Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofu, Maiko; Inamura, Yasuhiro; Miyazaki, Kyoko
2015-12-21
Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (E{sub a}) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionicmore » diffusion processes, E{sub a} increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.« less
The Effect of Lengthening Cation Ether Tails on Ionic Liquid Properties
Lall-Ramnarine, S.; Rodriguez, C.; Fernandez, R.; ...
2016-08-30
In order to explore the effect of multiple ether functionalities on ionic liquid properties, a series of ten pyrrolidinium ionic liquids and ten imidazolium ionic liquids bearing ether and alkyl side chains of varying lengths (4 to 10 atoms in length) were prepared for this study. Their physical properties, such as viscosity, conductivity and thermal profile were measured and compared. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase inmore » the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. These results provide significant insight on the choice of starting materials for researchers designing ILs for specific applications.« less
Biodegradation of imidazolium ionic liquids by activated sludge microorganisms.
Liwarska-Bizukojc, Ewa; Maton, Cedric; Stevens, Christian V
2015-11-01
Biological properties of ionic liquids (ILs) have been usually tested with the help of standard biodegradation or ecotoxicity tests. So far, several articles on the identification of intermediate metabolites of microbiological decay of ILs have been published. Simultaneously, the number of novel ILs with unrecognized characteristics regarding biodegradability and effect on organisms and environment is still increasing. In this work, seven imidazolium ionic liquids of different chemical structure were studied. Three of them are 1-alkyl-3-methyl-imidazolium bromides, while the other four are tetra- or completely substituted imidazolium iodides. This study focused on the identification of intermediate metabolites of the aforementioned ionic liquids subjected to biodegradation in a laboratory activated sludge system. Both fully substituted ionic liquids and 1-ethyl-3-methyl-imidazolium bromide were barely biodegradable. In the case of two of them, no biotransformation products were detected. The elongation of the alkyl side chain made the IL more susceptible for microbiological decomposition. 1-Decyl-3-methyl-imidazolium bromide was biotransformed most easily. Its primary biodegradation up to 100 % could be achieved. Nevertheless, the cleavage of the imidazolium ring has not been observed.
Mixtures of amino-acid based ionic liquids and water.
Chaban, Vitaly V; Fileti, Eudes Eterno
2015-09-01
New ionic liquids (ILs) involving increasing numbers of organic and inorganic ions are continuously being reported. We recently developed a new force field; in the present work, we applied that force field to investigate the structural properties of a few novel imidazolium-based ILs in aqueous mixtures via molecular dynamics (MD) simulations. Using cluster analysis, radial distribution functions, and spatial distribution functions, we argue that organic ions (imidazolium, deprotonated alanine, deprotonated methionine, deprotonated tryptophan) are well dispersed in aqueous media, irrespective of the IL content. Aqueous dispersions exhibit desirable properties for chemical engineering. The ILs exist as ion pairs in relatively dilute aqueous mixtures (10 mol%), while more concentrated mixtures feature a certain amount of larger ionic aggregates.
Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil.
Sunitha, S; Kanjilal, S; Reddy, P S; Prasad, R B N
2007-12-01
Ionic liquids, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIm][PF(6)]) and 1-ethyl-3-methyl imidazolium hexafluorophosphate ([EMIm][PF(6)]), were used for the methanolysis of sunflower oil using Candida antarctica lipase (Novozyme 435) and gave yields of fatty acid methyl esters at 98-99% within 10 h. The optimum conditions of methanolysis in hydrophobic ionic liquids are 2% (w/w) lipase, 1:1 (w/w) oil/ionic liquid and 1:8 (mol/mol) oil/methanol at 58-60 degrees C. Methanolysis using hydrophilic ionic liquids, 3-methyl imidazolium tetrafluoroborate ([HMIm][BF(4)]) and 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm][BF(4)]), gave very poor yields. A hydrophobic ionic liquid thus protects the lipase from methanol. Recovered ionic liquids and lipase were used for four successive reaction cycles without any significant loss of activity.
2013-12-05
Protocol for the Synthesis of Alkylated Imidazolium Salt Derivatives 1,3-Dimethylimidazolium chloride (1,3-diMe-IM][Cl]) (19c) and 1,2,3...C5’). A8. Hypergolic Ionic Liquids to Mill, Suspend, and Ignite Boron Nanoparticles Synthesis of 1-Butyl-3-methylimidazolium chloride ([1-Bu...3-methylimidazolium chloride , 5[Cl] D5. Zinc-assisted synthesis of imidazolium-tetrazolate bi-heterocyclic zwitterions with variable alkyl
Infrared and Ultraviolet Spectroscopy of Gas-Phase Imidazolium and Pyridinium Ionic Liquids.
NASA Astrophysics Data System (ADS)
Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.
2015-06-01
Ionic liquids (ILs) are a highly variable and potentially game-changing class of molecules for a number of Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition, the role of hydrogen bonding in ILs, and especially its relationship to macroscopic properties, is a matter of ongoing research. Here we describe the gas-phase spectroscopy of a series of imidazolium- and pyridinium-based ILs, using a combination of infrared spectroscopy and density functional theory to establish the intermolecular interactions present in various ILs, to assess how well they are described by theory, and to relate microscopic structure to macroscopic properties.
NASA Astrophysics Data System (ADS)
Lan, Xin; Bai, Lu; Li, Xin; Ma, Shuang; He, Xiaozhi; Meng, Fanbao
2014-10-01
Cholesteryl-containing ionic liquid crystals (ILCs) 1-cholesteryloxycarbonylmethyl(propyl)-3-methyl(butyl)imidazolium chlorides ([Ca-Me-Im]Cl, [Ca-Bu-Im]Cl, [Cb-Me-Im]Cl and [Cb-Bu-Im]Cl) and corresponding imidazolium tetrachloroaluminates ([Ca-Me-Im]AlCl4, [Ca-Bu-Im]AlCl4, [Cb-Me-Im]AlCl4 and [Cb-Bu-Im]AlCl4) were synthesized in this work, and the chemical structure, LC behavior and ionic conductivity of all these ILCs were characterized by several technical methods. The imidazolium-based salts with Cl- ions showed chiral smectic A (SA*) phase on both heating and cooling cycles, while the tetrachloroaluminates exhibited chiral nematic (N*) phase. The mesophase was confirmed by characteristic LC textures observed by polarizing optical microscopy and typical diffractogram obtained by X-ray diffraction measurements. The samples with similar cholesteryl-linkage component showed similar phase transition temperature and entropy, indicating the cholesteryl component influence predominately on the phase transition rather than alkyl substituents on the imidazole ring. The imidazolium tetrachloroaluminates display relatively low phase transition temperature compared with the precursor chlorides. The functional difference in LC behavior and ionic conductivity were discussed by investigated the structural difference between the Cl--containing and AlCl4-containing materials. The imidazolium chlorides exhibited layer structure both in crystal and mesophase states, and should be organized with a ‘head-to-tail’ organization to form interdigitated monolayer structures due to the tight ion pairs. But the imidazolium tetrachloroaluminates displayed layer structure only in crystal phase, and should be organized in ‘head-to-head’ arrangements form bilayer structures due to loose combination of ion pairs despite of hydrogen-bond and electrostatic attraction interaction.
NASA Astrophysics Data System (ADS)
Zhang, Mengyue; Wang, Ying; Zhang, Hongmei; Cao, Jian; Fei, Zhenghao; Wang, Yanqing
2018-05-01
The effects of six imidazolium-based ionic liquids (ILs) with different alkyl chain length ([CnMim]Cl, n = 2, 4, 6, 8, 10, 12) on the structure and functions of bovine serum albumin (BSA) were studied by multi-spectral methods and molecular docking. ILs with the longer alkyl chain length have the stronger binding interaction with BSA and the greater conformational damage to protein. The effects of ILs on the functional properties of BSA were further studied by the determination of non-enzyme esterase activity, β-fibrosis and other properties of BSA. The thermal stability of BSA was reduced, the rate of the formation of beta sheet structures of BSA was lowered, and the esterase-like activity of BSA were decreased with the increase of ILs concentration. Simultaneous molecular modeling technique revealed the favorable binding sites of ILs on protein. The hydrophobic force and polar interactions were the mainly binding forces of them. The calculated results are in a good agreement with the spectroscopic experiments. These studies on the impact of the alkyl chain length on binding of imidazolium-based ionic liquids to BSA are of great significance for understanding and developing the application of ionic liquid in life and physiological system.
Hydrogen fluoride capture by imidazolium acetate ionic liquid
NASA Astrophysics Data System (ADS)
Chaban, Vitaly
2015-04-01
Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, we evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.
Siqueira, Leonardo J A; Ribeiro, Mauro C C
2007-10-11
Thermodynamics, structure, and dynamics of an ionic liquid based on a quaternary ammonium salt with ether side chain, namely, N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM2E TFSI, are investigated by molecular dynamics (MD) simulations. Average density and configurational energy of simulated MOENM2E TFSI are interpreted with models that take into account empirical ionic volumes. A throughout comparison of the equilibrium structure of MOENM2E TFSI with previous results for the more common ionic liquids based on imidazolium cations is provided. Several time correlation functions are used to reveal the microscopic dynamics of MOENM2E TFSI. Structural relaxation is discussed by the calculation of simultaneous space-time correlation functions. Temperature effects on transport coefficients (diffusion, conductivity, and viscosity) are investigated. The ratio between the actual conductivity and the estimate from ionic diffusion by the Nernst-Einstein equation indicates that correlated motion of neighboring ions in MOENM2E TFSI is similar to imidazolium ionic liquids. In line with experiment, Walden plot of conductivity and viscosity indicates that simulated MOENM2E TFSI should be classified as a poor ionic liquid.
Maton, Cedric; De Vos, Nils; Roman, Bart I; Vanecht, Evert; Brooks, Neil R; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V
2012-09-17
A versatile and efficient method to synthesize tetrasubstituted imidazoles via a one-pot modified Debus-Radziszewski reaction and their subsequent transformation into the corresponding imidazolium ionic liquids is reported. The tetrasubstituted imidazoles were also synthesized by means of a continuous flow process. This straightforward synthetic procedure allows for a fast and selective synthesis of tetrasubstituted imidazoles on a large scale. The completely substituted imidazolium dicyanamide and bis(trifluoromethylsulfonyl)imide salts were obtained via a metathesis reaction of the imidazolium iodide salts. The melting points and viscosities are of the same order of magnitude as for their non-substituted analogues. In addition to the superior chemical stability of these novel ionic liquids, which allows them to be applied in strong alkaline media, the improved thermal and electrochemical stabilities of these compounds compared with conventional imidazolium ionic liquids is also demonstrated by thermogravimetrical analysis (TGA) and cyclic voltammetry (CV). Although increased substitution of the ionic liquids does not further increase thermal stability, a definite increase in cathodic stability is observable. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng
2016-05-25
The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.
Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids.
Moura, Leila; Mishra, Manas; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A H; Santini, Catherine C; Costa Gomes, Margarida F
2013-06-20
The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.
Elucidating the correlation between morphology and ion dynamics in polymerized ionic liquids.
NASA Astrophysics Data System (ADS)
Heres, Maximilian; Cosby, Tyler; Iacob, Ciprian; Runt, James; Benson, Roberto; Liu, Hongjun; Paddison, Stephen; Sangoro, Joshua
Charge transport and dynamics are investigated for a series of poly-ammonium and poly-imidazolium-based polymerized ionic liquids (polyIL) with a common bis(trifluoromethylsulfonyl)imide anion using broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry. A significant enhancement of the Tg independent ionic conductivity is observed for ammonium based polyIL with shorter pendant groups, in comparison to imidazolium based systems. These results emphasize the importance of polymer backbone spacing as well as counter-ion size on ionic conductivity in polymerized ionic liquids. NSF DMR 1508394.
Heller, Bettina S J; Kolbeck, Claudia; Niedermaier, Inga; Dommer, Sabine; Schatz, Jürgen; Hunt, Patricia; Maier, Florian; Steinrück, Hans-Peter
2018-04-12
For equimolar mixtures of ionic liquids with imidazolium-based cations of very different electronic structure, we observe very pronounced surface enrichment effects by angle-resolved X-ray photoelectron spectroscopy (XPS). For a mixture with the same anion, that is, 1-methyl-3-octylimidazolium hexafluorophosphate+1,3-di(methoxy)imidazolium hexafluorophosphate ([C 8 C 1 Im][PF 6 ]+[(MeO) 2 Im][PF 6 ]), we find a strong enrichment of the octyl chain-containing [C 8 C 1 Im] + cation and a corresponding depletion of the [(MeO) 2 Im] + cation in the topmost layer. For a mixture with different cations and anions, that is, [C 8 C 1 Im][Tf 2 N]+[(MeO) 2 Im][PF 6 ], we find both surface enrichment of the [C 8 C 1 Im] + cation and the [Tf 2 N] - (bis[(trifluoromethyl)sulfonyl]imide) anion, while [(MeO) 2 Im] + and [PF 6 ] - are depleted from the surface. We propose that the observed behavior in these mixtures is due to a lowering of the surface tension by the enriched components. Interestingly, we observe pronounced differences in the chemical shifts of the imidazolium ring signals of the [(MeO) 2 Im] + cations as compared to the non-functionalized cations. Calculations of the electronic structure and the intramolecular partial charge distribution of the cations contribute to interpreting these shifts for the two different cations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Yong-Qiang; Yu, Hong
2016-08-01
Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Dan; Li, Gang; Liu, Haiou
2018-01-01
A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.
NASA Astrophysics Data System (ADS)
Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji
2011-04-01
Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.
Liu, Yong-Qiang; Yu, Hong
2017-04-01
A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Congmin; Zheng, Junjie; Cui, Guokai; Luo, Xiaoyan; Guo, Yan; Li, Haoran
2013-02-11
A strategy to improve SO(2) capture through tuning the electronegativity of the interaction site in ILs has been presented. Two types of imidazolium ionic liquids that include less electronegative sulfur or carbon sites were used for the capture of SO(2), which exhibit extremely highly available capacity, rapid absorption rate and excellent reversibility.
Montalbán, Mercedes G; Collado-González, Mar; Lozano-Pérez, A Abel; Baños, F Guillermo Díaz; Víllora, Gloria
2018-08-01
This data article is related to the subject of the research article "Extraction of Organic Compounds Involved in the Kinetic Resolution of rac-2-Pentanol from n-Hexane by Imidazolium-based Ionic Liquids: Liquid-Liquid Equilibrium" (Montalbán et al., 2018) [1]. It contains experimental data of density and refractive index of binary and ternary mixtures of imidazolium-based ionic liquids, n -hexane and organic compounds involved in the kinetic resolution of rac -2-pentanol ( rac -2-pentanol, vinyl butyrate, rac -2-pentyl butyrate or butyric acid) measured at 303.15 K and 1 atm. These data are presented as calibration curves which help to determine the composition of the ionic liquid-rich phase knowing its density or refractive index.
Hojniak, Sandra D; Silverwood, Ian P; Khan, Asim Laeeq; Vankelecom, Ivo F J; Dehaen, Wim; Kazarian, Sergei G; Binnemans, Koen
2014-07-03
Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, the two classes of ILs benefit from the presence of a nitrile group in different ways. The difunctionalized pyrrolidinium ILs exhibit an increase in CO2 permeance, whereas the permeances of the contaminant gases rise negligibly, resulting in high gas separation selectivities. In the imidazolium ILs, the presence of a nitrile group does not always increase the CO2 permeance nor does it increase the CO2 solubility, as showed in situ by the ATR-FTIR spectroscopic method. High selectivity of these ILs is caused by the considerably reduced permeances of N2 and CH4, most likely due to the ability of the -CN group to reject the nonpolar contaminant gases. Apart from the CO2 solubility, IL-CO2 interactions and IL swelling were studied with the in situ ATR-FTIR spectroscopy. Different strengths of the IL-CO2 interactions were found to be the major difference between the two classes of ILs. The difunctionalized ILs interacted stronger with CO2 than the glycol-functionalized ILs, as manifested in the smaller bandwidths of the bending mode band of CO2 for the latter.
Functional Materials from Polymeric Ionic Liquids
NASA Astrophysics Data System (ADS)
Segalman, Rachel; Sanoja, Gabriel; Michenfelder-Schauser, Nicole; Mitragotri, Samir; Seshadri, Ram
Ionic liquids (IL's) have been suggested for applications as diverse as solubilizing cellulose, antimicrobial treatments, and electrolytes in batteries due to their molten salt properties. A polymeric cation (such as imidazolium) is an excellent host for any associated anion. As a result, polymerized ionic liquids are not just solid counterparts to IL's, but are shown to be vectors for the inclusion of a wide variety of functionalities ranging from multi-valent ions to magnetic anions. Moreover, PIL block copolymers allow orthogonal control over mechanical and morphological properties, ultimately leading to a conceptual framework for processable, tunable, multifunctional materials.
CO2 Responsive Imidazolium-Type Poly(Ionic Liquid) Gels.
Zhang, Jing; Xu, Dan; Guo, Jiangna; Sun, Zhe; Qian, Wenjing; Zhang, Ye; Yan, Feng
2016-07-01
Poly(ionic liquid) (PIL) gels with CO2 stimulus responsiveness have been synthesized through the copolymerization of an imidazolium-type ionic liquid monomer with 2-(dimethyl amino) ethyl methacrylate. Upon bubbling with CO2 gas, the prepared PIL solution is converted to a transparent and stable gel, which can be turned back to the initial solution state after N2 bubbling. The reversible sol-gel phase transition behavior is proved by the reversible values of viscosity and ionic conductivity. The possible mechanism for such a reversible sol-gel phase transition is demonstrated by NMR, conductivity, and rheological measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Liuyi; Wang, Jinyun; Wu, Tao; Wang, Ruihu
2012-06-18
A series of click ionic salts 4 a-4 n was prepared through click reaction of organic azides with alkyne-functionalized imidazolium or 2-methylimidazolium salts, followed by metathesis with lithium bis(trifluoromethanesulfonyl)amide or potassium hexafluorophosphate. All salts were characterized by IR, NMR, TGA, and DSC, and most of them can be classified as ionic liquids. Their steric and electronic properties can be easily tuned and modified through variation of the aromatic or aliphatic substituents at the imidazolium and/or triazolyl rings. The effect of anions and substituents at the two rings on the physicochemical properties was investigated. The charge and orbital distributions based on the optimized structures of cations in the salts were calculated. Reaction of 4 a with PdCl(2) produced mononuclear click complex 4 a-Pd, the structure of which was confirmed by single-crystal X-ray diffraction analysis. Suzuki-Miyaura cross-coupling shows good catalytic stability and high recyclability in the presence of PdCl(2) in 4 a. TEM and XPS analyses show formation of palladium nanoparticles after the reaction. The palladium NPs in 4 a are immobilized by the synergetic effect of coordination and electrostatic interactions with 1,2,3-triazolyl and imidazolium, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and properties of alkoxy- and alkenyl-substituted peralkylated imidazolium ionic liquids.
Maton, Cedric; Brooks, Neil R; Van Meervelt, Luc; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V
2013-10-21
Novel peralkylated imidazolium ionic liquids bearing alkoxy and/or alkenyl side chains have been synthesized and studied. Different synthetic routes towards the imidazoles and the ionic liquids comprising bromide, iodide, methanesulfonate, bis(trifluoromethylsulfonyl)imide ([NTf2](-)), and dicyanamide {[N(CN)2](-)} as the anion were evaluated, and this led to a library of analogues, for which the melting points, viscosities, and electrochemical windows were determined. Incorporation of alkenyl moieties hindered solidification, except for cations with high symmetry. The alkoxy-derivatized ionic liquids are often crystalline; however, room-temperature ionic liquids (RTILs) were obtained with the weakly coordinating anions [NTf2](-) and [N(CN)2](-). For the viscosities of the peralkylated RTILs, an opposite trend was found, that is, the alkoxy derivatives are less viscous than their alkenyl-substituted analogues. Of the crystalline compounds, X-ray diffraction data were recorded and related to their molecular properties. Upon alkoxy substitution, the electrochemical cathodic limit potential was found to be more positive, whereas the complete electrochemical window of the alkenyl-substituted imidazolium salts was shifted to somewhat more positive potentials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Freitas, Flavio S; de Freitas, Jilian N; Ito, Bruno I; De Paoli, Marco-A; Nogueira, Ana F
2009-12-01
Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.
Yamaguchi, Tsuyoshi; Yonezawa, Takuya; Koda, Shinobu
2015-07-15
The frequency-dependent viscosity and conductivity of three imidazolium-based ionic liquids were measured at several temperatures in the MHz region, and the results are compared with the intermediate scattering functions determined by neutron spin echo spectroscopy. The relaxations of both the conductivity and the viscosity agree with that of the intermediate scattering function at the ionic correlation when the relaxation time is short. As the relaxation time increases, the relaxations of the two transport properties deviate to lower frequencies than that of the ionic structure. The deviation begins at a shorter relaxation time for viscosity than for conductivity, which explains the fractional Walden rule between the zero-frequency values of the shear viscosity and the molar conductivity.
Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal.
Schmitz, Paulo; Jakelski, Rene; Pyschik, Marcelina; Jalkanen, Kirsi; Nowak, Sascha; Winter, Martin; Bieker, Peter
2017-03-09
Ionic liquids (ILs) are considered to be suitable electrolyte components for lithium-metal batteries. Imidazolium cation based ILs were previously found to be applicable for battery systems with a lithium-metal negative electrode. However, herein it is shown that, in contrast to the well-known IL N-butyl-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ([Pyr 14 ][TFSI]), 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C2MIm][TFSI]) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C4MIm][TFSI]) are chemically unstable versus metallic lithium. A lithium-metal sheet was immersed in pure imidazolium-based IL samples and aged at 60 °C for 28 days. Afterwards, the aged IL samples were investigated to deduce possible decomposition products of the imidazolium cation. The chemical instability of the ILs in contact with lithium metal and a possible decomposition starting point are shown for the first time. Furthermore, the investigated imidazolium-based ILs can be utilized for lithium-metal batteries through the addition of the solid-electrolyte interphase (SEI) film-forming additive fluoroethylene carbonate. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas
2016-02-10
Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.
Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang
2017-03-01
A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m 2 /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2006-03-01
The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.
Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding
2015-01-01
Three different types of drug delivery platforms based on imidazolium ionic liquids (ILs) were synthesized in high preparative yields, namely, the models involving (i) ionic binding of drug and IL; (ii) covalent binding of drug and IL; and (iii) dual binding using both ionic and covalent approaches. Seven ionic liquids containing salicylic acid (SA-ILs) in the cation or/and in the anion were prepared, and their cytotoxicity toward the human cell lines CaCo-2 (colorectal adenocarcinoma) and 3215 LS (normal fibroblasts) was evaluated. Cytotoxicity of SA-ILs was significantly higher than that of conventional imidazolium-based ILs and was comparable to the pure salicylic acid. It is important to note that the obtained SA-ILs dissolved in water more readily than salicylic acid, suggesting benefits of possible usage of traditional nonsoluble active pharmaceutical ingredients in an ionic liquid form. PMID:26617961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehaudt, Jeremy; Williams, Neil J.; Shkrob, Ilya A.
1,10-Phenanthroline-2,9-dicarboxamide complexants decorated with alkyl chains and imidazolium cations have been studied for extraction of trivalent f-ions into imidazolium ionic liquids. The dicationic complexants are shown to extract Am over Eu with separation factors > 50 and high extraction efficiencies. Lastly, the different size selectivities for lanthanide ions were observed for these two types of the complexants, highlighting the importance of the positive charge in controlling both extraction efficiencies and extraction selectivities.
Dehaudt, Jeremy; Williams, Neil J.; Shkrob, Ilya A.; ...
2016-06-13
1,10-Phenanthroline-2,9-dicarboxamide complexants decorated with alkyl chains and imidazolium cations have been studied for extraction of trivalent f-ions into imidazolium ionic liquids. The dicationic complexants are shown to extract Am over Eu with separation factors > 50 and high extraction efficiencies. Lastly, the different size selectivities for lanthanide ions were observed for these two types of the complexants, highlighting the importance of the positive charge in controlling both extraction efficiencies and extraction selectivities.
Pyrene-Tagged Ionic Liquids: Separable Organic Catalysts for SN2 Fluorination.
Taher, Abu; Lee, Kyo Chul; Han, Hye Ji; Kim, Dong Wook
2017-07-07
We prepared pyrene-substituted imidazolium-based ionic liquids (PILs) as organic catalysts for the S N 2 fluorination using alkali metal fluoride (MF). In this system, the PIL significantly enhanced the reactivity of MF due to the phase-transfer catalytic effect of the imidazolium moiety as well as the metal cation-π (pyrene) interactions. Furthermore, this homogeneous catalyst PIL was easily separated from the reaction mixture using reduced graphene oxide by π-π stacking with the pyrene of PIL.
