Sample records for functionalized graphene sheets

  1. Interfacial Strength and Physical Properties of Functionalized Graphene - Epoxy Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Heimann, Paula; Scheiman, Daniel; Adamson, Douglas H.; Aksay, Iihan A.; Prud'homme, Robert K.

    2006-01-01

    The toughness and coefficient of thermal expansion of a series of functionalized graphene sheet - epoxy nanocomposites are investigated. Functionalized graphene sheets are produced by splitting graphite oxide into single graphene sheets through a rapid thermal expansion process. These graphene sheets contain approx. 10% oxygen due to the presence of hydroxide, epoxide, and carboxyl functional groups which assist in chemical bond formation with the epoxy matrix. Intrinsic surface functionality is used to graft alkyl amine chains on the graphene sheets, and the addition of excess hardener insures covalent bonding between the epoxide matrix and graphene sheets. Considerable improvement in the epoxy dimensional stability is obtained. An increase in nanocomposite toughness is observed in some cases.

  2. One-pot exfoliation, functionalization, and size manipulation of graphene sheets: efficient system for biomedical applications.

    PubMed

    Bani, Farhad; Bodaghi, Ali; Dadkhah, Abbas; Movahedi, Soodabeh; Bodaghabadi, Narges; Sadeghizadeh, Majid; Adeli, Mohsen

    2018-05-01

    In this work, we reported a facile method to produce stable aqueous graphene dispersion through direct exfoliation of graphite by modified hyperbranched polyglycerol. Size of graphene sheets was manipulated by simultaneous exfoliation and sonication of graphite, and functionalized graphene sheets with narrow size distribution were obtained. The polyglycerol-functionalized graphene sheets exhibited highly efficient cellular uptake and photothermal conversion, enabling it to serve as a photothermal agent for cancer therapy.

  3. Functionalized graphene sheets with poly(ionic liquid)s and high adsorption capacity of anionic dyes

    NASA Astrophysics Data System (ADS)

    Zhao, Weifeng; Tang, Yusheng; Xi, Jia; Kong, Jie

    2015-01-01

    Graphene sheets were covalently functionalized with poly(1-vinylimidazole) (PVI) type poly(ionic liquid), by utilizing a diazonium addition reaction and the subsequent grafting of PVI polymers onto the graphene sheet surface by a quaternarization reaction. The resultant modified graphene sheets showed improved dispersion property when being dissolved in DMF and ethanol. FTIR, XPS, XRD and TEM observations confirmed the success of the covalent functionalization, and thermogravimetric analysis revealed that the grafting ratio of PVI was ∼12 wt%. The obtained PVI-functionalized graphene showed a high capability for removing anionic dyes such as methyl blue (MB) from water solution. The experimental data of isotherm fitted well with the Langmuir adsorption model. The adsorption capacity of 1910 mg g-1 for methyl blue (MB) dye was observed for functionalized graphene sheets with poly(ionic liquid)s, which was higher than that of unmodified graphene. The high adsorption capacity observed in this study emphasizes that poly(ionic liquid)s-modified graphene materials have a great potential for water purification as they are highly efficient and stable adsorbents for sustainability.

  4. Functionalization of surfactant wrapped graphenenanosheets with alkylazides for enhanced dispersibility

    NASA Astrophysics Data System (ADS)

    Vadukumpully, Sajini; Gupta, Jhinuk; Zhang, Yongping; Xu, Guo Qin; Valiyaveettil, Suresh

    2011-01-01

    A facile and simple approach for the covalent functionalization of surfactant wrapped graphene sheets is described. The approach involves functionalization of dispersible graphene sheets with various alkylazides and 11-azidoundecanoic acid proved the best azide for enhanced dispersibility. The functionalization was confirmed by infrared spectroscopy and scanning tunneling microscopy. The free carboxylic acidgroups can bind to gold nanoparticles, which were introduced as markers for the reactive sites. The interaction between gold nanoparticles and the graphene sheets was followed by UV-vis spectroscopy. The gold nanoparticle-graphene composite was characterized by transmission electron microscopy and atomic force microscopy, demonstrating the uniform distribution of gold nanoparticles all over the surface. Our results open the possibility to control the functionalization on graphene in the construction of composite nanomaterials.A facile and simple approach for the covalent functionalization of surfactant wrapped graphene sheets is described. The approach involves functionalization of dispersible graphene sheets with various alkylazides and 11-azidoundecanoic acid proved the best azide for enhanced dispersibility. The functionalization was confirmed by infrared spectroscopy and scanning tunneling microscopy. The free carboxylic acidgroups can bind to gold nanoparticles, which were introduced as markers for the reactive sites. The interaction between gold nanoparticles and the graphene sheets was followed by UV-vis spectroscopy. The gold nanoparticle-graphene composite was characterized by transmission electron microscopy and atomic force microscopy, demonstrating the uniform distribution of gold nanoparticles all over the surface. Our results open the possibility to control the functionalization on graphene in the construction of composite nanomaterials. Electronic Supplementary Information (ESI) available: Synthesis and characterization details of dodecylazide, hexylazide, 11-azidoundecanol (AUO), micrographs (SEM and TEM images) of the various azide functionalized samples and the statistical analysis of the graphene thickness. See 10.1039/c0nr00547a.

  5. Nitrotyrosine adsorption on defective graphene: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Majidi, R.; Karami, A. R.

    2015-06-01

    We have applied density functional theory to study adsorption of nitrotyrosine on perfect and defective graphene sheets. The graphene sheets with Stone-Wales (SW) defect, pentagon-nonagon (5-9) single vacancy, and pentagon-octagon-pentagon (5-8-5) double vacancy were considered. The calculations of adsorption energy showed that nitrotyrosine presents a more strong interaction with defective graphene rather than with perfect graphene sheet. The order of interaction strength is: SW>5-9>5-8-5>perfect graphene. It is found that the electronic properties of perfect and defective graphene are sensitive to the presence of nitrotyrosine. Hence, graphene sheets can be considered as a good sensor for detection of nitrotyrosine molecule which is observed in connection with several human disorders, such as Parkinson's and Alzheimer's disease.

  6. Electronic properties of T graphene-like C-BN sheets: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Majidi, R.

    2015-11-01

    We have used density functional theory to study the electronic properties of T graphene-like C, C-BN and BN sheets. The planar T graphene with metallic property has been considered. The results show that the presence of BN has a considerable effect on the electronic properties of T graphene. The T graphene-like C-BN and BN sheets show semiconducting properties. The energy band gap is increased by enhancing the number of BN units. The possibility of opening and controlling band gap opens the door for T graphene in switchable electronic devices.

  7. Interlayer interaction and mechanical properties in multi-layer graphene, Boron-Nitride, Aluminum-Nitride and Gallium-Nitride graphene-like structure: A quantum-mechanical DFT study

    NASA Astrophysics Data System (ADS)

    Ghorbanzadeh Ahangari, Morteza; Fereidoon, A.; Hamed Mashhadzadeh, Amin

    2017-12-01

    In present study, we investigated mechanical, electronic and interlayer properties of mono, bi and 3layer of Boron-Nitride (B-N), Aluminum-Nitride (Al-N) and Gallium-Nitride (Ga-N) graphene sheets and compared these results with results obtained from carbonic graphenes (C-graphenes). For reaching this purpose, first we optimized the geometrical parameters of these graphenes by using density functional theory (DFT) method. Then we calculated Young's modulus of graphene sheet by compressing and then elongating these sheets in small increment. Our results indicates that Young's modulus of graphenes didn't changed obviously by increasing the number of layer sheet. We also found that carbonic graphene has greatest Young's modulus among another mentioned sheets because of smallest equilibrium distance between its elements. Next we modeled the van der Waals interfacial interaction exist between two sheets with classical spring model by using general form of Lennard-Jones (L-J) potential for all of mentioned graphenes. For calculating L-J parameters (ε and σ), the potential energy between layers of mentioned graphene as a function of the separation distance was plotted. Moreover, the density of states (DOS) are calculated to understand the electronic properties of these systems better.

  8. Positive lithiation potential on functionalized Graphene sheets

    NASA Astrophysics Data System (ADS)

    Chouhan, Rajiv Kumar; Raghani, Pushpa

    2015-03-01

    Designing lithium batteries with high capacities is major challenge in the field of energy storage. As an alternative to the conventional graphitic anode with a capacity of ~372 mAhg-1 , we look at the adsorption of lithium on 2D graphene oxide (GO) sheets. We have included van-der-waal's interaction in our calculation and compared with literature showing its importance in Li binding on Graphene sheets. In comparison to the negative lithiation potential in prestine graphene sheets, we were able to get positive lithiation potential by introducing functional groups such as epoxy(-O-) and hydroxyl(-OH) on graphene. Also the non-stoichiometic nature of GO provides better potential to increase the lithiation potential in compare to the defects induced graphene 2D sheet. Dramatic charge redistribution within the sheet due to presence of highly electronegative oxygen plays an important role in increasing the capacity. Financial support from Research Corporation's Cottrell College Science award and National Science Foundation's CAREER award (DMR-1255584). Computational facilities provided by HPC center of Idaho National Laboratory.

  9. Role of oxygen functional groups in reduced graphene oxide for lubrication

    PubMed Central

    Gupta, Bhavana; Kumar, Niranjan; Panda, Kalpataru; Kanan, Vigneshwaran; Joshi, Shailesh; Visoly-Fisher, Iris

    2017-01-01

    Functionalized and fully characterized graphene-based lubricant additives are potential 2D materials for energy-efficient tribological applications in machine elements, especially at macroscopic contacts. Two different reduced graphene oxide (rGO) derivatives, terminated by hydroxyl and epoxy-hydroxyl groups, were prepared and blended with two different molecular weights of polyethylene glycol (PEG) for tribological investigation. Epoxy-hydroxyl-terminated rGO dispersed in PEG showed significantly smaller values of the friction coefficient. In this condition, PEG chains intercalate between the functionalized graphene sheets, and shear can take place between the PEG and rGO sheets. However, the friction coefficient was unaffected when hydroxyl-terminated rGO was coupled with PEG. This can be explained by the strong coupling between graphene sheets through hydroxyl units, causing the interaction of PEG with the rGO to be non- effective for lubrication. On the other hand, antiwear properties of hydroxyl-terminated rGO were significantly enhanced compared to epoxy-hydroxyl functionalized rGO due to the integrity of graphene sheet clusters. PMID:28344337

  10. Functionalized graphene sheets for polymer nanocomposites.

    PubMed

    Ramanathan, T; Abdala, A A; Stankovich, S; Dikin, D A; Herrera-Alonso, M; Piner, R D; Adamson, D H; Schniepp, H C; Chen, X; Ruoff, R S; Nguyen, S T; Aksay, I A; Prud'Homme, R K; Brinson, L C

    2008-06-01

    Polymer-based composites were heralded in the 1960s as a new paradigm for materials. By dispersing strong, highly stiff fibres in a polymer matrix, high-performance lightweight composites could be developed and tailored to individual applications. Today we stand at a similar threshold in the realm of polymer nanocomposites with the promise of strong, durable, multifunctional materials with low nanofiller content. However, the cost of nanoparticles, their availability and the challenges that remain to achieve good dispersion pose significant obstacles to these goals. Here, we report the creation of polymer nanocomposites with functionalized graphene sheets, which overcome these obstacles and provide superb polymer-particle interactions. An unprecedented shift in glass transition temperature of over 40 degrees C is obtained for poly(acrylonitrile) at 1 wt% functionalized graphene sheet, and with only 0.05 wt% functionalized graphene sheet in poly(methyl methacrylate) there is an improvement of nearly 30 degrees C. Modulus, ultimate strength and thermal stability follow a similar trend, with values for functionalized graphene sheet- poly(methyl methacrylate) rivaling those for single-walled carbon nanotube-poly(methyl methacrylate) composites.

  11. Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets

    PubMed Central

    Chiang, Yu-Chun; Liang, Chia-Chun; Chung, Chun-Ping

    2015-01-01

    Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt) nanoparticles were deposited on oxidized graphene sheets (cG). The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%). The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA) was 88 m2/g (Pt/cG), much higher than that of Pt/C (46 m2/g). The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33%) > Pt/cG (7%). The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C. PMID:28793577

  12. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    USDA-ARS?s Scientific Manuscript database

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  13. Graphene-Based Functional Architectures: Sheets Regulation and Macrostructure Construction toward Actuators and Power Generators.

    PubMed

    Cheng, Huhu; Huang, Yaxin; Shi, Gaoquan; Jiang, Lan; Qu, Liangti

    2017-07-18

    Graphene, with large delocalized π electron cloud on a two-dimensional (2D) atom-thin plane, possesses excellent carrier mobility, large surface area, high light transparency, high mechanical strength, and superior flexibility. However, the lack of intrinsic band gap, poor dispersibility, and weak reactivity of graphene hinder its application scope. Heteroatom-doping regulation and surface modification of graphene can effectively reconstruct the sp 2 bonded carbon atoms and tailor the surface chemistry and interfacial interaction, while microstructure mediation on graphene can induce the special chemical and physical properties because of the quantum confinement, edge effect, and unusual mass transport process. Based on these regulations on graphene, series of methods and techniques are developed to couple the promising characters of graphene into the macroscopic architectures for potential and practical applications. In this Account, we present our effort on graphene regulation from chemical modification to microstructure control, from the morphology-designed macroassemblies to their applications in functional systems excluding the energy-storage devices. We first introduce the chemically regulative graphene with incorporated heteroatoms into the honeycomb lattice, which could open the intrinsic band gap and provide many active sites. Then the surface modification of graphene with functional components will improve dispersibility, prevent aggregation, and introduce new functions. On the other hand, microstructure mediation on graphene sheets (e.g., 0D quantum dots, 1D nanoribbons, and 2D nanomeshes) is demonstrated to induce special chemical and physical properties. Benefiting from the effective regulation on graphene sheets, diverse methods including dimension-confined strategy, filtration assembly, and hydrothermal treatment have been developed to assemble individual graphene sheets to macroscopic graphene fibers, films, and frameworks. These rationally regulated graphene sheets and well-constructed assemblies present promising applications in energy-conversion materials and device systems focusing on actuators that can convert different energy forms (e.g., electric, chemical, photonic, thermal, etc.) to mechanical actuation and electrical generators that can directly transform environmental energy to electric power. These results reveal that graphene sheets with surface chemistry and microstructure regulations as well as their rationally designed assemblies provide a promising and abundant platform for development of diverse functional devices. We hope that this Account will promote further efforts toward fundamental research on graphene regulation and the wide applications of advanced designed assemblies in new types of energy-conversion materials/devices and beyond.

  14. Soluble Graphene Nanosheets from Recycled Graphite of Spent Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Liangliang; Liu, Xiya; Wan, Chuanyun; Ye, Xiangrong; Wu, Fanhong

    2018-02-01

    Soluble graphene nanosheets are fabricated from recycled graphite of spent lithium ion batteries through a modified Hammers process followed by deoxygenation with NaOH-KOH eutectic. Ultrasonic exfoliation in N-methyl-pyrrolidone indicates the loosened graphene layers in recycled graphite are prone to exfoliation. Reduction of the exfoliated graphene oxide sheets was conducted in molten NaOH-KOH eutectic at different temperatures. The results show that molten NaOH-KOH effectively eliminates the unsaturated oxygen-containing moieties from the exfoliated graphene oxide sheets while creating more hydroxyl functional groups. Higher temperature treatment is more prone to remove hydroxyls while producing the shrinkage on the surface of graphene sheets. Graphene sheet with a good solubility is produced when the graphene oxide is heat-treated at 220 °C for 10 h. After reduction, the graphene oxide sheets exhibit excellent dispersibility or solubility in water, ethanol and other polar solvents, therefore being highly desirable for solution processing of graphene materials. Such study not only identifies a high-quality stockpile to prepare soluble graphene but also paves a feasible alternative of graphite recycling from spent lithium batteries.

  15. Fabrication of selectively functionalized-graphene reinforced copper phthalocyanine nanocomposites with low dielectric loss and high dielectric constant

    NASA Astrophysics Data System (ADS)

    Wang, Zicheng; Wei, Renbo; Liu, Xiaobo

    2017-01-01

    A novel kind of selectively functionalized-graphene reinforced copper phthalocyanine (RGO-O-CuPc) nanocomposites was successfully fabricated through a facile and effective three-step method, involving preferential surficial modification and reduction of graphene oxide (GO) sheets, and followed by incorporating with CuPc via in situ polymerization. The results of SEM, AFM, XPS, FTIR, XRD and UV-vis confirmed that GO was effectively surficial functionalized by a ring-open covalent reaction between amino in 3-aminophenoxyphthalonitrile (3-APN) and epoxy groups on the GO sheets, and partly reduced back to graphene under solvothermal conditions. And the RGO-O-CuPc was successfully fabricated by self-assembling of CuPc molecule on graphene sheets via in situ polymerization. As a consequence, the selective surface functionalization and solvothermal reduction of GO facilitated the improvement in the dielectric constant and AC conductivity, and the decrease in the dielectric loss of the graphene/CuPc nanocomposites.

  16. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.

    PubMed

    Xu, Yuxi; Shi, Gaoquan; Duan, Xiangfeng

    2015-06-16

    Graphene and its derivatives are versatile building blocks for bottom-up assembly of advanced functional materials. In particular, with exceptionally large specific surface area, excellent electrical conductivity, and superior chemical/electrochemical stability, graphene represents the ideal material for various electrochemical energy storage devices including supercapacitors. However, due to the strong π-π interaction between graphene sheets, the graphene flakes tend to restack to form graphite-like powders when they are processed into practical electrode materials, which can greatly reduce the specific surface area and lead to inefficient utilization of the graphene layers for electrochemical energy storage. The self-assembly of two-dimensional graphene sheets into three-dimensional (3D) framework structures can largely retain the unique properties of individual graphene sheets and has recently garnered intense interest for fundamental investigations and potential applications in diverse technologies. In this Account, we review the recent advances in preparing 3D graphene macrostructures and exploring them as a unique platform for supercapacitor applications. We first describe the synthetic strategies, in which reduction of a graphene oxide dispersion above a certain critical concentration can induce the reduced graphene oxide sheets to cross-link with each other via partial π-π stacking interactions to form a 3D interconnected porous macrostructure. Multiple reduction strategies, including hydrothermal/solvothermal reduction, chemical reduction, and electrochemical reduction, have been developed for the preparation of 3D graphene macrostructures. The versatile synthetic strategies allow for easy incorporation of heteroatoms, carbon nanomaterials, functional polymers, and inorganic nanostructures into the macrostructures to yield diverse composites with tailored structures and properties. We then summarize the applications of the 3D graphene macrostructures for high-performance supercapacitors. With a unique framework structure in which the graphene sheets are interlocked in 3D space to prevent their restacking, the graphene macrostructures feature very high specific surface areas, rapid electron and ion transport, and superior mechanical strength. They can thus be directly used as supercapacitor electrodes with excellent specific capacitances, rate capabilities, and cycling stabilities. We finally discuss the current challenges and future opportunities in this research field. By regarding the graphene as both a single-atom-thick carbon sheet and a conjugated macromolecule, our work opens a new avenue to bottom-up self-assembly of graphene macromolecule sheets into functional 3D graphene macrostructures with remarkable electrochemical performances. We hope that this Account will promote further efforts toward fundamental investigation of graphene self-assembly and the development of advanced 3D graphene materials for their real-world applications in electrochemical energy storage devices and beyond.

  17. A molecular dynamics study on the interaction between epoxy and functionalized graphene sheets

    NASA Astrophysics Data System (ADS)

    Melro, L. S.; Pyrz, R.; Jensen, L. R.

    2016-07-01

    The interaction between graphene and epoxy resin was studied using molecular dynamics simulations. The interfacial shear strength and pull out force were calculated for functionalised graphene layers (carboxyl, carbonyl, and hydroxyl) and epoxy composites interfaces. The influence of functional groups, as well as their distribution and coverage density on the graphene sheets were also analysed through the determination of the Young's modulus. Functionalisation proved to be detrimental to the mechanical properties, nonetheless according to interfacial studies the interaction between graphene and epoxy resin increases.

  18. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    PubMed

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  19. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study

    PubMed Central

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-01-01

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system. PMID:28880207

  20. Atomistic simulation of graphene-based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis

    2016-05-01

    Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.

  1. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  2. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE PAGES

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; ...

    2016-12-16

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  3. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings

    NASA Astrophysics Data System (ADS)

    Ding, Jiheng; Rahman, Obaid ur; Peng, Wanjun; Dou, Huimin; Yu, Haibin

    2018-01-01

    Herein, we report the synthesis of a novel hydroxyl epoxy phosphate monomer (PGHEP) as an efficient dispersant for graphene to enhance the compatibility of the graphene in epoxy resin. Raman spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS) studies were confirmed the π-π interactions between PGHEP and graphene. Well-dispersed states of PGHEP functionalized graphene (G) sheets in water were analyzed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Further, microstructure of prepared G/waterborne epoxy coatings containing 0.5-1.0 wt.% of PGHEP functionalized G sheets were also observed with the help of SEM and TEM. The PGHEP functionalized G sheets dispersed composite coatings displayed enhanced corrosion resistance compared with pure epoxy resin, these coatings have higher contact angle, lower water absorption as evident from the results of electrochemical impedance spectroscopy (EIS) and salt spray tests. The superior corrosion protection performances of G/epoxy coatings were mainly attributed to the formed passive film from uniformly dispersed PGHEP functionalized G sheets which act as physical barrier on the steel surface. Therefore, this work provides a novel bio-based efficient dispersant for G sheets and an important method for preparing G/waterborne epoxy coatings with superior corrosion resistance properties.

  4. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking.

    PubMed

    Park, Sungjin; Lee, Kyoung-Seok; Bozoklu, Gulay; Cai, Weiwei; Nguyen, Sonbinh T; Ruoff, Rodney S

    2008-03-01

    Significant enhancement in mechanical stiffness (10-200%) and fracture strength (approximately 50%) of graphene oxide paper, a novel paperlike material made from individual graphene oxide sheets, can be achieved upon modification with a small amount (less than 1 wt %) of Mg(2+) and Ca(2+). These results can be readily rationalized in terms of the chemical interactions between the functional groups of the graphene oxide sheets and the divalent metals ions. While oxygen functional groups on the basal planes of the sheets and the carboxylate groups on the edges can both bond to Mg(2+) and Ca(2+), the main contribution to mechanical enhancement of the paper comes from the latter.

  5. Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism.

    PubMed

    Lazar, Petr; Chua, Chun Kiang; Holá, Kateřina; Zbořil, Radek; Otyepka, Michal; Pumera, Martin

    2015-08-01

    Halogen functionalization of graphene is an important branch of graphene research as it provides opportunities to tailor the band gap and catalytic properties of graphene. Monovalent C-X bond obviates pitfalls of functionalization with atoms of groups 13, 15, and 16, which can introduce various poorly defined groups. Here, the preparation of functionalized graphene containing both fluorine and chlorine atoms is shown. The starting material, fluorographite, undergoes a reaction with dichlorocarbene to provide dichlorocarbene-functionalized fluorographene (DCC-FG). The material is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and high-resolution transmission electron microscopy with X-ray dispersive spectroscopy. It is found that the chlorine atoms in DCC-FG are distributed homogeneously over the entire area of the fluorographene sheet. Further density functional theory calculations show that the mechanism of dichlorocarbene attack on fluorographene sheet is a two-step process. Dichlorocarbene detaches fluorine atoms from fluorographene sheet and subsequently adds to the newly formed sp(2) carbons. Halogenated graphene consisting of two (or eventually three) types of halogen atoms is envisioned to find its way as new graphene materials with tailored properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Functionalization of graphene for efficient energy conversion and storage.

    PubMed

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious application of these site-selective reactions to graphene sheets has opened up a rich field of graphene-based energy materials with enhanced performance in energy conversion and storage. These results reveal the versatility of surface functionalization for making sophisticated graphene materials for energy applications. Even though many covalent and noncovalent functionalization methods have already been reported, vast opportunities remain for developing novel graphene materials for highly efficient energy conversion and storage systems.

  7. Functionalised graphene sheets as effective high dielectric constant fillers

    PubMed Central

    2011-01-01

    A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn PMID:21867505

  8. Functionalised graphene sheets as effective high dielectric constant fillers

    NASA Astrophysics Data System (ADS)

    Romasanta, Laura J.; Hernández, Marianella; López-Manchado, Miguel A.; Verdejo, Raquel

    2011-08-01

    A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn

  9. Investigation on the electrochemical interfacial properties of 2-aminothiophenol functionalized graphene oxide modified electrode

    NASA Astrophysics Data System (ADS)

    Immanuel, Susan; Aparna T., K.; Sivasubramanian, R.

    2018-04-01

    In this paper the interfacial behavior of graphene oxide and 2-aminothiophenol functionalized graphene oxide was investigated by electrochemical method. The GO was prepared by modified Hummers method and the 2-aminothiophenol was covalently attached on the surface of GO sheets. The electrochemical properties were investigated using a redox couple and the electrokinetic parameter was inferred. It was found that the ATP-GO exhibited slow kinetics compared to GO due to the increased deformation of GO sheets after ATP functionalization.

  10. Tuning the tunneling magnetoresistance by using fluorinated graphene in graphene based magnetic junctions

    NASA Astrophysics Data System (ADS)

    Meena, Shweta; Choudhary, Sudhanshu

    2017-12-01

    Spin polarized properties of fluorinated graphene as tunnel barrier with CrO2 as two HMF electrodes are studied using first principle methods based on density functional theory. Fluorinated graphene with different fluorine coverages is explored as tunnel barriers in magnetic tunnel junctions. Density functional computation for different fluorine coverages imply that with increase in fluorine coverages, there is increase in band gap (Eg) of graphene, Eg ˜ 3.466 e V was observed when graphene sheet is fluorine adsorbed on both-side with 100% coverage (CF). The results of CF graphene are compared with C4F (fluorination on one-side of graphene sheet with 25% coverage) and out-of-plane graphene based magnetic tunnel junctions. On comparison of the results it is observed that CF graphene based structure offers high TMR ˜100%, and the transport of carrier is through tunneling as there are no transmission states near Fermi level. This suggests that graphene sheet with both-side fluorination with 100% coverages acts as a perfect insulator and hence a better barrier to the carriers which is due to negligible spin down current (I ↓ ) in both Parallel Configuration (PC) and Antiparallel Configuration (APC).

  11. Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl5 Intercalation.

    PubMed

    Kinoshita, Hiroki; Jeon, Il; Maruyama, Mina; Kawahara, Kenji; Terao, Yuri; Ding, Dong; Matsumoto, Rika; Matsuo, Yutaka; Okada, Susumu; Ago, Hiroki

    2017-11-01

    Bilayer graphene (BLG) comprises a 2D nanospace sandwiched by two parallel graphene sheets that can be used to intercalate molecules or ions for attaining novel functionalities. However, intercalation is mostly demonstrated with small, exfoliated graphene flakes. This study demonstrates intercalation of molybdenum chloride (MoCl 5 ) into a large-area, uniform BLG sheet, which is grown by chemical vapor deposition (CVD). This study reveals that the degree of MoCl 5 intercalation strongly depends on the stacking order of the graphene; twist-stacked graphene shows a much higher degree of intercalation than AB-stacked. Density functional theory calculations suggest that weak interlayer coupling in the twist-stacked graphene contributes to the effective intercalation. By selectively synthesizing twist-rich BLG films through control of the CVD conditions, low sheet resistance (83 Ω ▫ -1 ) is realized after MoCl 5 intercalation, while maintaining high optical transmittance (≈95%). The low sheet resistance state is relatively stable in air for more than three months. Furthermore, the intercalated BLG film is applied to organic solar cells, realizing a high power conversion efficiency. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Scalable synthesis of Fe₃O₄ nanoparticles anchored on graphene as a high-performance anode for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yu Cheng; Center of Super-Diamond and Advanced Films; Ma, Ru Guang

    2013-05-01

    We report a scalable strategy to synthesize Fe₃O₄/graphene nanocomposites as a high-performance anode material for lithium ion batteries. In this study, ferric citrate is used as precursor to prepare Fe₃O₄ nanoparticles without introducing additional reducing agent; furthermore and show that such Fe₃O₄ nanoparticles can be anchored on graphene sheets which attributed to multifunctional group effect of citrate. Electrochemical characterization of the Fe₃O₄/graphene nanocomposites exhibit large reversible capacity (~1347 mA h g⁻¹ at a current density of 0.2 C up to 100 cycles, and subsequent capacity of ~619 mA h g⁻¹ at a current density of 2 C up to 200more » cycles), as well as high coulombic efficiency (~97%), excellent rate capability, and good cyclic stability. High resolution transmission electron microscopy confirms that Fe₃O₄ nanoparticles, with a size of ~4–16 nm are densely anchored on thin graphene sheets, resulting in large synergetic effects between Fe₃O₄ nanoparticles and graphene sheets with high electrochemical performance. - Graphical abstract: The reduction of Fe³⁺ to Fe²⁺ and the deposition of Fe₃O₄ on graphene sheets occur simultaneously using citrate function as reductant and anchor agent in this reaction process. Highlights: • Fe₃O₄/graphene composites are synthesized directly from graphene and C₆H₅FeO₇. • The citrate function as reductant and anchor agent in this reaction process. • The resulting Fe₃O₄ particles (~4–16 nm) are densely anchored on graphene sheets. • The prepared Fe₃O₄/graphene composites exhibit excellent electrochemical performance.« less

  13. Graphene production by laser shot on graphene oxide: An ab initio prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Miyamoto, Yoshiyuki

    2012-01-01

    By performing the first-principles simulation of electron-ion dynamics based on the time-dependent density-functional theory, we propose a way to produce graphene from graphene oxides by means of the laser-induced reduction without using chemical species. Epoxy and hydroxyl groups on graphene sheets can be completely removed upon irradiation with femtosecond laser without damaging the graphene sheet. By comparing the simulated results with different pulse shapes and intensities, optimum conditions of the femtosecond laser for reduction of graphene oxide were determined. The current works will be useful for further experimental researches.

  14. A first-principles study on adsorption behaviors of pristine and Li-decorated graphene sheets toward hydrazine molecules

    NASA Astrophysics Data System (ADS)

    Zeng, Huadong; Cheng, Xinlu; Wang, Wei

    2018-03-01

    The adsorption behaviors and properties of hydrazine (N2H4) molecules on pristine and Li-decorated graphene sheets were investigated by means of first-principles based on density functional theory. We systematically analyzed the optimal geometry, average binding energy, charge transfer, charge density difference and density of states of N2H4 molecules adsorbed on pristine and Li-decorated graphene sheets. It is found that the interaction between single N2H4 molecule and pristine graphene is weak physisorption with the low binding energy of -0.026 eV, suggesting that the pristine graphene sheet is insensitive to the presence of N2H4 molecule. However, it is markedly enhanced after lithium decoration with the high binding energy of -1.004 eV, verifying that the Li-decorated graphene sheet is significantly sensitive to detect N2H4 molecule. Meanwhile, the effects of the concentrations of N2H4 molecules on two different substrates were studied detailedly. For pristine graphene substrate, the average binding energy augments apparently with increasing the number of N2H4 molecules, which is mainly attributed to the van der Waals interactions and hydrogen bonds among N2H4 clusters. Li-decorated graphene sheet has still a strong affinity to N2H4 molecules despite the corresponding average binding energy emerges a contrary tendency. Overall, Li-decorated graphene sheet could be considered as a potential gas sensor in field of hydrazine molecules.

  15. Synergistic effect of temperature and point defect on the mechanical properties of single layer and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Debroy, Sanghamitra; Pavan Kumar, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2017-10-01

    The present study reports a comprehensive molecular dynamics simulation of the effect of a) temperature (300-1073 K at intervals of every 100 K) and b) point defect on the mechanical behaviour of single (armchair and zigzag direction) and bilayer layer graphene (AA and AB stacking). Adaptive intermolecular reactive bond order (AIREBO) potential function was used to describe the many-body short-range interatomic interactions for the single layer graphene sheet. Moreover, Lennard Jones model was considered for bilayer graphene to incorporate the van der Waals interactions among the interlayers of graphene. The effect of temperature on the strain energy of single layer and bilayer graphene was studied in order to understand the difference in mechanical behaviour of the two systems. The strength of the pristine single layer graphene was found to be higher as compared to bilayer AA stacked graphene at all temperatures. It was observed at 1073 K and in the presence of vacancy defect the strength for single layer armchair sheet falls by 30% and for bilayer armchair sheet by 33% as compared to the pristine sheets at 300 K. The AB stacked graphene sheet was found to have a two-step rupture process. The strength of pristine AB sheet was found to decrease by 22% on increase of temperature from 300 K to 1073 K.

  16. Self-enhanced catalytic activities of functionalized graphene sheets in the combustion of nitromethane: molecular dynamic simulations by molecular reactive force field.

    PubMed

    Zhang, Chaoyang; Wen, Yushi; Xue, Xianggui

    2014-08-13

    Functionalized graphene sheet (FGS) is a promising additive that enhances fuel/propellant combustion, and the determination of its mechanism has attracted much interest. In the present study, a series of molecular dynamic simulations based on a reactive force field (ReaxFF) are performed to explore the catalytic activity (CA) of FGS in the thermal decay of nitromethane (NM, CH3NO2). FGSs and pristine graphene sheets (GSs) are oxidized in hot NM liquid to increase their functionalities and subsequently show self-enhanced CAs during the decay. The CAs result from the interatomic exchanges between the functional groups on the sheets and the NM liquid, i.e., mainly between H and O atoms. CA is dependent on the density of NM, functionalities of sheets, and temperature. The GSs and FGSs that originally exhibit different functionalities tend to possess similar functionalities and consequently similar CAs as temperature increases. Other carbon materials and their oxides can accelerate combustion of other fuels/propellants similar to NM, provided that they can be dispersed and their key reaction steps in combustion are similar to NM.

  17. A first principle study of graphene functionalized with hydroxyl, nitrile, or methyl groups

    NASA Astrophysics Data System (ADS)

    Barhoumi, M.; Rocca, D.; Said, M.; Lebègue, S.

    2017-01-01

    By means of ab initio calculations, we study the functionalization of graphene by different chemical groups such as hydroxyl, nitrile, or methyl. Two extreme cases of functionalization are considered: a single group on a supercell of graphene and a sheet of graphene fully functionalized. Once the equilibrium geometry is obtained by density functional theory, we found that the systems are metallic when a single group is attached to the sheet of graphene. With the exception of the nitrile functionalized boat configuration, a large bandgap is obtained at full coverage. Specifically, by using the GW approximation, our calculated bandgaps are direct and range between 5.0 and 5.5 eV for different configurations of hydroxyl functionalized graphene. An indirect GW bandgap of 6.50 eV was found in nitrile functionalized graphene while the methyl group functionalization leads to a direct bandgap with a value of 4.50 eV. Since in the two limiting cases of minimal and full coverage, the electronic structure changes drastically from a metal to a wide bandgap semiconductor, a series of intermediate states might be expected by tuning the amount of functionalization with these different groups.

  18. Solution processible MoOx-incorporated graphene anode for efficient polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Dongchan; Kim, Donghyuk; Lee, Yonghee; Jeon, Duk Young

    2017-06-01

    Graphene has attracted great attention owing to its superb properties as an anode of organic or polymer light-emitting diodes (OLEDs or PLEDs). However, there are still barriers for graphene to replace existing indium tin oxide (ITO) due to relatively high sheet resistance and work function mismatch. In this study, PLEDs using molybdenum oxide (MoOx) nanoparticle-doped graphene are demonstrated on a plastic substrate to have a low sheet resistance and high work function. Also, this work shows how the doping amount influences the electronic properties of the graphene anode and the PLED performance. A facile and scalable spin coating process was used for doping graphene with MoOx. After doping, the sheet resistance and the optical transmittance of five-layer graphene were ˜180 Ω sq-1 and ˜88%, respectively. Moreover, the surface roughness of MoOx-doped graphene becomes smoother than that of pristine graphene. Furthermore, a nonlinear relationship was observed between the MoOx doping level and device performance. Therefore, a modified stacking structure of graphene electrode is presented to further enhance device performance. The maximum external quantum efficiency (EQE) and power efficiency of the PLED using the MoOx-doped graphene anode were 4.7% and 13.3 lm W-1, respectively. The MoOx-doped graphene anode showed enhanced device performance (261% for maximum EQE, 255% for maximum power efficiency) compared with the pristine graphene.

  19. AB INITIO STUDY OF THE ELECTRONIC AND MAGNETIC PROPERTIES OF GRAPHENE WITH AND WITHOUT ADSORPTION OF M ATOM (M = C, N, O, F, Cl)

    NASA Astrophysics Data System (ADS)

    Ismail, Ali I.; Mubarak, A. A.

    We present here an ab initio study for the energetic, electronic, magnetic and optical structures of the graphene sheet with and without the adsorption of M atom (M = C, N, O, F, Cl). The calculations are preformed using the full-potential linearized augmented plane wave (FP-LAPW) within the generalized gradient approximation (GGA) to describe the exchange-correlation potential. The calculations show that N prefers the bridge site, while C, O, F and Cl prefer the top site above the graphene sheet. The calculated M-graphene bond length is found to be inversely proportional to the adsorption energy. The hybridization between sp-states of the graphene sheet and M adatom is determined by the analysis of the partial and local density of states (PDOS and TDOS). In case of O and F as adsorbed atoms, graphene sheets show a wide energy band-gap and some significant magnetic moments. The optical properties of the studied sheets are performed in different radiation regions using the real and imaginary parts of the dielectric function. We think that the energetic, electronic, optical and magnetic properties of the M-graphene sheets are governed by two main factors; the number of unpaired valence electrons and the electronegativity of the M atom.

  20. Modified Unzipping Technique to Prepare Graphene Nano-Sheets

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, B. H.; Farid, S. B. H.; Chyad, F. A.

    2018-05-01

    Graphene nano-sheets have been prepared via unzipping approach of multiwall carbon nanotubes (MWCNTs). The method includes two chemical-steps, in which a multi-parameter oxidation step is performed to achieve unzipping the carbon nanotubes. Then, a reduction step is carried out to achieve the final graphene nano-sheets. In the oxidation step, the oxidant material was minimized and balanced with longer curing time. This modification is made in order to reduce the oxygen-functional groups at the ends of graphene basal planes, which reduce its electrical conductivity. In addition, a similar adjustment is achieved in the reduction step, i.e. the consumed chemicals is reduced which make the overall process more economic and eco-friendly. The prepared nano-sheets were characterized by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The average thickness of the prepared graphene was about 5.23 nm.

  1. Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance

    NASA Astrophysics Data System (ADS)

    Mai, Y. J.; Zhou, M. P.; Ling, H. J.; Chen, F. X.; Lian, W. Q.; Jie, X. H.

    2018-03-01

    How to uniformly disperse graphene sheets into the electrolyte is one of the main challenges to synthesize graphene enhanced nanocomposites by electrodeposition. A surfactant-free colloidal solution comprised of copper (II)-ethylene diamine tetra acetic acid ([CuIIEDTA]2-) complexes and graphene oxide (GO) sheets is proposed to electrodeposit reduced graphene oxide/copper (RGO/Cu) composite coatings. Anionic [CuIIEDTA]2- complexes stably coexist with negatively charged GO sheets due to the electrostatic repulsion between them, facilitating the electrochemical reduction and uniform dispersion of GO sheets into the copper matrix. The RGO/Cu composite coatings are well characterized by XRD, Raman, SEM and XPS. Their tribological behavior as a function of RGO content in composite coatings and normal loads are investigated. Also the chemical composition and topography of the wear tracks for the composite coatings are analyzed to deduce the lubricating and anti-wear mechanism of RGO/Cu composite coatings.

  2. Covalent addition of chitosan to graphene sheets: Density functional theory explorations of quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Harismah, Kun; Mirzaei, Mahmoud

    2015-12-01

    Density functional theory (DFT) calculations have been performed to detect the stabilities and properties of chitosan-functionalized graphene and graphene-oxide structures (G-Chit and GO-Chit). The model systems with two different sizes of sheets have been optimized and the molecular and atomic properties have been evaluated for them. The results indicated that investigated G-Chit and GO-Chit structures could be considered as stable structures but with different properties. The properties for GO and GO-Chit structures are almost similar; however, they are different from the original G and G-Chit structures. The results also indicated that the properties could be also size-dependent, in which different molecular and atomic properties have been observed for the investigate G sheets.

  3. Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics.

    PubMed

    McDonald, Matthew P; Eltom, Ahmed; Vietmeyer, Felix; Thapa, Janak; Morozov, Yurii V; Sokolov, Denis A; Hodak, Jose H; Vinodgopal, Kizhanipuram; Kamat, Prashant V; Kuno, Masaru

    2013-01-01

    Graphene oxide (GO) is an important precursor in the production of chemically derived graphene. During reduction, GO's electrical conductivity and band gap change gradually. Doping and chemical functionalization are also possible, illustrating GO's immense potential in creating functional devices through control of its local hybridization. Here we show that laser-induced photolysis controllably reduces individual single-layer GO sheets. The reaction can be followed in real time through sizable decreases in GO's photoluminescence efficiency along with spectral blueshifts. As-produced reduced graphene oxide (rGO) sheets undergo additional photolysis, characterized by dramatic emission enhancements and spectral redshifts. Both GO's reduction and subsequent conversion to photobrightened rGO are captured through movies of their photoluminescence kinetics. Rate maps illustrate sizable spatial and temporal heterogeneities in sp(2) domain growth and reveal how reduction "flows" across GO and rGO sheets. The observed heterogeneous reduction kinetics provides mechanistic insight into GO's conversion to chemically derived graphene and highlights opportunities for overcoming its dynamic, chemical disorder.

  4. A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Meng, Zhao; Liang, Ruisheng; Chen, Shijie; Ding, Li; Wang, Faqiang; Liu, Hongzhan; Meng, Hongyun; Wei, Zhongchao

    2018-05-01

    Dynamically tunable plasmonic multi-functional is particularly desirable for various nanotechnological applications. In this paper, graphene nano-sheet pair arrays separated by a substrate, which can act as a dynamically tunable plasmonic band stop filter with transmission at resonance wavelength lower than 1%, a high sensitivity refractive index sensor with sensitivity up to 4879 nm/RIU, figure of merit of 40.66 and a two circuit optical switch with the modulation depth up to 0.998, are proposed and numerically investigated. These excellent optical performances are calculated by using FDTD numerical modeling and theoretical deduction. Simulation results show that a slight variation of chemical potential of the graphene nano-sheet can achieve significant resonance wavelength shifts. In additional, the resonance wavelength and transmission of this plasmonic device can be tuned easily by two voltages owing to the simple patterned graphene. These studies may have great potential in fabrication of multi-functional and dynamically tunable optoelectronic integrated devices.

  5. Renewing functionalized graphene as electrodes for high-performance supercapacitors.

    PubMed

    Fang, Yan; Luo, Bin; Jia, Yuying; Li, Xianglong; Wang, Bin; Song, Qi; Kang, Feiyu; Zhi, Linjie

    2012-12-11

    An acid-assisted ultrarapid thermal strategy is developed for constructing specifically functionalized graphene. The electrochemical performance of functionalized graphene can be boosted via elaborate coupling between the pseudocapacitance and the electronic double layer capacitance through rationally tailoring the structure of graphene sheets. This presents an opportunity for developing further high-performance graphene-based electrodes to bridge the performance gap between traditional capacitors and batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural, electronic structure and antibacterial properties of graphene-oxide nano-sheets

    NASA Astrophysics Data System (ADS)

    Sharma, Aditya; Varshney, Mayora; Nanda, Sitansu Sekhar; Shin, Hyun Joon; Kim, Namdong; Yi, Dong Kee; Chae, Keun-Hwa; Ok Won, Sung

    2018-04-01

    Correlation between the structural/electronic structure properties and bio-activity of graphene-based materials need to be thoroughly evaluated before their commercial implementation in the health and environment precincts. To better investigate the local hybridization of sp2/sp3 orbitals of the functional groups of graphene-oxide (GO) and their execution in the antimicrobial mechanism, we exemplify the antibacterial activity of GO sheets towards the Escherichia coli bacteria (E. coli) by applying the field-emission scanning electron microscopy (FESEM), near edge X-ray absorption fine structure (NEXAFS) and scanning transmission X-ray microscope (STXM) techniques. C K-edge and O K-edge NEXAFS spectra have revealed lesser sp2 carbon atoms in the aromatic ring and attachment of functional oxygen groups at GO sheets. Entrapment of E. coli bacteria by GO sheets is evidenced by FESEM investigations and has also been corroborated by nano-scale imaging of bacteria using the STXM. Spectroscopy evidence of functional oxygen moieties with GO sheets and physiochemical entrapment of E. coli bacteria have assisted us to elaborate the mechanism of cellular oxidative stress-induced disruption of bacterial membrane.

  7. Growing TiO2 nanowires on the surface of graphene sheets in supercritical CO2: characterization and photoefficiency.

    PubMed

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Chowdhury, Rajib Roy; Charpentier, Paul A

    2012-07-27

    Tremendous interest exists towards synthesizing nanoassemblies for dye-sensitized solar cells (DSSCs) using earth-abundant and -friendly materials with green synthetic approaches. In this work, high surface area TiO(2) nanowire arrays were grown on the surface of functionalized graphene sheets (FGSs) containing -COOH functionalities acting as a template by using a sol-gel method in the green solvent, supercritical carbon dioxide (scCO(2)). The effect of scCO(2) pressure (1500, 3000 and 5000 psi), temperature (40, 60 and 80 °C), acetic acid/titanium isopropoxide monomer ratios (HAc/TIP = 2, 4 and 6), functionalized graphene sheets (FGSs)/TIP weight ratios (1:20, 1:40 and 1:60 w/w) and solvents (EtOH, hexane) were investigated. Increasing the HAc/TIPweight ratio from 4 to 6 in scCO(2) resulted in increasing the TiO(2) nanowire diameter from 10 to 40 nm. Raman and high resolution XPS showed the interaction of TiO(2) with the -COOH groups on the surface of the graphene sheets, indicating that graphene acted as a template for polycondensation growth. UV-vis diffuse reflectance and photoluminescence spectroscopy showed a reduction in titania's bandgap and also a significant reduction in electron-hole recombination compared to bare TiO(2) nanowires. Photocurrent measurements showed that the TiO(2)nanowire/graphene composites prepared in scCO(2) gave a 5× enhancement in photoefficiency compared to bare TiO(2) nanowires.

  8. Growing TiO2 nanowires on the surface of graphene sheets in supercritical CO2: characterization and photoefficiency

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Chowdhury, Rajib Roy; Charpentier, Paul A.

    2012-07-01

    Tremendous interest exists towards synthesizing nanoassemblies for dye-sensitized solar cells (DSSCs) using earth-abundant and -friendly materials with green synthetic approaches. In this work, high surface area TiO2 nanowire arrays were grown on the surface of functionalized graphene sheets (FGSs) containing -COOH functionalities acting as a template by using a sol-gel method in the green solvent, supercritical carbon dioxide (scCO2). The effect of scCO2 pressure (1500, 3000 and 5000 psi), temperature (40, 60 and 80 °C), acetic acid/titanium isopropoxide monomer ratios (HAc/TIP = 2, 4 and 6), functionalized graphene sheets (FGSs)/TIP weight ratios (1:20, 1:40 and 1:60 w/w) and solvents (EtOH, hexane) were investigated. Increasing the HAc/TIPweight ratio from 4 to 6 in scCO2 resulted in increasing the TiO2 nanowire diameter from 10 to 40 nm. Raman and high resolution XPS showed the interaction of TiO2 with the -COOH groups on the surface of the graphene sheets, indicating that graphene acted as a template for polycondensation growth. UV-vis diffuse reflectance and photoluminescence spectroscopy showed a reduction in titania’s bandgap and also a significant reduction in electron-hole recombination compared to bare TiO2 nanowires. Photocurrent measurements showed that the TiO2nanowire/graphene composites prepared in scCO2 gave a 5× enhancement in photoefficiency compared to bare TiO2 nanowires.

  9. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness andmore » shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.« less

  10. Self-propagated combustion synthesis of few-layered graphene: an optical properties perspective.

    PubMed

    Mohandoss, Manonmani; Sen Gupta, Soujit; Kumar, Ramesh; Islam, Md Rabiul; Som, Anirban; Mohd, Azhardin Ganayee; Pradeep, T; Maliyekkal, Shihabudheen M

    2018-04-26

    This paper describes a labour efficient and cost-effective strategy to prepare few-layered of reduced graphene oxide like (RGOL) sheets from graphite. The self-propagated combustion route enables the bulk production of RGOL sheets. Microscopic and spectroscopic analyses confirmed the formation of few-layer graphene sheets of an average thickness of ∼3 nm and the presence of some oxygen functional groups with a C/O ratio of 8.74. A possible mechanistic pathway for the formation of RGOL sheets is proposed. The optical properties of the RGOL sample were studied in detail by means of Spectroscopic Ellipsometry (SE). The experimental abilities of SE in relating the optical properties with the number of oxygen functionalities present in the samples are explored. The data were analysed by a double-layered optical model along with the Drude-Lorentz oscillatory dispersion relation. The refractive index (n = 2.24), extinction coefficient (k = 2.03), and dielectric functions are obtained using point-by-point analysis and are also checked for Kramers-Kronig (KK) consistency.

  11. Graphene: powder, flakes, ribbons, and sheets.

    PubMed

    James, Dustin K; Tour, James M

    2013-10-15

    Graphene's unique physical and electrical properties (high tensile strength, Young's modulus, electron mobility, and thermal conductivity) have led to its nickname of "super carbon." Graphene research involves the study of several different physical forms of the material: powders, flakes, ribbons, and sheets and others not yet named or imagined. Within those forms, graphene can include a single layer, two layers, or ≤10 sheets of sp² carbon atoms. The chemistry and applications available with graphene depend on both the physical form of the graphene and the number of layers in the material. Therefore the available permutations of graphene are numerous, and we will discuss a subset of this work, covering some of our research on the synthesis and use of many of the different physical and layered forms of graphene. Initially, we worked with commercially available graphite, with which we extended diazonium chemistry developed to functionalize single-walled carbon nanotubes to produce graphitic materials. These structures were soluble in common organic solvents and were better dispersed in composites. We developed an improved synthesis of graphene oxide (GO) and explored how the workup protocol for the synthesis of GO can change the electronic structure and chemical functionality of the GO product. We also developed a method to remove graphene layers one-by-one from flakes. These powders and sheets of GO can serve as fluid loss prevention additives in drilling fluids for the oil industry. Graphene nanoribbons (GNRs) combine small width with long length, producing valuable electronic and physical properties. We developed two complementary syntheses of GNRs from multiwalled carbon nanotubes: one simple oxidative method that produces GNRs with some defects and one reductive method that produces GNRs that are less defective and more electrically conductive. These GNRs can be used in low-loss, high permittivity composites, as conductive reinforcement coatings on Kevlar fibers and in the fabrication of large area transparent electrodes. Using solid carbon sources such as polymers, food, insects, and waste, we can grow monolayer and bilayer graphene directly on metal catalysts, and carbon-sources containing nitrogen can produce nitrogen-doped graphene. The resulting graphene can be transferred to other surfaces, such as metal grids, for potential use in transparent touch screens for applications in personal electronics and large area photovoltaic devices. Because the transfer of graphene from one surface to another can lead to defects, low yields, and higher costs, we have developed methods for growing graphene directly on the substrates of interest. We can also produce patterned graphene to make GNRs or graphane/graphene superlattices within a single sheet. These superlattices could have multiple functions for use in sensors and other devices. This Account only touches upon this burgeoning area of materials chemistry, and the field will continue to expand as researchers imagine new forms and applications of graphene.

  12. Functionalization Pattern of Graphene Oxide Sheets Controls Entry or Produces Lipid Turmoil in Phospholipid Membranes.

    PubMed

    Dallavalle, Marco; Bottoni, Andrea; Calvaresi, Matteo; Zerbetto, Francesco

    2018-05-09

    Molecular dynamics, coarse-grained to the level of hydrophobic and hydrophilic interactions, shows that graphene oxide sheets, GOSs, can pierce through the phospholipid membrane and navigate the double layer only if the hydrophilic groups are randomly dispersed in the structure. Their behavior resembles that found in similar calculations for pristine graphene sheets. If the oxidation is located at the edge of the sheets, GOSs hover over the membrane and trigger a major reorganization of the lipids. The reorganization is the largest when the radius of the edge-functionalized sheet is similar to the length of the lipophilic chain of the lipids. In the reorganization, the heads of the lipid chains form dynamical structures that pictorially resemble the swirl of water flowing down a drain. All effects maximize the interaction between hydrophobic moieties on the one hand and lipophilic fragments on the other and are accompanied by a large number of lipid flip-flops. Possible biological consequences are discussed.

  13. Fe doped TiO2 nanofibers on the surface of graphene sheets for photovoltaics applications

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Charpentier, Paul A.

    2011-08-01

    Highly ordered, visible light driven TiO2 nanowire arrays doped with Fe photocatalysts were grown on the surface of functionalized graphene sheets (FGSs) using a sol-gel method with titanium isopropoxide (TIP) monomer, acetic acid (HAc) as the polycondensation agent and iron chloride in the green solvent, supercritical carbon dioxide (scCO2). The morphology of the synthesized materials was studied by SEM and TEM, which showed uniform formation of Fe doped TiO2 nanofibers on the surface of graphene sheets, which acted as a template for nanowire growth through surface -COOH functionalities. Increasing Fe content in the nanowires did not change the morphology significantly. Optical properties of the synthesized composites were examined by UV spectroscopy which showed a significant reduction in band gap with increasing Fe content, i.e. 2.25 eV at 0.6% Fe. The enhancement of the optical properties of synthesized materials was confirmed by photocurrent measurement. The optimum sample containing 0.6% Fe doped TiO2 on the graphene sheets increased the power conversation efficiency by 6-fold in comparison to TiO2 alone.

