified gravity theories
NASA Astrophysics Data System (ADS)
Munshi, Dipak
2017-01-01
Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze & Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormen (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.
The integrated bispectrum in modified gravity theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munshi, Dipak, E-mail: D.Munshi@sussex.ac.uk
2017-01-01
Gravity-induced non-Gaussianity can provide important clues to Modified Gravity (MG) Theories. Several recent studies have suggested using the Integrated Bispectrum (IB) as a probe for squeezed configuration of bispectrum. Extending previous studies on the IB, we include redshift-space distortions to study a class of (parametrised) MG theories that include the string-inspired Dvali, Gabadadze and Porrati (DGP) model. Various contributions from redshift-space distortions are derived in a transparent manner, and squeezed contributions from these terms are derived separately. Results are obtained using the Zel'dovich Approximation (ZA). Results are also presented for projected surveys (2D). We use the Press-Schechter (PS) and Sheth-Tormenmore » (ST) mass functions to compute the IB for collapsed objects that can readily be extended to peak-theory based approaches. The cumulant correlators (CCs) generalise the ordinary cumulants and are known to probe collapsed configurations of higher order correlation functions. We generalise the concept of CCs to halos of different masses. We also introduce a generating function based approach to analyse more general non-local biasing models. The Fourier representations of the CCs, the skew-spectrum, or the kurt-spctra are discussed in this context. The results are relevant for the study of the Minkowski Functionals (MF) of collapsed tracers in redshift-space.« less
Klein, Hugh
2011-11-01
This study examines the value of using syndemics theory as a model for understanding HIV risk taking in a population of men who are at great risk for acquiring and/or transmitting HIV. The principal aim is to provide an empirical test of the applicability of the theory to sexual risk behaviors in this particular research population. The study was based on a national random sample of 332 men who have sex with men, or MSM, who use the Internet to seek men with whom they can engage in unprotected sex. Data collection was conducted via telephone interviews between January 2008 and May 2009. As hypothesized in the syndemics theory model, attitudes toward condom use were central to understanding men's involvement in risky sex. As hypothesized, these attitudes depended on various demographic, psychological/psychosocial functioning, and sex-related preference measures. Also as hypothesized, psychological and psychosocial functioning were found to be very important to the overall model, and as expected, these factors were shaped greatly by factors such as demographic characteristics and childhood maltreatment experiences. The structural equation assessing the fit of the overall model indicated solid support for the syndemics theory approach. Overall, syndemics theory seems to apply fairly well to understanding the complexity of the factors that underlie men's risk-taking practices. The complicated interplay among factors such as attitudes toward condom use, childhood maltreatment experiences, psychological and psychosocial functioning, and substance use and abuse-all of which are central to a syndemics theory approach to studying risk-was demonstrated.
NASA Astrophysics Data System (ADS)
Sartori, G.; Valente, G.
2003-02-01
Functions which are equivariant or invariant under the transformations of a compact linear group G acting in a Euclidean space Bbb Rn, can profitably be studied as functions defined in the orbit space of the group. The orbit space is the union of a finite set of strata, which are semialgebraic manifolds formed by the G-orbits with the same orbit-type. In this paper, we provide a simple recipe to obtain rational parametrizations of the strata. Our results can be easily exploited, in many physical contexts where the study of equivariant or invariant functions is important, for instance in the determination of patterns of spontaneous symmetry breaking, in the analysis of phase spaces and structural phase transitions (Landau theory), in equivariant bifurcation theory, in crystal field theory and in most areas where use is made of symmetry-adapted functions. A physically significant example of utilization of the recipe is given, related to spontaneous polarization in chiral biaxial liquid crystals, where the advantages with respect to previous heuristic approaches are shown.
Adenzato, Mauro; Todisco, Patrizia; Ardito, Rita B
2012-01-01
The findings of the few studies that have to date investigated the way in which individuals with Anorexia Nervosa (AN) navigate their social environment are somewhat contradictory. We undertook this study to shed new light on the social-cognitive profile of patients with AN, analysing Theory of Mind and emotional functioning. Starting from previous evidence on the role of the amygdala in the neurobiology of AN and in the social cognition, we hypothesise preserved Theory of Mind and impaired emotional functioning in patients with AN. Thirty women diagnosed with AN and thirty-two women matched for education and age were involved in the study. Theory of Mind and emotional functioning were assessed with a set of validated experimental tasks. A measure of perceived social support was also used to test the correlations between this dimension and the social-cognitive profile of AN patients. The performance of patients with AN is significantly worse than that of healthy controls on tasks assessing emotional functioning, whereas patients' performance is comparable to that of healthy controls on the Theory of Mind task. Correlation analyses showed no relationship between scores on any of the social-cognition tasks and either age of onset or duration of illness. A correlation between social support and emotional functioning was found. This latter result seems to suggest a potential role of social support in the treatment and recovery of AN. The pattern of results followed the experimental hypothesis. They may be useful to help us better understand the social-cognitive profile of patients with AN and to contribute to the development of effective interventions based on the ways in which patients with AN actually perceive their social environment.
Venkataramanan, Natarajan Sathiyamoorthy; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2009-01-01
Li adsorption on isoreticular MOFs with metal Fe, Cu, Co, Ni and Zn was studied using density function theory. Li functionalization shows a considerable structural change associated with a volume change in isoreticular MOF-5 except for the Zn metal center. Hydrogen binding energies on Li functionalized MOFs are seen to be in the range of 0.2 eV, which is the desired value for an ideal reversible storage system. This study has clearly shown that Li doping is possible only in Zn-based MOF-5, which would be better candidate to reversibly store hydrogen. PMID:19468328
Nonlinear response from transport theory and quantum field theory at finite temperature
NASA Astrophysics Data System (ADS)
Carrington, M. E.; Defu, Hou; Kobes, R.
2001-07-01
We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.
Imaging episodic memory: implications for cognitive theories and phenomena.
Nyberg, L
1999-01-01
Functional neuroimaging studies are beginning to identify neuroanatomical correlates of various cognitive functions. This paper presents results relevant to several theories and phenomena of episodic memory, including component processes of episodic retrieval, encoding specificity, inhibition, item versus source memory, encoding-retrieval overlap, and the picture-superiority effect. Overall, by revealing specific activation patterns, the results provide support for existing theoretical views and they add some unique information which may be important to consider in future attempts to develop cognitive theories of episodic memory.
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Nikhil; Genest, Vincent X.; Katz, Emanuel
We study 1+1 dimensional Φ 4 theory using the recently proposed method of conformal truncation. Starting in the UV CFT of free field theory, we construct a complete basis of states with definite conformal Casimir, C. We use these states to express the Hamiltonian of the full interacting theory in lightcone quantization. After truncating to states with C≤C max, we numerically diagonalize the Hamiltonian at strong coupling and study the resulting IR dynamics. We compute non-perturbative spectral densities of several local operators, which are equivalent to real-time, infinite-volume correlation functions. These spectral densities, which include the Zamolodchikov C-function along themore » full RG flow, are calculable at any value of the coupling. Near criticality, our numerical results reproduce correlation functions in the 2D Ising model.« less
Prospect theory does not describe the feedback-related negativity value function.
Sambrook, Thomas D; Roser, Matthew; Goslin, Jeremy
2012-12-01
Humans handle uncertainty poorly. Prospect theory accounts for this with a value function in which possible losses are overweighted compared to possible gains, and the marginal utility of rewards decreases with size. fMRI studies have explored the neural basis of this value function. A separate body of research claims that prediction errors are calculated by midbrain dopamine neurons. We investigated whether the prospect theoretic effects shown in behavioral and fMRI studies were present in midbrain prediction error coding by using the feedback-related negativity, an ERP component believed to reflect midbrain prediction errors. Participants' stated satisfaction with outcomes followed prospect theory but their feedback-related negativity did not, instead showing no effect of marginal utility and greater sensitivity to potential gains than losses. Copyright © 2012 Society for Psychophysiological Research.
Reception of Theory: Film-Television Studies and the Frankfurt School.
ERIC Educational Resources Information Center
Steinman, Clay
1988-01-01
Discusses the Critical Theory of the Frankfurt School and how it offers a way of seeing normally obscured relations of social power in the details of modern capitalist culture. Concentrates on claims about critical theory that have functioned as strategies of denial. (MS)
SO(N) restricted Schur polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, Garreth, E-mail: garreth.kemp@students.wits.ac.za
2015-02-15
We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with AdS{sub 5}×RP{sup 5} geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restrictedmore » Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals.« less
Matrix models and stochastic growth in Donaldson-Thomas theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabo, Richard J.; Tierz, Miguel; Departamento de Analisis Matematico, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid
We show that the partition functions which enumerate Donaldson-Thomas invariants of local toric Calabi-Yau threefolds without compact divisors can be expressed in terms of specializations of the Schur measure. We also discuss the relevance of the Hall-Littlewood and Jack measures in the context of BPS state counting and study the partition functions at arbitrary points of the Kaehler moduli space. This rewriting in terms of symmetric functions leads to a unitary one-matrix model representation for Donaldson-Thomas theory. We describe explicitly how this result is related to the unitary matrix model description of Chern-Simons gauge theory. This representation is used tomore » show that the generating functions for Donaldson-Thomas invariants are related to tau-functions of the integrable Toda and Toeplitz lattice hierarchies. The matrix model also leads to an interpretation of Donaldson-Thomas theory in terms of non-intersecting paths in the lock-step model of vicious walkers. We further show that these generating functions can be interpreted as normalization constants of a corner growth/last-passage stochastic model.« less
Pastore, Mariachiara; Assfeld, Xavier; Mosconi, Edoardo; Monari, Antonio; Etienne, Thibaud
2017-07-14
We report a theoretical study on the analysis of the relaxed one-particle difference density matrix characterizing the passage from the ground to the excited state of a molecular system, as obtained from time-dependent density functional theory. In particular, this work aims at using the physics contained in the so-called Z-vector, which differentiates between unrelaxed and relaxed difference density matrices to analyze excited states' nature. For this purpose, we introduce novel quantum-mechanical quantities, based on the detachment/attachment methodology, for analysing the Z-vector transformation for different molecules and density functional theory functionals. A derivation pathway of these novel descriptors is reported, involving a numerical integration to be performed in the Euclidean space on the density functions. This topological analysis is then applied to two sets of chromophores, and the correlation between the level of theory and the behavior of our descriptors is properly rationalized. In particular, the effect of range-separation on the relaxation amplitude is discussed. The relaxation term is finally shown to be system-specific (for a given level of theory) and independent of the number of electrons (i.e., the relaxation amplitude is not simply the result of a collective phenomenon).
NASA Astrophysics Data System (ADS)
Oliveira, Eliezer Fernando; Shi, Junqing; Lavarda, Francisco Carlos; Lüer, Larry; Milián-Medina, Begoña; Gierschner, Johannes
2017-07-01
A time-dependent density functional theory study is performed to reveal the excited state absorption (ESA) features of distyrylbenzene (DSB), a prototype π-conjugated organic oligomer. Starting with a didactic insight to ESA based on simple molecular orbital and configuration considerations, the performance of various density functional theory functionals is tested to reveal the full vibronic ESA features of DSB at short and long probe delay times.
A classical density functional theory of ionic liquids.
Forsman, Jan; Woodward, Clifford E; Trulsson, Martin
2011-04-28
We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.
ERIC Educational Resources Information Center
Pellicano, Elizabeth
2010-01-01
There is strong evidence to suggest that individuals with autism show atypicalities in multiple cognitive domains, including theory of mind (ToM), executive function (EF), and central coherence (CC). In this study, the longitudinal relationships among these 3 aspects of cognition in autism were investigated. Thirty-seven cognitively able children…
ERIC Educational Resources Information Center
Williamson, Pamela; Carnahan, Christina R.; Jacobs, Jennifer A.
2012-01-01
Using a constructivist grounded theory approach, this study sought to understand what influences reading comprehension and how meaning is made from text among high-functioning individuals with autism spectrum disorder (ASD). Using a think-aloud procedure, 13 individuals ages 7-13 with ASD read 16 passages at their instructional reading level.…
ERIC Educational Resources Information Center
Giusti, Laura; Mazza, Monica; Pollice, Rocco; Casacchia, Massimo; Roncone, Rita
2013-01-01
Background: People with schizophrenia show impairments in metacognitive function, including awareness and monitoring of one's mental processes (Self-Reflectivity (SR)), recognition of the fallibility of one's thoughts, and the ability to infer others' emotions and intentions (Theory of Mind (ToM)). The aim of the present study was to explore…
ERIC Educational Resources Information Center
Bilir, Mustafa Kuzey
2009-01-01
This study uses a new psychometric model (mixture item response theory-MIMIC model) that simultaneously estimates differential item functioning (DIF) across manifest groups and latent classes. Current DIF detection methods investigate DIF from only one side, either across manifest groups (e.g., gender, ethnicity, etc.), or across latent classes…
The Relation between Executive Function and Theory of Mind Is More than Skin Deep
ERIC Educational Resources Information Center
Carlson, Stephanie M.; Claxton, Laura J.; Moses, Louis J.
2015-01-01
A simple "expression" account of the relation between executive function (EF) and children's developing theory of mind (ToM) has difficulty accounting for the generality of the changes occurring in children's mental-state understanding during the preschool years. The current study of preschool children (N = 43) showed that EF--especially…
HIT and brain reward function: A case of mistaken identity (theory).
Wright, Cory; Colombo, Matteo; Beard, Alexander
2017-08-01
This paper employs a case study from the history of neuroscience-brain reward function-to scrutinize the inductive argument for the so-called 'Heuristic Identity Theory' (HIT). The case fails to support HIT, illustrating why other case studies previously thought to provide empirical support for HIT also fold under scrutiny. After distinguishing two different ways of understanding the types of identity claims presupposed by HIT and considering other conceptual problems, we conclude that HIT is not an alternative to the traditional identity theory so much as a relabeling of previously discussed strategies for mechanistic discovery. Copyright © 2017. Published by Elsevier Ltd.
Zaffran, Jeremie; Caspary Toroker, Maytal
2016-08-09
NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.
Danwanichakul, Panu; Glandt, Eduardo D
2004-11-15
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
NASA Astrophysics Data System (ADS)
Danwanichakul, Panu; Glandt, Eduardo D.
2004-11-01
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
Freezing of soft spheres: A critical test for weighted-density-functional theories
NASA Astrophysics Data System (ADS)
Laird, Brian B.; Kroll, D. M.
1990-10-01
We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.
Schaefer, Jonathan D; Scult, Matthew A; Caspi, Avshalom; Arseneault, Louise; Belsky, Daniel W; Hariri, Ahmad R; Harrington, Honalee; Houts, Renate; Ramrakha, Sandhya; Poulton, Richie; Moffitt, Terrie E
2017-11-16
Cognitive impairment has been identified as an important aspect of major depressive disorder (MDD). We tested two theories regarding the association between MDD and cognitive functioning using data from longitudinal cohort studies. One theory, the cognitive reserve hypothesis, suggests that higher cognitive ability in childhood decreases risk of later MDD. The second, the scarring hypothesis, instead suggests that MDD leads to persistent cognitive deficits following disorder onset. We tested both theories in the Dunedin Study, a population-representative cohort followed from birth to midlife and assessed repeatedly for both cognitive functioning and psychopathology. We also used data from the Environmental Risk Longitudinal Twin Study to test whether childhood cognitive functioning predicts future MDD risk independent of family-wide and genetic risk using a discordant twin design. Contrary to both hypotheses, we found that childhood cognitive functioning did not predict future risk of MDD, nor did study members with a past history of MDD show evidence of greater cognitive decline unless MDD was accompanied by other comorbid psychiatric conditions. Our results thus suggest that low cognitive functioning is related to comorbidity, but is neither an antecedent nor an enduring consequence of MDD. Future research may benefit from considering cognitive deficits that occur during depressive episodes from a transdiagnostic perspective.
Unified theory of nonlinear electrodynamics and gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos
2011-01-15
We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but formore » any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.« less
Toivonen, Teemu L J; Hukka, Terttu I
2007-06-07
The optical transitions of three different size oligo(p-phenylenevinylene)-fullerene dyads (OPV(n)-MPC(60); n = 2-4) and of the corresponding separate molecules are studied using density functional theory (DFT) and time-dependent density functional theory. The DFT is used to determine the geometries and the electronic structures of the ground states. Transition energies and excited-state structures are obtained from the TDDFT calculations. Resonant energy transfer from OPV(n) to MPC(60) is also studied and the Fermi golden rule is used, along with two simple models to describe the electronic coupling to calculate the energy transfer rates. The hybrid-type PBE0 functional is used with a split-valence basis set augmented with a polarization function (SV(P)) in calculations and the calculated results are compared to the corresponding experimental results. The calculated PBE0 spectra of the OPV(n)-MPC(60) dyads correspond to the experimental spectra very well and are approximately sums of the absorption spectra of the separate OPV(n) and MPC(60) molecules. Also, the absorption energies of OPV(n) and MPC(60) and the emission energies of OPV(n) are predicted well with the PBE0 functional. The PBE0 calculated resonant energy transfer rates are in a good agreement with the experimental rates and show the existence of many possible pathways for energy transfer from the first excited singlet states of the OPV(n) molecules to the MPC(60) molecule.
Dynamics of polymers: A mean-field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Glenn H.; Materials Research Laboratory, University of California, Santa Barbara, California 93106; Department of Materials, University of California, Santa Barbara, California 93106
2014-02-28
We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose (MSR) type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ and a conjugate MSR response field ϕ, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamicsmore » involving hybrid particle-field simulation techniques such as the single-chain in mean-field method.« less
On Painlevé/gauge theory correspondence
NASA Astrophysics Data System (ADS)
Bonelli, Giulio; Lisovyy, Oleg; Maruyoshi, Kazunobu; Sciarappa, Antonio; Tanzini, Alessandro
2017-12-01
We elucidate the relation between Painlevé equations and four-dimensional rank one N = 2 theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé τ -functions in terms of magnetic and dyonic Nekrasov partition functions for N = 2 SQCD and Argyres-Douglas theories at self-dual Omega background ɛ _1 + ɛ _2 = 0 or equivalently in terms of c=1 irregular conformal blocks.
A scaling theory for linear systems
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Krishnaprasad, P. S.
1980-01-01
A theory of scaling for rational (transfer) functions in terms of transformation groups is developed. Two different four-parameter scaling groups which play natural roles in studying linear systems are identified and the effect of scaling on Fisher information and related statistical measures in system identification are studied. The scalings considered include change of time scale, feedback, exponential scaling, magnitude scaling, etc. The scaling action of the groups studied is tied to the geometry of transfer functions in a rather strong way as becomes apparent in the examination of the invariants of scaling. As a result, the scaling process also provides new insight into the parameterization question for rational functions.
Dark matter relics and the expansion rate in scalar-tensor theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk
We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We alsomore » study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.« less
NASA Astrophysics Data System (ADS)
Gunceler, Deniz
Solvents are of great importance in many technological applications, but are difficult to study using standard, off-the-shelf ab initio electronic structure methods. This is because a single configuration of molecular positions in the solvent (a "snapshot" of the fluid) is not necessarily representative of the thermodynamic average. To obtain any thermodynamic averages (e.g. free energies), the phase space of the solvent must be sampled, typically using molecular dynamics. This greatly increases the computational cost involved in studying solvated systems. Joint density-functional theory has made its mark by being a computationally efficient yet rigorous theory by which to study solvation. It replaces the need for thermodynamic sampling with an effective continuum description of the solvent environment that is in-principle exact, computationally efficient and intuitive (easier to interpret). It has been very successful in aqueous systems, with potential applications in (among others) energy materials discovery, catalysis and surface science. In this dissertation, we develop accurate and fast joint density functional theories for complex, non-aqueous solvent enviroments, including organic solvents and room temperature ionic liquids, as well as new methods for calculating electron excitation spectra in such systems. These theories are then applied to a range of physical problems, from dendrite formation in lithium-metal batteries to the optical spectra of solvated ions.
Santiesteban, Idalmis; Banissy, Michael J; Catmur, Caroline; Bird, Geoffrey
2015-10-01
Although neuroimaging studies have consistently identified the temporoparietal junction (TPJ) as a key brain region involved in social cognition, the literature is far from consistent with respect to lateralization of function. For example, during theory-of-mind tasks bilateral TPJ activation is found in some studies but only right hemisphere activation in others. Visual perspective-taking and imitation inhibition, which have been argued to recruit the same socio-cognitive processes as theory of mind, are associated with unilateral activation of either left TPJ (perspective taking) or right TPJ (imitation inhibition). The present study investigated the functional lateralization of TPJ involvement in the above three socio-cognitive abilities using transcranial direct current stimulation. Three groups of healthy adults received anodal stimulation over right TPJ, left TPJ or the occipital cortex prior to performing three tasks (imitation inhibition, visual perspective-taking and theory of mind). In contrast to the extant neuroimaging literature, our results suggest bilateral TPJ involvement in imitation inhibition and visual perspective-taking, while no effect of anodal stimulation was observed on theory of mind. The discrepancy between these findings and those obtained using neuroimaging highlight the efficacy of neurostimulation as a complementary methodological tool in cognitive neuroscience. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Managing uncertainty: a grounded theory of stigma in transgender health care encounters.
Poteat, Tonia; German, Danielle; Kerrigan, Deanna
2013-05-01
A growing body of literature supports stigma and discrimination as fundamental causes of health disparities. Stigma and discrimination experienced by transgender people have been associated with increased risk for depression, suicide, and HIV. Transgender stigma and discrimination experienced in health care influence transgender people's health care access and utilization. Thus, understanding how stigma and discrimination manifest and function in health care encounters is critical to addressing health disparities for transgender people. A qualitative, grounded theory approach was taken to this study of stigma in health care interactions. Between January and July 2011, fifty-five transgender people and twelve medical providers participated in one-time in-depth interviews about stigma, discrimination, and health care interactions between providers and transgender patients. Due to the social and institutional stigma against transgender people, their care is excluded from medical training. Therefore, providers approach medical encounters with transgender patients with ambivalence and uncertainty. Transgender people anticipate that providers will not know how to meet their needs. This uncertainty and ambivalence in the medical encounter upsets the normal balance of power in provider-patient relationships. Interpersonal stigma functions to reinforce the power and authority of the medical provider during these interactions. Functional theories of stigma posit that we hold stigmatizing attitudes because they serve specific psychological functions. However, these theories ignore how hierarchies of power in social relationships serve to maintain and reinforce inequalities. The findings of this study suggest that interpersonal stigma also functions to reinforce medical power and authority in the face of provider uncertainty. Within functional theories of stigma, it is important to acknowledge the role of power and to understand how stigmatizing attitudes function to maintain systems of inequality that contribute to health disparities. Published by Elsevier Ltd.
In your eyes: does theory of mind predict impaired life functioning in bipolar disorder?
Purcell, Amanda L; Phillips, Mary; Gruber, June
2013-12-01
Deficits in emotion perception and social functioning are strongly implicated in bipolar disorder (BD). Examining theory of mind (ToM) may provide one potential mechanism to explain observed socio-emotional impairments in this disorder. The present study prospectively investigated the relationship between theory of mind performance and life functioning in individuals diagnosed with BD compared to unipolar depression and healthy control groups. Theory of mind (ToM) performance was examined in 26 individuals with remitted bipolar I disorder (BD), 29 individuals with remitted unipolar depression (UD), and 28 healthy controls (CTL) using a well-validated advanced theory of mind task. Accuracy and response latency scores were calculated from the task. Life functioning was measured during a 12 month follow-up session. No group differences for ToM accuracy emerged. However, the BD group exhibited significantly shorter response times than the UD and CTL groups. Importantly, quicker response times in the BD group predicted greater life functioning impairment at a 12-month follow-up, even after controlling for baseline symptoms. The stimuli were static representations of emotional states and do not allow for evaluating the appropriateness of context during emotional communication; due to sample size, neither specific comorbidities nor medication effects were analyzed for the BD and UD groups; preliminary status of theory of mind as a construct. Results suggest that quickened socio-emotional decision making may represent a risk factor for future functional impairment in BD. Copyright © 2013 Elsevier B.V. All rights reserved.
Improving measurement of injection drug risk behavior using item response theory.
Janulis, Patrick
2014-03-01
Recent research highlights the multiple steps to preparing and injecting drugs and the resultant viral threats faced by drug users. This research suggests that more sensitive measurement of injection drug HIV risk behavior is required. In addition, growing evidence suggests there are gender differences in injection risk behavior. However, the potential for differential item functioning between genders has not been explored. To explore item response theory as an improved measurement modeling technique that provides empirically justified scaling of injection risk behavior and to examine for potential gender-based differential item functioning. Data is used from three studies in the National Institute on Drug Abuse's Criminal Justice Drug Abuse Treatment Studies. A two-parameter item response theory model was used to scale injection risk behavior and logistic regression was used to examine for differential item functioning. Item fit statistics suggest that item response theory can be used to scale injection risk behavior and these models can provide more sensitive estimates of risk behavior. Additionally, gender-based differential item functioning is present in the current data. Improved measurement of injection risk behavior using item response theory should be encouraged as these models provide increased congruence between construct measurement and the complexity of injection-related HIV risk. Suggestions are made to further improve injection risk behavior measurement. Furthermore, results suggest direct comparisons of composite scores between males and females may be misleading and future work should account for differential item functioning before comparing levels of injection risk behavior.
Recursive Techniques for Computing Gluon Scattering in Anti-de-Sitter Space
NASA Astrophysics Data System (ADS)
Shyaka, Claude; Kharel, Savan
2016-03-01
The anti-de Sitter/conformal field theory correspondence is a relationship between two kinds of physical theories. On one side of the duality are special type of quantum (conformal) field theories known as the Yang-Mills theory. These quantum field theories are known to be equivalent to theories of gravity in Anti-de Sitter (AdS) space. The physical observables in the theory are the correlation functions that live in the boundary of AdS space. In general correlation functions are computed using configuration space and the expressions are extremely complicated. Using momentum basis and recursive techniques developed by Raju, we extend tree level correlation functions for four and five-point correlation functions in Yang-Mills theory in Anti-de Sitter space. In addition, we show that for certain external helicity, the correlation functions have simple analytic structure. Finally, we discuss how one can generalize these results to n-point functions. Hendrix college odyssey Grant.
The role of Area 10 (BA10) in human multitasking and in social cognition: a lesion study.
Roca, María; Torralva, Teresa; Gleichgerrcht, Ezequiel; Woolgar, Alexandra; Thompson, Russell; Duncan, John; Manes, Facundo
2011-11-01
A role for rostral prefrontal cortex (BA10) has been proposed in multitasking, in particular, the selection and maintenance of higher order internal goals while other sub-goals are being performed. BA10 has also been implicated in the ability to infer someone else's feelings and thoughts, often referred to as theory of mind. While most of the data to support these views come from functional neuroimaging studies, lesion studies are scant. In the present study, we compared the performance of a group of frontal patients whose lesions involved BA10, a group of frontal patients whose lesions did not affect this area (nonBA10), and a group of healthy controls on tests requiring multitasking and complex theory of mind judgments. Only the group with lesions involving BA10 showed deficits on multitasking and theory of mind tasks when compared with control subjects. NonBA10 patients performed more poorly than controls on an executive function screening tool, particularly on measures of response inhibition and abstract reasoning, suggesting that theory of mind and multitasking deficits following lesions to BA10 cannot be explained by a general worsening of executive function. In addition, we searched for correlations between performance and volume of damage within different subregions of BA10. Significant correlations were found between multitasking performance and volume of damage in right lateral BA10, and between theory of mind and total BA10 lesion volume. These findings stress the potential pivotal role of BA10 in higher order cognitive functions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sensitivity, Functional Analysis, and Behavior Genetics: A Response to Freeman et al.
ERIC Educational Resources Information Center
Reiss, Steven; Havercamp, Susan M.
1999-01-01
Sensitivity theory divides the causes of challenging behavior into three categories, aberrant contingencies, aberrant environments, and aberrant motivation. This paper replies to criticism that sensitivity theory is circular and unsupported by empirical evidence by reporting on studies that support the theory and rejecting the idea that…
Neuropsychological function and memory suppression in conversion disorder.
Brown, Laura B; Nicholson, Timothy R; Aybek, Selma; Kanaan, Richard A; David, Anthony S
2014-09-01
Conversion disorder (CD) is a condition where neurological symptoms, such as weakness or sensory disturbance, are unexplained by neurological disease and are presumed to be of psychological origin. Contemporary theories of the disorder generally propose dysfunctional frontal control of the motor or sensory systems. Classical (Freudian) psychodynamic theory holds that the memory of stressful life events is repressed. Little is known about the frontal (executive) function of these patients, or indeed their general neuropsychological profile, and psychodynamic theories have been largely untested. This study aimed to investigate neuropsychological functioning in patients with CD, focusing on executive and memory function. A directed forgetting task (DFT) using words with variable emotional valence was also used to investigate memory suppression. 21 patients and 36 healthy controls completed a battery of neuropsychological tests and patients had deficits in executive function and auditory-verbal (but not autobiographical) memory. The executive deficits were largely driven by differences in IQ, anxiety and mood between the groups. A subgroup of 11 patients and 28 controls completed the DFT and whilst patients recalled fewer words overall than controls, there were no significant effects of directed forgetting or valence. This study provides some limited support for deficits in executive, and to a lesser degree, memory function in patients with CD, but did not find evidence of altered memory suppression to support the psychodynamic theory of repression. © 2013 The British Psychological Society.