Begić, Srđan; Jónsson, Erlendur; Chen, Fangfang; Forsyth, Maria
2017-11-15
Understanding the electrode-electrolyte interface is essential in the battery research as the ion transport and ion structures at the interface most likely affect the performance of a battery. Here we investigate interfacial structures of three ionic liquids: 1-ethyl-3-methylimidazolium dicyanamide ([C 2 mim][dca]), 1-butyl-3-methylimidazolium dicyanamide ([C 4 mim][dca]) and N-butyl-N-methylpyrrolidinium dicyanamide ([C 4 myr][dca]) at a charged and uncharged graphene interface using molecular dynamics simulations. We find that these ionic liquids (ILs) behave differently both in the bulk phase and near a graphene interface and we find that this difference is apparent in all types of analyses performed here. First, a partial density analysis in the direction perpendicular to the surface of the electrodes, which, in the cases near a negatively charged graphene, reveals that the pyrrolidinium system is generally more layered than the imidazolium systems. Second, a 2D topographic structure analysis of the IL species in the inner layer near a negatively charged graphene surface, which reveals that the pyrrolidinium system exhibits a quasi-hexagonal surface configuration of the cations, while the imidazolium systems show linearly arranged groups of cations. Third, a 3D orientation-preference analysis of cation rings near the negative graphene electrode, which shows that the pyrrolidinium rings prefer to lie parallel to the electrode surface while the imidazolium rings prefer to stand on the electrode surface at high tilt angles. Extending the imidazolium alkyl chain was found to reduce the number of imidazoliums that can link up into linearly arranged groups in the inner layer 2D structures. Our results support earlier experimental findings and indicate that the interfacial nanostructures may have a significant influence on the electrochemical performance of IL-based batteries.
A Systematic Study on the Mesomorphic Behavior of Asymmetrical 1-Alkyl-3-dodecylimidazolium Bromides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mei; Mallick, Bert; Mudring, Anja-Verena
2014-04-02
To determine the essential parameters for mesophase formation in imidazolium-based ionic liquids (ILs), a library of 1-alkyl-3-dodecylimidazolium bromides was synthesized, abbreviated as CnC12, where 0 ≤ n ≤ 13, as the general notion is that a dodecyl side chain would guarantee the formation of an ionic liquid crystal (ILC). All salts were fully characterized by NMR spectroscopy and mass spectrometry. Their thermal properties were recorded, and mesophase formation was assessed. An odd–even effect is observed for 5 ≤ n ≤ 10 in the temperatures of melting transitions. While the majority of this series, as expected, formed mesophases, surprisingly compounds C2C12more » and C6C12 could not be classified as ILCs, the latter being a room temperature IL, while C2C12 is a crystalline solid with melting point at 37 °C. The single crystal structure of compound 1-ethyl-3-dodecylimidazolium bromide (C2C12) was successfully obtained. Remarkably, the arrangement of imidazolium cores in the structure is very complicated due to multiple nonclassical hydrogen bonds between bromide anions and imidazolium head groups. In this arrangement, neighboring imidazolium rings are forced by hydrogen bonds to form a “face-to-face” conformation. This seems to be responsible for the elimination of a mesophase. To conclude, the general view of a dodecyl chain being a functional group to generate a mesophase is not entirely valid.« less
Ding, Xueqin; Wang, Yuzhi; Wang, Ying; Pan, Qi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2015-02-25
A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized, and then magnetic chitosan graphene oxide (MCGO) composite has been prepared and coated with these functional guanidinium ionic liquids to extract protein by magnetic solid-phase extraction. MCGO-functional guanidinium ionic liquid has been characterized by vibrating sample magnetometer, field emission scanning electron microscopy, X-ray diffraction spectrometer and Fourier transform infrared spectrometer. After extraction, the concentrations of protein were determined by measuring the absorbance at 278 nm using an ultra violet visible spectrophotometer. The advantages of MCGO-functional guanidinium ionic liquid in protein extraction were compared with magnetic chitosan, graphene oxide, MCGO and MCGO-ordinary imidazolium ionic liquid. The proposed method has been applied to extract trypsin, lysozyme, ovalbumin and bovine serum albumin. A comprehensive study of the adsorption conditions such as the concentration of protein, the amount of MCGO-functional guanidinium ionic liquid, the pH, the temperature and the extraction time were also presented. Moreover, the MCGO-functional guanidinium ionic liquid can be easily regenerated, and the extraction capacity was about 94% of the initial one after being used three times. Copyright © 2015 Elsevier B.V. All rights reserved.
Yeganegi, Saeid; Soltanabadi, Azim; Farmanzadeh, Davood
2012-09-20
Structures and dynamics of nine geminal dicationic ionic liquids (DILs) Cn(mim)2X2, where n = 3, 6, and 9 and X = PF6(-), BF4(-), and Br(-), were studied by molecular dynamic simulations (J. Phys. Chem.B2004, 108, 2038-2047). A force field with a minor modification for C3(mim)2 × 2 was adopted for the simulations. Densities, detailed microscopic structures, mean-square displacements (MSD), and self-diffusivities for various ion pairs from MD simulations have been presented. The calculated densities for C9(mim)2X2 (X = Br(-) and BF4(-)) agreed well with the experimental values. The calculated RDFs show that anions are well organized around the imidazolium rings. The calculated RDFs indicate that, unlike the mono cationic ILs, the anions and cations in DILs distribute homogeneously. Enthalpies of vaporization were calculated and correlated with the structural features of DILs. The local structure of C9(mim)2X2 (X = Br, PF6) was examined by the spatial distribution function (SDF). The calculated SDFs show that similar trends were found by other groups for mono cationic ionic liquids (ILs). The highest probability densities are located around the imidazolium ring hydrogens. The calculated diffusion coefficients show that the ion diffusivities are 1 order of magnitude smaller than that of the mono cationic ionic liquids. The effects of alkyl chain length and anion type on the diffusion coefficient were also studied. The dynamics of the imidazolium rings and the alkyl chain in different time scales have also discussed. The calculated transference numbers show that the anions have the major role in carrying the electric current in a DIL.
Velarde, Marco V; Gallo, Marco; Alonso, P A; Miranda, A D; Dominguez, J M
2015-04-16
In this work, we evaluated the energetic interactions between imidazolium ionic liquids (ILs) and hydrofluoric acid, as well as the cation-anion interactions in ILs. We used DFT calculations that include dispersion corrections employing the PBE and M06 functionals. We tested 22 ILs, including [C4MIM][PF6], [C4MIM][NTf2], and [C4MIM][CH3COO], obtaining interaction energies in the range of -27 to -13 kcal/mol with the PBE functional. The NCI (noncovalent interaction) index developed by Yang and collaborators ( J. Am. Chem. Soc. 2010 , 132 , 6498 - 6506 ; J. Chem. Theory Comput. 2011 , 7 , 625 - 632 ) also was used for mapping the key noncovalent interactions (hydrogen bonds, van der Waals, and steric repulsions) between the anions and cations of ILs and also for interactions of ILs with hydrofluoric acid (HF). The results obtained show that the anions have a stronger effect with respect to cations in their capacity for interacting with hydrofluoric acid, and the strongest interaction energies occur in systems where the key noncovalent interactions are mainly hydrogen bonds. The [C4MIM][PF6], [C4MIM][NTf2], and [C4MIM][BF4] ionic liquids displayed the weakest cation-anion interactions.
NASA Astrophysics Data System (ADS)
Starovoytov, Oleg; Hooper, Justin; Borodin, Oleg; Smith, Grant
2010-03-01
Atomistic polarizable force field has been developed for a number of azide anion containing ionic liquids and crystals. Hybrid Molecular Dynamics/Monte Carlo (MD/MC) simulations were performed on methylguanazinium azide and 1-(2-butynyl)-3-methyl-imidazolium azide crystals, while 1-butyl-2,3-dimethylimidazolium azide and 1-amino-3-methyl-1,2,3-triazolium azide ionic liquids were investigated using MD simulations. Crystal cell parameters and crystal structures of 1-(2-butynyl)-3-methyl-imidazolium azide were found in good agreement with X-ray experimental data. Density and ion transport of 1-butyl-2,3-dimethylimidazolium azide predicted from MD simulations were in good agreement with experiments. Details of the ionic liquid structure and relaxation mechanism will be discussed.
Hodyna, Diana; Kovalishyn, Vasyl; Rogalsky, Sergiy; Blagodatnyi, Volodymyr; Petko, Kirill; Metelytsia, Larisa
2016-09-01
Predictive QSAR models for the inhibitors of B. subtilis and Ps. aeruginosa among imidazolium-based ionic liquids were developed using literary data. The regression QSAR models were created through Artificial Neural Network and k-nearest neighbor procedures. The classification QSAR models were constructed using WEKA-RF (random forest) method. The predictive ability of the models was tested by fivefold cross-validation; giving q(2) = 0.77-0.92 for regression models and accuracy 83-88% for classification models. Twenty synthesized samples of 1,3-dialkylimidazolium ionic liquids with predictive value of activity level of antimicrobial potential were evaluated. For all asymmetric 1,3-dialkylimidazolium ionic liquids, only compounds containing at least one radical with alkyl chain length of 12 carbon atoms showed high antibacterial activity. However, the activity of symmetric 1,3-dialkylimidazolium salts was found to have opposite relationship with the length of aliphatic radical being maximum for compounds based on 1,3-dioctylimidazolium cation. The obtained experimental results suggested that the application of classification QSAR models is more accurate for the prediction of activity of new imidazolium-based ILs as potential antibacterials. © 2016 John Wiley & Sons A/S.
An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2007-04-01
This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.
NASA Astrophysics Data System (ADS)
Schröder, C.; Rudas, T.; Neumayr, G.; Gansterer, W.; Steinhauser, O.
2007-07-01
The complex ionic network of 1-butyl-3-methyl-imidazolium trifluoroacetate was simulated by means of the molecular dynamics methods over a time period of 100ns. The influence of the anisotropy of the shape and charge distribution of both the cations and the anions on the local (molecular) and global (collective) structure and dynamics is analyzed. The distance-dependent g coefficients of the orientational probability function g(r,Ω) were found to be an excellent way to interpret local structure. Thereby, the combination and interrelation of individual g coefficients elucidate the mutual orientation. Dynamics at the molecular level is characterized by the time correlation function of the center-of-mass corrected molecular dipole moment μcm. Upon uniting the set of molecular dipoles to a single collective rotational dipole moment, MD, dynamics on a global level is studied. Decomposing into subsets of cations and anions respective self terms as well as the prominent cross term can be extracted. This decomposition also enables a detailed peak assignment in dielectric spectra.
Schröder, C; Rudas, T; Neumayr, G; Gansterer, W; Steinhauser, O
2007-07-28
The complex ionic network of 1-butyl-3-methyl-imidazolium trifluoroacetate was simulated by means of the molecular dynamics methods over a time period of 100 ns. The influence of the anisotropy of the shape and charge distribution of both the cations and the anions on the local (molecular) and global (collective) structure and dynamics is analyzed. The distance-dependent g coefficients of the orientational probability function g(r,Omega) were found to be an excellent way to interpret local structure. Thereby, the combination and interrelation of individual g coefficients elucidate the mutual orientation. Dynamics at the molecular level is characterized by the time correlation function of the center-of-mass corrected molecular dipole moment mucm. Upon uniting the set of molecular dipoles to a single collective rotational dipole moment, MD, dynamics on a global level is studied. Decomposing into subsets of cations and anions respective self terms as well as the prominent cross term can be extracted. This decomposition also enables a detailed peak assignment in dielectric spectra.
Fulvio, Pasquale F.; Hillesheim, Patrick C.; Oyola, Yatsandra; ...
2016-06-24
Hierarchical nanoporous nitrogen-doped carbons were prepared from task specific ionic liquids having a bis-imidazolium motif linked with various organic groups. While ethyl chains linking the imidazolium ions afford microporous-mesoporous carbons, long or aromatic groups resulted in microporous samples.
NafionxAE-based polymer actuators with ionic liquids as solvent incorporated at room temperature
NASA Astrophysics Data System (ADS)
Kikuchi, Kunitomo; Tsuchitani, Shigeki
2009-09-01
Nafion®-based ionic polymer-metal composites (IPMCs), with ionic liquids as solvent, were fabricated by exchanging counterions to ionic liquids at room temperature. Ion exchange is performed by only immersing IPMC in a mixture of de-ionized water and ionic liquids at room temperature for 48 h. The fabricated IPMCs exhibited a bending curvature the same as or larger than that of conventional IPMCs with ionic liquids, formed by ion exchange to ionic liquids at an elevated temperature up to about 100 °C, and also had long-term stability in operation in air, with a fluctuation smaller than 21% in bending curvature during a 180 min operation. The effective ion exchange to ionic liquids in the present method is probably due to an increase in diffusion speed of ionic liquids into IPMC by adsorption of water in a Nafion® membrane. It is a surprise that among IPMCs with ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), IPMC with water-insoluble BMIPF6 exhibited a larger bending curvature than that IPMC with water-miscible BMIBF4. This might be due to effective incorporation of BMIPF6 into IPMC, since BMIPF6 has a higher affinity with IPMC than with water in the mixture of water and BMIPF6. From measurements of complex impedance and step voltage response of the driving current of IPMCs with ionic liquid, they are expressed by an equivalent circuit of a parallel combination of a serial circuit of membrane resistance of Nafion® and electric double layer capacitance at metal electrodes, with membrane capacitance of Nafion®, in a frequency range higher than about 0.1 Hz. The difference in magnitude of bending curvature in three kinds of IPMCs with ionic liquids is mainly due to the difference in bending response speed coming from the difference in the membrane resistance.
SN2 fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering.
Oh, Young-Ho; Jang, Hyeong Bin; Im, Suk; Song, Myoung Jong; Kim, So-Yeon; Park, Sung-Woo; Chi, Dae Yoon; Song, Choong Eui; Lee, Sungyul
2011-01-21
In the catalysis of S(N)2 fluorination reactions, the ionic liquid anion plays a key role as a Lewis base by binding to the counterion Cs(+) and thereby reducing the retarding Coulombic influence of Cs(+) on the nucleophile F(-). The reaction rates also depend critically on the structures of ionic liquid cation, for example, n-butyl imidazolium gives no S(N)2 products, whereas n-butylmethyl imidazolium works well. The origin of the observed phenomenal synergetic effects by the ionic liquid [mim-(t)OH][OMs], in which t-butanol is bonded covalently to the cation [mim], is that the t-butanol moiety binds to the leaving group of the substrate, moderating the retarding interactions between the acidic hydrogen and F(-). This work is a significant step toward designing and engineering solvents for promoting specific chemical reactions.
Gangamallaiah, V; Dutt, G B
2012-10-25
In an attempt to find out whether the length of the alkyl chain on the imidazolium cation has a bearing on solute rotation, temperature-dependent fluorescence anisotropies of three structurally similar solutes have been measured in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides. Solute-solvent coupling constants obtained from the experimentally measured reorientation times with the aid of Stokes-Einstein-Debye hydrodynamic theory indicate that there is no influence of the length of the alkyl chain on the rotation of nonpolar, anionic, and cationic solutes 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), respectively. It has also been noticed that the rotational diffusion of 9-PA is closer to the predictions of slip hydrodynamics, whereas the rotation of negatively charged FL and positively charged R110 is almost identical and follows stick hydrodynamics in these ionic liquids. Despite having similar shape and size, ionic solutes rotate slower by a factor of 3-4 compared to the nonpolar solute. Interplay of specific and electrostatic interactions between FL and the imidazolium cation of the ionic liquids, and between R110 and the bis(trifluoromethylsulfonyl)imide anion, appear to be responsible for the observed behavior. These results are an indication that the length of the alkyl chain on the imidazolium cation does not alter their physical properties in a manner that has an effect on solute rotation.
Ajloo, Davood; Sangian, Masoomeh; Ghadamgahi, Maryam; Evini, Mina; Saboury, Ali Akbar
2013-04-01
The effect of two ionic liquids, 1-allyl 3-methyl-imidazolium (IL1) and 1-octhyl 3-methyl-imidozolium chlorides (IL2), on the structure and activity of adenosine deaminase (ADA) were described by UV-vis and fluorescence spectrophotometry in phosphate buffer and results were compared with docking and molecular dynamics (MD) simulation studies. All results showed that inhibition of activity and reduction of enzyme tertiary structure are more for octhyl than allyl derivative due to the more hydrophobic property of it. Finally structure parameters obtained from MD simulation showed that ionic liquid reduces intermolecular hydrogen bond and unfold enzyme structure. Calculation results are in good agreement with spectrophotometric studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Ding; Wang, Huai-Ji; Cui, Xiu-Ming; Wang, Cheng-Xiao
2017-06-01
In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.
NASA Astrophysics Data System (ADS)
Garcia Rey, Natalia; Dlott, Dana
2017-06-01
Imidazolium based ionic liquids (ILs) have been used as a promising system to improve the CO_{2} electroreduction at lower overpotential than other organic or aqueous electrolytes^{1}. Although the detailed mechanism of the CO_{2} electroreduction on Ag has not been elucidated yet, we have developed a methodology to study the electrified interface during the CO_{2} electroreduction using sum frequency generation (SFG) spectroscopy in combination with cyclic voltammetry^{2}. In this work, we tuned the composition of imidazolium-based ILs by exchanging the anion or the functional groups of the imidazolium. We use the nonresonant SFG (NR-SFG) to study the IL-Ag interface and resonant SFG (RES-SFG) to identify the CO adsorbed on the electrode and monitor the Stark shift as a function of cell potential. In previous studies on CO_{2} electroreduction in the IL: 1-ethyl-3-methylimidazolium tetrafluorborate (EMIM-BF_{4}) on Ag, we showed three events occurred at the same potential (-1.33 V vs. Ag/AgCl): the current associated with CO_{2} electroreduction increased, the Stark shift of the adsorbed atop CO doubled in magnitude and the EMIM-BF_{4} underwent a structural transition^{3}. In addition, we also observed how the structural transition of the EMIM-BF_{4} electrolyte shift to lower potentials when the IL is mixed with water. It is known that water enhances the CO_{2} electroreduction producing more CO^{4}. Moreover, the CO is adsorbed in multi-bonded and in atop sites when more water is present in the electrolyte. ^{1}Lau, G. P. S.; Schreier, M.; Vasilyev, D.; Scopelliti, R.; Grätzel, M.; Dyson, P. J., New Insights into the Role of Imidazolium-Based Promoters for the Electroreduction of CO_{2} on a Silver Electrode. J. Am. Chem. Soc. 2016, 138, 7820-7823. ^{2}Garcia Rey, N.; Dlott, D. D., Studies of Electrochemical Interfaces by Broadband Sum Frequency Generation. J. Electroanal. Chem. 2016. DOI:10.1016/j.jelechem.2016.12.023. ^{3}Garcia Rey, N.; Dlott, D. D., Structural Transition in an Ionic Liquid Controls CO_{2} Electrochemical Reduction. J. Phys. Chem. C 2015, 119, 20892-20899. ^{4}Rosen, B. A.; Zhu, W.; Kaul, G.; Salehi-Khojin, A.; Masel, R. I., Water Enhancement of CO_{2} Conversion on Silver in 1-Ethyl-3-Methylimidazolium Tetrafluoroborate. J. Electrochem. Soc. 2013, 160, H138-H141.
Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.
Han, Mengwei; Espinosa-Marzal, Rosa M
2017-09-07
We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.
A "by-productless" cellulose foaming agent for use in imidazolium ionic liquids.
Scott, Janet L; Unali, Gianfranco; Perosa, Alvise
2011-03-14
Cellulose foams, or sponges, are produced from solutions in ionic liquids by the aqueous acid mediated decomposition of 1-alkyl-3-methylimidazolium-2-carboxylates, where the alkyl group and acid may be selected such that the by-product is the ionic liquid solvent: a by-productless foaming.
The role of the anion in the toxicity of imidazolium ionic liquids.
Biczak, Robert; Pawłowska, Barbara; Bałczewski, Piotr; Rychter, Piotr
2014-06-15
From the environmental protection point of view, the growing interest of ionic liquids in various industrial branches has raised concerns for the toxicity assessment of these compounds. The paper discusses the effect of salts containing the shared 1-ethyl-3-methylimidazolium [EMIM] cation as coupled with five different anions: bromide [Br], nitrate [NO3], p-toluenesulfonate (tosylate) [Ts], dimethylphosphate [dMP] and methanesulfonate [MS] on the growth and development of higher land plants - spring barley and common radish. The experiment was done according to the ISO Standard 11269-2:1995 and the OECD/OCDE Guide 208/2006. As the indications of phytotoxicity, the percentage of sprouts and the level of dry and fresh plant mass were used; in addition, the visual assessment of any signs of damage to the examined plant species, such as growth inhibition and chlorotic changes, was also made. Results of our study has proved the negative impact of ILs on the tested plants and the toxic effect of imidazolium salts was dependent primarily on the applied ionic liquids concentration. The common radish revealed the higher tolerance to the imidazolium as compared to spring barley. The anion type of ionic liquid was crucial for the toxicity against common radish. Copyright © 2014 Elsevier B.V. All rights reserved.
Ionic-Liquid-Infused Nanostructures as Repellent Surfaces.
Galvan, Yaraset; Phillips, Katherine R; Haumann, Marco; Wasserscheid, Peter; Zarraga, Ramon; Vogel, Nicolas
2018-06-12
In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.
Polymerized Paired Ions as Polymeric Ionic Liquid-Proton Conductivity.
Gu, Hong; Yan, Feng; Texter, John
2016-07-01
A new polymerized ionic liquid has been derived by photopolymerization of a stimuli-responsive ionic liquid surfactant, ILAMPS, which is composed of polymerizable, paired ions. The cation is 1-methyl-3-[11-(acryloyloxy)undecyl] imidazolium (IL), and the anion is 2-acrylamido-2-methyl-1-propanesulfonate (AMPS). This ion combination is a new ionic liquid. The resulting hygroscopic resins are highly polarizable, suitable for sensor design and for ultracapacitor fabrication and proton conducting. Interactions of imidazolium with anions provide basis for stimuli-responsiveness, and are used to promote proton transport. Doping with one equivalent of HPF6 at 0% relative humidity produces a 100-fold increase in proton conductivity at 100-125 °C and activation energies for proton transport lower than those of Nafion at water loadings less than 5 per sulfonate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the dielectric conductivity of molecular ionic liquids.
Schröder, Christian; Steinhauser, Othmar
2009-09-21
The contribution of the conductivity to the spectrum of the generalized dielectric constant or susceptibility of molecular ionic liquids is analyzed, both in theoretical terms and computationally by means of molecular dynamics simulation of the concrete system 1-ethyl-3-methyl-imidazolium dicyanoamide at 300 K. As a central quantity the simulated current autocorrelation function is modeled by a carefully designed fit function. This not only gives a satisfactory numerical representation but yields the correct conductivity upon integration. In addition the fit function can be Fourier-Laplace transformed analytically. Both, the real and imaginary parts of the transform show expected behavior, in particular, the right limits for zero frequency. This altogether demonstrates that the components of the fit function are of physical relevance.
Solubility of CO2 and N2O in an Imidazolium-Based Lipidic Ionic Liquid.
Langham, Jacob V; O'Brien, Richard A; Davis, James H; West, Kevin N
2016-10-13
Imidazolium-based ionic liquids have been extensively studied for their ability to dissolve a wide variety of gases and for their potential to be used as separation agents in industrial processes. For many short chain 1-alkyl-3-methylimidazolium bistriflimde salts, CO 2 and N 2 O solublities are very similar. In this work, the solubility of CO 2 and N 2 O has been measured in the lipidic ionic liquid 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide ([oleyl-mim][NTf 2 ]) at 298 K, 310 and 323 K up to ∼2 MPa. N 2 O was found to have higher solubility than CO 2 under the same conditions, similar to the behavior observed when olive oil, a natural lipid, was the liquid solvent. However, the solubility of each gas on a mole fraction basis is lower in the ionic liquid than in olive oil. Comparison of the gas solubilities on a mass fraction basis demonstrates that CO 2 solubility is nearly identical in both liquids; N 2 O solubility is higher than CO 2 for both liquids, but more so in the olive oil. The difference is attributed to the high mass fraction of the olive oil that is lipid-like in character. The differential solubility of N 2 O/CO 2 in this ionic liquid, in contrast to that of shorter chain 1-alkyl-3-methylimidazolium bistriflimide salts, gives physical insight into the solvent properties of this class of ionic liquids and provides further support for their lipid-like character.
Yang, Deshuai; Fu, Fangjia; Li, Li; Yang, Zhen; Wan, Zheng; Luo, Yi; Hu, Na; Chen, Xiangshu; Zeng, Guixiang
2018-05-07
Here we report a series of molecular dynamics simulations for the orientations and rotational dynamics of the 1-butyl-3-methyl-imidazoliumhexafluorophosphate ([BMIM][PF 6 ]) ionic liquid (IL) at the gas-liquid interface. Compared to the bulk phase, the [BMIM] + cations at the interface prefer to orientate themselves with their imidazolium rings perpendicular to the gas-IL interface plane and their butyl chains pointing toward the vacuum phase. Such a preferential orientation can be attributed to the combined effect of the hydrophobic interactions and the optimum loss of hydrogen bonds (HBs). More interestingly, our simulation results demonstrate that the butyl chains of cations exhibit a two-stage rotational behavior at the interface, where the butyl chains are always in the vacuum phase at the first stage and the second stage corresponds to the butyl chains migrating from the vacuum phase into the liquid phase. A further detailed analysis reveals that their rotational motions at the first stage are mainly determined by the weakened HB strength at the interface while those at the second stage are dominated by their hydrophobic interactions. Such a unique rotational behavior of the butyl chains is significantly different from those of the anions and the imidazolium rings of cations at the interface due to the lack of existence of hydrophobic interaction in the cases of the latter two. In addition, a new and simple time correlation function (TCF) was constructed here for the first time to quantitatively identify the relevant hydrophobic interaction of alkyl chains. Therefore, our simulation results provide a molecular-level understanding of the effects of HB and hydrophobic interactions on the unique properties of imidazolium-based ILs at the gas-liquid interface.