  14. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    PubMed Central

    2011-01-01

    In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO) were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future. PMID:21982417

  15. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties

    NASA Astrophysics Data System (ADS)

    Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian

    2018-05-01

    Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.

  16. Synthesis of TiO2/functionalized graphene sheets (FGSs) nanocomposites in super critical CO2

    NASA Astrophysics Data System (ADS)

    Farhangi, Nasrin; Medina-Gonzalez, Yaocihuatl; Chen, Bo; Charpentier, Paul A.

    2010-06-01

    Highly ordered TiO2 nanowire arrays were prepared on the surface of Functionalized Graphene sheets (FGSs) by solgel method using titanium isopropoxide monomer with acetic acid as the polycondensation agent in the green solvent, supercritical carbon dioxide (sc-CO2). Morphology of synthesized materials was studied by SEM and TEM. Optical properties of the nanocomposites studied by UV spectroscopy which showed high absorption in visible area as well as reduction in their band gap compared to TiO2. By high resolution XPS, chelating bidentate structure of TiO2 with carboxylic group on the surface of graphene sheets can be confirmed. Improvement in the optical properties of the synthesized composites compared to TiO2 alone was confirmed by photocurrent measurements.

  17. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    PubMed

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  18. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors

    NASA Astrophysics Data System (ADS)

    Jie, Wenjing; Hao, Jianhua

    2014-05-01

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  19. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Hansora, D. P.; Shimpi, N. G.; Mishra, S.

    2015-12-01

    This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.

  20. Extremely efficient flexible organic light-emitting diodes with modified graphene anode

    NASA Astrophysics Data System (ADS)

    Han, Tae-Hee; Lee, Youngbin; Choi, Mi-Ri; Woo, Seong-Hoon; Bae, Sang-Hoon; Hong, Byung Hee; Ahn, Jong-Hyun; Lee, Tae-Woo

    2012-02-01

    Although graphene films have a strong potential to replace indium tin oxide anodes in organic light-emitting diodes (OLEDs), to date, the luminous efficiency of OLEDs with graphene anodes has been limited by a lack of efficient methods to improve the low work function and reduce the sheet resistance of graphene films to the levels required for electrodes. Here, we fabricate flexible OLEDs by modifying the graphene anode to have a high work function and low sheet resistance, and thus achieve extremely high luminous efficiencies (37.2 lm W-1 in fluorescent OLEDs, 102.7 lm W-1 in phosphorescent OLEDs), which are significantly higher than those of optimized devices with an indium tin oxide anode (24.1 lm W-1 in fluorescent OLEDs, 85.6 lm W-1 in phosphorescent OLEDs). We also fabricate flexible white OLED lighting devices using the graphene anode. These results demonstrate the great potential of graphene anodes for use in a wide variety of high-performance flexible organic optoelectronics.

  1. Temperature-time dependent transmittance, sheet resistance and bonding energy of reduced graphene oxide on soda lime glass

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Kumar, R. Manoj; Bera, Parthasarathi; Ariharan, S.; Lahiri, Debrupa; Lahiri, Indranil

    2017-12-01

    Reduced graphene oxide coated soda lime glass can act as an alternative transparent/conducting electrode for many opto-electronic applications. However, bonding between the deposited reduced graphene oxide film and the glass substrate is important for achieving better stability of the coating and an extended device lifetime. In the present study, delamination energy of reduced graphene oxide on soda lime glass was quantified by using nanoscratch technique. Graphene oxide was deposited on soda lime glass by dip coating technique and was thermally reduced at different temperatures (100 °C, 200 °C, 300 °C, 400 °C and 500 °C) and treatment time (2 h, 3 h, 4 h, 5 h and 10 h) in Ar (95%) with H2 (5%) atmosphere. An inverse behavior of delamination energy with temperature and treatment time was observed, which could be correlated with the removal of oxygen functional groups. Sheet resistance of the film demonstrated a steady decay with increasing temperature and treatment time. Functional groups attached to the graphene planes have more influence on conductivity than groups attached to the edges. Removal of functional groups could also be related to optical transmittance of the samples. Knowledge generated in this study with respect to delamination energy, sheet resistance and optical transmittance could be extensively used for various opto-electronic applications.

  2. Observing the Heterogeneous Electro-redox of Individual Single-Layer Graphene Sheets.

    PubMed

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-09-27

    Electro-redox-induced heterogeneous fluorescence of an individual single-layer graphene sheet was observed in real time by a total internal reflection fluorescence microscope. It was found that the fluorescence intensity of an individual sheet can be tuned reversibly by applying periodic voltages to control the redox degree of graphene sheets. Accordingly, the oxidation and reduction kinetics of an individual single-layer graphene sheet was studied at different voltages. The electro-redox-induced reversible variation of fluorescence intensity of individual sheets indicates a reversible band gap tuning strategy. Furthermore, correlation analysis of redox rate constants on individual graphene sheets revealed a redox-induced spatiotemporal heterogeneity or dynamics of graphene sheets. The observed controllable redox kinetics can rationally guide the precise band gap tuning of individual graphene sheets and then help their extensive applications in optoelectronics and devices for renewable energy.

  3. Copper intercalation at the interface of graphene and Ir(111) studied by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Sicot, M.; Fagot-Revurat, Y.; Kierren, B.; Vasseur, G.; Malterre, D.

    2014-11-01

    We report on the intercalation of a submonolayer of copper at 775 K underneath graphene epitaxially grown on Ir(111) studied by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) at 77 K. Nucleation and growth dynamics of Cu below graphene have been investigated, and, most importantly, the intercalation mechanism has been identified. First, LEED patterns reveal the pseudomorphic growth of Cu on Ir under the topmost graphene layer resulting in a large Cu in-plane lattice parameter expansion of about 6% compared to Cu(111). Second, large-scale STM topographs as a function of Cu coverage show that Cu diffusion on Ir below graphene exhibits a low energy barrier resulting in Cu accumulation at Ir step edges. As a result, the graphene sheet undergoes a strong edges reshaping. Finally, atomically-resolved STM images reveal a damaged graphene sheet at the atomic scale after metal intercalation. Point defects in graphene were shown to be carbon vacancies. According to these results, a Cu penetration path beneath graphene is proposed to occur via metal aided defect formation with no or poor self healing of the graphene sheet. This work illustrates the fact that Cu intercalation is harmful for graphene grown on Ir(111) at the atomic scale.

  4. Graphene for amino acid biosensing: Theoretical study of the electronic transport

    NASA Astrophysics Data System (ADS)

    Rodríguez, S. J.; Makinistian, L.; Albanesi, E. A.

    2017-10-01

    The study of biosensors based on graphene has increased in the last years, the combination of excellent electrical properties and low noise makes graphene a material for next generation electronic devices. This work discusses the application of a graphene-based biosensor for the detection of amino acids histidine (His), alanine (Ala), aspartic acid (Asp), and tyrosine (Tyr). First, we present the results of modeling from first principles the adsorption of the four amino acids on a graphene sheet, we calculate adsorption energy, substrate-adsorbate distance, equilibrium geometrical configurations (upon relaxation) and densities of states (DOS) for each biomolecule adsorbed. Furthermore, in order to evaluate the effects of amino acid adsorption on the electronic transport of graphene, we modeled a device using first-principles calculations with a combination of Density Functional Theory (DFT) and Nonequilibrium Greens Functions (NEGF). We provide with a detailed discussion in terms of transmission, current-voltage curves, and charge transfer. We found evidence of differences in the electronic transport through the graphene sheet due to amino acid adsorption, reinforcing the possibility of graphene-based sensors for amino acid sequencing of proteins.

  5. Graphene sheets modified with polyindole for electro-chemical detection of dopamine.

    PubMed

    Kumar, Ashish; Prakash, Rajiv

    2014-03-01

    Oxidized polyindole is coated over graphene surface by in-situ chemical oxidation method in dilute hydrochloric acid solution. Morphology of graphene modified with oxidized polyindole is investigated by scanning electron microscope. The interaction of graphene to polyindole is observed by Raman spectroscopy. The introduction of carboxylate functionality is observed in graphene due to pyrolysis. The association of this functionality with indole monomer and their interactive behaviour led to formation of uniform polyindole over graphene surface in presence of oxidizing agent. Our chemical synthesis results not only formation of uniform polymer thin layer over the graphene sheets but also enhances various properties and processibility of the graphene. Negative surface charge on the composite material is observed at acidic pH, which shows potential for accumulation of positively charged species in the solution. Further it is explored for electro-catalytic and sensing applications and shows cation permselective behavior of dopamine hydrochloride. It is demonstrated by differential pulse voltammetric technique in dopamine concentration range from 10 microM to 1 mM (in presence of 1 mM ascorbic acid).

  6. Structural rearrangement and dispersion of functionalized graphene sheets in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yun Jung; Huang, Liwei; Wang, Howard

    2015-09-01

    Surfactants are widely used for dispersing graphene and functionalized graphene sheets (FGS) in colloidal suspensions, but there have been few studies of the structure of the dispersed graphene-surfactant complexes in suspension and of their time evolution. Here, we combine experimental study of efficiencies of ionic surfactants/polymers in suspending FGS in water with characterization using atomic force microscopy, small angle neutron scattering, and molecular simulations to probe the detailed structures of FGSs. A systematic study of FGS dispersions using ionic surfactants with varying chain lengths revealed that the effective charge density of surfactant layer defines the concentration of dispersed FGS whilemore » the strength of interfacial binding defines the stability of graphene dispersion over long time aging. Ionic surfactants with strong interfacial binding and large molecular weight increase the dispersing power by over an order of magnitude.« less

  7. Functionalized Graphene Sheets As Immobilization Matrix for Fenugreek β-Amylase: Enzyme Kinetics and Stability Studies

    PubMed Central

    Srivastava, Garima; Singh, Kritika; Talat, Mahe; Srivastava, Onkar Nath; Kayastha, Arvind M.

    2014-01-01

    β-Amylase finds application in food and pharmaceutical industries. Functionalized graphene sheets were customised as a matrix for covalent immobilization of Fenugreek β-amylase using glutaraldehyde as a cross-linker. The factors affecting the process were optimized using Response Surface Methodology based Box-Behnken design of experiment which resulted in 84% immobilization efficiency. Scanning and Transmission Electron Microscopy (SEM, TEM) and Fourier Tansform Infrared (FTIR) spectroscopy were employed for the purpose of characterization of attachment of enzyme on the graphene. The enzyme kinetic studies were carried out for obtaining best catalytic performance and enhanced reusability. Optimum temperature remained unchanged, whereas optimum pH showed shift towards acidic range for immobilized enzyme. Increase in thermal stability of immobilized enzyme and non-toxic nature of functionalized graphene can be exploited for production of maltose in food and pharmaceutical industries. PMID:25412079

  8. Structural and Electronic Properties of α2-Graphyne Nanotubes: A Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2018-02-01

    Another form of carbon-based two-dimensional material in the graphene family, named the α2-graphyne sheet, was predicted very recently. The α2-graphyne sheet was created by doubling each acetylenic linker in an α-graphyne sheet. It exhibited semimetallic Dirac point features similar to graphene and α-graphyne sheets. In the present work, single -walled carbon nanotubes based on an α2-graphyne sheet was introduced. The structural and electronic properties of these nanotubes were studied using density functional theory. It was found that armchair α2-graphyne nanotubes showed metallic behavior, while zigzag α2-graphyne nanotubes were found to have semiconducting or metallic properties depending on tube size. The energy band gap of zigzag α2-graphyne nanotubes decreased with increasing tube diameter. The results indicated that the α2-graphyne sheet and its nanotubes can be proper materials for future nanoelectronics.

  9. Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection.

    PubMed

    Qi, Zhenhui; Bharate, Priya; Lai, Chian-Hui; Ziem, Benjamin; Böttcher, Christoph; Schulz, Andrea; Beckert, Fabian; Hatting, Benjamin; Mülhaupt, Rolf; Seeberger, Peter H; Haag, Rainer

    2015-09-09

    A supramolecular carbohydrate-functionalized two-dimensional (2D) surface was designed and synthesized by decorating thermally reduced graphene sheets with multivalent sugar ligands. The formation of host-guest inclusions on the carbon surface provides a versatile strategy, not only to increase the intrinsic water solubility of graphene-based materials, but more importantly to let the desired biofunctional binding groups bind to the surface. Combining the vital recognition role of carbohydrates and the unique 2D large flexible surface area of the graphene sheets, the addition of multivalent sugar ligands makes the resulting carbon material an excellent platform for selectively wrapping and agglutinating Escherichia coli (E. coli). By taking advantage of the responsive property of supramolecular interactions, the captured bacteria can then be partially released by adding a competitive guest. Compared to previously reported scaffolds, the unique thermal IR-absorption properties of graphene derivatives provide a facile method to kill the captured bacteria by IR-laser irradiation of the captured graphene-sugar-E. coli complex.

  10. Optically transparent microwave screens based on engineered graphene layers.

    PubMed

    Grande, M; Bianco, G V; Vincenti, M A; de Ceglia, D; Capezzuto, P; Petruzzelli, V; Scalora, M; Bruno, G; D'Orazio, A

    2016-10-03

    We propose an innovative approach for the realization of a microwave absorber fully transparent in the optical regime. This device is based on the Salisbury screen configuration, which consists of a lossless spacer, sandwiched between two graphene sheets whose sheet resistances are different and properly engineered. Experimental results show that it is possible to achieve near-perfect electromagnetic absorption in the microwave X-band. These findings are fully supported by an analytical approach based on an equivalent circuital model. Engineering and integration of graphene sheets could facilitate the realization of innovative microwave absorbers with additional electromagnetic and optical functionalities that could circumvent some of the major limitations of opaque microwave absorbers.

  11. Preparation and properties of CVD-graphene/AgNWs hybrid transparent electrodes for the application of flexible optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Wang, Xue-yan; Bao, Jun; Li, Lu; Cui, Shao-li; Du, Xiao-qing

    2017-10-01

    The flexible electrodes based on CVD-graphene/ AgNWs hybrid transparent films were prepared by the vacuum filtration and substrate transferring method, and several performances of the films including sheet resistance, optical transmittance, work function, surface roughness and flexibility were further researched. The results suggested that the hybrid films which were obtained by vacuum filtration and substrate transferring method have the advantages such as uniform distribution of AgNWs, high work function, low roughness and small sheet resistance and good flexibility. The sheet resistance of the hybrid films would decrease with the increasing of the concentration of AgNWs, while the surface roughness would increase and the optical transmittance at 550nm of the films decrease linearly. Organic light emitting devices (OLED) devices based on CVD-graphene/AgNWs hybrid films were fabricated, and characteristics of voltage-current density, luminance, current efficiency were tested. It's found that CVD-graphene/AgNWs hybrid films were better than CVD-graphene films when they were used as anodes for organic light emitting devices. It can be seen that CVD-graphene/AgNWs hybrid transparent films have great potential in applications of flexible electrodes, and are of great significance for promoting the development of organic light emitting devices.

  12. Self-assembly of defect-rich graphene oxide nanosheets with Na2Ti3O7 nanowires and their superior absorptive capacity to toxic dyes

    NASA Astrophysics Data System (ADS)

    Sun, Yibai; Fu, Wanlin; Dai, Yunqian; Huang, Yiyang; Zhou, Jie; Huang, Chengqian; Yang, Chongya; Huang, Meiyou; Ma, Rongwei; Lin, Baoping

    2017-06-01

    Graphene sheets, a flexible 2D material with excellent absorptive capacity, have great potential as absorbing materials. However, this material has always suffered from irreversible aggregation and thus loses the abundant active sites and large surface area. In this paper, large-scale graphene oxide (GO) sheets were cut and reduced to tiny reduced graphene oxide (RGO) sheets by a cell-break sonicator, for producing numerous defects, which are the center of chemisorption. Furthermore, sodium titanate nanowires functioned as a framework to help to disperse the tiny RGO sheets uniformly. And, in turn, the flexible tiny RGO sheets glued robust nanowires into a free-standing membrane. This novel composite membrane exhibited an ultra-high decoloration efficiency of 99.8% of rhodamine B in a continuous flow mode, and an outstanding absorptive capability of 1.30 × 10-2 mol g-1 correlated to RGO content in batch reaction, which is about two orders of magnitude higher than other reported graphene-based absorbents. In addition, an efficient and feasible method without any heat treatment for regenerating the membrane is illustrated, and the recycled membrane retains superior decoloration efficiency. The excellent absorptive performance indicates the framework-based disperse strategy has great potential for the construction and application of defect-rich graphene.

  13. Theoretical investigation of structures and energetics of sodium adatom and its dimer on graphene: DFT study

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Rani, Pooja; Dharamvir, Keya

    2015-11-01

    Extensive ab initio calculations have been performed to study the energetics of a sodium (Na) atom and its dimer adsorbed on graphene using the SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS), partial density states (PDOS) of adatom/dimer-graphene system have been calculated. After considering various sites for adsorption of Na on graphene, the center of a hexagonal ring of carbon atoms is found to be the preferred site of adsorption while the Na2 dimer prefers to rest parallel to the graphene sheet. We find insignificant energy differences among adsorption configurations involving different possible sites in parallel orientation, which implies high mobility of the dimer on the graphene sheet. We also notice only a slight distortion of the graphene sheet perpendicular to its plane upon adatom adsorption. However, some lateral displacements seen are more perceptible. Summary The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS) and PDOS of adatom/dimer-graphene system have been calculated using SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. Preferred site for adsorption of a sodium atom on graphene is the hollow site. For the Na dimer adsorption, we found that horizontal orientation is favored over the vertical one. From DOS plots, it is clear that graphene's states are nearly unaffected by the adsorption of Na adatom and Interaction between sodium and graphene is predominantly ionic

  14. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    NASA Astrophysics Data System (ADS)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  15. Impact of graphene-based nanomaterials (GBNMs) on the structural and functional conformations of hepcidin peptide

    NASA Astrophysics Data System (ADS)

    Singh, Krishna P.; Baweja, Lokesh; Wolkenhauer, Olaf; Rahman, Qamar; Gupta, Shailendra K.

    2018-03-01

    Graphene-based nanomaterials (GBNMs) are widely used in various industrial and biomedical applications. GBNMs of different compositions, size and shapes are being introduced without thorough toxicity evaluation due to the unavailability of regulatory guidelines. Computational toxicity prediction methods are used by regulatory bodies to quickly assess health hazards caused by newer materials. Due to increasing demand of GBNMs in various size and functional groups in industrial and consumer based applications, rapid and reliable computational toxicity assessment methods are urgently needed. In the present work, we investigate the impact of graphene and graphene oxide nanomaterials on the structural conformations of small hepcidin peptide and compare the materials for their structural and conformational changes. Our molecular dynamics simulation studies revealed conformational changes in hepcidin due to its interaction with GBMNs, which results in a loss of its functional properties. Our results indicate that hepcidin peptide undergo severe structural deformations when superimposed on the graphene sheet in comparison to graphene oxide sheet. These observations suggest that graphene is more toxic than a graphene oxide nanosheet of similar area. Overall, this study indicates that computational methods based on structural deformation, using molecular dynamics (MD) simulations, can be used for the early evaluation of toxicity potential of novel nanomaterials.

  16. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; Al-Ostaz, Ahmed

    2016-11-01

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (-16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (-13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (-7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  17. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor); Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  18. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode.

    PubMed

    Lee, Si-Hwa; Sridhar, Vadahanambi; Jung, Jung-Hwan; Karthikeyan, Kaliyappan; Lee, Yun-Sung; Mukherjee, Rahul; Koratkar, Nikhil; Oh, Il-Kwon

    2013-05-28

    In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene--nanotube--iron three-dimensional nanostructure as an anode material in lithium-ion batteries. The nanostructure comprises vertically aligned carbon nanotubes grown directly on graphene sheets along with shorter branches of carbon nanotubes stemming out from both the graphene sheets and the vertically aligned carbon nanotubes. This bio-inspired hierarchical structure provides a three-dimensional conductive network for efficient charge-transfer and prevents the agglomeration and restacking of the graphene sheets enabling Li-ions to have greater access to the electrode material. In addition, functional iron-oxide nanoparticles decorated within the three-dimensional hierarchical structure provides outstanding lithium storage characteristics, resulting in very high specific capacities. The anode material delivers a reversible capacity of ~1024 mA · h · g(-1) even after prolonged cycling along with a Coulombic efficiency in excess of 99%, which reflects the ability of the hierarchical network to prevent agglomeration of the iron-oxide nanoparticles.

  19. Buckling Behavior of Substrate Supported Graphene Sheets

    PubMed Central

    Yang, Kuijian; Chen, Yuli; Pan, Fei; Wang, Shengtao; Ma, Yong; Liu, Qijun

    2016-01-01

    The buckling of graphene sheets on substrates can significantly degrade their performance in materials and devices. Therefore, a systematic investigation on the buckling behavior of monolayer graphene sheet/substrate systems is carried out in this paper by both molecular mechanics simulations and theoretical analysis. From 70 simulation cases of simple-supported graphene sheets with different sizes under uniaxial compression, two different buckling modes are investigated and revealed to be dominated by the graphene size. Especially, for graphene sheets with length larger than 3 nm and width larger than 1.1 nm, the buckling mode depends only on the length/width ratio. Besides, it is revealed that the existence of graphene substrate can increase the critical buckling stress and strain to 4.39 N/m and 1.58%, respectively, which are about 10 times those for free-standing graphene sheets. Moreover, for graphene sheets with common size (longer than 20 nm), both theoretical and simulation results show that the critical buckling stress and strain are dominated only by the adhesive interactions with substrate and independent of the graphene size. Results in this work provide valuable insight and guidelines for the design and application of graphene-derived materials and nano-electromechanical systems. PMID:28787831

  20. Nano-Graphene Oxide for Cellular Imaging and Drug Delivery

    PubMed Central

    Sun, Xiaoming; Liu, Zhuang; Welsher, Kevin; Robinson, Joshua Tucker; Goodwin, Andrew; Zaric, Sasa

    2010-01-01

    Two-dimensional graphene offers interesting electronic, thermal, and mechanical properties that are currently being explored for advanced electronics, membranes, and composites. Here we synthesize and explore the biological applications of nano-graphene oxide (NGO), i.e., single-layer graphene oxide sheets down to a few nanometers in lateral width. We develop functionalization chemistry in order to impart solubility and compatibility of NGO in biological environments. We obtain size separated pegylated NGO sheets that are soluble in buffers and serum without agglomeration. The NGO sheets are found to be photoluminescent in the visible and infrared regions. The intrinsic photoluminescence (PL) of NGO is used for live cell imaging in the near-infrared (NIR) with little background. We found that simple physisorption via π-stacking can be used for loading doxorubicin, a widely used cancer drug onto NGO functionalized with antibody for selective killing of cancer cells in vitro. Owing to its small size, intrinsic optical properties, large specific surface area, low cost, and useful non-covalent interactions with aromatic drug molecules, NGO is a promising new material for biological and medical applications. PMID:20216934

  1. Graphene interlayer for current spreading enhancement by engineering of barrier height in GaN-based light-emitting diodes.

    PubMed

    Min, Jung-Hong; Son, Myungwoo; Bae, Si-Young; Lee, Jun-Yeob; Yun, Joosun; Maeng, Min-Jae; Kwon, Dae-Gyeon; Park, Yongsup; Shim, Jong-In; Ham, Moon-Ho; Lee, Dong-Seon

    2014-06-30

    Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

  2. Mass production of highly-porous graphene for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Amiri, Ahmad; Shanbedi, Mehdi; Ahmadi, Goodarz; Eshghi, Hossein; Kazi, S. N.; Chew, B. T.; Savari, Maryam; Zubir, Mohd Nashrul Mohd

    2016-09-01

    This study reports on a facile and economical method for the scalable synthesis of few-layered graphene sheets by the microwave-assisted functionalization. Herein, single-layered and few-layered graphene sheets were produced by dispersion and exfoliation of functionalized graphite in ethylene glycol. Thermal treatment was used to prepare pure graphene without functional groups, and the pure graphene was labeled as thermally-treated graphene (T-GR). The morphological and statistical studies about the distribution of the number of layers showed that more than 90% of the flakes of T-GR had less than two layers and about 84% of T-GR were single-layered. The microwave-assisted exfoliation approach presents us with a possibility for a mass production of graphene at low cost and great potentials in energy storage applications of graphene-based materials. Owing to unique surface chemistry, the T-GR demonstrates an excellent energy storage performance, and the electrochemical capacitance is much higher than that of the other carbon-based nanostructures. The nanoscopic porous morphology of the T-GR-based electrodes made a significant contribution in increasing the BET surface as well as the specific capacitance of graphene. T-GR, with a capacitance of 354.1 Fg-1 at 5 mVs-1 and 264 Fg-1 at 100 mVs-1, exhibits excellent performance as a supercapacitor.

  3. Diels-Alder reactions onto fluorinated and hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.

    2017-09-01

    We studied Diels-Alder (DA) reactions onto functionalized graphene. When fluorine, hydrogen or oxygen functional groups are present on one side of the sheet, the DA cycloadditions become significantly more exergonic when performed on the opposite side. Hydrogen is more effective than fluorine and oxygen to promote these cycloadditions. In contrast with the results obtained for perfect graphene, the functionalization with H, F or O turns the DA reactions exergonic, with ΔG°298 = -127.2 kcal/mol. The reaction barriers are expected to be considerably lowered with respect to perfect graphene because the functional groups significantly reduce the distortion energy.

  4. Efficient Adsorption Characteristics of Pristine and Silver-Doped Graphene Oxide Towards Contaminants: A Potential Membrane Material for Water Purification?

    PubMed

    Panigrahi, Puspamitra; Dhinakaran, Ashok Kumar; Sekar, Yuvaraj; Ahuja, Rajeev; Hussain, Tanveer

    2018-05-16

    In this work, we have investigated the potential of pristine and silver (Ag)-functionalized graphene oxide monolayers GO (GO-Ag) as efficient membranes for water filtration. Our first principles calculations based on density functional theory (DFT) reveal the hydrophilic nature of GO surfaces. The phonon frequency calculations within density functional perturbation theory (DFPT) confirmed the stability of GO sheets in aqueous media. Van der Waals-corrected binding energies of GO sheet towards heavy metals suggest that even pristine GO sheets are completely impermeable to various heavy metals like arsenic (As) and lead (Pb). However, compared to GO, the GO-Ag sheets have a much higher affinity towards the three amino acids histidine, phenyl-alanine and tyrosine, which are the main component of a bacteria cell wall. The GO-Ag sheet is found to be extremely efficient for bacteria inactivation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    PubMed

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  6. Comparative study on predicting Young's modulus of graphene sheets using nano-scale continuum mechanics approach

    NASA Astrophysics Data System (ADS)

    Rafiee, Roham; Eskandariyun, Amirali

    2017-06-01

    In this research, nano-scale continuum modeling is employed to predict Young's modulus of graphene sheet. The lattice nano-structure of a graphene sheet is replaced with a discrete space-frame structure simulating carbon-carbon bonds with either beam or spring elements. A comparative study is carried out to check the influence of employed elements on estimated Young's moduli of graphene sheets in both horizontal and vertical directions. A detailed analysis is also conducted to investigate the influence of graphene sheet sizes on its Young's modulus and corresponding aspect ratios that unwelcomed end effects disappear on the results are extracted. At the final stage, defected graphene sheets suffering from vacancy defects are investigated through a stochastic analysis taking into account both number of defects and their locations as random parameters. The reduction level in the Young's moduli of defected graphene sheets compared with non-defected ones is analyzed and reported.

  7. VOx effectively doping CVD-graphene for transparent conductive films

    NASA Astrophysics Data System (ADS)

    Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing

    2016-11-01

    Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  8. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Suresh C.; Gupta, Neha

    2015-12-15

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less

  9. Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon.

    PubMed

    Bandyopadhyay, Arka; Nandy, Atanu; Chakrabarti, Arunava; Jana, Debnarayan

    2017-08-16

    Tetragonal graphene (T-graphene) is a theoretically proposed dynamically stable, metallic allotrope of graphene. In this theoretical investigation, a tight binding (TB) model is used to unravel the metal to semiconductor transition of this 2D sheet under the influence of an external magnetic flux. In addition, the environment under which the sheet exposes an appreciable direct band gap of 1.41 ± 0.01 eV is examined. Similarly, the electronic band structure of the narrowest armchair T-graphene nanoribbon (NATGNR) also gets modified with different combinations of magnetic fluxes through the elementary rings. The band tuning parameters are critically identified for both systems. It is observed that the induced band gaps vary remarkably with the tuning parameters. We have also introduced an exact analytical approach to address the band structure of the NATGNR in the absence of any magnetic flux. Finally, the optical properties of the sheet and NATGNR are also critically analysed for both parallel and perpendicular polarizations with the help of density functional theory (DFT). Our study predicts that this material and its nanoribbons can be used in optoelectronic devices.

  10. In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene

    NASA Astrophysics Data System (ADS)

    Tsoufis, T.; Syrgiannis, Z.; Akhtar, N.; Prato, M.; Katsaros, F.; Sideratou, Z.; Kouloumpis, A.; Gournis, D.; Rudolf, P.

    2015-05-01

    We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature.We report a facile approach for the in situ synthesis of very small iron oxide nanoparticles on the surface of high-quality graphene sheets. Our synthetic strategy involved the direct, liquid-phase exfoliation of highly crystalline graphite (avoiding any oxidation treatment) and the subsequent chemical functionalization of the graphene sheets via the well-established 1,3-dipolar cycloaddition reaction. The resulting graphene derivatives were employed for the immobilization of the nanoparticle precursor (Fe cations) at the introduced organic groups by a modified wet-impregnation method, followed by interaction with acetic acid vapours. The final graphene-iron oxide hybrid material was achieved by heating (calcination) in an inert atmosphere. Characterization by X-ray diffraction, transmission electron and atomic force microscopy, Raman and X-ray photoelectron spectroscopy gave evidence for the formation of rather small (<12 nm), spherical, magnetite-rich nanoparticles which were evenly distributed on the surface of few-layer (<1.2 nm thick) graphene. Due to the presence of the iron oxide nanoparticles, the hybrid material showed a superparamagnetic behaviour at room temperature. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00765h

  11. Tuning TiO2 nanoparticle morphology in graphene-TiO2 hybrids by graphene surface modification

    NASA Astrophysics Data System (ADS)

    Sordello, Fabrizio; Zeb, Gul; Hu, Kaiwen; Calza, Paola; Minero, Claudio; Szkopek, Thomas; Cerruti, Marta

    2014-05-01

    We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH-GNP-TiO2 hybrids will be better photocatalysts for water splitting and H2 production.We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nucleation. GNP functionalization induced the nucleation of TiO2 NPs with specific shapes and crystalline facets exposed. COOH functionalization directed the synthesis of anatase truncated bipyramids, bonded to graphene sheets via the {101} facets, while NH2 functionalization induced the formation of belted truncated bipyramids, bonded to graphene via the {100} facets. Belted truncated bipyramids formed on unfunctionalized GNP too, however the NPs were more irregular and rounded. These effects were ascribed to pH variations in the proximity of the functionalized GNP sheets, due to the high density of COOH or NH2 groups. Because of the different reactivity of anatase {100} and {101} crystalline facets, we hypothesize that the hybrid materials will behave differently as photocatalysts, and that the COOH-GNP-TiO2 hybrids will be better photocatalysts for water splitting and H2 production. Electronic supplementary information (ESI) available: Statistical analysis of the D : G intensity ratio, additional XPS analysis and TEM micrographs. See DOI: 10.1039/c4nr01322k

  12. Unifying Principles of the Reductive Covalent Graphene Functionalization.

    PubMed

    Abellán, Gonzalo; Schirowski, Milan; Edelthalhammer, Konstantin F; Fickert, Michael; Werbach, Katharina; Peterlik, Herwig; Hauke, Frank; Hirsch, Andreas

    2017-04-12

    Covalently functionalized graphene derivatives were synthesized via benchmark reductive routes using graphite intercalation compounds (GICs), in particular KC 8 . We have compared the graphene arylation and alkylation of the GIC using 4-tert-butylphenyldiazonium and bis(4-(tert-butyl)phenyl)iodonium salts, as well as phenyl iodide, n-hexyl iodide, and n-dodecyl iodide, as electrophiles in model reactions. We have put a particular focus on the evaluation of the degree of addition and the bulk functionalization homogeneity (H bulk ). For this purpose, we have employed statistical Raman spectroscopy (SRS), and a forefront characterization tool using thermogravimetric analysis coupled with FT-IR, gas chromatography, and mass spectrometry (TGA/FT-IR/GC/MS). The present study unambiguously shows that the graphene functionalization using alkyl iodides leads to the best results, in terms of both the degree of addition and the H bulk . Moreover, we have identified the reversible character of the covalent addition chemistry, even at temperatures below 200 °C. The thermally induced addend cleavage proceeds homolytically, which allows for the detection of dimeric cleavage products by TGA/FT-IR/GC/MS. This dimerization points to a certain degree of regioselectivity, leading to a low sheet homogeneity (H sheet ). Finally, we developed this concept by performing the reductive alkylation reaction in monolayer CVD graphene films. This work provides important insights into the understanding of basic principles of reductive graphene functionalization and will serve as a guide in the design of new graphene functionalization concepts.

  13. Post‐Graphene 2D Chemistry: The Emerging Field of Molybdenum Disulfide and Black Phosphorus Functionalization

    PubMed Central

    Hauke, Frank

    2018-01-01

    Abstract The current state of the chemical functionalization of three types of single sheet 2D materials, namely, graphene, molybdenum disulfide (MoS2), and black phosphorus (BP) is summarized. Such 2D sheet polymers are currently an emerging field at the interface of synthetic chemistry, physics, and materials science. Both covalent and non‐covalent functionalization of sheet architectures allows a systematic modification of their properties, that is, an improvement of solubility and processability, the prevention of re‐aggregation, or band‐gap tuning. Next to successful functionalization concepts, fundamental challenges are also addressed. These include the insolubility and polydispersity of most 2D sheet polymers, the development of suitable characterization tools, the identification of effective binding strategies, the chemical activation of the usually rather unreactive basal planes for covalent addend binding, and the regioselectivity of plane addition reactions. Although a number of these questions remain elusive in this Review, the first promising concepts to overcome such hurdles are presented. PMID:29024321

  14. Engineering the work function of buckled boron α-sheet by lithium adsorption: a first-principles investigation.

    PubMed

    Zheng, Bing; Yu, Hai-tao; Xie, Ying; Lian, Yong-fu

    2014-11-26

    First-principles density functional theory calculations were performed to study the effect of Li adsorption on the structural and electronic properties, particularly the work function, of boron α-sheet. The calculated binding energies indicated that boron α-sheet could be well stabilized by the adsorption of Li atoms. Furthermore, the work functions of Li-adsorbed boron α-sheets were observed to decrease drastically with increasing Li coverage. The work functions are lower than that of Mg and even, for some of them, lower than that of Ca, indicating a considerable potential application of Li-adsorbed boron α-sheets as field-emission and electrode materials. Based on the calculated geometric and electronic structures, we discuss in details some possible aspects affecting the work function. The Li coverage dependence of the work functions of Li-adsorbed boron α-sheets was further confirmed by electrostatic potential analyses. The relationship between the work function variation and the Fermi and vacuum energy level shifts was also discussed, and we observed that the variation of the work function is primarily associated with the shift of the Fermi energy level. It is the surface dipole formed by the interaction between adatoms and substrate that should be responsible for the observed variation of the work function, whereas the increasing negative charge and rumpling for boron α-sheet only play minor roles. Additionally, the effect of Li adatoms on the work function of boron α-sheet was confirmed to be much stronger than that of graphene or a graphene double layer.

  15. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson’s ratio

    NASA Astrophysics Data System (ADS)

    Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C.; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P.; Elias, Ana L.; Feng, Simin; Kim, Seon Jeong; Narayanan, N. T.; Ajayan, Pulickel M.; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H.; Chen, Yongsheng

    2015-01-01

    It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson’s ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson’s ratio.

  16. Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio.

    PubMed

    Wu, Yingpeng; Yi, Ningbo; Huang, Lu; Zhang, Tengfei; Fang, Shaoli; Chang, Huicong; Li, Na; Oh, Jiyoung; Lee, Jae Ah; Kozlov, Mikhail; Chipara, Alin C; Terrones, Humberto; Xiao, Peishuang; Long, Guankui; Huang, Yi; Zhang, Fan; Zhang, Long; Lepró, Xavier; Haines, Carter; Lima, Márcio Dias; Lopez, Nestor Perea; Rajukumar, Lakshmy P; Elias, Ana L; Feng, Simin; Kim, Seon Jeong; Narayanan, N T; Ajayan, Pulickel M; Terrones, Mauricio; Aliev, Ali; Chu, Pengfei; Zhang, Zhong; Baughman, Ray H; Chen, Yongsheng

    2015-01-20

    It is a challenge to fabricate graphene bulk materials with properties arising from the nature of individual graphene sheets, and which assemble into monolithic three-dimensional structures. Here we report the scalable self-assembly of randomly oriented graphene sheets into additive-free, essentially homogenous graphene sponge materials that provide a combination of both cork-like and rubber-like properties. These graphene sponges, with densities similar to air, display Poisson's ratios in all directions that are near-zero and largely strain-independent during reversible compression to giant strains. And at the same time, they function as enthalpic rubbers, which can recover up to 98% compression in air and 90% in liquids, and operate between -196 and 900 °C. Furthermore, these sponges provide reversible liquid absorption for hundreds of cycles and then discharge it within seconds, while still providing an effective near-zero Poisson's ratio.

  17. Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-12-18

    obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii) reduction of ...Fe2O3 -Graphene Sheets Graphene sheets are obtained from electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) flake. Two...fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG , exfoliated graphene, PyDop1-ɤ-Fe2O3

  18. Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step.

    PubMed

    Kaminska, Izabela; Das, Manash R; Coffinier, Yannick; Niedziolka-Jonsson, Joanna; Sobczak, Jonusz; Woisel, Patrice; Lyskawa, Joel; Opallo, Marcin; Boukherroub, Rabah; Szunerits, Sabine

    2012-02-01

    An easy and environmentally friendly chemical method for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) using dopamine derivatives is described. The reaction takes place at room temperature under ultrasonication of an aqueous suspension of GO and a dopamine derivative. X-ray photoelectron spectroscopy, FT-IR spectroscopy, and cyclic voltammetry characterizations revealed that the resulting material consists of graphene functionalized with the dopamine derivative. This one-step protocol is applied for simultaneous reduction and functionalization of graphene oxide with a dopamine derivative bearing an azide function. The chemical reactivity of the azide function was demonstrated by a postfunctionalization with ethynylferrocene using the Cu(I) catalyzed 1,3-dipolar cyloaddition.

  19. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.

    2018-03-01

    Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)

  20. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Shi, Guosheng; Shen, Jie; Peng, Bingquan; Zhang, Bowu; Wang, Yuzhu; Bian, Fenggang; Wang, Jiajun; Li, Deyuan; Qian, Zhe; Xu, Gang; Liu, Gongping; Zeng, Jianrong; Zhang, Lijuan; Yang, Yizhou; Zhou, Guoquan; Wu, Minghong; Jin, Wanqin; Li, Jingye; Fang, Haiping

    2017-10-01

    Graphene oxide membranes—partially oxidized, stacked sheets of graphene—can provide ultrathin, high-flux and energy-efficient membranes for precise ionic and molecular sieving in aqueous solution. These materials have shown potential in a variety of applications, including water desalination and purification, gas and ion separation, biosensors, proton conductors, lithium-based batteries and super-capacitors. Unlike the pores of carbon nanotube membranes, which have fixed sizes, the pores of graphene oxide membranes—that is, the interlayer spacing between graphene oxide sheets (a sheet is a single flake inside the membrane)—are of variable size. Furthermore, it is difficult to reduce the interlayer spacing sufficiently to exclude small ions and to maintain this spacing against the tendency of graphene oxide membranes to swell when immersed in aqueous solution. These challenges hinder the potential ion filtration applications of graphene oxide membranes. Here we demonstrate cationic control of the interlayer spacing of graphene oxide membranes with ångström precision using K+, Na+, Ca2+, Li+ or Mg2+ ions. Moreover, membrane spacings controlled by one type of cation can efficiently and selectively exclude other cations that have larger hydrated volumes. First-principles calculations and ultraviolet absorption spectroscopy reveal that the location of the most stable cation adsorption is where oxide groups and aromatic rings coexist. Previous density functional theory computations show that other cations (Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) should have a much stronger cation-π interaction with the graphene sheet than Na+ has, suggesting that other ions could be used to produce a wider range of interlayer spacings.

  1. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation.

    PubMed

    Boruah, Purna K; Sharma, Bhagyasmeeta; Karbhal, Indrapal; Shelke, Manjusha V; Das, Manash R

    2017-03-05

    Synthesis of easily separable and eco-friendly efficient catalyst with both photocatalytic and photo-Fenton degradation properties is of great importance for environment remediation application. Herein, ammonia-modified graphene (AG) sheets decorated with Fe 3 O 4 nanoparticles (AG/Fe 3 O 4 ) as a magnetically recoverable photocatalyst by a simple in situ solution chemistry approach. First, we have functionalized graphene oxide (GO) sheets by amide functional group and then Fe 3 O 4 nanoparticles (NPs) are doped onto the functionalized GO surface. The AG/Fe 3 O 4 nanocomposite showed efficient photocatalytic activity towards degradation of phenol (92.43%), 2-nitrophenol (2-NP) (98%) and 2-chlorophenol (2-CP) (97.15%) within 70-120min. Consequently, in case of photo-Fenton degradation phenomenon, 93.56% phenol, 98.76% 2-NP and 98.06% of 2-CP degradation were achieved within 50-80min using AG/Fe 3 O 4 nanocomposite under sunlight irradiation. The synergistic effect between amide functionalized graphene and Fe 3 O 4 nanoparticles (NPs) enhances the photocatalytic activity by preventing the recombination rate of electron-hole-pair in Fe 3 O 4 NPs. Furthermore, the remarkable reusability of the AG/Fe 3 O 4 nanocomposite was observed up to ten cycles during the photocatalytic degradation of these phenolic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Boron supercapacitors

    DOE PAGES

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; ...

    2016-11-16

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  3. Boron supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  4. Evaluation of an affinity-amplified immunoassay of graphene oxide using surface plasmon resonance biosensors

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan

    2015-05-01

    We describe a fundamental study on the plasmonic properties and advanced biosensing mechanisms of functionalized graphene. We discuss a specific design using modified carboxyl groups, which can modulate surface plasmon (SP) coupling and provide an advantage for their binding to the sensing layer with high-performance affinity in an immunological reaction. The functionalized graphene-based surface plasmon resonance (SPR) biosensors have three advantages: high performance, high sensitivity, and excellent molecular kinetic response. In the future, functionalized graphene sheets will make a unique contribution to photonic and SPR diagnosis devices. We wish to highlight the essential characteristics of functionalized graphene-based SPR biosensors to assist researchers in developing and advancing suitable biosensors for unique applications.

  5. Computational insights of water droplet transport on graphene sheet with chemical density

    NASA Astrophysics Data System (ADS)

    Zhang, Liuyang; Wang, Xianqiao

    2014-05-01

    Surface gradient has been emerging as an intriguing technique for nanoscale particle manipulation and transportation. Owing to its outstanding and stable chemical properties, graphene with covalently bonded chemical groups represents extraordinary potential for the investigation of nanoscale transport in the area of physics and biology. Here, we employ molecular dynamics simulations to investigate the fundamental mechanism of utilizing a chemical density on a graphene sheet to control water droplet motions on it. Simulation results have demonstrated that the binding energy difference among distinct segment of graphene in terms of interaction between the covalently bonded oxygen atoms on graphene and the water molecules provides a fundamental driving force to transport the water droplet across the graphene sheet. Also, the velocity of the water droplet has showed a strong dependence on the relative concentration of oxygen atoms between successive segments. Furthermore, a multi-direction channel provides insights to guide the transportation of objects towards a targeted position, separating the mixtures with a system of specific chemical functionalization. Our findings shed illuminating lights on the surface gradient method and therefore provide a feasible way to control nanoscale motion on the surface and mimic the channelless microfluidics.

  6. Structural evaluation of reduced graphene oxide in graphene oxide during ion irradiation: X-ray absorption spectroscopy and in-situ sheet resistance studies

    NASA Astrophysics Data System (ADS)

    Saravanan, K.; Jayalakshmi, G.; Suresh, K.; Sundaravel, B.; Panigrahi, B. K.; Phase, D. M.

    2018-03-01

    We report the structural evolution of reduced graphene oxide (rGO) in graphene oxide (GO) flakes during 1 MeV Si+ ion irradiation. In-situ electrical resistivity measurements facilitate monitoring the sheet resistance with the increase in the fluence. The electrical sheet resistance of the GO flake shows the exponential decay behaviour with the increasing ion fluence. Raman spectra of the GO flake reveal the increase in the ID/IG ratio, indicating restoration of the sp2 network upon irradiation. The C/O ratio estimated from resonant Rutherford backscattering spectrometry analysis directly evidenced the reduction of oxygen moieties upon irradiation. C K-edge X-ray absorption near edge structure spectra reveal the restoration of C=C sp2-hybridized carbon atoms and the removal of oxygen-containing functional groups in the GO flake. STM data reveal the higher conductance in the rGO regime in comparison with the regime, where the oxygen functional groups are present. The experimental investigation demonstrates that the ion irradiation can be employed for efficient reduction of GO with tunable electrical and structural properties.

  7. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Li, E-mail: chenli1981@lut.cn; Li, Na; Zhang, Mingxia

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed tomore » analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.« less

  8. Synthesis and optoelectronic properties of nanocomposites comprising of poly(9,9-dioctylfluorene)-block-poly(3-hexylthiophene) block copolymer and graphene nanosheets.

    PubMed

    Chiu, Po-Chun; Su, Reagen Ying-Tai; Yeh, Je-Yuan; Yeh, Cheng-Yang; Tsiang, Raymond Chien-Chao

    2013-06-01

    A novel conjugated block copolymer, poly(9,9-dioctylfluorene)-block-poly(3-hexylthiophene) (PFBPT) and its nanocomposite containing graphene sheets were synthesized for enhancing optoelectronic performance. Graphene sheets were in-situ formed in the polymer matrix via a reduction of octadecylamine-functionalized graphite oxide, where the graphite oxide came from acidification and exfoliation of graphite. The blue-green light-emitting poly(9,9-dioctylfluorene) block and red-orange light-emitting poly(3-hexylthiophene) block exhibit a combined white electroluminescence when the composite materials were fabricated as the emitting layer of a polymeric light-emitting diode (PLED). Graphene does not alter the optical characteristics wavelength of PFBPT but electric conductivity increases with the amount of graphene. The HOMO and LUMO were measured and the band gap is smaller with existence of graphene. The threshold voltage decreases with an increase in the graphene content. The device fabricated with PFBPT/graphene nanocomposite containing 1% graphene has a maximum white-light luminescence at a voltage of 9.0 V.

  9. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.

    PubMed

    Li, Hui; Zeng, Xiao Cheng

    2012-03-27

    Born-Oppenheim quantum molecular dynamics (QMD) simulations are performed to investigate wetting, diffusive, and interfacial properties of water nanodroplets in contact with a graphene sheet or a monolayer boron-nitride (BN) sheet. Contact angles of the water nanodroplets on the two sheets are computed for the first time using QMD simulations. Structural and dynamic properties of the water droplets near the graphene or BN sheet are also studied to gain insights into the interfacial interaction between the water droplet and the substrate. QMD simulation results are compared with those from previous classic MD simulations and with the experimental measurements. The QMD simulations show that the graphene sheet yields a contact angle of 87°, while the monolayer BN sheet gives rise to a contact angle of 86°. Hence, like graphene, the monolayer BN sheet is also weakly hydrophobic, even though the BN bonds entail a large local dipole moment. QMD simulations also show that the interfacial water can induce net positive charges on the contacting surface of the graphene and monolayer BN sheets, and such charge induction may affect electronic structure of the contacting graphene in view that graphene is a semimetal. Contact angles of nanodroplets of water in a supercooled state on the graphene are also computed. It is found that under the supercooled condition, water nanodroplets exhibit an appreciably larger contact angle than under the ambient condition. © 2012 American Chemical Society

  10. Graphene electron cannon: High-current edge emission from aligned graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianlong; Li, Nannan; Guo, Jing

    2014-01-13

    High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.

  11. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    NASA Astrophysics Data System (ADS)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs' interaction with graphene, and applied to address the challenge of dispersing bare-surfaced GNPs for efficient liquid-phase catalysis. We also revisited the functionalization of graphene and present a non-invasive surface introduction of interfaceable moieties. Isostructural to graphene, ultrathin BN sheet is another atomic-thick nanomaterial possessing a highly diverse set of properties inconceivable from graphene. Exfoliating UTBNSs has been challenging due to their exceptional intersheet-bonding and chemical-inertness. To develop applications of BN monolayers and evolve research, a facile lab-scale approach was desired that can produce processable dispersions of BN monolayers. We demonstrated a novel chlorosulfonic acid based treatment that resulted in protonation assisted layer-by-layer exfoliation of BN monolayers with highest reported yields till date. Further, the BN monolayers exhibited extensively protonated N centers, which are utilized for chemically interfacing GNPs, demonstrating their ability to act as excellent nano-templates. The scientific details obtained from the research shown here will significantly support current research activities and greatly impact their future applications. Our research findings have been published in ACS Nano, Small, Journal of Physical Chemistry Letters, MRS Proceedings and have gathered >45 citations.

  12. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams

    NASA Astrophysics Data System (ADS)

    Shen, Zhiqiang; Ye, Huilin; Zhou, Chi; Kröger, Martin; Li, Ying

    2018-03-01

    Graphene is recognized as an emerging 2D nanomaterial for many applications. Assembly of graphene sheets into 3D structures is an attractive way to enable their macroscopic applications and to preserve the exceptional mechanical and physical properties of their constituents. In this study, we develop a coarse-grained (CG) model for 3D graphene foams (GFs) based on the CG model for a 2D graphene sheet by Ruiz et al (2015 Carbon 82 103-15). We find that the size of graphene sheets plays an important role in both the structural and mechanical properties of 3D GFs. When their size is smaller than 10 nm, the graphene sheets can easily stack together under the influence of van der Waals interactions (vdW). These stacks behave like building blocks and are tightly packed together within 3D GFs, leading to high density, small pore radii, and a large Young’s modulus. However, if the sheet sizes exceed 10 nm, they are staggered together with a significant amount of deformation (bending). Therefore, the density of 3D GFs has been dramatically reduced due to the loosely packed graphene sheets, accompanied by large pore radii and a small Young’s modulus. Under uniaxial compression, rubber-like stress-strain curves are observed for all 3D GFs. This material characteristic is dominated by the vdW interactions between different graphene layers and slightly affected by the out-of-plane deformation of the graphene sheets. We find a simple scaling law E˜ {ρ }4.2 between the density ρ and Young’s modulus E for a model of 3D GFs. The simulation results reveal structure-property relations of 3D GFs, which can be applied to guide the design of 3D graphene assemblies with exceptional properties.

  13. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale.

    PubMed

    Wan, Xiangjian; Huang, Yi; Chen, Yongsheng

    2012-04-17

    Carbon is the only element that has stable allotropes in the 0th through the 3rd dimension, all of which have many outstanding properties. Graphene is the basic building block of other important carbon allotropes. Studies of graphene became much more active after the Geim group isolated "free" and "perfect" graphene sheets and demonstrated the unprecedented electronic properties of graphene in 2004. So far, no other individual material combines so many important properties, including high mobility, Hall effect, transparency, mechanical strength, and thermal conductivity. In this Account, we briefly review our studies of bulk scale graphene and graphene oxide (GO), including their synthesis and applications focused on energy and optoelectronics. Researchers use many methods to produce graphene materials: bottom-up and top-down methods and scalable methods such as chemical vapor deposition (CVD) and chemical exfoliation. Each fabrication method has both advantages and limitations. CVD could represent the most important production method for electronic applications. The chemical exfoliation method offers the advantages of easy scale up and easy solution processing but also produces graphene oxide (GO), which leads to defects and the introduction of heavy functional groups. However, most of these additional functional groups and defects can be removed by chemical reduction or thermal annealing. Because solution processing is required for many film and device applications, including transparent electrodes for touch screens, light-emitting devices (LED), field-effect transistors (FET), and photovoltaic devices (OPV), flexible electronics, and composite applications, the use of GO is important for the production of graphene. Because graphene has an intrinsic zero band gap, this issue needs to be tackled for its FET applications. The studies for transparent electrode related applications have made great progress, but researchers need to improve sheet resistance while maintaining reasonable transparency. Proposals for solving these issues include doping or controlling the sheet size and defects, and theory indicates that graphene can match the overall performance of indium tin oxide (ITO). We have significantly improved the specific capacitance in graphene supercapacitor devices, though our results do not yet approach theoretical values. For composite applications, the key issue is to prevent the restacking of graphene sheets, which we achieved by adding blocking molecules. The continued success of graphene studies will require further development in two areas: (1) the large scale and controlled synthesis of graphene, producing different structures and quantities that are needed for a variety of applications and (2) on table applications, such as transparent electrodes and energy storage devices. Overall, graphene has demonstrated performance that equals or surpasses that of other new carbon allotropes. These features, combined with its easier access and better processing ability, offer the potential basis for truly revolutionary applications and as a future fundamental technological material beyond the silicon age.