Intersecting surface defects and instanton partition functions
NASA Astrophysics Data System (ADS)
Pan, Yiwen; Peelaers, Wolfger
2017-07-01
We analyze intersecting surface defects inserted in interacting four-dimensional N=2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared fixed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like configurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. Our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deta, U. A., E-mail: utamaalan@yahoo.co.id, E-mail: utamadeta@unesa.ac.id; Suparmi
2015-09-30
Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.
Cognitive Frames of Reference and Strategic Thinking
1991-04-05
Elliot Jaques and T. 0. Jacobs, whose Stratified Systems Theory (SST) links leadership requirements to organizational functions. SST emphasizes the...reverse if necessary and identify by block number) Using Stratified Systems Theory and the research on expertise as a conceptual framework, this study...Stratified Systems Theory and the research on expertise as a conceptual framework, this study explored the differences in the structure and content of the
Cognitive deconstruction of parenting in schizophrenia: the role of theory of mind.
Mehta, Urvakhsh M; Bhagyavathi, Haralahalli D; Kumar, Channaveerachari Naveen; Thirthalli, Jagadisha; Gangadhar, Bangalore N
2014-03-01
Schizophrenia patients experience impairments across various functional roles. Emotional unresponsiveness and an inability to foster intimacy and display affection may lead to impairments in parenting. A comprehensive cognitive understanding of parenting abilities in schizophrenia has the potential to guide newer treatment strategies. As part of a larger study on functional ability in schizophrenia patients, we attempted a cognitive deconstruction of their parenting ability. Sixty-nine of the 170 patients who participated in a study on social cognition in remitted schizophrenia were parents (mean age of their children: 11.8 ± 6.2 years). They underwent comprehensive assessments for neurocognition, social cognition (theory of mind, emotion processing, social perception and attributional bias), motivation and insight. A rater blind to their cognitive status assessed their social functioning using the Groningen Social Disabilities Schedule. We examined the association of their functional ability (active involvement and affective relationship) in the parental role with their cognitive performance as well as with their level of insight and motivation. Deficits in first- and second-order theory of mind (t = 2.57, p = 0.01; t = 3.2, p = 0.002, respectively), speed of processing (t = 2.37, p = 0.02), cognitive flexibility (t = 2.26, p = 0.02) and motivation (t = 2.64, p = 0.01) had significant association with parental role dysfunction. On logistic regression, second-order theory of mind emerged as a specific predictor of parental role, even after controlling for overall functioning scores sans parental role. Second-order theory of mind deficits are specifically associated with parental role dysfunction of patients with schizophrenia. Novel treatment strategies targeting theory of mind may improve parenting abilities in individuals with schizophrenia.
ERIC Educational Resources Information Center
Karpinski, Aryn C.; Scullin, Matthew H.
2009-01-01
Eighty preschoolers, ages 3 to 5 years old, completed a 4-phase study in which they experienced a live event and received a pressured, suggestive interview about the event a week later. Children were also administered batteries of theory of mind and executive function tasks, as well as the Video Suggestibility Scale for Children (VSSC), which…
ERIC Educational Resources Information Center
Çokluk, Ömay; Gül, Emrah; Dogan-Gül, Çilem
2016-01-01
The study aims to examine whether differential item function is displayed in three different test forms that have item orders of random and sequential versions (easy-to-hard and hard-to-easy), based on Classical Test Theory (CTT) and Item Response Theory (IRT) methods and bearing item difficulty levels in mind. In the correlational research, the…
Extending density functional embedding theory for covalently bonded systems.
Yu, Kuang; Carter, Emily A
2017-12-19
Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.
Hydrodynamic correlation functions of hard-sphere fluids at short times
NASA Astrophysics Data System (ADS)
Leegwater, Jan A.; van Beijeren, Henk
1989-11-01
The short-time behavior of the coherent intermediate scattering function for a fluid of hard-sphere particles is calculated exactly through order t 4, and the other hydrodynamic correlation functions are calculated exactly through order t 2. It is shown that for all of the correlation functions considered the Enskog theory gives a fair approximation. Also, the initial time behavior of various Green-Kubo integrands is studied. For the shear-viscosity integrand it is found that at density nσ3=0.837 the prediction of the Enskog theory is 32% too low. The initial value of the bulk viscosity integrand is nonzero, in contrast to the Enskog result. The initial value of the thermal conductivity integrand at high densities is predicted well by Enskog theory.
Nonperturbative β function of eight-flavor SU(3) gauge theory
NASA Astrophysics Data System (ADS)
Hasenfratz, Anna; Schaich, David; Veernala, Aarti
2015-06-01
We present a new lattice study of the discrete β function for SU(3) gauge theory with N f = 8 massless flavors of fermions in the fundamental representation. Using the gradient flow running coupling, and comparing two different nHYP-smeared staggered lattice actions, we calculate the 8-flavor step-scaling function at significantly stronger couplings than were previously accessible. Our continuum-extrapolated results for the discrete β function show no sign of an IR fixed point up to couplings of g 2 ≈ 14. At the same time, we find that the gradient flow coupling runs much more slowly than predicted by two-loop perturbation theory, reinforcing previous indications that the 8-flavor system possesses nontrivial strongly coupled IR dynamics with relevance to BSM phenomenology.
Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.
Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali
2017-10-05
Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.
Fulham, Elizabeth; Mullan, Barbara
2011-06-01
An estimated 25% of the populations of both the United States and Australia suffer from foodborne illness every year, generally as a result of incorrect food handling practices. The aim of the current study was to determine through the application of the theory of planned behavior what motivates these behaviors and to supplement the model with two aspects of temporal self-regulation theory--behavioral prepotency and executive function--in an attempt to bridge the "intention-behavior gap." A prospective 1-week design was utilized to investigate the prediction of food hygiene using the theory of planned behavior with the additional variables of behavioral prepotency and executive function. One hundred forty-nine undergraduate psychology students completed two neurocognitive executive function tasks and a self-report questionnaire assessing theory of planned behavior variables, behavioral prepotency, and intentions to perform hygienic food handling behaviors. A week later, behavior was assessed via a follow-up self-report questionnaire. It was found that subjective norm and perceived behavioral control predicted intentions and intentions predicted behavior. However, behavioral prepotency was found to be the strongest predictor of behavior, over and above intentions, suggesting that food hygiene behavior is habitual. Neither executive function measure of self-regulation predicted any additional variance. These results provide support for the utility of the theory of planned behavior in this health domain, but the augmentation of the theory with two aspects of temporal self-regulation theory was only partially successful.
Quantum corrections to the generalized Proca theory via a matter field
NASA Astrophysics Data System (ADS)
Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab
2017-09-01
We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.
NASA Astrophysics Data System (ADS)
Hamed Mashhadzadeh, A.; Fereidoon, Ab.; Ghorbanzadeh Ahangari, M.
2017-10-01
In current study we combined theoretical and experimental studies to evaluate the effect of functionalization and silanization on mechanical behavior of polymer-based/CNT nanocomposites. Epoxy was selected as thermoset polymer, polypropylene and poly vinyl chloride were selected as thermoplastic polymers. The whole procedure is divided to two sections . At first we applied density functional theory (DFT) to analyze the effect of functionalization on equilibrium distance and adsorption energy of unmodified, functionalized by sbnd OH group and silanized epoxy/CNT, PP/CNT and PVC/CNT nanocomposites and the results showed that functionalization increased adsorption energy and reduced the equilibrium distance in all studied nanocomposites and silanization had higher effect comparing to OH functionalizing. Then we prepared experimental samples of all mentioned nanocomposites and tested their tensile and flexural strength properties. The obtained results showed that functionalization increased the studied mechanical properties in all evaluated nanocomposites. Finally we compared the results of experimental and theoretical sections with each other and estimated a suitable agreement between these parts.
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
Roles of water in protein structure and function studied by molecular liquid theory.
Imai, Takashi
2009-01-01
The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.
Complex Chern-Simons Theory at Level k via the 3d-3d Correspondence
NASA Astrophysics Data System (ADS)
Dimofte, Tudor
2015-10-01
We use the 3d-3d correspondence together with the DGG construction of theories T n [ M] labelled by 3-manifolds M to define a non-perturbative state-integral model for Chern-Simons theory at any level k, based on ideal triangulations. The resulting partition functions generalize a widely studied k = 1 state-integral, as well as the 3d index, which is k = 0. The Chern-Simons partition functions correspond to partition functions of T n [ M] on squashed lens spaces L( k, 1). At any k, they admit a holomorphic-antiholomorphic factorization, corresponding to the decomposition of L( k, 1) into two solid tori, and the associated holomorphic block decomposition of the partition functions of T n [ M]. A generalization to L( k, p) is also presented. Convergence of the state integrals, for any k, requires triangulations to admit a positive angle structure; we propose that this is also necessary for the DGG gauge theory T n [ M] to flow to a desired IR SCFT.
Phillips, Jordan J; Peralta, Juan E
2011-11-14
We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics
Psychotic experiences and social functioning: a longitudinal study.
Sullivan, Sarah; Lewis, Glyn; Wiles, Nicola; Thompson, Andrew; Evans, Jonathan
2013-07-01
Both adolescent psychotic experiences and poor social functioning precede psychotic disorder; however, whether poor social functioning is also a risk factor for rather than a consequence of adolescent psychotic experiences is not clear. We investigate this question as well as whether deterioration in social functioning confers the strongest risk of psychotic experiences and whether theory of mind ability mediates any association, in a large community sample. Measures of social functioning (peer problems and prosocial behaviour) at ages 7 and 11 and theory of mind ability and psychotic experiences at age 12 were collected in a large community sample (n = 3,592). The association between social functioning and psychotic experiences was examined using logistic regression models at each age and any additional impact of deterioration in social functioning between ages 7 and 11. The potential role of theory of mind as a mediator was also investigated. Peer problems at both ages were independently associated with psychotic experiences at age 12 (7 years OR 1.11 95 % CI 1.03, 1.20), (11 years OR 1.13 95 % CI 1.05, 1.22). Theory of mind ability did not mediate this association. The association was not restricted to those with deteriorating social functioning (interaction term; p = 0.49). Poor childhood social functioning precedes adolescent psychotic experiences. There was no evidence that those with deteriorating social functioning were at greatest risk.
NASA Astrophysics Data System (ADS)
Singh, Ram Chandra; Ram, Jokhan
2011-11-01
The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.
Habenschuss, Anton; Tsige, Mesfin; Curro, John G.; ...
2007-08-21
Here, wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between themore » MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Finally, experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased.« less
Peng, Bo; Yu, Yang-Xin
2009-10-07
The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.
Stringy horizons and generalized FZZ duality in perturbation theory
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2017-02-01
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n - 2 winding modes actually coincide with the correlation functions in the SL(2,R)/U(1) gauged WZW model that include n - 2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference [1]. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Theory of Literature. Third Edition.
ERIC Educational Resources Information Center
Wellek, Rene; Warren, Austin
Methods of studying literature are defined and described. A section on definitions and distinctions investigates literature and literary study; the nature and function of literature; literary theory, criticism, and history; and general, comparative, and national literature. The ordering and establishing of evidence is described. The bulk of the…
NASA Astrophysics Data System (ADS)
Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib
2015-04-01
Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases.
High-temperature asymptotics of supersymmetric partition functions
Ardehali, Arash Arabi
2016-07-05
We study the supersymmetric partition function of 4d supersymmetric gauge theories with a U(1) R-symmetry on Euclidean S 3 × S β 1, with S 3 the unit-radius squashed three-sphere, and β the circumference of the circle. For superconformal theories, this partition function coincides (up to a Casimir energy factor) with the 4d superconformal index. The partition function can be computed exactly using the supersymmetric localization of the gauge theory path-integral. It takes the form of an elliptic hypergeometric integral, which may be viewed as a matrix-integral over the moduli space of the holonomies of the gauge fields around Smore » β 1. At high temperatures (β → 0, corresponding to the hyperbolic limit of the elliptic hypergeometric integral) we obtain from the matrix-integral a quantum effective potential for the holonomies. The effective potential is proportional to the temperature. Therefore the high-temperature limit further localizes the matrix-integral to the locus of the minima of the potential. If the effective potential is positive semi-definite, the leading high-temperature asymptotics of the partition function is given by the formula of Di Pietro and Komargodski, and the subleading asymptotics is connected to the Coulomb branch dynamics on R 3 × S 1. In theories where the effective potential is not positive semi-definite, the Di Pietro-Komargodski formula needs to be modified. In particular, this modification occurs in the SU(2) theory of Intriligator-Seiberg-Shenker, and the SO(N) theory of Brodie-Cho-Intriligator, both believed to exhibit “misleading” anomaly matchings, and both believed to yield interacting superconformal field theories with c < a. Lastly, two new simple tests for dualities between 4d supersymmetric gauge theories emerge as byproducts of our analysis.« less
Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.
Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve
2017-09-12
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
Five-dimensional gauge theory and compactification on a torus
NASA Astrophysics Data System (ADS)
Haghighat, Babak; Vandoren, Stefan
2011-09-01
We study five-dimensional minimally supersymmetric gauge theory compactified on a torus down to three dimensions, and its embedding into string/M-theory using geometric engineering. The moduli space on the Coulomb branch is hyperkähler equipped with a metric with modular transformation properties. We determine the one-loop corrections to the metric and show that they can be interpreted as worldsheet and D1-brane instantons in type IIB string theory. Furthermore, we analyze instanton corrections coming from the solitonic BPS magnetic string wrapped over the torus. In particular, we show how to compute the path-integral for the zero-modes from the partition function of the M5 brane, or, using a 2d/4d correspondence, from the partition function of N=4 SYM theory on a Hirzebruch surface.
Effects of molecular elongation on liquid crystalline phase behaviour: isotropic-nematic transition
NASA Astrophysics Data System (ADS)
Singh, Ram Chandra; Ram, Jokhan
2003-08-01
We present the density-functional approach to study the isotropic-nematic transitions and calculate the values of freezing parameters of the Gay-Berne liquid crystal model, concentrating on the effects of varying the molecular elongation, x0. For this, we have solved the Percus-Yevick integral equation theory to calculate the pair-correlation functions of a fluid the molecules of which interact via a Gay-Berne pair potential. These results have been used in the density-functional theory as an input to locate the isotropic-nematic transition and calculate freezing parameters for a range of length-to-width parameters 3.0⩽ x0⩽4.0 at reduced temperatures 0.95 and 1.25. We observed that as x0 is increased, the isotropic-nematic transition is seen to move to lower density at a given temperature. We find that the density-functional theory is good to study the freezing transitions in such fluids. We have also compared our results with computer simulation results wherever they are available.
RELIGIOUS EXCLUSIVITY AND PSYCHOSOCIAL FUNCTIONING.
Gegelashvili, M; Meca, A; Schwartz, S J
2015-01-01
In the present study we sought to clarify links between religious exclusivity, as form of intergroup favoritism, and indices of psychosocial functioning. The study of in group favoritism has generally been invoked within Social Identity Theory and related perspectives. However, there is a lack of literature regarding religious exclusivity from the standpoint of social identity. In particular, the ways in which religious exclusivity is linked with other dimensions of religious belief and practice, and with psychosocial functioning, among individuals from different religious backgrounds are not well understood. A sample of 8545 emerging-adult students from 30 U.S. universities completed special measures. Measure of religious exclusivity was developed and validated for this group. The results suggest that exclusivity appears as predictor for impaired psychosocial functioning, low self-esteem and low psychosocial well-being for individuals from organized faiths, as well as for those identifying as agnostic, atheist, or spiritual/nonreligious. These findings are discussed in terms of Social Identity Theory and Terror Management Theory (TMT).
Derivation of Hunt equation for suspension distribution using Shannon entropy theory
NASA Astrophysics Data System (ADS)
Kundu, Snehasis
2017-12-01
In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.
Selected Topics in Light Front Field Theory and Applications to the High Energy Phenomena
NASA Astrophysics Data System (ADS)
Kundu, Rajen
1999-10-01
In this thesis, we have presented some of the aspects of light-front (LF) field theory through their successful application in the Deep Inelastic Scattering (DIS). We have developed a LFQCD Hamiltonian description of the DIS structure functions starting from Bjorken-Johnson-Low limit of virtual forward Compton scattering amplitude and using LF current commutators. We worked in the LF gauge A^+=0 and used the old-fashioned LFQCD perturbation theory in our calculations. The importance of our work are summarized below. Our approach shares the intution of parton model and addresses directly the structure functions, which are experimental objects, instead of its moments as in OPE method. Moreover, it can potentially incorporate the non-perturbative contents of the structure functions as we have demonstrated by introducing a new factorization scheme. In the context of nucleonic helicity structure, the well known gauge fixed LF helicity operator is shown to provide consistent physical information and helps us defining new relevant structure functions. The anomalous dimensions relevant for the Q^2-evolution of such structure functions are calculated. Our study is important in establishing the equivalance of LF field theory and the usual equal-time one through perturbative calculations of the dressed parton structure functions reproducing the well known results. Also the importance of Gallilean boost symmetry in understanding the correctness of any higher order calculation using (x^+)-ordered LFQCD perturbation theory are emphasized.
Ghosh, Soumen; Cramer, Christopher J; Truhlar, Donald G; Gagliardi, Laura
2017-04-01
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e. , systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. We recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functional theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet-triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet-triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.
Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano
2013-01-01
The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.
Reading the Freudian theory of sexual drives from a functional neuroimaging perspective
Stoléru, Serge
2014-01-01
One of the essential tasks of neuropsychoanalysis is to investigate the neural correlates of sexual drives. Here, we consider the four defining characteristics of sexual drives as delineated by Freud: their pressure, aim, object, and source. We systematically examine the relations between these characteristics and the four-component neurophenomenological model that we have proposed based on functional neuroimaging studies, which comprises a cognitive, a motivational, an emotional and an autonomic/neuroendocrine component. Functional neuroimaging studies of sexual arousal (SA) have thrown a new light on the four fundamental characteristics of sexual drives by identifying their potential neural correlates. While these studies are essentially consistent with the Freudian model of drives, the main difference emerging between the functional neuroimaging perspective on sexual drives and the Freudian theory relates to the source of drives. From a functional neuroimaging perspective, sources of sexual drives, conceived by psychoanalysis as processes of excitation occurring in a peripheral organ, do not seem, at least in adult subjects, to be an essential part of the determinants of SA. It is rather the central processing of visual or genital stimuli that gives to these stimuli their sexually arousing and sexually pleasurable character. Finally, based on functional neuroimaging results, some possible improvements to the psychoanalytic theory of sexual drives are suggested. PMID:24672467
NASA Astrophysics Data System (ADS)
Kriz, Igor; Loebl, Martin; Somberg, Petr
2013-05-01
We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.
Escudero, Adrián; Valladares, Fernando
2016-04-01
Functional traits are the center of recent attempts to unify key ecological theories on species coexistence and assembling in populations and communities. While the plethora of studies on the role of functional traits to explain patterns and dynamics of communities has rendered a complex picture due to the idiosyncrasies of each study system and approach, there is increasing evidence on their actual relevance when aspects such as different spatial scales, intraspecific variability and demography are considered.
Functional renormalization group analysis of tensorial group field theories on Rd
NASA Astrophysics Data System (ADS)
Geloun, Joseph Ben; Martini, Riccardo; Oriti, Daniele
2016-07-01
Rank-d tensorial group field theories are quantum field theories (QFTs) defined on a group manifold G×d , which represent a nonlocal generalization of standard QFT and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalization analysis is crucial both for establishing their consistency as quantum field theories and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalization group flow of two simple classes of tensorial group field theories (TGFTs), defined for the group G =R for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalization group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed points of the RG flow. Encouragingly, for all the models we study, we find evidence for the existence of a phase transition of condensation type.
Mahadevan, Nikhila; Gregg, Aiden P.; Sedikides, Constantine; de Waal-Andrews, Wendy G.
2016-01-01
What evolutionary function does self-regard serve? Hierometer theory, introduced here, provides one answer: it helps individuals navigate status hierarchies, which feature zero-sum contests that can be lost as well as won. In particular, self-regard tracks social status to regulate behavioral assertiveness, augmenting or diminishing it to optimize performance in such contests. Hierometer theory also offers a conceptual counterpoint that helps resolve ambiguities in sociometer theory, which offers a complementary account of self-regard’s evolutionary function. In two large-scale cross-sectional studies, we operationalized theoretically relevant variables at three distinct levels of analysis, namely, social (relations: status, inclusion), psychological (self-regard: self-esteem, narcissism), and behavioral (strategy: assertiveness, affiliativeness). Correlational and mediational analyses consistently supported hierometer theory, but offered only mixed support for sociometer theory, including when controlling for confounding constructs (anxiety, depression). We interpret our results in terms of a broader agency-communion framework. PMID:27065896
NASA Astrophysics Data System (ADS)
García, Isaac A.; Llibre, Jaume; Maza, Susanna
2018-06-01
In this work we consider real analytic functions , where , Ω is a bounded open subset of , is an interval containing the origin, are parameters, and ε is a small parameter. We study the branching of the zero-set of at multiple points when the parameter ε varies. We apply the obtained results to improve the classical averaging theory for computing T-periodic solutions of λ-families of analytic T-periodic ordinary differential equations defined on , using the displacement functions defined by these equations. We call the coefficients in the Taylor expansion of in powers of ε the averaged functions. The main contribution consists in analyzing the role that have the multiple zeros of the first non-zero averaged function. The outcome is that these multiple zeros can be of two different classes depending on whether the zeros belong or not to the analytic set defined by the real variety associated to the ideal generated by the averaged functions in the Noetheriang ring of all the real analytic functions at . We bound the maximum number of branches of isolated zeros that can bifurcate from each multiple zero z 0. Sometimes these bounds depend on the cardinalities of minimal bases of the former ideal. Several examples illustrate our results and they are compared with the classical theory, branching theory and also under the light of singularity theory of smooth maps. The examples range from polynomial vector fields to Abel differential equations and perturbed linear centers.
Topological string, supersymmetric gauge theory and bps counting
NASA Astrophysics Data System (ADS)
Pan, Guang
In this thesis we study the Donaldson-Thomas theory on the local curve geometry, which arises in the context of geometric engineering of supersymmetric gauge theory from type IIA string compactification. The topological A-model amplitude gives the F-term interaction of the compactified theory. In particular, it is related to the instanton partition function via Nekrasov conjecture. We will introduce ADHM sheaves on curve, as an alternative description of local Donaldson-Thomas theory. We derive the wallcrossing of ADHM invariants and their refinements. We show that it is equivalent to the semi-primitive wallcrossing from supergravity, and the Kontsevich-Soibelman wallcrossing formula. As an application, we discuss the connection between ADHM moduli space with Hitchin system. In particular we give a recursive formula for the Poincare polynomial of Hitchin system in terms of instanton partition function, from refined wallcrossing. We also introduce higher rank generalization of Donaldson-Thomas invariant in the context of ADHM sheaves. We study their wallcrossing and discuss their physical interpretation via string duality.
Applications of Ergodic Theory to Coverage Analysis
NASA Technical Reports Server (NTRS)
Lo, Martin W.
2003-01-01
The study of differential equations, or dynamical systems in general, has two fundamentally different approaches. We are most familiar with the construction of solutions to differential equations. Another approach is to study the statistical behavior of the solutions. Ergodic Theory is one of the most developed methods to study the statistical behavior of the solutions of differential equations. In the theory of satellite orbits, the statistical behavior of the orbits is used to produce 'Coverage Analysis' or how often a spacecraft is in view of a site on the ground. In this paper, we consider the use of Ergodic Theory for Coverage Analysis. This allows us to greatly simplify the computation of quantities such as the total time for which a ground station can see a satellite without ever integrating the trajectory, see Lo 1,2. More over, for any quantity which is an integrable function of the ground track, its average may be computed similarly without the integration of the trajectory. For example, the data rate for a simple telecom system is a function of the distance between the satellite and the ground station. We show that such a function may be averaged using the Ergodic Theorem.
Mental Playmates: Siblings, Executive Functioning and Theory of Mind
ERIC Educational Resources Information Center
McAlister, Anna; Peterson, Candida C.
2006-01-01
This study assessed the theory of mind (ToM) and executive functioning (EF) abilities of 124 typically developing preschool children aged 3 to 5 years in relation to whether or not they had a child-aged sibling (i.e. a child aged 1 to 12 years) at home with whom to play and converse. On a ToM battery that included tests of false belief,…
Phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle
NASA Astrophysics Data System (ADS)
Okuyama, Kazumi
2018-04-01
We study the phase diagram of q-deformed Yang-Mills theory on S 2 at non-zero θ-angle using the exact partition function at finite N . By evaluating the exact partition function numerically, we find evidence for the existence of a series of phase transitions at non-zero θ-angle as conjectured in [hep-th/0509004
Social Competence, Theory of Mind, and Executive Function in Institution-Reared Turkish Children
ERIC Educational Resources Information Center
Etel, Evren; Yagmurlu, Bilge
2015-01-01
This study had two aims. The first aim was to measure mental state understanding in institution-reared children by using a theory of mind (ToM) scale, and to examine the role of cultural context in sequencing of ToM acquisition. The other aim was to investigate ToM in relation to social competence and executive function (EF). Due to its pronounced…
ERIC Educational Resources Information Center
Villatte, Matthieu; Monestes, Jean-Louis; McHugh, Louise; Freixa i Baque, Esteve; Loas, Gwenole; Loas, Amiens
2008-01-01
The current study aimed to compare deictic relational responding and Theory of Mind (ToM) performances in 60 non-clinical young adults with a profile of high versus low social anhedonia in order to investigate a possible link between social anhedonia and ToM functioning. The results indicated that social anhedonic participants were less accurate…
ERIC Educational Resources Information Center
Nezhnov, Peter; Kardanova, Elena; Vasilyeva, Marina; Ludlow, Larry
2015-01-01
The present study tested the possibility of operationalizing levels of knowledge acquisition based on Vygotsky's theory of cognitive growth. An assessment tool (SAM-Math) was developed to capture a hypothesized hierarchical structure of mathematical knowledge consisting of procedural, conceptual, and functional levels. In Study 1, SAM-Math was…
A limit for large R-charge correlators in N = 2 theories
NASA Astrophysics Data System (ADS)
Bourget, Antoine; Rodriguez-Gomez, Diego; Russo, Jorge G.
2018-05-01
Using supersymmetric localization, we study the sector of chiral primary operators (Tr ϕ 2) n with large R-charge 4 n in N = 2 four-dimensional superconformal theories in the weak coupling regime g → 0, where λ ≡ g 2 n is kept fixed as n → ∞, g representing the gauge theory coupling(s). In this limit, correlation functions G 2 n of these operators behave in a simple way, with an asymptotic behavior of the form {G}_{2n}≈ {F}_{∞}(λ){(λ/2π e)}^{2n} n α , modulo O(1 /n) corrections, with α =1/2 \\dim (g) for a gauge algebra g and a universal function F ∞(λ). As a by-product we find several new formulas both for the partition function as well as for perturbative correlators in N=2 su(N) gauge theory with 2 N fundamental hypermultiplets.
The Effects of Number Theory Study on High School Students' Metacognition and Mathematics Attitudes
ERIC Educational Resources Information Center
Miele, Anthony M.
2014-01-01
The purpose of this study was to determine how the study of number theory might affect high school students' metacognitive functioning, mathematical curiosity, and/or attitudes towards mathematics. The study utilized questionnaire and/or interview responses of seven high school students from New York City and 33 high school students from Dalian,…
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1989-01-01
The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.
Walsh, T R
2005-02-07
The Wilson-Levy (WL) correlation functional is used together with Hartree-Fock (HF) theory to evaluate interaction energies at intermediate separations (i.e. around equilibrium separation) for several weakly-bonded systems. The HF+WL approach reproduces binding trends for all complexes studied: selected rare-gas dimers, isomers of the methane dimer, benzene dimer and naphthalene dimer, and base-pair stacking structures for pyrimidine, cytosine, uracil and guanine dimers. These HF+WL data are contrasted against results obtained from some popular functionals (including B3LYP and PBE), as well as two newly-developed functionals, X3LYP and xPBE. The utility of HF+WL, with reference to exact-exchange (EXX) density-functional theory, is discussed in terms of a suggested EXXWL exchange-correlation functional.
Circuit theory and model-based inference for landscape connectivity
Hanks, Ephraim M.; Hooten, Mevin B.
2013-01-01
Circuit theory has seen extensive recent use in the field of ecology, where it is often applied to study functional connectivity. The landscape is typically represented by a network of nodes and resistors, with the resistance between nodes a function of landscape characteristics. The effective distance between two locations on a landscape is represented by the resistance distance between the nodes in the network. Circuit theory has been applied to many other scientific fields for exploratory analyses, but parametric models for circuits are not common in the scientific literature. To model circuits explicitly, we demonstrate a link between Gaussian Markov random fields and contemporary circuit theory using a covariance structure that induces the necessary resistance distance. This provides a parametric model for second-order observations from such a system. In the landscape ecology setting, the proposed model provides a simple framework where inference can be obtained for effects that landscape features have on functional connectivity. We illustrate the approach through a landscape genetics study linking gene flow in alpine chamois (Rupicapra rupicapra) to the underlying landscape.
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
Density-functional theory for internal magnetic fields
NASA Astrophysics Data System (ADS)
Tellgren, Erik I.
2018-01-01
A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.