AN EXPEDITIOUS SOLVENT-FREE ROUTE TO IONIC LIQUIDS USING MICROWAVES
A microwave-assisted preparation of a series of ambient temperature ionic liquids, 1-alkyl-3-methyl imidazolium (IMIM) halides, that proceeds via efficient raction of 1-methyl imidazole with alkylhalides/terminal dihalides under solvent-free conditions, is described.
Pizzoccaro, Marie-Alix; Drobek, Martin; Petit, Eddy; Guerrero, Gilles; Hesemann, Peter; Julbe, Anne
2016-01-01
Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al2O3) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO2 separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N2 adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to 31P and 13C solid state nuclear magnetic resonance spectroscopy (NMR). PMID:27472321
Hydrogen-bond rich ionic liquids with hydroxyl cationic tails
NASA Astrophysics Data System (ADS)
Deng, Li; Shi, Rui; Wang, Yanting; Ou-Yang, Zhong-Can
2013-02-01
To investigate if the amphiphilic feature exhibited in ionic liquids (ILs) with nonpolar cationic tails still exists in ILs with polar tails, by performing molecular dynamics simulations for 1-(8-hydroxyoctyl)-3-methyl-imidazolium nitrate (COH) and 1-octyl-3-methyl-imidazolium nitrate (C8), we found that, in COH, cationic tail groups can no longer aggregate to form separated nonpolar tail domains, instead hydroxyl groups form a rich number of hydrogen bonds with other groups, indicating that the hydroxyl substituent changes the IL system from an amphiphilic liquid to a polar liquid. Due to the large amount of hydrogen bonds, COH has slower dynamics than C8.
Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy
Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...
2015-12-17
We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less
Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).
Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe
2016-10-26
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
Chen, Guanyi; Kang, Shujuan; Ma, Qisheng; Chen, Weiqun; Tang, Yongchun
2014-11-01
(1)H-NMR spectrum analyses are applied to study the chemical and thermal stability of selected N-heterocyclic ionic liquids within the reaction system that can highly efficiently activate a C-H bond of methane and convert it into the C-O bond in methanol. Our results indicate that under such reaction conditions involving using a powerful Pt-based catalyst and strong acidic solvent, the aromatic ring of an imidazolium cation becomes unstable generating an ammonium ion (NH(4)(+)). Our results also suggest that the instability of the imidazolium ring is more chemically (participation in reactions) than thermally based. Modifications of the aromatic ring structure such as pyrazolium and triazolium cations can increase the chemical/thermal stability of ionic liquids under these reaction conditions. Copyright © 2014 John Wiley & Sons, Ltd.
Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic
2013-05-28
Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.
Zhao, Tianxiang; Hu, Xingbang; Wu, Dongsheng; Li, Rui; Yang, Guoqiang; Wu, Youting
2017-05-09
The direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH was achieved at room temperature with 74 % CH 3 OH conversion in the presence of an imidazolium hydrogen carbonate ionic liquid ([C n C m Im][HCO 3 ]). Experimental and theoretical results reveal that [C n C m Im][HCO 3 ] can transform quickly into a CO 2 adduct, which serves as an effective catalyst and dehydrant. Its dehydration ability is reversible. The energy barrier of the rate-determining step for the DMC synthesis is only 21.7 kcal mol -1 . The ionic liquid can be reused easily without a significant loss of its catalytic and dehydrating ability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sarkar, Souravi; Mandal, Sarthak; Ghatak, Chiranjib; Rao, Vishal Govind; Ghosh, Surajit; Sarkar, Nilmoni
2012-02-02
The photoinduced electron transfer (PET) reaction has been investigated in a room temperature imidazolium ionic liquid (RTIL), 1-ethyl-3-methylimidazolium ethyl sulfate ([Emim][EtSO(4)]) and also in [Emim][EtSO(4)]-co-solvents mixtures from N,N-dimethyl aniline (DMA) to different Coumarin dyes using steady state and time-resolved fluorescence quenching measurements. We have used water and methanol and 2-propanol as the cosolvents of RTILs for the PET study. On going from neat ionic liquid to the RTIL-co-solvents mixtures the electron transfer rate has been largely enhanced. In neat RTIL as well as in [Emim][EtSO(4)]-co-solvents mixtures, a Marcus type of inversion in the PET rate have been observed.
Benzyl-Functionalized Room Temperature Ionic Liquids for CO2/N2 Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahurin, Shannon Mark; Dai, Thomas N; Yeary, Joshua S
2011-01-01
In this work, three classes of room temperature ionic liquids (RTILs), including imidazolium, pyridinium, and pyrrolidinium ionic liquids with a benzyl group appended to the cation, were synthesized and tested for their performance in separating CO{sub 2} and N{sub 2}. All RTILs contained the bis(trifluoromethylsulfonyl)imide anion, permitting us to distinguish the impact of the benzyl moiety attached to the cation on gas separation performance. In general, the attachment of the benzyl group increased the viscosity of the ionic liquid compared with the unfunctionalized analogs and decreased the CO{sub 2} permeability. However, all of the benzyl-modified ionic liquids exhibited enhanced CO{submore » 2}/N{sub 2} selectivities compared with alkyl-based ionic liquids, with values ranging from 22.0 to 33.1. In addition, CO{sub 2} solubilities in the form of Henry's constants were also measured and compared with unfunctionalized analogs. Results of the membrane performance tests and CO{sub 2} solubility measurements demonstrate that the benzyl-functionalized RTILs have significant potential for use in the separation of carbon dioxide from combustion products.« less
Computational prediction of ionic liquid 1-octanol/water partition coefficients.
Kamath, Ganesh; Bhatnagar, Navendu; Baker, Gary A; Baker, Sheila N; Potoff, Jeffrey J
2012-04-07
Wet 1-octanol/water partition coefficients (log K(ow)) predicted for imidazolium-based ionic liquids using adaptive bias force-molecular dynamics (ABF-MD) simulations lie in excellent agreement with experimental values. These encouraging results suggest prospects for this computational tool in the a priori prediction of log K(ow) values of ionic liquids broadly with possible screening implications as well (e.g., prediction of CO(2)-philic ionic liquids).
High-Performance, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants
NASA Technical Reports Server (NTRS)
Bergeron, Bryan; Skyler, David; Roberts, Kyle; Stevens, Amy
2013-01-01
The synthesis and characterization of six new ionic liquids, with fluoroether moeties on the imidazolium ring, each with vapor pressures shown to be <10(exp -7 Torr at 25 C, have been demonstrated. Thermal stability of the ionic liquids up to 250 C was demonstrated. The ionic liquids had no measurable influence upon viscosity upon addition to perfluoropolyether (PFPE) base fluids. They also had no measureable influence upon corrosion on steel substrates upon addition to base fluids. In general, 13 to 34% lower COFs (coefficients of friction), and 30 to 80% higher OK load of base fluids upon addition of the ionic liquids was shown. The compound consists of a 1,3-disubstituted imidazolium cation. The substituents comprise perfluoroether groups. A bis(trifluoromethanesulfonyl) imide anion counterbalances the charge. The fluorinated groups are intended to enhance dispersion of the ionic liquid in the PFPE base fluid. The presence of weak Van der Waals forces associated with fluorine atoms will limit interaction of the substituents on adjacent ions. The longer interionic distances will reduce the heat of melting and viscosity, and will increase dispersion capabilities.
On the Extraction of Aromatic Compounds from Hydrocarbons by Imidazolium Ionic Liquids
Cassol, Cláudia C.; Umpierre, Alexandre P.; Ebeling, Günter; Ferrera, Bauer; Chiaro, Sandra S. X.; Dupont, Jairton
2007-01-01
The liquid-liquid equilibrium for the ternary system formed by n-octane and aromatic (alkylbenzenes) and heteroaromatic compounds (nitrogen and sulfur containing heterocyles) and 1-alkyl-3-methylimidazolium ionic liquids (ILs) associated with various anions has been investigated. The selectivity on the extraction of a specific aromatic compound is influenced by anion volume, hydrogen bond strength between the anion and the imidazolium cation and the length of the 1-methyl-3-alkylimidazolium alkyl side chain. The interaction of alkylbenzenes and sulfur heterocyles with the IL is preferentially through CH-π hydrogen bonds and the quantity of these aromatics in the IL phase decreases with the increase of the steric hindrance imposed by the substituents on the aromatic nucleus. In the case of nitrogen heterocycles the interaction occurs preferentially through N(heteroaromatic)-H(imidazolium) hydrogen bonds and the extraction process is largely controlled by the nitrogen heterocycle pKa. Competitive extraction experiments suggest that benzene, pyridine and dibenzothiophene do not compete for the same hydrogen bond sites of the IL.
Lawal, Isiaka A; Lawal, Monsurat M; Akpotu, Samson O; Azeez, Mayowa A; Ndungu, Patrick; Moodley, Brenda
2018-06-18
The adsorption of sulfamethoxazole (SMZ) and ketoprofen (KET) using carbon nanotubes (CNTs) and CNTs modified with ionic liquids (ILs) was investigated. Two ionic liquids (1-benzyl, 3-hexyl imidazolium, IL1 and 1-benzyl, 3-decahexyl imidazolium, IL2) were synthesized, and characterized by nuclear magnetic resonance ( 1 H and 13 C NMR) and high resolution-mass spectrometry (HR-MS). CNTs and modified CNTs were characterized using FT-IR, X-ray diffraction (XRD), surface area and porosity analysis, thermal gravimetric analysis (TGA), Zeta potential, Raman and scanning electron microscopy (SEM). Kinetics, isotherm and computational studies were carried out to determine the efficiency and adsorption mechanism of SMZ and KET on modified CNTs. A density functional theory (DFT) method was applied to shed more light on the interactions between the pharmaceutical compounds and the adsorbents at the molecular level. The effects of adsorbent dosage, concentration, solution pH, energetics and contact time of SMZ and KET on the adsorption process were investigated. The adsorption of SMZ and KET on CNTs and modified CNTs were pH dependent, and adsorption was best described by pseudo-second-order kinetics and the Freundlich adsorption isotherm. Ionic liquid modified CNTs showed improved adsorption capacities compared to the unmodified ones for both SMZ and KET, which is in line with the computational results showing performance order; CNT+KET/SMZ < CNT-ILs+SMZ < CNT-ILs+KET. Copyright © 2018 Elsevier Inc. All rights reserved.
Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan
2015-12-01
Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Costa, Luciano T; Ribeiro, Mauro C C
2006-05-14
Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.
NASA Astrophysics Data System (ADS)
Lee, Jang-Woo; Hong, Soon Man; Koo, Chong Min
2014-08-01
High-bendable, air-operable ionic polymer-metal composite (IPMC) actuators composed of electroactive nanostructured middle-block sulfonated styrenic pentablock copolymer (SSPB)/sulfonated montmorillonite (s-MMT) nanocomposite electrolyte membranes with bulky imidazolium ionic liquids (ILs) incorporated were fabricated and their bending actuation performances were evaluated. The SSPB-based IPMC actuators showed larger air-operable bending displacements, higher displacement rates, and higher energy efficiency of actuations without conventional IPMC bottlenecks, including back relaxation and actuation instability during actuation in air, than the Nafion counterpart. Incorporation of s-MMT into the SSPB matrix further enhanced the actuation performance of the IPMC actuators in terms of displacement, displacement rate, and energy efficiency. The remarkably high performance of the SSPB/s-MMT/IL IPMCs was considered to be due to the microphase-separated large ionic domains of the SSPB (the average diameter of the ionic domain: ca. 20 nm) and the role of s-MMT as an ionic bridge between the ionic domains, and the ion pumping effect of the bulky imidazolium cations of the ILs as well. The microphase-separated nanostructure of the composite membranes caused a high dimensional stability upon swelling in the presence of ILs, which effectively preserved the original electrode resistance against swelling, leading to a high actuation performance of IPMC.
Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows.
Chen, Fei; Ren, Yongyuan; Guo, Jiangna; Yan, Feng
2017-01-31
Thermo- and electro-dual responsive poly(ionic liquid) (PIL) based electrolytes were synthesized by co-polymerization of N-isopropylacrylamide (NIPAM) with (or without) 3-butyl-1-vinyl-imidazolium bromide ([BVIm][Br]) using diallyl-viologen (DAV) as both the cross-linking agent and electrochromic material.
ERIC Educational Resources Information Center
Kamber, Nahrain E.; Tsujii, Yasuhito; Keets, Kate; Waymouth, Robert M.; Pratt, Russell C.; Nyce, Gregory W.; Hedrick, James L.
2010-01-01
The depolymerization of the plastic polyethylene terephthalate (PET or PETE) is described in this laboratory procedure. The transesterification reaction used to depolymerize PET employs a highly efficient N-heterocyclic carbene catalyst derived from a commercially available imidazolium ionic liquid. N-heterocyclic carbenes are potent nucleophilic…
Composites comprising novel RTIL-based polymers, and methods of making and using same
Gin, Douglas; Carlisle, Trevor; Noble, Richard; Nicodemus, Garret; McDanel, William; Cowan, Matthew
2017-06-27
The invention includes compositions comprising curable imidazolium-functionalized poly(room-temperature ionic liquid) copolymers and homopolymers. The invention further includes methods of preparing and using the compositions of the invention. The invention further includes novel methods of preparing thin, supported, room-temperature ionic liquid-containing polymeric films on a porous support. In certain embodiments, the methods of the invention avoid the use of a gutter layer, which greatly reduces the overall gas permeance and selectivity of the composite membrane. In other embodiments, the films of the invention have increased gas selectivity and permeance over films prepared using methods described in the prior art.
Wang, Chaoli; Hu, Xiaoling; Guan, Ping; Wu, Danfeng; Qian, Liwei; Li, Ji; Song, Renyuan
2015-01-01
The synthesis and performance of molecularly imprinted membranes (MIMs) as a solid phase extraction packing materials for the separation and purification of thymopentin from crude samples was described. In order to increase structural selectivity and imprinting efficiency, surface-initiated ATRP and ionic liquid (1-vinyl-3-ethyl acetate imidazolium chloride) were used to prepare molecularly imprinting membranes. The results demonstrated that solid phase extraction disks stuffed by MIMs with ionic liquids as functional monomer demonstrated high isolation and purification of performance to the thymopentin. The molecular recognition of thymopentin was analyzed by using molecular modeling software. Copyright © 2014 Elsevier B.V. All rights reserved.
Physical Properties of Substituted Imidazolium Based Ionic Liquids Gel Electrolytes
NASA Astrophysics Data System (ADS)
Sutto, Thomas E.; De Long, Hugh C.; Trulove, Paul C.
2002-11-01
The physical properties of solid gel electrolytes of either polyvinylidene diflurohexafluoropropylene or a combination of polyvinylidene hexafluoropropylene and polyacrylic acid, and the molten salts 1-ethyl-3-methylimidazolium tetrafluoroborate, 1,2-dimethyl-3-n-propylimidazolium tetrafluoroborate, and the new molten salts 1,2-dimethyl-3-n-butylimidazolium tetrafluoroborate, and 1,2-dimethyl-3-n-butylimidazolium hexafluorophosphate were characterized by temperature dependent ionic conductivity measurements for both the pure molten salt and of the molten salt with 0.5 M Li+ present. Ionic conductivity data indicate that for each of the molten salts, the highest concentration of molten salt allowable in a single component polymer gel was 85%, while gels composed of 90%molten salt were possible when using both polyvinylidene hexafluorophosphate and polyacrylic acid. For polymer gel composites prepared using lithium containing ionic liquids, the optimum polymer gel composite consisted of 85% of the 0.5 M Li+/ionic liquid, 12.75% polyvinylidene hexafluoropropylene, and 2.25% poly (1-carboxyethylene). The highest ionic conductivity observed was for the gel containing 90%1-ethyl-3-methyl-imidazolium tetrafluoroborate, 9.08 mS/cm. For the lithium containing ionic liquid gels, their ionic conductivity ranged from 1.45 to 0.05 mS/cm, which is comparable to the value of 0.91 mS/cm, observed for polymer composite gels containing 0.5 M LiBF4 in propylene carbonate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borodin, Oleg; Price, David L.; Aoun, Bachir
The influence of water on the structure of a prototype ionic liquid (IL) 1-octyl-3-methyimidazolium tetrafluoroborate (C8mimBF4) is examined in the IL-rich regime using high-energy x-ray diffraction (HEXRD) and molecular dynamics (MD) simulations. A many-body polarizable force field APPLE&P was developed for C8mimBF4 water mixture. It predicts structure factors of pure IL and IL-water mixture in excellent agreement with the HEXRD experiments. The MD results provide detailed insights into the structural changes from the partial structure factors, 2-D projections of the simulation box and 3-D distribution functions. Water partitioning with IL and its competition with BF4- for complexing the imidazolium ringsmore » was examined. The added water molecules occupy a diffuse coordination shell around the imidazolium ring but are not present around the alkyl tail. The strong coordination of the fluorine atoms of the BF4- anions to the imidazolium ring is not significantly changed by the addition of water. These results are consistent with the very small differences in the average structure between the pure IL and the mixture.« less
NASA Astrophysics Data System (ADS)
Haddad, Boumediene; Mokhtar, Drai; Goussem, Mimanne; Belarbi, El-habib; Villemin, Didier; Bresson, Serge; Rahmouni, Mustapha; Dhumal, Nilesh R.; Kim, Hyung J.; Kiefer, Johannes
2017-04-01
Imidazolium-based ionic liquids (ILs) are usually synthesized using non-ionic imidazole compounds as precursors. While the ILs have been extensively studied in the past, the precursors was not paid much attention to. The structural analysis of the precursors, however, may offer an opportunity to better understand the behavior of the ionic compounds of interest. In this paper, a comparative study of two ionic liquids and their imidazole precursors is presented. The precursors 1-methylimidazole [1-MIM] and 1,2-dimethylimidazole [1,2-DMIM] are compared in order to explain the influences of the methyl group at the C(2) position (methylation). Since the imidazole compounds are non-ionic, the spectroscopic properties of [1-MIM] and [1,2-DMIM] are not affected by cation-anion interactions. In addition, the products obtained by alkylation using propyl iodide leading to the corresponding IL compounds 1-methyl-3-propylimidazolium iodide [1-MPrIM+][I-] and 1,2-dimethyl-3-propylimidazolium iodide [1,2-DMPrIM+][I-] were studied. For this purpose, vibrational spectroscopy in terms of FT-Raman and FTIR in the wavenumber range from [45 to 3500 cm-1] and from [600 to 4000 cm-1], respectively, was performed. Moreover, to aid the spectral assignment, density functional theory (DFT) calculations were carried out. The aim was to investigate the vibrational structure, to understand the effects of the propyl group at the N(3) and of the methyl group at the C(2) position, and to analyze the resulting cation-anion interactions. The data indicate that the iodide ion predominantly interacts with the C(2)sbnd H group via hydrogen bonding. Upon methylation, the C(4/5)sbnd H moiety becomes the main interaction site. However, an interaction takes place only with one of the two hydrogen atoms resulting in a split of the initially degenerate CH stretching modes.
Caban, Magda; Stepnowski, Piotr
2017-05-15
The main advantage of alkylimidazolium cation-based ionic liquids (ILs) as phase additives in RP-HPLC is believed to be the suppression of deleterious residual free silanols in chemically modified silica stationary phases. However, up to now, the influence of ILs was usually evaluated having in mind a particular IL salt as one compound, not as a specific mixture of cations and anions. This in fact led to some misinterpretation of observed results, very often related to the suppression effect, while in fact caused by the nature of IL anions, which contribute to the elevated chaotropicity of the separation phases. In the present study, we have attempted to consider the effect gained due to the presence of both ionic liquid entities in the mobile phase used for the separation of basic compounds. Tri-cyclic antidepressants (TCAs) were taken as representative analytes. The effect of ILs on the chromatographic separation of TCAs was investigated in comparison to common mobile phase additives and by the presentation of retention factors, tailing factors and theoretical plates. In addition, an overloading study was performed for the IL-based phases for the first time. In general, it was found that the effect of chaotropic hexafluorophosphate anions in ILs is much stronger and opposite to that caused by imidazolium cations. The overloading study gives interesting information on how imidazolium cations affect the separation of cationic analytes. Finally, the usefulness of imidazolium-based ILs as mobile phase modifiers in the RP-HPLC separation of basic compounds was discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Padró, Juan M; Pellegrino Vidal, Rocío B; Reta, Mario
2014-12-01
The partition coefficients, P IL/w, of several compounds, some of them of biological and pharmacological interest, between water and room-temperature ionic liquids based on the imidazolium, pyridinium, and phosphonium cations, namely 1-octyl-3-methylimidazolium hexafluorophosphate, N-octylpyridinium tetrafluorophosphate, trihexyl(tetradecyl)phosphonium chloride, trihexyl(tetradecyl)phosphonium bromide, trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide, and trihexyl(tetradecyl)phosphonium dicyanamide, were accurately measured. In this way, we extended our database of partition coefficients in room-temperature ionic liquids previously reported. We employed the solvation parameter model with different probe molecules (the training set) to elucidate the chemical interactions involved in the partition process and discussed the most relevant differences among the three types of ionic liquids. The multiparametric equations obtained with the aforementioned model were used to predict the partition coefficients for compounds (the test set) not present in the training set, most being of biological and pharmacological interest. An excellent agreement between calculated and experimental log P IL/w values was obtained. Thus, the obtained equations can be used to predict, a priori, the extraction efficiency for any compound using these ionic liquids as extraction solvents in liquid-liquid extractions.
Crystal Structure and Properties of Imidazo-Pyridine Ionic Liquids.
Farren-Dai, Marco; Cameron, Stanley; Johnson, Michel B; Ghandi, Khashayar
2018-07-05
Computational studies were performed on novel protic ionic liquids imidazolium-[1,2-a]-pyridine trifluoroacetate [ImPr][TFA] synthesized by the reaction of imidazo-[1,2a]-pyridine (ImPr) with trifluoroacetic acid (TFA), and on fused salt imidazolium-[1,2-a]-pyridine maleamic carbonate [ImPr][Mal] synthesized by reaction of ImPr with maleamic acid (Mal). Synthesis was performed as one-pot reactions, which applies green chemistry tenets. Both these compounds begin to decompose at 180°C. Our computational studies suggest another thermal reaction channel, in which [ImPr][Mal] can also thermally polymerizes to polyacrylamide which then cyclizes. This is thermal product remains stable up to 700 degrees, consistent with our thermogravimetric studies. [ImPr][TFA] exhibited good conductivity and ideal ionic behavior, as evaluated by a Walden plot. X-ray crystallography of [ImPr][TFA] revealed a tightly packed system for the crystals as a result of strong ionic interaction, pi-stacking, and fluorine-CH interactions. Both synthesized compounds exhibited some CO 2 absorptivity, with [ImPr][Mal] outperforming [ImPr][TFA] in this regard. The quantum chemistry based computational methods can shed light on many properties of these ionic liquids, but they are challenged in fully describing their ionic nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja
2015-03-15
A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment). Copyright © 2014 Elsevier B.V. All rights reserved.
Exploring the role of ionic liquids to tune the polymorphic outcome of organic compounds.
Zeng, Qingying; Mukherjee, Arijit; Müller, Peter; Rogers, Robin D; Myerson, Allan S
2018-02-14
While molecular solvents are commonly used in the screening of polymorphs, the choices are often restricted. Ionic liquids (ILs) - also referred as designer solvents - have immense possibility in this regard because of their wide flexibility of tunability. More importantly, the interactions among the IL components are completely unique compared to those present in the molecular solvents. In this context, we have chosen tetrolic acid (TA) and isonicotinamide (INA), which showed solution-structure link in molecular solvents in the past, as probes to investigate the role of imidazolium based ionic liquids in the polymorphism of these two systems and whether the different solute-solvent interactions in ILs affect the polymorphic outcome. It is observed that the selected imidazolium-based ILs, with varying anion basicity have influenced the crystallization outcome by the interaction between ILs and model compounds. Later, we have utilized the concept of double salt ionic liquids (DSIL) for INA, a penta-morphic system, to investigate the variation in the polymorphic outcome. This approach helped to obtain the forms that were otherwise inaccessible in ILs.
Chen, Xu-Wei; Liu, Jia-Wei; Wang, Jian-Hua
2011-02-17
With respect to the conventional imidazolium ionic liquids which generally create very weak fluorescence with quantum yields at extremely low levels of 0.005-0.02, a symmetrical hydrophilic ionic liquid 1,3-butylimidazolium chloride (BBimCl) was found to be highly fluorescent with λ(em) at 388 nm when excited at λ(ex) < 340 nm. The very high quantum yield of BBimCl in aqueous medium, derived to be 0.523 when excited at 315 nm, was attributed to its symmetrical plane conjugating structure. In the presence of hemoglobin, the fluorescence of BBimCl could be significantly quenched, resulting from the coordinating interaction between the iron atom in the heme group of hemoglobin and the cationic imidazolium moiety. This feature of the present hydrophilic ionic liquid makes it a promising fluorescence probe candidate for the sensitive sensing of hemoglobin. A linear regression was observed within 3 × 10(-7) to 5 × 10(-6) mol L(-1) for hemoglobin, and a detection limit of 7.3 × 10(-8) mol L(-1) was derived.
Connecting Structural and Transport Properties of Ionic Liquids with Cationic Oligoether Chains
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele; ...