  14. Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study

    NASA Astrophysics Data System (ADS)

    Zhiani, Rahele

    2017-07-01

    The binding properties of the adsorption of five different classes of amino acids, namely, alanine (Ala), arginine (Arg), asparagine (Asn), histidine (His) and cysteine (Cys) on the surface of the graphene (Gra) and the born-nitride (BN) nano-sheet structures were studied from molecular viewpoint using quantum mechanics methods. Density functional theory (DFT) and DFT-D3 calculations were carried out to investigate the electronic properties and the dispersion interaction of the amino acid/adsorbent complexes. Several parameters affecting the interactions between the amino acids and the adsorbent surfaces such as solvent effect, adsorption energy and separation distance were investigated. Findings show that Arg forms the most stable complexes with the graphene and the BN nano-sheet compare to the other amino acids used in this study. The observed frequency results which were related to the band gap energies were consistent with the above statement. Results exhibit that adsorption of the amino acids on the surface of the BN nano-sheet and the graphene accompanied with the release of the energy. Calculations show that there are no bonded interactions between the amino acids and adsorbent surfaces. The polarity of the BN nano-sheet provides the more affinity towards the amino acids. These results were proved by the quantum chemistry studies.

  15. Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by cyclic atomic layer reduction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Si-Yong; Hsieh, Chien-Te; Lin, Tzu-Wei

    The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 °C within ALR cycle number of 10–100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, anmore » improved electrical conductivity, a narrow band gap, and a tunable PL response. Finally, on the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes.« less

  16. Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by cyclic atomic layer reduction technique

    DOE PAGES

    Gu, Si-Yong; Hsieh, Chien-Te; Lin, Tzu-Wei; ...

    2018-05-12

    The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 °C within ALR cycle number of 10–100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, anmore » improved electrical conductivity, a narrow band gap, and a tunable PL response. Finally, on the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes.« less

  17. Graphene oxide sheets-based platform for induced pluripotent stem cells culture: toxicity, adherence, growth and application

    NASA Astrophysics Data System (ADS)

    Durán, Marcela; Andrade, Patricia F.; Durán, Nelson; Luzo, Angela C. M.; Fávaro, Wagner J.

    2015-05-01

    It was prepared the graphene oxide (GO) sheets by suspension of GO in ultrapure deionized water or in Pluronic F-68 using a ultrasonicator bath. Total characterization of GO sheets was carried out. The results on suspension of GO in water showed excellent growth and cell adhesion. GO/Pluronic F-68 platform for the growth and adhesion of adipose-derived stem cells (ASCs) that exhibits excellent properties for these processes. GO in water suspension exhibited an inhibition of the cell growth over 5 μg/mL In vivo study with GO suspended in water (100 μg/mL) on Fisher 344 rats via i.p. administration showed low toxicity. Despite GO particle accumulates in the intraperitoneal cavity, this fact did not interfere with the final absorption of GO. The AST (aspartate aminotransferase) and ALT (alanine aminotransferase) levels (liver function) did not differ statistically in all experimental groups. Also, creatinine and urea levels (renal function) did not differ statistically in all experimental groups. Taking together, the data suggest the great potential of graphene oxide sheets as platform to ACSs, as well as, new material for treatment several urological diseases.

  18. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction

    NASA Astrophysics Data System (ADS)

    Kabiri, Roya; Namazi, Hassan

    2014-07-01

    Reduced graphene oxide (RGO) sheet was functionalized with nanocrystalline cellulose (NCC) via click coupling between azide-functionalized graphene oxide (GO-N3) and terminal propargyl-functionalized nanocrystalline cellulose (PG-NCC). First, the reactive azide groups were introduced on the surface of GO with azidation of 2-chloroethyl isocyanate-treated graphene oxide (GO-Cl). Then, the resulted compounds were reacted with PG-NCC utilizing copper-catalyzed azide-alkyne cycloaddition. During the click reaction, GO was simultaneously reduced to graphene. The coupling was confirmed by Fourier transform infrared, Raman, DEPT135, and 13C NMR spectroscopy, and the complete exfoliation of graphene in the NCC matrix was confirmed with X-ray diffraction measurement. The degree of functionalization from the gradual mass loss of RGO-NCC suggests that around 23 mass % has been functionalized covalently. The size of both NCC and GO was found to be in nanometric range, which decreased after click reaction.

  19. Solution-processed transparent blue organic light-emitting diodes with graphene as the top cathode

    PubMed Central

    Chang, Jung-Hung; Lin, Wei-Hsiang; Wang, Po-Chuan; Taur, Jieh-I; Ku, Ting-An; Chen, Wei-Ting; Yan, Shiang-Jiuan; Wu, Chih-I

    2015-01-01

    Graphene thin films have great potential to function as transparent electrodes in organic electronic devices, due to their excellent conductivity and high transparency. Recently, organic light-emitting diodes (OLEDs)have been successfully demonstrated to possess high luminous efficiencies with p-doped graphene anodes. However, reliable methods to fabricate n-doped graphene cathodes have been lacking, which would limit the application of graphene in flexible electronics. In this paper, we demonstrate fully solution-processed OLEDs with n-type doped multilayer graphene as the top electrode. The work function and sheet resistance of graphene are modified by an aqueous process which can also transfer graphene on organic devices as the top electrodes. With n-doped graphene layers used as the top cathode, all-solution processed transparent OLEDs can be fabricated without any vacuum process. PMID:25892370

  20. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin

    2017-05-01

    The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  1. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.

    PubMed

    Das, Sriya; Wajid, Ahmed S; Shelburne, John L; Liao, Yen-Chih; Green, Micah J

    2011-06-01

    We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. With this in mind, a physisorbed polymer layer is used to stabilize graphene sheets in solution. To create this protective layer, we formed an organic microenvironment around dispersed graphene sheets in surfactant solutions, and created a nylon 6, 10 or nylon 6, 6 coating via interfacial polymerization. Technique lies at the intersection of emulsion and admicellar polymerization; a similar technique was originally developed to protect luminescent properties of carbon nanotubes in solution. These coated graphene dispersions are aggregation-resistant and may be reversibly redispersed in water even after freeze-drying. The coated graphene holds promise for a number of applications, including multifunctional graphene-polymer nanocomposites. © 2011 American Chemical Society

  2. Experimental and theoretical investigation of relative optical band gaps in graphene generations

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Deepika; Singh, Sukhbir; Yadav, Sriniwas; Kumar, Ashok; Kaur, Inderpreet

    2017-01-01

    Size and chemical functionalization dependant optical band gaps in graphene family nanomaterials were investigated by experimental and theoretical study using Tauc plot and density functional theory (DFT). We have synthesized graphene oxide through a modified Hummer’s method using graphene nanoplatelets and sequentially graphene quantum dots through hydrothermal reduction. The experimental results indicate that the optical band gap in graphene generations was altered by reducing the size of graphene sheets and attachment of chemical functionalities like epoxy, hydroxyl and carboxyl groups plays a crucial role in varying optical band gaps. It is further confirmed by DFT calculations that the π orbitals were more dominatingly participating in transitions shown by projected density of states and the molecular energy spectrum represented the effect of attached functional groups along with discreteness in energy levels. Theoretical results were found to be in good agreement with experimental results. All of the above different variants of graphene can be used in native or modified form for sensor design and optoelectronic applications.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Mingyi; Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com; Wu, Tao

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-raymore » photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.« less

  4. Chemical modification of group IV graphene analogs

    PubMed Central

    Nakano, Hideyuki; Tetsuka, Hiroyuki; Spencer, Michelle J. S.; Morishita, Tetsuya

    2018-01-01

    Abstract Mono-elemental two-dimensional (2D) crystals (graphene, silicene, germanene, stanene, and so on), termed 2D-Xenes, have been brought to the forefront of scientific research. The stability and electronic properties of 2D-Xenes are main challenges in developing practical devices. Therefore, in this review, we focus on 2D free-standing group-IV graphene analogs (graphene quantum dots, silicane, and germanane) and the functionalization of these sheets with organic moieties, which could be handled under ambient conditions. We highlight the present results and future opportunities, functions and applications, and novel device concepts. PMID:29410713

  5. Graphene-based composite materials.

    PubMed

    Stankovich, Sasha; Dikin, Dmitriy A; Dommett, Geoffrey H B; Kohlhaas, Kevin M; Zimney, Eric J; Stach, Eric A; Piner, Richard D; Nguyen, SonBinh T; Ruoff, Rodney S

    2006-07-20

    Graphene sheets--one-atom-thick two-dimensional layers of sp2-bonded carbon--are predicted to have a range of unusual properties. Their thermal conductivity and mechanical stiffness may rival the remarkable in-plane values for graphite (approximately 3,000 W m(-1) K(-1) and 1,060 GPa, respectively); their fracture strength should be comparable to that of carbon nanotubes for similar types of defects; and recent studies have shown that individual graphene sheets have extraordinary electronic transport properties. One possible route to harnessing these properties for applications would be to incorporate graphene sheets in a composite material. The manufacturing of such composites requires not only that graphene sheets be produced on a sufficient scale but that they also be incorporated, and homogeneously distributed, into various matrices. Graphite, inexpensive and available in large quantity, unfortunately does not readily exfoliate to yield individual graphene sheets. Here we present a general approach for the preparation of graphene-polymer composites via complete exfoliation of graphite and molecular-level dispersion of individual, chemically modified graphene sheets within polymer hosts. A polystyrene-graphene composite formed by this route exhibits a percolation threshold of approximately 0.1 volume per cent for room-temperature electrical conductivity, the lowest reported value for any carbon-based composite except for those involving carbon nanotubes; at only 1 volume per cent, this composite has a conductivity of approximately 0.1 S m(-1), sufficient for many electrical applications. Our bottom-up chemical approach of tuning the graphene sheet properties provides a path to a broad new class of graphene-based materials and their use in a variety of applications.

  6. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries.

    PubMed

    Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia

    2017-01-17

    The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group "-(CH₂)₅COOH", and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g -1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes.

  7. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.

    PubMed

    Pan, Shuyang; Aksay, Ilhan A

    2011-05-24

    We have studied the effect of the oxidation path and the mechanical energy input on the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 μm. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. As the effective crack propagation rate in the cross-planar direction is an order of magnitude smaller than the edge-to-center oxidation rate, graphene oxide single sheets larger than those defined by the periodic cracking cell size are produced depending on the aspect ratio of the graphite particles. We also demonstrate that external energy input from hydrodynamic drag created by fluid motion or sonication, further reduces the size of the graphene oxide sheets through tensile stress buildup in the sheets.

  8. Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression

    NASA Astrophysics Data System (ADS)

    Farajpour, Ali; Arab Solghar, Alireza; Shahidi, Alireza

    2013-01-01

    In this article, the nonlinear buckling characteristics of multi-layered graphene sheets are investigated. The graphene sheet is modeled as an orthotropic nanoplate with size-dependent material properties. The graphene film is subjected by non-uniformly distributed in-plane load through its thickness. To include the small scale and the geometrical nonlinearity effects, the governing differential equations are derived based on the nonlocal elasticity theory in conjunction with the von Karman geometrical model. Explicit expressions for the postbuckling loads of single- and double-layered graphene sheets with simply supported edges under biaxial compression are obtained. For numerical results, six types of armchair and zigzag graphene sheets with different aspect ratio are considered. The present formulation and method of solution are validated by comparing the results, in the limit cases, with those available in the open literature. Excellent agreement between the obtained and available results is observed. Finally, the effects of nonlocal parameter, buckling mode number, compression ratio and non-uniform parameter on the postbuckling behavior of multi-layered graphene sheets are studied.

  9. Acoustoelectric photoresponse of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Poole, T.; Nash, G. R.

    2018-04-01

    The acoustoelectric current in graphene nanoribbons, with widths ranging between 350 nm and 600 nm, has been investigated as a function of illumination. For all nanoribbon widths, the acoustoelectric current was observed to decrease on illumination, in contrast to the increase in acoustoelectric current measured in unpatterned graphene sheet devices. This is thought to be due to the higher initial conductivities of the nanoribbons compared to unpatterned devices.

  10. Date Fruits-Assisted Synthesis and Biocompatibility Assessment of Nickel Oxide Nanoparticles Anchored onto Graphene Sheets for Biomedical Applications.

    PubMed

    Alshatwi, Ali A; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan; Alatiah, Khalid A

    2017-02-01

    Nanographene- and graphene-based nanohybrids have garnered attention in the biomedical community owing to their biocompatibility, excellent aqueous processability, ease of cellular uptake, facile surface functionalization, and thermal and electrical conductivities. NiO nanoparticle-graphene nanohybrid (G-NiO) was synthesized by first depositing Ni(OH) 2 onto the surface of graphene oxide (GO) sheets. The Ni(OH) 2 -GO hybrids were then reduced to G-NiO using date palm syrup at 85 °C. The prepared G-NiO nanohybrids were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The NiO nanoparticles, with a diameter of approximately 20-30 nm, were uniformly dispersed over the surface of the graphene sheets. The G-NiO hybrids exhibit biocompatibility in human mesenchymal stem cells (hMSCs) up to 100 μg/mL. The nanohybrids do not cause any significant changes in cellular and nuclear morphologies in hMSCs. The as-synthesized nanohybrids show excellent biocompatibility and could be a promising material for biomedical applications.

  11. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  12. Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene

    NASA Astrophysics Data System (ADS)

    Dolinskii, I. Yu.; Katin, K. P.; Grishakov, K. S.; Prudkovskii, V. S.; Kargin, N. I.; Maslov, M. M.

    2018-04-01

    This paper presents the results of quantum chemical modeling of chemisorption of atomic hydrogen and epoxy, carboxyl, and hydroxyl functional groups on nitrogen-doped graphene. It is shown that the substitutional nitrogen atom does not bind to adsorbing groups directly, but significantly increases the adsorption activity of neighboring carbon atoms. Mechanical stretching of doped graphene reduces the adsorption energy of all the aforementioned radicals. This reduction is significantly greater for the epoxy group than for the other functional groups. The results obtained confirm that, upon a sufficient stretching of a nitrogen-doped graphene sheet, the dissociation of molecular hydrogen and oxygen with subsequent precipitation of the resulting radicals onto graphene can be energetically favorable.

  13. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  14. Processing of monolayer materials via interfacial reactions

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2014-05-20

    A method of forming and processing of graphene is disclosed based on exposure and selective intercalation of the partially graphene-covered metal substrate with atomic or molecular intercalation species such as oxygen (O.sub.2) and nitrogen oxide (NO.sub.2). The process of intercalation lifts the strong metal-carbon coupling and restores the characteristic Dirac behavior of isolated monolayer graphene. The interface of graphene with metals or metal-decorated substrates also provides for controlled chemical reactions based on novel functionality of the confined space between a metal surface and a graphene sheet.

  15. Graphene-on-paper sound source devices.

    PubMed

    Tian, He; Ren, Tian-Ling; Xie, Dan; Wang, Yu-Feng; Zhou, Chang-Jian; Feng, Ting-Ting; Fu, Di; Yang, Yi; Peng, Ping-Gang; Wang, Li-Gang; Liu, Li-Tian

    2011-06-28

    We demonstrate an interesting phenomenon that graphene can emit sound. The application of graphene can be expanded in the acoustic field. Graphene-on-paper sound source devices are made by patterning graphene on paper substrates. Three graphene sheet samples with the thickness of 100, 60, and 20 nm were fabricated. Sound emission from graphene is measured as a function of power, distance, angle, and frequency in the far-field. The theoretical model of air/graphene/paper/PCB board multilayer structure is established to analyze the sound directivity, frequency response, and efficiency. Measured sound pressure level (SPL) and efficiency are in good agreement with theoretical results. It is found that graphene has a significant flat frequency response in the wide ultrasound range 20-50 kHz. In addition, the thinner graphene sheets can produce higher SPL due to its lower heat capacity per unit area (HCPUA). The infrared thermal images reveal that a thermoacoustic effect is the working principle. We find that the sound performance mainly depends on the HCPUA of the conductor and the thermal properties of the substrate. The paper-based graphene sound source devices have highly reliable, flexible, no mechanical vibration, simple structure and high performance characteristics. It could open wide applications in multimedia, consumer electronics, biological, medical, and many other areas.

  16. Theoretical studies of structure-property relations in graphene-based carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios

    2014-03-01

    This presentation focuses on establishing relations between atomic structure, electronic structure, and properties in graphene-based carbon nanostructures through first-principles density functional theory calculations and molecular-dynamics simulations. We have analyzed carbon nanostructure formation from twisted bilayer graphene, upon creation of interlayer covalent C-C bonds due to patterned hydrogenation or fluorination. For small twist angles and twist angles near 30 degrees, interlayer covalent bonding generates superlattices of diamond-like nanocrystals and of fullerene-like configurations, respectively, embedded within the graphene layers. The electronic band gaps of these superlattices can be tuned through selective chemical functionalization and creation of interlayer bonds, and range from a few meV to over 1.2 eV. The mechanical properties of these superstructures also can be precisely tuned by controlling the extent of chemical functionalization. Importantly, the shear modulus is shown to increase monotonically with the fraction of sp3-hybridized C-C bonds. We have also studied collective interactions of multiple defects such as random distributions of vacancies in single-layer graphene (SLG). We find that a crystalline-to-amorphous structural transition occurs at vacancy concentrations of 5-10% over a broad temperature range. The structure of our defect-induced amorphized graphene is in excellent agreement with experimental observations of SLG exposed to a high electron irradiation dose. Simulations of tensile tests on these irradiated graphene sheets identify trends for the ultimate tensile strength, failure strain, and toughness as a function of vacancy concentration. The vacancy-induced amorphization transition is accompanied by a brittle-to-ductile transition in the failure response of irradiated graphene sheets and even heavily damaged samples exhibit tensile strengths near 30 GPa, in significant excess of those typical of engineering materials.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lifeng, E-mail: walfe@nuaa.edu.cn; Hu, Haiyan

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermalmore » vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.« less

  18. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  19. High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets.

    PubMed

    Qiu, Yongcai; Zhang, Xinfeng; Yang, Shihe

    2011-07-21

    Thermal nitridation of reduced graphene oxide sheets yields highly conductive (∼1000-3000 S m(-1)) N-doped graphene sheets, as a result of the restoration of the graphene network by the formation of C-N bonded groups and N-doping. Even without carbon additives, supercapacitors made of the N-doped graphene electrodes can deliver remarkable energy and power when operated at higher voltages, in the range of 0-4 V. This journal is © the Owner Societies 2011

  20. Biological and chemical sensors based on graphene materials.

    PubMed

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  1. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. Electronic supplementary information (ESI) available: XPS spectra, Raman spectra, sheet resistance and transmittance of graphene films with different numbers of layers and different ozone treatment times, doping effect of MoO3 on graphene and GO/G electrodes, performance of green OLEDs with different graphene anodes, a movie showing the flexibility of device. See DOI: 10.1039/c6nr01649a

  2. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    NASA Astrophysics Data System (ADS)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  3. Synthesis of gold nanoparticles with graphene oxide.

    PubMed

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  4. Graphene in NLO Devices for High Energy Laser Protection

    DTIC Science & Technology

    2009-11-17

    for industrial applications, has been working to advance the application base of graphene . We have recently demonstrated in laser protection...component for evaluation and use of graphene suspensions for laser protection is dispersion of the graphene sheets into appropriate solvents... graphene sheets peeled off from graphite with scotch-tape. For applications where industrial quantities of graphene are needed, however

  5. Synthesis and Functionalization of 3D Nano-graphene Materials: Graphene Aerogels and Graphene Macro Assemblies

    PubMed Central

    Campbell, Patrick G.; Worsley, Marcus A.; Hiszpanski, Anna M.; Baumann, Theodore F.; Biener, Juergen

    2015-01-01

    Efforts to assemble graphene into three-dimensional monolithic structures have been hampered by the high cost and poor processability of graphene. Additionally, most reported graphene assemblies are held together through physical interactions (e.g., van der Waals forces) rather than chemical bonds, which limit their mechanical strength and conductivity. This video method details recently developed strategies to fabricate mass-producible, graphene-based bulk materials derived from either polymer foams or single layer graphene oxide. These materials consist primarily of individual graphene sheets connected through covalently bound carbon linkers. They maintain the favorable properties of graphene such as high surface area and high electrical and thermal conductivity, combined with tunable pore morphology and exceptional mechanical strength and elasticity. This flexible synthetic method can be extended to the fabrication of polymer/carbon nanotube (CNT) and polymer/graphene oxide (GO) composite materials. Furthermore, additional post-synthetic functionalization with anthraquinone is described, which enables a dramatic increase in charge storage performance in supercapacitor applications. PMID:26574930

  6. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

    NASA Astrophysics Data System (ADS)

    Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.

    2018-03-01

    Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

  7. Computational Investigation of Graphene-Carbon Nanotube-Polymer Composite

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Roth, Michael; Todde, Guido; Subramanian, Gopinath; Shukla, Manoj; Univ of Southern Mississippi Collaboration; US Army Engineer Research; Development Center 3909 Halls Ferry Road Vicksburg, MS 39180, USA Collaboration

    Graphene is a single atom thick two dimensional carbon sheet where sp2 -hybridized carbon atoms are arranged in a honeycomb structure. The functionalization of graphene and carbon nanotubes (CNTs) with polymer is a route for developing high performance nanocomposite materials. We study the interfacial interactions among graphene, CNT, and Nylon 6 polymer using computational methods based on density functional theory (DFT) and empirical force-field. Our DFT calculations are carried out using Quantum-ESPRESSO electronic structure code with van der Waals functional (vdW-DF2), whereas the empirical calculations are performed using LAMMPS with the COMPASS force-field. Our results demonstrated that the interactions between (8,8) CNT and graphene, and between CNT/graphene and Nylon 6 consist mostly of van der Waals type. The computed Young's moduli indicated that the mechanical properties of carbon nanostructures are enhanced by their interactions with polymer. The presence of Stone-Wales (SW) defects lowered the Young's moduli of carbon nanostructures.

  8. Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity

    PubMed Central

    Wan, Sijie; Li, Yuchen; Mu, Jiuke; Aliev, Ali E.; Fang, Shaoli; Kotov, Nicholas A.; Jiang, Lei; Cheng, Qunfeng; Baughman, Ray H.

    2018-01-01

    We here show that infiltrated bridging agents can convert inexpensively fabricated graphene platelet sheets into high-performance materials, thereby avoiding the need for a polymer matrix. Two types of bridging agents were investigated for interconnecting graphene sheets, which attach to sheets by either π–π bonding or covalent bonding. When applied alone, the π–π bonding agent is most effective. However, successive application of the optimized ratio of π–π bonding and covalent bonding agents provides graphene sheets with the highest strength, toughness, fatigue resistance, electrical conductivity, electromagnetic interference shielding efficiency, and resistance to ultrasonic dissolution. Raman spectroscopy measurements of stress transfer to graphene platelets allow us to decipher the mechanisms of property improvement. In addition, the degree of orientation of graphene platelets increases with increasing effectiveness of the bonding agents, and the interlayer spacing increases. Compared with other materials that are strong in all directions within a sheet, the realized tensile strength (945 MPa) of the resin-free graphene platelet sheets was higher than for carbon nanotube or graphene platelet composites, and comparable to that of commercially available carbon fiber composites. The toughness of these composites, containing the combination of π–π bonding and covalent bonding, was much higher than for these other materials having high strengths for all in-plane directions, thereby opening the path to materials design of layered nanocomposites using multiple types of quantitatively engineered chemical bonds between nanoscale building blocks. PMID:29735659

  9. Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance

    DOE PAGES

    Jang, Gyoung Gug; Song, Bo; Moon, Kyoung-sik; ...

    2017-04-17

    Graphene-based electrodes for high performance supercapacitors are developed by taking advantage of particle size control, large mass loading, and surface functionalization of reduced graphene oxide (rGO) sheets. Two controlled sizes of graphene sheets (100 nm vs. 45 μm average lateral dimensions) were prepared to study two-electrode system performance. The nano-size graphenes led to the formation of mesoporous films, resulting in higher capacitance, better capacitance retension and lower equivalent series resistance (ESR), indicating better surface usability for diffusion and accessibility of electrolyte ions by shortening transport paths (compared with horizontally stacked films from micro-sized graphenes). For studies using an aqueous electrolyte,more » the maximum specific capacitance of nano-rGO film was 302 F/g (at 1 A/g with 4.3 mg/cm 2 of mass loading), which was ~2.4 times higher than micro-rGO film, and achieved a ~67% reduced ESR. With an organic electrolyte, the nano-rGO delivered ~4.2 times higher capacitance (115 F/g at 2 A/g with 4.3 mg/cm 2), 4.0 times lower IR drops, and an order-of-magnitude lower charge-transfer resistance with an energy density of 18.7 Wh/kg. Finally, the results of this work indicate that the size control of graphene sheet particles for film deposit electrodes can be a simple but effective approach to improve supercapacitor performance.« less

  10. Particle size effect in porous film electrodes of ligand-modified graphene for enhanced supercapacitor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Gyoung Gug; Song, Bo; Moon, Kyoung-sik

    Graphene-based electrodes for high performance supercapacitors are developed by taking advantage of particle size control, large mass loading, and surface functionalization of reduced graphene oxide (rGO) sheets. Two controlled sizes of graphene sheets (100 nm vs. 45 μm average lateral dimensions) were prepared to study two-electrode system performance. The nano-size graphenes led to the formation of mesoporous films, resulting in higher capacitance, better capacitance retension and lower equivalent series resistance (ESR), indicating better surface usability for diffusion and accessibility of electrolyte ions by shortening transport paths (compared with horizontally stacked films from micro-sized graphenes). For studies using an aqueous electrolyte,more » the maximum specific capacitance of nano-rGO film was 302 F/g (at 1 A/g with 4.3 mg/cm 2 of mass loading), which was ~2.4 times higher than micro-rGO film, and achieved a ~67% reduced ESR. With an organic electrolyte, the nano-rGO delivered ~4.2 times higher capacitance (115 F/g at 2 A/g with 4.3 mg/cm 2), 4.0 times lower IR drops, and an order-of-magnitude lower charge-transfer resistance with an energy density of 18.7 Wh/kg. Finally, the results of this work indicate that the size control of graphene sheet particles for film deposit electrodes can be a simple but effective approach to improve supercapacitor performance.« less

  11. Production of quasi-2D graphene nanosheets through the solvent exfoliation of pitch-based carbon fiber

    NASA Astrophysics Data System (ADS)

    Yeon, Youngju; Lee, Mi Yeon; Kim, Sang Youl; Lee, Jihoon; Kim, Bongsoo; Park, Byoungnam; In, Insik

    2015-09-01

    Stable dispersion of quasi-2D graphene sheets with a concentration up to 1.27 mg mL-1 was prepared by sonication-assisted solvent exfoliation of pitch-based carbon fiber in N-methyl pyrrolidone with the mass yield of 2.32%. Prepared quasi-2D graphene sheets have multi-layered 2D plate-like morphology with rich inclusions of graphitic carbons, a low number of structural defects, and high dispersion stability in aprotic polar solvents, and facilitate the utilization of quasi-2D graphene sheets prepared from pitch-based carbon fiber for various electronic and structural applications. Thin films of quasi-2D graphene sheets prepared by vacuum filtration of the dispersion of quasi-2D graphene sheets demonstrated electrical conductivity up to 1.14 × 104 Ω/□ even without thermal treatment, which shows that pitch-based carbon fiber might be useful as the source of graphene-related nanomaterials. Because pitch-based carbon fiber could be prepared from petroleum pitch, a very cheap structural material for the pavement of asphalt roads, our approach might be promising for the mass production of quasi-2D graphene nanomaterials.

  12. Adsorbing H₂S onto a single graphene sheet: A possible gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis; Auluck, S.

    2014-09-14

    The electronic structure of pristine graphene sheet and the resulting structure of adsorbing a single molecule of H₂S on pristine graphene in three different sites (bridge, top, and hollow) are studied using the full potential linearized augmented plane wave method. Our calculations show that the adsorption of H₂S molecule on the bridge site opens up a small direct energy gap of about 0.1 eV at symmetry point M, while adsorption of H₂S on top site opens a gap of 0.3 eV around the symmetry point K. We find that adsorbed H₂S onto the hollow site of pristine graphene sheet causesmore » to push the conduction band minimum and the valence band maximum towards Fermi level resulting in a metallic behavior. Comparing the angular momentum decomposition of the atoms projected electronic density of states of pristine graphene sheet with that of H₂S–graphene for three different cases, we find a significant influence of the location of the H₂S molecule on the electronic properties especially the strong hybridization between H₂S molecule and graphene sheet.« less

  13. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.

    PubMed

    Wang, Hui; Wei, Can; Zhu, Kaiyi; Zhang, Yu; Gong, Chunhong; Guo, Jianhui; Zhang, Jiwei; Yu, Laigui; Zhang, Jingwei

    2017-10-04

    A novel electrochemical exfoliation mode was established to prepare graphene sheets efficiently with potential applications in transparent conductive films. The graphite electrode was coated with paraffin to keep the electrochemical exfoliation in confined space in the presence of concentrated sodium hydroxide as the electrolyte, yielding ∼100% low-defect (the D band to G band intensity ratio, I D /I G = 0.26) graphene sheets. Furthermore, ozone was first detected with ozone test strips, and the effect of ozone on the exfoliation of graphite foil and the microstructure of the as-prepared graphene sheets was investigated. Findings indicate that upon applying a low voltage (3 V) on the graphite foil partially coated with paraffin wax that the coating can prevent the insufficiently intercalated graphite sheets from prematurely peeling off from the graphite electrode thereby affording few-layer (<5 layers) holey graphene sheets in a yield of as much as 60%. Besides, the ozone generated during the electrochemical exfoliation process plays a crucial role in the exfoliation of graphite, and the amount of defect in the as-prepared graphene sheets is dependent on electrolytic potential and electrode distance. Moreover, the graphene-based transparent conductive films prepared by simple modified vacuum filtration exhibit an excellent transparency and a low sheet resistance after being treated with NH 4 NO 3 and annealing (∼1.21 kΩ/□ at ∼72.4% transmittance).

  14. A facile and scalable method to prepare carbon nanotube-grafted-graphene for high performance Li-S battery

    NASA Astrophysics Data System (ADS)

    Wang, Q. Q.; Huang, J. B.; Li, G. R.; Lin, Z.; Liu, B. H.; Li, Z. P.

    2017-01-01

    A carbon nanotube-grafted-graphene (CNT-g-Gr) is developed for enhancements of electrical conduction and polysulfide (PS) absorption to improve rate performance and cycleability of lithium-sulfur battery. The CNT-g-Gr is prepared through CNT growth on Ni-deposited graphene sheet which is fabricated via pyrolysis of glucose in a molten salt. The obtained CNT-g-Gr shows much higher specific surface area and PS adsorption capability than graphene. The in-situ formed Ni nanoparticles on graphene sheet not only serve as the catalytic sites for CNT growth, but also function as the anchor-sites for polar PS absorption. The CNT-g-Gr contributes a superb PS adsorption capability arising from graphene and CNT absorbing weakly-polar PS species, and Ni nanoparticles absorbing the species with stronger polarity. The resultant Li-S battery with the CNT-g-Gr shows excellent cycleability and rate performance. A stable discharge capacity of 900 mAh g-1 (with low capacity degradation rate) and a rate capacity of 260 mAh g-1 at 30 C discharge rate have been achieved.

  15. An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid

    NASA Astrophysics Data System (ADS)

    He, Qingsong; Yu, Min; Yang, Xu; Kim, Kwang Jin; Dai, Zhendong

    2015-06-01

    A newly developed ionic electro-active actuator composed of an ionic electrolyte layer sandwiched between two graphene film layers was investigated. Scanning electronic microscopy observation and x-ray diffraction analysis showed that the graphene sheets in the film stacked in a nearly face-to-face fashion but did not restack back to graphite, and the resulting graphene film with low sheet resistance (10 Ω sq-1) adheres well to the electrolyte membrane. Contact angle measurement showed the surface energy (37.98 mJ m-2) of the ionic electrolyte polymer is 2.67 times higher than that (14.2 mJ m-2) of the Nafion membrane, contributing to the good adhesion between the graphene film electrode and the electrolyte membrane. An electric double-layer is formed at the interface between the graphene film electrode and the ionic electrolyte membrane under the input potential, resulting in a higher capacitance of 27.6 mF cm-2. We report that this ionic actuator exhibits adequate bending strain, ranging from 0.032 to 0.1% (305 to 945 μm) as functions of voltage.

  16. Graphene Emerges as a Versatile Template for Materials Preparation.

    PubMed

    Li, Zhengjie; Wu, Sida; Lv, Wei; Shao, Jiao-Jing; Kang, Feiyu; Yang, Quan-Hong

    2016-05-01

    Graphene and its derivatives are emerging as a class of novel but versatile templates for the controlled preparation and functionalization of materials. In this paper a conceptual review on graphene-based templates is given, highlighting their versatile roles in materials preparation. Graphene is capable of acting as a low-dimensional hard template, where its two-dimensional morphology directs the formation of novel nanostructures. Graphene oxide and other functionalized graphenes are amphiphilic and may be seen as soft templates for formatting the growth or inducing the controlled assembly of nanostructures. In addition, nanospaces in restacked graphene can be used for confining the growth of sheet-like nanostructures, and assemblies of interlinked graphenes can behave either as skeletons for the formation of composite materials or as sacrificial templates for novel materials with a controlled network structure. In summary, flexible graphene and its derivatives together with an increasing number of assembled structures show great potentials as templates for materials production. Many challenges remain, for example precise structural control of such novel templates and the removal of the non-functional remaining templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and characterization of covalently bound benzocaine graphite oxide derivative

    NASA Astrophysics Data System (ADS)

    Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija

    2015-09-01

    Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.

  18. Electrochemical investigation of functionalized graphene aerogel with different amount of p-phenylenediamine as an advanced electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gholipour-Ranjbar, Habib; Ganjali, Mohammad Reza; Norouzi, Parviz; Naderi, Hamid Reza

    2016-07-01

    Graphene aerogel has attracted great attention as a new and efficient electrode material for supercapacitors. It can be expected that functionalization of graphene aerogels can further improve their capability. In this study, graphene aerogel functionalized with different amount of p-phenylenediamine (PPD) and the effect of PPD amount on the supercapacitive performance of functionalized graphene aerogel (FGA) was investigated. Structural characterizations showed that PPD molecules initiated graphene aerogel sheets assembly into three-dimensional structures and also increasing PPD amount led to increase in surface area. Electrochemical investigations proved that the FGA with larger pore size showed enhanced supercapacitive performance compared with the FGA with smaller pore size. The optimized FGA-based electrode exhibited outstanding specific capacitance (SC) of 385 F g-1 at a discharge current density of 1 A g-1, good rate capability (215 F g-1 at 20 A g-1), and exceptionally high cyclic stability by displaying 25% increase in SC after 5000 cycle.

  19. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries

    PubMed Central

    Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia

    2017-01-01

    The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group “–(CH2)5COOH”, and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g−1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes. PMID:28772432

  20. Covalent modification and exfoliation of graphene oxide using ferrocene

    NASA Astrophysics Data System (ADS)

    Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T.

    2010-09-01

    Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior.Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior. Electronic supplementary information (ESI) available: Magnetic data; AFM images; TEM micrographs; and Mössbauer spectroscopic data. See DOI: 10.1039/c0nr00024h

  1. Strain induced chemical potential difference between monolayer graphene sheets.

    PubMed

    Zhang, Yupeng; Luo, Chengzhi; Li, Weiping; Pan, Chunxu

    2013-04-07

    Monolayer graphene sheets were deposited on a transparent and flexible polydimethylsiloxane (PDMS) substrate, and a tensile strain was loaded by stretching the substrate in one direction. It was found that an electric potential difference between stretched and static monolayer graphene sheets reached 8 mV when the strain was 5%. Theoretical calculations for the band structure and total energy revealed an alternative way to experimentally tune the band gap of monolayer graphene, and induce the generation of electricity.

  2. Coupling Graphene Sheets with Magnetic Nanoparticles for Energy Storage and Microelectronics

    DTIC Science & Technology

    2015-08-13

    sheets obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii...Figure 8d, the characteristic lattice fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG ...pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG , exfoliated graphene, PyDop1

  3. First-principles study on silicon atom doped monolayer graphene

    NASA Astrophysics Data System (ADS)

    Rafique, Muhammad; Shuai, Yong; Hussain, Nayyar

    2018-01-01

    This paper illustrates the structural, electronic and optical properties of individual silicon (Si) atom-doped single layer graphene using density functional theory method. Si atom forms tight bonding with graphene layer. The effect of doping has been investigated by varying the concentration of Si atoms from 3.125% to 9.37% (i.e. From one to three Si atoms in 4 × 4 pure graphene supercell containing 32 carbon atoms), respectively. Electronic structure, partial density of states (PDOS) and optical properties of pure and Si atom-doped graphene sheet were calculated using VASP (Vienna ab-initio Simulation Package). The calculated results for pure graphene sheet were then compared with Si atom doped graphene. It is revealed that upon Si doping in graphene, a finite band gap appears at the high symmetric K-point, thereby making graphene a direct band gap semiconductor. Moreover, the band gap value is directly proportional to the concentration of impurity Si atoms present in graphene lattice. Upon analyzing the optical properties of Si atom-doped graphene structures, it is found that, there is significant change in the refractive index of the graphene after Si atom substitution in graphene. In addition, the overall absorption spectrum of graphene is decreased after Si atom doping. Although a significant red shift in absorption is found to occur towards visible range of radiation when Si atom is substituted in its lattice. The reflectivity of graphene improves in low energy region after Si atom substitution in graphene. These results can be useful for tuning the electronic structure and to manipulate the optical properties of graphene layer in the visible region.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shumin; Tian Hongwei; Pei Yanhui

    A novel hedgehog-like core/shell structure, consisting of a high density of vertically aligned graphene sheets and a thin graphene shell/a copper core (VGs-GS/CC), has been synthesized via a simple one-step synthesis route using radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Scanning and transmission electron microscopy investigations show that the morphology of this core/shell material could be controlled by deposition time. For a short deposition time, only multilayer graphene shell tightly surrounds the copper particle, while as the deposition time is relative long, graphene sheets extend from the surface of GS/CC. The GS can protect CC particles from oxidation. The growth mechanismmore » for the obtained GS/CC and VGs-GS/CC has been revealed. Compared to VGs, VGs-GS/CC material exhibits a better electron field emission property. This investigation opens a possibility for designing a core/shell structure of different carbon-metal hybrid materials for a wide variety of practical applications. - Graphical abstract: With increasing deposition time, graphene sheets extend from the surface of GS/CC, causing the multilayer graphene encapsulated copper to be converted into vertically aligned graphene sheets-graphene shell/copper core structure. Highlights: Black-Right-Pointing-Pointer A novel hedgehog-like core/shell structure has been synthesized. Black-Right-Pointing-Pointer The structure consists of vertical graphene sheets-graphene shell and copper core. Black-Right-Pointing-Pointer The morphology of VGs-GS/CC can be controlled by choosing a proper deposition time. Black-Right-Pointing-Pointer With increasing deposition time, graphene sheets extend from the surface of GS/CC. Black-Right-Pointing-Pointer VGs-GS/CC exhibits a better electron field emission property as compared with VGs.« less

  5. The Ordering and Electronic Structure of Multilayer Epitaxial Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Conrad, Edward

    2011-03-01

    The structural definition of graphene as a single sheet of hexagonal carbon limits how we view this material. It is the electronic properties of a single isolated graphene sheet that actually defines and motivates current graphene research. Remarkably, the best example of the idealized band structure of graphene comes does not come from a single graphene layer but from multilayer films grown on SiC. Multilayer epitaxial graphene (MEG) not only shows all the 2D properties expected for an isolated graphene sheet, but it the scalability to large scale integrated carbon circuits. I will show that the reason for this remarkable property, i.e. that a multilayer graphene films behaving like a single graphene sheet, is due to MEG's unique stacking. MEG films have a quasi-ordered rotational stacking that breaks the Bernal stacking symmetry associated with graphite. Angle resolved photoemission spectroscopy (ARPES) data demonstrates that the bands are linear at the K-point of these films. We can also show that the rotated stacking is highly ordered and that less than 20% of the graphene sheets in the film are Bernal stacked. I will also show that ARPES measurements on MEG films demonstrate serious inadequacies with both tight binding and ab initio formalisms. In particular the data shows no reductions in the Fermi velocity or the formation of Van Hove singularity that have been consistently predicted for this material. I wish to acknowledge funding from the NSF under Grants No. DMR-0820382 and DMR-1005880.

  6. Preparation of multilayer graphene sheets and their applications for particle accelerators

    NASA Astrophysics Data System (ADS)

    Tatami, Atsushi; Tachibana, Masamitsu; Yagi, Takashi; Murakami, Mutsuaki

    2018-05-01

    Multilayer graphene sheets were prepared by heat treatment of polyimide films at temperatures of up to 3000 °C. The sheets consist of highly oriented graphite layers with excellent mechanical robustness and flexibility. Key features of these sheets include their high thermal conductivity in the in-plane direction, good mechanical properties, and high carbon purity. The results suggest that the multilayer graphene sheets have great potential for charge stripping foils that persist even under the highest ion beam intensities irradiation and can be used for accelerator applications.

  7. Modification of graphene electronic properties via controllable gas-phase doping with copper chloride

    NASA Astrophysics Data System (ADS)

    Rybin, Maxim G.; Islamova, Vera R.; Obraztsova, Ekaterina A.; Obraztsova, Elena D.

    2018-01-01

    Molecular doping is an efficient, non-destructive, and simple method for changing the electronic structure of materials. Here, we present a simple air ambient vapor deposition method for functionalization of pristine graphene with a strong electron acceptor: copper chloride. The doped graphene was characterized by Raman spectroscopy, UV-vis-NIR optical absorption spectroscopy, scanning electron microscopy, and electro-physical measurements performed using the 4-probe method. The effect of charge transfer from graphene to a dopant results in shifting the Fermi level in doped graphene. The change of the electronic structure of doped graphene was confirmed by the tangential Raman peak (G-peak) shift and by the appearance of the gap in the UV-vis-NIR spectrum after doping. Moreover, the charge transfer resulted in a substantial decrease in electrical sheet resistance depending on the doping level. At the highest concentration of copper chloride, a Fermi level shift into the valence band up to 0.64 eV and a decrease in the sheet resistance value by 2.36 times were observed (from 888 Ω/sq to 376 Ω/sq for a single graphene layer with 97% of transparency).

  8. Simulating Lattice Image of Suspended Graphene Taken by Helium Ion Microscopy

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Zhang, Hong; Rubio, Angel

    2013-03-01

    Atomic scale image in nano-scale helps us to characterize property of graphene, and performance of high-resolution transmission electron microscopy (HRTEM) is significant, so far. While a tool without pre-treatment of samples is demanded in practice. Helium ion microscopy (HIM), firstly reported by Word et. al. in 2006, was applied for monitoring graphene in device structure (Lumme, et. al., 2009). Motivated by recent HIM explorations, we examined the possibility of taking lattice image of suspended graphene by HIM. The intensity of secondary emitted electron is recorded as a profile of scanned He+-beam in HIM measurement. We mimicked this situation by performing electron-ion dynamics based on the first-principles simulation within the time-dependent density functional theory. He+ ion collision on single graphene sheet at several impact points were simulated and we found that the amount of secondary emitted electron from graphene reflected the valence charge distribution of the graphene sheet. Therefore HIM using atomically thin He-beam should be able to provide the lattice image, and we propose that an experiment generating ultra-thin He+ ion beam (Rezeq et. al., 2006) should be combined with HIM technique. All calculations were performed by using the Earth Simulator.

  9. Mechanical property enhancement of high conductive reduced graphene oxide fiber by a small loading of polydopamine

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Liu, Yuhang; Han, Di; Yu, Bowen; Deng, Sha; Chen, Feng; Fu, Qiang

    2018-04-01

    Improving the interaction of individual reduced graphene oxide sheet is an effective way to enhance the mechanical property of reduced graphene oxide fiber. In this study, to enhance the interaction forces of graphene sheets, large-sized graphene oxide sheets were used to assemble graphene fiber, and dopamine was mixed with the graphene oxide spinning drop. During the wet-spinning procedure, polydopamine was formed by polymerizing. It is found that such obtained composite fiber shows enhanced tensile strength (increased from 314 MPa to 527 MPa) and increased toughness (increased from 3.5 MJ m‑3 to 12.9 MJ m‑3) compared with pure reduced graphene oxide fiber. Fourier-transform infrared spectra, Raman spectra and x-ray photoelectron spectroscopy were performed to characterize the interaction between reduced graphene oxide sheets and polydopamine, and a possible enhancement mechanism of C-N bonds formation was proposed. It is suggested that this newly formed C‑N bonds can not only enhance the tensile strength, but also increase the elongation simultaneously. Additionally, the graphene fiber remains great electrical conductivity (33 100 s m‑1) since the conductive network can be maintained.

  10. Exfoliation of graphene sheets via high energy wet milling of graphite in 2-ethylhexanol and kerosene.

    PubMed

    Al-Sherbini, Al-Sayed; Bakr, Mona; Ghoneim, Iman; Saad, Mohamed

    2017-05-01

    Graphene sheets have been exfoliated from bulk graphite using high energy wet milling in two different solvents that were 2-ethylhexanol and kerosene. The milling process was performed for 60 h using a planetary ball mill. Morphological characteristics were investigated using scanning electron microscope (SEM) and transmission electron microscope (TEM). On the other hand, the structural characterization was performed using X-ray diffraction technique (XRD) and Raman spectrometry. The exfoliated graphene sheets have represented good morphological and structural characteristics with a valuable amount of defects and a good graphitic structure. The graphene sheets exfoliated in the presence of 2-ethylhexanol have represented many layers, large crystal size and low level of defects, while the graphene sheets exfoliated in the presence of kerosene have represented fewer number of layers, smaller crystal size and higher level of defects.

  11. Bandwidth broadening of a graphene-based circular polarization converter by phase compensation.

    PubMed

    Gao, Xi; Yang, Wanli; Cao, Weiping; Chen, Ming; Jiang, Yannan; Yu, Xinhua; Li, Haiou

    2017-10-02

    We present a broadband tunable circular polarization converter composed of a single graphene sheet patterned with butterfly-shaped holes, a dielectric spacer, and a 7-layer graphene ground plane. It can convert a linearly polarized wave into a circularly polarized wave in reflection mode. The polarization converter can be dynamically tuned by varying the Fermi energy of the single graphene sheet. Furthermore, the 7-layer graphene acting as a ground plane can modulate the phase of its reflected wave by controlling the Femi energy, which provides constructive interference condition at the surface of the single graphene sheet in a broad bandwidth and therefore significantly broadens the tunable bandwidth of the proposed polarization converter.

  12. Transport in Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Datta, S.; Xue, Yong-Qinag; Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1999-01-01

    This presentation discusses coupling between carbon nanotubes (CNT), simple metals (FEG) and a graphene sheet. The graphene sheet did not couple well with FEG, but the combination of a graphene strip and CNT did couple well with most simple metals.

  13. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    PubMed

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  14. Chitosan-graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability.

    PubMed

    Frindy, Sana; Primo, Ana; Ennajih, Hamid; El Kacem Qaiss, Abou; Bouhfid, Rachid; Lahcini, Mohamed; Essassi, El Mokhtar; Garcia, Hermenegildo; El Kadib, Abdelkrim

    2017-07-01

    The intimate interplay of chitosan (CS) and graphene oxide (GO) in aqueous acidic solution has been explored to design upon casting, nanostructured "brick-and-mortar" films (CS-GO-f) and by acidic-to-basic pH inversion, porous CO 2 -dried aerogel microspheres (CS-GO-m). Owing to the presence of oxygenated functional groups in GO, good-quality crack-free hybrid films were obtained. Mechanical properties were improved independently of the GO content and it was found that a 20wt% loading affords hybrid film characterized with a Young modulus three times superior to that reached with the same loading of layered clay. The presence of graphene oxide was found to be detrimental for the thermal stability of the polysaccharide at T <350°C, a fact attributed to the well-established decomposition of the oxygenated functional groups of the graphene sheets. Irrespective to the graphene oxide loading, chitosan-graphene oxide mixture preserves the gelation memory of the polysaccharide. Supercritical drying of the resulting soft hydrogels provides macroporous network with surface areas ranging from 226m 2 g -1 to 554m 2 g -1 . XPS and RAMAN analyses evidenced the selective reduction of GO sheets inside of these microspheres, affording the hitherto unknown macroporous chitosan-entangled-reduced graphene oxide (CS-rGO-m) aerogels. Improvement in both hydrothermal stability (under water reflux) and chemical stability (under acidic conditions) have been noticed for chitosan-graphene oxide microspheres with respect to non-modified chitosan and chitosan-clay bio-hybrids, a result rooted in the substantial hydrophobic character imparted by the addition of graphenic material to the polysaccharide skeleton. In essence, this contribution demonstrates that graphene oxide loading do not disturb neither the filmogenicity of chitosan nor its gelation ability and constitutes a promising route for novel chitosan-based functional hybrid materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    NASA Astrophysics Data System (ADS)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin-graphene oxide hybrid (GO-TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO-TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO-TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0-3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO-TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO-TAP hybrid has outstanding thermal stability.

  16. The Effect of Varying Ultrafast Pulse Laser Energies on the Electrical Properties of Reduced Graphene Oxide Sheets in Solution

    NASA Astrophysics Data System (ADS)

    Ibrahim, Khaled H.; Irannejad, Mehrdad; Wales, Benjamin; Sanderson, Joseph; Musselman, Kevin P.; Yavuz, Mustafa

    2018-02-01

    Laser treatment of graphene oxide solution among other techniques is a well-established technique for producing reduced graphene sheets. However, production of high-quality ultra-low sheet resistance reduced graphene oxide (rGO) sheets in solution has been a challenge due to their high degree of randomness, defect-rich medium, and lack of controlability. Recent studies lack an in-depth analytic comparison of laser treatment parameters that yield the highest quality rGO sheets with a low defect ratio. Hence, in this study, we implement a comprehensive comparison of laser treatment parameters and their effect on the yielded rGO sheets from an electronic and physical standpoint. Ultra-low sheet resistance graphene oxide sheets were fabricated using ultrafast laser irradiation with different laser pulse energies in the range of 0.25-2 mJ. Laser treatment for 10 min using a pulse energy of 1 mJ resulted in an increase in the defect spacing, accompanied by a large red shift in the optical absorption of the C=C bond, indicating significant restoration of the s p 2 carbon bonds. These enhancements resulted in a significant reduction in the electrical resistance of the rGO flakes (up to 2 orders of magnitude), raising the electron mobility of the films produced using the irradiated graphene oxide a step closer to that of pristine graphene films. From this study, we can also deduce which exposure regimes result in the fabrication of quantum dots and continuous defect-free films.

  17. Van Der Waals heterogeneous layer-layer carbon nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on graphene and graphane sheets.

    PubMed

    Yuan, Kun; Zhao, Rui-Sheng; Zheng, Jia-Jia; Zheng, Hong; Nagase, Shigeru; Zhao, Sheng-Dun; Liu, Yan-Zhi; Zhao, Xiang

    2017-04-15

    Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Graphene-Based Integrated Photovoltaic Energy Harvesting/Storage Device.

    PubMed

    Chien, Chih-Tao; Hiralal, Pritesh; Wang, Di-Yan; Huang, I-Sheng; Chen, Chia-Chun; Chen, Chun-Wei; Amaratunga, Gehan A J

    2015-06-24

    Energy scavenging has become a fundamental part of ubiquitous sensor networks. Of all the scavenging technologies, solar has the highest power density available. However, the energy source is erratic. Integrating energy conversion and storage devices is a viable route to obtain self-powered electronic systems which have long-term maintenance-free operation. In this work, we demonstrate an integrated-power-sheet, consisting of a string of series connected organic photovoltaic cells (OPCs) and graphene supercapacitors on a single substrate, using graphene as a common platform. This results in lighter and more flexible power packs. Graphene is used in different forms and qualities for different functions. Chemical vapor deposition grown high quality graphene is used as a transparent conductor, while solution exfoliated graphene pastes are used as supercapacitor electrodes. Solution-based coating techniques are used to deposit the separate components onto a single substrate, making the process compatible with roll-to-roll manufacture. Eight series connected OPCs based on poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester (PC60 BM) bulk-heterojunction cells with aluminum electrodes, resulting in a ≈5 V open-circuit voltage, provide the energy harvesting capability. Supercapacitors based on graphene ink with ≈2.5 mF cm(-2) capacitance provide the energy storage capability. The integrated-power-sheet with photovoltaic (PV) energy harvesting and storage functions had a mass of 0.35 g plus the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion

    NASA Astrophysics Data System (ADS)

    Choi, Taejun; Kim, Sang Jin; Park, Subeom; Hwang, Taek Yong; Jeon, Youngro; Hong, Byung Hee

    2015-04-01

    We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the patterned film was 120 mm and a production rate of 15 m min-1 for patterning was achieved. Large-area uniformity was confirmed by observing the optical images on 4 inch Si wafer and Raman mapping spectra for 50 × 50 mm2.We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low strength and can be easily transferred to various substrates without the aid of any heating mechanism. The width of the patterned film was 120 mm and a production rate of 15 m min-1 for patterning was achieved. Large-area uniformity was confirmed by observing the optical images on 4 inch Si wafer and Raman mapping spectra for 50 × 50 mm2. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06991a

  20. Modeling of the gate-controlled Kondo effect at carbon point defects in graphene

    NASA Astrophysics Data System (ADS)

    May, Daniel; Lo, Po-Wei; Deltenre, Kira; Henke, Anika; Mao, Jinhai; Jiang, Yuhang; Li, Guohong; Andrei, Eva Y.; Guo, Guang-Yu; Anders, Frithjof B.