Bao, Jie J; Gagliardi, Laura; Truhlar, Donald G
2017-11-15
Multiconfiguration pair-density functional theory (MC-PDFT) is a post multiconfiguration self-consistent field (MCSCF) method with similar performance to complete active space second-order perturbation theory (CASPT2) but with greater computational efficiency. Cyano radical (CN) is a molecule whose spectrum is well established from experiments and whose excitation energies have been used as a testing ground for theoretical methods to treat excited states of open-shell systems, which are harder and much less studied than excitation energies of closed-shell singlets. In the present work, we studied the adiabatic excitation energies of CN with MC-PDFT. Then we compared this multireference (MR) method to some single-reference (SR) methods, including time-dependent density functional theory (TDDFT) and completely renormalized equation-of-motion coupled-cluster theory with singles, doubles and noniterative triples [CR-EOM-CCSD(T)]; we also compared to some other MR methods, including configuration interaction singles and doubles (MR-CISD) and multistate CASPT2 (MS-CASPT2). Through a comparison between SR and MR methods, we achieved a better appreciation of the need to use MR methods to accurately describe higher excited states, and we found that among the MR methods, MC-PDFT stands out for its accuracy for the first four states out of the five doublet states studied this paper; this shows its efficiency for calculating doublet excited states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.
The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less
From information theory to quantitative description of steric effects.
Alipour, Mojtaba; Safari, Zahra
2016-07-21
Immense efforts have been made in the literature to apply the information theory descriptors for investigating the electronic structure theory of various systems. In the present study, the information theoretic quantities, such as Fisher information, Shannon entropy, Onicescu information energy, and Ghosh-Berkowitz-Parr entropy, have been used to present a quantitative description for one of the most widely used concepts in chemistry, namely the steric effects. Taking the experimental steric scales for the different compounds as benchmark sets, there are reasonable linear relationships between the experimental scales of the steric effects and theoretical values of steric energies calculated from information theory functionals. Perusing the results obtained from the information theoretic quantities with the two representations of electron density and shape function, the Shannon entropy has the best performance for the purpose. On the one hand, the usefulness of considering the contributions of functional groups steric energies and geometries, and on the other hand, dissecting the effects of both global and local information measures simultaneously have also been explored. Furthermore, the utility of the information functionals for the description of steric effects in several chemical transformations, such as electrophilic and nucleophilic reactions and host-guest chemistry, has been analyzed. The functionals of information theory correlate remarkably with the stability of systems and experimental scales. Overall, these findings show that the information theoretic quantities can be introduced as quantitative measures of steric effects and provide further evidences of the quality of information theory toward helping theoreticians and experimentalists to interpret different problems in real systems.
Zhang, Lijuan; Qi, Dongdong; Zhang, Yuexing; Bian, Yongzhong; Jiang, Jianzhuang
2011-02-01
The molecular and electronic structures together with the electronic absorption spectra of a series of metal free meso-ferrocenylporphyrins, namely 5-ferrocenylporphyrin (1), 5,10-diferrocenylporphyrin (2), 5,15-diferrocenylporphyrin (3), 5,10,15-triferrocenylporphyrin (4), and 5,10,15,20-tetraferrocenylporphyrin (5) have been studied with the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. For the purpose of comparative studies, metal free porphyrin without any ferrocenyl group (0) and isolated ferrocene (6) were also calculated. The effects of the number and position of meso-attached ferrocenyl substituents on their molecular and electronic structures, atomic charges, molecular orbitals, and electronic absorption spectra of 1-5 were systematically investigated. The orbital coupling is investigated in detail, explaining well the long range coupling of ferrocenyl substituents connected via porphyrin core and the systematic change in the electronic absorption spectra of porphyrin compounds. Copyright © 2010 Elsevier Inc. All rights reserved.
Density-functional theory simulation of large quantum dots
NASA Astrophysics Data System (ADS)
Jiang, Hong; Baranger, Harold U.; Yang, Weitao
2003-10-01
Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.
Zirconia and its allotropes; A Quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Jokisaari, Andrea; Benali, Anouar; Shin, Hyeondeok; Luo, Ye; Lopez Bezanilla, Alejandro; Ratcliff, Laura; Littlewood, Peter; Heinonen, Olle
With a high strength and stability at elevated temperatures, Zirconia (zirconium dioxide) is one of the best corrosion-resistant and refractive materials used in metallurgy, and is used in structural ceramics, catalytic converters, oxygen sensors, nuclear industry, and in chemically passivating surfaces. The wide range of applications of ZrO2 has motivated a large number of electronic structures studies of its known allotropes (monoclinic, tetragonal and cubic). Density Functional Theory has been successful at reproducing some of the fundamental properties of some of the allotropes, but these results remain dependent on the specific combination of exchange-correlation functional and type of pseudopotentials, making any type of structural prediction or defect analysis uncertain. Quantum Monte Carlo (QMC) is a many-body quantum theory solving explicitly the electronic correlations, allowing reproducing and predicting materials properties with a limited number of controlled approximations. In this study, we use QMC to revisit the energetic stability of Zirconia's allotropes and compare our results with those obtained from density functional theory.
Intersecting surface defects and instanton partition functions
Pan, Yiwen; Peelaers, Wolfger
2017-07-14
We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
Intersecting surface defects and instanton partition functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Yiwen; Peelaers, Wolfger
We analyze intersecting surface defects inserted in interacting four-dimensional N = 2 supersymmetric quantum field theories. We employ the realization of a class of such systems as the infrared xed points of renormalization group flows from larger theories, triggered by perturbed Seiberg-Witten monopole-like con gurations, to compute their partition functions. These results are cast into the form of a partition function of 4d/2d/0d coupled systems. In conclusion, our computations provide concrete expressions for the instanton partition function in the presence of intersecting defects and we study the corresponding ADHM model.
Al-Harbi, L M; El-Mossalamy, E H; Obaid, A Y; Al-Jedaani, A H
2014-01-01
Charge transfer complexes of substituted aryl Schiff bases as donors with picric acid and m-dinitrobenzene as acceptors were investigated by using computational analysis calculated by Configuration Interaction Singles Hartree-Fock (CIS-HF) at standard 6-31G∗ basis set and Time-Dependent Density-Functional Theory (TD-DFT) levels of theory at standard 6-31G∗∗ basis set, infrared spectra, visible and nuclear magnetic resonance spectra are investigated. The optimized geometries and vibrational frequencies were evaluated. The energy and oscillator strength were calculated by Configuration Interaction Singles Hartree-Fock method (CIS-HF) and the Time-Dependent Density-Functional Theory (TD-DFT) results. Electronic properties, such as HOMO and LUMO energies and band gaps of CTCs set, were studied by the Time-Dependent density functional theory with Becke-Lee-Young-Parr (B3LYP) composite exchange correlation functional and by Configuration Interaction Singles Hartree-Fock method (CIS-HF). The ionization potential Ip and electron affinity EA were calculated by PM3, HF and DFT methods. The columbic force was calculated theoretically by using (CIS-HF and TD-DFT) methods. This study confirms that the theoretical calculation of vibrational frequencies for (aryl Schiff bases--(m-dinitrobenzene and picric acid)) complexes are quite useful for the vibrational assignment and for predicting new vibrational frequencies. Copyright © 2013 Elsevier B.V. All rights reserved.
Functional Analysis of HIV/AIDS Stigma: Consensus or Divergence?
ERIC Educational Resources Information Center
Hosseinzadeh, Hassan; Hossain, Syeda Zakia
2011-01-01
Functional theory proposes that attitudes may serve a variety of purposes for individuals. This study aimed to determine whether stigmatized attitudes toward HIV/AIDS serve the same function for all (consensus function) or serve different functions for different individuals (divergence function) by assessing various aspects of HIV/AIDS stigma…
Structure and orientational ordering in a fluid of elongated quadrupolar molecules
NASA Astrophysics Data System (ADS)
Singh, Ram Chandra
2013-01-01
A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.
McCarthy, R A
2001-02-01
Clinical and normal psychology have had a long tradition of close interaction in British psychology. The roots of this interplay may predate the development of the British Psychological Society, but the Society has encouraged and supported this line of research since its inception. One fundamental British insight has been to consider the evidence from pathology as a potential constraint on theories of normal function. In turn, theories of normal function have been used to understand and illuminate cognitive pathology. This review discusses some of the areas in which clinical contributions to cognitive theory have been most substantial. As with other contributions to this volume, attempts are also made to read the runes and anticipate future developments.
NASA Astrophysics Data System (ADS)
Yoosefian, Mehdi; Etminan, Nazanin
2016-07-01
In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.
Density functional theory for d- and f-electron materials and compounds
Mattson, Ann E.; Wills, John M.
2016-02-12
Here, the fundamental requirements for a computationally tractable Density Functional Theory-based method for relativistic f- and (nonrelativistic) d-electron materials and compounds are presented. The need for basing the Kohn–Sham equations on the Dirac equation is discussed. The full Dirac scheme needs exchange-correlation functionals in terms of four-currents, but ordinary functionals, using charge density and spin-magnetization, can be used in an approximate Dirac treatment. The construction of a functional that includes the additional confinement physics needed for these materials is illustrated using the subsystem-functional scheme. If future studies show that a full Dirac, four-current based, exchange-correlation functional is needed, the subsystemmore » functional scheme is one of the few schemes that can still be used for constructing functional approximations.« less
On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter.
Ciarletta, P; Destrade, M; Gower, A L
2016-04-26
Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.
The Supply and Demand for College Educated Labor.
ERIC Educational Resources Information Center
Nollen, Stanley D.
In this study a model for the supply of college educated labor is developed from human capital theory. A demand model is added, derived from neoclassical production function theory. Empirical estimates are made for white males and white females, using cross-sectional data on states of the U.S., 1960-70. In human capital theory, education is an…
Sakaguchi, Hideo
2014-06-01
Oral function improvement programs utilizing health behavior theories are considered to be effective in preventing the need for long-term social care. In the present study, an oral function improvement program based upon health behavior theories was designed, and its utility was assessed in 102 pre-frail elderly persons (33 males, 69 females, mean age: 76.9 +/- 5.7) considered to be in potential need of long-term social care and attending a long-term care prevention class in Sayama City, Saitama Prefecture, Japan. The degree of improvement in oral functions (7 items) and oral hygienic conditions (3 items) was assessed by comparing oral health before and after participation in the program. The results showed statistically significant improvements in the following oral functions: (1) lip functions (oral diadochokinesis, measured by the regularity of the repetition of the syllable "Pa"), (2) tongue functions, (3) tongue root motor skills (oral diadochokinesis, measured by the regularity of the repetition of the syllables "Ta" and "Ka"), (4) tongue extension/retraction, (5) side-to-side tongue movement functions, (6) cheek motor skills, and (7) repetitive saliva swallowing test (RSST). The following measures of oral hygiene also showed a statistically significant improvement: (1) debris on dentures or teeth, (2) coated tongue, and (3) frequency of oral cleaning. These findings demonstrated that an improvement program informed by health behavior theories is useful in improving oral functions and oral hygiene conditions.
ERIC Educational Resources Information Center
Calderon, Johanna; Bonnet, Damien; Courtin, Cyril; Concordet, Susan; Plumet, Marie-Helene; Angeard, Nathalie
2010-01-01
Aim: Cardiac malformations resulting in cyanosis, such as transposition of the great arteries (TGA), have been associated with neurodevelopmental dysfunction. The purpose of this study was to assess, for the first time, theory of mind (ToM), which is a key component of social cognition and executive functions in school-aged children with TGA.…
ERIC Educational Resources Information Center
Henning, Anne; Spinath, Frank M.; Aschersleben, Gisa
2011-01-01
The aim of this study was to assess the specific relation between 3- to 6-year-olds' performance on a task measuring executive function (EF), the Dimensional Change Card Sort task (DCCS), and different developmental attainments in their theory of mind (ToM) by employing a battery of scaled ToM tasks that were comparable in task format and task…
Evolution equation in the field theory of strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marui, M.; Sugamoto, A.; Oda, I.
This paper reports on a stringy version of the Altarelli-Parisi equation given within the field theory of bosonic strings formulated in the light-cone gauge. Using this equation, the authors study the behavior of the decay function of strings under the change of reference scale, especially imposing an assumption of large transverse momentum. In some cases the n-th moment of the decay function behaves very differently from QCD.
Beyond False Belief: Theory of Mind in Young, Young-Old, and Old-Old Adults
ERIC Educational Resources Information Center
Cavallini, Elena; Lecce, Serena; Bottiroli, Sara; Palladino, Paola; Pagnin, Adriano
2013-01-01
Theory of mind (ToM) refers to humans' ability to recognize the existence of mental states, such as beliefs, emotions, and desires. The literature on ToM in aging and on the relationship between ToM and other cognitive functions, like executive functions, is not homogenous. The aim of the present study was to explore the course of ToM and to…
Kiper, Pawel; Szczudlik, Andrzej; Venneri, Annalena; Stozek, Joanna; Luque-Moreno, Carlos; Opara, Jozef; Baba, Alfonc; Agostini, Michela; Turolla, Andrea
2016-10-15
Computational approaches for modelling the central nervous system (CNS) aim to develop theories on processes occurring in the brain that allow the transformation of all information needed for the execution of motor acts. Computational models have been proposed in several fields, to interpret not only the CNS functioning, but also its efferent behaviour. Computational model theories can provide insights into neuromuscular and brain function allowing us to reach a deeper understanding of neuroplasticity. Neuroplasticity is the process occurring in the CNS that is able to permanently change both structure and function due to interaction with the external environment. To understand such a complex process several paradigms related to motor learning and computational modeling have been put forward. These paradigms have been explained through several internal model concepts, and supported by neurophysiological and neuroimaging studies. Therefore, it has been possible to make theories about the basis of different learning paradigms according to known computational models. Here we review the computational models and motor learning paradigms used to describe the CNS and neuromuscular functions, as well as their role in the recovery process. These theories have the potential to provide a way to rigorously explain all the potential of CNS learning, providing a basis for future clinical studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Improving Preschoolers' Theory of Mind Skills with Digital Games: A Training Study
ERIC Educational Resources Information Center
Nikolayev, Mariya
2015-01-01
This single-subject research study examined functional relation between digital games enriched with voice-overs and theory of mind (ToM) when game play was either followed or not followed by a discussion focused on the game's content. The study employed multiple baseline design across participants to evaluate the effects of games with mental state…
Excitation spectra of retinal by multiconfiguration pair-density functional theory.
Dong, Sijia S; Gagliardi, Laura; Truhlar, Donald G
2018-03-07
Retinal is the chromophore in proteins responsible for vision. The absorption maximum of retinal is sensitive to mutations of the protein. However, it is not easy to predict the absorption spectrum of retinal accurately, and questions remain even after intensive investigation. Retinal poses a challenge for Kohn-Sham density functional theory (KS-DFT) because of the charge transfer character in its excitations, and it poses a challenge for wave function theory because the large size of the molecule makes multiconfigurational perturbation theory methods expensive. In this study, we demonstrate that multiconfiguration pair-density functional theory (MC-PDFT) provides an efficient way to predict the vertical excitation energies of 11-Z retinal, and it reproduces the experimentally determined absorption band widths and peak positions better than complete active space second-order perturbation theory (CASPT2). The consistency between complete active space self-consistent field (CASSCF) and KS-DFT dipole moments is demonstrated to be a useful criterion in selecting the active space. We also found that the nature of the terminal groups and the conformations of retinal play a significant role in the absorption spectrum. By considering a thermal distribution of conformations, we predict an absorption spectrum of retinal that is consistent with the experimental gas-phase spectrum. The location of the absorption peak and the spectral broadening based on MC-PDFT calculations agree better with experiments than those of CASPT2.
Skelton, JA; Buehler, C; Irby, MB; Grzywacz, JG
2014-01-01
Family-based approaches to pediatric obesity treatment are considered the ‘gold-standard,’ and are recommended for facilitating behavior change to improve child weight status and health. If family-based approaches are to be truly rooted in the family, clinicians and researchers must consider family process and function in designing effective interventions. To bring a better understanding of family complexities to family-based treatment, two relevant reviews were conducted and are presented: (1) a review of prominent and established theories of the family that may provide a more comprehensive and in-depth approach for addressing pediatric obesity; and (2) a systematic review of the literature to identify the use of prominent family theories in pediatric obesity research, which found little use of theories in intervention studies. Overlapping concepts across theories include: families are a system, with interdependence of units; the idea that families are goal-directed and seek balance; and the physical and social environment imposes demands on families. Family-focused theories provide valuable insight into the complexities of families. Increased use of these theories in both research and practice may identify key leverage points in family process and function to prevent the development of or more effectively treat obesity. The field of family studies provides an innovative approach to the difficult problem of pediatric obesity, building on the long-established approach of family-based treatment. PMID:22531090
Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk.
Trepel, Christopher; Fox, Craig R; Poldrack, Russell A
2005-04-01
Most decisions must be made without advance knowledge of their consequences. Economists and psychologists have devoted much attention to modeling decisions made under conditions of risk in which options can be characterized by a known probability distribution over possible outcomes. The descriptive shortcomings of classical economic models motivated the development of prospect theory (D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk. Econometrica, 4 (1979) 263-291; A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5 (4) (1992) 297-323) the most successful behavioral model of decision under risk. In the prospect theory, subjective value is modeled by a value function that is concave for gains, convex for losses, and steeper for losses than for gains; the impact of probabilities are characterized by a weighting function that overweights low probabilities and underweights moderate to high probabilities. We outline the possible neural bases of the components of prospect theory, surveying evidence from human imaging, lesion, and neuropharmacology studies as well as animal neurophysiology studies. These results provide preliminary suggestions concerning the neural bases of prospect theory that include a broad set of brain regions and neuromodulatory systems. These data suggest that focused studies of decision making in the context of quantitative models may provide substantial leverage towards a fuller understanding of the cognitive neuroscience of decision making.
Einstein gravity 3-point functions from conformal field theory
NASA Astrophysics Data System (ADS)
Afkhami-Jeddi, Nima; Hartman, Thomas; Kundu, Sandipan; Tajdini, Amirhossein
2017-12-01
We study stress tensor correlation functions in four-dimensional conformal field theories with large N and a sparse spectrum. Theories in this class are expected to have local holographic duals, so effective field theory in anti-de Sitter suggests that the stress tensor sector should exhibit universal, gravity-like behavior. At the linearized level, the hallmark of locality in the emergent geometry is that stress tensor three-point functions 〈 T T T 〉, normally specified by three constants, should approach a universal structure controlled by a single parameter as the gap to higher spin operators is increased. We demonstrate this phenomenon by a direct CFT calculation. Stress tensor exchange, by itself, violates causality and unitarity unless the three-point functions are carefully tuned, and the unique consistent choice exactly matches the prediction of Einstein gravity. Under some assumptions about the other potential contributions, we conclude that this structure is universal, and in particular, that the anomaly coefficients satisfy a ≈ c as conjectured by Camanho et al. The argument is based on causality of a four-point function, with kinematics designed to probe bulk locality, and invokes the chaos bound of Maldacena, Shenker, and Stanford.
Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing
2018-01-11
By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.
Tsallis non-extensive statistics and solar wind plasma complexity
NASA Astrophysics Data System (ADS)
Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.
2015-03-01
This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).
NASA Astrophysics Data System (ADS)
Shabbir, Ahmed; Muhammad, Zafar; M, Shakil; M, A. Choudhary
2016-03-01
The structural, electronic, mechanical, and thermal properties of Pt, Pd, Rh, Ir, Os metals and their alloys PtPdX (X = Ir, Os and Rh) are studied systematically using ab initio density functional theory. The groundstate properties such as lattice constant and bulk modulus are calculated to find the equilibrium atomic position for stable alloys. The electronic band structure and density of states are calculated to study the electronic behavior of metals on making their alloys. The electronic properties substantiate the metallic behavior for all studied materials. The firstprinciples density functional perturbation theory as implemented in quasi-harmonic approximation is used for the calculations of thermal properties. We have calculated the thermal properties such as the Debye temperature, vibrational energy, entropy and constant-volume specific heat. The calculated properties are compared with the previously reported experimental and theoretical data for metals and are found to be in good agreement. Calculated results for alloys could not be compared because there is no data available in the literature with such alloy composition.
Perspectives on hand function in girls and women with Rett syndrome.
Downs, Jenny; Parkinson, Stephanie; Ranelli, Sonia; Leonard, Helen; Diener, Pamela; Lotan, Meir
2014-06-01
Rett syndrome is a rare neurodevelopmental disorder that is usually associated with a mutation on the X-linked MECP2 gene. Hand function is particularly affected and we discuss theoretical and practical perspectives for optimising hand function in Rett syndrome. We reviewed the literature pertaining to hand function and stereotypies in Rett syndrome and developed a toolkit for their assessment and treatment. There is little published information on management of hand function in Rett syndrome. We suggest assessment and treatment strategies based on available literature, clinical experience and grounded in theories of motor control and motor learning. Additional studies are needed to determine the best treatments for hand function in Rett syndrome. Meanwhile, clinical needs can be addressed by supplementing the evidence base with an understanding of the complexities of Rett syndrome, clinical experience, environmental enrichment animal studies and theories of motor control and motor learning.
Theoretical studies of electronically excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besley, Nicholas A.
2014-10-06
Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.
Giesbertz, K J H
2015-08-07
A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.
[How does sleeping restore our brain?].
Wigren, Henna-Kaisa; Stenberg, Tarja
2015-01-01
The central function of sleep is to keep our brain functional, but what is the restoration that sleep provides? Sleep after learning improves learning outcomes. According to the theory of synaptic homeostasis the total strength of synapses, having increased during the day, is restored during sleep, making room for the next day's experiences. According to the theory of active synaptic consolidation, repetition during sleep strengthens the synapses, and these strengthened synapses form a permanent engram. According to a recent study, removal of waste products from the brain may also be one of the functions of sleep.
Expanding the Bethe/Gauge dictionary
NASA Astrophysics Data System (ADS)
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Bifurcation theory for finitely smooth planar autonomous differential systems
NASA Astrophysics Data System (ADS)
Han, Maoan; Sheng, Lijuan; Zhang, Xiang
2018-03-01
In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.
Aspects of defects in 3d-3d correspondence
Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; ...
2016-10-12
In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N-1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU(N )], 5d N=2 SYM, and alsomore » supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper, which summarizes our main results.« less
Fazl-i-Sattar; Ullah, Zakir; Ata-ur-Rahman; Rauf, Abdur; Tariq, Muhammad; Tahir, Asif Ali; Ayub, Khurshid; Ullah, Habib
2015-04-15
Density functional theory (DFT) and phytochemical study of a natural product, Diospyrin (DO) have been carried out. A suitable level of theory was developed, based on correlating the experimental and theoretical data. Hybrid DFT method at B3LYP/6-31G (d,p) level of theory is employed for obtaining the electronic, spectroscopic, inter-molecular interaction and thermodynamic properties of DO. The exact structure of DO is confirmed from the nice validation of the theory and experiment. Non-covalent interactions of DO with different atmospheric gases such as NH3, CO2, CO, and H2O were studied to find out its electroactive nature. The experimental and predicted geometrical parameters, IR and UV-vis spectra (B3LYP/6-31+G (d,p) level of theory) show excellent correlation. Inter-molecular non-bonding interaction of DO with atmospheric gases is investigated through geometrical parameters, electronic properties, charge analysis, and thermodynamic parameters. Electronic properties include, ionization potential (I.P.), electron affinities (E.A.), electrostatic potential (ESP), density of states (DOS), HOMO, LUMO, and band gap. All these characterizations have corroborated each other and confirmed the presence of non-covalent nature in DO with the mentioned gases. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.
Lee, Won Hee; Bullmore, Ed; Frangou, Sophia
2017-02-01
There is increasing interest in the potential of whole-brain computational models to provide mechanistic insights into resting-state brain networks. It is therefore important to determine the degree to which computational models reproduce the topological features of empirical functional brain networks. We used empirical connectivity data derived from diffusion spectrum and resting-state functional magnetic resonance imaging data from healthy individuals. Empirical and simulated functional networks, constrained by structural connectivity, were defined based on 66 brain anatomical regions (nodes). Simulated functional data were generated using the Kuramoto model in which each anatomical region acts as a phase oscillator. Network topology was studied using graph theory in the empirical and simulated data. The difference (relative error) between graph theory measures derived from empirical and simulated data was then estimated. We found that simulated data can be used with confidence to model graph measures of global network organization at different dynamic states and highlight the sensitive dependence of the solutions obtained in simulated data on the specified connection densities. This study provides a method for the quantitative evaluation and external validation of graph theory metrics derived from simulated data that can be used to inform future study designs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Type IIB flux vacua from G-theory II
NASA Astrophysics Data System (ADS)
Candelas, Philip; Constantin, Andrei; Damian, Cesar; Larfors, Magdalena; Morales, Jose Francisco
2015-02-01
We find analytic solutions of type IIB supergravity on geometries that locally take the form Mink × M 4 × ℂ with M 4 a generalised complex manifold. The solutions involve the metric, the dilaton, NSNS and RR flux potentials (oriented along the M 4) parametrised by functions varying only over ℂ. Under this assumption, the supersymmetry equations are solved using the formalism of pure spinors in terms of a finite number of holomorphic functions. Alternatively, the solutions can be viewed as vacua of maximally supersymmetric supergravity in six dimensions with a set of scalar fields varying holomorphically over ℂ. For a class of solutions characterised by up to five holomorphic functions, we outline how the local solutions can be completed to four-dimensional flux vacua of type IIB theory. A detailed study of this global completion for solutions with two holomorphic functions has been carried out in the companion paper [1]. The fluxes of the global solutions are, as in F-theory, entirely codified in the geometry of an auxiliary K3 fibration over ℂℙ1. The results provide a geometric construction of fluxes in F-theory.
On consciousness, resting state fMRI, and neurodynamics
2010-01-01
Background During the last years, functional magnetic resonance imaging (fMRI) of the brain has been introduced as a new tool to measure consciousness, both in a clinical setting and in a basic neurocognitive research. Moreover, advanced mathematical methods and theories have arrived the field of fMRI (e.g. computational neuroimaging), and functional and structural brain connectivity can now be assessed non-invasively. Results The present work deals with a pluralistic approach to "consciousness'', where we connect theory and tools from three quite different disciplines: (1) philosophy of mind (emergentism and global workspace theory), (2) functional neuroimaging acquisitions, and (3) theory of deterministic and statistical neurodynamics – in particular the Wilson-Cowan model and stochastic resonance. Conclusions Based on recent experimental and theoretical work, we believe that the study of large-scale neuronal processes (activity fluctuations, state transitions) that goes on in the living human brain while examined with functional MRI during "resting state", can deepen our understanding of graded consciousness in a clinical setting, and clarify the concept of "consiousness" in neurocognitive and neurophilosophy research. PMID:20522270
Thermalization of Wightman functions in AdS/CFT and quasinormal modes
NASA Astrophysics Data System (ADS)
Keränen, Ville; Kleinert, Philipp
2016-07-01
We study the time evolution of Wightman two-point functions of scalar fields in AdS3 -Vaidya, a spacetime undergoing gravitational collapse. In the boundary field theory, the collapse corresponds to a quench process where the dual 1 +1 -dimensional CFT is taken out of equilibrium and subsequently thermalizes. From the two-point function, we extract an effective occupation number in the boundary theory and study how it approaches the thermal Bose-Einstein distribution. We find that the Wightman functions, as well as the effective occupation numbers, thermalize with a rate set by the lowest quasinormal mode of the scalar field in the BTZ black hole background. We give a heuristic argument for the quasinormal decay, which is expected to apply to more general Vaidya spacetimes also in higher dimensions. This suggests a unified picture in which thermalization times of one- and two-point functions are determined by the lowest quasinormal mode. Finally, we study how these results compare to previous calculations of two-point functions based on the geodesic approximation.
Linear response theory for annealing of radiation damage in semiconductor devices
NASA Technical Reports Server (NTRS)
Litovchenko, Vitaly
1988-01-01
A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
Shapouri, Soheil; Nejati, Vahid; Eftekhar Ardebili, Mehrdad
2015-01-01
Researchers have been investigating similarities of and differences between homosexuals and heterosexuals for past few decades. Several studies have shown that in the particular domain (e.g., spatial ability), male homosexuals would resemble female heterosexuals better than male heterosexuals. Executive function, however, has received more attention than social cognition in this line of research. This study focuses on theory of mind and empathy as two important components of social cognition in male homosexuals (N=14), male heterosexuals (N=15) and female heterosexuals (N=14). Applying Reading the Mind in the Eyes test and the Empathy Quotient, no significant difference between groups was identified. This study suggests that similarities of male homosexuals and female heterosexuals may be confined to executive function and not extended to some social cognition abilities like theory of mind or empathy.
An investigation into social information processing in young people with Asperger syndrome.
Flood, Andrea Mary; Julian Hare, Dougal; Wallis, Paul
2011-09-01
Deficits in social functioning are a core feature of autistic spectrum disorders (ASD), being linked to various cognitive and developmental factors, but there has been little attempt to draw on normative models of social cognition to understand social behaviour in ASD. The current study explored the utility of Crick and Dodge's (1994) information processing model to studying social cognition in ASD, and examined associations between social information processing patterns, theory of mind skills and social functioning. A matched-group design compared young people with Asperger syndrome with typically developing peers, using a social information processing interview previously designed for this purpose. The Asperger syndrome group showed significantly different patterns of information processing at the intent attribution, response generation and response evaluation stages of the information processing model. Theory of mind skills were found to be significantly associated with parental ratings of peer problems in the Asperger syndrome group but not with parental ratings of pro-social behaviour, with only limited evidence of an association between social information processing and measures of theory of mind and social functioning. Overall, the study supports the use of normative social information processing approaches to understanding social functioning in ASD.
Predicting vapor liquid equilibria using density functional theory: A case study of argon
NASA Astrophysics Data System (ADS)
Goel, Himanshu; Ling, Sanliang; Ellis, Breanna Nicole; Taconi, Anna; Slater, Ben; Rai, Neeraj
2018-06-01
Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase.