2017-06-01
We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
Dinda, Enakshi; Si, Satyabrata; Kotal, Atanu; Mandal, Tarun K
2008-01-01
A series of newly designed ascorbic acid based room temperature ionic liquids were successfully used to prepare quasi-spherical and anisotropic gold nanostructures in an aqueous medium at ambient temperature. The synthesis of these room temperature ionic liquids involves, first, the preparation of a 1-alkyl (such as methyl, ethyl, butyl, hexyl, octyl, and decyl) derivative of 3-methylimidazolium hydroxide followed by the neutralization of the derivatised product with ascorbic acid. These ionic liquids show significantly better thermal stability and their glass transition temperature (Tg) decreases with increasing alkyl chain length. The ascorbate counter anion of these ionic liquids acts as a reducing agent for HAuCl4 to produce metallic gold and the alkylated imidazolium counter cation acts as a capping/shape-directing agent. It has been found that the nature of the ionic liquids and the mole ratio of ionic liquid to HAuCl4 has a significant effect on the morphology of the formed gold nanostructures. If an equimolar mixture of ionic liquid and HAuCl4 is used, predominantly anisotropic gold nanostructures are formed and by varying the alkyl chain length attached to imidazolium cation of the ionic liquids, various particle morphologies can formed, such as quasispherical, raspberry-like, flakes or dendritic. A probable formation mechanism for such anisotropic gold nanostructures has been proposed, which is based on the results of some control experiments.
Quevillon, Michael J; Whitmer, Jonathan K
2018-01-02
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.
The effects of dication symmetry on ionic liquid electrolytes in supercapacitors.
Li, Song; Zhu, Mengyang; Feng, Guang
2016-11-23
The effects of dication symmetry on the structure and capacitance of the electrical double layers (EDLs) of dicationic ionic liquids (DILs) near graphene electrodes were investigated by molecular dynamics (MD) simulation in this work. Symmetrical 1-hexyl-3-dimethylimidazolium di[bis(trifluoromethyl)imide]([C6(mim)2](Tf2N)2) and asymmetrical 1-(1-trimethylammonium-yl-hexyl)-3-methylimidazolium di[bis(trifluoro-methanesulfonyl)-imide] ([C6(tma)(mim)](Tf2N)2) were both employed. Radial distribution function (RDF) analysis of the two DILs revealed a shorter distance between the cation-anion pairs in symmetrical [C6(mim)2](Tf2N)2), which was attributed to the closely packed imidazolium ring-anion pairs. In contrast, the trimethylammonium head groups and anions exhibit a relatively longer distance, but a stronger correlation in asymmetrical [C6(tma)(mim)](Tf2N)2. In addition, it was illustrated that more symmetrical DIL ions in EDLs are distributed near graphite electrodes and exhibit closer distances to the electrode, which is most probably due to the parallel orientation of imidazolium rings, reducing the distance between the cation and the graphene. In contrast, asymmetrical DILs, with one trimethylammonium head group and one imidazolium ring in the dications, are loosely packed due to their tilting orientation near graphene surfaces. However, the capacitance-potential (C-V) curves of the two DILs are almost the same, regardless of the opposite sign of potential of zero charge (PZC), indicating the insignificant influence of dication symmetry on the capacitance of DIL-based supercapacitors.
The effects of dication symmetry on ionic liquid electrolytes in supercapacitors
NASA Astrophysics Data System (ADS)
Li, Song; Zhu, Mengyang; Feng, Guang
2016-11-01
The effects of dication symmetry on the structure and capacitance of the electrical double layers (EDLs) of dicationic ionic liquids (DILs) near graphene electrodes were investigated by molecular dynamics (MD) simulation in this work. Symmetrical 1-hexyl-3-dimethylimidazolium di[bis(trifluoromethyl)imide]([C6(mim)2](Tf2N)2) and asymmetrical 1-(1-trimethylammonium-yl-hexyl)-3-methylimidazolium di[bis(trifluoro-methanesulfonyl)-imide] ([C6(tma)(mim)](Tf2N)2) were both employed. Radial distribution function (RDF) analysis of the two DILs revealed a shorter distance between the cation-anion pairs in symmetrical [C6(mim)2](Tf2N)2), which was attributed to the closely packed imidazolium ring-anion pairs. In contrast, the trimethylammonium head groups and anions exhibit a relatively longer distance, but a stronger correlation in asymmetrical [C6(tma)(mim)](Tf2N)2. In addition, it was illustrated that more symmetrical DIL ions in EDLs are distributed near graphite electrodes and exhibit closer distances to the electrode, which is most probably due to the parallel orientation of imidazolium rings, reducing the distance between the cation and the graphene. In contrast, asymmetrical DILs, with one trimethylammonium head group and one imidazolium ring in the dications, are loosely packed due to their tilting orientation near graphene surfaces. However, the capacitance-potential (C-V) curves of the two DILs are almost the same, regardless of the opposite sign of potential of zero charge (PZC), indicating the insignificant influence of dication symmetry on the capacitance of DIL-based supercapacitors.
Yu, Qiangliang; Wu, Yang; Li, DongMei; Cai, Meirong; Zhou, Feng; Liu, Weimin
2017-02-01
A new class of ionic liquid gels (ionogels) is prepared through the supramolecular self-assembly of imidazolium-based ionic liquids (ILs) bearing the urea group as gelators in normal ILs. The ILs gelator can self-assemble through hydrogen bonding and hydrophobic interaction to form analogous lamellar structures and solidify base ILs. The obtained ionogels exhibit superior anticorrosion and conductivity characteristics. Moreover, ionogels show fully thermoreversible and favorable thixotropic characteristics, such that they can be used as high-performance semisolid conductive lubricants. The tribological tests reveal that these ionogels lubricants can effectively reduce the friction of sliding pairs effectively and have better tribological performance than the pure ILs under harsh conditions. Ionogel lubricants not only maintain the excellent tribological properties and conductivity of ILs, but also prevent base liquids from creeping and leakage. Therefore, ionogel lubricants can be potentially used in the conductive parts of electrical equipments. Copyright © 2016 Elsevier Inc. All rights reserved.
Surface confined ionic liquid as a stationary phase for HPLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; Baker, Gary A; Baker, Sheila N
Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of themore » ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.« less
Surface segregation in binary mixtures of imidazolium-based ionic liquids
NASA Astrophysics Data System (ADS)
Souda, Ryutaro
2010-09-01
Surface composition of binary mixtures of room-temperature ionic liquids has been investigated using time-of-flight secondary ion mass spectrometry at room temperature over a wide composition range. The imidazolium cations with longer aliphatic groups tend to segregate to the surface, and a bis(trifluoromethanesulfonyl)imide anion (Tf 2N -) is enriched at the surface relative to hexafluorophosphate (PF 6-). The surface of an equimolar mixture of Li[Tf 2N] and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF 6]) has a nominal composition of [bmim][Tf 2N] because of surface segregation and ligand exchange. The surface segregation of cations and anions is likely to result from alignment of specific ligand-exchanged molecules at the topmost surface layer to exclude more hydrophobic part of the molecules.
Lin, Yi-Feng; Li, Chun-Ting; Lee, Chuan-Pei; Leu, Yow-An; Ezhumalai, Yamuna; Vittal, R; Chen, Ming-Chou; Lin, Jiang-Jen; Ho, Kuo-Chuan
2016-06-22
A polymeric ionic liquid, poly(oxyethylene)-imide-imidazolium selenocyanate (POEI-IS), was newly synthesized and used for a multifunctional gel electrolyte in a quasi-solid-state dye-sensitized solar cell (QSS-DSSC). POEI-IS has several functions: (a) acts as a gelling agent for the electrolyte of the DSSC, (b) possesses a redox mediator of SeCN(-), which is aimed to form a SeCN(-)/(SeCN)3(-) redox couple with a more positive redox potential than that of traditional I(-)/I3(-), (c) chelates the potassium cations through the lone pair electrons of the oxygen atoms of its poly(oxyethylene)-imide-imidazolium (POEI-I) segments, and (d) obstructs the recombination of photoinjected electrons with (SeCN)3(-) ions in the electrolyte through its POEI-I segments. Thus, the POEI-IS renders a high open-circuit voltage (VOC) to the QSS-DSSC due to its functions of b-d and prolongs the stability of the cell due to its function of a. The QSS-DSSC with the gel electrolyte containing 30 wt % of the POEI-IS in liquid selenocyanate electrolyte exhibited a high VOC of 825.50 ± 3.51 mV and a high power conversion efficiency (η) of 8.18 ± 0.02%. The QSS-DSSC with 30 wt % POEI-IS retained up to 95% of its initial η after an at-rest stability test with the period of more than 1,000 h.
New Ionic Liquids from Natural Products for Environmentally Benign Aircraft Deicing and Anti-Icing
2010-12-10
cation, the preparation of ILs from choline and two GRAS food ingredients (artificial sweeteners ), saccharine and acesulfamate was recently published...In comparison, the synthetic imidazolium-based ILs were quite toxic (EC50 ~14 mg/L) in the same bioassay. Both ILs are water soluble, however...RTIL. This is true to a certain extent, but again the compound has a level of toxicity to C. dubia. Also, the ‘ synthetic ’ imidazolium-based IL 13
2018-01-01
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure–constant temperature ensemble. These materials exhibit a distinct “smectic” liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications. PMID:29301305
Janati-Fard, Fatemeh; Housaindokht, Mohammad Reza; Monhemi, Hassan; Esmaeili, Abbas Ali; Nakhaei Pour, Ali
2018-07-15
The search for ionic liquids (ILs) with biochemical and biomedical applications has recently gained great attention. IL containing solvents can change the structure, stability and function of proteins. The study of protein conformation in ILs is important to understand enzymatic activity. In this work, conformational stability and activity of the enzyme in two imidazolium-based ILs (1-butyl 3-methyl-imidozolium and 1-hexyl 3-methyl-imidozoliumbromides) were investigated. We treated glucose oxidase as dimer-active enzyme in different IL concentration and seen that GOx activity was inhibited in the presence of ILs. Our experimental data showed that inhibition of activity and reduction of enzyme tertiary structure are more for hexyl than butyl derivative. These experimental results are in agreement with foregoing observations. To find a possible mechanism, a series of molecular dynamics simulation of the enzyme were performed at different IL concentration. The structure parameters obtained from MD simulation showed that conformational changes at the active site and FAD-binding site support the hypothesis of enzyme inhibition at the presence of ILs. Root mean square deviation and fluctuation calculations indicated that the enzyme has stable conformation at higher IL concentration, in agreement with experimental observation. But hexyl derivative has a much stronger stabilization effect on the protein structure. In summary, the present study could improve our understanding of the molecular mechanism about the ionic liquid effects on the structure and activity of proteins. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Jianxi; Li, Jinlong; Yu, Bo; Ma, Baodong; Zhu, Yangwen; Song, Xinwang; Cao, Xulong; Yang, Wu; Zhou, Feng
2011-09-20
A novel compound of an imidazolium type of ionic liquid (IL) containing a biomimetic catecholic functional group normally seen in mussel adhesive proteins was synthesized. The IL can be immobilized on a silicon surface and a variety of other engineering material surfaces via the catecholic anchor, allowing the tribological protection of these substrates for engineering applications. The surface wetting and adhesive properties and the tribological property of the synthesized self-assembled monolayers (SAMs) are successfully modulated by altering the counteranions. The chemical composition and wettability of the IL SAMs were characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle (CA) measurements. The adhesive and friction forces were measured with an atomic force microscope (AFM) on the nanometer scale. IL composite films were prepared by spin coating thin IL films on top of the SAMs. The macrotribological properties of these IL composite films were investigated with a pin-on-disk tribometer. The results indicate that the presence of IL SAMs on a surface can improve the wettability of spin-coated ionic liquids and thus the film quality and the tribological properties. These films registered a reduced friction coefficient and a significantly enhanced durability and load-carrying capacity. The tribological properties of the composite films are better than those of pure IL films because the presence of the monolayers improves the adhesion and compatibility of spin-coated IL films with substrates. © 2011 American Chemical Society
Bottini, Gualberto; Moyna, Guillermo
2018-02-01
The relative strengths of aromatic and aliphatic C-H⋅⋅⋅X hydrogen bonds in imidazolium ionic liquids were investigated through measurement of H/D isotope effects on the 19 F nuclear shielding of deuterated isotopologues of 1-n-butyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate ([C 4 mim]PF 6 and [C 4 mim]BF 4 ). Δ 19 F(H,D) values ranging from 9.7 to 49.7 ppb were observed for [C 4 mim]PF 6 isotopologues, while for the [C 4 mim]BF 4 series these went from 26.2 to 83.8 ppb. Our findings indicate that the interactions between the fluorinated anions and protons on the C-1' and C-1″ position of the N-alkyl sidechains are comparable to, and in some cases stronger than, those involving protons on the aromatic ring, underscoring the role that these weak interionic forces have on the local ordering of imidazolium salts in the liquid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper
NASA Astrophysics Data System (ADS)
Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.
2014-12-01
Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, S; DeSilva, MA; Brennecke, JF
2014-12-25
Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange processmore » between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.« less
Zhu, Youtao; Yan, Jing; Liu, Chengbu; Zhang, Dongju
2017-08-01
Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium-based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol-β-guaiacyl ether (VG) with 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π-π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl - anion forms a hydrogen-bonded complex with VG, the imidazolium cation interacts with VG via both the π-π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium-based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution. © 2017 Wiley Periodicals, Inc.
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...
2018-10-02
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Pan, Wenxiao; Qi, Yuanyuan; Wang, Ruoxi; Han, Zhe; Zhang, Dongju; Zhan, Jinhua
2013-04-01
The effective abatement of flue gas emissions, especially polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), is one of the challenging issues in the field of environmental science currently. Imidazolium-based dicyanamide ionic liquids (ILs) were proposed to have potential in controlling the emissions of PCDD/Fs. However, the relevant mechanism at the molecular level still remains unclear. To address this subject, we here present a combined molecular dynamics (MD) simulation and quantum chemical (QM) study on the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener among PCDD/F family, by 1-butyl-3-methylimidazolium dicyanamide IL, a representative imidazolium dicyanoamide ILs, which were demonstrated to possess high capture capability for PCDD/Fs. The MD simulation results show that TCDD molecules can be effectively adsorbed on the IL surface to form a dense layer, but cannot enter the interior of the IL. The results of QM calculations show that the adsorption of TCDDs on the IL surface occurs via intra-molecular hydrogen bond interactions. The calculated interaction energy of the anion with TCDD molecule is two times more than that of the cation, implying that the IL anion dominates the interaction with TCDD molecules, while the cation plays a secondary role. Based on the calculated results, we propose that imidazolium dicyanamide IL films/membranes may be better materials than the corresponding bulk for capturing TCDD. The present theoretical results may be helpful to designing the functional ILs which effectively capture and concentrate PCDD/F compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Méndez-Morales, Trinidad; Carrete, Jesús; Bouzón-Capelo, Silvia; Pérez-Rodríguez, Martín; Cabeza, Óscar; Gallego, Luis J; Varela, Luis M
2013-03-21
Structural and dynamical properties of room-temperature ionic liquids containing the cation 1-butyl-3-methylimidazolium ([BMIM](+)) and three different anions (hexafluorophosphate, [PF6](-), tetrafluoroborate, [BF4](-), and bis(trifluoromethylsulfonyl)imide, [NTf2](-)) doped with several molar fractions of lithium salts with a common anion at 298.15 K and 1 atm were investigated by means of molecular dynamics simulations. The effect of the size of the salt cation was also analyzed by comparing these results with those for mixtures of [BMIM][PF6] with NaPF6. Lithium/sodium solvation and ionic mobilities were analyzed via the study of radial distribution functions, coordination numbers, cage autocorrelation functions, mean-square displacements (including the analysis of both ballistic and diffusive regimes), self-diffusion coefficients of all the ionic species, velocity and current autocorrelation functions, and ionic conductivity in all the ionic liquid/salt systems. We found that lithium and sodium cations are strongly coordinated in two different positions with the anion present in the mixture. Moreover, [Li](+) and [Na](+) cations were found to form bonded-like, long-lived aggregates with the anions in their first solvation shell, which act as very stable kinetic entities within which a marked rattling motion of salt ions takes place. With very long MD simulation runs, this phenomenon is proved to be on the basis of the decrease of self-diffusion coefficients and ionic conductivities previously reported in experimental and computational results.
Mendoza, Laura González; González-Álvarez, Jaime; Gonzalo, Carla Fernández; Arias-Abrodo, Pilar; Altava, Belén; Luis, Santiago V; Burguete, Maria Isabel; Gutiérrez-Álvarez, María Dolores
2015-10-01
A Gas Chromatography (GC) method has been developed for the separation and characterization of the different fatty acids in anhydrous milk fat (AMF) by means of an ionic liquid stationary phase, characterized by a monocationic imidazolium salt derived from L-phenylalanine. The inner surface of a fused silica capillary column was modified using this ionic liquid functionality and 3-aminopropyldiethoxymethyl silane. This coated GC column, which exhibited good thermal stability (270°C) and good efficiency (2700 plates/m), has been characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the method have been evaluated, obtaining relative standard deviations (RSD) from 0.99% to 4.0% and from 2.8% to 9.2%, respectively. Furthermore, recoveries from 90% and 99% have been achieved. Copyright © 2015 Elsevier B.V. All rights reserved.
Majhi, Paresh Kumar; Sauerbrey, Susanne; Schnakenburg, Gregor; Arduengo, Anthony J; Streubel, Rainer
2012-10-01
1-Alkyl-3-methyl-4-diphenylphosphoryl-imidazolium hydrogensulfate (4a,b) (a: R(1) = R(2) = Me; b: R(1) = (i)Pr, R(2) = Me) and 1-alkyl-3-methyl-4,5-bis(diphenylphosphoryl)imidazolium hydrogensulfate (6a,c) (c: R(1) = (n)Bu, R(2) = Me) were obtained selectively and in good yields by oxidative desulfurization of 1-alkyl-3-methyl-4-diphenylphosphino-imidazole-2-thiones (2a,b) and 1-n-butyl-3-methyl-4,5-bis(diphenylphosphoryl)imidazole-2-thione (3c) or 1,3-dimethyl-4-diphenylthiophosphoryl-5-diphenylphosphino-imidazole-2-thione (5a), respectively, with hydrogen peroxide. Synthesis of phosphoryl functionalized imidazol-2-ylidene complexes of group VI metal pentacarbonyls (7a-9a) and (10b-12b) and bis(phosphoryl) functionalized imidazol-2-ylidene complexes of group VI metal pentacarbonyls (13c-15c) and (16a) with low steric demand (methyl, isopropyl, n-butyl) at both N-centers was achieved through deprotonation of imidazolium salts (4a,b) and (6a,c), respectively,-having HSO(4)(-) as a counterion-with potassium tert-butoxide followed by rapid addition of metal pentacarbonyl acetonitrile complexes [M(CO)(5)(CH(3)CN)] (M = Cr, Mo, W). The products were unambiguously characterized by elemental analyses, spectroscopic and spectrometric methods, and in addition, by single-crystal X-ray structure studies in the cases of 4b, 8a, 15c, and 16a; the latter two reveal imidazole ring bond distance alternation in contrast to 8a.
Tanaka, Kazuo; Ishiguro, Fumiyasu; Chujo, Yoshiki
2010-12-22
We report the synthesis of a stable room-temperature ionic liquid consisting of an octacarboxy polyhedral oligomeric silsesquioxane (POSS) anion and an imidazolium cation. The introduction of the POSS moiety enhances the thermal stability and reduces the melting temperature. From an evaluation of the thermodynamic parameters during the melting, it was found that the rigidity and cubic structure of POSS can contribute to the enhancement of these thermal properties.
Purification and crystal growth of NPB via imidazolium based ionic liquids
NASA Astrophysics Data System (ADS)
Oh, Yong-Taeg; Shin, Dong-Chan
2018-04-01
Here we report the production of high purity and crystallinity organic electronic material of NPB (N,N‧-Di-[(1-naphthyl)-N,N‧-diphenyl]-1,1‧-biphenyl-4,4‧-diamine (C44H32N2) through solution recrystallization within imidazolium based ionic liquids. When low purity NPB was recrystallized at 170 °C within C8MIM[TFSI], its purity was drastically improved from 82% to 99.92%. These recrystallized NPB crystals showed 0.040° FWHM (Full Width Half Maximum) of X-ray (1 1 1) diffraction peak. Such small FWHM angle indicates single-crystal like crystallinity. Initial NPB powder was dissolved at 100 °C and recrystallized at temperature above 110 °C. At higher temperature of 170 °C, a small number of bigger crystals were formed compared to those at 110 °C. This can be well explained by the classical nucleation and growth theory. Therefore, solution recrystallization process using ionic liquid might be promising for mass production of organic electronic materials by replacing the widely-used sublimation purification method.
Titanium deposition from ionic liquids - appropriate choice of electrolyte and precursor.
Berger, Claudia A; Arkhipova, Maria; Farkas, Attila; Maas, Gerhard; Jacob, Timo
2016-02-14
In this study titanium isopropoxide was dissolved in 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (BMITFSI) and further in a custom-made guanidinium-based ionic liquid (N11N11NpipGuaTFSI). Electrochemical investigations were carried out by means of cyclic voltammetry (CV) and the initial stages of metal deposition were followed by in situ scanning tunneling microscopy (STM). For BMITFSI we found one large cathodic reduction peak at a potential of -1.2 V vs. Pt, corresponding to the growth of monoatomic high islands. The obtained deposit was identified as elemental titanium by Auger Electron Spectroscopy (AES). Furthermore, we found a corresponding anodic peak at -0.3 V vs. Pt, which is associated with the dissolution of the islands. This observation leads to the assumption that titanium deposition from the imidazolium-based room-temperature ionic liquid (RTIL) proceeds in a one-step electron transfer. In contrast, for the guanidinium-based RTIL we found several peaks during titanium reduction and oxidation, which indicates a multi-step electron transfer in this alternative electrolyte.
Polarizability effects on the structure and dynamics of ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br; Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM; Ribeiro, Mauro C. C.
2014-04-14
Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibriummore » structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.« less
Effect of Cerium(III) and ionic liquids on the clouding behavior of Triton X-100 micelles
NASA Astrophysics Data System (ADS)
Sen, Indrani Das; Negi, Charu; Jayaram, Radha V.
2018-04-01
In the present study, the effect of Ce(III) on the clouding behavior of Triton X-100 has been investigated in the presence and absence of imidazolium based ionic liquids of varying chain length and counter ions. Thermodynamic parameters of clouding were calculated to comprehend the underlying interactions between the surfactant and the additives. The cloud point (CP) of Triton X-100 was found to increase with the concentration of Ce(III) and that of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar solution1.
Kowsari, M H; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan
2008-12-14
Molecular dynamics simulations are used to study the dynamics and transport properties of 12 room-temperature ionic liquids of the 1-alkyl-3-methylimidazolium [amim](+) (alkyl = methyl, ethyl, propyl, and butyl) family with PF(6)(-), NO(3)(-), and Cl(-) counterions. The explicit atom transferable force field of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] is used in the simulations. In this first part, the dynamics of the ionic liquids are characterized by studying the mean-square displacement (MSD) and the velocity autocorrelation function (VACF) for the centers of mass of the ions at 400 K. Trajectory averaging was employed to evaluate the diffusion coefficients at two temperatures from the linear slope of MSD(t) functions in the range of 150-300 ps and from the integration of the VACF(t) functions at 400 K. Detailed comparisons are made between the diffusion results from the MSD and VACF methods. The diffusion coefficients from the integration of the VACFs are closer to experimental values than the diffusion coefficients calculated from the slope of MSDs. Both methods can show good agreement with experiment in predicting relative trends in the diffusion coefficients and determining the role of the cation and anion structures on the dynamical behavior of this family of ionic liquids. The MSD and self-diffusion of relatively heavier imidazolium cations are larger than those of the lighter anions from the Einstein results, except for the case of [bmim][Cl]. The cationic transference number generally decreases with temperature, in good agreement with experiments. For the same anion, the cationic transference numbers decrease with increasing length of the alkyl chain, and for the same cation, the trends in the cationic transference numbers are [NO(3)](-) < [Cl](-) < [PF(6)](-). The trends in the diffusion coefficient in the series of cations with identical anions are [emim](+) > [pmim](+) > [bmim](+) and those for anions with identical cations are [NO(3)](-) > [PF(6)](-) > [Cl](-). The [dmim](+) has a relatively low diffusion coefficient due to its symmetric structure and good packing in the liquid phase. The major factor for determining the magnitude of the self-diffusion is the geometric shape of the anion of the ionic liquid. Other important factors are the ion size and the charge delocalization in the anion.
Clusters of imidazolium-based ionic liquid in benzene solutions.
Shimomura, Takuya; Takamuku, Toshiyuki; Yamaguchi, Toshio
2011-07-07
Cluster formation of 1-dodecyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (C(12)mim(+)TFSA(-)) in benzene solutions was investigated using small-angle neutron scattering (SANS), NMR, attenuated total reflectance infrared (ATR-IR), and large-angle X-ray scattering (LAXS) techniques. The SANS measurements revealed that C(12)mim(+)TFSA(-) is heterogeneously mixed with benzene in the narrow range of benzene mole fraction 0.9 ≤ x(C6D6) ≤ 0.995 with a maximum heterogeneity at x(C6D6) ≈ 0.99. The NMR results suggested that the imidazolium ring is sandwiched between benzene molecules through the cation-π interaction. Moreover, TFSA(-) probably interacts with the imidazolium ring even in the range of x(C6H6) ≥ 0.9. Thus, the imidazolium rings, benzene molecules, and TFSA(-) would form clusters in the C(12)mim(+)TFSA(-)-benzene solutions. The LAXS measurements showed that the distance between the imidazolium ring and benzene is ∼3.8 Å with that between the benzene molecules of ∼7.5 Å. On the basis of these results, we discussed a plausible reason for the liquid-liquid equilibrium of the C(12)mim(+)TFSA(-)-benzene system.