    2018-04-01

    We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound σ orbital and the vacancy-induced bound π state in an effective two-orbital single-impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hund's rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilson's numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.

  1. Studies on Synthesis of Electrochemically Exfoliated Functionalized Graphene and Polylactic Acid/Ferric Phytate Functionalized Graphene Nanocomposites as New Fire Hazard Suppression Materials.

    PubMed

    Feng, Xiaming; Wang, Xin; Cai, Wei; Qiu, Shuilai; Hu, Yuan; Liew, Kim Meow

    2016-09-28

    Practical application of functionalized graphene in polymeric nanocomposites is hampered by the lack of cost-effective and eco-friendly methods for its production. Here, we reported a facile and green electrochemical approach for preparing ferric phytate functionalized graphene (f-GNS) by simultaneously utilizing biobased phytic acid as electrolyte and modifier for the first time. Due to the presence of phytic acid, electrochemical exfoliation leads to low oxidized graphene sheets (a C/O ratio of 14.8) that are tens of micrometers large. Successful functionalization of graphene was confirmed by the appearance of phosphorus and iron peaks in the X-ray photoelectron spectrum. Further, high-performance polylactic acid/f-GNS nanocomposites are readily fabricated by a convenient masterbatch strategy. Notably, inclusion of well-dispersed f-GNS resulted in dramatic suppression on fire hazards of polylactic acid in terms of reduced peak heat-release rate (decreased by 40%), low CO yield, and formation of a high graphitized protective char layer. Moreover, obviously improvements in crystallization rate and thermal conductivities of polylactic acid nanocomposites were observed, highlighting its promising potential in practical application. This novel strategy toward the simultaneous exfoliation and functionalization for graphene demonstrates a simple yet very effective approach for fabricating graphene-based flame retardants.

  2. Electron transport in graphene/graphene side-contact junction by plane-wave multiple-scattering method

    DOE PAGES

    Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...

    2015-05-28

    Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less

  3. Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells.

    PubMed

    Wang, Jiaxian; Cui, Chang; Nan, Haiyan; Yu, Yuanfang; Xiao, Yini; Poon, Ellen; Yang, Gang; Wang, Xijie; Wang, Chenchen; Li, Lingsong; Boheler, Kenneth Richard; Ma, Xu; Cheng, Xin; Ni, Zhenhua; Chen, Minglong

    2017-08-09

    Human induced pluripotent stem cells (hiPSCs) can proliferate infinitely. Their ability to differentiate into cardiomyocytes provides abundant sources for disease modeling, drug screening and regenerative medicine. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) display a low degree of maturation and fetal-like properties. Current in vitro differentiation methods do not mimic the structural, mechanical, or physiological properties of the cardiogenesis niche. Recently, we present an efficient cardiac maturation platform that combines hiPSCs monolayer cardiac differentiation with graphene substrate, which is a biocompatible and superconductive material. The hiPSCs lines were successfully maintained on the graphene sheets and were able to differentiate into functional cardiomyocytes. This strategy markedly increased the myofibril ultrastructural organization, elevated the conduction velocity, and enhanced both the Ca 2+ handling and electrophysiological properties in the absence of electrical stimulation. On the graphene substrate, the expression of connexin 43 increased along with the conduction velocity. Interestingly, the bone morphogenetic proteins signaling was also significantly activated during early cardiogenesis, confirmed by RNA sequencing analysis. Here, we reasoned that graphene substrate as a conductive biomimetic surface could facilitate the intrinsic electrical propagation, mimicking the microenvironment of the native heart, to further promote the global maturation of hiPSC-CMs. Our findings highlight the capability of electrically active substrates to influence cardiomyocyte development. We believe that application of graphene sheets will be useful for simple, fast, and scalable maturation of regenerated cardiomyocytes.

  4. Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in-situ polymerization and their properties

    NASA Astrophysics Data System (ADS)

    Qian, Yong; Lan, Yanfei; Xu, Jianping; Ye, Fucheng; Dai, Shizhen

    2014-09-01

    In this study, a facile and effective strategy is proposed to fabricate polyimide (PI)-based nanocomposites containing functionalized graphene oxide (FGO) nanosheets by in-situ polymerization and thermal imidization. Highly dispersed CIGO which was firstly obtained by graphene oxide (GO) functionalized with cyclohexyl isocyanate (CI) exhibited excellent dispersibility and compatibility in polyamic acid (PAA, precursor of PI) matrix via in-situ polymerization. Then the CIGO sheets were partially thermally reduced efficiently to FGO during the thermal imidization process of PAA. The incorporation of FGO sheets significantly affected the macroscopic properties of the PI-based composites. A 56.5% increase in the tensile strength and a 43.8% improvement in the Young's modulus were achieved for 2.0 wt% FGO loading. Furthermore, the thermal stability and glass transition temperature (Tg) were improved by adding FGO. In addition, the hydrophobic behavior of the PI-FGO composite clearly improved because of the excellent hydrophobic properties of FGO. The success of this approach provides a good rational for developing high-performance polymer-based composite materials.

  5. Josephson coupling between superconducting islands on single- and bi-layer graphene

    NASA Astrophysics Data System (ADS)

    Mancarella, Francesco; Fransson, Jonas; Balatsky, Alexander

    2016-05-01

    We study the Josephson coupling of superconducting (SC) islands through the surface of single-layer graphene (SLG) and bilayer graphene (BLG) in the long-junction regime, as a function of the distance between the grains, temperature, chemical potential and external (transverse) gate-voltage. For SLG, we provide a comparison with existing literature. The proximity effect is analyzed through a Matsubara Green’s function approach. This represents the first step in a discussion of the conditions for the onset of a granular superconductivity within the film, made possible by Josephson currents flowing between superconductors. To ensure phase coherence over the 2D sample, a random spatial distribution can be assumed for the SC islands on the SLG sheet (or intercalating the BLG sheets). The tunable gate-voltage-induced band gap of BLG affects the asymptotic decay of the Josephson coupling-distance characteristic for each pair of SC islands in the sample, which results in a qualitatively strong field dependence of the relation between Berezinskii-Kosterlitz-Thouless transition critical temperature and gate voltage.

  6. Graphene unit cell imaging by holographic coherent diffraction.

    PubMed

    Longchamp, Jean-Nicolas; Latychevskaia, Tatiana; Escher, Conrad; Fink, Hans-Werner

    2013-06-21

    We have imaged a freestanding graphene sheet of 210 nm in diameter with 2 Å resolution by combining coherent diffraction and holography with low-energy electrons. The entire sheet is reconstructed from a single diffraction pattern displaying the arrangement of 660.000 individual graphene unit cells at once. Given the fact that electrons with kinetic energies of the order of 100 eV do not damage biological molecules, it will now be a matter of developing methods for depositing individual proteins onto such graphene sheets.

  7. Constructing superconductors by graphene Chern-Simons wormholes

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Pincak, Richard; Saridakis, Emmanuel N.

    2018-03-01

    We propose a new model which simulates the motion of free electrons in graphene by the evolution of strings on manifolds. In this model, molecules which constitute sheets of graphene are polygonal point-like structures which build (N + 1) -dimensional manifolds. By breaking the gravitational-analogue symmetry of graphene sheets, we show that two separated child sheets and a Chern-Simons bridge are produced giving rise to a wormhole. In this structure, free electrons are transmitted from one child sheet to the other producing superconductivity. An analogue between "effective gravitons" and "Cooper pairs" is found. In principle, this phenomenology provides the possibility to construct superconductor structures by using the analogue of cosmological models.

  8. First-principles study of the covalently functionalized graphene

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv Kumar

    Theoretical investigations of nanoscale systems, such as functionalized graphene, present major challenges to conventional computational methods employed in quantum chemistry and solid state physics. The properties of graphene can be affected by chemical functionalization. The surface functionalization of graphene offers a promising way to increase the solubility and reactivity of graphene for use in nanocomposites and chemical sensors. Covalent functionalization is an efficient way to open band-gap in graphene for applications in nanoelectronics. We apply ab initio computational methods based on density functional theory to study the covalent functionalization of graphene with benzyne (C6H4), tetracyanoethylene oxide (TCNEO), and carboxyl (COOH) groups. Our calculations are carried out using the SIESTA and Quantum-ESPRESSO electronic structure codes combined with the generalized gradient (GGA) and local density approximations (LDA) for the exchange correlation functionals and norm-conserving Troullier-Martins pseudopotentials. Calculated binding energies, densities of states (DOS), band structures, and vibrational spectra of functionalized graphene are analyzed in comparison with the available experimental data. Our calculations show that the reactions of [2 + 2] and [2 + 4] cycloaddition of C6H4 to the surface of pristine graphene are exothermic, with binding energies of --0.73 eV and --0.58 eV, respectively. Calculated band structures indicate that the [2 + 2] and [2 + 4] attachments of benzyne results in opening small band gap in graphene. The study of graphene--TCNEO interactions suggests that the reaction of cycloaddition of TCNEO to the surface of pristine graphene is endothermic. On the other hand, the reaction of cycloaddition of TCNEO is found to be exothermic for the edge of an H-terminated graphene sheet. Simulated Raman and infrared spectra of graphene functionalized with TCNEO are consistent with experimental results. The Raman (non-resonant) and infrared (IR) spectra of graphene functionalized with carboxyl (COON) groups are studied in graphene with no surface defects, di-vacancies (DV), and Stone-Wales (SW) defects. Simulated Raman and IR spectra of carboxylated graphene are consistent with available experimental results. Computed vibrational spectra of carboxylated graphene show that the presence of point defects near the functionalization site affect the Raman and IR spectroscopic signatures of the functionalized graphene.

  9. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua D.; Orme, Christine A.

    2017-04-25

    Disclosed here is a method for hydrocarbon conversion, comprising contacting at least one graphene-supported assembly with at least one hydrocarbon feedstock, wherein the graphene-supported assembly comprises (i) a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds and (ii) at least one metal chalcogenide compound disposed on the graphene sheets, wherein the chalcogen of the metal chalcogenide compound is selected from S, Se and Te, and wherein the metal chalcogenide compound accounts for at least 20 wt. % of the graphene-supported assembly.

  10. Multi-functional carbon nanomaterials: Tailoring morphology for multidisciplinary applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dervishi, Enkeleda

    2015-05-14

    Carbon based nanomaterials are being developed to have many new properties and applications. Graphene, is a mono-layer 2D atomic thick structure formed from hexagons of carbon atoms bound together by sp^2hybrid bonds. A carbon nanotube (CNT) can be viewed as a sheet of graphene rolled up into a cylinder, usually 1-2 nanometers in diameter and a few microns thick. A few applications of graphene and carbon nanotubes include the development of Nanoelectronics, nanocomposite materials, Hydrogen storage and Li⁺ battery, etc.

  11. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  12. Moving graphene devices from lab to market: advanced graphene-coated nanoprobes

    NASA Astrophysics Data System (ADS)

    Hui, Fei; Vajha, Pujashree; Shi, Yuanyuan; Ji, Yanfeng; Duan, Huiling; Padovani, Andrea; Larcher, Luca; Li, Xiao Rong; Xu, Jing Juan; Lanza, Mario

    2016-04-01

    After more than a decade working with graphene there is still a preoccupying lack of commercial devices based on this wonder material. Here we report the use of high-quality solution-processed graphene sheets to fabricate ultra-sharp probes with superior performance. Nanoprobes are versatile tools used in many fields of science, but they can wear fast after some experiments, reducing the quality and increasing the cost of the research. As the market of nanoprobes is huge, providing a solution for this problem should be a priority for the nanotechnology industry. Our graphene-coated nanoprobes not only show enhanced lifetime, but also additional unique properties of graphene, such as hydrophobicity. Moreover, we have functionalized the surface of graphene to provide piezoelectric capability, and have fabricated a nano relay. The simplicity and low cost of this method, which can be used to coat any kind of sharp tip, make it suitable for the industry, allowing production on demand.After more than a decade working with graphene there is still a preoccupying lack of commercial devices based on this wonder material. Here we report the use of high-quality solution-processed graphene sheets to fabricate ultra-sharp probes with superior performance. Nanoprobes are versatile tools used in many fields of science, but they can wear fast after some experiments, reducing the quality and increasing the cost of the research. As the market of nanoprobes is huge, providing a solution for this problem should be a priority for the nanotechnology industry. Our graphene-coated nanoprobes not only show enhanced lifetime, but also additional unique properties of graphene, such as hydrophobicity. Moreover, we have functionalized the surface of graphene to provide piezoelectric capability, and have fabricated a nano relay. The simplicity and low cost of this method, which can be used to coat any kind of sharp tip, make it suitable for the industry, allowing production on demand. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06235g

  13. Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    DOEpatents

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuliang; Li, Xiaolin

    2015-04-07

    A method of preparing a graphene-sulfur nanocomposite for a cathode in a rechargeable lithium-sulfur battery comprising thermally expanding graphite oxide to yield graphene layers, mixing the graphene layers with a first solution comprising sulfur and carbon disulfide, evaporating the carbon disulfide to yield a solid nanocomposite, and grinding the solid nanocomposite to yield the graphene-sulfur nanocomposite. Rechargeable-lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter of less than 50 nm.

  14. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Pan, Shuyang (Inventor); Aksay, Ilhan A. (Inventor)

    2018-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 wt %, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 sq m/g to 2630 sq m2/g; and a method for producing the nanocomposite and uses thereof.

  15. Pseudocapacitance and excellent cyclability of 2,5-dimethoxy-1,4-benzoquinone on graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boota, Muhammad; Chen, Chi; Bécuwe, Matthieu

    2016-01-01

    Non-covalent functionalization of 2,5-dimethoxy-1,4-benzoquinone and hydroquinone on reduced graphene oxide sheets led to the formation of a redox-active three-dimensional gel architectureviaa one-step hydrothermal method, where the former exhibited high gravimetric and volumetric capacitance and 99% capacitance retention after 25000 cycles at 50 mV s -1.

  16. Enhanced gas adsorption on graphitic substrates via defects and local curvature: A density functional theory study

    DOE PAGES

    Dutta, Debosruti; Wood, Brandon C.; Bhide, Shreyas Y.; ...

    2014-03-24

    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone–Wales defects to show the largest enhancement with respect to pristine graphene (~20%). Improvements of similar magnitude are observed at concavely curved surfaces inmore » buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO 2 and CH 4 are similar, although CO 2 binding is generally stronger by ~4 to 5 kJ mol –1. Furthermore, the differential between the adsorption of CO 2 and CH 4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH 4/CO 2 flow separation and gas-selective sensors.« less

  17. Property control of graphene aerogels by in situ growth of silicone polymer

    NASA Astrophysics Data System (ADS)

    Zhou, Shuai; Zhou, Xiang; Hao, Gazi; Jiang, Wei; Wang, Tianhe

    2018-05-01

    Modulation of the density (from 3.5 to 64 mg cm-3), hydrophobicity and oil-uptake capability of graphene aerogels in extensive ranges were achieved by reacting (3-Mercaptopropyl)trimethoxysilane (MPS) with graphene oxide solutions under heating. The reaction allowed a characteristic silicone substructure to be formed on graphene and joint the graphene layers firmly together. With the increase of MPS concentrations (≤ca. 0.2 vol%), the nano silicone polymer grown on graphene functioned as a "linker" and "spacer", leading to a substantial decrease of the aerogel density. Because of the formation of silicone polymer and the characteristic nano-micro substructures on the backbones of graphene aerogels, the graphene aerogels exhibited a high hydrophobicity with the water contact angle consistently exceeding 142 degrees. Functionalized graphene aerogels with a density of 3.5 mg cm-3 were conveniently fabricated that displayed an extraordinary oil absorption capacity, 182 times for lubricating oil and 143 times for n-hexane of its own weight. Furthermore, the aerogels maintained their ultra-high absorption capability even after 20 absorption-distillation cycles, due to structural integrity held by the strong interfacial adhesion between graphene sheets and polymer chains of aerogels. This study offers a promising graphene aerogels and also provides a strategy for fabricating extra low dense functional materials.

  18. Graphene-supported metal oxide monolith

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Biener, Juergen; Biener, Monika A.; Wang, Yinmin; Ye, Jianchao; Tylski, Elijah

    2017-01-10

    A composition comprising at least one graphene-supported metal oxide monolith, said monolith comprising a three-dimensional structure of graphene sheets crosslinked by covalent carbon bonds, wherein the graphene sheets are coated by at least one metal oxide such as iron oxide or titanium oxide. Also provided is an electrode comprising the aforementioned graphene-supported metal oxide monolith, wherein the electrode can be substantially free of any carbon-black and substantially free of any binder.

  19. Enhanced thermoelectric properties of graphene oxide patterned by nanoroads.

    PubMed

    Zhou, Si; Guo, Yu; Zhao, Jijun

    2016-04-21

    The thermoelectric properties of two-dimensional (2D) materials are of great interest for both fundamental science and device applications. Graphene oxide (GO), whose physical properties are highly tailorable by chemical and structural modifications, is a potential 2D thermoelectric material. In this report, we pattern nanoroads on GO sheets with epoxide functionalization, and investigate their ballistic thermoelectric transport properties based on density functional theory and the nonequilibrium Green's function method. These graphene oxide nanoroads (GONRDs) are all semiconductors with their band gaps tunable by the road width, edge orientation, and the structure of the GO matrix. These nanostructures show appreciable electrical conductance at certain doping levels and enhanced thermopower of 127-287 μV K(-1), yielding a power factor 4-22 times of the graphene value; meanwhile, the lattice thermal conductance is remarkably reduced to 15-22% of the graphene value; consequently, attaining the figure of merit of 0.05-0.75. Our theoretical results are not only helpful for understanding the thermoelectric properties of graphene and its derivatives, but also would guide the theoretical design and experimental fabrication of graphene-based thermoelectric devices of high performance.

  20. Interference Processes During Reradiation of Attosecond Pulses of Electromagnetic Field by Graphene

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.; Makarova, K. A.

    2018-05-01

    Interference spectra during reradiation of attosecond pulses of electromagnetic field by graphene sheets are considered. Analytical expressions for calculations of spectral distributions are derived. As an example, the interference spectra of a graphene sheet and a flat rectangular lattice are compared.

  1. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi

    2016-09-01

    Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.

  2. Synthesis of soluble graphite and graphene.

    PubMed

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without resorting to oxidation. Our exfoliation process involves the intercalation of lithium into bulk graphite to yield graphene sheets reduced by the lithium. We can alkylate the resulting graphite salt reductively using solubilizing dodecyl groups. By probe microscopy, we show that these groups are attached covalently only at the graphitic edges.

  3. Photo-assisted electron emission from illuminated monolayer graphene

    NASA Astrophysics Data System (ADS)

    Upadhyay Kahaly, M.; Misra, Shikha; Mishra, S. K.

    2017-05-01

    We establish a formalism to address co-existing and complementing thermionic and photoelectric emission from a monolayer graphene sheet illuminated via monochromatic laser radiation and operating at a finite temperature. Taking into account the two dimensional Fermi-Dirac statistics as is applicable for a graphene sheet, the electron energy redistribution due to thermal agitation via laser irradiation, and Fowler's approach of the electron emission, along with Born's approximation to evaluate the tunneling probability, the expressions for the photoelectric and thermionic emission flux have been derived. The cumulative emission flux is observed to be sensitive to the parametric tuning of the laser and material specifications. Based on the parametric analysis, the photoemission flux is noticed to dominate over its coexisting counterpart thermionic emission flux for smaller values of the material work function, surface temperature, and laser wavelength; the analytical estimates are in reasonably good agreement with the recent experimental observations [Massicotte et al., Nat. Commun. 7, 12174 (2016)]. The results evince the efficient utilization of a graphene layer as a photo-thermionic emitter.

  4. High pressure-assisted transfer of ultraclean chemical vapor deposited graphene

    NASA Astrophysics Data System (ADS)

    Chen, Zhiying; Ge, Xiaoming; Zhang, Haoran; Zhang, Yanhui; Sui, Yanping; Yu, Guanghui; Jin, Zhi; Liu, Xinyu

    2016-03-01

    We develop a high pressure-assisted (approximately 1000 kPa) transfer method to remove polymer residues and effectively reduce damages on the surface of graphene. By introducing an ethanol pre-dehydration technique and optimizing temperature, the graphene surface becomes nearly free of residues, and the quality of graphene is improved obviously when temperature reaches 140 °C. The graphene obtained using the high pressure-assisted transfer method also exhibits excellent electrical properties with an average sheet resistance of approximately 290 Ω/sq and a mobility of 1210 cm2/V.s at room temperature. Sheet resistance and mobility are considerably improved compared with those of the graphene obtained using the normal wet transfer method (average sheet resistance of approximately 510 ohm/sq and mobility of 750 cm2/V.s).

  5. The different adsorption mechanism of methane molecule onto a boron nitride and a graphene flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyed-Talebi, Seyedeh Mozhgan; Neek-Amal, M., E-mail: neekamal@srttu.edu

    2014-10-21

    Graphene and single layer hexagonal boron-nitride are two newly discovered 2D materials with wonderful physical properties. Using density functional theory, we study the adsorption mechanism of a methane molecule over a hexagonal flake of single layer hexagonal boron-nitride (h-BN) and compare the results with those of graphene. We found that independent of the used functional in our ab-initio calculations, the adsorption energy in the h-BN flake is larger than that for graphene. Despite of the adsorption energy profile of methane over a graphene flake, we show that there is a long range behavior beyond minimum energy in the adsorption energymore » of methane over h-BN flake. This result reveals the higher sensitivity of h-BN sheet to the adsorption of a typical closed shell molecule with respect to graphene. The latter gives insight in the recent experiments of graphene over hexagonal boron nitride.« less

  6. Self-deposition of Pt nanoparticles on graphene woven fabrics for enhanced hybrid Schottky junctions and photoelectrochemical solar cells.

    PubMed

    Kang, Zhe; Tan, Xinyu; Li, Xiao; Xiao, Ting; Zhang, Li; Lao, Junchao; Li, Xinming; Cheng, Shan; Xie, Dan; Zhu, Hongwei

    2016-01-21

    In this study, we demonstrated a self-deposition method to deposit Pt nanoparticles (NPs) on graphene woven fabrics (GWF) to improve the performance of graphene-on-silicon solar cells. The deposition of Pt NPs increased the work function of GWF and reduced the sheet resistance of GWF, thereby improving the power conversion efficiency (PCE) of graphene-on-silicon solar cells. The PCE (>10%) was further enhanced via solid electrolyte coating of the hybrid Schottky junction in the photoelectrochemical solar cells. These results suggest that the combination of self-deposition of Pt NPs and solid-state electrolyte coating of graphene-on-silicon is a promising way to produce high performance graphene-on-semiconductor solar cells.

  7. Nonlocal thermal transport across embedded few-layer graphene sheets

    DOE PAGES

    Liu, Ying; Huxtable, Scott T.; Yang, Bao; ...

    2014-11-13

    Thermal transport across the interfaces between few-layer graphene sheets and soft materials exhibits intriguing anomalies when interpreted using the classical Kapitza model, e.g., the conductance of the same interface differs greatly for different modes of interfacial thermal transport. Using atomistic simulations, we show that such thermal transport follows a nonlocal flux-temperature drop constitutive law and is characterized jointly by a quasi-local conductance and a nonlocal conductance instead of the classical Kapitza conductance. Lastly, the nonlocal model enables rationalization of many anomalies of the thermal transport across embedded few-layer graphene sheets and should be used in studies of interfacial thermal transportmore » involving few-layer graphene sheets or other ultra-thin layered materials.« less

  8. Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures

    NASA Astrophysics Data System (ADS)

    Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo

    2012-06-01

    Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.

  9. Dual functions of imidazole-based polymeric ionic liquid (PIL) on the anticorrosive performance of graphene-based waterborne epoxy coatings

    NASA Astrophysics Data System (ADS)

    Liu, Chengbao; Du, Peng; Nan, Feng; Zhao, Haichao; Wang, Liping

    2018-06-01

    Dispersion of graphene nanosheets in a water and polymer matrix has been rarely achieved due to graphene’s hydrophobicity, which thus impedes its potential anticorrosive application. In this study, stable graphene aqueous dispersion was obtained by using imidazole-based polymeric ionic liquid (PIL) as the dispersant with ultrasonic vibration. Stacked graphene sheets were exfoliated to a few layers via cation-π interaction between PIL and graphene nanosheets. Electrochemical impedance measurements were taken to investigate the anticorrosion performance of epoxy coatings with or without polymeric ionic liquid–graphene (PIL–G) hybrids. Results indicated that the PIL–G hybrid significantly enhanced the long-term protective performance of epoxy coatings, which was attributed to the synergistic effects of the corrosion-inhibitive PIL and impermeable graphene nanosheets.

  10. Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells.

    PubMed

    Bu, Jiyoon; Kim, Young Jun; Kang, Yoon-Tae; Lee, Tae Hee; Kim, Jeongsuk; Cho, Young-Ho; Han, Sae-Won

    2017-05-01

    The metastasis of cancer is strongly associated with the spread of circulating tumor cells (CTCs). Based on the microfluidic devices, which offer rapid recovery of CTCs, a number of studies have demonstrated the potential of CTCs as a diagnostic tool. However, not only the insufficient specificity and sensitivity derived from the rarity and heterogeneity of CTCs, but also the high-cost fabrication processes limit the use of CTC-based medical devices in commercial. Here, we present a low-cost fabric sheet layers for CTC isolation, which are composed of polyester monofilament yarns. Fabric sheet layers are easily functionalized with graphene oxide (GO), which is beneficial for improving both sensitivity and specificity. The GO modification to the low-cost fabrics enhances the binding of anti-EpCAM antibodies, resulting in 10-25% increase of capture efficiency compared to the surface without GO (anti-EpCAM antibodies directly onto the fabric sheets), while achieving high purity by isolating only 50-300 leukocytes in 1 mL of human blood. We investigated CTCs in ten human blood samples and successfully isolated 4-42 CTCs/mL from cancer patients, while none of cancerous cells were found among healthy donors. This remarkable results show the feasibility of GO-functionalized fabric sheet layers to be used in various CTC-based clinical applications, with high sensitivity and selectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Plasmon resonance enhanced mid-infrared generation by graphene on gold gratings through difference frequency mixing

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Kong, Yan; Gao, Shumei; liu, Cheng

    2018-01-01

    Graphene has been demonstrated to have extraordinary large second order nonlinear susceptibility that can be applied in generating mid-infrared (MIR) and terahertz waves through the difference frequency process. In this study, we exploit the highly localized electric fields caused by plasmon resonances to increase the nonlinear response from graphene. The proposed structure contains a graphene sheet on a gold grating substrate that sustains both surface plasmons at the near-infrared on the gold surface and plasmons at the MIR on the graphene surface. Based on finite difference time domain (FDTD) numerical simulations, more than 3 orders of magnitude improvement of the MIR generation efficiency is obtained by placing graphene sheets on a gold grating substrate under resonance conditions instead of placing them on a flat substrate. With the same gold grating substrate, MIR waves tunable from 30 to 55 THz are generated by tuning the gate voltage of the graphene sheet.

  12. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  13. Polymer/Pristine graphene based composites: from emulsions to strong, electrically conducting foams

    DOE PAGES

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.; ...

    2015-01-21

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm 3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  14. Porous Structures in Stacked, Crumpled and Pillared Graphene-Based 3D Materials.

    PubMed

    Guo, Fei; Creighton, Megan; Chen, Yantao; Hurt, Robert; Külaots, Indrek

    2014-01-01

    Graphene, an atomically thin material with the theoretical surface area of 2600 m 2 g -1 , has great potential in the fields of catalysis, separation, and gas storage if properly assembled into functional 3D materials at large scale. In ideal non-interacting ensembles of non-porous multilayer graphene plates, the surface area can be adequately estimated using the simple geometric law ~ 2600 m 2 g -1 /N, where N is the number of graphene sheets per plate. Some processing operations, however, lead to secondary plate-plate stacking, folding, crumpling or pillaring, which give rise to more complex structures. Here we show that bulk samples of multilayer graphene plates stack in an irregular fashion that preserves the 2600/N surface area and creates regular slot-like pores with sizes that are multiples of the unit plate thickness. In contrast, graphene oxide deposits into films with massive area loss (2600 to 40 m 2 g -1 ) due to nearly perfect alignment and stacking during the drying process. Pillaring graphene oxide sheets by co-deposition of colloidal-phase particle-based spacers has the potential to partially restore the large monolayer surface. Surface areas as high as 1000 m 2 g -1 are demonstrated here through colloidal-phase deposition of graphene oxide with water-dispersible aryl-sulfonated ultrafine carbon black as a pillaring agent.

  15. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties.

    PubMed

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene.

  16. Environmental Synthesis of Few Layers Graphene Sheets Using Ultrasonic Exfoliation with Enhanced Electrical and Thermal Properties

    PubMed Central

    Noroozi, Monir; Zakaria, Azmi; Radiman, Shahidan; Abdul Wahab, Zaidan

    2016-01-01

    In this paper, we report how few layers graphene that can be produced in large quantity with low defect ratio from exfoliation of graphite by using a high intensity probe sonication in water containing liquid hand soap and PVP. It was founded that the graphene powder obtained by this simple exfoliation method after the heat treatment had an excellent exfoliation into a single or layered graphene sheets. The UV-visible spectroscopy, FESEM, TEM, X-ray powder diffraction and Raman spectroscopy was used to analyse the graphene product. The thermal diffusivity of the samples was analysed using a highly accurate thermal-wave cavity photothermal technique. The data obtained showed excellent enhancement in the thermal diffusivity of the graphene dispersion. This well-dispersed graphene was then used to fabricate an electrically conductive polymer-graphene film composite. The results demonstrated that this low cost and environmental friendly technique allowed to the production of high quality layered graphene sheets, improved the thermal and electrical properties. This may find use in the wide range of applications based on graphene. PMID:27064575

  17. Atomistic modeling of mechanical properties of polycrystalline graphene.

    PubMed

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-05-30

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.

  18. Graphene materials having randomly distributed two-dimensional structural defects

    DOEpatents

    Kung, Harold H; Zhao, Xin; Hayner, Cary M; Kung, Mayfair C

    2013-10-08

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  19. Graphene materials having randomly distributed two-dimensional structural defects

    DOEpatents

    Kung, Harold H.; Zhao, Xin; Hayner, Cary M.; Kung, Mayfair C.

    2016-05-31

    Graphene-based storage materials for high-power battery applications are provided. The storage materials are composed of vertical stacks of graphene sheets and have reduced resistance for Li ion transport. This reduced resistance is achieved by incorporating a random distribution of structural defects into the stacked graphene sheets, whereby the structural defects facilitate the diffusion of Li ions into the interior of the storage materials.

  20. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua; Orme, Christine A.

    2016-04-19

    A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS.sub.2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned.

  1. Controllably Inducing and Modeling Optical Response from Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Lombardo, Nicholas; Naumov, Anton

    Graphene, a novel 2-dimensional sp2-hybridized allotrope of Carbon, has unique electrical and mechanical properties. While it is naturally a highly conductive zero band gap semiconductor, graphene does not exhibit optical emission. It has been shown that functionalization with oxygen-containing groups elicits an opening of band gap in graphene. In this work, we aim to induce an optical response in graphene via controlled oxidation, and then explore potential origins of its photoluminescence through mathematical modeling. We employ timed ozone treatment of initially non-fluorescent reduced graphene oxide (RGO) to produce graphene oxide (GO) with specific optical properties. Oxidized material exhibits substantial changes in the absorption spectra and a broad photoluminescence feature, centered at 532 nm, which suggests the appearance of a band gap. We then explore a number of possible mechanisms for the origin of GO photoluminescence via PM3 and ab initio calculations on a functionalized single sheet of graphene. By adjusting modeling parameters to fit experimentally obtained optical transition energies we estimate the size of the sp2 graphitic regions in GO and the arrangement of functional groups that could be responsible for the observed emission.

  2. Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices.

    PubMed

    Tugba Camic, B; Oytun, Faruk; Hasan Aslan, M; Jeong Shin, Hee; Choi, Hyosung; Basarir, Fevzihan

    2017-11-01

    A solution-processed transparent conducting electrode was fabricated via layer-by-layer (LBL) deposition of graphene oxide (GO) and silver nanowires (Ag NWs). First, graphite was oxidized with a modified Hummer's method to obtain negatively-charged GO sheets, and Ag NWs were functionalized with cysteamine hydrochloride to acquire positively-charged silver nanowires. Oppositely-charged GO and Ag NWs were then sequentially coated on a 3-aminopropyltriethoxysilane modified glass substrate via LBL deposition, which provided highly controllable thin films in terms of optical transmittance and sheet resistance. Next, the reduction of GO sheets was performed to improve the electrical conductivity of the multilayer films. The resulting GO/Ag NWs multilayer was characterized by a UV-Vis spectrometer, field emission scanning electron microscope (FE-SEM), optical microscope (OM) and sheet resistance using a four-point probe method. The best result was achieved with a 2-bilayer film, resulting in a sheet resistance of 6.5Ω sq -1 with an optical transmittance of 78.2% at 550nm, which values are comparable to those of commercial ITO electrodes. The device based on a 2-bilayer hybrid film exhibited the highest device efficiency of 1.30% among the devices with different number of graphene/Ag NW LBL depositions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Multifunctional Graphene-Silicone Elastomer Nanocomposite, Method of Making the Same, and Uses Thereof

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Pan, Shuyang (Inventor); Prud'Homme, Robert K. (Inventor)

    2016-01-01

    A nanocomposite composition having a silicone elastomer matrix having therein a filler loading of greater than 0.05 weight percentage, based on total nanocomposite weight, wherein the filler is functional graphene sheets (FGS) having a surface area of from 300 square meters per gram to 2630 square meters per gram; and a method for producing the nanocomposite and uses thereof.

  4. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.

    PubMed

    Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E

    2013-09-28

    Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.

  5. Enhanced electrochemical capacitance and oil-absorbability of N-doped graphene aerogel by using amino-functionalized silica as template and doping agent

    NASA Astrophysics Data System (ADS)

    Du, Yongxu; Liu, Libin; Xiang, Yu; Zhang, Qiang

    2018-03-01

    The development of novel energy storage devices with high power density and energy density is highly desired. However, as a promising material, the strong π-π interaction of graphene inhibits its applications. Herein, we provide a new approach that amino-functionalized silica are used as both templates to prevent the restacking of the graphene sheets and doping agents simultaneously. The microstructures, porous properties and chemical composition of the resulted N-doped reduced graphene oxide (RGO) aerogels, characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller measurement, indicate that the amount of SiO2-NH2 has profound effects on the surface area and carbon activity of the graphene sheets. Benefiting from the large specific surface area of 481.8 m2 g-1, low series resistances and high nitrogen doping content (4.4 atom%), the as-fabricated 3D hierarchical porous N-doped RGO aerogel electrode exhibits outstanding electrochemical performance in aqueous and organic electrolyte, such as ultrahigh specific capacitances of 350 F g-1 at a current density of 1 A g-1 and excellent reversibility with a cycling efficiency of 88% after 10000 cycles. In addition, the N-doped RGO aerogels possess high oil-absorbability with long recyclability.

  6. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method

    NASA Astrophysics Data System (ADS)

    Azimi, Hassan Rayat; Ghoranneviss, Mahmood; Elahi, Seyed Mohammad; Mahmoudian, Mohammad Reza; Jamali-Sheini, Farid; Yousefi, Ramin

    2016-12-01

    ZnS/graphene nanocomposites with different graphene concentrations (5, 10 and 15 wt.%) were synthesized using L-cysteine as surfactant and graphene oxide (GO) powders as graphene source. Excellent performance for nanocomposites to remove methylene blue (MB) dye and hexavalent chromium (Cr(VI)) under visible-light illumination was revealed. TEM images showed that ZnS NPs were decorated on GO sheets and the GO caused a significant decrease in the ZnS diameter size. XRD patterns, XPS and FTIR spectroscopy results indicated that GO sheets changed into reduced graphene oxide (rGO) during the synthesis process. Photocurrent measurements under a visiblelight source indicated a good chemical reaction between ZnS NPs and rGO sheets.

  7. Aqueous Dispersions of Graphene from Electrochemically Exfoliated Graphite.

    PubMed

    Sevilla, Marta; Ferrero, Guillermo A; Fuertes, Antonio B

    2016-11-21

    A facile and environmentally friendly synthetic strategy for the production of stable and easily processable dispersions of graphene in water is presented. This strategy represents an alternative to classical chemical exfoliation methods (for example the Hummers method) that are more complex, harmful, and dangerous. The process is based on the electrochemical exfoliation of graphite and includes three simple steps: 1) the anodic exfoliation of graphite in (NH 4 ) 2 SO 4 , 2) sonication to separate the oxidized graphene sheets, and 3) reduction of oxidized graphene to graphene. The procedure makes it possible to convert around 30 wt % of the initial graphite into graphene with short processing times and high yields. The graphene sheets are well dispersed in water, have a carbon/oxygen atomic ratio of 11.7, a lateral size of about 0.5-1 μm, and contain only a few graphene layers, most of which are bilayer sheets. The processability of this type of aqueous dispersion has been demonstrated in the fabrication of macroscopic graphene structures, such as graphene aerogels and graphene films, which have been successfully employed as absorbents or as electrodes in supercapacitors, respectively. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets.

    PubMed

    Shen, Yue; Wang, Ying; Zhou, Yuan; Hai, Chunxi; Hu, Jun; Zhang, Yi

    2018-01-01

    Electrostatic force spectroscopy (EFS) is a method for monitoring the electrostatic force microscopy (EFM) phase with high resolution as a function of the electrical direct current bias applied either to the probe or sample. Based on the dielectric constant difference of graphene oxide (GO) sheets (reduced using various methods), EFS can be used to characterize the degree of reduction of uniformly reduced one-atom-thick GO sheets at the nanoscale. In this paper, using thermally or chemically reduced individual GO sheets on mica substrates as examples, we characterize their degree of reduction at the nanoscale using EFS. For the reduced graphene oxide (rGO) sheets with a given degree of reduction (sample n), the EFS curve is very close to a parabola within a restricted area. We found that the change in parabola opening direction (or sign the parabola opening value) indicates the onset of reduction on GO sheets. Moreover, the parabola opening value, the peak bias value (tip bias leads to the peak or valley EFM phases) and the EFM phase contrast at a certain tip bias less than the peak value can all indicate the degree of reduction of rGO samples, which is positively correlated with the dielectric constant. In addition, we gave the ranking of degree for reduction on thermally or chemically reduced GO sheets and evaluated the effects of the reducing conditions. The identification of the degree of reduction of GO sheets using EFS is important for reduction strategy optimization and mass application of GO, which is highly desired owing to its mechanical, thermal, optical and electronic applications. Furthermore, as a general and quantitative technique for evaluating the small differences in the dielectric properties of nanomaterials, the EFS technique will extend and facilitate its nanoscale electronic devices applications in the future.

  9. Plasma-electric field controlled growth of oriented graphene for energy storage applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Subrata; Polaki, S. R.; Kamruddin, M.; Jeong, Sang Mun; (Ken Ostrikov, Kostya

    2018-04-01

    It is well known that graphene grows as flat sheets aligned with the growth substrate. Oriented graphene structures typically normal to the substrate have recently attracted major attention. Most often, the normal orientation is achieved in a plasma-assisted growth and is believed to be due to the plasma-induced in-built electric field, which is usually oriented normal to the substrate. This work focuses on the effect of an in-built electric field on the growth direction, morphology, interconnectedness, structural properties and also the supercapacitor performance of various configurations of graphene structures and reveals the unique dependence of these features on the electric field orientation. It is shown that tilting of growth substrates from parallel to the normal direction with respect to the direction of in-built plasma electric field leads to the morphological transitions from horizontal graphene layers, to oriented individual graphene sheets and then interconnected 3D networks of oriented graphene sheets. The revealed transition of the growth orientation leads to a change in structural properties, wetting nature, types of defect in graphitic structures and also affects their charge storage capacity when used as supercapacitor electrodes. This simple and versatile approach opens new opportunities for the production of potentially large batches of differently oriented and structured graphene sheets in one production run.

  10. Energy efficient reduced graphene oxide additives: Mechanism of effective lubrication and antiwear properties

    PubMed Central

    Gupta, Bhavana; Kumar, N.; Panda, Kalpataru; Dash, S.; Tyagi, A. K.

    2016-01-01

    Optimized concentration of reduced graphene oxide (rGO) in the lube is one of the important factors for effective lubrication of solid body contacts. At sufficiently lower concentration, the lubrication is ineffective and friction/wear is dominated by base oil. In contrast, at sufficiently higher concentration, the rGO sheets aggregates in the oil and weak interlayer sliding characteristic of graphene sheets is no more active for providing lubrication. However, at optimized concentration, friction coefficient and wear is remarkably reduced to 70% and 50%, respectively, as compared to neat oil. Traditionally, such lubrication is described by graphene/graphite particle deposited in contact surfaces that provides lower shear strength of boundary tribofilm. In the present investigation, graphene/graphite tribofilm was absent and existing traditional lubrication mechanism for the reduction of friction and wear is ruled out. It is demonstrated that effective lubrication is possible, if rGO is chemically linked with PEG molecules through hydrogen bonding and PEG intercalated graphene sheets provide sufficiently lower shear strength of freely suspended composite tribofilm under the contact pressure. The work revealed that physical deposition and adsorption of the graphene sheets in the metallic contacts is not necessary for the lubrication. PMID:26725334

  11. Bi2S3microspheres grown on graphene sheets as low-cost counter-electrode materials for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Guang; Chen, Xiaoshuang; Gao, Guandao

    2014-02-01

    In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures.In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06093d

  12. First-principles study of plutonium adsorption on perfect and defective graphene and hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Li, Shujing; Zhou, Mei; Li, Menglei; Wang, Xiaohui; Zheng, Fawei; Zhang, Ping

    2018-05-01

    The adsorption of the Pu atom on perfect and defective graphene and hexagonal boron nitride (h-BN) sheet has been systematically investigated by using first-principles calculations. Pu atom is most likely to trap at the hollow site in pure graphene, and the energy barrier is as high as 78.3 meV. For ideal h-BN, the top site of the boron atom is the most stable adsorption site for adatom Pu, and the maximal energy barrier is only 12 meV. Comparing Pu on pure graphene and h-BN sheet, Pu atom is easy to migrate on the surface of ideal h-BN at room temperature, while it is bound to perfect graphene. Besides, Pu atom adsorbed on defective graphene and h-BN sheet, with large adsorption energies in the range of 2.66 ∼ 14.95 eV, is more stable than that on pure graphene and h-BN sheet. We have also found that all the adsorption systems are spin-polarized with the largest magnetic moments of Pu to be 7.67 μ B on graphene and 6.71 μ B on h-BN with a single vacancy of N atom. These findings suggest that graphene and h-BN two-dimensional materials can be effectively applied in the growth of high-quality plutonium single crystal thin films, as well as in nuclear waste recovery.

  13. Optical Forging of Graphene into Three-Dimensional Shapes.

    PubMed

    Johansson, Andreas; Myllyperkiö, Pasi; Koskinen, Pekka; Aumanen, Jukka; Koivistoinen, Juha; Tsai, Hung-Chieh; Chen, Chia-Hao; Chang, Lo-Yueh; Hiltunen, Vesa-Matti; Manninen, Jyrki J; Woon, Wei Yen; Pettersson, Mika

    2017-10-11

    Atomically thin materials, such as graphene, are the ultimate building blocks for nanoscale devices. But although their synthesis and handling today are routine, all efforts thus far have been restricted to flat natural geometries, since the means to control their three-dimensional (3D) morphology has remained elusive. Here we show that, just as a blacksmith uses a hammer to forge a metal sheet into 3D shapes, a pulsed laser beam can forge a graphene sheet into controlled 3D shapes in the nanoscale. The forging mechanism is based on laser-induced local expansion of graphene, as confirmed by computer simulations using thin sheet elasticity theory.

  14. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    NASA Astrophysics Data System (ADS)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  15. Interactions between C and Cu atoms in single-layer graphene: direct observation and modelling.

    PubMed

    Kano, Emi; Hashimoto, Ayako; Kaneko, Tomoaki; Tajima, Nobuo; Ohno, Takahisa; Takeguchi, Masaki

    2016-01-07

    Metal doping into the graphene lattice has been studied recently to develop novel nanoelectronic devices and to gain an understanding of the catalytic activities of metals in nanocarbon structures. Here we report the direct observation of interactions between Cu atoms and single-layer graphene by transmission electron microscopy. We document stable configurations of Cu atoms in the graphene sheet and unique transformations of graphene promoted by Cu atoms. First-principles calculations based on density functional theory reveal a reduction of energy barrier that caused rotation of C-C bonds near Cu atoms. We discuss two driving forces, electron irradiation and in situ heating, and conclude that the observed transformations were mainly promoted by electron irradiation. Our results suggest that individual Cu atoms can promote reconstruction of single-layer graphene.

  16. Tunable metamaterial-induced transparency with gate-controlled on-chip graphene metasurface.

    PubMed

    Chen, Zan Hui; Tao, Jin; Gu, Jia Hua; Li, Jian; Hu, Di; Tan, Qi Long; Zhang, Fengchun; Huang, Xu Guang

    2016-12-12

    We propose and numerically investigate a gate-controlled on-chip graphene metasurface consisting of a monolayer graphene sheet and silicon photonic crystal-like substrate, to achieve an electrically-tunable induced transparency. The operation mechanism of the induced transparency of the on-chip graphene metasurface is analyzed. The tunable optical properties with different gate-voltages and polarizations have been discussed. Additionally, the spectral feature of the on-chip graphene metasurface as a function of the refractive index of the local environment is also investigated. The result shows that the on-chip graphene metasurface as a refractive index sensor can achieve an overall figure of merit of 8.89 in infrared wavelength range. Our study suggests that the proposed structure is potentially attractive as optoelectronic modulators and refractive index sensors.

  17. Ab-Initio Molecular Dynamics Simulation of Graphene Sheet

    NASA Astrophysics Data System (ADS)

    Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T.

    2017-01-01

    The study of graphene is important because it is a promising material for a variety of applications in the electronic industry. In the present work, the properties of а 2D periodic graphene sheet are studied with the use of ab initio molecular dynamics. DFT in the generalized gradient approximation is used in order to carry out the dynamical simulations. The PBE functional and DZVP-MOLOPT basis set are implemented in the CP2K/Quickstep package. A periodic box, consisting of 288 carbon atoms is chosen for the simulations. After geometry optimization it has dimensions 2964 x 2964 x 1500 pm and form angles of 90, 90, 60 degrees. The dynamical simulation is run for 1 ps in the NPT ensemble, at temperature T = 298.15 K. The radial distribution function shows a first peak at 142 pm, marking the bond length between carbon atoms. The density of states for the periodic systems is simulated as occupied orbitals represent the valence band and unoccupied ones the conduction band. The calculated bandgap, as expected is close to 0 eV.

  18. Liquid phase exfoliated graphene for electronic applications

    NASA Astrophysics Data System (ADS)

    Sukumaran, Sheena S.; Jinesh, K. B.; Gopchandran, K. G.

    2017-09-01

    Graphene dispersions were prepared using the liquid phase exfoliation method with three different surfactants. One surfactant was used from each of the surfactant types, anionic, cationic, and non-ionic; those used, were sodium dodecylbenzene sulfonate (SDBS), cetyltrimethylammonium bromide (CTAB) and polyvinylpyrrolidone (PVP), respectively. Raman spectroscopy was used to investigate the number of layers and the nature of any defects present in the exfoliated graphene. The yield of graphene was found to be less with the non-ionic surfactant, PVP. The deconvolution of 2D peaks at ~2700 cm-1 indicated that graphene prepared using these surfactants resulted in sheets consisting of few-layer graphene. The ratio of intensity of the D and G bands in the Raman spectra showed that edge defect density is high for samples prepared with SDBS compared to the other two, and is attributed to the smaller size of the graphene sheets, as shown in the electron micrographs. In the case of the dispersion in PVP, it is found that the sizes of the graphene sheets are highly sensitive to the concentration of the surfactant used. Here, we have made an attempt to investigate the local density of states in the graphene sheets by measuring the tunnelling current-voltage characteristics. Graphene layers have shown consistent p-type behaviour when exfoliated with SDBS and n-type behaviour when exfoliated with CTAB, with a larger band gap for graphene exfoliated using CTAB. Hence, in addition to the known advantages of liquid phase exfoliation, we found that by selecting suitable surfactants, to a certain extent it is possible to tune the band gap and determine the type of majority carriers.

  19. Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters.

    PubMed

    Kim, Ho Young; Jeong, Sooyeon; Jeong, Seung Yol; Baeg, Kang-Jun; Han, Joong Tark; Jeong, Mun Seok; Lee, Geon-Woong; Jeong, Hee Jin

    2015-03-12

    Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated graphene paste and subsequent work-function engineering by chemical doping. Graphene structures with vertically aligned edges were successfully fabricated by the freeze-drying process. Furthermore, their number density could be controlled by varying the composition of the graphene paste. Al- and Au-doped 3D graphene emitters were fabricated by introducing the corresponding dopant solutions into the graphene sheets. The resulting field-emission characteristics of the resulting emitters are discussed. The synthesized 3D graphene emitters were highly flexible, maintaining their field-emission properties even when bent at large angles. This is attributed to the high crystallinity and emitter density and good chemical stability of the 3D graphene emitters, as well as to the strong interactions between the 3D graphene emitters and the substrate.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woltornist, Steven J.; Carrillo, Jan-Michael Y.; Xu, Thomas O.

    The unique electrical, thermal, and mechanical properties of graphene make it a perfect candidate for applications in graphene/graphite based polymer composites, yet challenges due to the lack of solubility of pristine graphene/graphite in water and common organic solvents have limited its practical utilization. In this paper, we report a scalable and environmentally friendly technique to form water-in-oil type emulsions stabilized by overlapping pristine graphene sheets, enabling the synthesis of open cell foams containing a continuous graphitic network. Our approach utilizes the insolubility of graphene/graphite in both water and organic solvents and so does not require oxidation, reduction, surfactants, high boilingmore » solvents, chemical functionalization, or the input of large amounts of mechanical energy or heat. At the heart of our technique is the strong attraction of graphene to high-energy oil and water interfaces. This allows for the creation of stable water-in-oil emulsions with controlled droplet size and overlapping graphene sheets playing the role of surfactant by covering the droplet surface and stabilizing the interfaces with a thin graphitic skin. Finally, these emulsions are used as templates for the synthesis of open cell foams with densities below 0.35 g/cm 3 that exhibit remarkable mechanical and electrical properties including compressive moduli up to ~100 MPa, compressive strengths of over 8.3 MPa (1200 psi), and bulk conductivities approaching 7 S/m.« less

  1. Signatures in vibrational and UV-visible absorption spectra for identifying cyclic hydrocarbons by graphene fragments.

    PubMed

    Meng, Yan; Wu, Qi; Chen, Lei; Wangmo, Sonam; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin; Ding, Dajun; Niehaus, Thomas A; Frauenheim, Thomas

    2013-12-21

    To promote possible applications of graphene in molecular identification based on stacking effects, in particular in recognizing aromatic amino acids and even sequencing nucleobases in life sciences, we comprehensively study the interaction between graphene segments and different cyclic organic hydrocarbons including benzene (C6H6), cyclohexane (C6H12), benzyne (C6H4), cyclohexene (C6H10), 1,3-cyclohexadiene (C6H8(1)) and 1,4-cyclohexadiene (C6H8(2)), using the density-functional tight-binding (DFTB) method. Interestingly, we find obviously different characteristics in Raman vibrational and ultraviolet visible absorption spectra of the small molecules adsorbed on the graphene sheet. Specifically, we find that both spectra involve clearly different characteristic peaks, belonging to the different small molecules upon adsorption, with the ones of ionized molecules being more substantial. Further analysis shows that the adsorptions are almost all due to the presence of dispersion energy in neutral cases and involve charge transfer from the graphene to the small molecules. In contrast, the main binding force in the ionic adsorption systems is the electronic interaction. The results present clear signatures that can be used to recognize different kinds of aromatic hydrocarbon rings on graphene sheets. We expect that our findings will be helpful for designing molecular recognition devices using graphene.