Latosińska, J N; Latosińska, M; Seliger, J; Žagar, V; Maurin, J K; Kazimierczuk, Z
2012-02-09
Isothioureas, inhibitors of nitric oxide synthases, have been studied experimentally in solid state by nuclear quadrupole double resonance (NQDR) and X-ray methods and theoretically by the quantum theory of atoms in molecules/density functional theory. Resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in each molecule. The crystal packings of (S)-3,4-dichlorobenzyl-N-methylisothiouronium chloride with the disordered chlorine positions in benzene ring and (S)-butyloisothiouronium bromide have been resolved in X-ray diffraction studies. (14)N NQDR spectra have been found good indicators of isomer type and strength of intra- or intermolecular N-H···X (X = Cl, Br) interactions. From among all salts studied, only for (S)-2,3,4,5,6-pentabromobenzylisothiouronium chloride are both nitrogen sites equivalent, which has been explained by the slow exchange. This unique structural feature can be a key factor in the high biological activity of (S)-2,3,4,5,6-pentabromobenzylisothiouronium salts.
Density-Functional Theory Study of Materials and Their Properties at Non-Zero Temperature
NASA Astrophysics Data System (ADS)
Antolin, Nikolas
Density functional theory (DFT) has proven useful in providing energetic and structural data to inform higher levels of simulation as well as populate materials databases. However, DFT does not intrinsically include temperature effects that are critical to determining materials behavior in real-world applications. By considering the magnitude of critical energy differences in a system to be studied, one may select the appropriate level of additional theory with which to supplement DFT to obtain meaningful results with respect to temperature-induced behavior. This thesis details studies on three materials systems, representing three distinct levels of additional theory used in the study of thermally-induced behavior. After introducing the concepts involved in extracting thermal data from atomistics and density functional theory in chapters 1 and 2, chapter 3 details studies on a Ni-base superalloy system and its behavior in creep testing at high temperature due to planar defects. Chapters 4 and 5 detail work on thermal stabilization of BCC phases which are unstable without temperature effects and the progress in calculating the thermodynamic stability of vacancies in these and other BCC systems. Chapter 6 describes a study of thermal effects coupling to magnetism in indium antimonide (InSb), which are the result of previously unobserved coupling between phonons and magnetic field in a diamagnetic material. All three of the systems studied exhibit materials properties which are strongly temperature-dependent, but the level of theory necessary to study them varies from simple ground state calculations to consideration of the effects of single vibrational modes within the material. Since many of the approaches used and introduced here are computationally intensive and push the limits of publicly available computational resources, this thesis puts additional focus on optimizing code execution and choosing an appropriate level of theory to probe a given material system. An inappropriate level of theory can either be computationally wasteful (or unfeasible) or yield meaningless results; it is only by the inclusion of appropriate thermal effects, determined by system to be considered, that valid results can be obtained. Though much progress has been made in generalizing the approaches described in this thesis, further research will be necessary if we hope to fulfill the lofty goal of a universally applicable method of extracting thermal data from first principles in a way that guarantees valid and useful results.
Griffin, Sinéad M; Spaldin, Nicola A
2017-06-01
We use density functional theory within the local density approximation (LDA), LDA + U, generalised gradient approximation (GGA), GGA + U, and hybrid-functional methods to calculate the properties of iron monoarsenide. FeAs, which forms in the MnP structure, is of current interest for potential spintronic applications as well as being the parent compound for the pnictide superconductors. We compare the calculated structural, magnetic and electronic properties obtained using the different functionals to each other and to experiment, and investigate the origin of a recently reported magnetic spiral. Our results indicate the appropriateness or otherwise of the various functionals for describing FeAs and the related Fe-pnictide superconductors.
Left inferior-parietal lobe activity in perspective tasks: identity statements
Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C.; Perner, Josef
2015-01-01
We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., “the tour guide is also the driver” activate the left IPL in contrast to a control statements, “the tour guide has an apprentice.” This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL. PMID:26175677
Chern-Simons gauge theory on orbifolds: Open strings from three dimensions
NASA Astrophysics Data System (ADS)
Hořava, Petr
1996-12-01
Chern-Simons gauge theory is formulated on three-dimensional Z2 orbifolds. The locus of singular points on a given orbifold is equivalent to a link of Wilson lines. This allows one to reduce any correlation function on orbifolds to a sum of more complicated correlation functions in the simpler theory on manifolds. Chern-Simons theory on manifolds is known to be related to two-dimensional (2D) conformal field theory (CFT) on closed-string surfaces; here it is shown that the theory on orbifolds is related to 2D CFT of unoriented closed- and open-string models, i.e. to worldsheet orbifold models. In particular, the boundary components of the worldsheet correspond to the components of the singular locus in the 3D orbifold. This correspondence leads to a simple identification of the open-string spectra, including their Chan-Paton degeneration, in terms of fusing Wilson lines in the corresponding Chern-Simons theory. The correspondence is studied in detail, and some exactly solvable examples are presented. Some of these examples indicate that it is natural to think of the orbifold group Z2 as a part of the gauge group of the Chern-Simons theory, thus generalizing the standard definition of gauge theories.
Unified theory of the nucleus. [Monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wildermuth, K.; Tang, Y.C.
1977-01-01
The purpose of this monograph is to describe a microscopic nuclear theory which can be used to consider all low-energy nuclear phenomena from a unified viewpoint. In this theory, the Pauli principle is completely taken into account and translationally invariant wave functions are always employed. It can be utilized to study reactions initiated not only by nucleons but also by arbitrary composite particles.
NASA Astrophysics Data System (ADS)
Bender, Carl
2017-01-01
The theory of complex variables is extremely useful because it helps to explain the mathematical behavior of functions of a real variable. Complex variable theory also provides insight into the nature of physical theories. For example, it provides a simple and beautiful picture of quantization and it explains the underlying reason for the divergence of perturbation theory. By using complex-variable methods one can generalize conventional Hermitian quantum theories into the complex domain. The result is a new class of parity-time-symmetric (PT-symmetric) theories whose remarkable physical properties have been studied and verified in many recent laboratory experiments.
{Phi}{sup 4} kinks: Statistical mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, S.
1995-12-31
Some recent investigations of the thermal equilibrium properties of kinks in a 1+1-dimensional, classical {phi}{sup 4} field theory are reviewed. The distribution function, kink density, correlation function, and certain thermodynamic quantities were studied both theoretically and via large scale simulations. A simple double Gaussian variational approach within the transfer operator formalism was shown to give good results in the intermediate temperature range where the dilute gas theory is known to fail.
ERIC Educational Resources Information Center
Muller, Ulrich; Liebermann-Finestone, Dana P.; Carpendale, Jeremy I. M.; Hammond, Stuart I.; Bibok, Maximilian B.
2012-01-01
This longitudinal study examined the concurrent and predictive relations between executive function (EF) and theory of mind (ToM) in 82 preschoolers who were assessed when they were 2, 3, and 4 years old. The results showed that the concurrent relation between EF and ToM, after controlling for age, verbal ability, and sex, was significant at 3 and…
On the origins of anticipation as an evolutionary framework: functional systems perspective
NASA Astrophysics Data System (ADS)
Kurismaa, Andres
2015-08-01
This paper discusses the problem of anticipation from an evolutionary and systems-theoretical perspective, developed in the context of Russian/Soviet evolutionary biological and neurophysiological schools in the early and mid-twentieth century. On this background, an outline is given of the epigenetic interpretation of anticipatory capacities formulated and substantiated by the eminent Russian neurophysiologist academician Peter K. Anokhin in the framework of functional systems theory. It is considered that several key positions of this theory are well confirmed by recent evidence on anticipation as an evolutionarily basic adaptive capacity, possibly inherent to the organization of life. In the field of neuroscience, the theory of functional systems may potentially facilitate future studies at the intersection of learning, development and evolution by representing an integrative approach to the problem of anticipation.
Localization in abelian Chern-Simons theory
NASA Astrophysics Data System (ADS)
McLellan, B. D. K.
2013-02-01
Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected, and abelian. The abelian Chern-Simons partition function is derived using the Faddeev-Popov gauge fixing method. The partition function is then formally computed using the technique of non-abelian localization. This study leads to a natural identification of the abelian Reidemeister-Ray-Singer torsion as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections for the class of Sasakian three-manifolds. The torsion part of the abelian Chern-Simons partition function is computed explicitly in terms of Seifert data for a given Sasakian three-manifold.
NASA Technical Reports Server (NTRS)
Isar, Aurelian
1995-01-01
The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.
The motivation for drug abuse treatment: testing cognitive and 12-step theories.
Bell, D C; Montoya, I D; Richard, A J; Dayton, C A
1998-11-01
The purpose of this paper is to evaluate two models of behavior change: cognitive theory and 12-step theory. Research subjects were drawn from three separate, but parallel, samples of adults. The first sample consisted of out-of-treatment chronic drug users, the second consisted of drug users who had applied for treatment at a publicly funded multiple-provider drug treatment facility, and the third consisted of drug users who had applied for treatment at an intensive outpatient program for crack cocaine users. Cognitive theory was supported. Study participants applying for drug abuse treatment reported a higher level of perceived problem severity and a higher level of cognitive functioning than out-of-treatment drug users. Two hypotheses drawn from 12-step theory were not supported. Treatment applicants had more positive emotional functioning than out-of-treatment drug users, and one treatment-seeking sample had higher self-esteem.
NASA Astrophysics Data System (ADS)
Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; Gordon, Margaret E.; Bryan, Charles R.
2018-04-01
Elastic and thermodynamic properties of negative thermal expansion (NTE) α -ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ∼ 2 % with PBEsol and ∼ 6 % with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be CP0 = 192.2 and 193.8 J mol-1K-1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.
NASA Astrophysics Data System (ADS)
Henderson, Douglas; Quintana, Jacqueline; Sokołowski, Stefan
1995-03-01
A comparison of Percus-Yevick-Pynn-Lado model theory and a density functional (DF) theory of nonuniform fluids of nonspherical particles is performed. The DF used is a new generalization of Tarazona's theory. The conclusion is that DF theory provides a preferable route to describe the system under consideration. Its accuracy can be improved with better approximation for the direct correlation function (DCF) for bulk system.
Functional and Conflict Theories of Educational Stratification
ERIC Educational Resources Information Center
Collins, Randall
1971-01-01
Maintains that, of the two theories considered for accounting for the increased schooling required for employment, the technical-function theory (reflects demands for greater skills due to technological change) and the conflict theory (imposition of cultural standards for selection for jobs), the latter theory is more strongly supported. (RJ)
NASA Astrophysics Data System (ADS)
Yen, Tsung-Wen; Lim, Thong-Leng; Yoon, Tiem-Leong; Lai, S. K.
2017-11-01
We combined a new parametrized density functional tight-binding (DFTB) theory (Fihey et al. 2015) with an unbiased modified basin hopping (MBH) optimization algorithm (Yen and Lai 2015) and applied it to calculate the lowest energy structures of Au clusters. From the calculated topologies and their conformational changes, we find that this DFTB/MBH method is a necessary procedure for a systematic study of the structural development of Au clusters but is somewhat insufficient for a quantitative study. As a result, we propose an extended hybridized algorithm. This improved algorithm proceeds in two steps. In the first step, the DFTB theory is employed to calculate the total energy of the cluster and this step (through running DFTB/MBH optimization for given Monte-Carlo steps) is meant to efficiently bring the Au cluster near to the region of the lowest energy minimum since the cluster as a whole has explicitly considered the interactions of valence electrons with ions, albeit semi-quantitatively. Then, in the second succeeding step, the energy-minimum searching process will continue with a skilledly replacement of the energy function calculated by the DFTB theory in the first step by one calculated in the full density functional theory (DFT). In these subsequent calculations, we couple the DFT energy also with the MBH strategy and proceed with the DFT/MBH optimization until the lowest energy value is found. We checked that this extended hybridized algorithm successfully predicts the twisted pyramidal structure for the Au40 cluster and correctly confirms also the linear shape of C8 which our previous DFTB/MBH method failed to do so. Perhaps more remarkable is the topological growth of Aun: it changes from a planar (n =3-11) → an oblate-like cage (n =12-15) → a hollow-shape cage (n =16-18) and finally a pyramidal-like cage (n =19, 20). These varied forms of the cluster's shapes are consistent with those reported in the literature.
Plain Speaking: A Theory and Grammar of Spontaneous Discourse.
1981-06-01
reveals surface linguistic phenomena that contradict traditional theories based on single sentence studies and longer texts artificially constructed...Excerpt 1 , Chapter 1, to illustrate the importance of functional development and discernment. In the midst of discussing the case of two twins under study ...his social interactive behavior in kindergarten. Authority: Source: Study Method : Investigative filming of kids over time. Credentials: Excellent
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelikowsky, James R.
2014-04-14
We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plusmore » Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.« less
The essential role of social theory in qualitative public health research.
Willis, Karen; Daly, Jeanne; Kealy, Michelle; Small, Rhonda; Koutroulis, Glenda; Green, Julie; Gibbs, Lisa; Thomas, Samantha
2007-10-01
To define the role of social theory and examine how research studies using qualitative methods can use social theory to generalize their results beyond the setting of the study or to other social groups. The assumptions underlying public health research using qualitative methods derive from a range of social theories that include conflict theory, structural functionalism, symbolic interactionism, the sociology of knowledge and feminism. Depending on the research problem, these and other social theories provide conceptual tools and models for constructing a suitable research framework, and for collecting and analysing data. In combination with the substantive health literature, the theoretical literature provides the conceptual bridge that links the conclusions of the study to other social groups and settings. While descriptive studies using qualitative research methods can generate important insights into social experience, the use of social theory in the construction and conduct of research enables researchers to extrapolate their findings to settings and groups broader than the ones in which the research was conducted.
Intersecting surface defects and two-dimensional CFT
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Le Floch, Bruno; Pan, Yiwen; Peelaers, Wolfger
2017-08-01
We initiate the study of intersecting surface operators/defects in 4D quantum field theories (QFTs). We characterize these defects by coupled 4D/2D/0D theories constructed by coupling the degrees of freedom localized at a point and on intersecting surfaces in spacetime to each other and to the 4D QFT. We construct supersymmetric intersecting surface defects preserving just two supercharges in N =2 gauge theories. These defects are amenable to exact analysis by localization of the partition function of the underlying 4D/2D/0D QFT. We identify the 4D/2D/0D QFTs that describe intersecting surface operators in N =2 gauge theories realized by intersecting M2 branes ending on N M5 branes wrapping a Riemann surface. We conjecture and provide evidence for an explicit equivalence between the squashed four-sphere partition function of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of arbitrary degenerate vertex operators, which are labeled by two representations of S U (N ).
Spheres, charges, instantons, and bootstrap: A five-dimensional odyssey
NASA Astrophysics Data System (ADS)
Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan
2018-03-01
We combine supersymmetric localization and the conformal bootstrap to study five-dimensional superconformal field theories. To begin, we classify the admissible counter-terms and derive a general relation between the five-sphere partition function and the conformal and flavor central charges. Along the way, we discover a new superconformal anomaly in five dimensions. We then propose a precise triple factorization formula for the five-sphere partition function, that incorporates instantons and is consistent with flavor symmetry enhancement. We numerically evaluate the central charges for the rank-one Seiberg and Morrison-Seiberg theories, and find strong evidence for their saturation of bootstrap bounds, thereby determining the spectra of long multiplets in these theories. Lastly, our results provide new evidence for the F-theorem and possibly a C-theorem in five-dimensional superconformal theories.
Descriptions of carbon isotopes within the energy density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly themore » blocking effect plays a significant role in the shell model configurations.« less
Data versus Spock: lay theories about whether emotion helps or hinders.
Karnaze, Melissa M; Levine, Linda J
2018-05-01
The android Data from Star Trek admired human emotion whereas Spock viewed emotion as irrational and maladaptive. The theory that emotions fulfil adaptive functions is widely accepted in academic psychology but little is known about laypeople's theories. The present study assessed the extent to which laypeople share Data's view of emotion as helpful or Spock's view of emotion as a hindrance. We also assessed how help and hinder theory endorsement were related to reasoning, emotion regulation, and well-being. Undergraduates (N = 630) completed a stressful timed reasoning task and questionnaires that assessed their theories of emotion, emotion regulation strategies, happiness, and social support. Overall, participants viewed emotion more as a help than a hindrance. The more they endorsed the view that emotion helps, the better their reasoning scores. Endorsing a help theory also predicted the use of reappraisal which, in turn, predicted greater happiness and social support. In contrast, endorsing the view that emotion hinders was associated with emotion suppression and less social support. Thus, people's theories about the functionality of emotion may have important implications for their reasoning and emotional well-being.
Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura
2016-02-04
A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications.
Noncommutative Field Theories and (super)string Field Theories
NASA Astrophysics Data System (ADS)
Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.
2002-11-01
In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.
Describing a Strongly Correlated Model System with Density Functional Theory.
Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth
2017-07-06
The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.
Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.
Estrada-Salas, Rubén E; Valladares, Ariel A
2009-09-24
Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.
Numbers and functions in quantum field theory
NASA Astrophysics Data System (ADS)
Schnetz, Oliver
2018-04-01
We review recent results in the theory of numbers and single-valued functions on the complex plane which arise in quantum field theory. These results are the basis for a new approach to high-loop-order calculations. As concrete examples, we provide scheme-independent counterterms of primitive log-divergent graphs in ϕ4 theory up to eight loops and the renormalization functions β , γ , γm of dimensionally regularized ϕ4 theory in the minimal subtraction scheme up to seven loops.
Supersymmetric Adler functions and holography
NASA Astrophysics Data System (ADS)
Iwanaga, Masaya; Karch, Andreas; Sakai, Tadakatsu
2016-09-01
We perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.
Urbic, Tomaz
2016-01-01
In this paper we applied an analytical theory for the two dimensional dimerising fluid. We applied Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the dimerising model with arbitrary position of dimerising points from center of the particles. The theory was used to study thermodynamical and structural properties. To check the accuracy of the theories we compared theoretical results with corresponding results obtained by Monte Carlo computer simulations. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. IET correctly predicts the pair correlation function of the model. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, pressure, chemical potential, compressibility and ratios of free and bonded particles. PMID:28529396
Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin
2013-11-01
Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
A Theory of the Function of Technical Writing.
ERIC Educational Resources Information Center
Ross, Donald, Jr.
1981-01-01
Advances the theory that technical writing functions as a replacement for memory--an information storage receptacle. Lists the formal and stylistic features implied by such a theory. Considers the future development of technical writing within the context of this theory. (RL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutzler, F.W.; Painter, G.S.
1991-03-15
The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less
The Impact of Causality on Information-Theoretic Source and Channel Coding Problems
ERIC Educational Resources Information Center
Palaiyanur, Harikrishna R.
2011-01-01
This thesis studies several problems in information theory where the notion of causality comes into play. Causality in information theory refers to the timing of when information is available to parties in a coding system. The first part of the thesis studies the error exponent (or reliability function) for several communication problems over…
Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package
NASA Astrophysics Data System (ADS)
Sulejmanpasic, Tin; Ünsal, Mithat
2018-07-01
We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.
ERIC Educational Resources Information Center
Kaland, Nils; Callesen, Kirsten; Moller-Nielsen, Annette; Mortensen, Erik Lykke; Smith, Lars
2008-01-01
Although a number of advanced theory of mind tasks have been developed, there is a dearth of information on whether performances on different tasks are associated. The present study examined the performance of 21 children and adolescents with diagnoses of Asperger syndrome (AS) and 20 typically developing controls on three advanced theory of mind…
ERIC Educational Resources Information Center
Bachman-Prehn, Ronet; And Others
This study examined three theories which might account for the large differences between states in the incidence of homicide, and particularly the theory that stress causes homicide. The other theories are those which hold that homicide is a function of cultural norms which support violence and of a weak system of social control. The regression…
Luber, Sandra
2017-03-14
We describe the calculation of Raman optical activity (ROA) tensors from density functional perturbation theory, which has been implemented into the CP2K software package. Using the mixed Gaussian and plane waves method, ROA spectra are evaluated in the double-harmonic approximation. Moreover, an approach for the calculation of ROA spectra by means of density functional theory-based molecular dynamics is derived and used to obtain an ROA spectrum via time correlation functions, which paves the way for the calculation of ROA spectra taking into account anharmonicities and dynamic effects at ambient conditions.
Executive function in middle childhood and the relationship with theory of mind.
Wilson, Jennifer; Andrews, Glenda; Hogan, Christy; Wang, Si; Shum, David H K
2018-01-01
A group of 126 typically developing children (aged 5-12 years) completed three cool executive function tasks (spatial working memory, stop signal, intra-extra dimensional shift), two hot executive function tasks (gambling, delay of gratification), one advanced theory of mind task (strange stories with high versus low affective tone), and a vocabulary test. Older children performed better than younger children, consistent with the protracted development of hot and cool executive functions and theory of mind. Multiple regression analyses showed that hot and cool executive functions were correlated but they predicted theory of mind in different ways.
Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study
NASA Astrophysics Data System (ADS)
Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.
2018-05-01
First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.
NASA Astrophysics Data System (ADS)
Zheng, Zhen-Yu; Li, Peng
2018-04-01
We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.
Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth
2015-02-10
Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.
A Modern Aristotelian Rhetorical Theory.
ERIC Educational Resources Information Center
Douglass, Rodney Blaine
This study proposes a modern Aristotelian rhetorical theory--that rhetorical communication is that human communication within which persons deliberatively interact. A number of corollaries follow from the fundamental postulate and include: (1) persons function as the essential agents of the rhetorical communicative process; (2) a person's…
Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua
2004-04-15
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.
Modeling micelle formation and interfacial properties with iSAFT classical density functional theory
NASA Astrophysics Data System (ADS)
Wang, Le; Haghmoradi, Amin; Liu, Jinlu; Xi, Shun; Hirasaki, George J.; Miller, Clarence A.; Chapman, Walter G.
2017-03-01
Surfactants reduce the interfacial tension between phases, making them an important additive in a number of industrial and commercial applications from enhanced oil recovery to personal care products (e.g., shampoo and detergents). To help obtain a better understanding of the dependence of surfactant properties on molecular structure, a classical density functional theory, also known as interfacial statistical associating fluid theory, has been applied to study the effects of surfactant architecture on micelle formation and interfacial properties for model nonionic surfactant/water/oil systems. In this approach, hydrogen bonding is explicitly included. To minimize the free energy, the system minimizes interactions between hydrophobic components and hydrophilic components with water molecules hydrating the surfactant head group. The theory predicts micellar structure, effects of surfactant architecture on critical micelle concentration, aggregation number, and interfacial tension isotherm of surfactant/water systems in qualitative agreement with experimental data. Furthermore, this model is applied to study swollen micelles and reverse swollen micelles that are necessary to understand the formation of a middle-phase microemulsion.
Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth
2015-08-11
We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.
NASA Astrophysics Data System (ADS)
Gabadadze, Gregory; Tukhashvili, Giorgi
2018-07-01
The Crewther-Broadhurst-Kataev (CBK) relation connects the Bjorken function for deep-inelastic sum rules (or the Gross-Llewellyn Smith function) with the Adler function for electron-positron annihilation in QCD; it has been checked to hold up to four loops in perturbation theory. Here we study non-perturbative terms in the CBK relation using a holographic dual theory that is believed to capture properties of QCD. We show that for the large invariant momenta the perturbative CBK relation is exactly satisfied. For the small momenta non-perturbative corrections enter the relation and we calculate their significant effects. We also give an exact holographic expression for the Bjorken function, as well as for the entire three-point axial-vector-vector correlation function, and check their consistency in the conformal limit.
Stretched hydrogen molecule from a constrained-search density-functional perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valone, Steven M; Levy, Mel
2009-01-01
Constrained-search density functional theory gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here they engage constrained search theory to explore issues associated with the functional behavior of 'stretched bonds' in molecular hydrogen. A constrained search is performed with familiar valence bond wavefunctions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is computed and compared to the corresponding uncorrelated, Hartree-Fock effective hamiltonian. Analysis of the functional suggests themore » need to construct different functionals for the same density and to allow a competition among these functions. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals.« less
Kananenka, Alexei A; Zgid, Dominika
2017-11-14
We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.
2014-04-08
The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Othermore » components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.« less
Yeh, Zai-Ting; Tsai, Ming-Cheng; Tsai, Ming-Dar; Lo, Chiao-Yu; Wang, Kaw-Chen
2017-01-01
"Theory of mind" (ToM) refers to the ability to predict others' thoughts, intentions, beliefs, and feelings. Evidence from neuropsychology and functional imaging indicates that ToM is a domain-specific or modular architecture; however, research in development psychology has suggested that ToM is the full development of the executive functions in individuals. Therefore, the relationship between ToM and the executive functions needs to be clarified. Since the frontal lobe plays a critical role in the abilities of ToM and the executive functions, patients with frontal lobe damage were recruited for the present study. Assessments of ToM and the executive functions were performed on 23 patients with frontal lobe damage and 20 healthy controls. When controlling for the executive functions, significant differences between the patient and normal groups were found in the affective component of ToM, but not in the cognitive component. The present study suggests that in various social situations, executing ToM abilities requires logical reasoning processes provided by the executive functions. However, the reasoning processes of affective ToM are independent of executive functions.
On the classic and modern theories of matching.
McDowell, J J
2005-07-01
Classic matching theory, which is based on Herrnstein's (1961) original matching equation and includes the well-known quantitative law of effect, is almost certainly false. The theory is logically inconsistent with known experimental findings, and experiments have shown that its central constant-k assumption is not tenable. Modern matching theory, which is based on the power function version of the original matching equation, remains tenable, although it has not been discussed or studied extensively. The modern theory is logically consistent with known experimental findings, it predicts the fact and details of the violation of the classic theory's constant-k assumption, and it accurately describes at least some data that are inconsistent with the classic theory.
NASA Astrophysics Data System (ADS)
Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar
2017-11-01
Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below those of B3LYP and M06 DFT functionals. This suggests that the NEGF-RDM method could be a viable alternative to NEGF-DFT for molecular junction calculations.
Relationship between theory of mind and functional independence is mediated by executive function.
Ahmed, Fayeza S; Miller, L Stephen
2013-06-01
Theory of mind (ToM) is the ability to comprehend another person's perspective. Although there is much literature of ToM in children, there is a limited and somewhat inconclusive amount of studies examining ToM in a geriatric population. This study examined ToM's relationship to functional independence. Two tests of ToM, tests of executive function, and a measure of functional ability were administered to cognitively intact older adults. Results showed that 1 test of ToM (Strange Stories test) significantly accounted for variance in functional ability, whereas the other did not (Faux Pas test). In addition, Strange Stories test performance was partially driven by a verbal abstraction-based executive function: proverb interpretation. A multiple mediation model was employed to examine whether executive functions explained the relationship between the Strange Stories test and functional ability. Results showed that both the combined and individual indirect effects of the executive function measures mediated the relationship. We argue that, although components of ToM are associated with functional independence, ToM does not appear to account for additional variance in functional independence beyond executive function measures. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Covering Numbers for Semicontinuous Functions
2016-04-29
functions, epi-distance, Attouch-Wets topology, epi-convergence, epi-spline, approximation theory . Date: April 29, 2016 1 Introduction Covering numbers of...classes of functions play central roles in parts of information theory , statistics, and applications such as machine learning; see for example [26...probability theory because there the hypo-distance metrizes weak convergence of distribution functions on IRd, which obviously are usc [22]. Thus, as an
Rosales, Alirio
2017-04-01
Theories are composed of multiple interacting components. I argue that some theories have narratives as essential components, and that narratives function as integrative devices of the mathematical components of theories. Narratives represent complex processes unfolding in time as a sequence of stages, and hold the mathematical elements together as pieces in the investigation of a given process. I present two case studies from population genetics: R. A. Fisher's "mas selection" theory, and Sewall Wright's shifting balance theory. I apply my analysis to an early episode of the "R. A. Fisher - Sewall Wright controversy." Copyright © 2017 Elsevier Ltd. All rights reserved.
Hullett, Craig R
2006-01-01
This study tests the utility of the functional theory of attitudes and arousal of fear in motivating college students to get tested for HIV. It is argued from the perspective of functional theory that value-expressive appeals to get tested for the purpose of taking care of one's own health could be effective if that goal is desired by message targets who are sexually active and unaware of their sexually transmitted disease status. As part of the process, the effectiveness of these appeals is increased by the arousal of uncertainty and fear. A model detailing the mediating processes is proposed and found to be consistent with the data. Overall, messages advocating testing for the self-interested reason of one's own health were more effective than messages advocating testing for the goal of protecting one's partners.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Arnold, James O. (Technical Monitor)
1994-01-01
A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.
Electronic properties of T graphene-like C-BN sheets: A density functional theory study
NASA Astrophysics Data System (ADS)
Majidi, R.
2015-11-01
We have used density functional theory to study the electronic properties of T graphene-like C, C-BN and BN sheets. The planar T graphene with metallic property has been considered. The results show that the presence of BN has a considerable effect on the electronic properties of T graphene. The T graphene-like C-BN and BN sheets show semiconducting properties. The energy band gap is increased by enhancing the number of BN units. The possibility of opening and controlling band gap opens the door for T graphene in switchable electronic devices.
ERIC Educational Resources Information Center
Sobh, Tarek M.; Tibrewal, Abhilasha
2006-01-01
Operating systems theory primarily concentrates on the optimal use of computing resources. This paper presents an alternative approach to teaching and studying operating systems design and concepts by way of parametrically optimizing critical operating system functions. Detailed examples of two critical operating systems functions using the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.
Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be Cmore » $$O\\atop{P}$$=192.2 and 193.8 J mol -1K -1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.« less
Density functional study of molecular interactions in secondary structures of proteins.
Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki
2016-01-01
Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.
Weck, Philippe F.; Kim, Eunja; Greathouse, Jeffery A.; ...
2018-03-15
Elastic and thermodynamic properties of negative thermal expansion (NTE) αα-ZrW2O8 have been calculated using PBEsol and PBE exchange-correlation functionals within the framework of density functional perturbation theory (DFPT). Measured elastic constants are reproduced within ~2% with PBEsol and 6% with PBE. The thermal evolution of the Grüneisen parameter computed within the quasi-harmonic approximation exhibits negative values below the Debye temperature, consistent with observation. The standard molar heat capacity is predicted to be Cmore » $$O\\atop{P}$$=192.2 and 193.8 J mol -1K -1 with PBEsol and PBE, respectively. These results suggest superior accuracy of DFPT/PBEsol for studying the lattice dynamics, elasticity and thermodynamics of NTE materials.« less
Sharkas, Kamal; Gagliardi, Laura; Truhlar, Donald G
2017-12-07
We investigate the performance of multiconfiguration pair-density functional theory (MC-PDFT) and complete active space second-order perturbation theory for computing the bond dissociation energies of the diatomic molecules FeC, NiC, FeS, NiS, FeSe, and NiSe, for which accurate experimental data have become recently available [Matthew, D. J.; Tieu, E.; Morse, M. D. J. Chem. Phys. 2017, 146, 144310-144320]. We use three correlated participating orbital (CPO) schemes (nominal, moderate, and extended) to define the active spaces, and we consider both the complete active space (CAS) and the separated-pair (SP) schemes to specify the configurations included for a given active space. We found that the moderate SP-PDFT scheme with the tPBE on-top density functional has the smallest mean unsigned error (MUE) of the methods considered. This level of theory provides a balanced treatment of the static and dynamic correlation energies for the studied systems. This is encouraging because the method is low in cost even for much more complicated systems.
Choong, Caroline Sm; Doody, Gillian A
2013-01-01
Patients suffering from Alzheimer's dementia develop difficulties in social functioning. This has led to an interest in the study of "theory of mind" in this population. However, difficulty has arisen because the associated cognitive demands of traditional short story theory of mind assessments result in failure per se in this population, making it challenging to test pure theory of mind ability. Simplified, traditional 1st and 2nd order theory of mind short story tasks and a battery of alternative theory of mind cartoon jokes and control slapstick cartoon jokes, without memory components, were administered to 16 participants with mild-moderate Alzheimer's dementia, and 11 age-matched healthy controls. No significant differences were detected between participants with Alzheimer's dementia and controls on the 1st or 2nd order traditional short story theory of mind tasks (p = 0.155 and p = 0.154 respectively). However, in the cartoon joke tasks there were significant differences in performance between the Alzheimer participants and the control group, this was evident for both theory of mind cartoons and the control 'slapstick' jokes. It remains very difficult to assess theory of mind as an isolated phenomenon in populations with global cognitive impairment, such as Alzheimer's dementia, as the tasks used to assess this cognition invariably depend on other cognitive functions. Although a limitation of this study is the small sample size, the results suggest that there is no measurable specific theory of mind deficit in people with Alzheimer's dementia, and that the use of theory of mind representational models to measure social cognitive ability may not be appropriate in this population.
Critical assessment of density functional theory for computing vibrational (hyper)polarizabilities
NASA Astrophysics Data System (ADS)
Zaleśny, R.; Bulik, I. W.; Mikołajczyk, M.; Bartkowiak, W.; Luis, J. M.; Kirtman, B.; Avramopoulos, A.; Papadopoulos, M. G.
2012-12-01
Despite undisputed success of the density functional theory (DFT) in various branches of chemistry and physics, an application of the DFT for reliable predictions of nonlinear optical properties of molecules has been questioned a decade ago. As it was shown by Champagne, et al. [1, 2, 3] most conventional DFT schemes were unable to qualitatively predict the response of conjugated oligomers to a static electric field. Long-range corrected (LRC) functionals, like LC-BLYP or CAM-B3LYP, have been proposed to alleviate this deficiency. The reliability of LRC functionals for evaluating molecular (hyper)polarizabilities is studied for various groups of organic systems, with a special focus on vibrational corrections to the electric properties.
Study on the Electronic Transport Properties of Zigzag GaN Nanotubes
NASA Astrophysics Data System (ADS)
Li, Enling; Wang, Xiqiang; Hou, Liping; Zhao, Danna; Dai, Yuanbin; Wang, Xuewen
2011-02-01
The electronic transport properties of zigzag GaN nanotubes (n, 0) (4 <= n <= 9) have been calculated using the density functional theory and non-equilibrium Green's functions method. Firstly, the density functional theory (DFT) is used to optimize and calculate the electronic structure of GaNNTs (n, 0) (4<=n<=9). Secondly, DFT and non-equilibrium Green function (NEGF) method are also used to predict the electronic transport properties of GaNNTs two-probe system. The results showed: there is a corresponding relation between the electronic transport properties and the valley of state density of each GaNNT. In addition, the volt-ampere curve of GaNNT is approximately linear.
NASA Astrophysics Data System (ADS)
Shityakov, Sergey; Roewer, Norbert; Förster, Carola; Broscheit, Jens-Albert
2017-07-01
The purpose of this study was to develop and implement an in silico model of indigoid-based single-electron transistor (SET) nanodevices, which consist of indigoid molecules from natural dye weakly coupled to gold electrodes that function in a Coulomb blockade regime. The electronic properties of the indigoid molecules were investigated using the optimized density-functional theory (DFT) with a continuum model. Higher electron transport characteristics were determined for Tyrian purple, consistent with experimentally derived data. Overall, these results can be used to correctly predict and emphasize the electron transport functions of organic SETs, demonstrating their potential for sustainable nanoelectronics comprising the biodegradable and biocompatible materials.
Conformal and Nearly Conformal Theories at Large N
NASA Astrophysics Data System (ADS)
Tarnoplskiy, Grigory M.
In this thesis we present new results in conformal and nearly conformal field theories in various dimensions. In chapter two, we study different properties of the conformal Quantum Electrodynamics (QED) in continuous dimension d. At first we study conformal QED using large Nf methods, where Nf is the number of massless fermions. We compute its sphere free energy as a function of d, ignoring the terms of order 1/Nf and higher. For finite Nf we use the epsilon-expansion. Next we use a large Nf diagrammatic approach to calculate the leading corrections to CT, the coefficient of the two-point function of the stress-energy tensor, and CJ, the coefficient of the two-point function of the global symmetry current. We present explicit formulae as a function of d and check them versus the expectations in 2 and 4 - epsilon dimensions. In chapter three, we discuss vacuum stability in 1 + 1 dimensional conformal field theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a Riemann-Hilbert decomposition for background gauge fields, and is given by its novel "functional'' version in the gravitational case. In chapter four, we explore Tensor models. Such models possess the large N limit dominated by the melon diagrams. The quantum mechanics of a real anti-commuting rank-3 tensor has a large N limit similar to the Sachdev-Ye-Kitaev (SYK) model. We also discuss the quantum mechanics of a complex 3-index anti-commuting tensor and argue that it is equivalent in the large N limit to a version of SYK model with complex fermions. Finally, we discuss models of a commuting tensor in dimension d. We study the spectrum of the large N quantum field theory of bosonic rank-3 tensors using the Schwinger-Dyson equations. We compare some of these results with the 4 - epsilon expansion, finding perfect agreement. We also study the spectra of bosonic theories of rank q - 1 tensors with φq interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro
We give some evidences of the Alday-Gaiotto-Tachikawa-Wyllard relation between SU(3) quiver gauge theories and A{sub 2} Toda theory. In particular, we derive the explicit form of 5-point correlation functions in the lower orders and confirm the agreement with Nekrasov's partition function for SU(3)xSU(3) quiver gauge theory. The algorithm to derive the correlation functions can be applied to a general n-point function in A{sub 2} Toda theory, which will be useful to establish the relation for more generic quivers. Partial analysis is also given for the SU(3)xSU(2) case, and we comment on some technical issues that need clarification before establishing themore » relation.« less
Supersymmetric Adler functions and holography
Iwanaga, Masaya; Karch, Andreas; Sakai, Tadakatsu
2016-09-16
Here, we perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.
Nonlinear constitutive theory for turbine engine structural analysis
NASA Technical Reports Server (NTRS)
Thompson, R. L.
1982-01-01
A number of viscoplastic constitutive theories and a conventional constitutive theory are evaluated and compared in their ability to predict nonlinear stress-strain behavior in gas turbine engine components at elevated temperatures. Specific application of these theories is directed towards the structural analysis of combustor liners undergoing transient, cyclic, thermomechanical load histories. The combustor liner material considered in this study is Hastelloy X. The material constants for each of the theories (as a function of temperature) are obtained from existing, published experimental data. The viscoplastic theories and a conventional theory are incorporated into a general purpose, nonlinear, finite element computer program. Several numerical examples of combustor liner structural analysis using these theories are given to demonstrate their capabilities. Based on the numerical stress-strain results, the theories are evaluated and compared.
Impaired Spatial Navigation in Pediatric Anxiety
ERIC Educational Resources Information Center
Mueller, Sven C.; Temple, Veronica; Cornwell, Brian; Grillon, Christian; Pine, Daniel S.; Ernst, Monique
2009-01-01
Background: Previous theories implicate hippocampal dysfunction in anxiety disorders. Most of the data supporting these theories stem from animal research, particularly lesion studies. The generalization of findings from rodent models to human function is hampered by fundamental inter-species differences. The present work uses a task of spatial…
Equivalence of several descriptions for 6d SCFT
NASA Astrophysics Data System (ADS)
Hayashi, Hirotaka; Kim, Sung-Soo; Lee, Kimyeong; Yagi, Futoshi
2017-01-01
We show that the three different looking BPS partition functions, namely the elliptic genus of the 6d N=(1, 0) Sp(1) gauge theory with 10 flavors and a tensor multiplet, the Nekrasov partition function of the 5d N=1 Sp(2) gauge theory with 10 flavors, and the Nekrasov partition function of the 5d N=1 SU(3) gauge theory with 10 flavors, are all equal to each other under specific maps among gauge theory parameters. This result strongly suggests that the three gauge theories have an identical UV fixed point. Type IIB 5-brane web diagrams play an essential role to compute the SU(3) Nekrasov partition function as well as establishing the maps.
Exact Path Integral for 3D Quantum Gravity.
Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji
2015-10-16
Three-dimensional Euclidean pure gravity with a negative cosmological constant can be formulated in terms of the Chern-Simons theory, classically. This theory can be written in a supersymmetric way by introducing auxiliary gauginos and scalars. We calculate the exact partition function of this Chern-Simons theory by using the localization technique. Thus, we obtain the quantum gravity partition function, assuming that it can be obtained nonperturbatively by summing over partition functions of the Chern-Simons theory on topologically different manifolds. The resultant partition function is modular invariant, and, in the case in which the central charge is expected to be 24, it is the J function, predicted by Witten.
Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation.
Yamaguchi, T; Matsuoka, T; Koda, S
2007-04-14
A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.
Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Matsuoka, T.; Koda, S.
2007-04-01
A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.
NASA Astrophysics Data System (ADS)
Afgani, M. W.; Suryadi, D.; Dahlan, J. A.
2017-09-01
The aim of this study was to know the level of undergraduate students’ mathematical understanding ability based on APOS theory perspective. The APOS theory provides an evaluation framework to describe the level of students’ understanding and mental structure about their conception to a mathematics concept. The levels of understanding in APOS theory are action, process, object, and schema conception. The subjects were 59 students of mathematics education whom had attended a class of the limit of function at a university in Palembang. The method was qualitative descriptive with 4 test items. The result showed that most of students were still at the level of action conception. They could calculate and use procedure precisely to the mathematics objects that was given, but could not reach the higher conception yet.
Self-Interaction Error in Density Functional Theory: An Appraisal.
Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G
2018-05-03
Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.
2D problems of surface growth theory with applications to additive manufacturing
NASA Astrophysics Data System (ADS)
Manzhirov, A. V.; Mikhin, M. N.
2018-04-01
We study 2D problems of surface growth theory of deformable solids and their applications to the analysis of the stress-strain state of AM fabricated products and structures. Statements of the problems are given, and a solution method based on the approaches of the theory of functions of a complex variable is suggested. Computations are carried out for model problems. Qualitative and quantitative results are discussed.
Representation of analysis results involving aleatory and epistemic uncertainty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay Dean; Helton, Jon Craig; Oberkampf, William Louis
2008-08-01
Procedures are described for the representation of results in analyses that involve both aleatory uncertainty and epistemic uncertainty, with aleatory uncertainty deriving from an inherent randomness in the behavior of the system under study and epistemic uncertainty deriving from a lack of knowledge about the appropriate values to use for quantities that are assumed to have fixed but poorly known values in the context of a specific study. Aleatory uncertainty is usually represented with probability and leads to cumulative distribution functions (CDFs) or complementary cumulative distribution functions (CCDFs) for analysis results of interest. Several mathematical structures are available for themore » representation of epistemic uncertainty, including interval analysis, possibility theory, evidence theory and probability theory. In the presence of epistemic uncertainty, there is not a single CDF or CCDF for a given analysis result. Rather, there is a family of CDFs and a corresponding family of CCDFs that derive from epistemic uncertainty and have an uncertainty structure that derives from the particular uncertainty structure (i.e., interval analysis, possibility theory, evidence theory, probability theory) used to represent epistemic uncertainty. Graphical formats for the representation of epistemic uncertainty in families of CDFs and CCDFs are investigated and presented for the indicated characterizations of epistemic uncertainty.« less
Hamiltonian thermodynamics of three-dimensional dilatonic black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Goncalo A. S.; Lemos, Jose P. S.
2008-08-15
The action for a class of three-dimensional dilaton-gravity theories with a negative cosmological constant can be recast in a Brans-Dicke type action, with its free {omega} parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3). The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcationmore » 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with one pair of canonical coordinates (M,P{sub M}), M being the mass parameter and P{sub M} its conjugate momenta The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the canonical ensemble is obtained. The black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less
Ghosh, Soumen; Cramer, Christopher J.; Truhlar, Donald G.; ...
2017-01-19
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. Here, we recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functionalmore » theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet–triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet–triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Soumen; Cramer, Christopher J.; Truhlar, Donald G.
Predicting ground- and excited-state properties of open-shell organic molecules by electronic structure theory can be challenging because an accurate treatment has to correctly describe both static and dynamic electron correlation. Strongly correlated systems, i.e., systems with near-degeneracy correlation effects, are particularly troublesome. Multiconfigurational wave function methods based on an active space are adequate in principle, but it is impractical to capture most of the dynamic correlation in these methods for systems characterized by many active electrons. Here, we recently developed a new method called multiconfiguration pair-density functional theory (MC-PDFT), that combines the advantages of wave function theory and density functionalmore » theory to provide a more practical treatment of strongly correlated systems. Here we present calculations of the singlet–triplet gaps in oligoacenes ranging from naphthalene to dodecacene. Calculations were performed for unprecedently large orbitally optimized active spaces of 50 electrons in 50 orbitals, and we test a range of active spaces and active space partitions, including four kinds of frontier orbital partitions. We show that MC-PDFT can predict the singlet–triplet splittings for oligoacenes consistent with the best available and much more expensive methods, and indeed MC-PDFT may constitute the benchmark against which those other models should be compared, given the absence of experimental data.« less
Exact differential equation for the density and ionization energy of a many-particle system
NASA Technical Reports Server (NTRS)
Levy, M.; Perdew, J. P.; Sahni, V.
1984-01-01
The present investigation is concerned with relations studied by Hohenberg and Kohn (1964) and Kohn and Sham (1965). The properties of a ground-state many-electron system are determined by the electron density. The correct differential equation for the density, as dictated by density-functional theory, is presented. It is found that the ground-state density n of a many-electron system obeys a Schroedinger-like differential equation which may be solved by standard Kohn-Sham programs. Results are connected to the traditional exact Kohn-Sham theory. It is pointed out that the results of the current investigations are readily extended to spin-density functional theory.
NASA Astrophysics Data System (ADS)
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
Notes on integral identities for 3d supersymmetric dualities
NASA Astrophysics Data System (ADS)
Aghaei, Nezhla; Amariti, Antonio; Sekiguchi, Yuta
2018-04-01
Four dimensional N=2 Argyres-Douglas theories have been recently conjectured to be described by N=1 Lagrangian theories. Such models, once reduced to 3d, should be mirror dual to Lagrangian N=4 theories. This has been numerically checked through the matching of the partition functions on the three sphere. In this article, we provide an analytic derivation for this result in the A 2 n-1 case via hyperbolic hypergeometric integrals. We study the D 4 case as well, commenting on some open questions and possible resolutions. In the second part of the paper we discuss other integral identities leading to the matching of the partition functions in 3d dual pairs involving higher monopole superpotentials.
ERIC Educational Resources Information Center
Devine, Rory T.; White, Naomi; Ensor, Rosie; Hughes, Claire
2016-01-01
The vast majority of studies on theory of mind (ToM) have focused on the preschool years. Extending the developmental scope of ToM research presents opportunities to both reassess theoretical accounts of ToM and test its predictive utility. The twin aims of this longitudinal study were to examine developmental relations between ToM, executive…
Regularity of Solutions of the Nonlinear Sigma Model with Gravitino
NASA Astrophysics Data System (ADS)
Jost, Jürgen; Keßler, Enno; Tolksdorf, Jürgen; Wu, Ruijun; Zhu, Miaomiao
2018-02-01
We propose a geometric setup to study analytic aspects of a variant of the super symmetric two-dimensional nonlinear sigma model. This functional extends the functional of Dirac-harmonic maps by gravitino fields. The system of Euler-Lagrange equations of the two-dimensional nonlinear sigma model with gravitino is calculated explicitly. The gravitino terms pose additional analytic difficulties to show smoothness of its weak solutions which are overcome using Rivière's regularity theory and Riesz potential theory.
Research on Capturing of Customer Requirements Based on Innovation Theory
NASA Astrophysics Data System (ADS)
junwu, Ding; dongtao, Yang; zhenqiang, Bao
To exactly and effectively capture customer requirements information, a new customer requirements capturing modeling method was proposed. Based on the analysis of function requirement models of previous products and the application of technology system evolution laws of the Theory of Innovative Problem Solving (TRIZ), the customer requirements could be evolved from existing product designs, through modifying the functional requirement unit and confirming the direction of evolution design. Finally, a case study was provided to illustrate the feasibility of the proposed approach.
A conceptual DFT study of the molecular properties of glycating carbonyl compounds.
Frau, Juan; Glossman-Mitnik, Daniel
2017-01-01
Several glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties. In particular, the chemical reactivity descriptors that arise from conceptual density functional theory and chemical reactivity theory have been calculated through a [Formula: see text]SCF protocol. The validity of the KID (Koopmans' in DFT) procedure has been checked by comparing the reactivity descriptors obtained from the values of the HOMO and LUMO with those calculated through vertical energy values. The reactivity sites have been determined by means of the calculation of the Fukui function indices, the condensed dual descriptor [Formula: see text] and the electrophilic and nucleophilic Parr functions. The glycating power of the studied compounds have been compared with the same property for simple carbohydrates.Graphical abstractSeveral glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties, the chemical reactivity descriptors and the validity of the KID (Koopmans' in DFT) procedure.
NASA Astrophysics Data System (ADS)
Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.
2008-04-01
The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the GCPA (or the CEF) is able to very carefully reproduce the LAPW site charges and a good agreement is obtained also about the total energies.
Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M
2009-04-30
The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.
Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G
2017-02-14
We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.
Re-examining the cognitive phenotype in autism: a study with young Chinese children.
Lam, Yan Grace
2013-12-01
Deficits consistently found in autism include an impaired "theory of mind", weak central coherence, and deficits in executive function. The current study examined whether this traditional cluster of symptoms existed in a group of Chinese-speaking children with autism. Sixteen high-functioning, non-retarded children with autism were matched to 16 typically developing (TD) children on gender, non-verbal IQ and age. Non-verbal IQ's of all participants were measured using the Raven Progressive Matrices. Each participant was tested individually on measures of "theory of mind", central coherence and executive function. Results indicated that most, but not all, participants with autism performed significantly poorer on two standard measures of first-order "theory of mind," although there was no significant difference on two other measures of that domain. As expected, they performed significantly worse on executive function tasks. However, the hypothesis of weak central coherence in autism was not substantiated. There was no evidence that these three cognitive impairments co-existed in individuals with autism. More likely, each of these deficits appears singly or in pair instead of forming a cluster. Copyright © 2013 Elsevier Ltd. All rights reserved.
An economic approach to environmental indices
This study uses the directional output distance function from economic productivity theory as an alternative approach to environmental index construction. We use the directional output distance function to aggregate multiple environmental objectives into one measure of environme...
Mazza, Monica; Pollice, Rocco; Pacitti, Francesca; Pino, Maria Chiara; Mariano, Melania; Tripaldi, Simona; Casacchia, Massimo; Roncone, Rita
2012-01-01
Currently substantial evidence exists about Theory of Mind (ToM) impairment in subjects affected by chronic and first episode schizophrenia. In particular, in order to enhance the validity of our construct, we used in this study classical false beliefs tasks and advanced theory of mind tasks, together with the application of structural equation model, in order to ex-amine whether we are using ToM tasks with good psychometric properties. The main goal of the present study was to examine ToM deficits in a large sample including subjects suffering from chronic schizophrenia, first episode of schizophrenia and nor-mal controls, by observing in the same task the relationship with symptomatological gravity, neurocognition and social function.Materials and methods. A sample of 178 patients with chronic schizophrenia, a sample of 49 subjects with a first episode of psychosis and 484 healthy controls participated to this study. Measures of social cognition included task of false belief and advanced theory of mind task. No significant differences were found on ToM tasks between subjects affected by chronic and first episode schizophrenia. Social cognition showed in both groups a strong correlation with negative symptoms and social function, but did not evidence any relationship with neurocognition. CONCLUSION; ToM deficits exist in subjects suffering from chronic and first episode schizophrenia. These impairments do not seem to be a consequence of illness condition, they are likely to be state-independent and appear to be the most important cognitive mediator of social functioning in both groups.
ODE/IM correspondence and the Argyres-Douglas theory
NASA Astrophysics Data System (ADS)
Ito, Katsushi; Shu, Hongfei
2017-08-01
We study the quantum spectral curve of the Argyres-Douglas theories in the Nekrasov-Sahashvili limit of the Omega-background. Using the ODE/IM correspondence we investigate the quantum integrable model corresponding to the quantum spectral curve. We show that the models for the A 2 N -type theories are non-unitary coset models ( A 1)1 × ( A 1) L /( A 1) L+1 at the fractional level L=2/2N+1-2 , which appear in the study of the 4d/2d correspondence of N = 2 superconformal field theories. Based on the WKB analysis, we clarify the relation between the Y-functions and the quantum periods and study the exact Bohr-Sommerfeld quantization condition for the quantum periods. We also discuss the quantum spectral curves for the D and E type theories.
Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...
2016-04-20
Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less
NASA Astrophysics Data System (ADS)
Pesant, Simon
Description of complex systems by Density functional theory is treated in this thesis. First, the Density functional theory and a few functionals used to simulate cristals are presented. Specifically, the LDA and GGA functionnals are described and their limits are exposed. Furthermore, the Hubbard model as well as the LDA+U functionnal are addressed in this chapter. These methods enable the study of highly correlated materials. Then, results obtained on polymers are summarized in two articles. The first one treats the band gap variation of ladder-type polymers compared to non ladder type ones. The second article considers small band gap polymers. In this case, it will be shown that an hybrid functional, which contains exact exchange, is required to describe the electronic properties of the polymers under study. Finally, the last chapter address the study of cuprates superconductors. The LDA+U can account for the localization of electrons in copper orbitals. Consequently, a study of the impact of this functionnal on electronic properties of cuprates is conducted. The chapter is ended by an article treating magnetic orders in doped La 2CuO4. Supplementary materials of the second article and a description of the theory of superconductivity of Bardeen, Cooper and Schrieffer are put in annex. Keywords : Electronic correlation, DFT, LDA+U, cuprates, polymers, magnetic orders
Güntert, Stefan Tomas; Strubel, Isabel Theresia; Kals, Elisabeth; Wehner, Theo
2016-01-01
Volunteers' motives have been differentially linked to various aspects of successful volunteering. Using self-determination theory, we propose that volunteer functions are systematically related to the experience of self-determined versus controlled motivation. This "quality of motivation," in turn, explains why motives are differentially associated with satisfaction. We conducted two studies: Study 1 (N1 = 824) addressed motives, quality of motivation, and satisfaction; Study 2 (N2 = 323) additionally examined function-specific benefits and the extent to which they match volunteers' motives. Overall, our hypotheses were supported: values, understanding, and social justice motives were positively associated with relatively self-determined motivation (RSM), whereas career, social, protective, and enhancement motives showed negative correlations. The relationships between motives and satisfaction were partially mediated by RSM. Concerning benefits, Study 2 corroborated these findings for values, protective, enhancement, and social justice. This research introduces a new perspective on the quality of volunteers' motives-with theoretical and practical implications.
Correlations of RMT characteristic polynomials and integrability: Hermitean matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, Vladimir Al., E-mail: Vladimir.Osipov@uni-due.d; Kanzieper, Eugene, E-mail: Eugene.Kanzieper@hit.ac.i; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100
Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of {tau} functions, we (i) identify a zoo of hierarchical relations satisfied by {tau} functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasismore » is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.« less
Maass Forms and Quantum Modular Forms
NASA Astrophysics Data System (ADS)
Rolen, Larry
This thesis describes several new results in the theory of harmonic Maass forms and related objects. Maass forms have recently led to a flood of applications throughout number theory and combinatorics in recent years, especially following their development by the work of Bruinier and Funke the modern understanding Ramanujan's mock theta functions due to Zwegers. The first of three main theorems discussed in this thesis concerns the integrality properties of singular moduli. These are well-known to be algebraic integers, and they play a beautiful role in complex multiplication and explicit class field theory for imaginary quadratic fields. One can also study "singular moduli" for special non-holomorphic functions, which are algebraic but are not necessarily algebraic integers. Here we will explain the phenomenon of integrality properties and provide a sharp bound on denominators of symmetric functions in singular moduli. The second main theme of the thesis concerns Zagier's recent definition of a quantum modular form. Since their definition in 2010 by Zagier, quantum modular forms have been connected to numerous different topics such as strongly unimodal sequences, ranks, cranks, and asymptotics for mock theta functions. Motivated by Zagier's example of the quantum modularity of Kontsevich's "strange" function F(q), we revisit work of Andrews, Jimenez-Urroz, and Ono to construct a natural vector-valued quantum modular form whose components. The final chapter of this thesis is devoted to a study of asymptotics of mock theta functions near roots of unity. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. The theory of mock theta functions has been brought to fruition using the framework of harmonic Maass forms, thanks to Zwegers. Despite this understanding, little attention has been given to Ramanujan's original definition. Here we prove that Ramanujan's examples do indeed satisfy his original definition.
NASA Astrophysics Data System (ADS)
Kim, Yong-Hyun; Zhang, S. B.
2006-03-01
Despite being one of the most important macroscopic measures and a long history even before the quantum mechanics, the concept of pH has rarely been mentioned in microscopic theories, nor being incorporated computationally into first-principles theory of aqueous solutions. Here, we formulate a theory for the pH dependence of solution formation energy by introducing the proton chemical potential as the microscopic counterpart of pH in atomistic solution models. Within the theory, the general acid-base chemistry can be cast in a simple pictorial representation. We adopt density-functional molecular dynamics to demonstrate the usefulness of the method by studying a number of solution systems including water, small solute molecules such as NH3 and HCOOH, and more complex amino acids with several functional groups. For pure water, we calculated the auto- ionization constant to be 13.2 with a 95 % accuracy. For other solutes, the calculated dissociation constants, i.e., the so- called pKa, are also in reasonable agreement with experiments. Our first-principles pH theory can be readily applied to broad solution chemistry problems such as redox reactions.
Surface operators, chiral rings and localization in N =2 gauge theories
NASA Astrophysics Data System (ADS)
Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.
2017-11-01
We study half-BPS surface operators in supersymmetric gauge theories in four and five dimensions following two different approaches. In the first approach we analyze the chiral ring equations for certain quiver theories in two and three dimensions, coupled respectively to four- and five-dimensional gauge theories. The chiral ring equations, which arise from extremizing a twisted chiral superpotential, are solved as power series in the infrared scales of the quiver theories. In the second approach we use equivariant localization and obtain the twisted chiral superpotential as a function of the Coulomb moduli of the four- and five-dimensional gauge theories, and find a perfect match with the results obtained from the chiral ring equations. In the five-dimensional case this match is achieved after solving a number of subtleties in the localization formulas which amounts to choosing a particular residue prescription in the integrals that yield the Nekrasov-like partition functions for ramified instantons. We also comment on the necessity of including Chern-Simons terms in order to match the superpotentials obtained from dual quiver descriptions of a given surface operator.
Wilson loops and chiral correlators on squashed spheres
NASA Astrophysics Data System (ADS)
Fucito, F.; Morales, J. F.; Poghossian, R.