Salgado, J; Parajó, J J; Teijeira, T; Cruz, O; Proupín, J; Villanueva, M; Rodríguez-Añón, J A; Verdes, P V; Reyes, O
2017-10-01
The next generation of ionic liquids must be synthetized taking into account structures that guarantee the suitable properties for a defined application as well as ecological data. Thus, searching of the right methodologies to know, quickly and efficiently, the ecological effects of these compounds is a preliminary task. The effects of two imidazolium based ionic liquids with different anions, 1-butyl-3-methylimidazolium tetrafluoroborate, [C 4 C 1 Im][BF 4 ], and 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 3 C 1 Im][NTf 2 ], on seedling emergence of six tree species and on the microbial behaviour of two soils were determined in this work. Results showed that the highest doses of both ionic liquids caused the total inhibition of germination for almost all the species studied and that the seeds are more sensitive to the presence of these compounds than soil microbial activity. Nevertheless, signals of stress and death are observed from the results of heat released by microorganisms after the addition of the highest doses of both ionic liquids. The novelty of this work resides in the enlargement of knowledge of toxicity of ILs on complex organisms such as arboreal species and microbial activity of soils studied for the first time through a microcalorimetric technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Membrane interactions of ionic liquids and imidazolium salts.
Wang, Da; Galla, Hans-Joachim; Drücker, Patrick
2018-06-01
Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.
Synergistic promotion of polar phase crystallization of PVDF by ionic liquid with PEG segment
NASA Astrophysics Data System (ADS)
Xu, Pei; Fu, Weijia; Cui, Zhaopei; Ding, Yunsheng
2018-06-01
To investigate the effect of imidazolium ionic liquid with poly(ethylene glycol) segment (IL) on the polar phase crystallization behavior of poly(vinylidene fluoride) (PVDF), a series of PVDF/IL composites were prepared using solution-cast method. The crystallization peak temperature of PVDF composites and the growth speed of samples decrease with increasing of IL. The >CF2 groups in amorphous region are retained and >CF2 groups in crystalline region are liberated by the PEG long soft segments of IL. The intensity of peaks represented as α phase reduces, moreover polar phase content increases with increasing of IL. The interaction between the >CF2 and the imidazolium cation can induce the polar phase, and the interaction between the >CF2 and PEG soft segment can strengthen polar crystalline induction. PVDF/12IL composite can form big γ spherulite circled by β phase.
Biczak, Robert; Pawłowska, Barbara; Feder-Kubis, Joanna; Telesiński, Arkadiusz
2017-08-01
Ionic liquids are a group of chemical compounds with chemical properties that are of great interest to various fields of science and industry. However, commercial use of these substances raises concern because they may threaten the natural ecosystems. The present study used 2 types of (-)-menthol-containing imidazolium chiral ionic liquids: 1-[(1R,2S,5R)-(-)-menthoxymethyl]-3-methylimidazolium hexafluorophosphate [Im-Men][PF 6 ] and 1-[(1R,2S,5R)-(-)-menthoxymethyl]-3-methylimidazolium trifluoroacetate [Im-Men][CF 3 CO 2 ]. The effects of these compounds on growth and development of spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers.) were investigated. The present study demonstrated that chiral ionic liquids produced a relatively high phytotoxicity, by shortening the plants' lengths and roots, thus causing a decline in the experimental plants' fresh weights. The investigated ionic liquids also led to a reduction in photosynthetic pigment levels, changes in hydrogen peroxide and malondialdehyde content, and changes in the activities of superoxide dismutase, catalase, and peroxidase in both plants. Changes in these enzymes were used to indicate oxidative stress levels in spring barley and common radish. It was demonstrated that imidazolium ionic liquid-induced phytotoxicity depended largely on the type of anion. The liquid [Im-Men][PF 6 ] exhibited higher toxicity toward spring barley and common radish seedlings. Common radish was more resistant to chiral ionic liquids. Environ Toxicol Chem 2017;36:2167-2177. © 2017 SETAC. © 2017 SETAC.
Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G
2007-06-11
The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.
Ionic liquids at the surface of graphite: Wettability and structure
NASA Astrophysics Data System (ADS)
Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida
2018-05-01
The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.
Roeleveld, Kevin; David, Frank; Lynen, Frédéric
2016-06-17
In this study the merits of polymerized imidazolium based ionic liquid (PIL) stationary phases obtained via condensation and free radical polymerizations are compared as stationary phases in gas chromatography (GC). Poly(1-vinyl-3-butyl-imidazolium - bis(trifluoromethane)sulfonamide) (poly(ViC4Im(+) NTf2(-))) was obtained via a chain-growth mechanism while poly(propylimidazolium-NTf2) (poly(C3Im(+) NTf2(-))) was synthesized via a step-growth polymerization. The thermal stability of both polymers was assessed using thermal gravimetric analysis and compared with bleeding profiles obtained from the statically coated GC columns (30m×0.25mm×0.25μm). The performance was compared to what could be obtained on commercially available 1,5-di(2,3-dimethylimidazolium)pentane(2+) 2NTf2(-) (SLB-IL111) ionic liquid based columns. It was observed that the step-growth polymer was more thermally stable, up to 325°C, while the chain-growth polymer showed initial degradation at 250°C. Both polymers allowed reaching minimal plate heights of 0.400-0.500mm for retained solutes such as benzaldehyde, acetophenone, 1-methylnaphthalene and aniline. Assessment of the McReynolds constants illustrated that the polarity of the step-growth polymer was similar to the SLB-IL111 column, while displaying improved column stability. The PIL phases and particularly the so far little studied condensation based polymer shows particular retention and satisfactory column performance for polar moieties such as esters, amine and carbonyl functionalities. Copyright © 2016 Elsevier B.V. All rights reserved.
The microwave reactions of InX3 with [Q]Y produce a series of tetrahaloindate(III)-based ionic liquids (ILs) with a general formula of [Q][InX3Y] (Q = imidazolium, phosphonium, ammonium, and pyridinium; X = Cl, Br, I; Y = Cl, Br). The reaction of CO2
Shan, Yuanhong; Qiao, Lizhen; Shi, Xianzhe; Xu, Guowang
2015-01-02
To develop a novel hybrid monolithic column based on pentafluorobenzyl imidazolium bromide ionic liquid, a new ionic liquid monomer was synthesized from 1-vinylimidazole and pentafluorobenzyl bromide. By employing a facile one-step copolymerization of polyhedral-oligomeric-silsesquioxane-type (POSS) cross-linking agent and the home-made ionic liquid monomer, the hybrid monolithic columns were in situ fabricated in fused-silica capillary. The morphology of monolithic column was characterized by scanning electron microscope (SEM) and the chemical composition was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and elemental analysis. Excellent mechanical stability and slight swelling propensity were exhibited which was ascribed to the rigid hybrid monolithic skeleton. Reproducibility results of run-to-run, column-to-column, batch-to-batch and day-to-day were investigated and the RSDs were less than 0.46%, 1.84%, 3.96% and 3.17%, respectively. The mixed-mode retention mechanism with hydrophobic interaction, π-π stacking, ion-exchange, electrostatic interaction and dipole-dipole interaction was explored systematically using analytes with different structure types. Satisfied separation capability and column efficiency were achieved for the analysis of small molecular compounds such as alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides and halogenated compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Zeng, Qingying; Mukherjee, Arijit; Müller, Peter; Rogers, Robin D.
2017-01-01
While molecular solvents are commonly used in the screening of polymorphs, the choices are often restricted. Ionic liquids (ILs) – also referred as designer solvents – have immense possibility in this regard because of their wide flexibility of tunability. More importantly, the interactions among the IL components are completely unique compared to those present in the molecular solvents. In this context, we have chosen tetrolic acid (TA) and isonicotinamide (INA), which showed solution-structure link in molecular solvents in the past, as probes to investigate the role of imidazolium based ionic liquids in the polymorphism of these two systems and whether the different solute–solvent interactions in ILs affect the polymorphic outcome. It is observed that the selected imidazolium-based ILs, with varying anion basicity have influenced the crystallization outcome by the interaction between ILs and model compounds. Later, we have utilized the concept of double salt ionic liquids (DSIL) for INA, a penta-morphic system, to investigate the variation in the polymorphic outcome. This approach helped to obtain the forms that were otherwise inaccessible in ILs. PMID:29675194
Chen, Yuehua; Wang, Huiyong; Wang, Jianji
2014-05-01
Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.
Ubeda-Torres, M T; Ortiz-Bolsico, C; García-Alvarez-Coque, M C; Ruiz-Angel, M J
2015-02-06
In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 β-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Tsarpali, Vasiliki; Dailianis, Stefanos
2015-07-01
The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone. Copyright © 2015 Elsevier Inc. All rights reserved.
Alves, Márcia; Vieira, Nicole S M; Rebelo, Luís Paulo N; Araújo, João M M; Pereiro, Ana B; Archer, Margarida
2017-06-30
Since the approval of recombinant human insulin by FDA in 1982, more than 200 proteins are currently available for pharmaceutical use to treat a wide range of diseases. However, innovation is still required to develop effective approaches for drug delivery. Our aim is to investigate the potential use of fluorinated ionic liquids (FILs) as drug delivery systems (DDS) for therapeutic proteins. Some initial parameters need to be assessed before further studies can proceed. This work evaluates the impact of FILs on the stability, function, structure and aggregation state of lysozyme. Different techniques were used for this purpose, which included differential scanning fluorimetry (DSF), spectrophotometric assays, circular dichroism (CD), dynamic light scattering (DLS), and scanning and transmission electron microscopy (SEM/TEM). Ionic liquids composed of cholinium-, imidazolium- or pyridinium- derivatives were combined with different anions and analysed at different concentrations in aqueous solutions (below and above the critical aggregation concentration, CAC). The results herein presented show that the addition of ionic liquids had no significant effect on the stability and hydrolytic activity of lysozyme. Moreover, a distinct behaviour was observed in DLS experiments for non-surfactant and surfactant ionic liquids, with the latter encapsulating the protein at concentrations above the CAC. These results encourage us to further study ionic liquids as promising tools for DDS of protein drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Nature of the C2-methylation effect on the properties of imidazolium ionic liquids.
Rodrigues, Ana S M C; Lima, Carlos F R A C; Coutinho, João A P; Santos, Luís M N B F
2017-02-15
Methylation at the C2 position of 1,3-disubstituted imidazolium-based ionic liquids (ILs) is one of the structural features that has gained attention due to its drastic impact on thermophysical and transport properties. Several hypotheses have been proposed to explain this effect but there is still much discrepancy. Aiming for the rationalization of the effects of these structural features on the properties of imidazolium ILs, we present a thermodynamic and computational study of two methylated ILs at the C2 position of imidazolium, [ 1 C 4 2 C 1 3 C 1 im][NTf 2 ] and [ 1 C 3 2 C 1 3 C 1 im][NTf 2 ]. The phase behaviour (glass transition and vaporization equilibrium) and computational studies of the anion rotation around the cation and ion pair interaction energies for both ILs were explored. The results have shown that C2-methylation has no impact on the enthalpy of vaporization. However, it decreases the entropy of vaporization, which is a consequence of the change in the ion pair dynamics that affects both the liquid and gas phases. In addition, the more hindered dynamics of the ion pair are also reflected in the increase in the glass transition temperature, T g . The entropic contribution of anion-around-cation rotation in the imidazolium [NTf 2 ] ILs was quantified experimentally by the comparative analysis of the entropy of vaporization, and computationally by the calculation of the entropies of hindered internal rotation. The global results exclude the existence of significant H-bonding in the C2-protonated (non-methylated) ILs and explain the C2-methylation effect in terms of reduced entropy of the ion pair in the liquid and gas phases. In light of these results, the C2-methylation effect is intrinsically entropic and originates from the more hindered anion-around-cation rotation as a consequence of the substitution of the -H with a bulkier -CH 3 group.
Small nickel nanoparticle arrays from long chain imidazolium ionic liquids
Yang, Mei; Campbell, Paul S.; Santini, Catherine C.; ...
2013-11-08
A series of six long chain alkyl mono- and bi-cationic imidazolium based salts with bis(trifluoromethylsulfonyl)imide (NTf 2–) as the anion were synthesized and characterized. Single crystal structure of 1-methyl-3-octadecylimidazolium bis(trifluoromethylsulfonyl)imide could be obtained by X-ray analysis. All these long chain alkyl imidazolium based ILs were applied in the synthesis of nickel nanoparticles via chemical decomposition of an organometallic precursor of nickel. In these media, spontaneous decomposition of Ni(COD) 2 (COD = 1,5-cyclooctadiene) in the absence of H 2 occurred giving small NPs (≤4 nm) with narrow size distributions. Interestingly, formation of regularly interspaced NP arrays was also observed in longmore » chain ILs. Lastly, such array formation could be interesting for potential applications such as carbon nanotube growth.« less
Structural analysis of zwitterionic liquids vs. homologous ionic liquids
NASA Astrophysics Data System (ADS)
Wu, Boning; Kuroda, Kosuke; Takahashi, Kenji; Castner, Edward W.
2018-05-01
Zwitterionic liquids (Zw-ILs) have been developed that are homologous to monovalent ionic liquids (ILs) and show great promise for controlled dissolution of cellulosic biomass. Using both high energy X-ray scattering and atomistic molecular simulations, this article compares the bulk liquid structural properties for novel Zw-ILs with their homologous ILs. It is shown that the significant localization of the charges on Zw-ILs leads to charge ordering similar to that observed for conventional ionic liquids with monovalent anions and cations. A low-intensity first sharp diffraction peak in the liquid structure factor S(q) is observed for both the Zw-IL and the IL. This is unexpected since both the Zw-IL and IL have a 2-(2-methoxyethoxy)ethyl (diether) functional group on the cationic imidazolium ring and ether functional groups are known to suppress this peak. Detailed analyses show that this intermediate range order in the liquid structure arises for slightly different reasons in the Zw-IL vs. the IL. For the Zw-IL, the ether tails in the liquid are shown to aggregate into nanoscale domains.
Panniello, Annamaria; Ingrosso, Chiara; Coupillaud, Paul; Tamborra, Michela; Binetti, Enrico; Curri, Maria Lucia; Agostiano, Angela; Taton, Daniel; Striccoli, Marinella
2014-01-01
Polymeric ionic liquids (PILs) are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate) or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites. PMID:28788477
Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.
Suzuki, Yumiko
2018-06-01
Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.
Superbase-derived protic ionic liquid extractants for metal ion separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Jason R.; Dai, Sheng; Luo, Huimin
2014-04-19
Solvent extraction of La 3+ and Ba 2+ by an ionic liquid extractant in an imidazolium-based ionic liquid diluent was investigated. Seven protic ionic liquid extractants were examined and these protic ILs are based on five organic superbases and either 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octadione (Hfod) or 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) -diketones as anion. For fod-based extractants, the extraction efficiencies and separation factors were found to be concentration dependent. The effects of aqueous phase acidity, extractant structure, and extractant concentration on separation properties of La 3+ and Ba 2+ are discussed in this paper.
Khara, Dinesh Chandra; Kumar, Jaini Praveen; Mondal, Navendu; Samanta, Anunay
2013-05-02
Rotational dynamics of two dipolar solutes, 4-aminophthalimide (AP) and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), and a nonpolar solute, anthracene, have been studied in N-alkyl-N-methylmorpholinium (alkyl = ethyl, butyl, hexyl, and octyl) bis(trifluoromethansulfonyl)imide (Tf2N) ionic liquids as a function of temperature and excitation wavelength to probe the microheterogeneous nature of these ionic liquids, which are recently reported to be more structured than the imidazolium ionic liquids (Khara and Samanta, J. Phys. Chem. B2012, 116, 13430-13438). Analysis of the measured rotational time constants of the solutes in terms of the Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that with increase in the alkyl chain length attached to the cationic component of the ionic liquids, AP shows stick to superstick behavior, PRODAN rotation lies between stick and slip boundary conditions, whereas anthracene exhibits slip to sub slip behavior. The contrasting rotational dynamics of these probe molecules is a reflection of their location in distinct environments of the ionic liquids thus demonstrating the heterogeneity of these ionic liquids. The microheterogeneity of these media, in particular, those with the long alkyl chain, is further evidence from the excitation wavelength dependence study of the rotational diffusion of the dipolar probe molecules.
Prabhu, Sugosh R; Dutt, G B
2014-11-20
The rotational dynamics of 1-alkyl-3-methylimidazolium-based ionic liquids has been investigated by monitoring their inherent fluorescence with the intent to unravel the characteristics of the emitting species. For this purpose, temperature-dependent fluorescence anisotropies of 1-alkyl-3-methylimidazolium (alkyl = ethyl and hexyl) ionic liquids with anions such as tris(pentafluoroethyl)trifluorophosphate ([FAP]), bis(trifluoromethylsulfonyl)imide ([Tf2N]), tetrafluoroborate ([BF4]), and hexafluorophosphate ([PF6]) have been measured. It has been observed that the reorientation times (τr) of the ionic liquids with an ethyl chain scale linearly with viscosity and were found to be independent of the nature of the anion. The experimentally measured τr values are a factor of 3 longer than the ones calculated for 1-ethyl-3-methylimidazolium cation using the Stokes-Einstein-Debye (SED) hydrodynamic theory with stick boundary condition, which suggests that the emitting species is not the imidazolium moiety but some kind of associated species. The reorientation times of ionic liquids with a hexyl chain, in contrast, follow the trend τr([FAP]) > τr([Tf2N]) = τr([BF4]) > τr([PF6]) at a given viscosity (η) and temperature (T). The ability of the ionic liquids with longer alkyl chains to form the organized structure appears to be responsible for the observed behavior considering the fact that significant deviations from linearity have been noticed in the τr versus η/T plots for strongly associating anions [BF4] and [PF6], especially at ambient temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, PT; Voss, BA; Wiesenauer, EF
2013-07-03
An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gasmore » permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.« less
NASA Astrophysics Data System (ADS)
Yamamuro, O.; Kofu, M.
2017-05-01
Glass transition is one of the central research issues of ionic liquids (ILs). In particular, the most typical ILs, imidazolium-basedones (ImILs) are readily supercooled and exhibit glass transitions below room temperature. We have measured the heat capacities of several ImILs, encoded as CnmimX (n: alkyl carbon number, n = 2-8, X: anion, X = Cl, I, FeCl4, TFSI) using an adiabatic calorimeter. We found that most of ImILs exhibit glass transitions with large Cp jumps in a temperature range between 170 K and 230 K. The large Cp jumps reflect that these ILs are fragile liquids that exhibit large structural change depending on temperature near the glass transition temperature T g. It is also revealed that T g does not depend much on n but on the anion radius. We have investigated the dynamics of CnmimX (n = 2-8, X = Cl, NO3, PF6, TF, FSI, TFSI) by means of a quasielastic neutron scattering (QENS) technique. It was clarified that the ionic diffusion is directly associated with the viscosity and glass transition. The activation energy ΔE a of the ionic diffusion increases with decreasing anion size but remains almost unchanged with n as found for T g. These systematic change of T g and ΔE a can be explained well by taking account the nano-domain structure which is the most characteristic feature of ImILs.
Dong, Zhen; Zhao, Long
2018-06-01
Combining the advantages of both cellulose and ionic liquid, ionic liquid functionalized cellulose (ILFC) as adsorbent was prepared through radiation grafting glycidyl methacrylate onto cellulose microsphere following by reaction with ionic liquid 1-aminopropyl-3-methyl imidazolium nitrate. Its adsorption properties towards Cr(VI) were investigated in batch and column experiments. In batch experiments, the adsorption kinetics was well fitted with pseudo-second-order mode with equilibrium time of 2 h and the adsorption capacity reached 181.8 mg/g at pH 2 calculated from Langmuir model. In fixed column, both Yoon-Nelson and Thomas models gave satisfactory fit to experimental data and breakthrough curves, and equilibrium adsorption capacity calculated by Thomas model was 161.0 mg/g. Moreover, ILFC exhibited high selectivity towards Cr(VI) even in synthetic chrome-plating wastewater. Besides, adsorption/desorption test revealed ILFC can be regenerated and reused several times without obvious decrease in adsorbed amount. The adsorption process was demonstrated to anion exchange-reduction mechanism via XPS analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pello-Palma, Jairo; González-Álvarez, Jaime; Gutiérrez-Álvarez, María Dolores; Dapena de la Fuente, Enrique; Mangas-Alonso, Juan José; Méndez-Sánchez, Daniel; Gotor-Fernández, Vicente; Arias-Abrodo, Pilar
2017-04-01
A chromatographic method for the separation of volatile compounds in Asturian cider apple juices has been developed. For this separation purpose, a monocationic imidazolium-based ionic liquid bearing a reactive terminal iodine atom was synthesized by a quaternization-anion exchange chemical sequence. Next, the gas chromatography (GC) stationary phase was prepared by covalently linking the imidazolium monolith to the reactive silanol groups of the inner capillary wall at 70 °C. This coated GC column exhibited good thermal stability (290 °C), as well as good efficiency (2000 plates/m) in the separation of volatile compounds from Asturian apple cider juices, and was characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the chromatographic method was evaluated, obtaining relative standard deviations from 3.7 to 12.9% and from 7.4 to 18.0%, respectively. Furthermore, recoveries from 82.5 to 122% were achieved. Graphical Abstract Covalent bonding of an ionic liquid to inner column wall led to a great improvement of the separation efficiencies of stationary phases in gas chromatography.
Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe
2016-01-01
Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947
NASA Astrophysics Data System (ADS)
Garcia Rey, Natalia; Dlott, Dana
2015-06-01
Understand the molecular dynamics on buried electrodes under electrochemical transformations is of significant interest. There is a big gap of knowledge in the CO2 electroreduction mechanism due to the limitations to access and probe the liquid-metal interfaces [1,2]. Vibrational Sum Frequency Spectroscopy (VSFS) is a non-invasive and surface sensitive technique, with molecular level detection that can be used to probe electrochemical reactions occurring on the electrolyte-electrode interface [2]. We observed the CO2 electroreduction to CO in ionic liquids (ILs) on poly Ag using VSFS synchronized with cyclic voltammetry. In order to follow the CO2 reaction in situ on the ionic liquid-Ag interface; the CO, CO2 and imidazolium vibrational modes (resonant SFS) were monitored as a function of potential. We identified at which potential the CO was produced and how the EMIM-BF4 played an important role in the electron transfer to the CO2, lowering the CO2- energy barrier. A new approach to reveal the double layer dynamics to the electrostatic environment is presented by the study of the nonresonant sum frequency intensity as a function of the applied potential. By this method, we studied the influence of water-ionic liquid mixtures in the CO2 electroreduction on Ag electrode. We observed a shift to lower potentials in the CO2 electroreduction in water-ILs electrolyte. Previous studies in gas diffusion fuel cells have shown the CO2 electroreduction in a water-imidazolium-based ILs on Ag nanoparticles at lower overpotential [3]. Our VSFS study helps to understand the fundamental electrochemical mechanism, showing how the ILs structural transition influences the CO2 electroreduction. [1] Polyansky, D. E.; Electroreduction of Carbon Dioxide, 2014, Encyclopedia of Applied Electrochemistry, Springer New York, pag 431-437. [2] Bain, C. D.; J. Chem. Soc., Faraday Trans., 1995, 91, 1281. [3] Rosen, B. A. et al; Science, 2011, 334 (6056), 643. Rosen, B. A. et al.; J. electrochem. Soc., 2013, 160 (2), H138.
Klauke, Karsten; Zaitsau, Dzmitry H; Bülow, Mark; He, Li; Klopotowski, Maximilian; Knedel, Tim-Oliver; Barthel, Juri; Held, Christoph; Verevkin, Sergey P; Janiak, Christoph
2018-04-03
Three selenoether-functionalized ionic liquids (ILs) of N-[(phenylseleno)methylene]pyridinium (1), N-(methyl)- (2) and N-(butyl)-N'-[(phenylseleno)methylene]imidazolium (3) with bis(trifluoromethanesulfonyl)imide anions ([NTf2]) were prepared from pyridine, N-methylimidazole and N-butylimidazole with in situ obtained phenylselenomethyl chloride, followed by ion exchange to give the desired compounds. The crystal structures of the bromide and tetraphenylborate salts of the above cations (1-Br, 2-BPh4 and 3-BPh4) confirm the formation of the desired cations and indicate a multitude of different supramolecular interactions besides the dominating Coulomb interactions between the cations and anions. The vaporization enthalpies of the synthesized [NTf2]-containing ILs were determined by means of a quartz-crystal microbalance method (QCM) and their densities were measured with an oscillating U-tube. These thermodynamic data have been used to develop a method for assessment of miscibility of conventional solvents in the selenium-containing ILs by using Hildebrandt solubility parameters, as well as for modeling with the electrolyte perturbed-chain statistical associating fluid theory (ePC-SAFT) method. Furthermore, structure-property relations between selenoether-functionalized and similarly shaped corresponding aryl-substituted imidazolium- and pyridinium-based ILs were analyzed and showed that the contribution of the selenium moiety to the enthalpy of vaporization of an IL is equal to the contribution of a methylene (CH2) group. An incremental approach to predict vaporization enthalpies of ILs by a group contribution method has been developed. The reaction of these ILs with zinc acetate dihydrate under microwave irradiation led to ZnSe nanoparticles of an average diameter between 4 and 10 nm, depending on the reaction conditions.