  2. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lulu; Nguyen, Van Hoa; Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electronmore » microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.« less

  3. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Huanjing; Sun, Xiuxia; Liu, Zonghuai; Lei, Zhibin

    2014-05-01

    Creation of nanopores on graphene planar sheets is of great significance in promoting the kinetic diffusion of electrolyte and enhancing the utilization efficiency of graphene planar sheets. Herein, we developed a facile chemical vapor deposition strategy to prepare highly porous graphene with flake-like MgO as template and ferrocene as the carbon precursor. The graphene layers show a highly porous structure with small mesopores of 4-8 nm, large mesopores of 10-20 nm and additional macropores of 100-200 nm. These nanopores on graphene sheets provide numerous channels for fast ion transport perpendicular to the 2D basal plane, while the good powder conductivity ensures an effective electron propagation within the 2D graphene plane. As a result, a specific capacitance of 303 F g-1, an areal capacitance up to 17.3 μF cm-2 and a nearly tenfold shorter time constant were achieved when compared with those of nonporous and stacked graphene electrodes. The method demonstrated herein would open up an opportunity to prepare porous graphene for a wide applications in energy storage, biosensors, nanoelectronics and catalysis.Creation of nanopores on graphene planar sheets is of great significance in promoting the kinetic diffusion of electrolyte and enhancing the utilization efficiency of graphene planar sheets. Herein, we developed a facile chemical vapor deposition strategy to prepare highly porous graphene with flake-like MgO as template and ferrocene as the carbon precursor. The graphene layers show a highly porous structure with small mesopores of 4-8 nm, large mesopores of 10-20 nm and additional macropores of 100-200 nm. These nanopores on graphene sheets provide numerous channels for fast ion transport perpendicular to the 2D basal plane, while the good powder conductivity ensures an effective electron propagation within the 2D graphene plane. As a result, a specific capacitance of 303 F g-1, an areal capacitance up to 17.3 μF cm-2 and a nearly tenfold shorter time constant were achieved when compared with those of nonporous and stacked graphene electrodes. The method demonstrated herein would open up an opportunity to prepare porous graphene for a wide applications in energy storage, biosensors, nanoelectronics and catalysis. Electronic supplementary information (ESI) available: TGA curve, SEM and XRD patterns of MgO; TEM image of Mg5(CO3)4(OH)2.4H2O HRTEM; Raman spectrum of porous graphene, and its electrochemical performance including CV and galvanostatic charge-discharge curves in a three-electrode cell with 6.0 mol L-1 aqueous KOH as electrolyte; comparative electrocapacitive performances of graphene materials prepared by various methods; CV behaviors of porous graphene in two-electrode cell and the last 10 cycles in 1000 charge-discharge cycles in 1.0 mol L-1 TEABF4/AN electrolyte. See DOI: 10.1039/c4nr00538d

  4. Switching of Photonic Crystal Lasers by Graphene.

    PubMed

    Hwang, Min-Soo; Kim, Ha-Reem; Kim, Kyoung-Ho; Jeong, Kwang-Yong; Park, Jin-Sung; Choi, Jae-Hyuck; Kang, Ju-Hyung; Lee, Jung Min; Park, Won Il; Song, Jung-Hwan; Seo, Min-Kyo; Park, Hong-Gyu

    2017-03-08

    Unique features of graphene have motivated the development of graphene-integrated photonic devices. In particular, the electrical tunability of graphene loss enables high-speed modulation of light and tuning of cavity resonances in graphene-integrated waveguides and cavities. However, efficient control of light emission such as lasing, using graphene, remains a challenge. In this work, we demonstrate on/off switching of single- and double-cavity photonic crystal lasers by electrical gating of a monolayer graphene sheet on top of photonic crystal cavities. The optical loss of graphene was controlled by varying the gate voltage V g , with the ion gel atop the graphene sheet. First, the fundamental properties of graphene were investigated through the transmittance measurement and numerical simulations. Next, optically pumped lasing was demonstrated for a graphene-integrated single photonic crystal cavity at V g below -0.6 V, exhibiting a low lasing threshold of ∼480 μW, whereas lasing was not observed at V g above -0.6 V owing to the intrinsic optical loss of graphene. Changing quality factor of the graphene-integrated photonic crystal cavity enables or disables the lasing operation. Moreover, in the double-cavity photonic crystal lasers with graphene, switching of individual cavities with separate graphene sheets was achieved, and these two lasing actions were controlled independently despite the close distance of ∼2.2 μm between adjacent cavities. We believe that our simple and practical approach for switching in graphene-integrated active photonic devices will pave the way toward designing high-contrast and ultracompact photonic integrated circuits.

  5. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-01-01

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine. Electronic supplementary information (ESI) available: Experimental details and additional characterization data. See DOI: 10.1039/c2nr33191h

  6. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    NASA Astrophysics Data System (ADS)

    Hu, Xuebing; Yu, Yun; Wang, Yongqing; Zhou, Jianer; Song, Lixin

    2015-02-01

    In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid-base interaction with the surface functional groups of the carbon layers.

  7. Graphene Synthesis & Graphene/Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Liao, Ken-Hsuan

    We successfully developed a novel, fast, hydrazine-free, high-yield method for producing single-layered graphene. Graphene sheets were formed from graphite oxide by reduction with de-ionized water at 130 ºC. Over 65% of the sheets are single graphene layers. A dehydration reaction of exfoliated graphene oxide was utilized to reduce oxygen and transform C-C bonds from sp3 to sp2. The reduction appears to occur in large uniform interconnected oxygen-free patches so that despite the presence of residual oxygen the sp2 carbon bonds formed on the sheets are sufficient to provide electronic properties comparable to reduced graphene sheets obtained using other methods. Cytotoxicity of aqueous graphene was investigated with Dr. Yu-Shen Lin by measuring mitochondrial activity in adherent human skin fibroblasts using two assays. The methyl-thiazolyl-diphenyl-tetrazolium bromide (MTT) assay, a typical nanotoxicity assay, fails to predict the toxicity of graphene oxide and graphene toxicity because of the spontaneous reduction of MTT by graphene and graphene oxide, resulting in a false positive signal. An appropriate alternate assessment, using the water soluble tetrazolium salt (WST-8) assay, reveals that the compacted graphene sheets are more damaging to mammalian fibroblasts than the less densely packed graphene oxide. Clearly, the toxicity of graphene and graphene oxide depends on the exposure environment (i.e. whether or not aggregation occurs) and mode of interaction with cells (i.e. suspension versus adherent cell types). Ultralow percolation concentration of 0.15 wt% graphene, as determined by surface resistance and modulus, was observed from in situ polymerized thermally reduced graphene (TRG)/ poly-urethane-acrylate (PUA) nanocomposite. A homogeneous dispersion of TRG in PUA was revealed by TEM images. The aspect ratio of dispersed TRG, calculated from percolation concentration and modulus, was found to be equivalent to the reported aspect ratio of single-layered free standing TRG. This indicates TRG is mono-layer-dispersed in the matrix polymer. How graphene/polymer nanocomposite glass transition temperatures ( Tg) vary was investigated in this study. We measured Tg in PMMA. We used isotactic PMMA (i-PMMA) and syndiotactic-rich atactic PMMA (a-PMMA) to make TRG/PMMA nanocomposites using solvent blending and in situ polymerization in order to investigate the stereo-regularity and processing effects on the Tg. A T g increase was found in i-PMMA and in situ PMMA but not in a-PMMA. The results can be explained by the thin film confinement effect of polymer. We attribute the Tg increase to both a higher interaction density and a stronger hydrogen bonding at the interfaces. We have studied the elastic modulus of graphene oxide with various oxygen content. We used in situ AFM nano-indentation to measure the influence of oxygen on the elastic modulus of graphene oxide with various carbon/oxygen (C/O) ratios. The results show that chemical reduction (lower oxygen contents) decreases the elastic modulus of graphene oxide. We speculate that chemical reduction of oxygen atoms of epoxy groups on graphene oxide surface removes the bridging effect between carbon atoms, which leads to more flexible sheets. (Abstract shortened by UMI.).

  8. Highly thermally conductive and mechanically strong graphene fibers.

    PubMed

    Xin, Guoqing; Yao, Tiankai; Sun, Hongtao; Scott, Spencer Michael; Shao, Dali; Wang, Gongkai; Lian, Jie

    2015-09-04

    Graphene, a single layer of carbon atoms bonded in a hexagonal lattice, is the thinnest, strongest, and stiffest known material and an excellent conductor of heat and electricity. However, these superior properties have yet to be realized for graphene-derived macroscopic structures such as graphene fibers. We report the fabrication of graphene fibers with high thermal and electrical conductivity and enhanced mechanical strength. The inner fiber structure consists of large-sized graphene sheets forming a highly ordered arrangement intercalated with small-sized graphene sheets filling the space and microvoids. The graphene fibers exhibit a submicrometer crystallite domain size through high-temperature treatment, achieving an enhanced thermal conductivity up to 1290 watts per meter per kelvin. The tensile strength of the graphene fiber reaches 1080 megapascals. Copyright © 2015, American Association for the Advancement of Science.

  9. Thiolated graphene - a new platform for anchoring CdSe quantum dots for hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Debgupta, Joyashish; Pillai, Vijayamohanan K.

    2013-04-01

    Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures.Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00363a

  10. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser.

    PubMed

    Xu, Jin-Long; Li, Xian-Lei; Wu, Yong-Zhong; Hao, Xiao-Peng; He, Jing-Liang; Yang, Ke-Jian

    2011-05-15

    High-quality graphene sheets with lateral size over 20 μm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer. To date, to our knowledge, they are the largest graphene sheets prepared by exfoliation in the liquid phase. A saturable absorber mirror was fabricated based on these sheets. We exploited it to realize mode-locking operation in a diode-pumped Nd:GdVO(4) laser. A pulse duration of 16 ps was produced with an average power of 360 mW and a highest pulse energy of 8.4 nJ for a graphene mode-locked laser. © 2011 Optical Society of America

  11. Temperature-Dependent Adhesion of Graphene Suspended on a Trench

    PubMed Central

    2015-01-01

    Graphene deposited over a trench has been studied in the context of nanomechanical resonators, where experiments indicate adhesion of the graphene sheet to the trench boundary and sidewalls leads to self-tensioning; however, this adhesion is not well understood. We use molecular dynamics to simulate graphene deposited on a trench and study how adhesion to the sidewalls depends on substrate interaction, temperature, and curvature of the edge of the trench. Over the range of parameters we study, the depth at the center of the sheet is approximately linear in substrate interaction strength and temperature but not trench width, and we explain this using a one-dimensional model for the sheet configuration. PMID:26652939

  12. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-07-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  13. Thermal conductivity of electron-irradiated graphene

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  14. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    NASA Astrophysics Data System (ADS)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-02-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface area nano-substrate which can be used for subsequent efficient bioconjugation applications.

  15. Nanodevices for spintronics and methods of using same

    DOEpatents

    Zaliznyak, Igor; Tsvelik, Alexei; Kharzeev, Dmitri

    2013-02-19

    Graphene magnet multilayers (GMMs) are employed to facilitate development of spintronic devices. The GMMs can include a sheet of monolayer (ML) or few-layer (FL) graphene in contact with a magnetic material, such as a ferromagnetic (FM) or an antiferromagnetic material. Electrode terminals can be disposed on the GMMs to be in electrical contact with the graphene. A magnetic field effect is induced in the graphene sheet based on an exchange magnetic field resulting from a magnetization of the magnetic material which is in contact with graphene. Electrical characteristics of the graphene can be manipulated based on the magnetization of the magnetic material in the GMM.

  16. Effect of photocurrent enhancement in porphyrin-graphene covalent hybrids.

    PubMed

    Tang, Jianguo; Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan; Belfiore, Laurence A

    2014-01-01

    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH2TPP) by an amidation reaction between the amino group in NH2TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH2TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH2TPP-graphene-NH2TPP. Its UV-visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH2TPP and graphene oxide, because a 59nm red shift of the strong graphene oxide absorption is observed from 238 to 297nm, with significant spectral broadening between 300 and 700nm. Fluorescence emission spectroscopy indicates efficient quenching of NH2TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH2TPP and GO. A reversible on/off photo-current density of 47mA/cm(2) is observed when NH2TPP-graphene-NH2TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈1eV, according to UV-visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84eV for NH2TPP-graphene-NH2TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching. © 2013. Published by Elsevier B.V. All rights reserved.

  17. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    PubMed Central

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  18. Microscopic vertical orientation of nano-interspaced graphene architectures in deposit films as electrodes for enhanced supercapacitor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Gyoung Gug; Song, Bo; Li, Liyi

    This paper reported a novel two-step process to fabricate high-performance supercapacitor films that contain microscale domains of nano-interspaced, re-stacked graphene sheets oriented perpendicular to the surface of current collector substrate, i.e., carbon fiber paper. In the two-step process, we first used ligand molecules to modify the surface of graphene oxide (GO) sheets and manipulate the interspacing between the re-stacked GO sheets. The ligand-modified GOs, i.e., m-GOs, were then reduced to obtain more conductive graphene (m-rGO), where X-ray diffraction measurement results indicated well-controlled interlayer spacing between the restacked m-rGO sheets up to 1 nm. The typical lateral dimension of the restackedmore » m-rGO sheets were ~40 µm. Then, electrical field was introduced during m-rGO slurry deposition process to induce the vertical orientation of the m-rGO sheets/stacks in the film deposit. The direct current electrical field induced the orientation of the domains of m-rGO stacks along the direction perpendicular to the surface of deposit film, i.e., direction of electric field. Also, the applied electric field increased the interlayer spacing further, which should enhance the diffusion and accessibility of electrolyte ions. As compared with the traditionally deposited “control” films, the field-processed film deposits that contain oriented structure of graphene sheets/stacks have shown up to ~1.6 times higher values in capacitance (430 F/g at 0.5 A/g) and ~67% reduction in equivalent series resistance. Finally, the approach of using electric field to tailor the microscopic architecture of graphene-based deposit films is effective to fabricate film electrodes for high performance supercapacitors.« less

  19. Microscopic vertical orientation of nano-interspaced graphene architectures in deposit films as electrodes for enhanced supercapacitor performance

    DOE PAGES

    Jang, Gyoung Gug; Song, Bo; Li, Liyi; ...

    2016-12-14

    This paper reported a novel two-step process to fabricate high-performance supercapacitor films that contain microscale domains of nano-interspaced, re-stacked graphene sheets oriented perpendicular to the surface of current collector substrate, i.e., carbon fiber paper. In the two-step process, we first used ligand molecules to modify the surface of graphene oxide (GO) sheets and manipulate the interspacing between the re-stacked GO sheets. The ligand-modified GOs, i.e., m-GOs, were then reduced to obtain more conductive graphene (m-rGO), where X-ray diffraction measurement results indicated well-controlled interlayer spacing between the restacked m-rGO sheets up to 1 nm. The typical lateral dimension of the restackedmore » m-rGO sheets were ~40 µm. Then, electrical field was introduced during m-rGO slurry deposition process to induce the vertical orientation of the m-rGO sheets/stacks in the film deposit. The direct current electrical field induced the orientation of the domains of m-rGO stacks along the direction perpendicular to the surface of deposit film, i.e., direction of electric field. Also, the applied electric field increased the interlayer spacing further, which should enhance the diffusion and accessibility of electrolyte ions. As compared with the traditionally deposited “control” films, the field-processed film deposits that contain oriented structure of graphene sheets/stacks have shown up to ~1.6 times higher values in capacitance (430 F/g at 0.5 A/g) and ~67% reduction in equivalent series resistance. Finally, the approach of using electric field to tailor the microscopic architecture of graphene-based deposit films is effective to fabricate film electrodes for high performance supercapacitors.« less

  20. Electrode material comprising graphene-composite materials in a graphite network

    DOEpatents

    Kung, Harold H.; Lee, Jung K.

    2014-07-15

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  1. Electrode material comprising graphene-composite materials in a graphite network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Harold H.; Lee, Jung K.

    A durable electrode material suitable for use in Li ion batteries is provided. The material is comprised of a continuous network of graphite regions integrated with, and in good electrical contact with a composite comprising graphene sheets and an electrically active material, such as silicon, wherein the electrically active material is dispersed between, and supported by, the graphene sheets.

  2. Nickel induced re-structuring of 2D graphene to 1D graphene nanotubes: Role of radical hydrogen in catalyst assisted growth

    NASA Astrophysics Data System (ADS)

    Krishna, Rahul; Titus, Elby

    2017-12-01

    Here, we demonstrate for the first time the structural evolution of 1D graphene nanotubes (GNTs) by the cutting of two dimensional (2D) graphene oxide (GO) sheet in reducing environment at ambient conditions in presence of Ni metal in acidic environment. We observed that in-situ generated radical hydrogen (Hrad) responsible for cutting of graphene sheets and re-structuring of 2D sheet structure to one 1D nanotubes. Structural evolution of GNTs was confirmed by using of transmission electron microscopy (TEM) technique. The current vs. voltage (I-V) characteristics of GNTs displayed room temperature (RT) negative differential resistance (NDR) effect which is typical in nanowires, suggested the applicability of nanomaterial for various kind of electronics applications such as memory devices and transistors fabrication.

  3. Supercapacitors based on high-quality graphene scrolls.

    PubMed

    Zeng, Fanyan; Kuang, Yafei; Liu, Gaoqin; Liu, Rui; Huang, Zhongyuan; Fu, Chaopeng; Zhou, Haihui

    2012-07-07

    High-quality graphene scrolls (GSS) with a unique scrolled topography are designed using a microexplosion method. Their capacitance properties are investigated by cyclic voltammetry, galvanostatic charge-discharge and electrical impedance spectroscopy. Compared with the specific capacity of 110 F g(-1) for graphene sheets, a remarkable capacity of 162.2 F g(-1) is obtained at the current density of 1.0 A g(-1) in 6 M KOH aqueous solution owing to the unique scrolled structure of GSS. The capacity value is increased by about 50% only because of the topological change of graphene sheets. Meanwhile, GSS exhibit excellent long-term cycling stability along with 96.8% retained after 1000 cycles at 1.0 A g(-1). These encouraging results indicate that GSS based on the topological structure of graphene sheets are a kind of promising material for supercapacitors.

  4. Supercapacitors based on high-quality graphene scrolls

    NASA Astrophysics Data System (ADS)

    Zeng, Fanyan; Kuang, Yafei; Liu, Gaoqin; Liu, Rui; Huang, Zhongyuan; Fu, Chaopeng; Zhou, Haihui

    2012-06-01

    High-quality graphene scrolls (GSS) with a unique scrolled topography are designed using a microexplosion method. Their capacitance properties are investigated by cyclic voltammetry, galvanostatic charge-discharge and electrical impedance spectroscopy. Compared with the specific capacity of 110 F g-1 for graphene sheets, a remarkable capacity of 162.2 F g-1 is obtained at the current density of 1.0 A g-1 in 6 M KOH aqueous solution owing to the unique scrolled structure of GSS. The capacity value is increased by about 50% only because of the topological change of graphene sheets. Meanwhile, GSS exhibit excellent long-term cycling stability along with 96.8% retained after 1000 cycles at 1.0 A g-1. These encouraging results indicate that GSS based on the topological structure of graphene sheets are a kind of promising material for supercapacitors.

  5. Bi2S3microspheres grown on graphene sheets as low-cost counter-electrode materials for dye-sensitized solar cells.

    PubMed

    Li, Guang; Chen, Xiaoshuang; Gao, Guandao

    2014-03-21

    In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm(-2), Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures.

  6. Synthesis of functionalized 3D porous graphene using both ionic liquid and SiO2 spheres as ``spacers'' for high-performance application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Li, Na; Liu, Jiawei; Cai, Kai; Foda, Mohamed F.; Lei, Xiaomin; Han, Heyou

    2014-12-01

    In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors.In this work, a high-capacity supercapacitor material based on functionalized three-dimensional (3D) porous graphene was fabricated by low temperature hydrothermal treatment of graphene oxide (GO) using both ionic liquid (IL) and SiO2 spheres as ``spacers''. In the synthesis, the introduction of dual ``spacers'' effectively enlarged the interspace between graphene sheets and suppressed their re-stacking. In addition, the IL also acted as a structure-directing agent playing a crucial role in inducing the formation of unique 3D architectures. Consequently, fast electron/ion transport channels were successfully constructed and numerous oxygen-containing groups on graphene sheets were effectively reserved, which had unique advantages in decreasing ion diffusion resistance and providing additional pseudocapacitance. As expected, the obtained material exhibited superior specific capacitance and rate capability compared to single ``spacer'' designed electrodes and simultaneously maintained excellent cycling stability. In particular, there was nearly no loss of its initial capacitance after 3000 cycles. In addition, we further assembled a symmetric two-electrode device using the material, which showed outstanding flexibility and low equivalent series resistance (ESR). More importantly, it was capable of yielding a maximum power density of about 13.3 kW kg-1 with an energy density of about 7.0 W h kg-1 at a voltage of 1.0 V in 1 M H2SO4 electrolyte. All these impressive results demonstrate that the material obtained by this approach is greatly promising for application in high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05473c

  7. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hong; Wang, Jun; Kang, Xinhuang

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  8. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    DOEpatents

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen; Rao, Mumin

    2017-06-06

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deep cycles at 0.1 C.

  9. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications.

  10. Graphene-based inline pressure sensor integrated with microfluidic elastic tube

    NASA Astrophysics Data System (ADS)

    Inoue, Nagisa; Onoe, Hiroaki

    2018-01-01

    We propose an inline pressure sensor composed of a polydimethylsiloxane (PDMS) microfluidic tube integrated with graphene sheets. The PDMS tube was fabricated through molding, and a multilayered graphene sheet was transferred on the surface of the PDMS tube. The pressure inside the tube was monitored using the changes in the electrical resistance of the transferred graphene. The proposed pressure sensor could be suitable for precise pressure measurement for a small amount of fluid in microfluidic systems including organ-on-a-chip devices.

  11. Synthesis and characterization of nickel oxide/graphene sheet/graphene ribbon composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavanya, J.; Gomathi, N., E-mail: sivakumar.gomathi@gmail.com

    2016-04-13

    A novel and simple hydrothermal synthesis of nickel oxide (NiO)/graphene sheets (GNS)/graphene ribbon (GR) hybrid material is reported for the first time. The crystalline property and surface morphology of NiO/GNS/GR (NiO/HG) hybrid material is characterized by X-ray diffraction, Raman spectroscopy and Transmission electron spectroscopy. The fast electron transfer of GNS/GR along with NiO contributes an excellent electrochemical performance in the field of non-enzymatic glucose sensor.

  12. Direct synthesis of hydrophobic graphene-based nanosheets via chemical modification of exfoliated graphene oxide.

    PubMed

    Wang, Jigang; Wang, Yongsheng; He, Dawei; Liu, Zhiyong; Wu, Hongpeng; Wang, Haiteng; Zhao, Yu; Zhang, Hui; Yang, Bingyang; Xu, Haiteng; Fu, Ming

    2012-08-01

    Hydrophobic graphene-based material at the nanoscale was prepared by treatment of exfoliated graphene oxide with organic isocyanates. The lipophilic modified graphene oxide (LMGO) can then be exfoliated into the functionalized graphene nanoplatelets that can form a stable dispersion in polar aprotic solvents. AFM image shows the thickness of LMGO is approximately 1 nm. Characterization of LMGO by elemental analysis suggested that the chemical treatment results in the functionalization of the carboxyl and hydroxyl groups in GO via formation of amides and carbamate esters, respectively. The degree of GO functionalization can be controlled via either the reactivity of the isocyanate or the reaction time. Then we investigated the thermal properties of the SPFGraphene by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the TGA curve shows a greater weight loss of approximately 20% occurred indicating removal of functional groups from the LMGO sheets and an obvious exothermic peak at 176 degrees can be observed from 150 to 250 degrees. We also compared the structure of graphene oxide with the structure of chemical treated graphene oxide by FT-IR spectroscopy. The morphology and microstructure of the LMGO nanosheets were also characterized by SEM and XRD. Graphene can be used to fabricate a wide range of simple electronic devices such as field-effect transistors, resonators, quantum dots and some other extensive industrial manufacture such as super capacitor, li ion battery, solar cells and even transparent electrodes in device applications.

  13. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Lettow, John S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2016-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  14. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Korkut, Sibel (Inventor); Chiang, Katherine S. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Lettow, John S. (Inventor); Chen, Chuan-Hua (Inventor); Prud'Homme, Robert K. (Inventor)

    2018-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  15. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Chen, Chuan-Hua (Inventor); Lettow, John S. (Inventor); Chiang, Katherine S. (Inventor); Prud'Homme, Robert K. (Inventor); Crain, John M. (Inventor); Korkut, Sibel (Inventor)

    2015-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  16. Printed Electronics

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Crain, John M. (Inventor); Chiang, Katherine S. (Inventor); Prud'Homme, Robert K. (Inventor); Lettow, John S. (Inventor); Korkut, Sibel A. (Inventor); Chen, Chuan-Hua (Inventor)

    2014-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  17. Printed electronics

    NASA Technical Reports Server (NTRS)

    Lettow, John S. (Inventor); Prud'Homme, Robert K. (Inventor); Crain, John M. (Inventor); Aksay, Ilhan A. (Inventor); Korkut, Sibel A. (Inventor); Chiang, Katherine S. (Inventor); Chen, Chuan-hua (Inventor)

    2012-01-01

    Printed electronic device comprising a substrate onto at least one surface of which has been applied a layer of an electrically conductive ink comprising functionalized graphene sheets and at least one binder. A method of preparing printed electronic devices is further disclosed.

  18. Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene

    NASA Astrophysics Data System (ADS)

    Hosseini-Hashemi, Shahrokh; Sepahi-Boroujeni, Amin; Sepahi-Boroujeni, Saeid

    2018-04-01

    Normal impact performance of a system including a fullerene molecule and a single-layered graphene sheet is studied in the present paper. Firstly, through a mathematical approach, a new contact law is derived to describe the overall non-bonding interaction forces of the "hollow indenter-target" system. Preliminary verifications show that the derived contact law gives a reliable picture of force field of the system which is in good agreements with the results of molecular dynamics (MD) simulations. Afterwards, equation of the transversal motion of graphene sheet is utilized on the basis of both the nonlocal theory of elasticity and the assumptions of classical plate theory. Then, to derive dynamic behavior of the system, a set including the proposed contact law and the equations of motion of both graphene sheet and fullerene molecule is solved numerically. In order to evaluate outcomes of this method, the problem is modeled by MD simulation. Despite intrinsic differences between analytical and MD methods as well as various errors arise due to transient nature of the problem, acceptable agreements are established between analytical and MD outcomes. As a result, the proposed analytical method can be reliably used to address similar impact problems. Furthermore, it is found that a single-layered graphene sheet is capable of trapping fullerenes approaching with low velocities. Otherwise, in case of rebound, the sheet effectively absorbs predominant portion of fullerene energy.

  19. Tunable plasmonic dual wavelength multi/demultiplexer based on graphene sheets and cylindrical resonator

    NASA Astrophysics Data System (ADS)

    Asgari, Somayyeh; Granpayeh, Nosrat

    2017-06-01

    Two parallel graphene sheet waveguides and a graphene cylindrical resonator between them is proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. One end of each graphene waveguide is the input and output port. The resonance and the prominent mid-infrared band-pass filtering effect are achieved. The transmittance spectrum is tuned by varying the radius of the graphene cylindrical resonator, the dielectric inside it, and also the chemical potential of graphene utilizing gate voltage. Simulation results are in good agreement with theoretical calculations. As an application, a multi/demultiplexer is proposed and analyzed. Our studies demonstrate that graphene based ultra-compact, nano-scale devices can be designed for optical processing and photonic integrated devices.

  20. A facile alternative technique for large-area graphene transfer via sacrificial polymer

    DOE PAGES

    Auchter, Eric; Marquez, Justin; Yarbro, Stephen L.; ...

    2017-12-07

    A novel method of transferring large-area graphene sheets onto a variety of substrates using Formvar (polyvinyl formal) is presented. Due to the ease at which formvar can be dissolved in chloroform this method allows for a consistent, a clean, and a more rapid transfer than other techniques including the PMMA assisted one. This novel transfer method is demonstrated by transferring large-area graphene onto a range of substrates including commercial TEM grids, silicon dioxide and glass. Raman spectroscopy was used to confirm the presence of graphene and characterize the morphological properties of the large-area sheets. SEM and AFM analyses demonstrated themore » effectiveness of our rapid transfer technique for clean crystalline large-area graphene sheets. The removal of the sacrificial polymer was found to be one to two orders of magnitude faster than PMMA methods. Ultimately this facile transfer technique offers new opportunities for a wide range of applications for large-area graphene through the utilization of a new sacrificial polymer.« less

  1. A facile alternative technique for large-area graphene transfer via sacrificial polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auchter, Eric; Marquez, Justin; Yarbro, Stephen L.

    A novel method of transferring large-area graphene sheets onto a variety of substrates using Formvar (polyvinyl formal) is presented. Due to the ease at which formvar can be dissolved in chloroform this method allows for a consistent, a clean, and a more rapid transfer than other techniques including the PMMA assisted one. This novel transfer method is demonstrated by transferring large-area graphene onto a range of substrates including commercial TEM grids, silicon dioxide and glass. Raman spectroscopy was used to confirm the presence of graphene and characterize the morphological properties of the large-area sheets. SEM and AFM analyses demonstrated themore » effectiveness of our rapid transfer technique for clean crystalline large-area graphene sheets. The removal of the sacrificial polymer was found to be one to two orders of magnitude faster than PMMA methods. Ultimately this facile transfer technique offers new opportunities for a wide range of applications for large-area graphene through the utilization of a new sacrificial polymer.« less

  2. Robust and Flexible Aramid Nanofiber/Graphene Layer-by-Layer Electrodes.

    PubMed

    Kwon, Se Ra; Elinski, Meagan B; Batteas, James D; Lutkenhaus, Jodie L

    2017-05-24

    Aramid nanofibers (ANFs), or nanoscale Kevlar fibers, are of interest for their high mechanical performance and functional nanostructure. The dispersible nature of ANFs opens up processing opportunities for creating mechanically robust and flexible nanocomposites, particularly for energy and power applications. The challenge is to manipulate ANFs into an electrode structure that balances mechanical and electrochemical performance to yield a robust and flexible electrode. Here, ANFs and graphene oxide (GO) sheets are blended using layer-by-layer (LbL) assembly to achieve mechanically flexible supercapacitor electrodes. After reduction, the resulting electrodes exhibit an ANF-rich structure where ANFs act as a polymer matrix that interfacially interacts with reduced graphene oxide sheets. It is shown that ANF/GO deposition proceeds by hydrogen bonding and π-π interactions, leading to linear growth (1.2 nm/layer pairs) and a composition of 75 wt % ANFs and 25 wt % GO sheets. Chemical reduction leads to a high areal capacitance of 221 μF/cm 2 , corresponding to 78 F/cm 3 . Nanomechanical testing shows that the electrodes have a modulus intermediate between those of the two native materials. No cracks or defects are observed upon flexing ANF/GO films 1000 times at a radius of 5 mm, whereas a GO control shows extensive cracking. These results demonstrate that electrodes containing ANFs and reduced GO sheets are promising for flexible, mechanically robust energy and power.

  3. Ion transport in self-assembled 2D nanofluidic channels constructed by graphene oxide sheets cross-linked with glyoxal and ethylenediamine monomers

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chang; Huang, Wei-Hao

    2017-11-01

    Graphene oxide (GO) sheets in aqueous solution becomes negatively charged due to the dissociation of surface functional group (e.g., -OH, -COOH). Therefore, the membrane constructed by GO sheets would disintegrate owing to electrostatic repulsion. In this work, two monomers (glyoxal and ethylenediamine) were used for cross-linking GO sheets to construct composite graphene oxide-framework (GOF) membranes with 2D nanofluidic channels through the vacuum filtration method. Results of X-ray diffraction (XRD) showed that d-spacing in GOF layers (nanochannel size) is tuned to a value of approximately 1 nm in wet state. The stretching of d-spacing could be effectively suppressed and the stability of GOF membranes in aqueous solution was greatly improved. Finally, the ion transport and nonlinear current-voltage characteristics of these GOF membranes in salt (KCl) solution were investigated experimentally. The results showed that ion transport through GOF membrane begins to deviate from bulk behavior up to the salt concentration of 0.01M and gradually plateaus at low salt concentrations, i.e., the surface-charge-governed ion transport in 2D GOF nanofluidic channels. The nonlinear I - V characteristic of GOF membranes due to concentration polarization was also observed. Financial support from MOST of Taiwan under Project No. MOST 105-2218-E-167-001-MY2 is gratefully acknowledged.

  4. Covalent functionalization of octagraphene with magnetic octahedral B6- and non-planar C6- clusters

    NASA Astrophysics Data System (ADS)

    Chigo-Anota, E.; Cárdenas-Jirón, G.; Salazar Villanueva, M.; Bautista Hernández, A.; Castro, M.

    2017-10-01

    The interaction between the magnetic boron octahedral (B6-) and non-planar (C6-) carbon clusters with semimetal nano-sheet of octa-graphene (C64H24) in the gas phase is studied by means of DFT calculations. These results reveal that non-planar-1 (anion) carbon cluster exhibits structural stability, low chemical reactivity, magnetic (1.0 magneton bohr) and semiconductor behavior. On the other hand, there is chemisorption phenomena when the stable B6- and C6- clusters are absorbed on octa-graphene nanosheets. Such absorption generates high polarity and the low-reactivity remains as on the individual pristine cases. Electronic charge transference occurs from the clusters toward the nanosheets, producing a reduction of the work function for the complexes and also induces a magnetic behavior on the functionalized sheets. The quantum descriptors obtained for these systems reveal that they are feasible candidates for the design of molecular circuits, magnetic devices, and nano-vehicles for drug delivery.

  5. Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction

    NASA Astrophysics Data System (ADS)

    Jiang, Baojiang; Tian, Chungui; Wang, Lei; Sun, Li; Chen, Chen; Nong, Xiaozhen; Qiao, Yingjie; Fu, Honggang

    2012-02-01

    In this work, we developed a concentrated ammonia-assisted hydrothermal method to obtain N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide (GO) sheets. The effects of hydrothermal temperature on the surface chemistry and the structure of N-doped graphene sheets were also investigated. X-ray photoelectron spectroscopy (XPS) study of N-doped graphene reveals that the highest doping level of 7.2% N is achieved at 180 °C for 12 h. N binding configurations of sample consist of pyridine N, quaternary N, and pyridine-N oxides. N doping is accompanied by the reduction of GO with decreases in oxygen levels from 34.8% in GO down to 8.5% in that of N-doped graphene. Meanwhile, the sample exhibits excellent N-doped thermal stability. Electrical measurements demonstrate that products have higher capacitive performance than that of pure graphene, the maximum specific capacitance of 144.6 F/g can be obtained which ascribe the pseudocapacitive effect from the N-doping. The samples also show excellent long-term cycle stability of capacitive performance.

  6. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    PubMed

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  7. Graphene-based field-effect transistor biosensors

    DOEpatents

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  8. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  9. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene

    NASA Astrophysics Data System (ADS)

    Zhao, Daohui; Li, Libo; He, Daohang; Zhou, Jian

    2016-07-01

    The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV genes through channel formation in which it adopts a leucine-zipper-like alpha-helical conformation. A recent experimental study reported that helical Vpr13-33 would transform to β-sheet or random coil structures and aggregate on the surface of graphene or graphene oxide through hydrophobic interactions. Due to experimental limitations, however, there is still a considerable lack of understanding on the adsorption dynamics at the early stage of the conformational transition at water-graphene interface and the underlying driving force at molecular level. In this study, atomistic molecular dynamics simulations were used to explore the conformation transition phenomena. Vpr13-33 kept α-helical structure in solution, but changed to β-sheet structure when strongly adsorbed onto graphene. Preferential adsorption of Vpr13-33 on graphene is dominated by hydrophobic interactions. The cluster analysis identified the most significant populated conformation and the early stage of structure conversion from α-helical to β-sheet was found, but the full β-sheet propagation was not observed. Free energy landscape analysis further complemented the transformation analysis of peptide conformations. These findings are consistent with experimental results, and give a molecular level interpretation for the reduced cytotoxicity of Vpr13-33 to some extent upon graphene exposure. Meanwhile, this study provides some significant insights into the detailed mechanism of graphene-induced protein conformation transition.

  10. Electrically tunable coherent optical absorption in graphene with ion gel.

    PubMed

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  11. Coupled thermomechanical behavior of graphene using the spring-based finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr; Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr

    The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations aremore » analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.« less

  12. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    NASA Astrophysics Data System (ADS)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  13. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, A. K., E-mail: akchau@barc.gov.in, E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltagemore » but also enhanced the short-circuit current density owing to an improved electron transport.« less

  14. Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots

    PubMed Central

    Park, Hun; Hyun Noh, Sung; Hye Lee, Ji; Jun Lee, Won; Yun Jaung, Jae; Geol Lee, Seung; Hee Han, Tae

    2015-01-01

    Graphene oxide (GO), which is an oxidized form of graphene, has a mixed structure consisting of graphitic crystallites of sp2 hybridized carbon and amorphous regions. In this work, we present a straightforward route for preparing graphene-based quantum dots (GQDs) by extraction of the crystallites from the amorphous matrix of the GO sheets. GQDs with controlled functionality are readily prepared by varying the reaction temperature, which results in precise tunability of their optical properties. Here, it was concluded that the tunable optical properties of GQDs are a result of the different fraction of chemical functionalities present. The synthesis approach presented in this paper provides an efficient strategy for achieving large-scale production and long-time optical stability of the GQDs, and the hybrid assembly of GQD and polymer has potential applications as photoluminescent fibers or films. PMID:26383257

  15. Modulating optical properties of graphene oxide: role of prominent functional groups.

    PubMed

    Johari, Priya; Shenoy, Vivek B

    2011-09-27

    To modulate the electronic and optical properties of graphene oxide via controlled deoxidation, a proper understanding of the role of the individual functional group in determining these properties is required. We, therefore, have performed ab initio density functional theory based calculations to study the electronic and optical properties of model structures of graphene oxide with different coverages and compositions. In particular, we considered various concentrations of major functional groups like epoxides, hydroxyls, and carbonyls, which mainly consititute the graphene oxide and the reduced graphene oxide. Our calculated electron energy loss spectra (EELS) demonstrate the π plasmon peak to be less sensitive, while π + σ plasmon is found to have a significant blue shift of about 1.0-3.0 eV, when the concentration of epoxy and hydroxyl functional groups in graphene oxide vary from 25% to 75%. However, the increase in carbonyl groups in the center of the graphene sheet creates holes, which lead to the red shift of the EELS. In the case of 37.5% of oxygen-to-carbon ratio, we find the π plasmon peak to be shifted by roughly 1.0 eV as compared to that of the pristine graphene. Our results agree well with the experimental findings which suggest a blue shift in the EELS of graphene oxide and an absorption feature due to a π electron transition of the carbonyl groups at a lower energy than that of epoxy and hydroxyl groups. We also show that the increase in the width of the hole created by the carbonyl groups significantly decreases the optical gap and opens the band gap, and thus, we argue that reduced graphene oxide with mostly carbonyl groups could be a useful material for developing tunable opto-electronic nanodevices. © 2011 American Chemical Society

  16. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties.

    PubMed

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-02-07

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.

  17. Superior Mechanical Properties of Epoxy Composites Reinforced by 3D Interconnected Graphene Skeleton.

    PubMed

    Ni, Ya; Chen, Lei; Teng, Kunyue; Shi, Jie; Qian, Xiaoming; Xu, Zhiwei; Tian, Xu; Hu, Chuansheng; Ma, Meijun

    2015-06-03

    Epoxy-based composites reinforced by three-dimensional graphene skeleton (3DGS) were fabricated in resin transfer molding method with respect to the difficulty in good dispersion and arrangement of graphene sheets in composites by directly mixing graphene and epoxy. 3DGS was synthesized in the process of self-assembly and reduction with poly(amidoamine) dendrimers. In the formation of 3DGS, graphene sheets were in good dispersion and ordered state, which resulted in exceptional mechanical properties and thermal stability for epoxy composites. For 3DGS/epoxy composites, the tensile and compressive strengths significantly increased by 120.9% and 148.3%, respectively, as well as the glass transition temperature, which increased by a notable 19 °C, unlike the thermal exfoliation graphene/epoxy composites via direct-mixing route, which increased by only 0.20 wt % content of fillers. Relative to the graphene/epoxy composites in direct-mixing method mentioned in literature, the increase in tensile and compressive strengths of 3DGS/epoxy composites was at least twofold and sevenfold, respectively. It can be expected that 3DGS, which comes from preforming graphene sheets orderly and dispersedly, would replace graphene nanosheets in polymer nanocomposite reinforcement and endow composites with unique structure and some unexpected performance.

  18. DNA Nucleotides Detection via capacitance properties of Graphene

    NASA Astrophysics Data System (ADS)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  19. Effect of layer number and metal-chloride dopant on multiple layers of graphene/porous Si solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hee; Kim, Jong Min; Jang, Chan Wook; Kim, Ju Hwan; Kim, Sung; Choi, Suk-Ho

    2018-03-01

    Porous silicon (PSi) is an attractive building block for Si-based solar cells due to its low reflectance. Here, PSi is prepared by metal-assisted chemical etching of a Si wafer on which Au nanoparticles are formed by sputtering for 5 s. The layer number (Ln) of graphene is varied to optimize multiple layers of graphene/PSi Schottky junction solar cells because the sheet resistance, work function, transmittance, and reflectance of graphene strongly depend on Ln. At Ln = 2, the best condition for the highest power conversion efficiency (PCE), various metal chlorides are employed as dopants for graphene. The PCE is maximally enhanced to 9.15% by doping the graphene with RhCl3 and is reduced by only 20% of its original value (absolutely from 9.15% to 7.23%) during 10 days in air. These results are very meaningful in that even a single doping for graphene can be effective for achieving high PCE from graphene/PSi solar cells by controlling Ln.

  20. Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes.

    PubMed

    Youn, Doo-Hyeb; Yu, Young-Jun; Choi, Hongkyw; Kim, Suck-Hwan; Choi, Sung-Yool; Choi, Choon-Gi

    2013-02-22

    We report an improvement of the optical power and thermal stability of GaN LEDs using a chemically doped graphene transparent conducting layer (TCL) and a low-resistance contact structure. In order to obtain low contact resistance between the TCL and p-GaN surface, a patterned graphene TCL with Cr/Au electrodes is suggested. A bi-layer patterning method of a graphene TCL was utilized to prevent the graphene from peeling off the p-GaN surface. To improve the work function and the sheet resistance of graphene, CVD (chemical vapor deposition) graphene was doped by a chemical treatment using a HNO(3) solution. The effect of the contact resistance on the power degradation of LEDs at a high injection current level was investigated. In addition, the enhancement of the optical power via an increase in the current spreading and a decrease in the potential barrier of the graphene TCL was investigated.

  1. Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Youn, Doo-Hyeb; Yu, Young-Jun; Choi, HongKyw; Kim, Suck-Hwan; Choi, Sung-Yool; Choi, Choon-Gi

    2013-02-01

    We report an improvement of the optical power and thermal stability of GaN LEDs using a chemically doped graphene transparent conducting layer (TCL) and a low-resistance contact structure. In order to obtain low contact resistance between the TCL and p-GaN surface, a patterned graphene TCL with Cr/Au electrodes is suggested. A bi-layer patterning method of a graphene TCL was utilized to prevent the graphene from peeling off the p-GaN surface. To improve the work function and the sheet resistance of graphene, CVD (chemical vapor deposition) graphene was doped by a chemical treatment using a HNO3 solution. The effect of the contact resistance on the power degradation of LEDs at a high injection current level was investigated. In addition, the enhancement of the optical power via an increase in the current spreading and a decrease in the potential barrier of the graphene TCL was investigated.

  2. Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity.

    PubMed

    Ma, Xinguo; Wei, Yang; Wei, Zhen; He, Hua; Huang, Chuyun; Zhu, Yongfa

    2017-12-15

    The photoelectrochemical properties of g-C 3 N 4 sheet are modified by the π-π stacking interaction with graphene, and the corresponding role of graphene on the surface chemical reactions is investigated by density functional theory. The calculated cohesive energies and the lattice mismatch energies indicate that g-C 3 N 4 and graphene are in parallel contact and can form a stable heterojunction. According to our calculated energy band structures and work functions of g-C 3 N 4 /graphene heterojunctions, the band edge modulations by graphene are discussed and corresponding photoinduced charge transfer processes are analyzed in detail. It is found that the incorporating of graphene into g-C 3 N 4 facilitates the separation of photoinduced e - /h + pairs and the oxidation capacity enhancement of the photoinduced holes with the downshifting of the valence band edge of g-C 3 N 4 layer. It is identified that the inhomogeneous onsite energies between interlayer and the band edge modulations are induced by the inhomogeneous charge redistribution between interlayer caused by graphene. Further, the initial dynamic reaction processes of oxygen atoms in g-C 3 N 4 /graphene heterojunctions also confirm the significant role of graphene on the surface chemical reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Fabrication of comb-drive actuators for straining nanostructured suspended graphene.

    PubMed

    Goldsche, Matthias; Verbiest, G J; Khodkov, Tymofiy; Sonntag, Jens; von den Driesch, Nils; Buca, Dan; Stampfer, Christoph

    2018-06-20

    We report on the fabrication and characterization of an optimized comb-drive actuator design for strain-dependent transport measurements on suspended graphene. We fabricate devices from highly p-doped silicon using deep reactive ion etching with a chromium mask. Crucially, we implement a gold layer to reduce the device resistance from ≈51.6 kΩ to ≈236 Ω at room temperature in order to allow for strain-dependent transport measurements. The graphene is integrated by mechanically transferring it directly onto the actuator using a polymethylmethacrylate membrane. Importantly, the integrated graphene can be nanostructured afterwards to optimize device functionality. The minimum feature size of the structured suspended graphene is 30~nm, which allows for interesting device concepts such as mechanically-tunable nanoconstrictions. Finally, we characterize the fabricated devices by measuring the Raman spectrum as well as the a mechanical resonance frequency of an integrated graphene sheet for different strain values. © 2018 IOP Publishing Ltd.

  4. Empirical potential for molecular simulation of graphene nanoplatelets

    NASA Astrophysics Data System (ADS)

    Bourque, Alexander J.; Rutledge, Gregory C.

    2018-04-01

    A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ˜15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.

  5. Tunable Multiple Plasmon-Induced Transparencies Based on Asymmetrical Graphene Nanoribbon Structures

    PubMed Central

    Lu, Chunyu; Wang, Jicheng; Yan, Shubin; Hu, Zheng-Da; Zheng, Gaige; Yang, Liu

    2017-01-01

    We present plasmonic devices, consisting of periodic arrays of graphene nanoribbons (GNRs) and a graphene sheet waveguide, to achieve controllable plasmon-induced transparency (PIT) by numerical simulation. We analyze the bright and dark elements of the GNRs and graphene-sheet waveguide structure. Results show that applying the gate voltage can electrically tune the PIT spectrum. Adjusting the coupling distance and widths of GNRs directly results in a shift of transmission dips. In addition, increased angle of incidence causes the transmission to split into multiple PIT peaks. We also demonstrate that PIT devices based on graphene plasmonics may have promising applications as plasmonic sensors in nanophotonics. PMID:28773062

  6. Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Tien, Chien-Pin; Teng, Hsisheng

    A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.

  7. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuegang; Cairns, Elton J.; Ji, Liwen

    The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Embodiments of the invention use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide. This approach obtains a uniform and thin (.about.tens of nanometers) sulfur coating on graphene oxide sheets by a chemical reaction-deposition strategy and a subsequent low temperature thermal treatment process. Strong interaction between graphene oxide and sulfur or polysulfides demonstrate lithium/sulfur cells with a high reversible capacity of 950-1400 mAh g.sup.-1, and stable cycling for more than 50 deepmore » cycles at 0.1 C.« less

  8. Flexural phonon limited phonon drag thermopower in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  9. Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity.

    PubMed

    Hu, Xiangang; Zhou, Ming; Zhou, Qixing

    2015-03-17

    The environmental behaviors and risks associated with graphene have attracted considerable attention. However, the fundamental effects of ambient water and visible-light irradiation on the properties and toxicity of graphene remain unknown. This work revealed that hydration and irradiation result in the transformation of large-sheet graphene to long-ribbon graphene. The thickness of the treated graphene decreased, and oxides were formed through the generation of singlet oxygen. In addition, hydration and irradiation resulted in greater disorder in the graphene structure and in the expansion of the d-spacing of the structure due to the introduction of water molecules and modifications of the functional groups. Oxidative modifications with two-stage (fast and low) kinetics enhanced the number of negative surface charges on the graphene and enhanced graphene aggregation. The above property alterations reduced the nanotoxicity of graphene to algal cells by reducing the generation of reactive oxygen species, diminishing protein carbonylation and decreasing tail DNA. A comparative study using graphene oxide suggested that oxidative modifications could play an important role in inhibiting toxicological activity. This study provides a preliminary approach for understanding the environmental behaviors of graphene and avoids overestimating the risks of graphene in the natural environment.

  10. A dual-band THz absorber based on graphene sheet and ribbons

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Jian, Shuisheng

    2018-03-01

    A dual-band graphene absorber is proposed and investigated in this paper. The absorber consists of the gold substrate, the graphene sheet sandwiched by dielectric layers and the array of graphene ribbon placed on the top. The two absorption peaks of the dual-band are 99.8% at 4.95 THz and 99.6% at 9.2 THz, respectively. Due to the characteristic of tunable surface conductivity of graphene, the absorption can be controlled by adjusting the chemical potential of graphene. We also investigate the dependence of the absorption curve of the proposed absorber on the structure parameters. In addition, the structure of the absorber is very simple and it can be manufactured by chemical vapor deposition (CVD).

  11. Cross-linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering.

    PubMed

    Liu, Xifeng; Miller, A Lee; Waletzki, Brian E; Lu, Lichun

    2018-05-01

    Graphene oxide (GO) is an attractive material that can be utilized to enhance the modulus and conductivities of substrates and hydrogels. To covalently cross-link graphene oxide sheets into hydrogels, abundant cross-linkable double bonds were introduced to synthesize the graphene-oxide-tris-acrylate sheet (GO-TrisA). Polyacrylamide (PAM) nanocomposite hydrogels were then fabricated with inherent covalently and permanently cross-linked GO-TrisA sheets. Results showed that the covalently cross-linked GO-TrisA/PAM nanocomposite hydrogel had enhanced mechanical strength, thermo stability compared with GO/PAM hydrogel maintained mainly by hydrogen bonding between PAM chains and GO sheets. In vitro cell study showed that the covalently cross-linked rGO-TrisA/PAM nanocomposite hydrogel had excellent cytocompatibility after in situ reduction. These results suggest that rGO-TrisA/PAM nanocomposite hydrogel holds great potential for tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1247-1257, 2018. © 2018 Wiley Periodicals, Inc.

  12. Electronic π-Delocalization Boosts Catalytic Water Oxidation by Cu(II) Molecular Catalysts Heterogenized on Graphene Sheets.

    PubMed

    Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Moonshiram, Dooshaye; Picón, Antonio; Monge, Pere; Batista, Victor S; Llobet, Antoni

    2017-09-20

    A molecular water oxidation catalyst based on the copper complex of general formula [(L py )Cu II ] 2- , 2 2- , (L py is 4-pyrenyl-1,2-phenylenebis(oxamidate) ligand) has been rationally designed and prepared to support a more extended π-conjugation through its structure in contrast with its homologue, the [(L)Cu II ] 2- water oxidation catalyst, 1 2- (L is o-phenylenebis(oxamidate)). The catalytic performance of both catalysts has been comparatively studied in homogeneous phase and in heterogeneous phase by π-stacking anchorage to graphene-based electrodes. In the homogeneous system, the electronic perturbation provided by the pyrene functionality translates into a 150 mV lower overpotential for 2 2- with respect to 1 2- and an impressive increase in the k cat from 6 to 128 s -1 . Upon anchorage, π-stacking interactions with the graphene sheets provide further π-delocalization that improves the catalytic performance of both catalysts. In this sense, 2 2- turned out to be the most active catalyst due to the double influence of both the pyrene and the graphene, displaying an overpotential of 538 mV, a k cat of 540 s -1 and producing more than 5300 TONs.

  13. Switching behaviors of graphene-boron nitride nanotube heterojunctions

    DOE PAGES

    Parashar, Vyom; Durand, Corentin P.; Hao, Boyi; ...

    2015-07-20

    High electron mobility of graphene has enabled their application in high-frequency analogue devices but their gapless nature has hindered their use in digital switches. In contrast, the structural analogous, h-BN sheets and BN nanotubes (BNNTs) are wide band gap insulators. Here we show that the growth of electrically insulating BNNTs on graphene can enable the use of graphene as effective digital switches. These graphene-BNNT heterojunctions were characterized at room temperature by four-probe scanning tunneling microscopy (4-probe STM) under real-time monitoring of scanning electron microscopy (SEM). A switching ratio as high as 105 at a turn-on voltage as low as 0.5more » V were recorded. Simulation by density functional theory (DFT) suggests that mismatch of the density of states (DOS) is responsible for these novel switching behaviors.« less

  14. Arsenic Adsorption from Water Using Graphene-Based Materials as Adsorbents: a Critical Review

    NASA Astrophysics Data System (ADS)

    Yang, Xuetong; Xia, Ling; Song, Shaoxian

    2017-07-01

    Adsorption is widely applied to remove arsenic from water. This paper reviewed and compared the recent progresses on the arsenic removal by adsorption using two-dimensional and three-dimensional graphene-based materials as adsorbents. Functional graphene sheet achieved the largest As(III) adsorption capacity of 138.79mg/g, while Mg-Al LDH/GO2 showed the largest As(V) adsorption capacity of 183.11mg/g. Parameters including pH, temperature, co-existing ions and loaded metal or metal oxide affected the adsorption process. The adsorption mechanisms of graphene-based materials for As(III) and As(V) could be explained by surface complexation and the electrostatic attraction, respectively. Future works are suggested to focus on regenerating of two-dimensional graphene-based adsorbents and developing the three-dimensional with large specific surface area and better adsorption performance.

  15. Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites

    PubMed Central

    2011-01-01

    We employed an easy and direct method to measure the thermal conductivity of epoxy in the liquid (nanofluid) and solid (nanocomposite) states using both rodlike and platelet-like carbon-based nanostructures. Comparing the experimental results with the theoretical model, an anomalous enhancement was obtained with multiwall carbon nanotubes, probably due to their layered structure and lowest surface resistance. Puzzling results for functionalized graphene sheet nanocomposites suggest that phonon coupling of the vibrational modes of the graphene and of the polymeric matrix plays a dominant role on the thermal conductivities of the liquid and solid states. PACS: 74.25.fc; 81.05.Qk; 81.07.Pr. PMID:22133094

  16. Epoxide reduction with hydrazine on graphene: a first principles study.

    PubMed

    Kim, Min Chan; Hwang, Gyeong S; Ruoff, Rodney S

    2009-08-14

    Mechanisms for epoxide reduction with hydrazine on a single-layer graphene sheet are examined using quantum mechanical calculations within the framework of gradient-corrected spin-polarized density-functional theory. We find that the reduction reaction is mainly governed by epoxide ring opening which is initiated by H transfer from hydrazine or its derivatives. In addition, our calculations suggest that the epoxide reduction by hydrazine may predominantly follow a direct Eley-Rideal mechanism rather than a Langmuir-Hinshelwood mechanism. We also discuss the generation of various hydrazine derivatives during the reduction of graphene oxide with hydrazine and their potential contribution to lowering the barrier height of epoxide ring opening.