2015-11-01
We study chiral deformations of N=2 and N=4 supersymmetric gauge theories obtained by turning on τ J tr Φ J interactions with Φ the N=2 superfield. Using localization, we compute the deformed gauge theory partition function Z(overrightarrow{τ}|q) and the expectation value of circular Wilson loops W on a squashed four-sphere. In the case of the deformed {N}=4 theory, exact formulas for Z and W are derived in terms of an underlying U( N) interacting matrix model replacing the free Gaussian model describing the {N}=4 theory. Using the AGT correspondence, the τ J -deformations are related to the insertions of commuting integrals of motion in the four-point CFT correlator and chiral correlators are expressed as τ-derivatives of the gauge theory partition function on a finite Ω-background. In the so called Nekrasov-Shatashvili limit, the entire ring of chiral relations is extracted from the ɛ-deformed Seiberg-Witten curve. As a byproduct of our analysis we show that SU(2) gauge theories on rational Ω-backgrounds are dual to CFT minimal models.
The Implications of Modern Approaches to Language for Teacher Training.
ERIC Educational Resources Information Center
Williams, Huw
1984-01-01
Connections between recent developments in theories about language, learning theory, and language teaching are traced from Chomsky's work elaborating the distinction between competence and performance. The evolution of the concepts of function and notion from the study of how language and communication come together in linguistic philosophy is…
Different Approaches to Covariate Inclusion in the Mixture Rasch Model
ERIC Educational Resources Information Center
Li, Tongyun; Jiao, Hong; Macready, George B.
2016-01-01
The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…
Theory, Method and Practice of Neuroscientific Findings in Science Education
ERIC Educational Resources Information Center
Liu, Chia-Ju; Chiang, Wen-Wei
2014-01-01
This report provides an overview of neuroscience research that is applicable for science educators. It first offers a brief analysis of empirical studies in educational neuroscience literature, followed by six science concept learning constructs based on the whole brain theory: gaining an understanding of brain function; pattern recognition and…
NASA Astrophysics Data System (ADS)
Kim, Joonho; Kim, Seok; Lee, Kimyeong; Park, Jaemo; Vafa, Cumrun
2017-09-01
We study a family of 2d N=(0, 4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2K3.
Three-point functions in duality-invariant higher-derivative gravity
Naseer, Usman; Zwiebach, Barton
2016-03-21
Here, doubled α'-geometry is the simplest higher-derivative gravitational theory with exact global duality symmetry. We use the double metric formulation of this theory to compute on-shell three-point functions to all orders in α'. A simple pattern emerges when comparing with the analogous bosonic and heterotic three-point functions. As in these theories, the amplitudes factorize. The theory has no Gauss-Bonnet term, but contains a Riemann-cubed interaction to second order in α'.
Anomalies, conformal manifolds, and spheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less
Anomalies, conformal manifolds, and spheres
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan
2016-03-01
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space {M} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail {N}=(2,2) and {N}=(0,2) supersymmetric theories in d = 2 and {N}=2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For {N}=(2,2) theories in d = 2 and {N}=2 theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of {M} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
Charge redistribution in QM:QM ONIOM model systems: a constrained density functional theory approach
NASA Astrophysics Data System (ADS)
Beckett, Daniel; Krukau, Aliaksandr; Raghavachari, Krishnan
2017-11-01
The ONIOM hybrid method has found considerable success in QM:QM studies designed to approximate a high level of theory at a significantly reduced cost. This cost reduction is achieved by treating only a small model system with the target level of theory and the rest of the system with a low, inexpensive, level of theory. However, the choice of an appropriate model system is a limiting factor in ONIOM calculations and effects such as charge redistribution across the model system boundary must be considered as a source of error. In an effort to increase the general applicability of the ONIOM model, a method to treat the charge redistribution effect is developed using constrained density functional theory (CDFT) to constrain the charge experienced by the model system in the full calculation to the link atoms in the truncated model system calculations. Two separate CDFT-ONIOM schemes are developed and tested on a set of 20 reactions with eight combinations of levels of theory. It is shown that a scheme using a scaled Lagrange multiplier term obtained from the low-level CDFT model calculation outperforms ONIOM at each combination of levels of theory from 32% to 70%.
Anomalies, conformal manifolds, and spheres
Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; ...
2016-03-04
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less
Optimum free energy in the reference functional approach for the integral equations theory
NASA Astrophysics Data System (ADS)
Ayadim, A.; Oettel, M.; Amokrane, S.
2009-03-01
We investigate the question of determining the bulk properties of liquids, required as input for practical applications of the density functional theory of inhomogeneous systems, using density functional theory itself. By considering the reference functional approach in the test particle limit, we derive an expression of the bulk free energy that is consistent with the closure of the Ornstein-Zernike equations in which the bridge functions are obtained from the reference system bridge functional. By examining the connection between the free energy functional and the formally exact bulk free energy, we obtain an improved expression of the corresponding non-local term in the standard reference hypernetted chain theory derived by Lado. In this way, we also clarify the meaning of the recently proposed criterion for determining the optimum hard-sphere diameter in the reference system. This leads to a theory in which the sole input is the reference system bridge functional both for the homogeneous system and the inhomogeneous one. The accuracy of this method is illustrated with the standard case of the Lennard-Jones fluid and with a Yukawa fluid with very short range attraction.
Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations
NASA Astrophysics Data System (ADS)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang
2018-02-01
We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...
2018-02-05
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen
2018-03-13
Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, Ivana; Artyushkova, Kateryna; Atanassov, Plamen
Here, we discuss perspectives and challenges in applying density functional theory for the calculation of spectroscopic properties of platinum group metal (PGM)-free electrocatalysts for oxygen reduction. More specifically, we discuss recent advances in the density functional theory calculations of core-level shifts in binding energies of N 1s electrons as measured by X-ray photoelectron spectroscopy. The link between the density functional theory calculations, the electrocatalytic performance of the catalysts, and structural analysis using modern spectroscopic techniques is expected to significantly increase our understanding of PGM-free catalysts at the molecular level.
Behavioural studies of strategic thinking in games.
Camerer, Colin F.
2003-05-01
Game theory is a mathematical language for describing strategic interactions, in which each player's choice affects the payoff of other players (where players can be genes, people, companies, nation-states, etc.). The impact of game theory in psychology has been limited by the lack of cognitive mechanisms underlying game-theoretic predictions. 'Behavioural game theory' is a recent approach linking game theory to cognitive science by adding cognitive details about 'social utility functions', theories of limits on iterated thinking, and statistical theories of how players learn and influence others. New directions include the effects of game descriptions on choice ('framing'), strategic heuristics, and mental representation. These ideas will help root game theory more deeply in cognitive science and extend the scope of both enterprises.
Inverse bootstrapping conformal field theories
NASA Astrophysics Data System (ADS)
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
Horvat, Ana; Filipovic, Jovan
2018-02-01
This research focuses on Complexity Leadership Theory and the relationship between leadership-examined through the lens of Complexity Leadership Theory-and organizational maturity as an indicator of the performance of health organizations. The research adopts a perspective that conceptualizes organizations as complex adaptive systems and draws upon a survey of opinion of 189 managers working in Serbian health organizations. As the results indicate a dependency between functions of leadership and levels of the maturity of health organizations, we propose a model that connects the two. The study broadens our understanding of the implications of complexity thinking and its reflection on leadership functions and overall organizational performance. The correlations between leadership functions and maturity could have practical applications in policy processing, thus improving the quality of outcomes and the overall level of service quality. © 2017 John Wiley & Sons, Ltd.
Mathematical ability and the right-shift theory of handedness.
Whittington, J E; Richards, P N
1991-01-01
A genetic theory of handedness, the right-shift theory, associates differential patterns of cerebral functioning with contrasting handedness groups and suggests that individuals with an rs + + genotype will be disadvantaged in mathematical performance. This hypothesis is investigated with contrasting handedness groups drawn from a national sample of over 11,000 children from the National Child Development Study. Some differentiation in cognitive performance between handedness groups is found in the direction predicted by the right-shift theory but the level of the findings is not statistically significant. The rs+ +/mathematical deficit hypothesis is not confirmed.
Jacquet, Claire; Mouillot, David; Kulbicki, Michel; Gravel, Dominique
2017-02-01
The Theory of Island Biogeography (TIB) predicts how area and isolation influence species richness equilibrium on insular habitats. However, the TIB remains silent about functional trait composition and provides no information on the scaling of functional diversity with area, an observation that is now documented in many systems. To fill this gap, we develop a probabilistic approach to predict the distribution of a trait as a function of habitat area and isolation, extending the TIB beyond the traditional species-area relationship. We compare model predictions to the body-size distribution of piscivorous and herbivorous fishes found on tropical reefs worldwide. We find that small and isolated reefs have a higher proportion of large-sized species than large and connected reefs. We also find that knowledge of species body-size and trophic position improves the predictions of fish occupancy on tropical reefs, supporting both the allometric and trophic theory of island biogeography. The integration of functional ecology to island biogeography is broadly applicable to any functional traits and provides a general probabilistic approach to study the scaling of trait distribution with habitat area and isolation. © 2016 John Wiley & Sons Ltd/CNRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk
We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GWmore » (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.« less
Naturalism and the social model of disability: allied or antithetical?
Sisti, Dominic A
2015-01-01
The question of how disability should be defined is fraught with political, ethical and philosophical complexities. The social model of disability, which posits that disability is socially and politically constructed and is characterised by systemic barriers, has enjoyed broad acceptance that is exemplified by the slow but steady progress in securing civil rights for persons with disabilities. Yet, there remains a palpable tension between disability studies scholars and activists and bioethicists. While philosophers and bioethicists should heed the theories developed from the standpoint of persons with disabilities, disability activists should acknowledge the possibility that philosophical theories about the basic reality of disease, illness, health, function and impairment offer a more steady foundation for social or political critiques of disability. I argue that naturalistic theories of function and dysfunction provide a valuable starting point to clarify questions about the broader concept of disability. A naturalist theory of function may serve as the core of the concept of disability and provide disability scholars and bioethicists alike a stronger set of arguments in analysing real or potential instances of disability. PMID:25341736
Exaggerated risk: prospect theory and probability weighting in risky choice.
Kusev, Petko; van Schaik, Paul; Ayton, Peter; Dent, John; Chater, Nick
2009-11-01
In 5 experiments, we studied precautionary decisions in which participants decided whether or not to buy insurance with specified cost against an undesirable event with specified probability and cost. We compared the risks taken for precautionary decisions with those taken for equivalent monetary gambles. Fitting these data to Tversky and Kahneman's (1992) prospect theory, we found that the weighting function required to model precautionary decisions differed from that required for monetary gambles. This result indicates a failure of the descriptive invariance axiom of expected utility theory. For precautionary decisions, people overweighted small, medium-sized, and moderately large probabilities-they exaggerated risks. This effect is not anticipated by prospect theory or experience-based decision research (Hertwig, Barron, Weber, & Erev, 2004). We found evidence that exaggerated risk is caused by the accessibility of events in memory: The weighting function varies as a function of the accessibility of events. This suggests that people's experiences of events leak into decisions even when risk information is explicitly provided. Our findings highlight a need to investigate how variation in decision content produces variation in preferences for risk.
ABJ theory in the higher spin limit
NASA Astrophysics Data System (ADS)
Hirano, Shinji; Honda, Masazumi; Okuyama, Kazumi; Shigemori, Masaki
2016-08-01
We study the conjecture made by Chang, Minwalla, Sharma, and Yin on the duality between the {N}=6 Vasiliev higher spin theory on AdS4 and the {N}=6 Chern-Simons-matter theory, so-called ABJ theory, with gauge group U( N) × U( N + M). Building on our earlier results on the ABJ partition function, we develop the systematic 1 /M expansion, corresponding to the weak coupling expansion in the higher spin theory, and compare the leading 1 /M correction, with our proposed prescription, to the one-loop free energy of the {N}=6 Vasiliev theory. We find an agreement between the two sides up to an ambiguity that appears in the bulk one-loop calculation.
Linear-response time-dependent density-functional theory with pairing fields.
Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-05-14
Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.
USDA-ARS?s Scientific Manuscript database
A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to ...
Beta-decay rate and beta-delayed neutron emission probability of improved gross theory
NASA Astrophysics Data System (ADS)
Koura, Hiroyuki
2014-09-01
A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Jonsson, Frida; Sebastian, Miguel San; Hammarström, Anne; Gustafsson, Per E
2017-01-03
Research indicate that social class mobility could be potentially important for health, but whether this is due to the movement itself or a result of people having been integrated in different class contexts is, to date, difficult to infer. In addition, although several theories suggest that transitions between classes in the social hierarchy can be stressful experiences, few studies have empirically examined whether such movements may have health effects, over and above the implications of "being" in these classes. In an attempt to investigate whether intragenerational social mobility is associated with functional somatic symptoms in mid-adulthood, the current study tests three partially contrasting theories. The dissociative theory suggests that mobility in general and upward mobility in particular may be linked to psychological distress, while the falling from grace theory indicates that downward mobility is especially stressful. In contrast, the acculturation theory holds that the health implications of social mobility is not due to the movement itself but attributed to the class contexts in which people find themselves. Diagonal Reference Models were used on a sample of 924 individuals who in 1981 graduated from 9 th grade in the municipality of Luleå, Sweden. Social mobility was operationalized as change in occupational class between age 30 and 42 (measured in 1995 and 2007). The health outcome was functional somatic symptoms at age 42, defined as a clustering self-reported physical symptoms, palpitation and sleeping difficulties during the last 12 months. Overall mobility was not associated with higher levels of functional somatic symptoms compared to being immobile (p = 0.653). After controlling for prior and current class, sex, parental social position, general health, civil status, education and unemployment, the association between downward mobility was borderline significant (p = 0.055) while upward mobility was associated with lower levels of functional somatic symptoms (p = 0.03). The current study did not find unanimous support for any of the theories. Nevertheless, it sheds light on the possibility that upward mobility may be beneficial to reduce stress-related health problems in mid-life over and above the exposure to prior and current class, while downward mobility can be of less importance for middle-age health complaints.
Simulation of surface processes
Jónsson, Hannes
2011-01-01
Computer simulations of surface processes can reveal unexpected insight regarding atomic-scale structure and transitions. Here, the strengths and weaknesses of some commonly used approaches are reviewed as well as promising avenues for improvements. The electronic degrees of freedom are usually described by gradient-dependent functionals within Kohn–Sham density functional theory. Although this level of theory has been remarkably successful in numerous studies, several important problems require a more accurate theoretical description. It is important to develop new tools to make it possible to study, for example, localized defect states and band gaps in large and complex systems. Preliminary results presented here show that orbital density-dependent functionals provide a promising avenue, but they require the development of new numerical methods and substantial changes to codes designed for Kohn–Sham density functional theory. The nuclear degrees of freedom can, in most cases, be described by the classical equations of motion; however, they still pose a significant challenge, because the time scale of interesting transitions, which typically involve substantial free energy barriers, is much longer than the time scale of vibrations—often 10 orders of magnitude. Therefore, simulation of diffusion, structural annealing, and chemical reactions cannot be achieved with direct simulation of the classical dynamics. Alternative approaches are needed. One such approach is transition state theory as implemented in the adaptive kinetic Monte Carlo algorithm, which, thus far, has relied on the harmonic approximation but could be extended and made applicable to systems with rougher energy landscape and transitions through quantum mechanical tunneling. PMID:21199939
Psychologic theories in functional neurologic disorders.
Carson, A; Ludwig, L; Welch, K
2016-01-01
In this chapter we review key psychologic theories that have been mooted as possible explanations for the etiology of functional neurologic symptoms, conversion disorder, and hysteria. We cover Freudian psychoanalysis and later object relations and attachment theories, social theories, illness behavior, classic and operant conditioning, social learning theory, self-regulation theory, cognitive-behavioral theories, and mindfulness. Dissociation and modern cognitive neuroscience theories are covered in other chapters in this series and, although of central importance, are omitted from this chapter. Our aim is an overview with the emphasis on breadth of coverage rather than depth. © 2016 Elsevier B.V. All rights reserved.
Introduction to Classical Density Functional Theory by a Computational Experiment
ERIC Educational Resources Information Center
Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel
2014-01-01
We propose an in silico experiment to introduce the classical density functional theory (cDFT). Density functional theories, whether quantum or classical, rely on abstract concepts that are nonintuitive; however, they are at the heart of powerful tools and active fields of research in both physics and chemistry. They led to the 1998 Nobel Prize in…
Typologies of Family Functioning and Children's Adjustment during the Early School Years
ERIC Educational Resources Information Center
Sturge-Apple, Melissa L.; Davies, Patrick T.; Cummings, E. Mark
2010-01-01
Guided by family systems theory, the present study sought to identify patterns of family functioning from observational assessments of interparental, parent-child, and triadic contexts. In addition, it charted the implications for patterns of family functioning for children's developmental trajectories of adjustment in the school context across…
Leadership and Its Functions in Further and Higher Education. Mendip Papers.
ERIC Educational Resources Information Center
Marsh, D. T.
This paper examines the nature and function of leadership in the management of postsecondary educational institutions. It explains the need for studying educational leadership and reviews various theories on the nature of leadership. These include the trait, situational, social influence, functional (or action-centered), contingency, contextual,…
Reinhardt, Clorice R; Jaglinski, Tanner C; Kastenschmidt, Ashly M; Song, Eun H; Gross, Adam K; Krause, Alyssa J; Gollmar, Jonathan M; Meise, Kristin J; Stenerson, Zachary S; Weibel, Tyler J; Dison, Andrew; Finnegan, Mackenzie R; Griesi, Daniel S; Heltne, Michael D; Hughes, Tom G; Hunt, Connor D; Jansen, Kayla A; Xiong, Adam H; Hati, Sanchita; Bhattacharyya, Sudeep
2016-09-01
The kinetics and equilibrium of the hydride transfer reaction between lumiflavin and a number of substituted quinones was studied using density functional theory. The impact of electron withdrawing/donating substituents on the redox potentials of quinones was studied. In addition, the role of these substituents on the kinetics of the hydride transfer reaction with lumiflavin was investigated in detail under the transition state (TS) theory assumption. The hydride transfer reactions were found to be more favorable for an electron-withdrawing substituent. The activation barrier exhibited a quadratic relationship with the driving force of these reactions as derived under the formalism of modified Marcus theory. The present study found a significant extent of electron delocalization in the TS that is stabilized by enhanced electrostatic, polarization, and exchange interactions. Analysis of geometry, bond-orders, and energetics revealed a predominant parallel (Leffler-Hammond) effect on the TS. Closer scrutiny reveals that electron-withdrawing substituents, although located on the acceptor ring, reduce the N-H bond order of the donor fragment in the precursor complex. Carried out in the gas-phase, this is the first ever report of a theoretical study of flavin's hydride transfer reactions with quinones, providing an unfiltered view of the electronic effect on the nuclear reorganization of donor-acceptor complexes.
Research and exploration of product innovative design for function
NASA Astrophysics Data System (ADS)
Wang, Donglin; Wei, Zihui; Wang, Youjiang; Tan, Runhua
2009-07-01
Products innovation is under the prerequisite of realizing the new function, the realization of the new function must solve the contradiction. A new process model of new product innovative design was proposed based on Axiomatic Design (AD) Theory and Functional Structure Analysis (FSA), imbedded Principle of Solving Contradiction. In this model, employ AD Theory to guide FSA, determine the contradiction for the realization of the principle solution. To provide powerful support for innovative design tools in principle solution, Principle of Solving Contradiction in the model were imbedded, so as to boost up the innovation of principle solution. As a case study, an innovative design of button battery separator paper punching machine has been achieved with application of the proposed model.
NASA Astrophysics Data System (ADS)
Sarikaya, Ebru Karakaş; Dereli, Ömer
2017-02-01
To obtain liquid phase molecular structure, conformational analysis of Orotic acid was performed and six conformers were determined. For these conformations, eight possible radicals were modelled by using Density Functional Theory computations with respect to molecular structure. Electron Paramagnetic Resonance parameters of these model radicals were calculated and then they were compared with the experimental ones. Geometry optimizations of the molecule and modeled radicals were performed using Becke's three-parameter hybrid-exchange functional combined with the Lee-Yang-Parr correlation functional of Density Functional Theory and 6-311++G(d,p) basis sets in p-dioxane solution. Because Orotic acid can be mutagenic in mammalian somatic cells and it is also mutagenic for bacteria and yeast, it has been studied.
NASA Astrophysics Data System (ADS)
Conroy, M. W.; Budzevich, M. M.; Lin, Y.; Oleynik, I. I.; White, C. T.
2009-12-01
An empirical correction to account for van der Waals interactions based on the work of Neumann and Perrin [J. Phys. Chem. B 109, 15531 (2005)] was applied to density functional theory calculations of energetic molecular crystals. The calculated equilibrium unit-cell volumes of FOX-7, β-HMX, solid nitromethane, PETN-I, α-RDX, and TATB show a significant improvement in the agreement with experimental results. Hydrostatic-compression simulations of β-HMX, PETN-I, and α-RDX were also performed. The isothermal equations of state calculated from the results show increased agreement with experiment in the pressure intervals studied.
A potential half-Heusler thermoelectric material ScAuSn: A first principle study
NASA Astrophysics Data System (ADS)
Joshi, H.; Rai, D. P.; Thapa, R. K.
2018-04-01
Density Functional Theory along with semi classical Boltzmann transport theory have been applied to study the electronic and thermoelectric property of the Heusler alloy ScAuSn. It has been found that ScAuSn is an indirect band gap semiconductor with a gap of 0.344 eV. The thermoelectric properties such as electrical conductivity (σ), Seebeck coefficient (S), electronic thermal conductivity (κ) etc. are reported as a function of chemical potential in the region ± 2.0 eV, with respect to constant temperature. The calculated ZT value is almost equal to 1, thus making ScAuSn a potential thermoelectric candidate.
Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory.
Roberts, Daniel A; Stanford, Douglas
2015-09-25
We study chaotic dynamics in two-dimensional conformal field theory through out-of-time-order thermal correlators of the form ⟨W(t)VW(t)V⟩. We reproduce holographic calculations similar to those of Shenker and Stanford, by studying the large c Virasoro identity conformal block. The contribution of this block to the above correlation function begins to decrease exponentially after a delay of ~t_{*}-(β/2π)logβ^{2}E_{w}E_{v}, where t_{*} is the fast scrambling time (β/2π)logc and E_{w},E_{v} are the energy scales of the W,V operators.
Construct Validation Theory Applied to the Study of Personality Dysfunction
Zapolski, Tamika C. B.; Guller, Leila; Smith, Gregory T.
2013-01-01
The authors review theory validation and construct validation principles as related to the study of personality dysfunction. Historically, personality disorders have been understood to be syndromes of heterogeneous symptoms. The authors argue that the syndrome approach to description results in diagnoses of unclear meaning and constrained validity. The alternative approach of describing personality dysfunction in terms of homogeneous dimensions of functioning avoids the problems of the syndromal approach and has been shown to provide more valid description and diagnosis. The authors further argue that description based on homogeneous dimensions of personality function/dysfunction is more useful, because it provides direct connections to validated treatments. PMID:22321263
Native and hydrogen-containing point defects in Mg3N2 : A density functional theory study
NASA Astrophysics Data System (ADS)
Lange, Björn; Freysoldt, Christoph; Neugebauer, Jörg
2010-06-01
The formation energy and solubility of hydrogen in magnesium nitride bulk (antibixbyite Mg3N2 ) have been studied employing density functional theory in the generalized gradient approximation. The effect of doping and the presence of native defects and complex formation have been taken into account. Our results show that magnesium nitride is a nearly defect-free insulator with insignificant hydrogen-storage capacity. Based on this insight we derive a model that highlights the role of the formation and presence of the parasitic Mg3N2 inclusions in the activation of p -doped GaN in optoelectronic devices.
Personality and Neural Correlates of Mentalizing Ability.
Allen, Timothy A; Rueter, Amanda R; Abram, Samantha V; Brown, James S; DeYoung, Colin G
2017-01-01
Theory of mind, or mentalizing , defined as the ability to reason about another's mental states, is a crucial psychological function that is disrupted in some forms of psychopathology, but little is known about how individual differences in this ability relate to personality or brain function. One previous study linked mentalizing ability to individual differences in the personality trait Agreeableness. Agreeableness encompasses two major subdimensions: Compassion reflects tendencies toward empathy, prosocial behavior, and interpersonal concern, whereas Politeness captures tendencies to suppress aggressive and exploitative impulses. We hypothesized that Compassion but not Politeness would be associated with better mentalizing ability. This hypothesis was confirmed in Study 1 ( N = 329) using a theory of mind task that required reasoning about the beliefs of fictional characters. Post hoc analyses indicated that the honesty facet of Agreeableness was negatively associated with mentalizing. In Study 2 ( N = 217), we examined whether individual differences in mentalizing and related traits were associated with patterns of resting-state functional connectivity in the brain. Performance on the theory of mind task was significantly associated with patterns of connectivity between the dorsal medial and core subsystems of the default network, consistent with evidence implicating these regions in mentalization.
Qureshi, Adam W; Apperly, Ian A; Samson, Dana
2010-11-01
Previous research suggests that perspective-taking and other "theory of mind" processes may be cognitively demanding for adult participants, and may be disrupted by concurrent performance of a secondary task. In the current study, a Level-1 visual perspective task was administered to 32 adults using a dual-task paradigm in which the secondary task tapped executive function. Results suggested that the secondary task did not affect the calculation of perspective, but did affect the selection of the relevant (Self or Other) perspective for a given trial. This is the first direct evidence of a cognitively efficient process for "theory of mind" in adults that operates independently of executive function. The contrast between this and previous findings points to a distinction between simple perspective-taking and the more complex and cognitively demanding abilities more typically examined in studies of "theory of mind". It is suggested that these findings may provide a parsimonious explanation of the success of infants on 'indirect' measures of perspective-taking that do not explicitly require selection of the relevant perspective. Copyright © 2010 Elsevier B.V. All rights reserved.
ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS
The Notional-Functional Approach: Teaching the Real Language in Its Natural Context.
ERIC Educational Resources Information Center
Laine, Elaine
This study of the notional-functional approach to second language teaching reviews the history and theoretical background of the method, current issues, and implementation of a notional-functional syllabus. Chapter 1 discusses the history and theory of the approach and the organization and advantages of the notional-functional syllabus. Chapter 2…
Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories
NASA Astrophysics Data System (ADS)
Dong, Xi
2016-06-01
We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy Sn is described by two coefficients: fb(n ) for traceless extrinsic curvature deformations and fc(n ) for Weyl tensor deformations. We provide the first calculation of the coefficient fb(n ) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture fb(n )=fc(n ), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.
NASA Astrophysics Data System (ADS)
Yamamoto, Toru; Kato, Toshinori
2002-04-01
Signal increases in functional magnetic resonance imaging (fMRI) are believed to be a result of decreased paramagnetic deoxygenated haemoglobin (deoxyHb) content in the neural activation area. However, discrepancies in this canonical blood oxygenation level dependent (BOLD) theory have been pointed out in studies using optical techniques, which directly measure haemoglobin changes. To explain the discrepancies, we developed a new theory bridging magnetic resonance (MR) signal and haemoglobin changes. We focused on capillary influences, which have been neglected in most previous fMRI studies and performed a combined fMRI and near-infrared spectroscopy (NIRS) study using a language task. Paradoxically, both the MR signal and deoxyHb content increased in Broca's area. On the other hand, fMRI activation in the auditory area near large veins correlated with a mirror-image decrease in deoxyHb and increase in oxygenated haemoglobin (oxyHb), in agreement with canonical BOLD theory. All fMRI signal changes correlated consistently with changes in oxyHb, the diamagnetism of which is insensitive to MR. We concluded that the discrepancy with the canonical BOLD theory is caused by the fact that the BOLD theory ignores the effect of the capillaries. Our theory explains the paradoxical phenomena of the oxyHb and deoxyHb contributions to the MR signal and gives a new insight into the precise haemodynamics of activation by analysing fMRI and NIRS data.
Particle-hole symmetry and composite fermions in fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Nguyen, Dung Xuan; Golkar, Siavash; Roberts, Matthew M.; Son, Dam Thanh
2018-05-01
We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.
Nuclear shielding constants by density functional theory with gauge including atomic orbitals
NASA Astrophysics Data System (ADS)
Helgaker, Trygve; Wilson, Philip J.; Amos, Roger D.; Handy, Nicholas C.
2000-08-01
Recently, we introduced a new density-functional theory (DFT) approach for the calculation of NMR shielding constants. First, a hybrid DFT calculation (using 5% exact exchange) is performed on the molecule to determine Kohn-Sham orbitals and their energies; second, the constants are determined as in nonhybrid DFT theory, that is, the paramagnetic contribution to the constants is calculated from a noniterative, uncoupled sum-over-states expression. The initial results suggested that this semiempirical DFT approach gives shielding constants in good agreement with the best ab initio and experimental data; in this paper, we further validate this procedure, using London orbitals in the theory, having implemented DFT into the ab initio code DALTON. Calculations on a number of small and medium-sized molecules confirm that our approach produces shieldings in excellent agreement with experiment and the best ab initio results available, demonstrating its potential for the study of shielding constants of large systems.
Theory of mind and central coherence in adults with high-functioning autism or Asperger syndrome.
Beaumont, Renae; Newcombe, Peter
2006-07-01
The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HFA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no differences in the proportion of mental state words between the two groups, although the participants with HFA/AS were less inclined to provide explanations for characters' mental states. No between-group differences existed on the central coherence questions of the forced-choice response task, and the participants with HFA/AS included an equivalent proportion of explanations for non-mental state phenomena in their narratives as did controls. These results support the theory of mind deficit account of autism spectrum disorders, and suggest that difficulties in mental state attribution cannot be exclusively attributed to weak central coherence.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
ERIC Educational Resources Information Center
Cox, John C.; Webster, Robert L.; Hammond, Kevin L.