Silva, Micael; Figueiredo, Angelo Miguel; Cabrita, Eurico J
2014-11-14
We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium-based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim](+). Competition STD-NMR experiments using [C2mim](+), [C4mim](+) and [C2OHmim](+) also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using (35)Cl NMR. Such experiments show that the nature of the cation has no influence on the anion-protein contacts, still the nature of the anion modulates the cation-protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation-anion pair and cation-protein).
Qiu, Hongdeng; Jiang, Qiong; Wei, Zheng; Wang, Xusheng; Liu, Xia; Jiang, Shengxiang
2007-09-07
A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.
Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan
2013-01-01
Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation.
Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan
2013-01-01
Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736
Thermodynamics of interaction of ionic liquids with lipid monolayer.
Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K
2018-06-01
Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.
NASA Astrophysics Data System (ADS)
Hovestadt, Maximilian; Schwegler, Johannes; Schulz, Peter S.; Hartmann, Martin
2018-05-01
A new synthesis route for the zeolitic imidazolate framework ZIF-4 using imidazolium imidazolate is reported. Additionally, the ionic liquid-derived material is compared to conventional ZIF-4 with respect to the powder X-ray diffraction pattern pattern, nitrogen uptake, particle size, and separation potential for olefin/paraffin gas mixtures. Higher synthesis yields were obtained, and the different particle size affected the performance in the separation of ethane and ethylene.
Peñalber, Chariz Y; Grenoble, Zlata; Baker, Gary A; Baldelli, Steven
2012-04-21
Advancement in the field of ionic liquid technology requires a comprehensive understanding of their surface properties, as a wide range of chemical reactions occur mainly at interfaces. As essential media currently used in several technological applications, their accurate molecular level description at the gas-liquid interface is of utmost importance. Due to the high degree of chemical information provided in the vibrational spectrum, vibrational spectroscopy gives the most detailed model for molecular structure. The inherently surface-sensitive technique, sum frequency generation (SFG) spectroscopy, in combination with bulk-sensitive vibrational spectroscopic techniques such as FTIR and Raman, has been used in this report to characterize the surface of cyano-containing ionic liquids, such as [BMIM][SCN], [BMIM][DCA], [BMIM][TCM] and [EMIM][TCB] at the gas-liquid interface. By structural variation of the anion while keeping the cation constant, emphasis on the molecular arrangement of the anion at the gas-liquid interface is reported, and its subsequent role (if any) in determining the surface molecular orientation of the cation. Vibrational modes seen in the C-H stretching region revealed the presence of the cation at the gas-liquid interface. The cation orientation is independent of the type of cyano-containing anion, however, a similar arrangement at the surface as reported in previous studies was found, with the imidazolium ring lying flat at the surface, and the alkyl chains pointing towards the gas phase. SFG results show that all three anions of varying symmetry, namely, [DCA](-) (C(2v)), [TCM](-)(D(3h)) and [TCB](-) (T(d)) in ionic liquids [BMIM]DCA], [BMIM][TCM] and [EMIM][TCB] are significantly tilted from the surface plane, while the linear [SCN](-) in [BMIM][SCN] exhibited poor ordering, as seen in the absence of its C-N stretching mode in the SFG vibrational spectra. This journal is © the Owner Societies 2012
Muzzarelli, Riccardo A. A.
2011-01-01
Recently developed technology permits to optimize simultaneously surface area, porosity, density, rigidity and surface morphology of chitin-derived materials of biomedical interest. Safe and ecofriendly disassembly of chitin has superseded the dangerous acid hydrolysis and provides higher yields and scaling-up possibilities: the chitosan nanofibrils are finding applications in reinforced bone scaffolds and composite dressings for dermal wounds. Electrospun chitosan nanofibers, in the form of biocompatible thin mats and non-wovens, are being actively studied: composites of gelatin + chitosan + polyurethane have been proposed for cardiac valves and for nerve conduits; fibers are also manufactured from electrospun particles that self-assemble during subsequent freeze-drying. Ionic liquids (salts of alkylated imidazolium) are suitable as non-aqueous solvents that permit desirable reactions to occur for drug delivery purposes. Gel drying with supercritical CO2 leads to structures most similar to the extracellular matrix, even when the chitosan is crosslinked, or in combination with metal oxides of interest in orthopedics. PMID:22131955
Asymmetric Michael Addition Mediated by Chiral Ionic Liquids
Suzuki, Yumiko
2018-01-01
Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702
Towards the Rational Design of Nanoparticle Catalysts
NASA Astrophysics Data System (ADS)
Dash, Priyabrat
This research is focused on development of routes towards the rational design of nanoparticle catalysts. Primarily, it is focused on two main projects; (1) the use of imidazolium-based ionic liquids (ILs) as greener media for the design of quasi-homogeneous nanoparticle catalysts and (2) the rational design of heterogeneous-supported nanoparticle catalysts from structured nanoparticle precursors. Each project has different studies associated with the main objective of the design of nanoparticle catalysts. In the first project, imidazolium-based ionic liquids have been used for the synthesis of nanoparticle catalysts. In particular, studies on recyclability, reuse, mode-of-stability, and long-term stability of these ionic-liquid supported nanoparticle catalysts have been done; all of which are important factors in determining the overall "greenness" of such synthetic routes. Three papers have been published/submitted for this project. In the first publication, highly stable polymer-stabilized Au, Pd and bimetallic Au-Pd nanoparticle catalysts have been synthesized in imidazolium-based 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) ionic liquid (Journal of Molecular Catalysis A: Chemical, 2008, 286, 114). The resulting nanoparticles were found to be effective and selective quasi-homogeneous catalysts towards a wide-range of hydrogenation reactions and the catalyst solution was reused for further catalytic reactions with minimal loss in activity. The synthesis of very pure and clean ILs has allowed a platform to study the effects of impurities in the imidazolium ILs on nanoparticle stability. In a later study, a new mode of stabilization was postulated where the presence of low amounts of 1-methylimidazole has substantial effects on the resulting stability of Au and Pd-Au nanoparticles in these ILs (Chemical Communications, 2009, 812). In further continuation of this study, a comparative study involving four stabilization protocols for nanoparticle stabilization in BMIMPF6 IL is described, and have shown that nanoparticle stability and catalytic activity of nanoparticles is dependent on the overall stability of the nanoparticles towards aggregation (manuscript submitted). The second major project is focused on synthesizing structurally well-defined supported catalysts by incorporating the nanoparticle precursors (both alloy and core shell) into oxide frameworks (TiO2 and Al2O 3), and examining their structure-property relationships and catalytic activity. a full article has been published on this project (Journal of Physical Chemistry C, 2009, 113, 12719) in which a route to rationally design supported catalysts from structured nanoparticle precursors with precise control over size, composition, and internal structure of the nanoparticles has been shown. In a continuation of this methodology for the synthesis of heterogeneous catalysts, efforts were carried out to apply the same methodology in imidazolium-based ILs as a one-pot media for the synthesis of supported-nanoparticle heterogeneous catalysts via the trapping of pre-synthesized nanoparticles into porous inorganic oxide materials. Nanoparticle catalysts in highly porous titania supports were synthesized using this methodology (manuscript to be submitted).
Taskin, Meltem; Cognigni, Alice; Zirbs, Ronald; Reimhult, Erik
2017-01-01
We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed. PMID:29308189
Mao, Hui; Liang, Jiachen; Zhang, Haifeng; Pei, Qi; Liu, Daliang; Wu, Shuyao; Zhang, Yu; Song, Xi-Ming
2015-08-15
Novel poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets (PILs/PPy/GO) were prepared by the polymerization of 1-vinyl-3-ethylimidazole bromide (VEIB) on the surface of N-vinyl imidazolium modified PPy/GO nanosheets. Due to the synergistic effects of GO with well-defined lamellar structures, conductive PPy and biocompatible PILs, PILs/PPy/GO modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with good stability, high sensitivity and wide linear range in the present of ascorbic acid (AA) with high concentration. PILs played an essential role for the simultaneous determination of DA and AA in a mixture, whose existence effectively improved the transmission mode of electrons and resulted in the different electrocatalytic performance towards the oxidation of DA and AA. It is indicated that PILs/PPy/GO nanosheets can act as a good steady and sensitive electrode material for the development of improved DA sensors. Copyright © 2015 Elsevier B.V. All rights reserved.
Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids
Griffin, Philip J.; Wang, Yangyang; Holt, Adam P.; ...
2016-04-21
In this paper, we report measurements of the ionic conductivity, shear viscosity, and structural dynamics in a homologous series of quaternary ammonium ionic liquids (ILs) and a prototypical imidazolium-based IL over a wide range of temperatures down to the glass transition. We find that the ionic conductivity of these materials generally decreases, while the shear viscosity correspondingly increases, with increasing volume fraction of aliphatic side groups. Upon crossing an aliphatic volume fraction of ~0.40, we observe a sharp, order-of-magnitude decrease in ionic conductivity and enhancement of viscosity, which coincides with the presence of long-lived, nanometer-sized alkyl aggregates. These strong changesmore » in dynamics are not mirrored in the ionicity of these ILs, which decreases nearly linearly with aliphatic volume fraction. Finally, our results demonstrate that nanophase segregation in neat ILs strongly reduces ionic conductivity primarily due to an aggregation-induced suppression of dynamics.« less
Synthesis and characterizations of novel polymer electrolytes
NASA Astrophysics Data System (ADS)
Chanthad, Chalathorn
Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate end-blocks is described for the first time. The synthetic strategy involves the preparation of the telechelic fluoropolymers using a functional benzoyl peroxide initiator as the macro-chain transfer agent for subsequent RAFT polymerization of the imidazolium methacrylate monomer. As revealed in DSC, SAXS and dielectric relaxation spectroscopy (DRS) measurements, there was no microphase separation in the triblock copolymers, likely due to solubility of ionic liquid moieties in the fluoropolymer matrix. The anionic counterion has direct impact on the thermal properties, ionic conductivity and segmental dynamics of the polymers. The temperature dependence of the ionic conductivity is well described by the Vogel-Tamman-Fulcher model, suggesting that ion motion is closely coupled to segmental motion. In Chapter 4 and 5, new solid electrolytes for lithium cations have been synthesized by catalyzed hydrosilylation reaction involving hydrogen atoms of polysiloxane and polyhedral oligomeric silsesquioxane (POSS) and double bonds of vinyl tris17-bromo-3,6,9,12,15- pentaoxaheptadecan-1-ol silane. The obtained structures are based on branched or dendritic with ionic liquid-ethylene oxide oligomer. High room temperature ionic conductivities have been obtained in the range of 10-4-10-5 can be regarded as solid electrolytes. This is attributed to the high concentration of ions from ionic liquid moieties in the tripodand molecule, high segmental mobility, and high ion dissociation from ethylene oxide spacers. The influence of anion structures and lithium salts and concentration has been investigated.
1-Butyl-3-Methyl Imidazolium-based Ionic Liquids Explored as Potential Solvents for Lipid Processing
USDA-ARS?s Scientific Manuscript database
Due to global environmental concerns, there is increasing interest in replacing the volatile solvents currently used to process commodity plant lipids. Room-temperature molten salts are one type of media receiving great attention as a possible replacement of the typical organic solvent. Molten sal...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Toxicity prediction of ionic liquids based on Daphnia magna by using density functional theory
NASA Astrophysics Data System (ADS)
Nu’aim, M. N.; Bustam, M. A.
2018-04-01
By using a model called density functional theory, the toxicity of ionic liquids can be predicted and forecast. It is a theory that allowing the researcher to have a substantial tool for computation of the quantum state of atoms, molecules and solids, and molecular dynamics which also known as computer simulation method. It can be done by using structural feature based quantum chemical reactivity descriptor. The identification of ionic liquids and its Log[EC50] data are from literature data that available in Ismail Hossain thesis entitled “Synthesis, Characterization and Quantitative Structure Toxicity Relationship of Imidazolium, Pyridinium and Ammonium Based Ionic Liquids”. Each cation and anion of the ionic liquids were optimized and calculated. The geometry optimization and calculation from the software, produce the value of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). From the value of HOMO and LUMO, the value for other toxicity descriptors were obtained according to their formulas. The toxicity descriptor that involves are electrophilicity index, HOMO, LUMO, energy gap, chemical potential, hardness and electronegativity. The interrelation between the descriptors are being determined by using a multiple linear regression (MLR). From this MLR, all descriptors being analyzed and the descriptors that are significant were chosen. In order to develop the finest model equation for toxicity prediction of ionic liquids, the selected descriptors that are significant were used. The validation of model equation was performed with the Log[EC50] data from the literature and the final model equation was developed. A bigger range of ionic liquids which nearly 108 of ionic liquids can be predicted from this model equation.
Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms.
Reddy, G Kiran Kumar; Nancharaiah, Y V; Venugopalan, V P
2017-07-01
Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C 16 (MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C 16 (MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX ® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C 16 (MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of varying linker length on ion-transport properties in polymeric ionic liquids
NASA Astrophysics Data System (ADS)
Keith, Jordan; Mogurampelly, Santosh; Wheatle, Bill; Ganesan, Venkat
We report results of atomistic molecular dynamics simulations on polymerized 1-butyl-3-(n-alkyl)imidazolium ionic liquids with PF6- counterions. Consistent with experimental observations, we observe that the mobility of the PF6- ions increases with increasing n-alkyl linker length. Analysis of our results suggests that the motion of PF6- ions is driven by intermolecular ion hopping between chains, which in turn is influenced by ion-pair coordination numbers and intermolecular ionic separation distances. With increasing linker length, we observe 1) the anions coordinating less closely with cations and 2) intermolecular hopping distances decreasing.
Temperature dependence of electrical conduction in PEMA-EMITFSI film
NASA Astrophysics Data System (ADS)
Zain, N. F.; Megat Hasnan, M. M. I.; Sabri, M. F. M.; Said, S. M.; Mohamed, N. S.; Salleh, F.
2018-04-01
Transparent and flexible film of poly (ethyl methacrylate) incorporated with 1-ethyl-3-methyl imidazolium bis(trifluorosulfonyl) imide ionic liquid (PEMA-EMITFSI) with thickness between 100 and 200 µm was fabricated by using solution casting technique. From the ionic transport measurement, it is confirmed that the electrical conduction in PEMA-EMITFSI film is mainly contributed by ionic transport. Moreover, the temperature-dependence of electrical conductivity measurement for 7 days reveals that the electrical properties of PEMA-EMITFSI film could be able to withstand a number of thermal cycles and be lasting for a period of time for potentially used as thermoelectric material through thermal heating.
Effect of additives on the clouding and aggregation behavior of Triton X-100
NASA Astrophysics Data System (ADS)
Semwal, Divyam; Sen, Indrani Das; Jayaram, Radha V.
2018-04-01
The present study investigates the effect of additives such as CsNO3 and imidazolium ionic liquids on the cloud point (CP) of Triton X-100. Thermodynamic parameters of the clouding process were determined in order to understand the interactions. CP was found to increase with the increase in concentration of most of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar phase1. The thermodynamic parameters on the introduction of CsNO3 in TX-100 - ionic liquid system helps in understanding the different interactions occurring in the system. All ΔG values for clouding were found to be positive and hence made the process non spontaneous.
Serrano, Maria; Chatzimitakos, Theodoros; Gallego, Mercedes; Stalikas, Constantine D
2016-03-04
In this study, we describe the synthesis of graphene oxide functionalized with the ionic liquid 1-butyl-3-aminopropyl imidazolium chloride and its use as an adsorbent for the dispersive solid-phase microextraction (micro SPE) of four anabolic steroids and six β-blockers from aqueous samples of environmental importance, prior to their HPLC-diode array detector analysis. As the ionic liquid is covalently attached to graphene oxide sheets, it is made possible for it to participate in the dispersive micro SPE procedure. The limits of detection and limits of quantification of the proposed method were found to be in the range of 7-23ng/L and between 20 and 70ng/L, respectively. The linearity was satisfactory, with the determination coefficients to range from 0.9940 to 0.9998 while the within- and between-day relative standard deviation of the method ranged between 3.1 and 7.6% and from 4.0 to 8.5%, respectively. In order to test the applicability of the proposed method in real-life samples, the effluent from a municipal wastewater treatment plant as well as natural water samples from two rivers and a lake were collected and analyzed. After the analysis of samples, the effluent from municipal wastewater treatment plant was fortified with the analytes, at concentrations equal to 2 and 10 times the LOQs. Recoveries were calculated after subtracting the native (no-spike) concentrations of analytes, when needed. All the recoveries were in the range of 87-98%. A comparison study attests to the superiority of the developed nanomaterial over graphene oxide and graphene for the dispersive micro SPE of steroids and β-blockers. Copyright © 2016 Elsevier B.V. All rights reserved.
Shirota, Hideaki; Kakinuma, Shohei
2015-07-30
In this study, the temperature dependence of the low-frequency spectra of liquid bis(trifluoromethylsulfonyl)amide salts of the monocations 1-methyl-3-propylimidazolium and 1-hexyl-3-methylimidazolium and the dications 1,6-bis(3-methylimidazolium-1-yl)hexane and 1,12-bis(3-methylimidazolium-1-yl)dodecane has been investigated by means of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The intensity in the low-frequency region below 20 cm(-1) in the spectra of the four ionic liquids increases with rising temperature. From a line-shape analysis of the broadened low-frequency spectra of the ionic liquids, it is clear that the lowest-frequency component, which peaks at approximately 5 cm(-1), contributes to the temperature dependence of the spectra. This implies that the activity of the intermolecular translational vibrational motion is increasing with rising temperature. It is also possible that decoupling in the crossover process between intermolecular vibrational motion and structural relaxation occurs as a result of a deterioration of the non-Markovian feature or the loss of memory caused by the higher temperature. The peak of the highest-frequency component, which is due mainly to the imidazolium ring libration, shifts to lower frequency with increasing temperature. This is attributed to weaker interactions of the ionic liquids at higher temperatures. Temperature-dependent viscosities from 293 to 353 K of the four ionic liquids have also been characterized.
All-boron fullerene exhibits a strong affinity to inorganic anions
NASA Astrophysics Data System (ADS)
Colherinhas, Guilherme; Fileti, Eudes Eterno; Chaban, Vitaly V.
2017-03-01
Experimentally observed all-boron fullerene, B-80, inspires systematic investigation of its physical chemical properties and search for possible applications. We hereby report density functional theory calculations to characterize interactions of B-80 with the selected imidazolium room-temperature ionic liquids (RTILs), dimethylimidazolium nitrate and dimethylimidazolium hexafluorophosphate. Whereas the imidazolium cation exhibits a rather poor affinity to B-80, the inorganic anions form polar covalent bonds with the boron atom occupying a central position within a B-6 hexagon. Attachment of the RTIL ion pairs leads to a significant alteration of the electronic spectra, charge density distribution, valence and conduction molecular orbitals. The total binding energies keeping the RTIL@B80 complexes together range 200-250 kcal mol-1, being higher than the energies of many interactions in chemistry. The observed phenomenon predicts an excellent solubility of B-80 in the considered RTILs, but may also reveal a poor stability of B-80 in the polar media. Our results motivate further efforts in studying the behavior of the all-boron fullerene in polar environments.
Ionic Modification Turns Commercial Rubber into a Self-Healing Material.
Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert
2015-09-23
Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.
Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin
2017-02-01
The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.
Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Peng, Yu-Chun; Sun, I-Wen
2011-01-01
A systematic study of the effect of composition on the thermo-physical properties of the binary mixtures of 1-methyl-3-pentyl imidazolium hexafluorophosphate [MPI][PF6] with poly(ethylene glycol) (PEG) [Mw = 400] is presented. The excess molar volume, refractive index deviation, viscosity deviation, and surface tension deviation values were calculated from these experimental density, ρ, refractive index, n, viscosity, η, and surface tension, γ, over the whole concentration range, respectively. The excess molar volumes are negative and continue to become increasingly negative with increasing temperature; whereas the viscosity and surface tension deviation are negative and become less negative with increasing temperature. The surface thermodynamic functions, such as surface entropy, enthalpy, as well as standard molar entropy, Parachor, and molar enthalpy of vaporization for pure ionic liquid, have been derived from the temperature dependence of the surface tension values. PMID:21731460
Sittel, I.
2017-01-01
Imidazolium-labeled (ITag-) glycosides are used to harness the glycosyltransferase activity directly from human breast milk. The covalently attached ionic labels provide a bifunctional chemical handle that is used to monitor reaction progress by MS, as well as aid in product purification from complex mixtures. The technology is exemplified in the synthesis of biologically relevant oligosaccharide analogs, LacNAc-ITag, ITag-Lewisx and ITag-Lewisa, in a matter of days from human breast milk without having to isolate specific enzymes. PMID:28401975
Song, Yuexian; Hu, Jiugang; Tang, Jia; Gu, Wanmiao; He, Lili; Ji, Xiaobo
2016-11-23
The dynamic interfacial growth, suppression, and dissolution of zinc dendrites have been studied with the imidazolium ionic liquids (ILs) as additives on the basis of in situ synchrotron radiation X-ray imaging. The phase contrast difference of real-time images indicates that zinc dendrites are preferentially developed on the substrate surface in the ammoniacal electrolytes. After adding imidazolium ILs, both nucleation overpotential and polarization extent increase in the order of additive-free < EMI-Cl < EMI-PF 6 < EMI-TFSA < EMI-DCA. The real-time X-ray images show that the EMI-Cl can suppress zinc dendrites, but result in the formation of the loose deposits. The EMI-PF 6 and EMI-TFSA additives can smooth the deposit morphology through suppressing the initiation and growth of dendritic zinc. The addition of EMI-DCA increases the number of dendrite initiation sites, whereas it decreases the growth rate of dendrites. Furthermore, the dissolution behaviors of zinc deposits are compared. The zinc dendrites show a slow dissolution process in the additive-free electrolyte, whereas zinc deposits are easily detached from the substrate in the presence of EMI-Cl, EMI-PF 6 , or EMI-TFSA due to the formation of the loose structure. Hence, the dependence of zinc dendrites on anions of imidazolium IL additives during both electrodeposition and dissolution processes has been elucidated. These results could provide the valuable information in perfecting the performance of zinc-based rechargeable batteries.
Carbon Dioxide Transformation in Imidazolium Salts: Hydroaminomethylation Catalyzed by Ru-Complexes.
Ali, Meher; Gual, Aitor; Ebeling, Gunter; Dupont, Jairton
2016-08-23
The catalytic species generated by dissolving Ru3 (CO)12 in the ionic liquids 1-n-butyl-3-methyl-imidazolium chloride or 1-n-butyl-2,3-dimethyl-imidazolium chloride are efficient multifunctional catalysts for: (a) reverse water-gas shift, (b) hydroformylation of alkenes, and (c) reductive amination of aldehydes. Thus the reaction of alkenes with primary or secondary amines (alkene/amine, 1:1) under CO2 /H2 (1:1) affords the hydroaminomethylations products in high alkene conversions (up to 99 %) and selectivities (up to 96 %). The reaction proceeds under relatively mild reaction conditions (120 °C, 60 bar=6 MPa) and affords selectively secondary and tertiary amines. The presence of amine strongly reduces the alkene hydrogenation competitive pathway usually observed in the hydroformylation of terminal alkenes by Ru complexes. The catalytic system is also highly active for the reductive amination of aldehydes and ketones yielding amines in high yields (>90 %). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Panja, Sumit Kumar; Srivastava, Nitin; Srivastava, Jyoti; Prasad, Namburi Eswara; Noothalapati, Hemanth; Shigeto, Shinsuke; Saha, Satyen
2018-04-01
A simple change from alkyl group to alkene in side chain of imidazolium cation with same anion resulted in a drastic impact on physical properties (e.g., melting point) from bmimPF6 IL to cmimPF6 IL. The underlying reasons have been elucidated by structural and interaction studies with the help of DSC, SCXRD, vibrational and multi-nuclear NMR spectroscopic techniques. Experiments reveal existence of new weak interactions involving the carbon and π cloud of the imidazolium aromatic ring with fluoride of PF6 anion (i.e., C2-F-P and π-F-P) in cmimPF6 but are absent in structurally similar prototype IL, bmimPF6. Though weak, these interactions helped to form ladder type supramolecular arrangement, resulting in quite high melting point for cmimPF6 IL compared to bmimPF6 IL. These findings emphasize that an IL system can behave uniquely because of the existence of uncommon weak interactions.
A simulation study of CS2 solutions in two related ionic liquids with dications and monocations
NASA Astrophysics Data System (ADS)
Lynden-Bell, R. M.; Quitevis, E. L.
2018-05-01
Atomistic simulations of solutions of CS2 in an ionic liquid, [C8(C1im)2 ] [NTf2]2, with a divalent cation and in the corresponding ionic liquid with a monovalent cation, [C4C1im][NTf2], were carried out. The low-frequency librational density of states of the CS2 was of particular interest in view of recent optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). Compared to the monocation ionic liquid, the maximum shifts to higher frequencies in the dication ionic liquid under ambient conditions, but was found to be significantly pressure-dependent. CS2 molecules lie above and below the plane of the imidazolium rings and found to be close to the butyl tails of the monocation. The diffusion rates and embedding energies of solvent ions and CS2 in the two ionic liquids were measured.