  17. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  18. Ground-state Properties of Inhomogeneous Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Polini, Marco

    2009-03-01

    When inter-valley scattering is weak and gauge fields due to e.g. ripples are neglected, doped and gated graphene sheets can be described using an envelope-function Hamiltonian with a new sublattice pseudospin degree-of freedom, an ultrarelativistic massless-Dirac free-fermion term, a pseudospin scalar disorder potential, and a non-relativistic instantaneous Coulombic interaction term. There is considerable evidence from experiment that this simplified description of a honeycomb lattice of Carbon atoms is usually a valid starting point for theories of those observables that depend solely on the electronic properties of π-electrons near the graphene Dirac point [1]. Although the use of this model simplifies the physics considerably it still leaves us with a many-body problem without translational invariance, which we do not know how to solve. In this talk we present a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for graphene sheets that treats slowly-varying inhomogeneous scalar external potentials and electron-electron interactions on an equal footing [2]. The theory is able to account for the unusual property that the exchange-correlation contribution to chemical potential increases with carrier density in graphene [3,4]. Consequences of this property, and advantages and disadvantages of using the DFT approach to describe it, are discussed. The approach is illustrated by solving the Kohn-Sham-Dirac equations self-consistently for a model random potential describing charged point-like impurities located close to the graphene plane. The influence of electron-electron interactions on these non-linear screening calculations is discussed at length, in the light of recent experiments [5,6] reporting evidence for the presence of electron-hole puddles in nearly-neutral graphene sheets. [4pt] [1] A.K. Geim and K.S. Novoselov, Nature Mater. 6, 183 (2007); A.K. Geim and A.H. MacDonald, Phys. Today 60, 35 (2007); A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, arXiv:0709.1163v2 (2007).[0pt] [2] M. Polini, A. Tomadin, R. Asgari, and A.H. MacDonald, Phys. Rev. B 78, 115426 (2008).[0pt] [3] Y. Barlas, T. Pereg-Barnea, M. Polini, R. Asgari, and A.H. MacDonald, Phys. Rev. Lett. 98, 236601 (2007); M. Polini, R. Asgari, Y. Barlas, T. Pereg-Barnea, and A.H. MacDonald, Solid State Commun. 143, 58 (2007). [0pt] [4] E.H. Hwang, B.Y.-K. Hu, and S. Das Sarma, Phys. Rev. Lett. 99, 226801 (2007).[0pt] [5] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, and A. Yacoby, Nature Phys. 4, 144 (2008).[0pt] [6] V.W. Brar, Y. Zhang, C. Girit, F. Wang, A. Zettl, and M. Crommie, Bull. Am. Phys. Soc. 53 (2), 443 (2008).

  19. Edge functionalised & Li-intercalated 555-777 defective bilayer graphene for the adsorption of CO2 and H2O

    NASA Astrophysics Data System (ADS)

    Lalitha, Murugan; Lakshmipathi, Senthilkumar; Bhatia, Suresh K.

    2017-04-01

    The adsorption of CO2 and H2O on divacanacy (DV) defected graphene cluster, and its bilayer counterpart is investigated using first-principles calculations. Both single and bilayer DV graphene cluster, are functionalised with H and F atoms. On these sheets the gas molecules are physisorbed, and the divacancy defect effectively improves the adsorption of CO2, while fluorination enhances the hydrophobicity of the graphene cluster. Among the convex and concave curvature regions induced due to the DV defect, the adsorption of the gas molecules on the concave meniscus is more favourable. Fluorine termination induces 73% reduction in Henry law constants for H2O, while for the CO2 molecule it increases by 8%, which indicates the DV defective sheet is a better candidate for CO2 capture compared to the STW defective sheet. Besides, both AA and AB divacant defect bilayer sheets are equally stable, wherein AA stacking results in a cavity between the sheets, while in AB stacking, the layers slide one over the other. Nevertheless, both these bilayer sheets are comparatively stabler than the monolayer. However, intercalation of lithium decreases the interlayer separation, particularly in AA stacking, which enhances the CO2 adsorption, but in the Bernal stacking enhances it hydrophobicity.

  20. High volumetric supercapacitor with a long life span based on polymer dots and graphene sheets

    NASA Astrophysics Data System (ADS)

    Wei, Ji-Shi; Chen, Jie; Ding, Hui; Zhang, Peng; Wang, Yong-Gang; Xiong, Huan-Ming

    2017-10-01

    A series of polymer dots/graphene sheets composites with high densities are prepared and tested for supercapacitors. Polymer dots (PDs) are synthesized by one-step method at room temperature. They can effectively increase surface areas of the composites (almost 10 times), and the functional groups from PDs produce high pseudocapacitance, so that the samples exhibit high specific capacitances (e. g., 364.2 F cm-3 at 1 A g-1) and high cycling stability (e. g., more than 95% of the initial capacity retention over 10 000 cycles at different current densities). The optimal sample is employed to fabricate a symmetric supercapacitor, which exhibits an energy density up to 8 Wh L-1 and a power density up to 11 800 W L-1, respectively.

  1. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.

    PubMed

    Paratala, Bhavna S; Jacobson, Barry D; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn(2+) ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents.

  2. Physicochemical Characterization, and Relaxometry Studies of Micro-Graphite Oxide, Graphene Nanoplatelets, and Nanoribbons

    PubMed Central

    Paratala, Bhavna S.; Jacobson, Barry D.; Kanakia, Shruti; Francis, Leonard Deepak; Sitharaman, Balaji

    2012-01-01

    The chemistry of high-performance magnetic resonance imaging contrast agents remains an active area of research. In this work, we demonstrate that the potassium permanganate-based oxidative chemical procedures used to synthesize graphite oxide or graphene nanoparticles leads to the confinement (intercalation) of trace amounts of Mn2+ ions between the graphene sheets, and that these manganese intercalated graphitic and graphene structures show disparate structural, chemical and magnetic properties, and high relaxivity (up to 2 order) and distinctly different nuclear magnetic resonance dispersion profiles compared to paramagnetic chelate compounds. The results taken together with other published reports on confinement of paramagnetic metal ions within single-walled carbon nanotubes (a rolled up graphene sheet) show that confinement (encapsulation or intercalation) of paramagnetic metal ions within graphene sheets, and not the size, shape or architecture of the graphitic carbon particles is the key determinant for increasing relaxivity, and thus, identifies nano confinement of paramagnetic ions as novel general strategy to develop paramagnetic metal-ion graphitic-carbon complexes as high relaxivity MRI contrast agents. PMID:22685555

  3. Phospholipid dynamics in graphene of different topologies: predictive modeling

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Slepchenkov, M. M.

    2017-02-01

    The subject of our scientific interest is the dynamics of the phospholipid molecules into a corrugated graphene sheet. According to our assumption by changing the topology of graphene properly it is possible to find the ways for management of the selective localization of phospholipid molecules to form the desired configuration of these structures. We considered DPPC (dipalmitoylphosphatidylcholine) phospholipids, which are the part of cell membranes and lipoproteins. We investigated the behavior of the phospholipids on the graphene sheet consisting of 1710 atoms with the size of 6.9 nm along the zigzag edge and 6.25 nm along the armchair edge. The numerical experiment was carried out using the original AMBER/AIREBO hybrid method with Lennard-Jones potential to describe the interaction between unbound atoms of different structures. The temperature was maintained at 300 K during the numerical experiment. All numerical experiments were performed using KVAZAR software system. We considered several cases of corrugated graphene with different width and dept of the corrugation. Special attention in our work was paid to the orientation of the phospholipids in the plane of graphene sheet.

  4. One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Zhang, Yaoyao; Qian, Xiaoming; Shi, Jie; Chen, Lei; Li, Baodong; Niu, Jiarong; Liu, Liangsen

    2014-10-01

    Polyacrylamide grafted graphene (PAM-g-graphene) from graphite oxide (GO) was successfully prepared by γ-ray irradiation with acrylamide monomers in aqueous at room temperature in this paper. Our strategy involves the PAM chains graft on the surface and between the layers of GO by in situ radical polymerization which led to the exfoliation of GO into individual sheets. Results show that the degree of grafting of PAM-g-graphene samples is 24.2%, and the thickness is measured to be 2.59 nm. Moreover, the as-prepared PAM-g-graphene with some amino from PAM and little oxygen functional groups exhibit superior adsorption of Pb(II) ions. The adsorption processes reach equilibrium in just 30 min and the adsorption isotherms are described well by Langmuir and Freundlich classical isotherms models. The determined adsorption capacity of PAM-g-graphene is 819.67 mg g-1 (pH 6) for Pb(II), which is 20 times and 8 times capacities of that for graphene nanosheets and carbon nanotubes according to reports, respectively. This chemically modified graphene synthesized by this fast one-step approach, featuring a good versatility and adaptability, excellent adsorption capacity and rapid extraction, may provide a new idea for the global problem of heavy metal pollutants' removal in water.

  5. Density-functional theory study of dimethyl carbonate synthesis by methanol oxidative carbonylation on single-atom Cu1/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Shi, Ruina; Wang, Xuhui; Liu, Shusen; Han, Xiaoxia; Zhao, Chaofan; Li, Zhong; Ren, Jun

    2017-12-01

    The mechanism for dimethyl carbonate (DMC) synthesis by oxidation carbonylation of methanol on a single-atom Cu1/graphene catalyst was investigated by density-functional theory calculations. Carbon vacancies in graphene can significantly enhance the interaction between Cu atoms and graphene supports, and provide an increased transfer of electrons from Cu atoms to the graphene sheet. Compared with Cu-doped divacancy graphene (Cu/DG), Cu-doped monovacancy graphene (Cu/MG) provides a stronger interaction between adsorbents and the catalyst surface. Among the reaction processes over Cu1/graphene catalysts, CO insertion into methoxide was more favorable than dimethoxide. The rate-limiting step on the Cu/DG surface is the carbomethoxide reaction with methoxide, which is exothermic by 164.6 kJ mol-1 and has an activation barrier of 190.9 kJ mol-1 energy. Compared with that on the Cu crystal surface, Cu4 and Cu3Rh clusters, and the Cu2O(111) surface, the rate-determining step for DMC formation on Cu/MG, which is CO insertion into methoxide, needs to overcome the lowest barrier of 73.5 kJ mol-1 and is exothermic by 44.6 kJ mol-1. Therefore, Cu/MG was beneficial to the formation of DMC as a single-atom catalyst.

  6. Efficient n-doping of graphene films by APPE (aminophenyl propargyl ether): a substituent effect.

    PubMed

    Kim, Youngsoo; Yoo, Je Min; Jeon, Hak Rim; Hong, Byung Hee

    2013-11-14

    We report the synthesis and applications of APPE (aminophenyl propargyl ether) as a novel n-type dopant for graphene. The characteristics of APPE-doped graphene films were investigated using Raman spectroscopy as well as electron transport measurements. The Raman 2D/G peak ratio decreased by more than 40%, and the minimum conductivity voltage (Dirac voltage) was shifted to -133 V as the pristine graphene was doped with APPE, indicating that the graphene was strongly n-doped. We suppose that the electron donating property of the amine group (-NH2) is the origin of such an intense n-doping effect. In contrast, a similar molecule with an electron withdrawing nitro group (-NO2) (nitrophenyl propargyl ether, NPPE) showed a slight p-doping effect. Thus, we conclude that the doping effect of a molecular framework strongly depends on the functional substituents, which can be represented by the Hammett equation. We also confirmed that the sheet resistance of the APPE doped graphene film was reduced by ∼70%, which is crucial to enhance the electrical conductivity of graphene for various electronic applications. In addition, the acetylene group of APPE appears promising to be utilized in "click chemistry" to further functionalize the π-surface of graphene for sensors and bio applications.

  7. Graphene: A partially ordered non-periodic solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Dongshan; Wang, Feng, E-mail: fengwang@uark.edu

    2014-10-14

    Molecular dynamics simulations were performed to study the structural features of graphene over a wide range of temperatures from 50 to 4000 K using the PPBE-G potential [D. Wei, Y. Song, and F. Wang, J. Chem. Phys. 134, 184704 (2011)]. This potential was developed by force matching the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional and has been validated previously to provide accurate potential energy surface for graphene at temperatures as high as 3000 K. Simulations with the PPBE‑G potential are the best available approximation to a direct Car-Parrinello Molecular Dynamics study of graphene. One advantage of the PBE-G potential is to allowmore » large simulation boxes to be modeled efficiently so that properties showing strong finite size effects can be studied. Our simulation box contains more than 600 000 C atoms and is one of the largest graphene boxes ever modeled. With the PPBE-G potential, the thermal-expansion coefficient is negative up to 4000 K. With a large box and an accurate potential, the critical exponent for the scaling properties associated with the normal-normal and height-height correlation functions was confirmed to be 0.85. This exponent remains constant up to 4000 K suggesting graphene to be in the deeply cooled regime even close to the experimental melting temperature. The reduced peak heights in the radial distribution function of graphene show an inverse power law dependence to distance, which indicates that a macroscopic graphene sheet will lose long-range crystalline order as predicted by the Mermin-Wagner instability. Although graphene loses long-range translational order, it retains long range orientational order as indicated by its orientational correlation function; graphene is thus partially ordered but not periodic.« less

  8. Structure, Mechanics and Synthesis of Nanoscale Carbon and Boron Nitride

    NASA Astrophysics Data System (ADS)

    Rinaldo, Steven G.

    This thesis is divided into two parts. In Part I, we examine the properties of thin sheets of carbon and boron nitride. We begin with an introduction to the theory of elastic sheets, where the stretching and bending modes are considered in detail. The coupling between stretching and bending modes is thought to play a crucial role in the thermodynamic stability of atomically-thin 2D sheets such as graphene. In Chapter 2, we begin by looking at the fabrication of suspended, atomically thin sheets of graphene. We then study their mechanical resonances which are read via an optical transduction technique. The frequency of the resonators was found to depend on their temperature, as was their quality factor. We conclude by offering some interpretations of the data in terms of the stretching and bending modes of graphene. In Chapter 3, we look briefly at the fabrication of thin sheets of carbon and boron nitride nanotubes. We examine the structure of the sheets using transmission and scanning electron microscopy (TEM and SEM, respectively). We then show a technique by which one can make sheets suspended over a trench with adjustable supports. Finally, DC measurements of the resistivity of the sheets in the temperature range 600 -- 1400 C are presented. In Chapter 4, we study the folding of few-layer graphene oxide, graphene and boron nitride into 3D aerogel monoliths. The properties of graphene oxide are first considered, after which the structure of graphene and boron nitride aerogels is examined using TEM and SEM. Some models for their structure are proposed. In Part II, we look at synthesis techniques for boron nitride (BN). In Chapter 5, we study the conversion of carbon structures of boron nitride via the application of carbothermal reduction of boron oxide followed by nitridation. We apply the conversion to a wide variety of morphologies, including aerogels, carbon fibers and nanotubes, and highly oriented pyrolytic graphite. In the latter chapters, we look at the formation of boron nitride nanotubes (BNNTs). In Chapter 6, we look at various methods of producing BNNTs from boron droplets, and introduce a new method involving injection of boron powder into an induction furnace. In Chapter 7 we consider another useful process, where ammonia is reacted with boron vapor generated in situ, either through the reaction of boron with metal oxides or through the decomposition of metal borides.

  9. An investigation into graphene exfoliation and potential graphene application in MEMS devices

    NASA Astrophysics Data System (ADS)

    Fercana, George; Kletetschka, Gunther; Mikula, Vilem; Li, Mary

    2011-02-01

    The design of microelectromecanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) are often materials-limited with respect to the efficiency and capability of the material. Graphene, a one atom thick honeycomb lattice of carbon, is a highly desired material for MEMS applications. Relevant properties of graphene include the material's optical transparency, mechanical strength, energy efficiency, and electrical and thermal conductivity due to its electron mobility. Aforementioned properties make graphene a strong candidate to supplant existing transparent electrode technology and replace the conventionally used material, indium-tin oxide. In this paper we present preliminary results on work toward integration of graphene with MEMS structures. We are studying mechanical exfoliation of highly ordered pyrolytic graphite (HOPG) crystals by repeatedly applying and separating adhesive materials from the HOPG surface. The resulting graphene sheets are then transferred to silicon oxide substrate using the previously applied adhesive material. We explored different adhesive options, particularly the use of Kapton tape, to improve the yield of graphene isolation along with chemical cross-linking agents which operate on a mechanism of photoinsertion of disassociated nitrene groups. These perfluorophenyl nitrenes participate in C=C addition reactions with graphene monolayers creating a covalent binding between the substrate and graphene. We are focusing on maximizing the size of isolated graphene sheets and comparing to conventional exfoliation. Preliminary results allow isolation of few layer graphene (FLG) sheets (n<3) of approximately 10μm x 44μm. Photolithography could possibly be utilized to tailor designs for microshutter technology to be used in future deep space telescopes.

  10. Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines.

    PubMed

    Li, Baoyin; Fan, Kun; Ma, Xin; Liu, Yang; Chen, Teng; Cheng, Zheng; Wang, Xu; Jiang, Jiaxing; Liu, Xiangyang

    2016-09-15

    A mild, operationally simple and controllable protocol for preparing graphene-based porous materials is essential to achieve a good pore-design development. In this paper, graphene-based porous materials with tunable surface area were constructed by the intercalation of fluorinated graphene (FG) based on the reaction of reactive CF bonds attached to graphene sheets with various amine-terminated molecules. In the porous materials, graphene sheets are like building blocks, and the diamines covalently grafted onto graphene framework act as pillars. Various diamines are successfully grafted onto graphene sheets, but the grafting ratio of diamines and reduction degree of FG differ greatly and depend on the chemical reactivity of diamines. Pillared diamine molecules chemically anchor at one end and are capable of undergoing a different reaction on the other end, resulting in three different conformations of graphene derivatives. Nitrogen sorption isotherms revealed that the surface area and pore distribution of the obtained porous materials depend heavily on the size and structure of diamine pillars. CO2 uptake capacity characterization showed that ethylenediamine intercalated FG achieved a high CO2 uptake density of 18.0 CO2 molecules per nm(2) at 0°C and 1.1bars, and high adsorption heat, up to 46.1kJmol(-1) at zero coverage. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  12. Softly-confined water cluster between freestanding graphene sheets

    NASA Astrophysics Data System (ADS)

    Agustian, Rifan; Akaishi, Akira; Nakamura, Jun

    2018-01-01

    Confined water could adopt new forms not seen in the open air, such as a two-dimensional (2D) square ice trapped between two graphene sheets [Algara-Siller et al., Nature 519, 443-445 (2015)]. In this study, in order to investigate how the flexibility of graphene affects the confined structure of water molecules, we employed classical molecular dynamics simulations with Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential to produce a soft-confining property of graphene. We discovered various solid-like structures of water molecules ranging from two-dimensional to three-dimensional structure encapsulated between two freestanding graphene sheets even at room temperature (300K). A small amount of water encapsulation leads to a layered two-dimensional form with triangular structure. On the other hand, large amounts of water molecules take a three-dimensional flying-saucer-like form with the square ice intra-layer structure. There is also a metastable state where both two-dimensional and three-dimensional structures coexist.

  13. Free-Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycle-Life Supercapacitors.

    PubMed

    Jiao, Xinyan; Hao, Qingli; Xia, Xifeng; Lei, Wu; Ouyang, Yu; Ye, Haitao; Mandler, Daniel

    2018-03-09

    The incorporation of spacers between graphene sheets has been investigated as an effective method to improve the electrochemical performance of graphene papers (GPs) for supercapacitors. Here, we report the design of free-standing GP@NiO and GP@Ni hybrid GPs in which NiO nanoclusters and Ni nanoparticles are encapsulated into graphene sheets through electrostatic assembly and subsequent vacuum filtration. The encapsulated NiO nanoclusters and Ni nanoparticles can mitigate the restacking of graphene sheets, providing sufficient spaces for high-speed ion diffusion and electron transport. In addition, the spacers strongly bind to graphene sheets, which can efficiently improve the electrochemical stability. Therefore, at a current density of 0.5 A g -1 , the GP@NiO and GP@Ni electrodes exhibit higher specific capacitances of 306.9 and 246.1 F g -1 than the GP electrode (185.7 F g -1 ). The GP@NiO and GP@Ni electrodes exhibit capacitance retention of 98.7 % and 95.6 % after 10000 cycles, demonstrating an outstanding cycling stability. Additionally, the GP@NiO∥GP@Ni delivers excellent cycling stability (93.7 % after 10 000 cycles) and high energy density. These free-standing encapsulated hybrid GPs have great potential as electrode for high-performance supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ultrahigh-throughput exfoliation of graphite into pristine 'single-layer' graphene using microwaves and molecularly engineered ionic liquids.

    PubMed

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards 'single-layer' graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml(-1), and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  15. Mechanics of the scrolling and folding of graphene.

    PubMed

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-15

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  16. Mechanics of the scrolling and folding of graphene

    NASA Astrophysics Data System (ADS)

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-01

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  17. Atomic intercalation to measure adhesion of graphene on graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin

    The interest in mechanical properties of layered and 2D materials has reemerged in light of device concepts that take advantage of flexing, adhesion and friction in such systems. Here we provide an effective measurement of the nanoscale elastic adhesion of a graphene sheet atop highly ordered pyrolytic graphite (HOPG) based on the analysis of atomic intercalates in graphite. Atomic intercalation is carried out using conventional ion sputtering, creating blisters in the top-most layer of the HOPG surface. Scanning tunneling microscopy coupled with image analysis and density functional theory are used to reconstruct the atomic positions and the strain map withinmore » the deformed graphene sheet, as well as to demonstrate subsurface diffusion of the ions creating such blisters. To estimate the adhesion energy we invoke an analytical model originally devised for macroscopic deformations of graphene. This model yields a value of 0.221 ± 0.011 J/m -2 for the adhesion energy of graphite, which is in surprisingly good agreement with reported experimental and theoretical values. This implies that macroscopic mechanical properties of graphene scale down to at least a few nanometers length. The simplicity of our method, compared to the macroscale characterization, enables analysis of elastic mechanical properties in two-dimensional layered materials and provides a unique opportunity to investigate the local variability of mechanical properties on the nanoscale.« less

  18. Atomic intercalation to measure adhesion of graphene on graphite

    DOE PAGES

    Wang, Jun; Sorescu, Dan C.; Jeon, Seokmin; ...

    2016-10-31

    The interest in mechanical properties of layered and 2D materials has reemerged in light of device concepts that take advantage of flexing, adhesion and friction in such systems. Here we provide an effective measurement of the nanoscale elastic adhesion of a graphene sheet atop highly ordered pyrolytic graphite (HOPG) based on the analysis of atomic intercalates in graphite. Atomic intercalation is carried out using conventional ion sputtering, creating blisters in the top-most layer of the HOPG surface. Scanning tunneling microscopy coupled with image analysis and density functional theory are used to reconstruct the atomic positions and the strain map withinmore » the deformed graphene sheet, as well as to demonstrate subsurface diffusion of the ions creating such blisters. To estimate the adhesion energy we invoke an analytical model originally devised for macroscopic deformations of graphene. This model yields a value of 0.221 ± 0.011 J/m -2 for the adhesion energy of graphite, which is in surprisingly good agreement with reported experimental and theoretical values. This implies that macroscopic mechanical properties of graphene scale down to at least a few nanometers length. The simplicity of our method, compared to the macroscale characterization, enables analysis of elastic mechanical properties in two-dimensional layered materials and provides a unique opportunity to investigate the local variability of mechanical properties on the nanoscale.« less

  19. Floquet spectrum and driven conductance in Dirac materials: Effects of Landau-Zener-Stuckelberg-Majorana interferometry

    NASA Astrophysics Data System (ADS)

    Rodionov, Yaroslav; Kugel, Kliment; Nori, Franco

    Using the Landau-Zener-Stückelberg-Majorana-type (LZSM) semiclassical approach, we study both graphene and a thin film of a Weyl semimetal subjected to a strong ac electromagnetic field. The spectrum of quasienergies in the Weyl semimetal turns out to be similar to that of a graphene sheet. It has been predicted qualitatively that the transport properties of strongly irradiated graphene oscillate as a function of the radiation intensity. Here we obtain rigorous quantitative results for a driven linear conductance of graphene and a thin film of a Weyl semimetal. The exact quantitative structure of oscillations exhibits two contributions. The first one is a manifestation of the Ramsauer-Townsend effect, while the second contribution is a consequence of the LZSM interference defining the spectrum of quasienergies.

  20. Critical Current Statistics of a Graphene-Based Josephson Junction Infrared Single Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Lee, Gil-Ho; Efetov, Dmitri K.; Heuck, Mikkel; Crossno, Jesse; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    Graphene is a promising material for single photon detection due to its broadband absorption and exceptionally low specific heat. We present a photon detector using a graphene sheet as the weak link in a Josephson junction (JJ) to form a threshold detector for single infrared photons. Calculations show that such a device could experience temperature changes of a few hundred percent leading to sub-Hz dark count rates and internal efficiencies approaching unity. We have fabricated the graphene-based JJ (gJJ) detector and measure switching events that are consistent with single photon detection under illumination by an attenuated laser. We study the physical mechanism for these events through the critical current behavior of the gJJ as a function of incident photon flux.

  1. Preparation of graphene foam with high performance by modified self-assembly method

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Sun, Youyi; Liu, Tantan; Li, Diansen; Hou, Chunlin; Gao, Li; Liu, Yaqing

    2016-03-01

    Recently, self-assembly method was applied for preparation of graphene foam. However, it is still a great challenge to obtain a three-dimensional graphene network with high performance (e.g., low density, high mechanical strength and high conductivity together) for the self-assembly method. Herein, a modified self-assembly method applied for preparation of graphene foam was investigated, in which, L-ascorbic acid and HI were firstly chosen as the reducing agent, and further reduced by hydrazine hydrate. The results demonstrated that the graphene foam showed high compressive strength (ca. 320 kPa), high electrical conductivity (20.6 S/m) and low density (14.7 mg/cm-1). Especially, the obtained compressive strength (ca. 320 kPa) is the highest value compared to the data of graphene foam reported in previous works. This phenomenon may be due to following three reasons: (1) the reaction between hydrazine hydrate and graphene brought some covalent bonds among graphene sheets; (2) graphene foam was achieved by high hydrophobicity and electrostatic repulsion which inhibit the restacking of graphene sheets; (3) the removal of the oxygen groups by hydrazine hydrate efficiently restores conjugation of sp2 regions and the π-π interaction in the cross-linking sites, which tightly bonds the sheets together. The obtained graphene foam not only had good porous structure and mechanical strength, but also showed excellent satisfactory double-layer capacitive behavior with good electrochemical cyclic stability and high specific capacitance of 171.0 F/g for application in electrode of supercapacitors and absorption capacities for the removal of various oils and dyes from water.

  2. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.

    PubMed

    Ding, Jiheng; Ur Rahman, Obaid; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-29

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml -1 ) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 10 4 S m -1 and a superior thermal conductivity of 1842 W m -1 K -1 . Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  3. Spectroscopic ellipsometry investigation of the optical properties of graphene oxide dip-coated on magnetron sputtered gold thin films

    NASA Astrophysics Data System (ADS)

    Politano, Grazia Giuseppina; Vena, Carlo; Desiderio, Giovanni; Versace, Carlo

    2018-02-01

    Despite intensive investigations on graphene oxide-gold nanocomposites, the interaction of graphene oxide sheets with magnetron sputtered gold thin films has not been studied yet. The optical constants of graphene oxide thin films dip-coated on magnetron sputtered gold thin films were determined by spectroscopic ellipsometry in the [300-1000] wavelength range. Moreover, the morphologic properties of the samples were investigated by SEM analysis. Graphene oxide absorbs mainly in the ultraviolet region, but when it is dip-coated on magnetron sputtered gold thin films, its optical constants show dramatic changes, becoming absorbing in the visible region, with a peak of the extinction coefficient at 3.1 eV. Using magnetron sputtered gold thin films as a substrate for graphene oxide thin films could therefore be the key to enhance graphene oxide optical sheets' properties for several technological applications, preserving their oxygen content and avoiding the reduction process.

  4. Preparation and characterization of graphene/CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Wu, Jili; Bai, Song; Shen, Xiaoping; Jiang, Lei

    2010-11-01

    Graphene-based nanocomposites are emerging as a new class of materials that hold promise for many applications. In this paper, we present a facile approach for the preparation of graphene/CdS nanocomposites through simple reflux processes, in which thiourea (CS(NH 2) 2) and thioacetamide (C 2H 5NS) act as a sulphide source, respectively. The samples were characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), ultraviolet-visible (UV-vis) spectroscopy and thermogravimetry analysis. It was shown that in the nanocomposites, the CdS nanoparticles were densely and uniformly deposited on the graphene sheets, and the sulphide source used has a great influence on the morphology, structure and property of the graphene/CdS nanocomposites. The good distribution of CdS nanoparticles on graphene sheets guarantees the efficient optoelectronic properties of graphene/CdS and would be promising for practical applications in future nanotechnology.

  5. Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries

    NASA Astrophysics Data System (ADS)

    Patel, Manu U. M.; Luong, Nguyen Dang; Seppälä, Jukka; Tchernychova, Elena; Dominko, Robert

    2014-05-01

    Graphene/cellulose composites were prepared and studied as potential host matrixes for sulphur impregnation and use in Li-S batteries. We demonstrate that with the proper design of a relatively low surface area graphene/cellulose composite, a high electrochemical performance along with good cyclability can be achieved. Graphene cellulose composites are built from two constituents: a two-dimensional electronic conductive graphene and cellulose fibres as a structural frame; together they form a laminar type of pore. The graphene sheets that uniformly anchor sulphur molecules provide confinement ability for polysulphides, sufficient space to accommodate sulphur volumetric expansion, a large contact area with the sulphur and a short transport pathway for both electrons and lithium ions. Nano-cellulose prevents the opening of graphene sheets due to the volume expansion caused by dissolved polysulphides during battery operation. This, in turn, prevents the diffusion of lithium polysulphides into the electrolyte, enabling a long cycle life.

  6. First-principles calculations of electronic transport through graphene with realistic metallic leads

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Chou, M. Y.

    2009-03-01

    We present transmission characteristics for electrons through graphene with realistic metallic contacts. The methodology relies on an in-house version of the electronic transport SMEAGOL code [1], in which the memory required to allocate for the matrices of contact leads and the graphene sheet in the Green's function solver is distributed into more than one processor, for a given electron energy. We are able to accommodate for commensurate graphene-metal supercells which have the correct atomic structure (namely, stress caused by contracting/extending the metal contacts to match the periodicity of graphene is avoided). In addition, and despite of the large size of the leads, the electronic properties and transport are computed at the density-functional theory level [2] within a double-zeta plus polarization basis[3], ensuring the accuracy of the atomic forces in the system, as well as on the final transmission characteristics. [1] A. R. Rocha et al, PRB. 73, 085414 (2006); [2] J. M. Soler et al, J. Phys.: Condens. Matter 14, 2745-2779 (2002); [3] J. Junquera et al, PRB 64, 235111 (2001).

  7. Low-temperature fabrication of 3D drilled graphene sheets hydrogel for supercapacitors with ultralong cycle life

    NASA Astrophysics Data System (ADS)

    Qiu, Zenghui; He, Dawei; Wang, Yongsheng; Li, Jiayuan

    2017-09-01

    A simple cobalt catalyzed gasification strategy to synthesize drilled graphene sheets (DGNs) is performed, and 3D DGNs hydrogel is prepared at a relatively low temperature. Due to mesopore hydrogel structure that increases the charge transfer efficiency by providing pathways for ionic into the overlaps of DGNs hydrogel and hole density displays controllably, the resulting DGNs hydrogel electrode provides excellent rate capability with an ultrahigh specific capacitance of 264.1 F g-1 at 1 A g-1 compared to a value of 187.8 F g-1 for graphene sheets (GNs) pole. DGNs hydrogel expands the design space for developing high-performance energy storage devices.

  8. Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane

    NASA Astrophysics Data System (ADS)

    Hosseini, Mostafa; Azamat, Jafar; Erfan-Niya, Hamid

    2018-01-01

    Molecular dynamics simulations were performed to investigate the water desalination performance of nanoporous graphene oxide (NPGO) membranes. The simulated systems consist of a NPGO as a membrane with a functionalized pore in its center immersed in an aqueous ionic solution and a graphene sheet as a barrier. The considered NPGO membranes are involved four types of pore with different size and chemistry. The results indicated that the NPGO membrane has effective efficiency in salt rejection as well as high performance in water flux. For all types of pore with the radius size of 2.9-4.5 Å, the NPGO shows salt rejection of >89%. Functional groups on the surface and edge of pores have a great effect on water flux. To precisely understand the effect of functional groups on the surface of nanostructured membranes, nanoporous graphene was simulated under the same condition for comparison. Hydrophilic groups on the surface make the NPGO as an ultra-permeable membrane. As a result, the obtained water flux for NPGO was about 77% greater than graphene. Also, it was found that the water flux of NPGO is 2-5 orders of magnitude greater than other existing reverse osmosis membranes. Therefore, the investigated systems can be recommended as a model for the water desalination.

  9. Measurement of the electronic compressibility of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Henriksen, E. A.; Eisenstein, J. P.

    2010-03-01

    We report on recent measurements of the electronic compressibility in bilayer graphene. The devices consist of a mechanically exfoliated bilayer graphene flake in a dual-gated configuration, having a global back gate from the underlying Si substrate and a lithographically defined top gate. With suitable shielding, an oscillating voltage applied to the back gate will generate corresponding signals in the top gate only via electric fields which penetrate the graphene, thereby allowing a direct measurement of the compressibility of the bilayer [1]. In our experiments, we map this quantity as a function of the back and top gate bias voltages and compare it to similar maps of the graphene sheet resistivity and capacitance. We discuss our results in light of numerical calculations of the underlying band structure as well as recent theoretical predictions. [1] J. P. Eisenstein, L. N. Pfeiffer, K. W. West, Phys. Rev. B 50, 1760 (1994).

  10. Polymer-Coated Graphene Aerogel Beads and Supercapacitor Application.

    PubMed

    Ouyang, An; Cao, Anyuan; Hu, Song; Li, Yanhui; Xu, Ruiqiao; Wei, Jinquan; Zhu, Hongwei; Wu, Dehai

    2016-05-04

    Graphene aerogels are highly porous materials with many energy and environmental applications; tailoring the structure and composition of pore walls within the aerogel is the key to those applications. Here, by freeze casting the graphene oxide sheets, we directly fabricated freestanding porous graphene beads containing radially oriented through channels from the sphere center to its surface. Furthermore, we introduced pseudopolymer to make reinforced, functional composite beads with a unique pore morphology. We showed that polymer layers can be coated smoothly on both sides of the pore walls, as well as on the junctions between adjacent pores, resulting in uniform polymer-graphene-polymer sandwiched structures (skeletons) throughout the bead. These composite beads significantly improved the electrochemical properties, with specific capacitances up to 669 F/g and good cyclic stability. Our results indicate that controlled fabrication of homogeneous hierarchical structures is a potential route toward high performance composite electrodes for various energy applications.

  11. Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power.

    PubMed

    Kwon, Se Ra; Harris, John; Zhou, Tianyang; Loufakis, Dimitrios; Boyd, James G; Lutkenhaus, Jodie L

    2017-07-25

    Structural energy and power systems offer both mechanical and electrochemical performance in a single multifunctional platform. These are of growing interest because they potentially offer reduction in mass and/or volume for aircraft, satellites, and ground transportation. To this end, flexible graphene-based supercapacitors have attracted much attention due to their extraordinary mechanical and electrical properties, yet they suffer from poor strength. This problem may be exacerbated with the inclusion of functional guest materials, often yielding strengths of <15 MPa. Here, we show that graphene paper supercapacitor electrodes containing aramid nanofibers as guest materials exhibit extraordinarily high tensile strength (100.6 MPa) and excellent electrochemical stability. This is achieved by extensive hydrogen bonding and π-π interactions between the graphene sheets and aramid nanofibers. The trade-off between capacitance and mechanical properties is evaluated as a function of aramid nanofiber loading, where it is shown that these electrodes exhibit multifunctionality superior to that of other graphene-based supercapacitors, nearly rivaling those of graphene-based pseudocapacitors. We anticipate these composite electrodes to be a starting point for structural energy and power systems that harness the mechanical properties of aramid nanofibers.

  12. Direct transfer of wafer-scale graphene films

    NASA Astrophysics Data System (ADS)

    Kim, Maria; Shah, Ali; Li, Changfeng; Mustonen, Petri; Susoma, Jannatul; Manoocheri, Farshid; Riikonen, Juha; Lipsanen, Harri

    2017-09-01

    Flexible electronics serve as the ubiquitous platform for the next-generation life science, environmental monitoring, display, and energy conversion applications. Outstanding multi-functional mechanical, thermal, electrical, and chemical properties of graphene combined with transparency and flexibility solidifies it as ideal for these applications. Although chemical vapor deposition (CVD) enables cost-effective fabrication of high-quality large-area graphene films, one critical bottleneck is an efficient and reproducible transfer of graphene to flexible substrates. We explore and describe a direct transfer method of 6-inch monolayer CVD graphene onto transparent and flexible substrate based on direct vapor phase deposition of conformal parylene on as-grown graphene/copper (Cu) film. The method is straightforward, scalable, cost-effective and reproducible. The transferred film showed high uniformity, lack of mechanical defects and sheet resistance for doped graphene as low as 18 Ω/sq and 96.5% transparency at 550 nm while withstanding high strain. To underline that the introduced technique is capable of delivering graphene films for next-generation flexible applications we demonstrate a wearable capacitive controller, a heater, and a self-powered triboelectric sensor.

  13. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement

    NASA Astrophysics Data System (ADS)

    Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie

    2012-10-01

    Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ~84.5% and ~70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS.Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ~84.5% and ~70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31907a

  14. Functionalization of reduced graphene oxide by electroactive polymer for biosensing applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Le Huy; Dzung Nguyen, Tuan; Hoang Tran, Vinh; Thu Huyen Dang, Thi; Tran, Dai Lam

    2014-09-01

    A novel biosensing platform was designed by the functionalizing reduced graphene oxide sheets (rGO) with electroactive copolymer juglone. The composite film showed well-defined, stable electroactivity in a biocompatible buffer medium. Square wave voltammetry is used to record the redox signal for DNA hybridization. Current increase upon hybridization (signal-on) evidenced that short DNA target as well as polymerase chain reaction (PCR), so called ‘real sample’ products, related to different lineages of Mycobacterium tuberculosis strain. The signal-on reached ∼40% with 1 nM of short DNA (25 mer) target, while PCR product (Africanum, EAI and Beijing strains) produced a current change of ∼20%.

  15. Microwave-assisted synthesis of Co{sub 3}O{sub 4}–graphene sheet-on-sheet nanocomposites and electrochemical performances for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Qingmei, E-mail: suqingmei@zjnu.cn; Yuan, Weiwei; Yao, Libing

    2015-12-15

    Highlights: • Co{sub 3}O{sub 4}–graphene nanocomposites are prepared by microwave irradiation method. • Co{sub 3}O{sub 4} nanosheets exhibit porous structure with the pore sizes of 3–6 nm. • The porous Co{sub 3}O{sub 4}–graphene nanocomposites show excellent electrochemical performance. • Synergistic effects of Co{sub 3}O{sub 4} and graphene improve the electrochemical performance. - Abstract: Porous Co{sub 3}O{sub 4} nanosheets anchored on graphene nanosheets were synthesized by microwave irradiation method. The obtained Co{sub 3}O{sub 4}–graphene sheet-on-sheet nanocomposite as an anode material for LIBs demonstrates a high initial discharge capacity of 1359.6 mAh g{sup −1} with a Columbic efficiency of 72.7% at amore » rate of 100 mA g{sup −1}. Moreover, a significantly enhanced reversible capacity of ∼1036.9 mAh g{sup −1} is retained after 50 cycles, and the capacity can reincrease to 1068 mAh g{sup −1} when the current density returns back to 100 mA g{sup −1} after cycled at various rates for 50 cycles. The improved electrochemical performance is attributed to the unique architectures of the porous Co{sub 3}O{sub 4} nanosheets and the incorporation of graphene nanosheets. Therefore, this nanocomposite is widely considered to be an attractive candidate as an anode material for next-generation LIBs.« less

  16. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.

    PubMed

    Tao, Xixi; Zhang, Lei; Zheng, Xiaohong; Hao, Hua; Wang, Xianlong; Song, Lingling; Zeng, Zhi; Guo, Hong

    2017-12-21

    By constructing transport junctions using graphene-based van der Waals (vdW) heterostructures in which a zigzag-edged graphene nanoribbon (ZGNR) is sandwiched between two hexagonal boron-nitride sheets, we computationally demonstrate a new scheme for generating perfect spin-polarized quantum transport in ZGNRs by light irradiation. The mechanism lies in the lift of spin degeneracy of ZGNR induced by the stagger potential it receives from the BN sheets and the subsequent possibility of single spin excitation of electrons from the valence band to the conduction band by properly tuning the photon energy. This scheme is rather robust in that we always achieve desirable results irrespective of whether we decrease or increase the interlayer distance by applying compressive or tensile strain vertically to the sheets or shift the BN sheets in-plane relative to the graphene nanoribbons. More importantly, this scheme overcomes the long-standing difficulties in traditional ways of using solely electrical field or chemical modification for obtaining half-metallic transport in ZGNRs and thus paves a more feasible way for their application in spintronics.

  17. Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries.

    PubMed

    Lee, Hee-Yoon; Jung, Yongju; Kim, Seok

    2016-03-01

    Poly(diallyldimethylammonium chloride) (PDDA)/graphene oxide-sulfur composites were prepared by a chemical oxidation method. For the PDDA-GO composites, conducting polymers (PDDA) were coated on the surface of GO sheets. PDDA-GO composites could be expected to increase electrical conductivity and protect restacking of graphene sheets. And then, sulfur particles were dispersed into the PDDA-GO composites by mixing in the CS2 solvent. It is expected the PDDA-GO/S composites show the limited release of polysulfides due to the fact that it can provide high surface area, because conducting polymer can be used as spacer between graphene sheets. Electrochemical performances of prepared composites were characterized by cyclic voltammetry (CV). The PDDA-GO/S composites showed a high discharge capacity of 1102 mAh g(-1) at the first cycle and a good cycle retention of 60% after 100 cycles.

  18. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor.

    PubMed

    Liu, Yonghuan; Wang, Rutao; Yan, Xingbin

    2015-06-08

    Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g(-1) at 0.5 A g(-1) is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g(-1) at 100 A g(-1). On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg(-1) and an ultrahigh power density of 40 000 W kg(-1).

  19. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor

    PubMed Central

    Liu, Yonghuan; Wang, Rutao; Yan, Xingbin

    2015-01-01

    Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g−1 at 0.5 A g−1 is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g−1 at 100 A g−1. On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg−1 and an ultrahigh power density of 40 000 W kg−1. PMID:26053847

  20. Synthesis and characterization of 2D graphene sheets from graphite powder

    NASA Astrophysics Data System (ADS)

    Patel, Rakesh V.; Patel, R. H.; Chaki, S. H.

    2018-05-01

    Graphene is 2D material composed of one atom thick hexagonal layer. This material has attracted great attention among scientific community because of its high surface area, excellent mechanical properties and conductivity due to free electrons in the 2D lattice. There are various approaches to prepare graphene nanosheets such as top-down approach where graphite exfoliation and nanotube unwrapping can be done. The bottom up approach involves deposition of hydrocarbon through CVD, epitaxial method and organo-synthesis etc.. In present studies top down approach method was used to prepare graphene. The graphite powder with around 20 µm to 150µm particle size was subjected to concentrated strong acid in presence of strong oxidizing agent in order to increase the d-spacing between layers which leads to the disruption of crystal lattice as confirmed by XRD (X'pert Philips). FT Raman spectra taken via (Renishaw InVia microscope) of pristine powder and Graphene oxide revealed the increase in D-band and reduction in G-Band. These exfoliated sheets have oxygen rich complexes at the surface of the layers as characterised by FTIR technique. The GO powder was ultrasonicated to prepare the stable suspension of Graphene. The graphene layers were observed under TEM (Philips Tecnai 20) as 2dimensional sheets with around 1µm sizes.

  1. Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiheng; Wang, Ao; Xuan, Yimin

    2018-03-01

    When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.

  2. NMR shifts for polycyclic aromatic hydrocarbons from first-principles

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Ceresoli, Davide; Marzari, Nicola

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13 shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  3. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk; College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073; Hu, Zhirun

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of themore » screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.« less

  4. Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution.

    PubMed

    Qiu, Shihui; Li, Wei; Zheng, Wenru; Zhao, Haichao; Wang, Liping

    2017-10-04

    Dispersion of graphene in water and its incorporation into waterborne resin have been rarely researched and hardly achieved owing to its hydrophobicity. Furthermore, it has largely been reported that graphene with impermeability contributed to the improved anticorrosion property. Here, we show that highly concentrated graphene aqueous solution up to 5 mg/mL can be obtained by synthesizing hydrophilic polypyrrole (PPy) nanocolloids as intercalators and ultrasonic vibration. On the basis of π-π interaction between PPy and graphene, stacked graphene sheets are exfoliated to the thickness of three to five layers without increasing defects. The corrosion performance of coatings without and with PPy and graphene is obtained by potential and impedance measurements, Tafel curves, and fitted pore resistance by immersing in a 3.5 wt % NaCl solution. It turns out that composite coating with 0.5 wt % graphene additive exhibits superior anticorrosive ability. The mechanism of intercalated graphene-based coating is interpreted as the synergistic protection of impermeable graphene sheets and self-healing PPy and proved by the identification of corrosion products and the scanning vibrating electrode technique.

  5. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.

    PubMed

    Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S

    2013-06-28

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.

  6. Bioconjugated graphene oxide hydrogel as an effective adsorbent for cationic dyes removal.

    PubMed

    Soleimani, Khadijeh; Tehrani, Abbas Dadkhah; Adeli, Mohsen

    2018-01-01

    In this study, graphene oxide - cellulose nanowhiskers nanocomposite hydrogel was easily synthesized through covalent functionalization of cellulose nanowhiskers with graphene oxide via a facile approach. The nitrene chemistry applied for covalent functionalization of graphene oxide sheets. The surface morphology and chemical structure of the nanocomposite hydrogel were characterized by FTIR, TGA, Raman, XRD, elemental analysis and SEM. The UV/Visible absorption spectrum revealed that the obtained porous nanocomposite hydrogel can efficiently remove cationic dyes such as methylene blue (MB) and Rhodamine B (RhB) from wastewater with high absorption power. The adsorption process showed that 100% of MB and 90% of RhB have been removed and the equilibrium state has been reached in 15min for low concentration solutions in accordance with the pseudo-second-order model. Moreover, the sample exhibited stable performance after being used several times. High adsorption capacity and easy recovery are the efficient factors making these materials as good adsorbent for water pollutants and wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Direct synthesis of Fe3 C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction.

    PubMed

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Huang, Yunjie; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng

    2014-08-01

    We present a novel approach to direct fabrication of few-layer graphene sheets with encapsulated Fe3 C nanoparticles from pyrolysis of volatile non-graphitic precursors without any substrate. This one-step autoclave approach is facile and potentially scalable for production. Tested as an electrocatalyst, the graphene-based composite exhibited excellent catalytic activity towards the oxygen reduction reaction in alkaline solution with an onset potential of ca. 1.05 V (vs. the reversible hydrogen electrode) and a half-wave potential of 0.83 V, which is comparable to the commercial Pt/C catalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior

    PubMed Central

    da Cunha, C. R.; Mineharu, M.; Matsunaga, M.; Matsumoto, N.; Chuang, C.; Ochiai, Y.; Kim, G.-H.; Watanabe, K.; Taniguchi, T.; Ferry, D. K.; Aoki, N.

    2016-01-01

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene. PMID:27609184

  9. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior.

    PubMed

    da Cunha, C R; Mineharu, M; Matsunaga, M; Matsumoto, N; Chuang, C; Ochiai, Y; Kim, G-H; Watanabe, K; Taniguchi, T; Ferry, D K; Aoki, N

    2016-09-09

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  10. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2013-05-28

    The behavior of water near a graphene sheet is investigated by means of ab initio and classical molecular dynamics simulations. The wetting of the graphene sheet by ab initio water and the relation of such behavior to the strength of classical dispersion interaction between surface atoms and water are explored. The first principles simulations reveal a layered solvation structure around the graphene sheet with a significant water density in the interfacial region implying no drying or cavitation effect. It is found that the ab initio results of water density at interfaces can be reproduced reasonably well by classical simulations with a tuned dispersion potential between the surface and water molecules. Calculations of vibrational power spectrum from ab initio simulations reveal a shift of the intramolecular stretch modes to higher frequencies for interfacial water molecules when compared with those of the second solvation later or bulk-like water due to the presence of free OH modes near the graphene sheet. Also, a weakening of the water-water hydrogen bonds in the vicinity of the graphene surface is found in our ab initio simulations as reflected in the shift of intermolecular vibrational modes to lower frequencies for interfacial water molecules. The first principles calculations also reveal that the residence and orientational dynamics of interfacial water are somewhat slower than those of the second layer or bulk-like molecules. However, the lateral diffusion and hydrogen bond relaxation of interfacial water molecules are found to occur at a somewhat faster rate than that of the bulk-like water molecules. The classical molecular dynamics simulations with tuned Lennard-Jones surface-water interaction are found to produce dynamical results that are qualitatively similar to those of ab initio molecular dynamics simulations.

  11. Flexible Graphene Composites for Human Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Sosa, Edward D.

    2013-01-01

    Graphene oxide allows for better dispersion stability in aqueous and organic solvents. Stabilizers provide dispersion of pristine graphene. Roll coating provide the best coverage of polyurethane sheets. Graphene and GO coated polyurethane used to fabricate flexible laminate composite. Permeation testing indicates that pristine graphene acts as a better gas barrier material. Continuous graphene films are expected to provide even better gas barrier properties.

  12. Management the strength properties of carbon composites

    NASA Astrophysics Data System (ADS)

    Kolesnikova, A. S.; Mazepa, M. M.

    2017-02-01

    Perspective materials in adsorption medicine are the composite carbon nanostructures based on carbon nanotubes and graphene because of their unique mechanical properties and because of their ability to attach other types of atoms. The ability to control the pore size in synthesis process is an important feature of this material. The deformation of nanotubes and graphene in the longitudinal direction of the graphene sheet will occur during the filtration of microorganisms by the composite. Investigation the deformation of the composite under tension along the graphene sheet is carried out for the first time in this work by molecular mechanical method based on potential of DFT.

  13. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  14. Effects of electric current on individual graphene oxide sheets combining in situ transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert

    2018-07-01

    Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.

  15. Effects of electric current on individual graphene oxide sheets combining in situ transmission electron microscopy and Raman spectroscopy.

    PubMed

    Martín, Gemma; Varea, Aïda; Cirera, Albert; Estradé, Sònia; Peiró, Francesca; Cornet, Albert

    2018-04-17

    Graphene oxide (GO) is currently the object of extensive research because of its potential use in mass production of graphene-based materials, but also due to its tunability which holds great promise for new nanoscale electronic devices and sensors. To obtain a better understanding of the role of GO in electronic nano-devices, the elucidation of the effects of electrical current on a single GO sheet is of great interest. In this work, in situ transmission electron microscopy is used to study the effects of the electrical current flow through single GO sheets using an scanning tunneling microscope holder. In order to correlate the applied current with the structural properties of GO, Raman spectroscopy is carried out and data analysis is used to obtain information regarding the reduction grade and the disorder degree of the GO sheets before and after the application of current.

  16. Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.

    PubMed

    Xu, Lanqing; Wei, Ning; Zheng, Yongping

    2013-12-20

    Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.

  17. One-step in situ synthesis of CeO₂ nanoparticles grown on reduced graphene oxide as an excellent fluorescent and photocatalyst material under sunlight irradiation.

    PubMed

    Kumar, Sachin; Ojha, Animesh K; Patrice, Donfack; Yadav, Brajesh S; Materny, Arnulf

    2016-04-28

    CeO2 nanoparticles (NPs) with average particle size of ∼17 nm were grown on graphene sheets by simply mixing cerium chloride as the Ce precursor with graphene oxide (GO) in distilled water and the simultaneous reduction of GO to reduced graphene oxide (rGO), followed by a one-step hydrothermal treatment at 150 °C. A unique blue to green tuneable luminescence was observed as a function of the excitation wavelength. With this method, significant applications of rGO-CeO2 nanocomposites in many optical devices could be realized. The photocatalytic activity of the as-synthesized CeO2 and rGO-CeO2 nanocomposite was investigated by monitoring the degradation of methylene blue (MB) dye under direct sunlight irradiation. The rGO-CeO2 nanocomposite exhibited excellent photocatalytic activity compared to CeO2 NPs by degrading 90% of the MB dye in 10 min irradiation under sunlight. This property of rGO-CeO2 nanocomposites was ascribed to the significant suppression of the recombination rate of photo-generated electron-hole pairs due to charge transfer between rGO sheets and CeO2 NPs and the smaller optical band-gap in the rGO-CeO2 nanocomposite.