2009-01-01
This study investigates the use of using complexity theory--the study of nonlinear dynamical systems of which chaos and catastrophe theory are subsets--in the analysis of a non temporal data set to derive valuable insights into the functioning of university schools of business. The approach is unusual in that studies of nonlinearity in complex…
Approximations of Two-Attribute Utility Functions
1976-09-01
preferred to") be a bina-zy relation on the set • of simple probability measures or ’gambles’ defined on a set T of consequences. Throughout this study it...simplifying independence assumptions. Although there are several approaches to this problem, the21 present study will focus on approximations of u... study will elicit additional interest in the topic. 2. REMARKS ON APPROXIMATION THEORY This section outlines a few basic ideas of approximation theory
Grüber, Raymond; Monari, Antonio; Dumont, Elise
2014-12-11
The addition of singlet molecular oxygen (1)O2 onto guanine is a most important and deleterious reaction in biological damage. We assess the efficiency of density functional theory for evaluating the respective stabilities of two intermediates that can form upon (1)O2 addition: a charge-separated adduct with a peroxide anion at the C8 position of guanine, and the corresponding cyclic endoperoxide across the 4,8-bond, of the imidazole ring. The reference post Hartree-Fock SCS-MP3/aug-cc-pVTZ//MP2/DZP++ level of theory provides an unambiguous assignment in favor of the endoperoxide intermediate, based on implicitly solvated structures, by -8.0 kcal·mol(-1). This value is taken as the reference for a systematic and extended benchmarck performed on 58 exchange--correlation functionals. While B3LYP remains commonly used for studying oxidative DNA lesions, we prove that the stability of the peroxide anion is overestimated by this functional, but also by other commonly used exchange-correlation functionals. The significant error (ca. +3 kcal·mol(-1) over a representative set of 58 functionals) arises from overdelocalization but also from the description of the dynamic correlation by the density functional. The significantly improved performance of several recently proposed functionals, including range-separated hybrids such as LC-BLYP, is outlined. We believe that our results will be of great help to further studies on the versatile chemistry of singlet oxygen-induced DNA damage, where complex reaction mechanisms are required to be depicted at a quantum level.
The promotion of cooperation by the poor in dynamic chicken games
NASA Astrophysics Data System (ADS)
Ito, Hiromu; Katsumata, Yuki; Hasegawa, Eisuke; Yoshimura, Jin
2017-02-01
The evolution of cooperative behavior is one of the most important issues in game theory. Previous studies have shown that cooperation can evolve only under highly limited conditions, and various modifications have been introduced to games to explain the evolution of cooperation. Recently, a utility function basic to game theory was shown to be dependent on current wealth as a conditional (state) variable in a dynamic version of utility theory. Here, we introduce this dynamic utility function to several games. Under certain conditions, poor players exhibit cooperative behavior in two types of chicken games (the hawk-dove game and the snowdrift game) but not in the prisoner’s dilemma game and the stag hunt game. This result indicates that cooperation can be exhibited by the poor in some chicken games. Thus, the evolution of cooperation may not be as limited as has been suggested in previous studies.
Numerical implementation of multiple peeling theory and its application to spider web anchorages.
Brely, Lucas; Bosia, Federico; Pugno, Nicola M
2015-02-06
Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations.
Numerical implementation of multiple peeling theory and its application to spider web anchorages
Brely, Lucas; Bosia, Federico; Pugno, Nicola M.
2015-01-01
Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations. PMID:25657835
Harari-Dahan, Osnat; Bernstein, Amit
2014-11-01
We critically reexamine extant theory and empirical study of Oxytocin. We question whether OT is, in fact, a "social neuropeptide" as argued in dominant theories of OT. We critically review human and animal research on the social and non-social effects of Oxytocin, including behavioral, psychophysiological, neurobiological, and neuroimaging studies. We find that extant (social) theories of Oxytocin do not account for well-documented non-social effects of Oxytocin. Furthermore, we find a range of evidence that social and non-social effects of Oxytocin may be mediated by core approach-avoidance motivational processes. We propose a General Approach-avoidance Hypothesis of Oxytocin (GAAO). We argue that the GAAO may provide a parsimonious account of established social and non-social effects of Oxytocin. We thus re-conceptualize the basic function(s) and mechanism(s) of action of Oxytocin. Finally, we highlight implications of the GAAO for basic and clinical research in humans
NASA Astrophysics Data System (ADS)
Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi
2017-05-01
This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.
Torta, D M; Legrain, V; Mouraux, A; Valentini, E
2017-04-01
Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Holography and eternal inflation
NASA Astrophysics Data System (ADS)
Yeh, Chen-Pin
The holographic principle states that the number of fundamental degrees of freedom in a specific region of spacetime is bounded by the area of its boundary. In the content of string theory, the AdS/CFT duality demonstrates the holographic principle in the background anti-de Sitter space. However for the more physically relevant background, it is hard to find such duality. The background that is particularly interesting is the eternal inflation. In this thesis we study the holographic dual of the eternal inflation. In the same spirit as AdS/CFT, the holographic theory is a conformal field theory on the boundary of the geometry. We study the scalar and graviton two point functions in a simplified eternal inflation background, which describes a flat pocket universe tunnels from a de Sitter background. The two point functions extrapolated to the boundary are shown to have the properties required by the conformal symmetry. We go on to study the possible collision between different pocket universes. We showed that after collisions, the resulting pocket universe with nontrivial boundary topology is possible. This implies that the boundary theory will not only have fluctuation in geometry but also in topology. It will also have potential observation consequences on the cosmological observation.
How to test the threat-simulation theory.
Revonsuo, Antti; Valli, Katja
2008-12-01
Malcolm-Smith, Solms, Turnbull and Tredoux [Malcolm-Smith, S., Solms, M.,Turnbull, O., & Tredoux, C. (2008). Threat in dreams: An adaptation? Consciousness and Cognition, 17, 1281-1291.] have made an attempt to test the Threat-Simulation Theory (TST), a theory offering an evolutionary psychological explanation for the function of dreaming [Revonsuo, A. (2000a). The reinterpretation of dreams: An evolutionary hypothesis of the function of dreaming. Behavioral and Brain Sciences, 23(6), 877-901]. Malcolm-Smith et al. argue that empirical evidence from their own study as well as from some other studies in the literature does not support the main predictions of the TST: that threatening events are frequent and overrepresented in dreams, that exposure to real threats activates the threat-simulation system, and that dream threats contain realistic rehearsals of threat avoidance responses. Other studies, including our own, have come up with results and conclusions that are in conflict with those of Malcolm-Smith et al. In this commentary, we provide an analysis of the sources of these disagreements, and their implications to the TST. Much of the disagreement seems to stem from differing interpretations of the theory and, consequently, of differing methods to test it.
Relativistic Brueckner-Hartree-Fock theory for neutron drops
NASA Astrophysics Data System (ADS)
Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan
2018-05-01
Neutron drops confined in an external field are studied in the framework of relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon interaction. The ground-state energies and radii of neutron drops with even numbers from N =4 to N =50 are calculated and compared with results obtained from other nonrelativistic ab initio calculations and from relativistic density functional theory. Special attention has been paid to the magic numbers and to the subshell closures. The single-particle energies are investigated and the monopole effect of the tensor force on the evolutions of the spin-orbit and the pseudospin-orbit splittings is discussed. The results provide interesting insights into neutron-rich systems and can form an important guide for future density functionals.
Modern control techniques in active flutter suppression using a control moment gyro
NASA Technical Reports Server (NTRS)
Buchek, P. M.
1974-01-01
Development of organized synthesis techniques, using concepts of modern control theory was studied for the design of active flutter suppression systems for two and three-dimensional lifting surfaces, utilizing a control moment gyro (CMG) to generate the required control torques. Incompressible flow theory is assumed, with the unsteady aerodynamic forces and moments for arbitrary airfoil motion obtained by using the convolution integral based on Wagner's indicial lift function. Linear optimal control theory is applied to find particular optimal sets of gain values which minimize a quadratic performance function. The closed loop system's response to impulsive gust disturbances and the resulting control power requirements are investigated, and the system eigenvalues necessary to minimize the maximum value of control power are determined.
Bonding and Microstructural Stability in Ni55Ti45 Studied by Experimental and Theoretical Methods
NASA Technical Reports Server (NTRS)
Stott, Amanda C.; Brauer, Jonathan I.; Garg, Anita; Pepper, Stephen V.; Abel, Phillip B.; DellaCorte, Christopher; Noebe, Ronald D.; Glennon, Glenn; Bylaska, Eric; Dixon, David A.
2010-01-01
Spiral orbit tribometry friction tests performed on Ni-rich Ni55Ti45 titanium ball bearings indicate that this alloy is a promising candidate for future aerospace bearing applications. Microstructural characterization of the bearing specimens was performed using transmission electron microscopy and energy dispersive spectroscopy, with NiTi, Ni4Ti3, Ni3Ti, and Ni2Ti4Ox phases identified within the microstructure of the alloy. Density functional theory was applied to predict the electronic structure of the NixTiy phases, including the band structure and site projected density of states. Ultraviolet photoemission spectroscopy was used to verify the density of states results from the density functional theory calculations, with good agreement observed between experiment and theory.
Tam, Teck Lip Dexter; Lin, Ting Ting; Chua, Ming Hui
2017-06-21
Here we utilized new diagnostic tools in time-dependent density functional theory to explain the trend of intersystem crossing in benzo(bis)-X-diazole based donor-acceptor-donor type molecules. These molecules display a wide range of fluorescence quantum yields and triplet yields, making them excellent candidates for testing the validity of these diagnostic tools. We believe that these tools are cost-effective and can be applied to structurally similar organic chromophores to predict/explain the trends of intersystem crossing, and thus fluorescence quantum yields and triplet yields without the use of complex and expensive multireference configuration interaction or multireference pertubation theory methods.
Joseph, Robert M; Tager-Flusberg, Helen
2004-01-01
Although neurocognitive impairments in theory of mind and in executive functions have both been hypothesized to play a causal role in autism, there has been little research investigating the explanatory power of these impairments with regard to autistic symptomatology. The present study examined the degree to which individual differences in theory of mind and executive functions could explain variations in the severity of autism symptoms. Participants included 31 verbal, school-aged children with autism who were administered a battery of tests assessing the understanding of mental states (knowledge and false belief) and executive control skills (working memory, combined working memory and inhibitory control, and planning) and who were behaviorally evaluated for autism severity in the three core symptom domains. Whereas theory of mind and executive control abilities explained the significant variance beyond that accounted for by language level in communication symptoms, neither explained the significant variance in reciprocal social interaction or repetitive behaviors symptoms. These findings are discussed in terms of a proposed distinction between higher level, cognitive-linguistic aspects of theory of mind and related executive control skills, and more fundamental social-perceptual processes involved in the apprehension of mental state information conveyed through eyes, faces, and voices, which may be more closely linked to autistic deficits in social reciprocity.
Xu, Enhua; Zhao, Dongbo; Li, Shuhua
2015-10-13
A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.
A density functional theory for colloids with two multiple bonding associating sites.
Haghmoradi, Amin; Wang, Le; Chapman, Walter G
2016-06-22
Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.
Ferrazzi, Priscilla; Krupa, Terry
2015-09-01
Studies that seek to understand and improve health care systems benefit from qualitative methods that employ theory to add depth, complexity, and context to analysis. Theories used in health research typically emerge from social science, but these can be inadequate for studying complex health systems. Mental health rehabilitation programs for criminal courts are complicated by their integration within the criminal justice system and by their dual health-and-justice objectives. In a qualitative multiple case study exploring the potential for these mental health court programs in Arctic communities, we assess whether a legal theory, known as therapeutic jurisprudence, functions as a useful methodological theory. Therapeutic jurisprudence, recruited across discipline boundaries, succeeds in guiding our qualitative inquiry at the complex intersection of mental health care and criminal law by providing a framework foundation for directing the study's research questions and the related propositions that focus our analysis. © The Author(s) 2014.
ERIC Educational Resources Information Center
Tien, Flora F.; Blackburn, Robert T.
1996-01-01
A study explored the relationship between the traditional system of college faculty rank and faculty research productivity from the perspectives of behavioral reinforcement theory and selection function. Six hypotheses were generated and tested, using data from a 1989 national faculty survey. Results failed to support completely either the…
ERIC Educational Resources Information Center
Stiglbauer, Barbara; Gnambs, Timo; Gamsjager, Manuela; Batinic, Bernad
2013-01-01
In line with self-determination theory and Fredrickson's (2001) broaden-and-build theory of positive emotions, this study adopts a positive perspective on students' school experiences and their general psychological functioning. The reciprocal effects of positive school experiences and happiness, a dimension of affective well-being, are examined…
ERIC Educational Resources Information Center
Ismail, Yilmaz
2017-01-01
This study reveals the transformation of prospective science teachers into knowledgeable individuals through classical, combination, and information theories. It distinguishes between knowledge and success, and between knowledge levels and success levels calculated each through three theories. The relation between the knowledge of prospective…
A Comparison of Linking and Concurrent Calibration under the Graded Response Model.
ERIC Educational Resources Information Center
Kim, Seock-Ho; Cohen, Allan S.
Applications of item response theory to practical testing problems including equating, differential item functioning, and computerized adaptive testing, require that item parameter estimates be placed onto a common metric. In this study, two methods for developing a common metric for the graded response model under item response theory were…
Brief Report: Cognitive Performance in Autism and Asperger's Syndrome: What Are the Differences?
ERIC Educational Resources Information Center
Taddei, Stefano; Contena, Bastianina
2013-01-01
Autism spectrum disorders include autistic and Asperger's Syndrome (AS), often studied in terms of executive functions (EF), with controversial results. Using Planning Attention Simultaneous Successive theory (PASS; Das et al. in "Assessment of cognitive processes: the PASS theory of intelligence." Allyn and Bacon, Boston, MA, 1994),…
Emotional Resonance Deficits in Autistic Children
ERIC Educational Resources Information Center
Grecucci, Alessandro; Brambilla, Paolo; Siugzdaite, Roma; Londero, Danielle; Fabbro, Franco; Rumiati, Raffaella Ida
2013-01-01
According to some theories imitation, defined as an action resonance mechanism, is deficient in autism. In contrast, other theories (e.g., the "top down control of imitation" hypothesis) state that the problem is not in imitation per se but in the way social cues modulate imitative responses. In this study, 15 high-functioning children with autism…
NASA Technical Reports Server (NTRS)
Hong, Z. C.
1975-01-01
A review of various methods of calculating turbulent chemically reacting flow such as the Green Function, Navier-Stokes equation, and others is presented. Nonequilibrium degrees of freedom were employed to study the mixing behavior of a multiscale turbulence field. Classical and modern theories are discussed.
ERIC Educational Resources Information Center
Yan, Zi; Sin, Kuen-fung
2014-01-01
The theory of planned behaviour (TPB) claims that behaviour can be predicted by behavioural intention and perceived behavioural control, while behavioural intention is a function of attitude towards the behaviour, subjective norm, and perceived behavioural control. This study aims at providing explanation and prediction of teachers' inclusive…
Effects of Self-Monitoring, Likability and Argument Strength on Persuasion.
ERIC Educational Resources Information Center
Harnish, Richard J.
Recently, there has been a renewed interest in the functional theories of attitudes. These theories assume that there are certain individualistic needs that are being met by one's attitudes, and that these attitudes allow the individual to implement certain plans to attain certain goals. This study examined whether source characteristics (i.e.,…
Examining Achievement Goals and Causal Attributions Together as Predictors of Academic Functioning
ERIC Educational Resources Information Center
Wolters, Christopher A.; Fan, Weihua; Daugherty, Stacy G.
2013-01-01
This study was designed to forge stronger theoretical and empirical links between achievement goal theory and attribution theory. High school students ("N" = 224) completed a self-report survey that assessed 3 types of achievement goals, 7 types of attributions, and self-efficacy. Results indicated that students' adoption of achievement…
Evaluators' Decision Making: The Relationship between Theory, Practice, and Experience
ERIC Educational Resources Information Center
Tourmen, Claire
2009-01-01
How do evaluation practitioners make choices when they evaluate a program? What function do evaluation theories play in practice? In this article, I report on an exploratory study that examined evaluation practices in France. The research began with observations of practitioners' activities, with a particular focus on the phases of evaluation…
ERIC Educational Resources Information Center
Roest, Annette M. C.; Dubas, Judith Semon; Gerris, Jan R. M.
2010-01-01
This study applied the gender role model of socialization theory, the developmental aging theory, and the topic salience perspective to the investigation of parent-child value transmissions. Specifically, we examined whether the bi-directionality and selectivity of value transmissions differed as a function of parents' and children's gender and…
Should Accountancy Schools and Departments Adopt Theory Z for Their Faculties?
ERIC Educational Resources Information Center
Rayburn, L. Gayle
1990-01-01
A study to determine if there are features within Japanese organizations that could be adapted to improve organization and working relations of schools of accountancy found university departments could not function with the job rotation found in Japanese organizations. However, there are other aspects of Theory Z management that could be adopted…
Cognitive Deficits and Symbolic Play in Preschoolers with Autism
ERIC Educational Resources Information Center
Lam, Yan Grace; Yeung, Siu-sze Susanna
2012-01-01
This study investigated symbolic play in 12 children with autism and 12 children with typical development and compared theories that consider either theory of mind, executive function or central coherence to be causally involved in the development of symbolic play in autism. Children with autism demonstrated significantly less symbolic play than…
Continuum modes of nonlocal field theories
NASA Astrophysics Data System (ADS)
Saravani, Mehdi
2018-04-01
We study a class of nonlocal Lorentzian quantum field theories, where the d’Alembertian operator \\Box is replaced by a non-analytic function of the d’Alembertian, f(\\Box) . This is inspired by the causal set program where such an evolution arises as the continuum limit of a wave equation on causal sets. The spectrum of these theories contains a continuum of massive excitations. This is perhaps the most important feature which leads to distinct/interesting phenomenology. In this paper, we study properties of the continuum massive modes in depth. We derive the path integral formulation of these theories. Meanwhile, this derivation introduces a dual picture in terms of local fields which clearly shows how continuum massive modes of the nonlocal field interact. As an example, we calculate the leading order modification to the Casimir force of a pair of parallel planes. The dual picture formulation opens the way for future developments in the study of nonlocal field theories using tools already available in local quantum field theories.
NASA Astrophysics Data System (ADS)
Safari, M.; Vacca, G. P.
2018-02-01
We employ perturbative renormalization group and ɛ -expansion to study multicritical single-scalar field theories with higher derivative kinetic terms of the form ϕ (-□)kϕ . We focus on those with a Z2-symmetric critical point which are characterized by an upper critical dimension dc=2 n k /(n -1 ) accumulating at even integers. We distinguish two types of theories depending on whether or not the numbers k and n -1 are relatively prime. When they are, the critical theory involves a marginal powerlike interaction ϕ2 n and the deformations admit a derivative expansion that at leading order involves only the potential. In this case we present the beta functional of the potential and use this to calculate some anomalous dimensions and operator product expansion coefficients. These confirm some conformal field theory data obtained using conformal-block techniques, while giving new results. In the second case where k and n -1 have a common divisor, the theories show a much richer structure induced by the presence of marginal derivative operators at criticality. We study the case k =2 with odd values of n , which fall in the second class, and calculate the functional flows and spectrum. These theories have a phase diagram characterized at leading order in ɛ by four fixed points which apart from the Gaussian UV fixed point include an IR fixed point with a purely derivative interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ass'ad, J.M.; McDonald, J.A.; Kusky, T.M.
1993-04-01
An approximation to plane-wave propagation through a composite material is examined using a physical model with oriented but randomly distributed penny-shaped rubber inclusions within an isotropic epoxy resin matrix. A pulse transmission method is used to determine velocities of shear and compressional waves as a function of angle of incidence and crack density. The experimental and theoretical results of Hudson were compared and limitations within the crack parameters used in this study have been determined. Results from both polarized shear waves (S1, S2) compare favorably with the theory for a composite with up to 7% crack density, but theory andmore » experiment diverge at higher crack densities. On the other hand, compressional-wave velocities at low crack densities (1% and 3%) compare favorably with the theory. It is also shown that the velocity ratio V[sub p]/V[sub s] for two extreme cases, i.e. propagation normal and parallel to the cracks, as a function of crack density and porosity, has a strong directional dependence.« less
NASA Astrophysics Data System (ADS)
Shiroudi, Abolfazl; Zahedi, Ehsan; Oliaey, Ahmad Reza; Deleuze, Michael S.
2017-03-01
The thermal decomposition kinetics of 2-chloroethylsilane and derivatives in the gas phase has been studied computationally using density functional theory, along with various exchange-correlation functionals (UM06-2x and ωB97XD) and the aug-cc-pVTZ basis set. The calculated energy profile has been supplemented with calculations of kinetic rate constants under atmospheric pressure and in the fall-off regime, using transition state theory (TST) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Activation energies and rate constants obtained using the UM06-2x/aug-cc-pVTZ approach are in good agreement with the experimental data. The decomposition of 2-chloroethyltriethylsilane species into the related products [C2H4 + Et3SiCl] is characterized by 6 successive structural stability domains associated to the sequence of catastrophes C8H19SiCl: 6-C†FCC†[FF]-0: C6H15SiCl + C2H4. Breaking of Si-C bonds and formation of Si-Cl bonds occur in the vicinity of the transition state.
Theory of Mind in Substance Users: A Systematic Minireview.
Sanvicente-Vieira, Breno; Romani-Sponchiado, Aline; Kluwe-Schiavon, Bruno; Brietzke, Elisa; Araujo, Renata Brasil; Grassi-Oliveira, Rodrigo
2017-01-02
Theory of mind concerns the sociocognitive ability to infer others' thoughts. It has been theorized to be impaired in substance use and abuse, as its alterations might explain negative social and interpersonal outcomes noted in the course of disorders. In addition, the brain structures involved in Theory of Mind (ToM) have been found to be disrupted in drug use conditions. We undertook a systematic review of ToM functioning in drug use conditions. Four electronic databases (MEDLINE, Web of Science, PsycINFO, and Embase) were searched to find studies that have addressed ToM and conditions related to actual or previous drug use. The search found 147 papers, of which 14 fulfilled our review eligibility criteria. Different methods were used, but overall, results indicated that drugs are related to ToM deficits, particularly related to alcohol and amphetamines use. These impairments correlate with other clinical and cognitive functions. Despite the lack of studies and the methodological limitations of the existing ones Theory of Mind seems to play a role in drug use conditions, which requires further investigation.
The Form and Function of Attachment Behavior in the Daily Lives of Young Adults
ERIC Educational Resources Information Center
Campa, Mary I.; Hazan, Cindy; Wolfe, Jared E.
2009-01-01
Central to attachment theory is the postulation of an inborn system to regulate attachment behavior. This system has been well studied in infancy and childhood, but much less is known about its functioning at later ages. The goal of this study was to explore the form and function of attachment behavior in the daily lives of young adults. Twenty…
Leadership, Leaders, and Leading (Part One).
ERIC Educational Resources Information Center
Dean, Peter J.
2002-01-01
Presents an historical overview of the leadership literature. Highlights include "great man" theories; studies of leaders' traits; studies of leaders' behavioral style; studies of leadership functions; and studies of the situational aspects of leadership. (LRW)
Cao, Yin; Xiang, JianBo; Qian, Nong; Sun, SuPing; Hu, LiJun; Yuan, YongGui
2015-01-01
To explore the function of the default mode network (DMN) in the psychopathological mechanisms of theory of mind deficits in patients with an esophageal cancer concomitant with depression in resting the state. Twenty-five cases of esophageal cancer with theory of mind deficits (test group) that meet the diagnostic criteria of esophageal cancer and neuropsychological tests, including Beck depression inventory, reading the mind in the eyes, and Faux pas, were included, Another 25 cases of esophageal cancer patients but without theory of mind deficits (control group) were enrolled. Each patient completed a resting-state functional magnetic resonance imaging. The functional connectivity intensities within the cerebral regions in the DMN of all the enrolled patients were analyzed. The results of each group were compared. The functional connectivity of the bilateral prefrontal central region with the precuneus, bilateral posterior cingulate gyrus and bilateral ventral anterior cingulate gyrus in the patients of the test group were all reduced significantly (P < 0.05). In the resting state, the functional connectivity is abnormal in the cerebral regions in the DMN of esophageal cancer patients with theory of mind deficits. The theory of mind deficits might have an important function in the pathogenesis of esophageal cancer.
Exact partition functions for gauge theories on Rλ3
NASA Astrophysics Data System (ADS)
Wallet, Jean-Christophe
2016-11-01
The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.
NASA Astrophysics Data System (ADS)
Wungu, T. D. K.; Marsha, S. E.; Widayani; Suprijadi
2017-07-01
In order to find an alternative biosensor material which enables to detect the glucose level, therefore in this study, the interaction between Methacrylic Acid (MAA) based Molecularly Imprinted Polymer (MIP) with D-Glucose is investigated using the Density Functional Theory (DFT). The aim of this study is to determine whether a molecule of the MAA can be functioned as a bio-sensing of glucose. In this calculation, the Gaussian 09 with B3LYP and 631+G(d) basis sets is used to calculate all electronic properties. It is found that the interaction between a molecule of MAA and a molecule of D-Glucose was observed through the shortened distance between the two molecules. The binding energy of MAA/D-glucose and the Mulliken population analysis are investigated for checking possible interaction. From analysis, the MAA based MIP can be used as a bio-sensing material.
NASA Astrophysics Data System (ADS)
Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.
2014-05-01
We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.
Effective model hierarchies for dynamic and static classical density functional theories
NASA Astrophysics Data System (ADS)
Majaniemi, S.; Provatas, N.; Nonomura, M.
2010-09-01
The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.
Theory of mind in middle childhood and early adolescence: Different from before?
Im-Bolter, Nancie; Agostino, Alba; Owens-Jaffray, Keely
2016-09-01
Studies with preschool children have shown that language and executive function are important for theory of mind, but few studies have examined these associations in older children and in an integrative theory-guided manner. The theory of constructive operators was used as a framework to test a model of relations among mental attentional capacity, attentional inhibition, language, executive processes (shifting and updating), and higher order theory of mind in two groups of school-aged children: one in middle childhood (n=226; mean age=8.08years) and the other in early adolescence (n=216; mean age=12.09years). Results revealed a complex model of interrelations between cognitive resources and language in middle childhood that directly and indirectly predicted theory of mind. The model in early adolescence was less complex, however, and highlighted the importance of semantic language and shifting for theory of mind. Our findings suggest not only that contributors to theory of mind change over time but also that they may depend on the maturity level of the theory of mind system being examined. Copyright © 2015 Elsevier Inc. All rights reserved.
Theory of Mind Impairments in Women With Cocaine Addiction.
Sanvicente-Vieira, Breno; Kluwe-Schiavon, Bruno; Corcoran, Rhiannon; Grassi-Oliveira, Rodrigo
2017-03-01
This study investigates the Theory of Mind performance of female cocaine-dependent users (CDUs) and possible associations between theory of mind performance and features of cocaine use. Sixty women controlled for age, education, individual income, and IQ participated in this study: 30 in the CDU group and 30 in the healthy control group. Participants were assessed for theory of mind with the Reading the Mind in the Eyes Test (RMET), a test of understanding of first-order and second-order false beliefs, and the Hinting task. Drug use parameters, clinical symptoms, and neuropsychological functioning were also assessed. Analyses of covariance indicated Theory of Mind impairments in negative mental states within the RMET and second-order false-belief understanding of Theory of Mind stories. In addition, Theory of Mind impairment was associated with drug use characteristics, including craving and number of hospitalizations. High-demand Theory of Mind is suggested to be impaired in CDU women, and the deficits appear to be related to drug addiction severity. We found associations between Theory of Mind deficits and worse clinical and social outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yu; Liu, Haitao; Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn
The structural and electronic properties of small uranium oxide clusters U{sub n}O{sub m} (n=1-3, m=1-3n) are systematically studied within the screened hybrid density functional theory. It is found that the formation of U–O–U bondings and isolated U–O bonds are energetically more stable than U–U bondings. As a result, no uranium cores are observed. Through fragmentation studies, we find that the U{sub n}O{sub m} clusters with the m/n ratio between 2 and 2.5 are very stable, hinting that UO{sub 2+x} hyperoxides are energetically stable. Electronically, we find that the O-2p states always distribute in the deep energy range, and the U-5fmore » states always distribute at the two sides of the Fermi level. The U-6d states mainly hybridize with the U-5f states in U-rich clusters, while hybridizing with O-2p states in O-rich clusters. Our work is the first one on the screened hybrid density functional theory level studying the atomic and electronic properties of the actinide oxide clusters.« less
Coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control
NASA Astrophysics Data System (ADS)
Ma, Tiedong; Li, Teng; Cui, Bing
2018-01-01
The coordination of fractional-order nonlinear multi-agent systems via distributed impulsive control method is studied in this paper. Based on the theory of impulsive differential equations, algebraic graph theory, Lyapunov stability theory and Mittag-Leffler function, two novel sufficient conditions for achieving the cooperative control of a class of fractional-order nonlinear multi-agent systems are derived. Finally, two numerical simulations are verified to illustrate the effectiveness and feasibility of the proposed method.