Zhang, Weiyi; Yuan, Jiayin
2016-07-01
Herein, the synthesis of a series of poly(4-alkyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid)s is reported either via straightforward free radical polymerization of their corresponding ionic liquid monomers or via anion metathesis of the polymer precursors bearing halide as counter anion. The ionic liquid monomers are first prepared via N-alkylation reaction of commercially available 1-vinyl-1,2,4-triazole with alkyl iodides, followed by anion metathesis with targeted fluorinated anions. The thermal properties and solubilities of these poly(ionic liquid)s have been systematically investigated. Interestingly, it is found that the poly(4-ethyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid) exhibited an improved loading capacity of transition metal ions in comparison with its imidazolium counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic liquid-modified materials for solid-phase extraction and separation: a review.
Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio
2012-02-17
In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.
Minami, Ichiro
2009-06-24
Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.
Detellier, Christian
2017-01-01
Functionalization of the kaolinite (K) interlayer space is challenging. In this work, a new kaolinite-based nanohybridmaterial (K-NI) was successfully synthesized by grafting on the interlayer aluminol surfaces the ionic liquid, 1-(1-methylnaphthyl)-3-(2-hydroxyethyl) imidazolium chloride (NI), using a guest displacement strategy. A substantial increase of the basal spacing (10.8 Å) was obtained. This is a grafted derivative of kaolinite possessing one of the largest d-values. Washing in water for several days and other vigorous treatments such as sonication showed a minor effect on the integrity of the material. FTIR and 13C NMR confirmed the conservation of the structure of the ionic liquid after the grafting. Thermal analysis confirmed the presence of grafted material and was used to estimate the abundance of the grafted ionic liquid (0.44 mole per mole of kaolinite structural formula, (Al2Si2O5(OH)4)). By using cyclic voltammetry, the permeability of a film of K-NI for the bulky ferricyanide ions was demonstrated. The accumulation of nitrophenolate anions was effective (maximum capacity of 190 μmol/g), but was less important than what was expected due to the steric hindrance of the bulky grafted NI. Although the presence of chloride anions reduced the adsorption capacity, the affinity of the modified kaolinite interlayer space for the nitrophenolate anions was demonstrated. PMID:28850087
Kenne Dedzo, Gustave; Detellier, Christian
2017-08-29
Functionalization of the kaolinite (K) interlayer space is challenging. In this work, a new kaolinite-based nanohybridmaterial (K-NI) was successfully synthesized by grafting on the interlayer aluminol surfaces the ionic liquid, 1-(1-methylnaphthyl)-3-(2-hydroxyethyl) imidazolium chloride (NI), using a guest displacement strategy. A substantial increase of the basal spacing (10.8 Å) was obtained. This is a grafted derivative of kaolinite possessing one of the largest d -values. Washing in water for several days and other vigorous treatments such as sonication showed a minor effect on the integrity of the material. FTIR and 13 C NMR confirmed the conservation of the structure of the ionic liquid after the grafting. Thermal analysis confirmed the presence of grafted material and was used to estimate the abundance of the grafted ionic liquid (0.44 mole per mole of kaolinite structural formula, (Al₂Si₂O₅(OH)₄)). By using cyclic voltammetry, the permeability of a film of K-NI for the bulky ferricyanide ions was demonstrated. The accumulation of nitrophenolate anions was effective (maximum capacity of 190 μmol/g), but was less important than what was expected due to the steric hindrance of the bulky grafted NI. Although the presence of chloride anions reduced the adsorption capacity, the affinity of the modified kaolinite interlayer space for the nitrophenolate anions was demonstrated.
USDA-ARS?s Scientific Manuscript database
Starch was acetylated with vinyl acetate in different 1-butyl-3-methylimidazolium (BMIM) salts as solvent in effort to produce starches with different acetylation patterns. Overall degree of substitution was much higher for basic anions such as acetate and dicyanimide (dca) than for neutral anions ...
Ali Elsheikh, Yasir; Hassan Akhtar, Faheem
2014-01-01
Biodiesel was prepared from Citrullus colocynthis oil (CCO) via a two-step process. The first esterification step was explored in two ionic liquids (ILs) with 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHSO4) and 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate (MSIMHSO4). Both ILs appeared to be good candidates to replace hazardous acidic catalyst due to their exceptional properties. However, the two sulfonic chains existing in DSIMHSO4 were found to increase the acidity to the IL than the single sulfonic chain in MSIMHSO4. Based on the results, 3.6 wt% of DSIMHSO4, methanol/CCO molar ratio of 12 : 1, and 150°C offered a final FFA conversion of 95.4% within 105 min. A 98.2% was produced via second KOH-catalyzed step in 1.0%, 6 : 1 molar ratio, 600 rpm, and 60°C for 50 min. This new two-step catalyzed process could solve the corrosion and environmental problems associated with the current acidic catalysts. PMID:24987736
Peleteiro, Susana; Rivas, Sandra; Alonso, José L; Santos, Valentín; Parajó, Juan C
2015-09-23
Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.
NASA Astrophysics Data System (ADS)
Saha, Ankur; SenGupta, Sumana; Kumar, Awadhesh; Choudhury, Sipra; Naik, Prakash D.
2016-08-01
The structure and orientation of room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [PF3(C2F5)3], commonly known as [bmim][fap], have been investigated at the air-[bmim][fap] and air-water interfaces, employing vibrational sum-frequency generation (VSFG) spectroscopy. The VSFG spectra in the CH stretch region suggest presence of the [bmim] cation at the interfaces. Studies reveal that the butyl chain protrudes out into air, and the imidazolium ring lies almost planar to the interface. The CH stretch intensities get enhanced at the air-water interface, mainly because of polar orientation of imidazolium cation induced by interfacial water molecules. The OH stretch intensities are also enhanced at the air-water interface due to polar orientation of interfacial water molecules induced by [bmim][fap]. The Brewster angle microscopy suggests self aggregation of [bmim][fap] in the presence of water, and the aggregation becomes extensive showing dense surface domains with time. However, the surface pressure is almost unaffected due to aggregation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDanel, WM; Cowan, MG; Barton, JA
2015-04-29
New imidazolium- and pyrrolidinium-based bis(epoxide)-functionalized ionic liquid (IL) monorners were synthesized: and reacted with multifunctional amine monomers to produce cross-linked, epoxy-amine poly(ionic liquid) (PIL) resins and PIL/IL ion-gel membranes. The length and chemical nature (i.e., alkyl versus ether) between the irrildazolium group and epokitie groups were studied to determine their effects on CO2 affinity. The CO2 uptake (millimoles per gram) of the epoxy amine resins (between 0.1 and 1 mmol/g) was found to depend predominately on the epoxide-to-amine ratio and the bis(epoxide) IL molecular weight. The effect of using a primary versus a secondary amine-containing multifunctional monoiner was also assessedmore » for the resin-synthesis. Secondary amines can increase CO2 permeability but also increase the iime required for biS(epoxide) coriversion. When either the epoxide or athine monomer structure is changed, the CO2 solubility and permeability of the resulting PIL resins and ion-sel membranes can be tuned.« less
Saielli, Giacomo; Bagno, Alessandro; Castiglione, Franca; Simonutti, Roberto; Mauri, Michele; Mele, Andrea
2014-12-04
(129)Xe NMR has been recently employed to probe the local structure of ionic liquids (ILs). However, no theoretical investigation has been yet reported addressing the problem of the dependence of the chemical shift of xenon on the cage structure of the IL. Therefore, we present here a study of the chemical shift of (129)Xe in two ionic liquids, [bmim][Cl] and [bmim][PF6], by a combination of classical MD simulations and relativistic DFT calculations of the xenon shielding constant. The bulk structure of the two ILs is investigated by means of the radial distribution functions, paying special attention to the local structure, volume, and charge distribution of the cage surrounding the xenon atom. Relativistic DFT calculations, based on the ZORA formalism, on clusters extracted from the trajectory files of the two systems, yield an average relative chemical shift in good agreement with the experimental data. Our results demonstrate the importance of the cage volume and the average charge surrounding the xenon nucleus in the IL cage as the factors determining the effective shielding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.
2015-02-14
We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution ofmore » key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.« less
Park, Jong Baek; Isik, Mehmet; Park, Hea Jung; Jung, In Hwan; Mecerreyes, David; Hwang, Do-Hoon
2018-02-07
Interfacial layers play a critical role in building up the Ohmic contact between electrodes and functional layers in organic photovoltaic (OPV) solar cells. These layers are based on either inorganic oxides (ZnO and TiO 2 ) or water-soluble organic polymers such as poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)] and polyethylenimine ethoxylated (PEIE). In this work, we have developed a series of novel poly(ionic liquid) nonconjugated block copolymers for improving the performance of inverted OPV cells by using them as work function modifiers of the indium tin oxide (ITO) cathode. Four nonconjugated polyelectrolytes (n-CPEs) based on polystyrene and imidazolium poly(ionic liquid) (PSImCl) were synthesized by reversible addition-fragmentation chain transfer polymerization. The ratio of hydrophobic/hydrophilic block copolymers was varied depending on the ratio of polystyrene to the PSImCl block. The ionic density, which controls the work function of the electrode by forming an interfacial dipole between the electrode and the block copolymers, was easily tuned by simply changing the PSImCl molar ratio. The inverted OPV device with the ITO/PS 29 -b-PSImCl 60 cathode achieved the best power conversion efficiency (PCE) of 7.55% among the synthesized block copolymers, exhibiting an even higher PCE than that of the reference OPV device with PEIE (7.30%). Furthermore, the surface properties of the block copolymers films were investigated by contact angle measurements to explore the influence of the controlled hydrophobic/hydrophilic characters on the device performances.
NASA Astrophysics Data System (ADS)
Neumann, Jan; Golub, Benjamin; Odebrecht, Lisa-Marie; Ludwig, Ralf; Paschek, Dietmar
2018-05-01
We study ionic liquids composed of 1-alkyl-3-methylimidazolium cations and bis(trifluoromethyl-sulfonyl)imide anions ([CnMIm][NTf2]) with varying chain-length n = 2, 4, 6, 8 by using molecular dynamics simulations. We show that a reparametrization of the dihedral potentials as well as charges of the [NTf2] anion leads to an improvement of the force field model introduced by Köddermann, Paschek, and Ludwig [ChemPhysChem 8, 2464 (2007)] (KPL-force field). A crucial advantage of the new parameter set is that the minimum energy conformations of the anion (trans and gauche), as deduced from ab initio calculations and Raman experiments, are now both well represented by our model. In addition, the results for [CnMIm][NTf2] show that this modification leads to an even better agreement between experiment and molecular dynamics simulation as demonstrated for densities, diffusion coefficients, vaporization enthalpies, reorientational correlation times, and viscosities. Even though we focused on a better representation of the anion conformation, also the alkyl chain-length dependence of the cation behaves closer to the experiment. We strongly encourage to use the new NGOLP (Neumann, Golub, Odebrecht, Ludwig, Paschek) force field for the [NTf2] anion instead of the earlier KPL parameter set for computer simulations aiming to describe the thermodynamics, dynamics, and also structure of imidazolium-based ionic liquids.
Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus.
Liu, Huijun; Zhang, Xiaoqiang; Chen, Caidong; Du, Shaoting; Dong, Ying
2015-12-01
The low volatility of ionic liquids effectively eliminates a major pathway for environmental release and contamination; however, the good solubility, low degree of environmental degradation and biodegradation of ILs may pose a potential threat to the aquatic environment. The growth inhibition of the green alga Scenedesmus obliquus by five 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) ([Cnmim]Cl, n=6, 8, 10, 12, 16) was investigated, and the effect on cellular membrane permeability and the ultrastructural morphology by ILs ([Cnmim]Cl, n=8, 12, 16) were studied. The results showed that the growth inhibition rate increased with increasing IL concentration and increasing alkyl chain lengths. The relative toxicity was determined to be [C6mim]Cl<[C8mim]Cl<[C10mim]Cl<[C12mim]Cl<[C16mim]Cl. The algae were most sensitive to imidazolium chloride ILs at 48 h according to the results from the growth inhibition rate and cellular membrane permeability tests. The ultrastructural morphology showed that the ILs had negative effects on the cellular morphology and structure of the algae. The cell wall of treated algae became wavy and separated from the cell membrane. Chloroplast grana lamellae became obscure and loose, osmiophilic material was deposited in the chloroplast, and mitochondria and their cristae swelled. Additionally, electron-dense deposits were observed in the vacuoles. Copyright © 2015 Elsevier Inc. All rights reserved.
Wu, Feng; Chen, Nan; Chen, Renjie; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator-based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable "nanogelator" that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid-like apparent ionic conductivity of 2.93 × 10 -3 S cm -1 at room temperature. The results show that the nanogelator, which possess self-regulating ability, is able to immobilize imidazolium-, pyrrolidinium-, or piperidinium-based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti-nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes.
Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel
2017-04-22
Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oliveira, Filipe S; Cabrita, Eurico J; Todorovic, Smilja; Bernardes, Carlos E S; Lopes, José N Canongia; Hodgson, Jennifer L; MacFarlane, Douglas R; Rebelo, Luís P N; Marrucho, Isabel M
2016-01-28
In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.
Kontro, Inkeri; Svedström, Kirsi; Duša, Filip; Ahvenainen, Patrik; Ruokonen, Suvi-Katriina; Witos, Joanna; Wiedmer, Susanne K
2016-12-01
The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; Coutinho, João A. P.
2014-10-07
This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids.more » The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.« less
Ohno, Hiroyuki; Fukumoto, Kenta
2007-11-01
The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele
We used X-ray diffraction and molecular dynamics simulations to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Furthermore, their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidiniummore » ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. Our results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele
X-ray diffraction and molecular dynamics simulations were used to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILsmore » increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. The results point to specific aspects that could be useful for researchers designing ILs for specific applications.« less
Lee, Jang Yeol; Wang, Hyuck Sik; Yoon, Bye Ri; Han, Man Jae; Jho, Jae Young
2010-11-01
On purpose to develop a polymer actuator with high stability in air-operation as well as large bending displacement, a series of ionic polymer-metal composites (IPMC) was constructed with poly(styrene sulfonate)-grafted fluoropolymers as ionomeric matrix and immidazolium-based ionic liquids (IL) as inner solvent. The prepared IPMC actuators exhibited greatly enhanced bending displacement compared to Nafion-based actuators. The actuators were stable in air-operation, maintaining initial displacement for up to 10(4) cycles or 24 h. Investigating the material parameters and morphology of the IPMCs, high ion exchange capacity of the ionomers resulted in high ion conductivity and robust electrode of IPMC, which synergistically contributed to the high bending performance. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Fei; Gao, Xinpei; Yan, Xiaojun; Gao, Hejun; Shi, Lijuan; Jia, Han; Zheng, Liqiang
2013-08-14
Hybrid Nafion membranes were successfully fabricated by incorporating with protic imidazolium ionic liquids 1-(2-aminoethyl)-3-methylimidazolium chloride ([MimAE]Cl), 1-(2-hydroxylethyl)-3-methylimidazolium chloride ([MimHE]Cl), and 1-carboxylmethyl-3-methylimidazolium chloride ([MimCM]Cl) for high-temperature fuel cells. The composite membranes were characterized by impedance spectroscopy, small-angle X-ray scattering (SAXS), scanning electronic microscopy (SEM), and thermogravimetric analysis (TGA). The incorporated protic ionic liquids enhance the doping of phosphoric acid (PA) and result in a relatively high ionic conductivity. The Nafion/10 wt % [MimAE]Cl/PA composite membrane exhibits an ionic conductivity of 6.0 mS/cm at 130 °C without humidification. [MimAE]Cl can swell the Nafion matrix more homogeneously than [MimHE]Cl or [MimCM]Cl, which results in a better ionic conductivity. It is notable that the composite Nafion/IL/PA membranes have a better thermal stability than the pristine Nafion membranes.
Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.
Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C
2016-05-23
The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Jiale; Fan, Chen; Kong, Dandan; Tang, Gang; Zhang, Wenbing; Dong, Hongqiang; Liang, You; Wang, Deng; Cao, Yongsong
2018-02-01
Five novel ionic liquids (ILs), 1,3-dibutylimidazolium bromide [BBMIm][Br], 1-pentyl-3-butylimidazolium bromide [BPMIm][Br], 1-hexyl-3-butylimidazolium bromide [BHMIm][Br], 1,1'-(butane-1,4-diyl)bis(3-butylimidazolium) bromide [C 4 (BMIm) 2 ][Br 2 ], and 1,1'-(butane-1,4-diyl)bis(3-methylimidazolium) bromide [C 4 (MIm) 2 ][Br 2 ], were prepared and used in situ to react with bis(trifluoromethane)sulfonamide lithium salt to extract the myclobutanil, tebuconazole, cyproconazole, and prothioconazole from water samples. The results showed that mono-cationic ILs had much better recovery than dicationic ILs, and mono-imidazolium IL bearing butyl groups at N-1 and N-3 sites had the best recovery. When the length of the alkyl substituent group was more than four carbons at N-3 site, the recovery decreased with increase of alkyl chain length of 1-butylimidazolium IL. The extraction efficiency order of triazoles from high to low was [BBMIm][Br], [BPMIm][Br], [BHMIm][Br], [BMIm][Br] (1-butyl-3-methylimidazolium bromide), [C 4 (BMIm) 2 ]Br 2 , [C 4 (MIm) 2 ]Br 2 . An in situ ionic liquid dispersive liquid-liquid microextraction combined with ultrasmall superparamagnetic Fe 3 O 4 was established as a pretreatment method for enrichment of triazole fungicides in water samples by using the synthetic [BBMIm][Br] as the cationic IL and used to detect analytes followed by high-performance liquid chromatography. Under the optimized conditions, the proposed method showed a good linearity within a range of 5-250 μg L -1 , with the determination coefficient (r 2 ) varying from 0.998 to 0.999. High mean enrichment factors were achieved ranging from 187 to 323, and the recoveries of the target analytes from real water samples at spiking levels of 10.0, 20.0, and 50.0 μg L -1 were between 70.1% and 115.0%. The limits of detection for the analytes were 0.74-1.44 μg L -1 , and the intra-day relative standard deviations varied from 5.23% to 8.65%. The proposed method can be further applied to analyze and monitor pesticides in other related samples. Graphical Abstract The scheme of the in-situ DLLME method for the determination of triazoles using the imidazolium-based ionic liquids.
Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil
2016-04-04
Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Imidazolium-organic solvent mixtures as electrolytes for lithium batteries
NASA Astrophysics Data System (ADS)
Chagnes, A.; Diaw, M.; Carré, B.; Willmann, P.; Lemordant, D.
γ-Butyrolactone (BL) has been mixed to the room temperature ionic liquid (RTIL) 1-butyl 3-methyl-imidazolium tetrafluoroborate (BMIBF 4) (ratio: 3/2, v/v) in the presence of lithium tetrafluoroborate (LiBF 4) for use as electrolyte in lithium-ion batteries. This mixture exhibits a larger thermal stability than the reference electrolyte EC/DEC/DMC (2/2/1) + LiPF 6 (1 M) and can be considered as a new RTIL as no free BL molecules are present in the liquid phase. The cycling ability of this electrolyte has been investigated at a graphite, a titanate oxide (Li 4Ti 5O 12) and a cobalt oxide (Li xCoO 2) electrodes. The ionic liquid is strongly reduced at the graphite electrode near 1 V and leads to the formation of a blocking film, which prevents any further cycling. The titanate oxide electrode can be cycled with a high capacity without any significant fading. Cycling of the positive cobalt oxide electrode was unsuccessfully owing to an oxidation reaction at the electrode surface, which prevents the intercalation or de-intercalation of Li ions in and from the host material. Less reactive cathode material than cobalt oxide must be employed with this RTIL.
NASA Astrophysics Data System (ADS)
Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk
Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).
Synthesis of water-soluble mono- and ditopic imidazoliums for carbene ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anstey, Mitchell; Murtagh, Dustin; Cordaro, Joseph Gabriel
2015-09-01
Synthesis of ditopic imidazoliums was achieved using a modular step-wise procedure. The procedure itself is amenable to a wide array of functional groups that can be incorporated into the imidazolium architecture. The resulting compounds range from ditopic zwitterions to highly-soluble dicationic aromatics
NASA Astrophysics Data System (ADS)
Hooper, Justin B.; Smith, Grant D.; Bedrov, Dmitry
2013-09-01
Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3-] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3-] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.
Otero, I; Lepre, L F; Dequidt, A; Husson, P; Costa Gomes, M F
2017-10-19
The effect of the addition of a third ion to the ionic liquid 1-butyl-3-methylimidazolium acetate [C 4 C 1 Im][OAc] was studied through the measurement of the enthalpy of mixing and of the excess molar volume of its mixtures with 1-butyl-3-methylimidazolium trifluoroacetate [C 4 C 1 Im][CF 3 CO 2 ], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C 4 C 1 Im][NTf 2 ], and tetrabutylphosphonium acetate [P 4444 ][OAc]. Negative enthalpies of mixing (Δ mix H < 0) and positive excess molar volumes (V E > 0) were observed in all cases. The infrared and NMR studies of the pure ionic liquids and their mixtures show that the presence of a third ion with a weaker affinity with the common counterion contributes to prevailing the more favorable hydrogen-bond, herein always between the imidazolium cation and the acetate anion. Both radial and spatial distribution functions calculated by molecular simulation confirm this behavior. The remarkable enhancement of the viscosities of the [C 4 C 1 Im][OAc] + [P 4444 ][OAc] mixtures could be discussed in light of the calculated friction coefficients.
González-Álvarez, Jaime; Blanco-Gomis, Domingo; Arias-Abrodo, Pilar; Pello-Palma, Jairo; Ríos-Lombardía, Nicolás; Busto, Eduardo; Gotor-Fernández, Vicente; Gutiérrez-Álvarez, María Dolores
2013-08-30
Two polymeric ionic liquids, 3-(but-3″-en-1″-yl)-1-[2'-hydroxycyclohexyl]-1H-imidazol-3-ium bis(trifluoromethanesulfonyl)imide (IL-1) and 1-(2'-hydroxycyclohexyl)-3-(4″-vinylbenzyl)-1H-imidazol-3-ium bis(trifluoromethylsulfonyl)imide (IL-2), have been synthesized by a free radical polymerization reaction and used as coatings for solid-phase microextraction (SPME). These new fibers exhibit good film stability, high thermal stability (270-290°C) and long lifetimes, and are used for the extraction of volatile compounds in lemon beer using gas chromatography separation and flame ionization detection. The scanning electron micrographs of the fiber surface revealed a polymeric ionic liquid (PIL) film, which is distributed homogeneously on the fiber. The developed PIL fiber showed good linearity between 50 and 2000μg/L with regression coefficients in the range of 0.996-0.999. The relative standard deviations (RSD) obtained in the peak area were found to vary between 1% and 12%, which assured that adequate repeatability was achieved. The spiked recoveries for three beer samples ranged from 78.4% to 123.6%. Experimental design has been employed in the optimization of extraction factors and robustness assessment. The polymeric IL-1 butenyl fiber showed a greater efficiency compared to the PDMS-DVB (65μm) and CAR-PDMS (75μm) for the extraction of all of the analytes studied. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
On the application of ionic liquids for rechargeable Li batteries: High voltage systems
NASA Astrophysics Data System (ADS)
Borgel, V.; Markevich, E.; Aurbach, D.; Semrau, G.; Schmidt, M.
We examined the possible use of the following ionic liquids all having the same anion, bis(trifluoromethylsulfonyl)imide (TFSI) and the following cations: 1-hexyl-3-methyl imidazolium (HMITFSI), 1-(2-methoxyethyl)-3-methyl imidazolium (MEMITFSI), N-ethyl- NN-dimethyl-2-methoxyethylammonium (EDMETFSI), 1-methyl-1-butylpyrrolidinium (BMPTFSI), and 1-methyl-1-propylpiperidinium (MPPpTFSI) solutions with LiTFSI (the source of Li ions), as electrolyte systems for 5 V, rechargeable battery systems with Li metal anodes and LiMn 1.5Ni 0.5O 4 spinel cathodes. Standard solution based on alkyl carbonates and LiPF 6 was examined in this respect for comparison. The ionic liquids (ILs) based on derivatives of piperidinium and pyrrolidinium demonstrate a very wide electrochemical window (up to 5.5 V) and they can be compatible with lithium metal anodes. At low potentials in the presence of Li ions in solutions (or on Li metal surfaces), TFSI anions are reduced to insoluble Li compounds which passivate Li, noble metal and graphite electrodes in the Li salt/IL solutions. The mechanism, kinetics and effectiveness of electrodes' passivation in these systems depend on the nature of both IL and electrode used. It was possible to demonstrate reversible behavior of Li/LiMn 1.5Ni 0.5O 4 cells (4.8 V) with solutions based on BMPTFSI and MPPpTFSI. Possible parasitic anodic reactions upon charging at the high potentials are much lower in the ILs than in standard solutions.