  18. Sucrose Treated Carbon Nanotube and Graphene Yarns and Sheets

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey (Inventor); Kim, Jae-Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor)

    2017-01-01

    Consolidated carbon nanotube or graphene yarns and woven sheets are consolidated through the formation of a carbon binder formed from the dehydration of sucrose. The resulting materials, on a macro-scale are lightweight and of a high specific modulus and/or strength. Sucrose is relatively inexpensive and readily available, and the process is therefore cost-effective.

  19. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes.

    PubMed

    Bao, Wenzhong; Miao, Feng; Chen, Zhen; Zhang, Hang; Jang, Wanyoung; Dames, Chris; Lau, Chun Ning

    2009-09-01

    Graphene is nature's thinnest elastic material and displays exceptional mechanical and electronic properties. Ripples are an intrinsic feature of graphene sheets and are expected to strongly influence electronic properties by inducing effective magnetic fields and changing local potentials. The ability to control ripple structure in graphene could allow device design based on local strain and selective bandgap engineering. Here, we report the first direct observation and controlled creation of one- and two-dimensional periodic ripples in suspended graphene sheets, using both spontaneously and thermally generated strains. We are able to control ripple orientation, wavelength and amplitude by controlling boundary conditions and making use of graphene's negative thermal expansion coefficient (TEC), which we measure to be much larger than that of graphite. These results elucidate the ripple formation process, which can be understood in terms of classical thin-film elasticity theory. This should lead to an improved understanding of suspended graphene devices, a controlled engineering of thermal stress in large-scale graphene electronics, and a systematic investigation of the effect of ripples on the electronic properties of graphene.

  20. Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids

    NASA Astrophysics Data System (ADS)

    Matsumoto, Michio; Saito, Yusuke; Park, Chiyoung; Fukushima, Takanori; Aida, Takuzo

    2015-09-01

    Graphene has shown much promise as an organic electronic material but, despite recent achievements in the production of few-layer graphene, the quantitative exfoliation of graphite into pristine single-layer graphene has remained one of the main challenges in developing practical devices. Recently, reduced graphene oxide has been recognized as a non-feasible alternative to graphene owing to variable defect types and levels, and attention is turning towards reliable methods for the high-throughput exfoliation of graphite. Here we report that microwave irradiation of graphite suspended in molecularly engineered oligomeric ionic liquids allows for ultrahigh-efficiency exfoliation (93% yield) with a high selectivity (95%) towards ‘single-layer’ graphene (that is, with thicknesses <1 nm) in a short processing time (30 minutes). The isolated graphene sheets show negligible structural deterioration. They are also readily redispersible in oligomeric ionic liquids up to ~100 mg ml-1, and form physical gels in which an anisotropic orientation of graphene sheets, once induced by a magnetic field, is maintained.

  1. Electrochemical double-layer capacitors based on functionalized graphene

    NASA Astrophysics Data System (ADS)

    Pope, Michael Allan

    Graphene is a promising electrode material for electrochemical double-layer capacitors (EDLCs) used for energy storage due to its high electrical conductivity and theoretical specific surface area. However, the intrinsic capacitance of graphene is known to be low and governed by the electronic side of the interface. Furthermore, graphene tends to aggregate and stack together when processed into thick electrode films. This significantly lowers the ion-accessible specific surface area (SSA). Maximizing both the SSA and the intrinsic capacitance are the main problems addressed in this thesis in an effort to improve the specific capacitance and energy density of EDLCs. In contrast to pristine graphene, functionalized graphene produced by the thermal exfoliation of graphite oxide contains residual functional groups and lattice defects. To study how these properties affect the double-layer capacitance, a model electrode system capable of measuring the intrinsic electrochemical properties of functionalized graphene was developed. To prevent artifacts and uncertainties related to measurements on porous electrodes, the functionalized graphene sheets (FGSs) were assembled as densely tiled monolayers using a Langmuir-Blodgett technique. In this way, charging can be studied in a well-defined 2D geometry. The possibility of measuring and isolating the intrinsic electrochemical properties of FGS monolayers was first demonstrated by comparing capacitance and redox probe measurements carried out on coatings deposited on passivated gold and single crystal graphite substrates. This monolayer system was then used to follow the double-layer capacitance of the FGS/electrolyte interface as the structure and chemistry of graphene was varied by thermal treatments ranging from 300 °C to 2100 °C. Elemental analysis and Raman spectroscopy were used to determine the resulting chemical and structural transformation upon heat treatment. It was demonstrated that intrinsically defective graphene monolayers can exhibit four-fold higher double-layer capacitance than pristine graphene. High temperature annealing lowered the capacitance until it approached that of pristine graphene. An optimal level of functionalization and lattice disorder is found necessary to retain high double-layer capacitance suggesting that graphene-based materials can be chemically tailored to engineer higher capacitance electrodes. The second half of this thesis focuses on understanding the factors that control the SSA of FGS aggregates when processed into dense electrodes and the development of a new electrode fabrications strategy to improve the ion-accessible surface area of FGS-based electrodes. Using various processing conditions, it was demonstrated that aggregates can exhibit a wide range of SSAs (1 m 2/g to 1750 m2/g) accessible to the adsorption of nitrogen or methylene blue. The effects of capillary forces, van der Waals interactions and aggregation kinetics on the SSA were explored and an aggregation model was proposed to account for these effects. In order to minimize aggregation, a new strategy for preparing graphene-based electrodes for EDLCs was developed. Colloidal gels of graphene oxide in a water-ethanol-ionic liquid solution were assembled into graphene-ionic liquid laminated structures. Our process involves evaporating the solvents water and ethanol yielding a graphene oxide/ionic liquid composite, followed by thermal reduction of the graphene oxide to electrically conducting functionalized graphene. This yields an electrode in which the ionic liquid serves not only as the working electrolyte but also as a spacer to separate the graphene sheets and to increase their electrolyte-accessible surface area. Using this approach, we achieve an outstanding energy density of 17.5 Wh/kg at a gravimetric capacitance of 156 F/g and 3 V operating voltage, due to a high effective density of the active electrode material of 0.46 g/cm2. By increasing the ionic liquid content and degree of thermal reduction, we obtain electrodes that retain >90% of their capacity at a scan rate of 500 mV/s, illustrating that we can tailor the electrodes towards higher power density if energy density is not the primary goal. The ease of manufacturing, achieved by combining the steps of electrode assembly and electrolyte infiltration, makes this bottom-up assembly approach scalable and well suited for combinations of potentially any graphene material with ionic liquid electrolytes.

  2. First principles study of structural, vibrational and electronic properties of graphene-like MX 2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Wang, Yanli; Ni, Jun; Shi, Lin; Shi, Siqi; Tang, Weihua

    2011-05-01

    Using first principles calculations, we investigate the structural, vibrational and electronic structures of the monolayer graphene-like transition-metal dichalcogenide (MX 2) sheets. We find the lattice parameters and stabilities of the MX 2 sheets are mainly determined by the chalcogen atoms, while the electronic properties depend on the metal atoms. The NbS 2 and TaS 2 sheets have comparable energetic stabilities to the synthesized MoS 2 and WS 2 ones. The molybdenum and tungsten dichalcogenide (MoX 2 and WX 2) sheets have similar lattice parameters, vibrational modes, and electronic structures. These analogies also exist between the niobium and tantalum dichalcogenide (NbX 2 and TaX 2) sheets. However, the NbX 2 and TaX 2 sheets are metals, while the MoX 2 and WX 2 ones are semiconductors with direct-band gaps. When the Nb and Ta atoms are doped into the MoS 2 and WS 2 sheets, a semiconductor-to-metal transition occurs. Comparing to the bulk compounds, these monolayer sheets have similar structural parameters and properties, but their vibrational and electronic properties are varied and have special characteristics. Our results suggest that the graphene-like MX 2 sheets have potential applications in nano-electronics and nano-devices.

  3. Synthesis, physicochemical and optical properties of bis-thiosemicarbazone functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Wani, Mohmmad Y.; Arranja, Claudia T.; Castro, Ricardo A. E.; Paixão, José A.; Sobral, Abilio J. F. N.

    2018-01-01

    Fluorescent materials are important for low-cost opto-electronic and biomedical sensor devices. In this study we present the synthesis and characterization of graphene modified with bis-thiosemicarbazone (BTS). This new material was characterized using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) and Raman spectroscopy techniques. Further evaluation by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic-force microscopy (AFM) allowed us to fully characterize the morphology of the fabricated material. The average height of the BTSGO sheet is around 10 nm. Optical properties of BTSGO evaluated by photoluminescence (PL) spectroscopy showed red shift at different excitation wavelength compared to graphene oxide or bisthiosemicarbazide alone. These results strongly suggest that BTSGO material could find potential applications in graphene based optoelectronic devices.

  4. CVD graphene sheets electrochemically decorated with "core-shell" Co/CoO nanoparticles

    NASA Astrophysics Data System (ADS)

    Bayev, V. G.; Fedotova, J. A.; Kasiuk, J. V.; Vorobyova, S. A.; Sohor, A. A.; Komissarov, I. V.; Kovalchuk, N. G.; Prischepa, S. L.; Kargin, N. I.; Andrulevičius, M.; Przewoznik, J.; Kapusta, Cz.; Ivashkevich, O. A.; Tyutyunnikov, S. I.; Kolobylina, N. N.; Guryeva, P. V.

    2018-05-01

    The paper reports on the first successful fabrication of Co-graphene composites by electrochemical deposition of Co nanoparticles (NPs) on the sheets of twisted graphene. Characterization of the surface morphology and element mapping of twisted graphene decorated with Co NPs by transmission and scanning electron microscopy in combination with the energy-dispersive X-ray spectroscopy reveals the formation of isolated quasi-spherical oxidized Co NPs with the mean diameter 〈 d〉 ≈ 220 nm and core-shell structure. X-ray photoelectron spectroscopy indicates that the core of deposited NPs consists of metal Co while the shell is CoO. Composite Co-graphene samples containing core-shell NPs reveal an exchange bias field up to 160 Oe at 4 K as detected by vibrating sample magnetometry after the field cooling procedure.

  5. Rebar Graphene

    PubMed Central

    2015-01-01

    As the cylindrical sp2-bonded carbon allotrope, carbon nanotubes (CNTs) have been widely used to reinforce bulk materials such as polymers, ceramics, and metals. However, both the concept demonstration and the fundamental understanding on how 1D CNTs reinforce atomically thin 2D layered materials, such as graphene, are still absent. Here, we demonstrate the successful synthesis of CNT-toughened graphene by simply annealing functionalized CNTs on Cu foils without needing to introduce extraneous carbon sources. The CNTs act as reinforcing bar (rebar), toughening the graphene through both π–π stacking domains and covalent bonding where the CNTs partially unzip and form a seamless 2D conjoined hybrid as revealed by aberration-corrected scanning transmission electron microscopy analysis. This is termed rebar graphene. Rebar graphene can be free-standing on water and transferred onto target substrates without needing a polymer-coating due to the rebar effects of the CNTs. The utility of rebar graphene sheets as flexible all-carbon transparent electrodes is demonstrated. The in-plane marriage of 1D nanotubes and 2D layered materials might herald an electrical and mechanical union that extends beyond carbon chemistry. PMID:24694285

  6. Combined molecular and periodic DFT analysis of the adsorption of co macrocycles on graphene.

    PubMed

    Calborean, Adrian; Morari, Cristian; Maldivi, Pascale

    2018-01-15

    The molecular doping of graphene with π-stacked conjugated molecules has been widely studied during the last 10 years, both experimentally or using first-principle calculations, mainly with strongly acceptor or donor molecules. Macrocyclic metal complexes have been far less studied and their behavior on graphene is less clear-cut. The present density functional theory study of cobalt porphyrin and phthalocyanine adsorbed on monolayer or bilayer graphene allows to compare the outcomes of two models, either a finite-sized flake of graphene or an infinite 2D material using periodic calculations. The electronic structures yielded by both models are compared, with a focus on the density of states around the Fermi level. Apart from the crucial choice of calculation conditions, this investigation also shows that unlike strongly donating or accepting organic dopants, these macrocycles do not induce a significant doping of the graphene sheet and that a finite size model of graphene flake may be confidently used for most modeling purposes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Synthesis of Multimetal-Graphene Composite by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Saiphaneendra, Bachu; Srivastava, Avi Krishna; Srivastava, Chandan

    2016-10-01

    Multimetal-graphene composites were synthesized using the ball milling technique. To prepare the composite, graphite powder was mixed with Fe, Cr, Co, Cu and Mg powders. This mixture was then mechanically milled for 35 h in toluene medium. After milling, the multimetal-graphite mixture was mixed with sodium lauryl sulfate and sonicated for 2 h. Sonication led to the exfoliation of graphene sheets. Formation of graphene was confirmed from x-ray diffraction and Raman spectroscopy. Transmission electron microscopy-based analysis revealed the formation of multimetal deposits over the graphene surface. Compositional analysis of the multimetal deposits revealed fairly uniform distribution of all the five component metal atoms over the graphene sheet. The average composition of the multimetal deposit was determined to be 11.4 ± 4 at.% Mg, 33.8 ± 19 at.% Cr, 21.8 ± 16 at.% Fe, 9.4 ± 5.7 at.% Co and 23.6 ± 12 at.% Cu.

  8. Plasmon-polaritonic bands in sequential doped graphene superlattices

    NASA Astrophysics Data System (ADS)

    Ramos-Mendieta, Felipe; Palomino-Ovando, Martha; Hernández-López, Alejandro; Fuentecilla-Cárcamo, Iván

    Doped graphene has the extraordinary quality of supporting two types of surface excitations that involve electric charges (the transverse magnetic surface plasmons) or electric currents (the transverse electric modes). We have studied numerically the collective modes that result from the coupling of surface plasmons in doped graphene multilayers. By use of structured supercells with fixed dielectric background and inter layer separation, we found a series of plasmon-polaritonic bands of structure dependent on the doping sequence chosen for the graphene sheets. Periodic and quasiperiodic sequences for the graphene chemical potential have been studied. Our results show that transverse magnetic bands exist only in the low frequency regime but transverse electric bands arise within specific ranges of higher frequencies. Our calculations are valid for THz frequencies and graphene sheets with doping levels between 0.1 eV and 1.2 eV have been considered. AHL and IFC aknowledge fellowship support from CONACYT México.

  9. Enhanced optical gradient forces between coupled graphene sheets

    PubMed Central

    Xu, Xinbiao; Shi, Lei; Liu, Yang; Wang, Zheqi; Zhang, Xinliang

    2016-01-01

    Optical gradient forces between monolayer infinite-width graphene sheets as well as single-mode graphene nanoribbon pairs of graphene surface plasmons (GSPs) at mid-infrared frequencies were theoretically investigated. Although owing to the strongly enhanced optical field, the normalized optical force, fn, can reach 50 nN/μm/mW, which is the largest fn as we know, the propagation loss is also large. But we found that by changing the chemical potential of graphene, fn and the optical propagation loss can be balanced. The total optical force acted on the nanoribbon waveguides can thus enhance more than 1 order of magnitude than that in metallic surface plasmons (MSPs) waveguides with the same length and the loss can be lower. Owing to the enhanced optical force and the significant neff tuning by varying the chemical potential of graphene, we also propose an ultra-compact phase shifter. PMID:27338252

  10. Super-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation performance

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotan; Liu, Dongyan; Ma, Yuling; Nie, Jing; Sui, Guoxin

    2017-11-01

    The graphene/polyurethane (GN@PU) sponge was prepared via simple dip-coating PU sponges in graphene aqueous suspension containing cellulose nanowhiskers (CNWs), where CNWs played a vital role to facilitate the uniform graphene sheets coated on the skeletons of polyurethane sponge (PU). The super-hydrophobic GN@PU sponge was obtained by optimizing the ratio of GN and CNWs to choose the final coating suspensions of GN/CNWs mixture or pure graphene. The GN@PU sponge showed densely packed graphene sheets, contributing super-hydrophobicity to the sponge with water contact angle of 152° and a large lubricating oil absorption value of 31 g g-1. The elasticity, mechanical durability, thermal and chemical stability were all found to be improved after coating with the thin GN layers. Moreover, the GN@PU sponges possess outstanding recyclability and stability since no decline in absorption efficiency was observed after more than 100 cycles.

  11. Vertical pillar-superlattice array and graphene hybrid light emitting diodes.

    PubMed

    Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il

    2010-08-11

    We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.

  12. High-performance metal mesh/graphene hybrid films using prime-location and metal-doped graphene.

    PubMed

    Min, Jung-Hong; Jeong, Woo-Lim; Kwak, Hoe-Min; Lee, Dong-Seon

    2017-08-31

    We introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer. We further improved the contact properties by adding a very thin Au mesh between the thick Ag mesh and the graphene layer to produce a dual-layered metal mesh. The Au mesh effectively doped the graphene layer to create a p-type electrode. Using Raman spectra, work function variations, and the transfer length method (TLM), we verified the effect of doping the graphene layer after depositing a very thin metal layer on the graphene layers. From our results, we suggest that the nature of the contact is an important criterion for improving the electrical and optical performance of hybrid TCLs, and the method of doping graphene layers provides new opportunities for solving contact issues in other semiconductor devices.

  13. Modification of graphene oxide with amphiphilic double-crystalline block copolymer polyethylene-b-poly(ethylene oxide) with assistance of supercritical CO2 and its further functionalization.

    PubMed

    Zheng, Xiaoli; Xu, Qun; He, Linghao; Yu, Ning; Wang, Shanshan; Chen, Zhimin; Fu, JianWei

    2011-05-19

    Graphene oxide (GO) sheets were noncovalently modified with an amphiphilic double-crystalline block copolymer, polyethylene-b-poly(ethylene oxide) (PE-b-PEO) with assistance of supercritical CO(2) (SC CO(2)) in this work. The resulting PE-b-PEO/GO nanohybrids were characterized by transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and Raman spectra. Distinct morphologies of PE-b-PEO decorating on the surface of GO were obtained in different solvent systems and at different SC CO(2) pressures. We found that the solvent system and the SC CO(2) have significant influence on the crystallization, aggregation, or assembly behaviors of PE-b-PEO molecular chains on the GO sheets. The formation mechanism of the distinct nanohybrid structures is attributed to a relevant easy heteronucleation and the limited crystal growth of the block polymer on the surface of GO. The resulting modified GO sheets could find a broad spectrum of applications not only in producing graphene-based nanocomposites but also being used as a template to fabricate multifunctional structures due to the unique properties of PE-b-PEO. As a proof-of-concept, we further decorated the GO sheets with the as-prepared Au nanoparticles (Au NPs) and CdTe nanoparticles (CdTe NPs) with PE-b-PEO as the interlinker. Using the thiol-terminated PE-b-PEO as an interlinker, Au NPs can be densely assembled on the surface of GO via robust Au-S bonds. Furthermore, the photoluminescence quenching of CdTe NPs was more notable for PE-b-PEO/GO-CdTe hybrid compared to the GO-CdTe hybrid, suggesting that the electron transfer from the CdTe NPs to the GO sheets was enhanced with the PE-b-PEO interlinker. The availability of these affordable graphene-based multifunctional structures and their fundamental properties will open up new opportunities for nanoscience and nanotechnology and accelerate their applications. © 2011 American Chemical Society

  14. Directionally Antagonistic Graphene Oxide-Polyurethane Hybrid Aerogel as a Sound Absorber.

    PubMed

    Oh, Jung-Hwan; Kim, Jieun; Lee, Hyeongrae; Kang, Yeonjune; Oh, Il-Kwon

    2018-06-21

    Innovative sound absorbers, the design of which is based on carbon nanotubes and graphene derivatives, could be used to make more efficient sound absorbing materials because of their excellent intrinsic mechanical and chemical properties. However, controlling the directional alignments of low-dimensional carbon nanomaterials, such as restacking, alignment, and dispersion, has been a challenging problem when developing sound absorbing forms. Herein, we present the directionally antagonistic graphene oxide-polyurethane hybrid aerogel we developed as a sound absorber, the physical properties of which differ according to the alignment of the microscopic graphene oxide sheets. This porous graphene sound absorber has a microporous hierarchical cellular structure with adjustable stiffness and improved sound absorption performance, thereby overcoming the restrictions of both geometric and function-orientated functions. Furthermore, by controlling the inner cell size and aligned structure of graphene oxide layers in this study, we achieved remarkable improvement of the sound absorption performance at low frequency. This improvement is attributed to multiple scattering of incident and reflection waves on the aligned porous surfaces, and air-viscous resistance damping inside interconnected structures between the urethane foam and the graphene oxide network. Two anisotropic sound absorbers based on the directionally antagonistic graphene oxide-polyurethane hybrid aerogels were fabricated. They show remarkable differences owing to the opposite alignment of graphene oxide layers inside the polyurethane foam and are expected to be appropriate for the engineering design of sound absorbers in consideration of the wave direction.

  15. A Cut-and-Paste Approach to 3D Graphene-Oxide-Based Architectures.

    PubMed

    Luo, Chong; Yeh, Che-Ning; Baltazar, Jesus M Lopez; Tsai, Chao-Lin; Huang, Jiaxing

    2018-04-01

    Properly cut sheets can be converted into complex 3D structures by three basic operations including folding, bending, and pasting to render new functions. Folding and bending are extensively employed in crumpling, origami, and pop-up fabrications for 3D structures. Pasting joins different parts of a material together, and can create new geometries that are fundamentally unattainable by folding and bending. However, it has been much less explored, likely due to limited choice of weldable thin film materials and residue-free glues. Here it is shown that graphene oxide (GO) paper is one such suitable material. Stacked GO sheets can be readily loosened up and even redispersed in water, which upon drying, restack to form solid structures. Therefore, water can be utilized to heal local damage, glue separated pieces, and release internal stress in bent GO papers to fix their shapes. Complex and dynamic 3D GO architectures can thus be fabricated by a cut-and-paste approach, which is also applicable to GO-based hybrid with carbon nanotubes or clay sheets. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reconstruction of low-index graphite surfaces

    NASA Astrophysics Data System (ADS)

    Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas

    2016-07-01

    The low-index graphite surfaces (10 1 -0), (10 1 -1), (11 2 -0) and (11 2 - 1) have been studied by density functional theory (DFT) including van-der-Waals (vdW) corrections. Different from the (0001) surface which has been extensively investigated both experimentally and theoretically, there is no comprehensive study on the (10 1 -0)- (10 1 -1)-, (11 2 -0)- and (11 2 - 1)-surfaces available, although they are of relevance for Li insertion processes, e.g. in Li-ion batteries. In this study the structure and stability of all non-(0001) low-index surfaces were calculated with RPBE-D3 and converged slab models. In all cases reconstruction involving bond formation between unsaturated carbon atoms of two neighboring graphene sheets reduces the surface energy dramatically. Two possible reconstruction patterns have been considered. The first possibility leads to formation of oblong nanotubes. Alternatively, the graphene sheets form bonds to different neighboring sheets at the upper and lower sides and sinusoidal structures are formed. Both structure types have similar stabilities. Based on the calculated surface energies the Gibbs-Wulff theorem was applied to construct the macroscopic shape of graphite single crystals.

  17. Phonon transport in single-layer boron nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-11-01

    Inspired by the successful synthesis of three two-dimensional (2D) allotropes, the boron sheet has recently been one of the hottest 2D materials around. However, to date, phonon transport properties of these new materials are still unknown. By using the non-equilibrium Green’s function (NEGF) combined with the first principles method, we study ballistic phonon transport in three types of boron sheets; two of them correspond to the structures reported in the experiments, while the third one is a stable structure that has not been synthesized yet. At room temperature, the highest thermal conductance of the boron nanoribbons is comparable with that of graphene, while the lowest thermal conductance is less than half of graphene’s. Compared with graphene, the three boron sheets exhibit diverse anisotropic transport characteristics. With an analysis of phonon dispersion, bonding charge density, and simplified models of atomic chains, the mechanisms of the diverse phonon properties are discussed. Moreover, we find that many hybrid patterns based on the boron allotropes can be constructed naturally without doping, adsorption, and defects. This provides abundant nanostructures for thermal management and thermoelectric applications.

  18. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate

    NASA Astrophysics Data System (ADS)

    Annett, James; Cross, Graham L. W.

    2016-07-01

    Graphene and related two-dimensional materials have shown unusual and exceptional mechanical properties, with similarities to origami-like paper folding and kirigami-like cutting demonstrated. For paper analogues, a critical difference between macroscopic sheets and a two-dimensional solid is the molecular scale of the thin dimension of the latter, allowing the thermal activation of considerable out-of-plane motion. So far thermal activity has been shown to produce local wrinkles in a free graphene sheet that help in theoretically understanding its stability, for example, and give rise to unexpected long-range bending stiffness. Here we show that thermal activation can have a more marked effect on the behaviour of two-dimensional solids, leading to spontaneous and self-driven sliding, tearing and peeling from a substrate on scales approaching the macroscopic. We demonstrate that scalable nanoimprint-style contact techniques can nucleate and direct the parallel self-assembly of graphene ribbons of controlled shape in ambient conditions. We interpret our observations through a simple fracture-mechanics model that shows how thermodynamic forces drive the formation of the graphene-graphene interface in lieu of substrate contact with sufficient strength to peel and tear multilayer graphene sheets. Our results show how weak physical surface forces can be harnessed and focused by simple folded configurations of graphene to tear the strongest covalent bond. This effect may hold promise for the patterning and mechanical actuating of devices based on two-dimensional materials.

  19. Vacuum-sealed microcavity formed from suspended graphene by using a low-pressure dry-transfer technique

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Ishida, H.; Sawada, K.

    2018-01-01

    We report the development of a microcavity drum sealed by suspended graphene. The drum is fabricated by using a low-pressure dry-transfer technique, which involves vacuum de-aeration between a graphene sheet and a substrate and raising the temperature to above the glass transition of the supporting poly(methyl methacrylate) film, which serves to increase the real contact area. The result is a suspended graphene sheet with a maximum diameter of 48.6 μm. The Raman spectrum of the suspended graphene has a 2D/G ratio of 1.79 and a few D peaks, which suggests that the material is high-quality single-layer graphene. The dry-transfer technique yields a vacuum-sealed microcavity drum 1.1 μm deep up to 4.5 μm in diameter. The Raman shift indicates that the suspended graphene is subjected to a tensile strain of 0.05%, which is attributed to the pressure difference between the evacuated cavity and the exterior gas.

  20. Multicontrol Over Graphene–Molecule Hetereojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping

    The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less

  1. Multicontrol Over Graphene–Molecule Hetereojunctions

    DOE PAGES

    Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping

    2017-09-15

    The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less

  2. The converse approach to NMR chemical shifts from first-principles: application to finite and infinite aromatic compounds

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Ceresoli, D.; Marzari, N.

    2009-03-01

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the ^1H and ^13C shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  3. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Nonlocal postbuckling analysis of graphene sheets with initial imperfection based on first order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Soleimani, Ahmad; Naei, Mohammad Hasan; Mashhadi, Mahmoud Mosavi

    In this paper, the first order shear deformation theory (FSDT) is used to investigate the postbuckling behavior of orthotropic single-layered graphene sheet (SLGS) under in-plane loadings. Nonlocal elasticity theory and von-Karman nonlinear model in combination with the isogeometric analysis (IGA) have been applied to study the postbuckling characteristics of SLGSs. In contrast to the classical model, the nonlocal continuum model developed in this work considers the size-effects on the postbuckling characteristics of SLGSs. FSDT takes into account effects of shear deformations through-the-thickness of plate. Geometric imperfection which is defined as a very small transverse displacement of the mid-plane is applied on undeformed nanoplate to create initial deviation in graphene sheet from being perfectly flat. Nonlinear governing equations of motion for SLGS are derived from the principle of virtual work and a variational formulation. At the end, the results are presented as the postbuckling equilibrium paths of SLGS. The influence of various parameters such as edge length, nonlocal parameter, compression ratio, boundary conditions and aspect ratio on the postbuckling path is investigated. The results of this work show the high accuracy of nonlocal FSDT-based analysis for postbuckling behavior of graphene sheets.

  5. Effect of reduction time on the structure and properties of porous graphene

    NASA Astrophysics Data System (ADS)

    Li, Guoping; Zhang, Chenhui; Zhang, Tianfu; Xia, Min; Luo, Yunjun

    2017-07-01

    Porous graphene with nanoscaled pores on the sheets was prepared by a carbon thermal reduction method, in which the molybdenum oxide nanoparticles generated from the thermal decomposition of molybdate were used as the etching reagent, and the pores were formed on the surface of the reduced graphene oxide under the conditions of 650 °C and a nitrogen atmosphere. The morphology of pores on the graphene sheets may affect their potential applications in various fields, especially in the enhancement of mass transfer. Previous studies have shown that the reduction temperature and the amount of metal oxide are the key factors affecting the morphology of porous graphene, but in fact the reduction time is a more important affecting factor according to the present study. The results of SEM/TEM showed that a disordered large sheet-like structure with wrinkles was obtained at 120 min in the carbon-thermal reaction. The structural integrity of the PG was further destroyed after the reaction time of 140 min, in which the edge exhibited slightly crush and significant fold. The PG exhibited a hollow rod-like structure at the reaction time of 180 min. FTIR, Raman, XRD, and XPS studies were performed to characterize the morphology of porous graphene prepared at different reduction times.

  6. Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: The coupled effect of ultrasound and wedging nanoparticles.

    PubMed

    Hadi, Alireza; Zahirifar, Jafar; Karimi-Sabet, Javad; Dastbaz, Abolfazl

    2018-06-01

    This study aims to investigate a novel technique to improve the yield of liquid phase exfoliation of graphite to graphene sheets. The method is based on the utilization of magnetic Fe 3 O 4 nanoparticles as "particle wedge" to facilitate delamination of graphitic layers. Strong shear forces resulted from the collision of Fe 3 O 4 particles with graphite particles, and intense ultrasonic waves lead to enhanced exfoliation of graphite. High quality of graphene sheets along with the ease of Fe 3 O 4 particle separation from graphene solution which arises from the magnetic nature of Fe 3 O 4 nanoparticles are the unique features of this approach. Initial graphite flakes and produced graphene sheets were characterized by various methods including field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Zeta potential analysis. Moreover, the effect of process factors comprising initial graphite concentration, Fe 3 O 4 nanoparticles concentration, sonication time, and sonication power were investigated. Results revealed that graphene preparation yield and the number of layers could be manipulated by the presence of magnetic nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics

    NASA Astrophysics Data System (ADS)

    Rezaei, Mostafa; Salem, Shiva

    2016-10-01

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10 nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice.

  8. Mechanism of ultra low friction of multilayer graphene studied by coarse-grained molecular simulation.

    PubMed

    Washizu, Hitoshi; Kajita, Seiji; Tohyama, Mamoru; Ohmori, Toshihide; Nishino, Noriaki; Teranishi, Hiroshi; Suzuki, Atsushi

    2012-01-01

    Coarse-grained Metropolis Monte Carlo Brownian Dynamics simulations are used to clarify the ultralow friction mechanism of a transfer film of multilayered graphene sheets. Each circular graphene sheet consists of 400 to 1,000,000 atoms confined between the upper and lower sliders and are allowed to move in 3 translational and 1 rotational directions due to thermal motion at 300 K. The sheet-sheet interaction energy is calculated by the sum of the pair potential of the sp2 carbons. The sliding simulations are done by moving the upper slider at a constant velocity. In the monolayer case, the friction force shows a stick-slip like curve and the average of the force is high. In the multilayer case, the friction force does not show any oscillation and the average of the force is very low. This is because the entire transfer film has an internal degree of freedom in the multilayer case and the lowest sheet of the layer is able to follow the equipotential surface of the lower slider.

  9. A comparative study of the structures and electronic properties of graphene fragments: A DFT and MP2 survey

    NASA Astrophysics Data System (ADS)

    de Carvalho, E. F. V.; Lopez-Castillo, A.; Roberto-Neto, O.

    2018-01-01

    Graphene can be viewed as sheet of benzene rings fused together forming a variety of structures including the trioxotriangulenes (TOTs) which is a class of organic molecules with electro-active properties. In order to clarify such properties, structures and electronic properties of the graphene fragments phenalenyl, triangulene, 6-oxophenalenoxyl, and X3TOT (X = H, F, Cl) are computed. Validation of the methodologies are carried out using the density functionals B3LYP, M06-2X, B2PLYP-D, and the MP2 theory, giving equilibrium geometries of benzene, naphthalene, and anthracene with mean unsigned error (MUE) of only 0.003, 0.007, 0.004, and 0.007 Å, respectively in relation to experiment.

  10. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens

    NASA Astrophysics Data System (ADS)

    Hwang, Taeseon; Kwon, Hyeok-Yong; Oh, Joon-Suk; Hong, Jung-Pyo; Hong, Seung-Chul; Lee, Youngkwan; Ryeol Choi, Hyouk; Jin Kim, Kwang; Hossain Bhuiya, Mainul; Nam, Jae-Do

    2013-07-01

    A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed in N-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes. The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in variable focus lens and various opto-electro-mechanical devices.

  11. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes.

    PubMed

    Chen, Tao; Xue, Yuhua; Roy, Ajit K; Dai, Liming

    2014-01-28

    Transparent and/or stretchable energy storage devices have attracted intense attention due to their unique optical and/or mechanical properties as well as their intrinsic energy storage function. However, it remains a great challenge to integrate transparent and stretchable properties into an energy storage device because the currently developed electrodes are either transparent or stretchable, but not both. Herein, we report a simple method to fabricate wrinkled graphene with high stretchability and transparency. The resultant wrinkled graphene sheets were used as both current collector and electrode materials to develop transparent and stretchable supercapacitors, which showed a high transparency (57% at 550 nm) and can be stretched up to 40% strain without obvious performance change over hundreds of stretching cycles.

  12. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, Patrick; Li, Yilei; Watanabe, Kenji

    Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpreted as structural ripples or as self-assembled adsorbates. We show that the stripe domains are optically anisotropic by imaging them using a polarization-contrast technique. Optical spectra between 1.1 and 2.8 eV reveal that the anisotropy in the in-plane dielectric function is predominantly real, reaching 0.6 for an assumed layer thickness of 0.3 nm. Furthermore, the spectra are incompatible with a rippled graphene sheet but would be quantitatively explained by the self-assemblymore » of chainlike organic molecules into nanoscale stripes.« less

  13. Optical Imaging and Spectroscopic Characterization of Self-Assembled Environmental Adsorbates on Graphene

    DOE PAGES

    Gallagher, Patrick; Li, Yilei; Watanabe, Kenji; ...

    2018-03-28

    Topographic studies using scanning probes have found that graphene surfaces are often covered by micron-scale domains of periodic stripes with a 4 nm pitch. These stripes have been variously interpreted as structural ripples or as self-assembled adsorbates. We show that the stripe domains are optically anisotropic by imaging them using a polarization-contrast technique. Optical spectra between 1.1 and 2.8 eV reveal that the anisotropy in the in-plane dielectric function is predominantly real, reaching 0.6 for an assumed layer thickness of 0.3 nm. Furthermore, the spectra are incompatible with a rippled graphene sheet but would be quantitatively explained by the self-assemblymore » of chainlike organic molecules into nanoscale stripes.« less

  14. A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide.

    PubMed

    Dey, Ramendra Sundar; Hajra, Saumen; Sahu, Ranjan K; Raj, C Retna; Panigrahi, M K

    2012-02-07

    A rapid and facile route for the synthesis of reduced graphene oxide sheets (rGOs) at room temperature by the chemical reduction of graphene oxide using Zn/acid in aqueous solution is demonstrated. This journal is © The Royal Society of Chemistry 2012

  15. Supramolecular assembled three-dimensional graphene hybrids: Synthesis and applications in supercapacitors

    NASA Astrophysics Data System (ADS)

    Ni, Lubin; Zhang, Wang; Wu, Zhen; Sun, Chunyu; Cai, Yin; Yang, Guang; Chen, Ming; Piao, Yuanzhe; Diao, Guowang

    2017-02-01

    Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of β-cyclodextrin polymers (β-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. This study shed new lights to the construction of three dimensional self-assembled graphene materials and their urgent applications in energy storage.

  16. Ab initio study of boron nitride lines on graphene

    NASA Astrophysics Data System (ADS)

    Mata-Carrizal, Berenice; Sanginés-Mendoza, Raúl; Martinez, Edgar

    2013-03-01

    Graphene has unusual electronic properties which make it a promising material for electronic devices. Neverthless, the absence of a band gap sets limitations on its practical applications. Thus, it is crucial to find methods to create and tune the band gap of systems based on graphene. In this way, we explore the modulation of the electronic properties of graphene through doping with boron nitride lines. In particular, we studied the electronic structure of graphene sheets doped with boron nitride lines armchair and zigzag type. The calculations were performed using the pseudopotential LCAO method with a Generalized Gradient Approximation (GGA) for the exchange-correlation energy functional. We found that both doping lines type induce a bandgap and that the energy gap increases as the length of doping lines increases. Accordingly to our DFT calculations, we found that the energy gap on graphene doped with armchair and zigzag lines is due to a two different mechanisms to drain charge from pi- to sigma- orbitals. Thus, we found that doping graphene with boron nitride lines is a useful way to induce and modulate the bandgap on graphene. This research was supported by Consejo Nacional de Ciencia y Tecnología (Conacyt) under Grant No. 133022.

  17. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.

    PubMed

    Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang

    2016-11-09

    Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl 3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO 3 ), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m 2 g -1 was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg -1 in 1.0 M KOH at a scan rate of 5 mV s -1 . Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg -1 using Nafion binder is obtained under a current density of 1 Ag -1 by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.

  18. Mechanical behavior enhancement of defective graphene sheet employing boron nitride coating via atomistic study

    NASA Astrophysics Data System (ADS)

    Setoodeh, A. R.; Badjian, H.

    2017-12-01

    The most stable form of boron nitride polymorph naming hexagonal boron nitride sheet has recently been widely concerned like graphite due to its interesting features such as electrical insulation and high thermal conductivity. In this study, the molecular dynamic simulations are implemented to investigate the mechanical properties of single-layer graphene sheets under tensile and compressive loadings in the absence and presence of boron-nitride coating layers. In this introduced hybrid nanostructure, the benefit of combining both individual interesting features of graphene and boron-nitride sheets such as exceptional mechanical and electrical properties can be simultaneously achieved for future potential application in nano devices. The influences of chiral indices, boundary conditions and presence of mono-atomic vacancy defects as well as coating dimension on the mechanical behavior of the resulted hybrid structure are reported. The interatomic forces between the atoms are modeled by employing the AIREBO and Tersoff-Brenner potentials for carbon-carbon and boron-nitrogen atoms in each layer, respectively. Furthermore, the van der Waal interlayer forces of carbon-boron and carbon-nitrogen are estimated by the Lennard-Jones potential field. Besides the potential improvement in electrical and physical properties of the nanostructure, it is demonstrated that the buckling load capacity of the fully coated graphene sheet with 3% concentration of mono-atomic vacancy defects noticeably enhances by amounts of 24.1%.

  19. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors.

    PubMed

    Zhu, Jiayi; He, Junhui

    2012-03-01

    Graphene-wrapped MnO(2) nanocomposites were first fabricated by coassembly between honeycomb MnO(2) nanospheres and graphene sheets via electrostatic interaction. The materials were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and thermogravimetric analysis. The novel MnO(2)/graphene hybrid materials were used for investigation of electrochemical capacitive behaviors. The hybrid materials displayed enhanced capacitive performance (210 F/g at 0.5 A/g). Additionally, over 82.4% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The improved electrochemical performance might be attributed to the combination of the pesudocapacitance of MnO(2) nanospheres with the honeycomb-like "opened" structure and good electrical conductivity of graphene sheets. © 2012 American Chemical Society

  20. Experimental realization of two-dimensional boron sheets

    NASA Astrophysics Data System (ADS)

    Feng, Baojie; Zhang, Jin; Zhong, Qing; Li, Wenbin; Li, Shuai; Li, Hui; Cheng, Peng; Meng, Sheng; Chen, Lan; Wu, Kehui

    2016-06-01

    A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

  1. Interlayer Water Regulates the Bio-nano Interface of a β-sheet Protein stacking on Graphene

    PubMed Central

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-01

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH···π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water. PMID:25557857

  2. Interlayer water regulates the bio-nano interface of a β-sheet protein stacking on graphene.

    PubMed

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-05

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH···π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water.

  3. Interlayer Water Regulates the Bio-nano Interface of a β-sheet Protein stacking on Graphene

    NASA Astrophysics Data System (ADS)

    Lv, Wenping; Xu, Guiju; Zhang, Hongyan; Li, Xin; Liu, Shengju; Niu, Huan; Xu, Dongsheng; Wu, Ren'an

    2015-01-01

    Using molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH...π interaction driving the attraction of the protein and graphene. The intermolecular coupling of interlayer water would be relaxed by the relative motion of protein upon graphene due to the interaction between water and protein surface. This effect reduced the hindrance of the interlayer water against the assembly of protein on graphene, resulting an appropriate adsorption status of protein on graphene with a deep free energy trap. Thereby, the confinement and the relative sliding between protein and graphene, the coupling of protein and water, and the interaction between graphene and water all have involved in the modulation of behaviors of water molecules within the bio-nano interface, governing the hindrance of interlayer water against the protein assembly on hydrophobic graphene. These results provide a deep insight into the fundamental mechanism of protein adsorption onto graphene surface in water.

  4. Efficient removal of tetracycline with KOH-activated graphene from aqueous solution

    PubMed Central

    Sun, Yiran; Yu, Fei

    2017-01-01

    Activated graphene absorbents with high specific surface area (SSA) were prepared by an easy KOH-activated method, and were applied in absorbing antibiotics, such as tetracycline (TC). After activation, many micropores were introduced to graphene oxide sheets, leading to higher SSA and many new oxygen-containing functional groups, which gave KOH-activated graphene excellent adsorption capacity (approx. 532.59 mg g−1) of TC. Further study on the adsorption mechanism showed that the Langmuir isotherm model and the pseudo-second-order kinetic model fitted with experiment data. To further understand the adsorption process, the effects of solid–liquid ratio, pH, ionic strength and coexisting ions were also investigated. The results revealed that, compared with pH and ionic strength, solid–liquid ratio and coexisting ions (Cu2+, CrO42−) had more significant influence over the adsorption performance. The findings provide guidance for application of KOH-activated graphene as a promising alternative adsorbent for antibiotics removal from aqueous solutions. PMID:29291064

  5. Interaction of cesium adatoms with free-standing graphene and graphene-veiled SiO 2 surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja; Biedermann, Grant W.

    2015-04-21

    In this study, the interaction of Cs adatoms with mono- or bi-layered graphene (MLG and BLG), either free-standing or on a SiO 2 substrate, was investigated using density functional theory. The most stable adsorption sites for Cs are found to be hollow sites on both graphene sheets and graphene-veiled SiO 2(0001). In addition, larger dipole moments are created when a MLG-veiled SiO 2(0001) substrate is used for adsorption of Cs atoms compared to the adsorption on free-standing MLG, due to charge transfer occurring between the MLG and the SiO 2 substrate. For the adsorption of Cs on BLG-veiled SiO 2(0001)more » substrate, these differences are smoothed out and the binding energies corresponding to different sites are nearly degenerate; smaller dipole moments created by the Cs adatoms on BLG compared to MLG are also predicted.« less

  6. Localized conductive patterning via focused electron beam reduction of graphene oxide

    NASA Astrophysics Data System (ADS)

    Kim, Songkil; Kulkarni, Dhaval D.; Henry, Mathias; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V.; Fedorov, Andrei G.

    2015-03-01

    We report on a method for "direct-write" conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  7. Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets

    NASA Astrophysics Data System (ADS)

    Chandraker, Kumudini; Nagwanshi, Rekha; Jadhav, S. K.; Ghosh, Kallol K.; Satnami, Manmohan L.

    2017-06-01

    Graphene oxide (GO) sheets decorated with amino acid L-cysteine (L-cys) functionalized silver nanoparticles (GO-L-cys-Ag) was synthesized by AgNO3, trisodium citrate, and NaBH4. GO-L-cys-Ag nanocomposite was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, which demonstrated that a diameter of L-cys-AgNPs compactly deposited on GO. Antibacterial activity tests of GO-L-cys-Ag nanocomposite were carried out using Escherichia coli MTCC 1687 and Staphylococcus aureus MTCC 3160 as model strains of Gram-negative and Gram-positive bacteria, respectively. The effect of bactericide dosage on antibacterial activity of GO-L-cys-Ag nanocomposite was examined by plate count, well diffusion and broth dilution methods. Morphological observation of bacterial cells by scanning electron microscope (SEM) showed that GO-L-cys-Ag nanocomposite was more destructive to cell membrane of Escherichia coli than that of Staphylococcus aureus. The above technique establish that the bactericidal property of GO-L-cys-Ag nanocomposite with wide range of applications in biomedical science.

  8. Low-temperature graphene synthesis using microwave plasma CVD

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-02-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.

  9. Faraday rotation due to excitation of magnetoplasmons in graphene microribbons.

    PubMed

    Tymchenko, Mykhailo; Nikitin, Alexey Yu; Martín-Moreno, Luis

    2013-11-26

    A single graphene sheet, when subjected to a perpendicular static magnetic field, provides a Faraday rotation that, per atomic layer, greatly surpasses that of any other known material. In continuous graphene, Faraday rotation originates from the cyclotron resonance of massless carriers, which allows dynamical tuning through either external electrostatic or magneto-static setting. Furthermore, the rotation direction can be controlled by changing the sign of the carriers in graphene, which can be done by means of an external electric field. However, despite these tuning possibilities, the requirement of large magnetic fields hinders the application of the Faraday effect in real devices, especially for frequencies higher than a few terahertz. In this work we demonstrate that large Faraday rotation can be achieved in arrays of graphene microribbons, through the excitation of the magnetoplasmons of individual ribbons, at larger frequencies than those dictated by the cyclotron resonance. In this way, for a given magnetic field and chemical potential, structuring graphene periodically can produce large Faraday rotation at larger frequencies than what would occur in a continuous graphene sheet. Alternatively, at a given frequency, graphene ribbons produce large Faraday rotation at much smaller magnetic fields than in continuous graphene.

  10. Hydrogen storage in N- and B-doped graphene decorated by small platinum clusters: A computational study

    NASA Astrophysics Data System (ADS)

    Chen, I.-Nan; Wu, Shiuan-Yau; Chen, Hsin-Tsung

    2018-05-01

    In this work, we perform density functional theory (DFT) calculations to investigate the hydrogen adsorption on Pt4 cluster supported on pristine, B-, and N-doped graphene sheets. It is found that the doping B or N atom in the graphene could enhance the interaction between the Pt4 cluster and the supporting substrate. The first H2 molecule is found to be dissociative chemisorption on the three substrates. Further, dissociative and molecular adsorption of multiple H2 molecules are co-adsorbed on the three substrates. In addition, the interaction between Pt4(H2)x and the substrate is illustrated for the stability of Pt4(H2)x on the substrate. AIMD simulation is also performed to verify the stability and hydrogen storage. Accordingly, the B-graphene is predicted to be the most potential materials for hydrogen storage among these three materials.

  11. Floquet spectrum and driven conductance in Dirac materials: Effects of Landau-Zener-Stückelberg-Majorana interferometry

    NASA Astrophysics Data System (ADS)

    Rodionov, Ya. I.; Kugel, K. I.; Nori, Franco

    2016-11-01

    Using the Landau-Zener-Stückelberg-Majorana-type (LZSM) semiclassical approach, we study both graphene and a thin film of a Weyl semimetal subjected to a strong ac electromagnetic field. The spectrum of quasienergies in the Weyl semimetal turns out to be similar to that of a graphene sheet. It has been predicted qualitatively that the transport properties of strongly irradiated graphene oscillate as a function of the radiation intensity [S. V. Syzranov et al., Phys. Rev. B 88, 241112 (2013)], 10.1103/PhysRevB.88.241112. Here we obtain rigorous quantitative results for a driven linear conductance of graphene and a thin film of a Weyl semimetal. The exact quantitative structure of oscillations exhibits two contributions. The first one is a manifestation of the Ramsauer-Townsend effect, while the second contribution is a consequence of the LZSM interference defining the spectrum of quasienergies.

  12. Rapid thermal process by RF heating of nano-graphene layer/silicon substrate structure: Heat explosion theory approach

    NASA Astrophysics Data System (ADS)

    Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.

    2018-03-01

    RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.

  13. Direct nucleation of silver nanoparticles on graphene sheet.

    PubMed

    Singh, Manoj K; Titus, E; Krishna, R; Hawaldar, R R; Goncalves, G; Marques, P A A P; Gracio, J

    2012-08-01

    Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc.

  14. Graphene field-effect devices

    NASA Astrophysics Data System (ADS)

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  15. Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: the effect of the molecular structure revealed by a photophysical study.

    PubMed

    Zhang, Xian-Fu; Liu, Su-Ping; Shao, Xiao-Na

    2013-09-01

    The fluorescence and absorption properties of several xanthene and phthalocyanine dyes were measured in the presence and absence of chemically derived graphene (CDG) sheets. The interaction of pyronine Y (PYY) with graphene sheets was compared with that of rhodamine 6G (R6G) to reveal the effect of the molecular structure. Although the presence of the perpendicular benzene moiety in a R6G or phthalocyanine molecule does cause the difficulty for forming dye-CDG complex and make CDG less efficient in quenching the fluorescence intensity and shortening the fluorescence lifetime, it does not affect the band position of charge transfer absorption, suggesting that no molecular shape change occurred in a dye molecule caused by the interaction with CDG sheets. The spectroscopic and thermodynamic data indicated that the dye-CDG binding is of charge transfer nature, while the dynamic fluorescence quenching is due to photoinduced energy and electron transfer. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Graphene oxide--MnO2 nanocomposites for supercapacitors.

    PubMed

    Chen, Sheng; Zhu, Junwu; Wu, Xiaodong; Han, Qiaofeng; Wang, Xin

    2010-05-25

    A composite of graphene oxide supported by needle-like MnO(2) nanocrystals (GO-MnO(2) nanocomposites) has been fabricated through a simple soft chemical route in a water-isopropyl alcohol system. The formation mechanism of these intriguing nanocomposites investigated by transmission electron microscopy and Raman and ultraviolet-visible absorption spectroscopy is proposed as intercalation and adsorption of manganese ions onto the GO sheets, followed by the nucleation and growth of the crystal species in a double solvent system via dissolution-crystallization and oriented attachment mechanisms, which in turn results in the exfoliation of GO sheets. Interestingly, it was found that the electrochemical performance of as-prepared nanocomposites could be enhanced by the chemical interaction between GO and MnO(2). This method provides a facile and straightforward approach to deposit MnO(2) nanoparticles onto the graphene oxide sheets (single layer of graphite oxide) and may be readily extended to the preparation of other classes of hybrids based on GO sheets for technological applications.

  17. In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing.

    PubMed

    Dong, Xiaochen; Huang, Wei; Chen, Peng

    2011-12-01

    In this study, an in situ chemical synthesis approach has been developed to prepare graphene-Au nanocomposites from chemically reduced graphene oxide (rGO) in aqueous media. UV-Vis absorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were used to demonstrate the successful attachment of Au nanoparticles to graphene sheets. Configured as field-effect transistors (FETs), the as-synthesized single-layered rGO-Au nanocomposites exhibit higher hole mobility and conductance when compared to the rGO sheets, promising its applications in nanoelectronics. Furthermore, we demonstrate that the rGO-Au FETs are able to label-freely detect DNA hybridization with high sensitivity, indicating its potentials in nanoelectronic biosensing.

  18. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors.

    PubMed

    Qu, Qunting; Yang, Shubin; Feng, Xinliang

    2011-12-08

    2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors are prepared from the direct growth of FeOOH nanorods on the surface of graphene and the subsequent electrochemical transformation of FeOOH to Fe(3)O(4). The Fe(3)O(4) @RGO nanocomposites exhibit superior capacitance (326 F g(-1)), high energy density (85 Wh kg(-1)), large power, and good cycling performance in 1 mol L(-1) LiOH solution. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Guo, Bin; Zhai, Feng; Jiang, Wei

    2018-03-01

    By means of a nonlinear two-component hydrodynamic model, we study the valley-polarized collective motion of electrons in a strained graphene sheet. The self-consistent numerical solution in real space indicates the existence of valley-polarized edge plasmons due to a strain-induced pseudomagnetic field. The valley polarization of the edge pseudomagnetoplasmon can occur in a specific valley, depending on the pseudomagnetic field and the electron density in equilibrium. A full valley polarization is achieved at the edge of the graphene sheet for a pseudomagnetic field of tens of Tesla, which is a realistic value in current experimental technologies.

  20. N2O + CO reaction over single Ga or Ge atom embedded graphene: A DFT study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Vessally, Esmail

    2018-01-01

    The possibility of using a single Ga or Ge atom embedded graphene as an efficient catalyst for the reduction of N2O molecule by CO is examined. We perform density functional theory calculations to calculate adsorption energies as well as analysis of the structural and electronic properties of different species involved in the N2O + CO reaction. The large activation energy for the diffusion of the single Ga or Ge atom on the C vacancy site of graphene shows the high stability of both Ga- and Ge-embedded graphene sheets in the N2O reduction. The activation energy needed for the decomposition of N2O is calculated to be 18.4 and 14.1 kcal/mol over Ga- and Ge-embedded graphene, respectively. The results indicate that the Ge-embedded graphene may serve as an effective catalyst for the N2O reduction. Moreover, the activation energy for the disproportionation of N2O molecules that generates N2 and O2 is relatively high; so, the generation of these side products may be hindered by decreasing the temperature.