ERIC Educational Resources Information Center
Lee, Eunsoon
2012-01-01
The purpose of this study is to expand research on persuasion 1) by examining psychological reactance as a function of threats to positive identity above and beyond threats to freedom and 2) by examining the role of positive emotions. An online survey recruited 478 students from undergraduate courses at several universities in the U.S. The study…
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2002-01-01
A recently developed variationally stable quasi-relativistic method, which is based on the low-order approximation to the method of normalized elimination of the small component, was incorporated into density functional theory (DFT). The new method was tested for diatomic molecules involving Ag, Cd, Au, and Hg by calculating equilibrium bond lengths, vibrational frequencies, and dissociation energies. The method is easy to implement into standard quantum chemical programs and leads to accurate results for the benchmark systems studied.
Stoudenmire, E M; Wagner, Lucas O; White, Steven R; Burke, Kieron
2012-08-03
We extend the density matrix renormalization group to compute exact ground states of continuum many-electron systems in one dimension with long-range interactions. We find the exact ground state of a chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold atom systems and to study density-functional theory in an exact setting. To illustrate, we find an interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.
A classical density-functional theory for describing water interfaces.
Hughes, Jessica; Krebs, Eric J; Roundy, David
2013-01-14
We develop a classical density functional for water which combines the White Bear fundamental-measure theory (FMT) functional for the hard sphere fluid with attractive interactions based on the statistical associating fluid theory variable range (SAFT-VR). This functional reproduces the properties of water at both long and short length scales over a wide range of temperatures and is computationally efficient, comparable to the cost of FMT itself. We demonstrate our functional by applying it to systems composed of two hard rods, four hard rods arranged in a square, and hard spheres in water.
NASA Astrophysics Data System (ADS)
Bakhshi Khaniki, Hossein; Rajasekaran, Sundaramoorthy
2018-05-01
This study develops a comprehensive investigation on mechanical behavior of non-uniform bi-directional functionally graded beam sensors in the framework of modified couple stress theory. Material variation is modelled through both length and thickness directions using power-law, sigmoid and exponential functions. Moreover, beam is assumed with linear, exponential and parabolic cross-section variation through the length using power-law and sigmoid varying functions. Using these assumptions, a general model for microbeams is presented and formulated by employing Hamilton’s principle. Governing equations are solved using a mixed finite element method with Lagrangian interpolation technique, Gaussian quadrature method and Wilson’s Lagrangian multiplier method. It is shown that by using bi-directional functionally graded materials in nonuniform microbeams, mechanical behavior of such structures could be affected noticeably and scale parameter has a significant effect in changing the rigidity of nonuniform bi-directional functionally graded beams.
Compensatory recruitment of neural resources in chronic alcoholism.
Chanraud, Sandra; Sullivan, Edith V
2014-01-01
Functional recovery occurs with sustained sobriety, but the neural mechanisms enabling recovery are only now emerging. Theories about promising mechanisms involve concepts of neuroadaptation, where excessive alcohol consumption results in untoward structural and functional brain changes which are subsequently candidates for reversal with sobriety. Views on functional adaptation in chronic alcoholism have expanded with results from neuroimaging studies. Here, we first describe and define the concept of neuroadaptation according to emerging theories based on the growing literature in aging-related cognitive functioning. Then we describe findings as they apply to chronic alcoholism and factors that could influence compensation, such as functional brain reserve and the integrity of brain structure. Finally, we review brain plasticity based on physiologic mechanisms that could underlie mechanisms of neural compensation. Where possible, we provide operational criteria to define functional and neural compensation. © 2014 Elsevier B.V. All rights reserved.
Chin-Yee, Benjamin; Upshur, Ross E G
2017-08-01
Naturalistic theories of disease appeal to concepts of biological function, and use the notion of dysfunction as the basis of their definitions. Debates in the philosophy of biology demonstrate how attributing functions in organisms and establishing the function-dysfunction distinction is by no means straightforward. This problematization of functional ascription has undermined naturalistic theories and led some authors to abandon the concept of dysfunction, favoring instead definitions based in normative criteria or phenomenological approaches. Although this work has enhanced our understanding of disease and illness, we need not necessarily abandon naturalistic concepts of function and dysfunction in the disease debate. This article attempts to move towards a new naturalistic theory of disease that overcomes the limitations of previous definitions and offers advantages in the clinical setting. Our approach involves a re-evaluation of concepts of biological function employed by naturalistic theories. Drawing on recent insights from the philosophy of biology, we develop a contextual and evaluative account of function that is better suited to clinical medicine and remains consistent with contemporary naturalism. We also show how an updated naturalistic view shares important affinities with normativist and phenomenological positions, suggesting a possibility for consilience in the disease debate.
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.
Domingo, Luis R
2016-09-30
A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.
Theory of correlation in a network with synaptic depression
NASA Astrophysics Data System (ADS)
Igarashi, Yasuhiko; Oizumi, Masafumi; Okada, Masato
2012-01-01
Synaptic depression affects not only the mean responses of neurons but also the correlation of response variability in neural populations. Although previous studies have constructed a theory of correlation in a spiking neuron model by using the mean-field theory framework, synaptic depression has not been taken into consideration. We expanded the previous theoretical framework in this study to spiking neuron models with short-term synaptic depression. On the basis of this theory we analytically calculated neural correlations in a ring attractor network with Mexican-hat-type connectivity, which was used as a model of the primary visual cortex. The results revealed that synaptic depression reduces neural correlation, which could be beneficial for sensory coding. Furthermore, our study opens the way for theoretical studies on the effect of interaction change on the linear response function in large stochastic networks.
Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders
Czéh, Boldizsár; Nagy, Szilvia A.
2018-01-01
Depressive disorders are complex, multifactorial mental disorders with unknown neurobiology. Numerous theories aim to explain the pathophysiology. According to the “gliocentric theory”, glial abnormalities are responsible for the development of the disease. The aim of this review article is to summarize the rapidly growing number of cellular and molecular evidences indicating disturbed glial functioning in depressive disorders. We focus here exclusively on the clinical studies and present the in vivo neuroimaging findings together with the postmortem molecular and histopathological data. Postmortem studies demonstrate glial cell loss while the in vivo imaging data reveal disturbed glial functioning and altered white matter microstructure. Molecular studies report on altered gene expression of glial specific genes. In sum, the clinical findings provide ample evidences on glial pathology and demonstrate that all major glial cell types are affected. However, we still lack convincing theories explaining how the glial abnormalities develop and how exactly contribute to the emotional and cognitive disturbances. Abnormal astrocytic functioning may lead to disturbed metabolism affecting ion homeostasis and glutamate clearance, which in turn, affect synaptic communication. Abnormal oligodendrocyte functioning may disrupt the connectivity of neuronal networks, while microglial activation indicates neuroinflammatory processes. These cellular changes may relate to each other or they may indicate different endophenotypes. A theory has been put forward that the stress-induced inflammation—mediated by microglial activation—triggers a cascade of events leading to damaged astrocytes and oligodendroglia and consequently to their dysfunctions. The clinical data support the “gliocentric” theory, but future research should clarify whether these glial changes are truly the cause or simply the consequences of this devastating disorder. PMID:29535607
Pellicano, Elizabeth
2013-08-01
This follow-up study investigated the predictive power of early cognitive atypicalities. Specifically, it examined whether early individual differences in specific cognitive skills, including theory of mind, executive function, and central coherence, could uniquely account for variation in autistic children's behaviors-social communication, repetitive behaviors, and interests and insistence on sameness-at follow-up. Thirty-seven cognitively able children with an autism spectrum condition were assessed on tests tapping verbal and nonverbal ability, theory of mind (false-belief prediction), executive function (planning ability, cognitive flexibility, and inhibitory control), and central coherence (local processing) at intake and their behavioral functioning (social communication, repetitive behaviors and interests, insistence on sameness) 3 years later. Individual differences in early executive but not theory of mind skills predicted variation in children's social communication. Individual differences in children's early executive function also predicted the degree of repetitive behaviors and interests at follow-up. There were no predictive relationships between early central coherence and children's insistence on sameness. These findings challenge the notion that distinct cognitive atypicalities map on to specific behavioral features of autism. Instead, early variation in executive function plays a key role in helping to shape autistic children's emerging behaviors, including their social communication and repetitive behaviors and interests. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
A Safari Through Density Functional Theory
NASA Astrophysics Data System (ADS)
Dreizler, Reiner M.; Lüdde, Cora S.
Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.
ERIC Educational Resources Information Center
Danish, Joshua A.
2014-01-01
This article reports on a study in which activity theory was used to design, implement, and analyze a 10-week curriculum unit about how honeybees collect nectar with a particular focus on complex systems concepts. Students (n = 42) in a multi-year kindergarten and 1st-grade classroom participated in this study as part of their 10 regular classroom…
Intrinsic or Extrinsic? Using Videogames to Motivate Stroke Survivors: A Systematic Review.
Swanson, LaTasha R; Whittinghill, David M
2015-06-01
The main objective of this study was to explore, via a systematic review of available literature, the effectiveness of videogame-based rehabilitation interventions on the motivation and health outcomes of stroke patients. Using a systematic literature review of 18 articles, we sought to address three key research questions: (1) Do videogames improve function or health outcomes among stroke survivors? (2) Do videogames increase stroke patients' motivation to engage in rehabilitation exercise and activities? (3) Which motivational techniques, principles, and theoretical frameworks have been applied in the reviewed studies? A key word search was conducted, and articles were coded for inclusion of motivational theories or principles, intervention effectiveness, and participants' motivation to perform tasks. Three motivational frameworks and principles were used (self-determination theory [SDT], flow theory, and operant conditioning) to investigate intrinsic and extrinsic approaches. Past research suggests videogame-based interventions are effective at improving and increasing a variety of health-related outcomes, including motor functioning, energy expenditure, muscle strength, and recovery times in stroke patients. Past evidence shows videogame-based interventions are a promising tool to motivate stroke patients' engagement in effective rehabilitation activities. This study also identifies an opportunity for future research to apply motivational theories from SDT to studies on stroke rehabilitation and videogames.
Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dias, Goncalo A. S.; Lemos, Jose P. S.; Centro Multidisciplinar de Astrofisica-CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa
2008-10-15
The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free {omega} parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ({omega}{yields}{+-}{infinity}), a dimensionally reduced cylindrical four-dimensional general relativity theory ({omega}=0), and a theory representing a class of theories ({omega}=-3), all with a Maxwell term. The Hamiltonian formalismmore » is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P{sub M};Q,P{sub Q}), where M is the mass parameter, which for {omega}<-(3/2) and for {omega}={+-}{infinity} needs a careful renormalization, P{sub M} is the conjugate momenta of M, Q is the charge parameter, and P{sub Q} is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field {phi}. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.« less
Effect Size Measures for Differential Item Functioning in a Multidimensional IRT Model
ERIC Educational Resources Information Center
Suh, Youngsuk
2016-01-01
This study adapted an effect size measure used for studying differential item functioning (DIF) in unidimensional tests and extended the measure to multidimensional tests. Two effect size measures were considered in a multidimensional item response theory model: signed weighted P-difference and unsigned weighted P-difference. The performance of…
Emotion Understanding in Preschool Children: The Role of Executive Functions
ERIC Educational Resources Information Center
Martins, Eva Costa; Osório, Ana; Veríssimo, Manuela; Martins, Carla
2016-01-01
This investigation was aimed at studying the relations between executive functions (EFs) and categorical emotion understanding while controlling for preschoolers' IQ, language ability and theory of mind (ToM). Specifically, we wanted to analyse the association between emotion understanding and set shifting, due to the lack of studies with this EF.…
USDA-ARS?s Scientific Manuscript database
Density functional theory (DFT) has been used to calculate the structures and infrared spectra of glucose and glucose monohydrates. Both the alpha and beta anomers were studied, with all possible combinations of hydroxymethyl rotamer (gg, gt, or tg) and hydroxyl orientation (clockwise or counter-cl...
Teaching about the U.S. Constitution through Metaphor: Government as a Machine.
ERIC Educational Resources Information Center
Mills, Randy K.
1988-01-01
Briefly reviews theories of brain hemisphere functions and draws implications for social studies instruction. Maintains that the metaphor aids the development of understanding because it connects right and left brain functions. Provides a learning activity based on the metaphor of the U.S. government functioning as a machine. (BSR)
Growing and Growing: Promoting Functional Thinking with Geometric Growing Patterns
ERIC Educational Resources Information Center
Markworth, Kimberly A.
2010-01-01
Design research methodology is used in this study to develop an empirically-substantiated instruction theory about students' development of functional thinking in the context of geometric growing patterns. The two research questions are: (1) How does students' functional thinking develop in the context of geometric growing patterns? (2) What are…
Evaluating the Theory of Executive Dysfunction in Autism
ERIC Educational Resources Information Center
Hill, Elisabeth L.
2004-01-01
In this paper studies of executive function in autism spectrum disorder are reviewed. Executive function is an umbrella term for functions such as planning, working memory, impulse control, inhibition, and shifting set, as well as for the initiation and monitoring of action. In this review, the focus will be on planning, inhibition, shifting set,…
ERIC Educational Resources Information Center
Wallace, Gregory L.; Peng, Cynthia S.; Williams, David
2017-01-01
Purpose: According to Vygotskian theory, verbal thinking serves to guide our behavior and underpins critical self-regulatory functions. Indeed, numerous studies now link inner speech usage with performance on tests of executive function (EF). However, the selectivity of inner speech contributions to multifactorial executive planning performance…
Exact partition functions for deformed N=2 theories with N_f=4 flavours
NASA Astrophysics Data System (ADS)
Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi
2016-12-01
We consider the Ω-deformed N=2 SU(2) gauge theory in four dimensions with N f = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ɛ 1 , ɛ 2, the scalar field expectation value a, and the hypermultiplet masses m = ( m 1 , m 2 , m 3 , m 4). Motivated by recent findings in the N={2}^{*} theory, we explore the theories that are characterized by special fixed ratios ɛ 2 /ɛ 1 and m /ɛ 1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N={2}^{*} gauge theory, the full prepotential of the Π N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov's recursion for the Π N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.
Trajectory fitting in function space with application to analytic modeling of surfaces
NASA Technical Reports Server (NTRS)
Barger, Raymond L.
1992-01-01
A theory for representing a parameter-dependent function as a function trajectory is described. Additionally, a theory for determining a piecewise analytic fit to the trajectory is described. An example is given that illustrates the application of the theory to generating a smooth surface through a discrete set of input cross-section shapes. A simple procedure for smoothing in the parameter direction is discussed, and a computed example is given. Application of the theory to aerodynamic surface modeling is demonstrated by applying it to a blended wing-fuselage surface.
Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory
Gunawardana, K. G.S.H.; Song, Xueyu
2014-12-22
Recently developed fundamental measure density functional theory (FMT) is used to study binary hard sphere (HS) complexes in crystalline phases. By comparing the excess free energy, pressure and phase diagram, we show that the fundamental measure functional yields good agreements to the available simulation results of AB, AB 2 and AB 13 crystals. Additionally, we use this functional to study the HS models of five binary crystals, Cu 5Zr(C15 b), Cu 51Zr 14(β), Cu 10Zr 7(φ), CuZr(B2) and CuZr 2 (C11 b), which are observed in the Cu-Zr system. The FMT functional gives well behaved minimum for most of themore » hard sphere crystal complexes in the two dimensional Gaussian space, namely a crystalline phase. However, the current version of FMT functional (white Bear) fails to give a stable minimum for the structure Cu 10Zr 7(φ). We argue that the observed solid phases for the HS models of the Cu-Zr system are true thermodynamic stable phases and can be used as a reference system in perturbation calculations.« less
ERIC Educational Resources Information Center
Berenguer, Carmen; Miranda, Ana; Colomer, Carla; Baixauli, Inmaculada; Roselló, Belén
2018-01-01
Social difficulties are a key aspect of autism, but the intervening factors are still poorly understood. This study had two objectives: to compare the profile of ToM skills, executive functioning (EF), and pragmatic competence (PC) of children with high-functioning autism (HFA) and children with typical development (TD), and analyze their mediator…
NASA Astrophysics Data System (ADS)
Laflamme Janssen, Jonathan
This thesis studies the limitations of density functional theory. These limits are explored in the context of a traditional implementation using a plane waves basis set. First, we investigate the limit of the size of the systems that can be treated. Cutting edge methods that assess these limitations are then used to simulate nanoscale systems. More specifically, the grafting of bromophenyl molecules on the sidewall of carbon nanotubes is studied with these methods, as a better understanding of this procedure could have substantial impact on the electronic industry. Second, the limitations of the precision of density functional theory are explored. We begin with a quantitative study of the uncertainty of this method for the case of electron-phonon coupling calculations and find it to be substantially higher than what is widely presumed in the literature. The uncertainty on electronphonon coupling calculations is then explored within the G0W0 method, which is found to be a substantially more precise alternative. However, this method has the drawback of being severely limitated in the size of systems that can be computed. In the following, theoretical solutions to overcome these limitations are developed and presented. The increased performance and precision of the resulting implementation opens new possibilities for the study and design of materials, such as superconductors, polymers for organic photovoltaics and semiconductors. Keywords: Condensed matter physics, ab initio calculations, density functional theory, nanotechnology, carbon nanotubes, many-body perturbation theory, G0W0 method..
Alvarado, Omar; Jaña, Gonzalo; Delgado, Eduardo J
2012-08-01
In this study the formation of the lactyl-thiamin diphosphate intermediate (L-ThDP) is addressed using density functional theory calculations at X3LYP/6-31++G(d,p) level of theory. The study includes potential energy surface scans, transition state search, and intrinsic reaction coordinate calculations. Reactivity is analyzed in terms of Fukui functions. The results allow to conclude that the reaction leading to the formation of L-ThDP occurs via a concerted mechanism, and during the nucleophilic attack on the pyruvate molecule, the ylide is in its AP form. The calculated activation barrier for the reaction is 19.2 kcal/mol, in agreement with the experimental reported value.
Phase space explorations in time dependent density functional theory
NASA Astrophysics Data System (ADS)
Rajam, Aruna K.
Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.
A Domain-Specific Language for Discrete Mathematics
NASA Astrophysics Data System (ADS)
Jha, Rohit; Samuel, Alfy; Pawar, Ashmee; Kiruthika, M.
2013-05-01
This paper discusses a Domain Specific Language (DSL) that has been developed to enable implementation of concepts of discrete mathematics. A library of data types and functions provides functionality which is frequently required by users. Covering the areas of Mathematical Logic, Set Theory, Functions, Graph Theory, Number Theory, Linear Algebra and Combinatorics, the language's syntax is close to the actual notation used in the specific fields.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
NASA Astrophysics Data System (ADS)
Garwood, T.; Modine, N. A.; Krishna, S.
2017-03-01
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. Developing a procedure to accurately predict band gaps using hybrid density functional theory lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structures calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.
Electronic structure modeling of InAs/GaSb superlattices with hybrid density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garwood, Tristan; Modine, Normand A.; Krishna, S.
2016-12-18
The application of first-principles calculations holds promise for greatly improving our understanding of semiconductor superlattices. By developing a procedure to accurately predict band gaps using hybrid density functional theory, it lays the groundwork for future studies investigating more nuanced properties of these structures. Our approach allows a priori prediction of the properties of SLS structures using only the band gaps of the constituent materials. Furthermore, it should enable direct investigation of the effects of interface structure, e.g., intermixing or ordering at the interface, on SLS properties. In this paper, we present band gap data for various InAs/GaSb type-II superlattice structuresmore » calculated using the generalized Kohn-Sham formulation of density functional theory. A PBE0-type hybrid functional was used, and the portion of the exact exchange was tuned to fit the band gaps of the binary compounds InAs and GaSb with the best agreement to bulk experimental values obtained with 18% of the exact exchange. The heterostructures considered in this study are 6 monolayer (ML) InAs/6 ML GaSb, 8 ML InAs/8 ML GaSb and 10 ML InAs/10 ML GaSb with deviations from the experimental band gaps ranging from 3% to 11%.« less
Sharma, Shilpi; Woolfson, Lisa M; Hunter, Simon C
2014-04-01
Despite the well-documented success of cognitive restructuring techniques in the treatment of anxiety disorders, there is still little clarity on which cognitions underpin fear and anxiety in children with high-functioning autism spectrum disorder. This study examined whether certain cognitive appraisals, known to be associated with fear and anxiety in typically developing groups, may help explain these emotions in children with high-functioning autism spectrum disorder. It also investigated relations between these cognitive appraisals and theory of mind. Appraisals, fear and anxiety were assessed using a vignette approach in 22 children with high-functioning autism spectrum disorders and 22 typically developing children. The two groups differed significantly on all four appraisal types. Anxiety was negatively correlated with future expectancy and positively with problem-focused coping potential in the high-functioning autism spectrum disorder group but was not correlated with appraisals in the typically developing group. The two appraisals associated with fear were emotion-focused coping potential (in the high-functioning autism spectrum disorder group only) and self-accountability (in the typically developing group only). Linear regression analysis found that appraisals of emotion-focused coping potential, problem-focused coping potential and future expectancy were significant predictors of theory-of-mind ability in the high-functioning autism spectrum disorders group. These findings indicate that specific, problematic patterns of appraisal may characterise children with high-functioning autism spectrum disorders.
N-point functions in rolling tachyon background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokela, Niko; Keski-Vakkuri, Esko; Department of Physics, P.O. Box 64, FIN-00014, University of Helsinki
2009-04-15
We study n-point boundary correlation functions in timelike boundary Liouville theory, relevant for open string multiproduction by a decaying unstable D brane. We give an exact result for the one-point function of the tachyon vertex operator and show that it is consistent with a previously proposed relation to a conserved charge in string theory. We also discuss when the one-point amplitude vanishes. Using a straightforward perturbative expansion, we find an explicit expression for a tachyon n-point amplitude for all n, however the result is still a toy model. The calculation uses a new asymptotic approximation for Toeplitz determinants, derived bymore » relating the system to a Dyson gas at finite temperature.« less
Equal Area Logistic Estimation for Item Response Theory
NASA Astrophysics Data System (ADS)
Lo, Shih-Ching; Wang, Kuo-Chang; Chang, Hsin-Li
2009-08-01
Item response theory (IRT) models use logistic functions exclusively as item response functions (IRFs). Applications of IRT models require obtaining the set of values for logistic function parameters that best fit an empirical data set. However, success in obtaining such set of values does not guarantee that the constructs they represent actually exist, for the adequacy of a model is not sustained by the possibility of estimating parameters. In this study, an equal area based two-parameter logistic model estimation algorithm is proposed. Two theorems are given to prove that the results of the algorithm are equivalent to the results of fitting data by logistic model. Numerical results are presented to show the stability and accuracy of the algorithm.
Organism and artifact: Proper functions in Paley organisms.
Holm, Sune
2013-12-01
In this paper I assess the explanatory powers of theories of function in the context of products that may result from synthetic biology. The aim is not to develop a new theory of functions, but to assess existing theories of function in relation to a new kind of biological and artifactual entity that might be produced in the not-too-distant future by means of synthetic biology. The paper thus investigates how to conceive of the functional nature of living systems that are not the result of evolution by natural selection, or instantly generated by cosmic coincidence, but which are products of intelligent design. The paper argues that the aetiological theory of proper functions in organisms and artifacts is inadequate as an account of proper functions in such 'Paley organisms' and defends an alternative organisational approach. The paper ends by considering the implications of the discussion of biological function for questions about the interests and moral status of non-sentient organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.
Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng
2016-12-15
A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.
Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories.
Dong, Xi
2016-06-24
We develop a framework for studying the well-known universal term in the Rényi entropy for an arbitrary entangling region in four-dimensional conformal field theories that are holographically dual to gravitational theories. The shape dependence of the Rényi entropy S_{n} is described by two coefficients: f_{b}(n) for traceless extrinsic curvature deformations and f_{c}(n) for Weyl tensor deformations. We provide the first calculation of the coefficient f_{b}(n) in interacting theories by relating it to the stress tensor one-point function in a deformed hyperboloid background. The latter is then determined by a straightforward holographic calculation. Our results show that a previous conjecture f_{b}(n)=f_{c}(n), motivated by surprising evidence from a variety of free field theories and studies of conical defects, fails holographically.
Effects of temporal integration on the shape of visual backward masking functions.
Francis, Gregory; Cho, Yang Seok
2008-10-01
Many studies of cognition and perception use a visual mask to explore the dynamics of information processing of a target. Especially important in these applications is the time between the target and mask stimuli. A plot of some measure of target visibility against stimulus onset asynchrony is called a masking function, which can sometimes be monotonic increasing but other times is U-shaped. Theories of backward masking have long hypothesized that temporal integration of the target and mask influences properties of masking but have not connected the influence of integration with the shape of the masking function. With two experiments that vary the spatial properties of the target and mask, the authors provide evidence that temporal integration of the stimuli plays a critical role in determining the shape of the masking function. The resulting data both challenge current theories of backward masking and indicate what changes to the theories are needed to account for the new data. The authors further discuss the implication of the findings for uses of backward masking to explore other aspects of cognition.
Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong
2018-04-10
X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.
V-T theory for the self-intermediate scattering function in a monatomic liquid
NASA Astrophysics Data System (ADS)
Wallace, Duane C.; Chisolm, Eric D.; De Lorenzi-Venneri, Giulia
2017-02-01
In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t. Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t. V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govind, Niranjan; Sushko, Petr V.; Hess, Wayne P.
2009-03-05
We present a study of the electronic excitations in insulating materials using an embedded- cluster method. The excited states of the embedded cluster are studied systematically using time-dependent density functional theory (TDDFT) and high-level equation-of-motion coupled cluster (EOMCC) methods. In particular, we have used EOMCC models with singles and doubles (EOMCCSD) and two approaches which account for the e®ect of triply excited con¯gurations in non-iterative and iterative fashions. We present calculations of the lowest surface excitations of the well-studied potassium bromide (KBr) system and compare our results with experiment. The bulk-surface exciton shift is also calculated at the TDDFT levelmore » and compared with experiment.« less
Energy and enthalpy distribution functions for a few physical systems.
Wu, K L; Wei, J H; Lai, S K; Okabe, Y
2007-08-02
The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.
A Molecular Electron Density Theory Study of the Chemical Reactivity of Cis- and Trans-Resveratrol.
Frau, Juan; Muñoz, Francisco; Glossman-Mitnik, Daniel
2016-12-01
The chemical reactivity of resveratrol isomers with the potential to play a role as inhibitors of the nonenzymatic glycation of amino acids and proteins, both acting as antioxidants and as chelating agents for metallic ions such as Cu, Al and Fe, have been studied by resorting to the latest family of Minnesota density functionals. The chemical reactivity descriptors have been calculated through Molecular Electron Density Theory encompassing Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices, the dual descriptor f ( 2 ) ( r ) and the electrophilic and nucleophilic Parr functions. The validity of "Koopmans' theorem in DFT" has been assessed by means of a comparison between the descriptors calculated through vertical energy values and those arising from the HOMO and LUMO values.
Asmuruf, Frans A; Besley, Nicholas A
2008-08-14
The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.; Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333
We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1)more » GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.« less
Phalen, Peter L; Dimaggio, Giancarlo; Popolo, Raffaele; Lysaker, Paul H
2017-09-01
Despite the apparent relevance of persecutory delusions to social relationships, evidence linking these beliefs to social functioning has been inconsistent. In this study, we examined the hypothesis that theory of mind moderates the relationship between persecutory delusions and social functioning. 88 adults with schizophrenia or schizoaffective disorder were assessed concurrently for social functioning, severity of persecutory delusions, and two components of theory of mind: mental state decoding and mental state reasoning. Mental state decoding was assessed using the Eyes Test, mental state reasoning using the Hinting Task, and social functioning assessed with the Social Functioning Scale. Moderation effects were evaluated using linear models and the Johnson-Neyman procedure. Mental state reasoning was found to moderate the relationship between persecutory delusions and social functioning, controlling for overall psychopathology. For participants with reasoning scores in the bottom 78th percentile, persecutory delusions showed a significant negative relationship with social functioning. However, for those participants with mental state reasoning scores in the top 22nd percentile, more severe persecutory delusions were not significantly associated with worse social functioning. Mental state decoding was not a statistically significant moderator. Generalizability is limited as participants were generally men in later phases of illness. Mental state reasoning abilities may buffer the impact of persecutory delusions on social functioning, possibly by helping individuals avoid applying global beliefs of persecution to specific individuals or by allowing for the correction of paranoid inferences. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zhang, J.; Lang, X. Y.; Jiang, Q.
2018-07-01
A systematic density functional theory calculation has been carried out to study the effect of edge terminating of F and S elements with different edge natures on the structure and electronic properties of armchair stanene nanoribbons (ASnNRs). Moreover, the corresponding size (ribbon width Na) dependence on these properties is also considered. The energy gap was found to be oscillated as a function of Na and could be classified into three distinct groups of 3m, 3m + 1 and 3m + 2. In addition, the energy gaps of ASnNRs saturated by S atoms differ from that did by F and H atoms in vibration trends as well VBM and CBM changes, where the energy gap is a direct energy gap with a moderate size.
Stichter, Janine P; Herzog, Melissa J; Visovsky, Karen; Schmidt, Carla; Randolph, Jena; Schultz, Tia; Gage, Nicholas
2010-09-01
Individuals with high functioning autism (HFA) or Asperger Syndrome (AS) exhibit difficulties in the knowledge or correct performance of social skills. This subgroup's social difficulties appear to be associated with deficits in three social cognition processes: theory of mind, emotion recognition and executive functioning. The current study outlines the development and initial administration of the group-based Social Competence Intervention (SCI), which targeted these deficits using cognitive behavioral principles. Across 27 students age 11-14 with a HFA/AS diagnosis, results indicated significant improvement on parent reports of social skills and executive functioning. Participants evidenced significant growth on direct assessments measuring facial expression recognition, theory of mind and problem solving. SCI appears promising, however, larger samples and application in naturalistic settings are warranted.