  1. Interface formation in monolayer graphene-boron nitride heterostructures.

    PubMed

    Sutter, P; Cortes, R; Lahiri, J; Sutter, E

    2012-09-12

    The ability to control the formation of interfaces between different materials has become one of the foundations of modern materials science. With the advent of two-dimensional (2D) crystals, low-dimensional equivalents of conventional interfaces can be envisioned: line boundaries separating different materials integrated in a single 2D sheet. Graphene and hexagonal boron nitride offer an attractive system from which to build such 2D heterostructures. They are isostructural, nearly lattice-matched, and isoelectronic, yet their different band structures promise interesting functional properties arising from their integration. Here, we use a combination of in situ microscopy techniques to study the growth and interface formation of monolayer graphene-boron nitride heterostructures on ruthenium. In a sequential chemical vapor deposition process, boron nitride grows preferentially at the edges of existing monolayer graphene domains, which can be exploited for synthesizing continuous 2D membranes of graphene embedded in boron nitride. High-temperature growth leads to intermixing near the interface, similar to interfacial alloying in conventional heterostructures. Using real-time microscopy, we identify processes that eliminate this intermixing and thus pave the way to graphene-boron nitride heterostructures with atomically sharp interfaces.

  2. Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications

    NASA Astrophysics Data System (ADS)

    Muruganandi, G.; Saravanan, M.; Vinitha, G.; Jessie Raj, M. B.; Sabari Girisun, T. C.

    2018-01-01

    By simple hydrothermal method, nanorods of barium boate were successfully loaded on reduced graphene oxide sheets. Powder XRD confirms the incorporation of barium borate (2θ = 29°, (202)) along with the transition of graphene oxide (2θ = 12°, (001)) into reduced graphene oxide (2θ = 25°, (002)). In the FTIR spectra, presence of characteristic absorption peaks of rGO (1572 and 2928 cm-1) and barium borate (510, 760 and 856 cm-1) further evidences the formation of BBO:rGO nanocomposite. FESEM images potray the existence of graphene sheets as thin layers and growth of barium borate as nanorods on the sheets of reduced graphene oxide. Ground state absorption studies reveal the hypsochromic shift in the absorption maxima of the graphene layers due to reduction of graphene oxide and hypochromic shift in the absorbance intensity due to the inclusion of highly transparent barium bortae. The photoluminescence of BBO:rGO shows maximum emission in the UV region arising from the direct transitions involving the valence band and conduction band in the band gap region. Z-scan technique using CW diode pumped Nd:YAG laser (532 nm, 50 mW) exposes that both nanocomposite and individual counterpart possess saturable absorption and self-defocusing behavior. Third-order nonlinear optical coefficients of BBO:rGO nanocomposite is found to be higher than bare graphene oxide. In particular the nonlinear refractive index of nanocomposite is almost four times higher than GO which resulted in superior optical power limiting action. Strong nonlinear refraction (self-defocusing) and lower onset limiting thershold makes the BBO:rGO nanocomposite preferable candidate for laser safety devices.

  3. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier

    2018-07-01

    We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.

  4. Numerical study of electrical transport in co-percolative metal nanowire-graphene thin-films

    NASA Astrophysics Data System (ADS)

    Gupta, Man Prakash; Kumar, Satish

    2016-11-01

    Nanowires-dispersed polycrystalline graphene has been recently explored as a transparent conducting material for applications such as solar cells, displays, and touch-screens. Metal nanowires and polycrystalline graphene play synergetic roles during the charge transport in the material by compensating for each other's limitations. In the present work, we develop and employ an extensive computational framework to study the essential characteristics of the charge transport not only on an aggregate basis but also on individual constituents' levels in these types of composite thin-films. The method allows the detailed visualization of the percolative current pathways in the material and provides the direct evidence of current crowding in the 1-D nanowires and 2-D polygraphene sheet. The framework is used to study the effects of several important governing parameters such as length, density and orientation of the nanowires, grain density in polygraphene, grain boundary resistance, and the contact resistance between nanowires and graphene. We also present and validate an effective medium theory based generalized analytical model for the composite. The analytical model is in agreement with the simulations, and it successfully predicts the overall conductance as a function of several parameters including the nanowire network density and orientation and graphene grain boundaries. Our findings suggest that the longer nanowires (compared to grain size) with low angle orientation (<40°) with respect to the main carrier transport direction provide significant advantages in enhancing the conductance of the polygraphene sheet. We also find that above a certain value of grain boundary resistance (>60 × intra-grain resistance), the overall conductance becomes nearly independent of grain boundary resistance due to nanowires. The developed model can be applied to study other emerging transparent conducting materials such as nanowires, nanotubes, polygraphene, graphene oxide, and their hybrid nanostructures.

  5. Solution Conformations of Graphene Oxide Sheets, and Two-Dimensional Nanofluidics

    NASA Astrophysics Data System (ADS)

    Koltonow, Andrew R.

    This work reports studies on the physical properties of collections of nanosheets. First, the configurations of graphene oxide sheets in solution are studied. Polarized optical microscopy reveals quickly and decisively that sheets remain flat and form lyotropic liquid crystals over a wide range of solvent conditions. When solvent conditions are inhospitable enough, sheets agglomerate into stacks rather crumpling upon themselves. Theory and simulation suggest that the crumpled state, which can be formed by compressing sheets, is metastable. This work might correct a persistent misunderstanding about the solution physics of graphene oxide. The other major area of study concerns the hydration layers in between lamellar stacks of exfoliated, restacked nanosheets. These layers comprise massive arrays of parallel two-dimensional nanofluidic channels, which exhibit enhanced unipolar ionic conductivity with counterions as the majority charge carriers. Based on the previously discovered graphene oxide nanofluidic platform, exfoliated vermiculite nanofluidic channels are constructed, which shuttle protons through the hydration channels by a Grotthuss mechanism, and which show superior thermal stability to graphene oxide. The 2D nanofluidics platform is also used to demonstrate "kirigami nanofluidics", where ion transport can be manipulated by cutting the film into specific shapes. This can give rise to ionic current rectification. The rectification effect is attributed to the size and shape mismatch of the concentration polarization zones developed at the inlets and outlets of the nanofluidic channels. The kirigami nanofluidic platform can be used to fabricate ionic diodes and other simple devices. This material platform is expected to be a useful tool for nanofluidics researchers, because it offers a way to carry out nanofluidic experiments quickly with minimal equipment and little expense.

  6. Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors.

    PubMed

    Chang, Kai-Wen; Hsieh, Ya-Ping; Ting, Chu-Chi; Su, Yen-Hsun; Hofmann, Mario

    2017-08-22

    Graphene's attractiveness in many applications is limited by its high resistance. Extrinsic doping has shown promise to overcome this challenge but graphene's performance remains below industry requirements. This issue is caused by a limited charge transfer efficiency (CTE) between dopant and graphene. Using AuCl 3 as a model system, we measure CTE as low as 5% of the expected values due to the geometrical capacitance of small adsorbate clusters. We here demonstrate a strategy for enhancing the CTE by a two-step optimization of graphene's surface energy prior to AuCl 3 doping. First, exposure to UV ozone modified the hydrophilicity of graphene and was found to decrease the cluster's geometric capacitance, which had a direct effect on the CTE. Occurrence of lattice defects at high UV exposure, however, deteriorated graphene's transport characteristics and limited the effectiveness of this pretreatment step. Thus, prior to UV exposure, a functionalized polymer layer was introduced that could further enhance graphene's surface energy while protecting it from damage. Combination of these treatment steps were found to increase the AuCl 3 charge transfer efficiency to 70% and lower the sheet resistance to 106 Ω/γ at 97% transmittance which represents the highest reported performance for doped single layer graphene and is on par with commercially available transparent conductors.

  7. Atomistic Interrogation of B–N Co-dopant Structures and Their Electronic Effects in Graphene

    DOE PAGES

    Schiros, Theanne; Nordlund, Dennis; Palova, Lucia; ...

    2016-06-21

    Chemical doping has been demonstrated to be an effective method for producing high-quality, large-area graphene with controlled carrier concentrations and an atomically tailored work function. Furthermore, the emergent optoelectronic properties and surface reactivity of carbon nanostructures are dictated by the microstructure of atomic dopants. Co-doping of graphene with boron and nitrogen offers the possibility to further tune the electronic properties of graphene at the atomic level, potentially creating p- and n-type domains in a single carbon sheet, opening a gap between valence and conduction bands in the 2-D semimetal. When using a suite of high-resolution synchrotron-based X-ray techniques, scanning tunnelingmore » microscopy, and density functional theory based computation we visualize and characterize B–N dopant bond structures and their electronic effects at the atomic level in single-layer graphene grown on a copper substrate. We find there is a thermodynamic driving force for B and N atoms to cluster into BNC structures in graphene, rather than randomly distribute into isolated B and N graphitic dopants, although under the present growth conditions, kinetics limit segregation of large B–N domains. We also observe that the doping effect of these BNC structures, which open a small band gap in graphene, follows the B:N ratio (B > N, p-type; B < N, n-type; B=N, neutral). We attribute this to the comparable electron-withdrawing and -donating effects, respectively, of individual graphitic B and N dopants, although local electrostatics also play a role in the work function change.« less

  8. Theoretical investigation of calcium-decorated β12 boron sheet for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Tang, Xiao; Gu, Yuantong; Kou, Liangzhi

    2018-03-01

    From first-principles calculations based on density functional theory, we find that the recently synthesized β12 boron sheet is a perfect candidate for calcium-decoration and hydrogen storage application. In contrast to graphene where defects are required to capture Ca, the naturally formed hexagonal hollow ring in β12 boron sheet provides the ideal site for Ca adsorption, and up to 6H2 molecules for each Ca atom can be captured with a desirable binding energy of ∼0.2 eV/H2. The gravimetric hydrogen density for Ca decorated boron sheet can reach up to 8.92 wt%. From the electronic analysis, it is found that both the orbital hybridizations and polarization mechanism play significant roles in H2 adsorption and storage.

  9. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes.

    PubMed

    Meyer, Jens; Kidambi, Piran R; Bayer, Bernhard C; Weijtens, Christ; Kuhn, Anton; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Robertson, John; Hofmann, Stephan

    2014-06-20

    The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the Fermi level of graphene, leading to a near ideal alignment of the transport levels. The surface charge transfer manifests itself also as strong and stable p-type doping of the graphene layers, with the Fermi level downshifted by 0.25 eV and sheet resistance values consistently below 50 Ω/sq for few-layer graphene films. The combination of stable doping and highly efficient charge extraction/injection allows the demonstration of simplified graphene-based OLED device stacks with efficiencies exceeding those of standard ITO reference devices.

  10. Photoelectric polarization-sensitive broadband photoresponse from interface junction states in graphene

    DOE PAGES

    Kalugin, Nikolai G.; Jing, Lei; Morell, Eric Suarez; ...

    2016-10-24

    Graphene has established itself as a promising optoelectronic material. Many details of the photoresponse (PR) mechanisms in graphene in the THz-to-visible range have been revealed, however, new intricacies continue to emerge. Interface junctions, formed at the boundaries between parts of graphene with different number of layers or different stacking orders, and making connection between electrical contacts, provide another peculiar setup to establish PR. Here, we experimentally demonstrate an enhanced polarization sensitive photoelectric PR in graphene sheets containing interface junctions as compared to homogenous graphene sheets in the visible, infrared, and THz spectral regions. Our numerical simulations show that highly localizedmore » electronic states are created at the interface junctions, and these states exhibit a unique energy spectrum and enhanced probabilities for optical transitions. Here, the interaction of electrons from interface junction states with electromagnetic fields generates a polarization-sensitive PR that is maximal for the polarization direction perpendicular to the junction interface.« less

  11. Defects controlled wrinkling and topological design in graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Teng; Li, Xiaoyan; Gao, Huajian

    2014-07-01

    Due to its atomic scale thickness, the deformation energy in a free standing graphene sheet can be easily released through out-of-plane wrinkles which, if controllable, may be used to tune the electrical and mechanical properties of graphene. Here we adopt a generalized von Karman equation for a flexible solid membrane to describe graphene wrinkling induced by a prescribed distribution of topological defects such as disclinations (heptagons or pentagons) and dislocations (heptagon-pentagon dipoles). In this framework, a given distribution of topological defects in a graphene sheet is represented as an eigenstrain field which is determined from a Poisson equation and can be conveniently implemented in finite element (FEM) simulations. Comparison with atomistic simulations indicates that the proposed model, with only three parameters (i.e., bond length, stretching modulus and bending stiffness), is capable of accurately predicting the atomic scale wrinkles near disclination/dislocation cores while also capturing the large scale graphene configurations under specific defect distributions such as those leading to a sinusoidal surface ruga2

  12. Photoelectric polarization-sensitive broadband photoresponse from interface junction states in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalugin, Nikolai G.; Jing, Lei; Morell, Eric Suarez

    Graphene has established itself as a promising optoelectronic material. Many details of the photoresponse (PR) mechanisms in graphene in the THz-to-visible range have been revealed, however, new intricacies continue to emerge. Interface junctions, formed at the boundaries between parts of graphene with different number of layers or different stacking orders, and making connection between electrical contacts, provide another peculiar setup to establish PR. Here, we experimentally demonstrate an enhanced polarization sensitive photoelectric PR in graphene sheets containing interface junctions as compared to homogenous graphene sheets in the visible, infrared, and THz spectral regions. Our numerical simulations show that highly localizedmore » electronic states are created at the interface junctions, and these states exhibit a unique energy spectrum and enhanced probabilities for optical transitions. Here, the interaction of electrons from interface junction states with electromagnetic fields generates a polarization-sensitive PR that is maximal for the polarization direction perpendicular to the junction interface.« less

  13. Ag-graphene hybrid conductive ink for writing electronics.

    PubMed

    Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D

    2014-02-07

    With the aim of preparing a method for the writing of electronics on paper by the use of common commercial rollerball pens loaded with conductive ink, hybrid conductive ink composed of Ag nanoparticles (15 wt%) and graphene-Ag composite nanosheets (0.15 wt%) formed by depositing Ag nanoparticles (∼10 nm) onto graphene sheets was prepared for the first time. Owing to the electrical pathway effect of graphene and the decreased contact resistance of graphene junctions by depositing Ag nanoparticles (NPs) onto graphene sheets, the concentration of Ag NPs was significantly reduced while maintaining high conductivity at a curing temperature of 100 ° C. A typical resistivity value measured was 1.9 × 10(-7) Ω m, which is 12 times the value for bulk silver. Even over thousands of bending cycles or rolling, the resistance values of writing tracks only increase slightly. The stability and flexibility of the writing circuits are good, demonstrating the promising future of this hybrid ink and direct writing method.

  14. Active Radiative Thermal Switching with Graphene Plasmon Resonators.

    PubMed

    Ilic, Ognjen; Thomas, Nathan H; Christensen, Thomas; Sherrott, Michelle C; Soljačić, Marin; Minnich, Austin J; Miller, Owen D; Atwater, Harry A

    2018-03-27

    We theoretically demonstrate a near-field radiative thermal switch based on thermally excited surface plasmons in graphene resonators. The high tunability of graphene enables substantial modulation of near-field radiative heat transfer, which, when combined with the use of resonant structures, overcomes the intrinsically broadband nature of thermal radiation. In canonical geometries, we use nonlinear optimization to show that stacked graphene sheets offer improved heat conductance contrast between "ON" and "OFF" switching states and that a >10× higher modulation is achieved between isolated graphene resonators than for parallel graphene sheets. In all cases, we find that carrier mobility is a crucial parameter for the performance of a radiative thermal switch. Furthermore, we derive shape-agnostic analytical approximations for the resonant heat transfer that provide general scaling laws and allow for direct comparison between different resonator geometries dominated by a single mode. The presented scheme is relevant for active thermal management and energy harvesting as well as probing excited-state dynamics at the nanoscale.

  15. Probing nonlocal effects in metals with graphene plasmons

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo J. C.; Iranzo, David Alcaraz; Gonçalves, P. A. D.; Hajati, Yaser; Bludov, Yuliy V.; Jauho, Antti-Pekka; Mortensen, N. Asger; Koppens, Frank H. L.; Peres, N. M. R.

    2018-06-01

    In this paper, we analyze the effects of nonlocality on the optical properties of a system consisting of a thin metallic film separated from a graphene sheet by a hexagonal boron nitride (hBN) layer. We show that nonlocal effects in the metal have a strong impact on the spectrum of the surface plasmon-polaritons on graphene. If the graphene sheet is nanostructured into a periodic grating, we show that the resulting extinction curves can be used to shed light on the importance of nonlocal effects in metals. Therefore graphene surface plasmons emerge as a tool for probing nonlocal effects in metallic nanostructures, including thin metallic films. As a byproduct of our study, we show that nonlocal effects may lead to smaller losses for the graphene plasmons than what is predicted by a local calculation. Finally, we demonstrate that such nonlocal effects can be very well mimicked using a local theory with an effective spacer thickness larger than its actual value.

  16. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets

    NASA Astrophysics Data System (ADS)

    Xiang, Quanjun; Yu, Jiaguo; Jaroniec, Mietek

    2011-09-01

    Graphene-modified TiO2 nanosheets with exposed (001) facets (graphene/TiO2) were prepared by microwave-hydrothermal treatment of graphene oxide (GO) and hydrothermally synthesized TiO2 nanosheets with exposed (001) facets in an ethanol-water solvent. These nanocomposite samples showed high photocatalytic H2-production activity in aqueous solutions containing methanol, as sacrificial reagent, even without Pt co-catalyst. The optimal graphene content was found to be ~1.0 wt%, giving a H2-production rate of 736 μmol h-1 g-1 with a quantum efficiency (QE) of 3.1%, which exceeded the rate observed on pure TiO2 nanosheets by more than 41 times. This high photocatalytic H2-production activity is due to the deposition of TiO2 nanosheets on graphene sheets, which act as an electron acceptor to efficiently separate the photogenerated charge carriers. The observed enhancement in the photocatalytic activity is due to the lower absolute potential of graphene/graphene z.rad- (-0.08 V vs. SHE, pH = 0) in comparison to the conduction band (-0.24 V) of anatase TiO2, meanwhile the aforementioned absolute value is higher than the reduction potential of H+ (0 V), which favors the electron transfer from the conduction band (CB) of TiO2 to graphene sheets and the reduction of H+, thus enhancing photocatalytic H2-production activity. The proposed mechanism for the observed photocatalytic performance of TiO2 nanosheets, modified with a small amount of graphene, was further confirmed by photoluminescence spectroscopy and transient photocurrent response. This work not only shows a possibility for the utilization of low cost graphene sheets as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also for the first time shows a significant enhancement in the H2-production activity by using metal-free carbon material as an effective co-catalyst.

  17. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement.

    PubMed

    Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie

    2012-11-21

    Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ∼84.5% and ∼70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS.

  18. Graphite-to-Graphene: Total Conversion.

    PubMed

    Buzaglo, Matat; Bar, Ilan Pri; Varenik, Maxim; Shunak, Liran; Pevzner, Svetlana; Regev, Oren

    2017-02-01

    The rush to develop graphene applications mandates mass production of graphene sheets. However, the currently available complex and expensive production technologies are limiting the graphene commercialization. The addition of a protective diluent to graphite during ball-milling is demonstrated to result in a game-changer yield (>90%) of defect-free graphene, whose size is controlled by the milling energy and the diluent type. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemisorption and Diffusion of H on a Graphene Sheet and Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Dzegilenko, Fedor; Menon, Madhu

    2000-01-01

    Recent experiments on hydrogen storage in single wall nanotubes and nanotube bundles have reported large fractional weight of stored molecular hydrogen which are not in agreement with theoretical estimates based of simulation of hydrogen storage by physisorption mechanisms. Hydrogen storage in catalytically doped nanotube bundles indicate that atomic H might undergo chemisorption changing the basic nature of the storage mechanism under investigation by many groups. Using a generalized tight-binding molecular dynamics (GTBMD) method for reactive C-H dynamics, we investigate chemisorption and diffusion of atomic H on graphene sheet and C nanotubes. Effective potential energy surfaces (EPS) for chemisorption and diffusion are calculated for graphene sheet and nanotubes of different curvatures. Analysis of the activation barriers and quantum rate constants, computed via wave-packet dynamics method, will be discussed in this presentation.

  20. Graphene-Vertically Aligned Carbon Nanotube Hybrid on PDMS as Stretchable Electrodes.

    PubMed

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric Peter; Lee, Woo; Fisher, Frank T; Yang, Eui-Hyeok

    2017-09-11

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO) -VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition (APCVD). VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386±55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications. © 2017 IOP Publishing Ltd.

  1. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By usingmore » graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.« less

  2. Graphene plasmons embedded in a gain medium: layer and ribbon plasmons

    NASA Astrophysics Data System (ADS)

    Altares Menendez, Galaad; Rosolen, Gilles; Maes, Bjorn

    2016-12-01

    Graphene plasmonics has attracted much attention due to its remarkable properties such as tunable conductivity and extreme confinement. However, losses remain one of the major drawbacks to developing more efficient devices based on graphene plasmons. Here we show that when a gain medium is introduced around a 1D graphene sheet, lossless propagation can be achieved for a critical gain value. Both numerics and analytics are employed; and with the Drude approximation the analytical expression for this critical gain becomes remarkably simple. Furthermore, we examine a single 2D graphene nanoribbon within a gain environment. We report that the plasmonic resonant modes exhibit a spasing effect for a specific value of the surrounding gain. This feature is indicated by an absorption cross section that strongly increases and narrows. Finally, we manage to connect the ribbon results to the 1D sheet critical gain, by taking external coupling into account.

  3. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    DOEpatents

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  4. One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Wang, Weixuan; Chen, Lingyun; Bai, Yitong; Ming, Zhu; Yang, Sheng-Tao

    2016-01-01

    Graphene sponge (GS) has found applications in oil removal due to the hydrophobic nature of graphene sheets. Current hydrothermal preparations of GS use toxic reducing reagents, which might cause environmental pollution. In this study, we reported that graphene oxide (GO) could be hydrothermally reduced by glucose to form GS for the adsorption of oils and various organic solvents. Graphene sheets were reduced by glucose during the hydrothermal treatment and formed 3D porous structure. GS efficiently adsorbed organic solvents and oils with competitive adsorption capacities. GS was able to treat pollutants in pure liquid form and also in the simulated seawater. GS could be easily regenerated by evaporating or burning. After 10 cycles, the adsorption capacity still retained 77% by evaporating and 87% by burning. The implication to the applications of GS in water remediation is discussed.

  5. The Self-Association of Graphane Is Driven by London Dispersion and Enhanced Orbital Interactions.

    PubMed

    Wang, Changwei; Mo, Yirong; Wagner, J Philipp; Schreiner, Peter R; Jemmis, Eluvathingal D; Danovich, David; Shaik, Sason

    2015-04-14

    We investigated the nature of the cohesive energy between graphane sheets via multiple CH···HC interactions, using density functional theory (DFT) including dispersion correction (Grimme's D3 approach) computations of [n]graphane σ dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical π/π interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (ΔE(F)) composed of electrostatic and Pauli repulsion interactions, polarization (ΔE(pol)), charge-transfer interaction (ΔE(CT)), and dispersion effects (ΔE(disp)). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the σ(CH) → σ*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 Å. The ΔE(CT) term, which accounts for ∼15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic "glue" for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the "double faced adhesive tape" style of charge transfer interactions was also observed among graphene sheets in which it accounts for ∼18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH···HC interactions, or as a function of the number of C-H bonds.

  6. Ammonia gas sensors based on chemically reduced graphene oxide sheets self-assembled on Au electrodes

    PubMed Central

    2014-01-01

    We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701

  7. Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Yu, Pingping; Zhao, Xin; Li, Yingzhi; Zhang, Qinghua

    2017-01-01

    Free-standing hierarchical macro/mesoporous flexible graphene foam have been constructed by rational intergration ofwell dispersed graphene oxide sheets and amino-modified polystyrene (PS) spheres through a facile ;templating and embossing; technique. The three dimensional (3D) macro/mesoporous flexible graphene foam not only inherits the uniform porous structures of graphene foam, but also contains hierarchical macro/mesopores on the struts by sacrificing PS spheres and the activation of KOH, which could providing rapid pathways for ionic and electronic transport to high specific capacitance. Vertically polyaniline (PANI) nanowire arrays are then uniformly deposited onto the hierarchical macro/mesoporous graphene foam(fRGO-F/PANI) by a simple in situ polymerization, which show a high specific capacitance of 939 F g-1. Thanks to the synergistic function of 3D bicontinuous hierarchical porous structure of graphene foam and effective immobilization of PANI nanowires on the struts, the assembled symmetric supercapctior with fRGO-F/PANI as electrodes exhibits a maximum energy density and power density of 20.9 Wh kg-1 and 103.2 kW kg-1, respectively. Moreover, it also displays an excellent cyclic stability with a 88.7% retention after 5000 cycles.

  8. Selective self-assembly and light emission tuning of layered hybrid perovskites on patterned graphene.

    PubMed

    Guerra, Valentino L P; Kovaříček, Petr; Valeš, Václav; Drogowska, Karolina; Verhagen, Tim; Vejpravova, Jana; Horák, Lukáš; Listorti, Andrea; Colella, Silvia; Kalbáč, Martin

    2018-02-15

    The emission of light in two-dimensional (2-D) layered hybrid organic lead halide perovskites, namely (R-NH 3 ) 2 PbX 4 , can be effectively tuned using specific building blocks for the perovskite formation. Herein this behaviour is combined with a non-covalent graphene functionalization allowing excellent selectivity and spatial resolution of the perovskite film growth, promoting the formation of hybrid 2-D perovskite : graphene heterostructures with uniform coverage of up to centimeter scale graphene sheets and arbitrary shapes down to 5 μm. Using cryo-Raman microspectroscopy, highly resolved spectra of the perovskite phases were obtained and the Raman mapping served as a convenient spatially resolved technique for monitoring the distribution of the perovskite and graphene constituents on the substrate. In addition, the stability of the perovskite phase with respect to the thermal variation was inspected in situ by X-ray diffraction. Finally, time-resolved photoluminescence characterization demonstrated that the optical properties of the perovskite films grown on graphene are not hampered. Our study thus opens the door to smart fabrication routes for (opto)-electronic devices based on 2-D perovskites in contact with graphene with complex architectures.

  9. The wrinkle-like N-solitons for the thermophoretic motion equation through graphene sheets

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Lan; Li, Bang-Qing

    2018-03-01

    The main work is focused on the thermophoretic motion equation, which was derived from wrinkle wave motions in substrate-supported graphene sheets. Via the bilinear method, a class of wrinkle-like N-soliton solutions is constructed. The one-soliton, two-soliton and three-soliton are observed graphically. The shape, amplitude, open direction and width of the N-solitons are controllable through certain parameters.

  10. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Minghua; Zhang, Jiawei; Chen, Qingguo, E-mail: qgchen@263.net

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGOmore » integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.« less

  11. Photocatalytic activity enhancement of anatase-graphene nanocomposite for methylene removal: Degradation and kinetics.

    PubMed

    Rezaei, Mostafa; Salem, Shiva

    2016-10-05

    In the present research, the TiO2-graphene nanocomposite was synthesized by an eco-friendly method. The blackberry juice was introduced to graphene oxide (GO) as a reducing agent to produce the graphene nano-sheets. The nanocomposite of anatase-graphene was developed as a photocatalyst for the degradation of methylene blue, owing to the larger specific surface area and synergistic effect of reduced graphene oxide (RGO). The UV spectroscopy measurements showed that the prepared nanocomposite exhibited an excellent photocatalytic activity toward the methylene blue degradation. The rate of electron transfer of redox sheets is much higher than that observed on GO, indicating the applicability of proposed method for the production of anatase-RGO nanocomposite for treatment of water contaminated by cationic dye. The prepared materials were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement, scanning electron microscopy and transmission electron microscopy. A facile and rapid route was applied for the uniform deposition of anatase nanoparticles on the sheets. The resulting nanocomposite contained nanoparticles with a mean diameter of 10nm. A mechanism for the photocatalytic activity of nanocomposite was suggested and the degradation reaction obeyed the second-order kinetics. It was concluded that the degradation kinetics is changed due to the reduction of GO in the presence of blackberry juice. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals.

    PubMed

    Wu, Yimin A; Kirkland, Angus I; Schäffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moiré patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  13. Lateral dimension-dependent antibacterial activity of graphene oxide sheets.

    PubMed

    Liu, Shaobin; Hu, Ming; Zeng, Tingying Helen; Wu, Ran; Jiang, Rongrong; Wei, Jun; Wang, Liang; Kong, Jing; Chen, Yuan

    2012-08-21

    Graphene oxide (GO) is a promising precursor to produce graphene-family nanomaterials for various applications. Their potential health and environmental impacts need a good understanding of their cellular interactions. Many factors may influence their biological interactions with cells, and the lateral dimension of GO sheets is one of the most relevant material properties. In this study, a model bacterium, Escherichia coli ( E. coli ), was used to evaluate the antibacterial activity of well-dispersed GO sheets, whose lateral size differs by more than 100 times. Our results show that the antibacterial activity of GO sheets toward E. coli cells is lateral size dependent. Larger GO sheets show stronger antibacterial activity than do smaller ones, and they have different time- and concentration-dependent antibacterial activities. Large GO sheets lead to most cell loss after 1 h incubation, and their concentration strongly influences antibacterial activity at relative low concentration (<10 μg/mL). In contrast, when incubating with small GO sheets up to 4 h, the inactivation rate of E. coli cells continues increasing. The increase of small GO sheet concentration also results in persistent increases in their antibacterial activity. In this study, GO sheets with different lateral sizes are all well dispersed, and their oxidation capacity toward glutathione is similar, consistent with X-ray photoelectron spectroscopy and ultraviolet-visible absorption spectroscopy results. This suggests the lateral size-dependent antibacterial activity of GO sheets is caused by neither their aggregation states, nor oxidation capacity. Atomic force microscope analysis of GO sheets and cells shows that GO sheets interact strongly with cells. Large GO sheets more easily cover cells, and cells cannot proliferate once fully covered, resulting in the cell viability loss observed in the followed colony counting test. In contrast, small GO sheets adhere to the bacterial surfaces, which cannot effectively isolate cells from environment. This study highlights the importance of tailoring the lateral dimension of GO sheets to optimize the application potential with minimal risks for environmental health and safety.

  14. Graphene can wreak havoc with cell membranes.

    PubMed

    Dallavalle, Marco; Calvaresi, Matteo; Bottoni, Andrea; Melle-Franco, Manuel; Zerbetto, Francesco

    2015-02-25

    Molecular dynamics--coarse grained to the level of hydrophobic and hydrophilic interactions--shows that small hydrophobic graphene sheets pierce through the phospholipid membrane and navigate the double layer, intermediate size sheets pierce the membrane only if a suitable geometric orientation is met, and larger sheets lie mainly flat on the top of the bilayer where they wreak havoc with the membrane and create a patch of upturned phospholipids. The effect arises in order to maximize the interaction between hydrophobic moieties and is quantitatively explained in terms of flip-flops by the analysis of the simulations. Possible severe biological consequences are discussed.

  15. Graphene-Composite Carbon Nanofiber-Based Electrodes for Energy Storage Devices

    DTIC Science & Technology

    2014-04-18

    electrochemical supercapacitors . 1. Development of highly conductive graphene composite CNF webs Graphene, a single-atom-thick sheet of sp 2 bonded...electrochemical supercapacitors and evaluated their performance. The capacitance increased with an increase in the amount of MnO2 NWs (duration of the deposition

  16. Strong interfacial polarization in graphene/ZnO nanocomposite for high-performance miniscule permittivity materials

    NASA Astrophysics Data System (ADS)

    Shoeb, Mohd; Mobin, Mohammad; Naqvi, Alim H.

    2018-05-01

    In the 21st century evolution of microelectronics industries, consumptions of integrated circuits (IC's) increases, so the demand of miniscule permittivity (MP) material with minimum loss factor arises in the electronics industries. Graphene embedded ZnO Nanoparticle (Gr/ZnO NCs) is synthesized and studied their dielectric properties In the studied frequency range 75 kHz to 7 MHz. In the sample Gr/ZnO NCs dielectric permittivity decrease gradually from 7.2 to 6.7 as the frequency increases, whereas dielectric permittivity of ZnO NPs shows also diminishing behavior in the range 75 to 20 as the frequency increases. In the Gr/ZnO NCs, Maxwell-Wagner polarization model explains strong interfacial polarization to presence of functionalization group and lattice defects on graphene sheet.

  17. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    PubMed

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  18. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    PubMed Central

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4·7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures. PMID:25788158

  19. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts.

    PubMed

    Parvez, Khaled; Wu, Zhong-Shuai; Li, Rongjin; Liu, Xianjie; Graf, Robert; Feng, Xinliang; Müllen, Klaus

    2014-04-23

    Mass production of high-quality graphene sheets is essential for their practical application in electronics, optoelectronics, composite materials, and energy-storage devices. Here we report a prompt electrochemical exfoliation of graphene sheets into aqueous solutions of different inorganic salts ((NH4)2SO4, Na2SO4, K2SO4, etc.). Exfoliation in these electrolytes leads to graphene with a high yield (>85%, ≤3 layers), large lateral size (up to 44 μm), low oxidation degree (a C/O ratio of 17.2), and a remarkable hole mobility of 310 cm(2) V(-1) s(-1). Further, highly conductive graphene films (11 Ω sq(-1)) are readily fabricated on an A4-size paper by applying brush painting of a concentrated graphene ink (10 mg mL(-1), in N,N'-dimethylformamide). All-solid-state flexible supercapacitors manufactured on the basis of such graphene films deliver a high area capacitance of 11.3 mF cm(-2) and an excellent rate capability of 5000 mV s(-1). The described electrochemical exfoliation shows great promise for the industrial-scale synthesis of high-quality graphene for numerous advanced applications.

  20. Electrically tunable robust edge states in graphene-based topological photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Song, Zidong; Liu, HongJun; Huang, Nan; Wang, ZhaoLu

    2018-03-01

    Topological photonic crystals are optical structures supporting topologically protected unidirectional edge states that exhibit robustness against defects. Here, we propose a graphene-based all-dielectric photonic crystal slab structure that supports two-dimensionally confined topological edge states. These topological edge states can be confined in the out-of-plane direction by two parallel graphene sheets. In the structure, the excitation frequency range of topological edge states can be dynamically and continuously tuned by varying bias voltage across the two parallel graphene sheets. Utilizing this kind of architecture, we construct Z-shaped channels to realize topological edge transmission with diffrerent frequencies. The proposal provides a new degree of freedom to dynamically control topological edge states and potential applications for robust integrated photonic devices and optical communication systems.

  1. The forward rainbow scattering of low energy protons by a graphene sheet

    NASA Astrophysics Data System (ADS)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2018-05-01

    This article studies the rainbow scattering of 5-keV protons by the single sheet of free-standing graphene and its possible use as a tool for investigation of the ion-graphene interaction. The proton-graphene interaction potential was constructed by using the Doyle-Turner, ZBL, and Molière proton-carbon interaction potentials. The thermal motion of carbon atoms was included by averaging the potentials according to the Debye model. Proton trajectories were obtained by numerical solution of the corresponding Newton equations of motion. They were used to obtain the mapping of the proton initial positions to their scattering angles. Morphological properties of the introduced mapping including its multiplicity and the rainbow singularities were used to explain important features of the obtained angular distributions of transmitted protons.

  2. Dielectric properties of graphene/MoS2 heterostructures from ab initio calculations and electron energy-loss experiments

    NASA Astrophysics Data System (ADS)

    Mohn, Michael J.; Hambach, Ralf; Wachsmuth, Philipp; Giorgetti, Christine; Kaiser, Ute

    2018-06-01

    High-energy electronic excitations of graphene and MoS2 heterostructures are investigated by momentum-resolved electron energy-loss spectroscopy in the range of 1 to 35 eV. The interplay of excitations on different sheets is understood in terms of long-range Coulomb interactions and is simulated using a combination of ab initio and dielectric model calculations. In particular, the layered electron-gas model is extended to thick layers by including the spatial dependence of the dielectric response in the direction perpendicular to the sheets. We apply this model to the case of graphene/MoS2/graphene heterostructures and discuss the possibility of extracting the dielectric properties of an encapsulated monolayer from measurements of the entire stack.

  3. Fabrication of water-dispersible and highly conductive PSS-doped PANI/graphene nanocomposites using a high-molecular weight PSS dopant and their application in H2S detection

    NASA Astrophysics Data System (ADS)

    Cho, Sunghun; Lee, Jun Seop; Jun, Jaemoon; Kim, Sung Gun; Jang, Jyongsik

    2014-11-01

    This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm-1) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets.This work describes the fabrication of poly(4-styrenesulfonic acid)-doped polyaniline/graphene (PSS-doped PANI/graphene) nanocomposites and their use as sensing elements for hydrogen sulfide (H2S) detection. PSS with a weight-average molecular weight (Mw) of 1.96 × 106 was synthesized using low-temperature free-radical polymerization. The PSS was used as both a doping agent and a binding agent for the polymerization of aniline monomers in a biphasic system (water-chloroform) at -50 °C. The high Mw of PSS resulted in relatively large particle sizes and smooth surfaces of the PSS-doped PANI. These physical characteristics, in turn, resulted in low interparticle resistance and high conductivity. In addition, the PSS allowed homogeneous dispersion of reduced graphene sheets through electrostatic repulsion. The prepared PSS-doped PANI/graphene solutions showed good compatibility with flexible poly(ethylene terephthalate) (PET) substrates, making them suitable for flexible sensor electrodes. Changes in the charge-transport properties, such as protonation level, conjugation length, crystalline structure, and charge-transfer resistance, of the electrode materials were the main factors influencing the electrical and sensor performance of the PSS-doped PANI-based electrodes. PSS-doped PANI/graphene composites containing 30 wt% graphene showed the highest conductivity (168.4 S cm-1) and the lowest minimum detection level (MDL) for H2S gas (1 ppm). This result is consistent with the observed improvements in charge transport in the electrode materials via strong π-π stacking interactions between the PANI and the graphene sheets. Electronic supplementary information (ESI) available: FE-SEM images of PSS-doped PANI/graphene nanocomposites and graphene sheets, FT-IR spectra of PSS with different Mw, XRD patterns of PSS-doped PANI polymerized with different Mw of PSS, FT-IR spectra of GO, RGO, PSS-coated GO, and PSS-coated RGO, fully XPS scanned spectra of PSS-doped PANI/graphene nanocomposites, cyclic voltammogram of PSS-doped PANI/graphene nanocomposites at different scan rates (10 to 50 mV-1), and I-V characteristics of PSS-doped PANI/graphene nanocomposites with a thickness of 5 μm. See DOI: 10.1039/c4nr04413d

  4. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  5. Wide memory window in graphene oxide charge storage nodes

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Pu, Jing; Chan, Daniel S. H.; Cho, Byung Jin; Loh, Kian Ping

    2010-04-01

    Solution-processable, isolated graphene oxide (GO) monolayers have been used as a charge trapping dielectric in TaN gate/Al2O3/isolated GO sheets/SiO2/p-Si memory device (TANOS). The TANOS type structure serves as memory device with the threshold voltage controlled by the amount of charge trapped in the GO sheet. Capacitance-Voltage hysteresis curves reveal a 7.5 V memory window using the sweep voltage of -5-14 V. Thermal reduction in the GO to graphene reduces the memory window to 1.4 V. The unique charge trapping properties of GO points to the potential applications in flexible organic memory devices.

  6. Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties

    NASA Astrophysics Data System (ADS)

    Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.

    2017-12-01

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.

  7. A B-C-N hybrid porous sheet: an efficient metal-free visible-light absorption material.

    PubMed

    Lu, Ruifeng; Li, Feng; Salafranca, Juan; Kan, Erjun; Xiao, Chuanyun; Deng, Kaiming

    2014-03-07

    The polyphenylene network, known as porous graphene, is one of the most important and widely studied two-dimensional materials. As a potential candidate for photocatalysis and photovoltaic energy generation, its application has been limited by the low photocatalytic activity in the visible-light region. State-of-the-art hybrid density functional theory investigations are presented to show that an analogous B-C-N porous sheet outperforms the pristine polyphenylene network with significantly enhanced visible-light absorption. Compared with porous graphene, the calculated energy gap of the B-C-N hybrid crystal shrinks to 2.7 eV and the optical absorption peak remarkably shifts to the visible light region. The redox potentials of water splitting are well positioned in the middle of the band gap. Hybridizations among B_p, N_p and C_p orbitals are responsible for these findings. Valence and conduction band calculations indicate that the electrons and holes can be effectively separated, reducing charge recombination and improving the photoconversion efficiency. Moreover, the band gap and optical properties of the B-C-N hybrid porous sheet can be further finely engineered by external strain.

  8. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.

    PubMed

    Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie

    2014-09-10

    Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.

  9. Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source.

    PubMed

    Maddi, Chiranjeevi; Bourquard, Florent; Barnier, Vincent; Avila, José; Asensio, Maria-Carmen; Tite, Teddy; Donnet, Christophe; Garrelie, Florence

    2018-02-19

    New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped 'few-layer' graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology.

  10. Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing.

    PubMed

    Osikoya, Adeniyi Olugbenga; Parlak, Onur; Murugan, N Arul; Dikio, Ezekiel Dixon; Moloto, Harry; Uzun, Lokman; Turner, Anthony Pf; Tiwari, Ashutosh

    2017-03-15

    In this study, we have demonstrated the use of chemical vapour deposition (CVD) grown-graphene to develop a highly-ordered graphene-enzyme electrode for electrochemical biosensing. The graphene sheets were deposited on 1.00mm thick copper sheet at 850°C using acetylene (C 2 H 2 ) as carbon source in an argon (Ar) and nitrogen (N 2 ) atmosphere. An anionic surfactant was used to increase wettability and hydrophilicity of graphene; thereby facilitating the assembly of biomolecules on the electrode surface. Meanwhile, the theoretical calculations confirmed the successful modification of hydrophobic nature of graphene through the anionic surface assembly, which allowed high-ordered immobilisation of glucose oxidase (GOx) on the graphene. The electrochemical sensing activities of the graphene-electrode was explored as a model for bioelectrocatalysis. The bioelectrode exhibited a linear response to glucose concentration ranging from 0.2 to 9.8mM, with sensitivity of 0.087µA/µM/cm 2 and a detection limit of 0.12µM (S/N=3). This work sets the stage for the use of acetylene-sourced CVD-grown graphene as a fundamental building block in the fabrication of electrochemical biosensors and other bioelectronic devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents

    PubMed Central

    Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C.; Cha, Kitty; Hall, Anthony S.; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B.

    2014-01-01

    Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24° 2θ (3.4 Å), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications. PMID:20586422

  12. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.

    PubMed

    Lee, Kyubin; Lee, Jungkuk; Kwon, Kyoung Woo; Park, Min-Sik; Hwang, Jin-Ha; Kim, Ki Jae

    2017-07-12

    Electrodes composed of multilayered graphene grown on a metal foam (GMF) were prepared by directly growing multilayer graphene sheets on a three-dimensional (3D) Ni-foam substrate via a self-catalyzing chemical vapor deposition process. The multilayer graphene sheets are successfully grown on the Ni-foam substrate surface, maintaining the unique 3D macroporous structure of the Ni foam. The potential use of GMF electrodes in nonaqueous redox flow batteries (RFBs) is carefully examined using [Co(bpy) 3 ] +/2+ and [Fe(bpy) 3 ] 2+/3+ redox couples. The GMF electrodes display a much improved electrochemical activity and enhanced kinetics toward the [Co(bpy) 3 ] +/2+ (anolyte) and [Fe(bpy) 3 ] 2+/3+ (catholyte) redox couples, compared with the bare Ni metal foam electrodes, suggesting that the 2D graphene sheets having lots of interdomain defects provide sufficient reaction sites and secure electric-conduction pathways. Consequently, a nonaqueous RFB cell assembled with GMF electrodes exhibits high Coulombic and voltage efficiencies of 87.2 and 90.9%, respectively, at the first cycle. This performance can be maintained up to the 50th cycle without significant efficiency loss. Moreover, the importance of a rational electrode design for improving electrochemical performance is addressed.

  13. A hierarchical coarse-grained (all-atom to all residue) approach to peptides (P1, P2) binding with a graphene sheet

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Kuang, Zhifeng; Farmer, Barry; Kim, Sang; Naik, Rajesh

    2012-02-01

    Recently, Kim et al. [1] have found that peptides P1: HSSYWYAFNNKT and P2: EPLQLKM bind selectively to graphene surfaces and edges respectively which are critical in modulating both the mechanical as well as electronic transport properties of graphene. Such distinctions in binding sites (edge versus surface) observed in electron micrographs were verified by computer simulation by an all-atomic model that captures the pi-pi bonding. We propose a hierarchical approach that involves input from the all-atom Molecular Dynamics (MD) study (with atomistic detail) into a coarse-grained Monte Carlo simulation to extend this study further to a larger scale. The binding energy of a free amino acid with the graphene sheet from all-atom simulation is used in the interaction parameter for the coarse-grained approach. Peptide chain executes its stochastic motion with the Metropolis algorithm. We investigate a number of local and global physical quantities and find that peptide P1 is likely to bind more strongly to graphene sheet than P2 and that it is anchored by three residues ^4Y^5W^6Y. [1] S.N. Kim et al J. Am. Chem. Soc. 133, 14480 (2011).

  14. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.

    PubMed

    Ji, Junyi; Liu, Jilei; Lai, Linfei; Zhao, Xin; Zhen, Yongda; Lin, Jianyi; Zhu, Yanwu; Ji, Hengxing; Zhang, Li Li; Ruoff, Rodney S

    2015-08-25

    We report the fabrication of a three-dimensional free-standing nitrogen-doped porous graphene/graphite foam by in situ activation of nitrogen-doped graphene on highly conductive graphite foam (GF). After in situ activation, intimate "sheet contact" was observed between the graphene sheets and the GF. The sheet contact produced by in situ activation is found to be superior to the "point contact" obtained by the traditional drop-casting method and facilitates electron transfer. Due to the intimate contact as well as the use of an ultralight GF current collector, the composite electrode delivers a gravimetric capacity of 642 mAh g(-1) and a volumetric capacity of 602 mAh cm(-3) with respect to the whole electrode mass and volume (including the active materials and the GF current collector). When normalized based on the mass of the active material, the composite electrode delivers a high specific capacity of up to 1687 mAh g(-1), which is superior to that of most graphene-based electrodes. Also, after ∼90 s charging, the anode delivers a capacity of about 100 mAh g(-1) (with respect to the total mass of the electrode), indicating its potential use in high-rate lithium-ion batteries.

  15. Exfoliation and Air Stability of Germanane

    DTIC Science & Technology

    2013-01-01

    Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 614-247-7438 W911NF-12-1-0481 62249-MS.12 MS Thesis a . REPORT 14. ABSTRACT 16...Germanane Exfoliation of graphene has shown that it is not only possible to create stable, singleatom- thick sheets from a crystalline solid, but that...however, contains the sp3 hybridization needed for functionalization. This functionalization could lead to a tunable band gap necessary for

  16. Theoretical Study of Renewable Ionic Liquids in the Pure State and with Graphene and Carbon Nanotubes.

    PubMed

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-17

    The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.

  17. One-Step Electrochemical Preparation of Multilayer Graphene Functionalized with Nitrogen

    NASA Astrophysics Data System (ADS)

    Ustavytska, Olena; Kurys, Yaroslav; Koshechko, Vyacheslav; Pokhodenko, Vitaly

    2017-03-01

    A new environmentally friendly one-step method for producing multilayer (preferably 7-9 layers) nitrogen-doped graphene (N-MLG) with a slight amount of oxygen-containing defects was developed. The approach is based on the electrochemical exfoliation of graphite electrode in the presence of azide ions under the conditions of electrolysis with pulse changing of the electrode polarization potential. It was found that usage of azide anions lead not only to the exfoliation of graphite but also to the simultaneous functionalization of graphene sheets by nitrogen atoms (as a result of electrochemical decomposition of azide anions with ammonia evolution). Composition, morphology, structure, and electrochemical properties of N-MLG were characterized by C,H,N analysis, transmission electron microscopy, atomic force microscopy, FTIR, UV-Vis, and Raman spectroscopy, as well as cyclic voltammetry. The perspective of using N-MLG as oxygen reduction reaction electrocatalyst and for the electrochemical analysis of biomarkers (dopamine, ascorbic acid, and uric acid) in their mixtures was shown.

  18. Highly-stable and -flexible graphene/(CF3SO2)2NH/graphene transparent conductive electrodes for organic solar cells

    NASA Astrophysics Data System (ADS)

    Seo, Sang Woo; Lee, Ha Seung; Shin, Dong Hee; Kim, Ju Hwan; Jang, Chan Wook; Kim, Jong Min; Kim, Sung; Choi, Suk-Ho

    2017-10-01

    We first employ highly-stable and -flexible (CF3SO2)2NH-doped graphene (TFSA/GR) and GR-encapsulated TFSA/GR (GR/TFSA/GR) transparent conductive electrodes (TCEs) prepared on polyethylene terephthalate substrates for flexible organic solar cells (OSCs). Compared to conventional indium tin oxide (ITO) TCEs, the TFSA-doped-GR TCEs show higher optical transmittance and larger sheet resistance. The TFSA/GR and GR/TFSA/GR TCEs show work functions of 4.89 ± 0.16 and 4.97 ± 0.18 eV, respectively, which are not only larger than those of the ITO TCEs but also indicate p-type doping of GR, and are therefore more suitable for anode TCEs of OSCs. In addition, typical GR/TFSA/GR-TCE OSCs are much more mechanically flexible than the ITO-TCE ones with their photovoltaic parameters being similar, as proved by bending tests as functions of cycle and curvature.

  19. Graphene-silicone elastomer nanocomposite

    NASA Astrophysics Data System (ADS)

    Pan, Shuyang

    The incorporation of fillers to improve the Young's modulus, tensile strength, and elongation at failure of polymeric matrices is ubiquitous. While Young's modulus and tensile strength of the matrix increase with the filler concentration, a threshold filler concentration must be achieved for the elongation at failure to increase. Furthermore, a decrease in elongation at failure has also been observed beyond a critical filler concentration. While the increases in modulus and tensile strength have been attributed to the transfer of mechanical load to the stronger filler, the onset and reversal in elongation at failure are not understood. In this thesis, we use a functionalized graphene sheet (FGS) -- silicone elastomer (SE) nanocomposite as a model system to demonstrate the mechanisms responsible for this observed filler concentration-dependant elongation at failure as well its subsequent reversal. We will also demonstrate the mechanisms that create the continual increase in tensile strength as filler concentration increases. As the lateral size of FGS strongly influences the tensile strength of the resulting composite, in the first part of this thesis, we show that the oxidation path and the mechanical energy input influence the size of graphene oxide sheets derived from graphite oxide. The cross-planar oxidation of graphite from the (0002) plane results in periodic cracking of the uppermost graphene oxide layer, limiting its lateral dimension to less than 30 microm. We use an energy balance between the elastic strain energy associated with the undulation of graphene oxide sheets at the hydroxyl and epoxy sites, the crack formation energy, and the interaction energy between graphene layers to determine the cell size of the cracks. Under both edge-to-center and cross-planar oxidations, the size of graphene oxide sheets is determined by the aspect ratio of graphite and the mechanical energy input in processing the sheets. In the second part of this thesis, we use atomic force microscopy-based single molecule force spectroscopy and infrared spectroscopy to show that the FGS-SE interface is dominated by the hydrogen bonds between the hydroxyl and epoxy groups on FGS and polydimethylsiloxane (PDMS, uncrosslinked form of SE) monomers. These hydrogen bonds allow the mechanical load to be transferred from the weaker SE to the stronger FGS, leading to an improvement in the tensile strength of SE. The strength of a single PDMS-FGS hydrogen bond is measured to be 30-120 pN and it is on the same order of magnitude as the strengths of other types of hydrogen bonds previously reported. In the final part of the thesis, utilizing experimental analysis and a two dimensional viscoelastic lattice model constructed by our collaborators, we show that while load transfer to FGS is the main cause of the enhancements in modulus and strength, the enhancement in elongation at failure is due to FGS-induced distributed tearing. First critical concentration, which defines the mechanical percolation, corresponds to the isolation of tensile zones generated by the fillers, as well as the initiation of tear arresting and deflection, thus enhancing distributed tearing and deformation. At the second critical concentration, cumulative dilation caused by distributed tearing reaches a maximum, leading to the reversal in elongation in failure.

  20. Effect of graphite oxide solution concentration on the properties of multilayer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umar, Marjoni Imamora Ali; Yap, Chi Chin; Awang, Rozidawati

    2013-11-27

    This paper reports the influence of graphite oxide (GO) solution concentration on the optical and electrical properties of multilayer graphene (MLG) films. Graphene oxide (GrO) films were deposited on the glass substrates by spin coating aqueous solutions of GO with different concentrations (7, 8, 9, 10 and 11 mg/ml). The GrO films were then thermally reduced at temperature of 500°C in argon flow for half an hour to form MLG films. Both the transmittance and sheet resistance decreased with the GO concentration from 8 mg/ml to 9 mg/ml, possibly due to thicker and uniform coverage of MLG over the substrate.more » However, the transmittance and sheet resistance increased rapidly as the GO concentration reached 11 mg/ml, which can be attributed to poor film quality. The MLG film obtained at concentration of 10 mg/ml showed the highest transmittance/sheet resistance ratio with 69 % transmittance and sheet resistance of 292 ± 63 kΩ/sq. The optimum MLG film was utilized as counter electrode in dye sensitized solar cells based on ZnO nanorods.« less

Top