Lee, Hwankyu
2015-07-01
Imidazolium-based ionic surfactants of different sizes were simulated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Regardless of the phospholipid type, larger surfactants at higher concentrations more significantly insert into the bilayer and increase the bilayer-surface size, in agreement with experiments and previous simulations. Insertion of surfactants only slightly decreases the bilayer thickness, as also observed in experiments. Although the surfactant insertion and its effect on the bilayer size and thickness are similar in different types of bilayers, the volume fractions of surfactants in the bilayer are higher for DMPC bilayers than for POPC and DOPC bilayers. In particular, ionic surfactants with four hydrocarbons yield their volume fractions of 4.6% and 8.7%, respectively, in POPC and DMPC bilayers, in quantitative agreement with experimental values of ∼5% and ∼10%. Also, the inserted surfactants increase the lateral diffusivity of the bilayer, which depends on the bilayer type. These findings indicate that although the surfactant insertion does not depend on the bilayer type, the effects of surfactants on the volume fraction and bilayer dynamics occur more significantly in the DMPC bilayer because of the smaller area per lipid and shorter saturated tails, which helps explain the experimental observations regarding different volume fractions of surfactants in POPC and DMPC bilayers. Copyright © 2015 Elsevier Inc. All rights reserved.
Xu, Yaqi; Wang, Jun; Zhu, Lusheng; Du, Zhongkun; Wang, Jinhua; Wei, Kai
2018-01-01
Ionic liquids (ILs) are considered environmentally friendly solvents and are widely applied in various fields; however, some researchers have noted the toxicity of ILs to plants cultivated in nutrient solution. To evaluate the toxicities of ILs to wheat seedlings in soil, the natural growth environment of plants, a study was performed using three imidazolium-based ionic liquids with different anions: 1-octyl-3-methylimidazolium chloride ([C 8 mim]Cl), 1-octyl-3-methylimidazolium bromide ([C 8 mim]Br) and 1-octyl-3-methylimidazolium tetrafluoroborate ([C 8 mim]BF 4 ). After 13 d of exposure to these three ILs at 0, 100, 200, 400, 600 and 800 mg kg -1 in brown soil, wheat seedlings were randomly sampled to evaluate growth (shoot length, root length, pigment content and proline content), lipid peroxidation, oxygen species (H 2 O 2 and O 2 - ) and activities of the detoxification enzyme glutathione-s-transferase and other antioxidant enzymes, including superoxide dismutase, catalase and peroxidase. The experimental results showed that all three ILs had inhibitory effects on the growth of wheat seedlings and induced the generation of reactive oxygen species, which indicated that the wheat seedlings suffered oxidative stress. Moreover, antioxidant enzyme activity was enhanced after exposure to [C 8 mim]Cl, [C 8 mim]Br and [C 8 mim]BF 4 , demonstrating that oxidative damage may be the primary underlying mechanism of IL toxicity in wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transferable Coarse-Grained Models for Ionic Liquids.
Wang, Yanting; Feng, Shulu; Voth, Gregory A
2009-04-14
The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.
Kakinuma, Shohei; Ishida, Tateki; Shirota, Hideaki
2017-01-12
The temperature dependence of the intermolecular vibrational dynamics in imidazolium-based ionic liquids (ILs) with 10 different anions was studied by femtosecond Raman-induced Kerr effect spectroscopy. For all ILs investigated in this study, the intensity in the low-frequency region below 50 cm -1 increases, and the spectral density in the high-frequency region above 80 cm -1 decreases (and shows a redshift) with increasing temperature. The first phenomenon would be attributed to the activation of the translational vibrational motions, whereas the second one is ascribed to the slowing librational motion of the imidazolium ring with increasing temperature. Calculated spectra of the density of states for the intermolecular vibrations of 1-butyl-3-methylimidazolium hexafluorophosphate, which is one of the experiment samples studied here, obtained by molecular dynamics simulation agreed well with the experimental results and confirmed the spectral assignments. When we compared the difference spectra between spectra measured at various temperatures and the spectrum measured at 293 K, a clear difference was found in the ∼50 cm -1 region of the Kerr spectra of 1-butyl-3-methylimidazolium thiocyanate and 1-butyl-3-methylimidazolium dicyanamide from those of the other ILs. The difference might have originated from the librational motions of the corresponding anions. We also compared the temperature-dependent Kerr spectra of hexafluorophosphate salts of 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, and 1-heptyl-3-methylimidazolium cations. These ILs showed a similar temperature dependence, which was not affected by the alkyl group length. The temperature-dependent viscosities and glass transition temperatures of the ILs were also estimated to determine their fragilities.
Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose
Socha, Aaron M.; Parthasarathi, Ramakrishnan; Shi, Jian; Pattathil, Sivakumar; Whyte, Dorian; Bergeron, Maxime; George, Anthe; Tran, Kim; Stavila, Vitalie; Venkatachalam, Sivasankari; Hahn, Michael G.; Simmons, Blake A.; Singh, Seema
2014-01-01
Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p-anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90–95% glucose and 70–75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a “closed-loop” process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources. PMID:25136131
Dickinson, Quinn; Bottoms, Scott; Hinchman, Li; ...
2016-01-20
In this study, imidazolium ionic liquids (IILs) underpin promising technologies that generate fermentable sugars from lignocellulose for future biorefineries. However, residual IILs are toxic to fermentative microbes such as Saccharomyces cerevisiae, making IIL-tolerance a key property for strain engineering. To enable rational engineering, we used chemical genomic profiling to understand the effects of IILs on S. cerevisiae. As a result, we found that IILs likely target mitochondria as their chemical genomic profiles closely resembled that of the mitochondrial membrane disrupting agent valinomycin. Further, several deletions of genes encoding mitochondrial proteins exhibited increased sensitivity to IIL. High-throughput chemical proteomics confirmed effectsmore » of IILs on mitochondrial protein levels. IILs induced abnormal mitochondrial morphology, as well as altered polarization of mitochondrial membrane potential similar to valinomycin. Deletion of the putative serine/threonine kinase PTK2 thought to activate the plasma-membrane proton efflux pump Pma1p conferred a significant IIL-fitness advantage. Conversely, overexpression of PMA1 conferred sensitivity to IILs, suggesting that hydrogen ion efflux may be coupled to influx of the toxic imidazolium cation. PTK2 deletion conferred resistance to multiple IILs, including [EMIM]Cl, [BMIM]Cl, and [EMIM]Ac. An engineered, xylose-converting ptk2Δ S. cerevisiae (Y133-IIL) strain consumed glucose and xylose faster and produced more ethanol in the presence of 1 % [BMIM]Cl than the wild-type PTK2 strain. We propose a model of IIL toxicity and resistance. In conclusion, this work demonstrates the utility of chemical genomics-guided biodesign for development of superior microbial biocatalysts for the ever-changing landscape of fermentation inhibitors.« less
Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste.
Bi, Wentao; Tian, Minglei; Zhou, Jun; Row, Kyung Ho
2010-08-15
Astaxanthin, as an outstanding antioxidant reagent, was successfully extracted from shrimp waste by the ionic liquids based ultrasonic-assisted extraction. Seven kinds of imidazolium ionic liquids with different cations and anions were investigated in this work and one task-specific ionic liquid in ethanol with 0.50molL(-1) was selected as the solvent. At the optimized ultrasonic extraction conditions, the extraction amount of astaxanthin increased 98% (92.7microg g(-1)) compared to the conventional method (46.7microg g(-1)). Furthermore, the extracted solution was isolated through the solid-phase extraction with a molecularly imprinted polymer sorbent. After loading the samples on molecularly imprinted polymer cartridge, the different washing and elution solvents, such as water, methanol, n-hexane, acetone and dichloromethane, were evaluated, and finally, astaxanthin was separated from the shrimp waste extract. Copyright 2010 Elsevier B.V. All rights reserved.
Ionic liquids as refolding additives: N′-alkyl and N′-(ω-hydroxyalkyl) N-methylimidazolium chlorides
Lange, Christian; Patil, Ganesh; Rudolph, Rainer
2005-01-01
The purpose of this work was to investigate the influence of a series of N′-alkyl and N′-(ω-hydroxy-alkyl)-N-methylimidazolium chlorides on the renaturation of two model proteins, namely hen egg white lysozyme and the single-chain antibody fragment ScFvOx. All tested ionic liquids acted as refolding enhancers, with varying efficacies and efficiencies. The results of the refolding screening could be interpreted by taking into account the effect of the studied ionic liquids on protein aggregation, together with the systematic variations of their influence on the stability of native proteins in solution. More hydrophobic imidazolium cations carrying longer alkyl chains were increasingly destabilizing, while terminal hydroxylation of the alkyl chain made the salts more compatible with protein stability. The studied ionic liquids can be classified as preferentially bound, slightly to moderately chaotropic cosolvents for proteins. PMID:16195554
Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin
2015-04-01
In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodius, D.; Smetana, V.; Steinberg, S.
A family of bis(trifluoromethanesulfonyl)amide-based ionic liquids of composition [RE 5(C 2H 5-C 3H 3N 2-CH 2COO) 16(H 2O) 8](Tf 2N) 15 (RE = Er, Ho, Tm; C 3H 3N 2 ≡ imidazolium moiety) featuring the cationic, record quindecim {15+} charged pentanuclear rare earth (RE)-containing ion [RE 5(C 2H 5-C 3H 3N 2-CH 2COO) 16(H 2O) 8] 15+ has been synthesized and characterized. In addition, due to the presence of rare earth ions, these ionic liquids show a response to magnetic fields with the highest effective magnetic moment observed so far for an ionic liquid and are rare examples of ionicmore » liquids showing luminescence in the near-infrared. As a result, these ionic liquids also were successfully employed in a three-component synthesis of 2-pyrrolo-3'-yloxindole with an extremely low (<0.035 mol%) catalyst loading rate.« less
Measuring and predicting Delta(vap)H298 values of ionic liquids.
Deyko, Alexey; Lovelock, Kevin R J; Corfield, Jo-Anne; Taylor, Alasdair W; Gooden, Peter N; Villar-Garcia, Ignacio J; Licence, Peter; Jones, Robert G; Krasovskiy, Vladimir G; Chernikova, Elena A; Kustov, Leonid M
2009-10-14
We report the enthalpies of vaporisation (measured using temperature programmed desorption by mass spectrometry) of twelve ionic liquids (ILs), covering four imidazolium, [C(m)C(n)Im]+, five pyrrolidinium, [C(n)C(m)Pyrr]+, two pyridinium, [C(n)Py]+, and a dication, [C3(C1Im)2]2+ based IL. These cations were paired with a range of anions: [BF4]-, [FeCl4]-, [N(CN)2]-, [PF3(C2F5)3]- ([FAP]-), [(CF3SO2)2N]- ([Tf2N]-) and [SCN]-. Using these results, plus those for a further eight imidazolium based ILs published earlier (which include the anions [CF3SO3]- ([TfO]-), [PF6]- and [EtSO4]-), we show that the enthalpies of vaporisation can be decomposed into three components. The first component is the Coulombic interaction between the ions, DeltaU(Cou,R), which is a function of the IL molar volume, V(m), and a parameter R(r) which quantifies the relative change in anion-cation distance on evaporation from the liquid phase to the ion pair in the gas phase. The second and third components are the van der Waals contributions from the anion, DeltaH(vdw,A), and the cation, DeltaH(vdw,C). We derive a universal value for R(r), and individual values of DeltaH(vdw,A) and DeltaH(vdw,C) for each of the anions and cations considered in this study. Given the molar volume, it is possible to estimate the enthalpies of vaporisation of ILs composed of any combination of the ions considered here; values for fourteen ILs which have not yet been studied experimentally are given.
Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath
2017-10-24
Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.
Breaking the paradigm: Record quindecim charged magnetic ionic liquids
Prodius, D.; Smetana, V.; Steinberg, S.; ...
2016-12-08
A family of bis(trifluoromethanesulfonyl)amide-based ionic liquids of composition [RE 5(C 2H 5-C 3H 3N 2-CH 2COO) 16(H 2O) 8](Tf 2N) 15 (RE = Er, Ho, Tm; C 3H 3N 2 ≡ imidazolium moiety) featuring the cationic, record quindecim {15+} charged pentanuclear rare earth (RE)-containing ion [RE 5(C 2H 5-C 3H 3N 2-CH 2COO) 16(H 2O) 8] 15+ has been synthesized and characterized. In addition, due to the presence of rare earth ions, these ionic liquids show a response to magnetic fields with the highest effective magnetic moment observed so far for an ionic liquid and are rare examples of ionicmore » liquids showing luminescence in the near-infrared. As a result, these ionic liquids also were successfully employed in a three-component synthesis of 2-pyrrolo-3'-yloxindole with an extremely low (<0.035 mol%) catalyst loading rate.« less
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-10-31
A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.
Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin
2018-04-07
A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br - in PIL-M-(Br) and TFSI - in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br - and TFSI - , respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g - ¹, 40 and 48 kW·kg - ¹, and 107 and 59.9 Wh·kg - ¹ were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively.
NASA Astrophysics Data System (ADS)
Miskolczy, Zsombor; Biczók, László
2009-07-01
A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.
Sun, Xue; Qian, Yuting; Jiao, Yajie; Liu, Jiyang; Xi, Fengna; Dong, Xiaoping
2017-04-01
Despite complex molecular and atomic doping, efficient post-functionalization strategies for graphene quantum dots (GQDs) are of key importance to control the physicochemical properties and broaden the practical applications. With ionic liquid as specific modification agents, herein, the preparation of ionic liquid-capped GQDs (IL-GQDs) and its application as label-free fluorescent probe for direct detection of anion were reported. Hydroxyl-functionalized GQDs that could be easily gram-scale synthesized and possessed single-crystalline were chosen as the model GQDs. Also, the most commonly used ionic liquids, water-soluble 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF 4 ) was chosen as the model IL. Under the ultrasonic treatment, BMIMBF 4 easily composited with GQDs to form IL-GQDs. The synthesized IL-GQDs were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and fluorescence (FL) spectrum. After successful combination with IL, the excitation-independent photoluminescence behavior of GQDs presented almost no change, whereas, the anion responsiveness of IL-GQDs drastically improved, which afforded the IL-GQDs a sensitive response to Fe(CN) 6 3- . Based on the strong fluorescence quench, a facile and sensitive detection of Fe(CN) 6 3- was achieved. A wide linear range of 1.0×10 -7 to 2.5×10 -3 moll -1 with a low detection limit of 40 nmol l -1 was obtained. As the composition and properties of IL and GQDs could be easily tuned by varying the structure, ionic liquids-capped GQDs might present promising potential for their applications in sensing and catalysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Nebgen, Benjamin Tyler; Magurudeniya, Harsha D.; Kwock, Kevin Wen Chi; ...
2017-07-18
Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinatingmore » anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. As a result, thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.« less
Nebgen, Benjamin T; Magurudeniya, Harsha D; Kwock, Kevin W C; Ringstrand, Bryan S; Ahmed, Towfiq; Seifert, Sönke; Zhu, Jian-Xin; Tretiak, Sergei; Firestone, Millicent A
2017-12-14
Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1 H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinating anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1 H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. Thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.
First examples of organosilica-based ionogels: synthesis and electrochemical behavior
Löbbicke, Ruben; Kirchner, Barbara; Leroux, Fabrice
2017-01-01
The article describes the synthesis and properties of new ionogels for ion transport. A new preparation process using an organic linker, bis(3-(trimethoxysilyl)propyl)amine (BTMSPA), yields stable organosilica matrix materials. The second ionogel component, the ionic liquid 1-methyl-3-(4-sulfobutyl)imidazolium 4-methylbenzenesulfonate, [BmimSO3H][PTS], can easily be prepared with near-quantitative yields. [BmimSO3H][PTS] is the proton conducting species in the ionogel. By combining the stable organosilica matrix with the sulfonated ionic liquid, mechanically stable, and highly conductive ionogels with application potential in sensors or fuel cells can be prepared. PMID:28487817
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Prabhash; Department of Nanoengineering, Samara State Aerospace University, 443086 Samara; Pavelyev, V.S.
2016-06-15
Graphical abstract: Ionic liquid ([C6-mim]PF6) used as dispersant agent for SWCNTs: An investigations were carried out to find the structural quality and surface modification for sensor application. - Highlights: • An effective technique based on Ionic liquids (IL) and their use as a dispersant. • Electron microscopy and spectroscopy for structure characterization. • Covalent linkage of ILs with SWNTs and dispersion of SWCNTs. • The IL-wrapped sensing film, capable for detecting trace levels of gas. - Abstract: Single-walled carbon nanotubes (SWCNTs) were dispersed in an imidazolium-based ionic liquid (IL) and investigated in terms of structural quality, surface functionalization and inter-CNTmore » force. Analysis by field emission electron microscopy and transmission electron microscopy shows the IL layer to coat the SWNTs, and FTIR and Raman spectroscopy confirm strong binding of the ILs to the SWNTs. Two kinds of resistive sensors were fabricated, one by drop casting of IL-wrapped SWCNTs, the other by conventional dispersion of SWCNTs. Good response and recovery to NO{sub 2} is achieved with the IL-wrapped SWCNTs material upon UV-light exposure, which is needed because decrease the desorption energy barrier to increase the gas molecule desorption. NO{sub 2} can be detected in the 1–20 ppm concentration range. The sensor is not interfered by humidity due to the hydrophobic tail of PF6 (ionic liquid) that makes our sensor highly resistant to moisture.« less
Electropolymerized polyazulene as active material in flexible supercapacitors
NASA Astrophysics Data System (ADS)
Suominen, Milla; Lehtimäki, Suvi; Yewale, Rahul; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita
2017-07-01
We report the capacitive behavior of electrochemically polymerized polyazulene films in different ionic liquids. The ionic liquids in this study represent conventional imidazolium based ionic liquids with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions as well as an unconventional choline based ionic liquid. The effect of different ionic liquids on the polymerization and capacitive performance of polyazulene films is demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy in a 3-electrode cell configuration. The films exhibit the highest capacitances in the lowest viscosity ionic liquid (92 mF cm-2), while synthesis in high viscosity ionic liquid shortens the conjugation length and results in lower electroactivity (25 mF cm-2). The obtained films also show good cycling stabilities retaining over 90% of their initial capacitance over 1200 p-doping cycles. We also demonstrate, for the first time, flexible polyazulene supercapacitors of symmetric and asymmetric configurations using the choline based ionic liquid as electrolyte. In asymmetric configuration, capacitance of 55 mF (27 mF cm-2) with an equivalent series resistance of 19 Ω is obtained at operating voltage of 1.5 V. Upon increasing the operating voltage up to 2.4 V, the capacitance increases to 72 mF (36 mF cm-2).
Men, Shuang; Mitchell, Daniel S; Lovelock, Kevin R J; Licence, Peter
2015-07-20
We investigate eight 1-alkylpyridinium-based ionic liquids of the form [Cn Py][A] by using X-ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake-up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic-liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8 Py][A] and analogues including 1-octyl-1-methylpyrrolidinium- ([C8 C1 Pyrr][A]), and 1-octyl-3-methylimidazolium- ([C8 C1 Im][A]) based samples, where X is common to all ionic liquids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V; Domínguez-Aguilar, Marco A; Lijanova, Irina V; Arce-Estrada, Elsa
2014-08-07
Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC 12 ), poly(1-vinyl-3-octylimidazolium) (PImC₈) and poly(1-vinyl-3-butylimidazolium) (PImC₄) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1-1 M H₂SO₄) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir's isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC 12 > PImC₈ > PImC₄) to reach 61% for PImC 12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs' partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.
Voss, Jonathan M.; Marsh, Brett M.; Zhou, Jia; ...
2016-06-29
The infrared predissociation spectra of [bmim] +·(H 2O) n, n = 1–8, in the 2800–3800 cm –1 region are presented and analyzed with the help of electronic structure calculations. The results show that the water molecules solvate [bmim]+ by predominately interacting with the imidazolium C2–H moiety for the small n = 1 and 2 clusters. This is characterized by a redshifted and relatively intense C2–H stretch. For n ≥ 4 clusters, hydrogen-bond interactions between the water molecules drive the formation of ring isomers which interact on top of the imidazolium ring without any direct interaction with the C2–H. The watermore » arrangement in [bmim]+·(H 2O) n is similar to the low energy isomers of neutral water clusters up to the n = 6 cluster. This is not the case for the n = 8 cluster, which has the imidazolium ring disrupting the otherwise preferred cubic water structure. Here, the evolution of the solvation network around [bmim]+ illustrates the competing [bmim]+–water and water–water interactions.« less
Lv, Kai; Zhang, Wei; Zhang, Lu; Wang, Zhong-Sheng
2016-03-02
To expand the application of solid-state dye-sensitized solar cells (ssDSSCs) to low temperatures, it is necessary to develop new solid electrolytes with low glass transition temperature (Tg). The Tg is regulated by varying the length of alkyl chain that is connected with the nitrogen atom in the imidazolium ring linked to the polyhedral oligomeric silsesquioxane (POSS). The Tg as low as -8.8 °C is achieved with the POSS grafted with methyl-substituted imidazolium. The effect of alkyl group on the conductivity, Tg, and photovoltaic performance has also been investigated. The conductivity and power conversion efficiency increase with the alkyl length, while the Tg first increases and then decreases with the alkyl length. Among the synthesized POSS-based ionic conductors, the POSS grafted with the methyl-substituted imidazolium yields the highest power conversion efficiency of 6.98% at RT due to its highest conductivity, and the efficiency (6.52%) is still good at -4 °C, as its Tg (-8.8 °C) is lower than the working temperature (-4 °C). This finding suggests that the POSS-based solid electrolyte is promising for subzero-temperature applications of ssDSSCs.
Shinde, Sandip S; Patil, Sunil N
2014-12-07
The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.
Green synthesis of a typical chiral stationary phase of cellulose-tris(3, 5-dimethylphenylcarbamate)
2013-01-01
Background At present, the study on the homogeneous-phase derivatization of cellulose in ionic liquid is mainly focused on its acetylation. To the best of our knowledge, there has been no such report on the preparation of cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) with ionic liquid 1-allyl-3-methyl-imidazolium chloride (AmimCl) so far. Results With ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a reaction solvent, cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) was synthesized by the reaction of 3,5-dimethylphenyl isocyanate and soluble microcrystalline cellulose in a homogeneous phase. The synthesized CDMPC was then coated onto the surfaces of aminopropyl silica gel to prepare a chiral stationary phase (CSP). The prepared CSP was successfully used in chiral separation of seven racemic pesticides by high performance liquid chromatography (HPLC). Good chiral separation was obtained using n-hexane and different modifiers as the mobile phases under the optimal percentage and column temperature, with the resolution of metalaxyl, diniconazole, flutriafol, paclobutrazol, hexaconazole, myclobutanil and hexythiazox of 1.73, 1.56, 1.26, 1.00, 1.18, 1.14 and 1.51, respectively. The experimental results suggested it was a good choice using a green solvent of AmimCl for cellulose functionalization. Conclusion CDMPC was successfully synthesized as the chiral selector by reacting 3, 5-dimethylphenyl isocyanate with dissolved microcrystalline cellulose in a green ionic liquid of AmimCl. PMID:23890199
Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo
2015-10-21
We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.
Interfacial ionic 'liquids': connecting static and dynamic structures
Uysal, Ahmet; Zhou, Hua; Feng, Guang; ...
2014-12-05
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. For this research, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can bemore » described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. Lastly, the potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).« less
Interfacial ionic 'liquids': connecting static and dynamic structures.
Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul
2015-01-28
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).
NASA Astrophysics Data System (ADS)
Kowsari, M. H.; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan
2010-01-01
We use molecular dynamics simulations to study the structure, dynamics, and details of the mechanism of congruent melting of the equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide with benzene, [emim][NTf2]•C6H6. Changes in the molecular arrangement, radial distribution functions, and the dynamic behavior of species are used to detect the solid to liquid transition, show an indication of the formation of polar islands by aggregating of the ions in the liquid phase, and characterize the melting process. The predicted enthalpy of melting ΔHm=38±2 kJ mol-1 for the equimolar inclusion mixture at 290 K is in good agreement with the differential scanning calorimetry experimental results of 42±2 kJ mol-1. The dynamics of the ions and benzene molecules were studied in the solid and liquid states by calculating the mean-square displacement (MSD) and the orientational autocorrelation function. The MSD plots show strong association between ion pairs of the ionic liquid in the inclusion mixture. Indeed, the presence of a stoichiometric number of benzene molecules does not affect the nearest neighbor ionic association between [emim]+ and [NTf2]-, but increases the MSDs of both cations and anions compared to pure liquid [emim][NTf2], showing that second shell ionic associations are weakened. We monitored the rotational motion of the alkyl chain sides of imidazolium cations and also calculated the activation energy for rotation of benzene molecules about their C6 symmetry axes in their lattice sites prior to melting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.
2016-08-14
The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binarymore » liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl tail length increases, the changes in the binary mixtures’ properties become more pronounced.« less
Symmetric Imidazolium-Based Paramagnetic Ionic Liquids
2017-11-29
REPORT DATE 2. REPORT TYPE 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ADDRESS(ES) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a...Number: 17717 3 Motivation •SLIPS at high temperatures •ILs: stable at high temperatures but high surface tension •Alkyl chains to reduce surface tension
Biopolymer Processing Using Ionic Liquids
2014-08-07
solvents and catalysts for the dissolution and degradation of chitin and chitosan. This project will:1) synthesis various IL catalysts to study their...effects on depolymerization of chitin and chitosan, 2) synthesis a variety of IL’s to invesitgate the effects of dissolution solvents on the rate of...chitin. The current state of technology has focused on the short-chained imidazolium cations with the chloride and acetate anion. This project will
Cellulose Crystal Dissolution in Imidazolium-Based Ionic Liquids: A Theoretical Study.
Uto, Takuya; Yamamoto, Kazuya; Kadokawa, Jun-Ichi
2018-01-11
The highly crystalline nature of cellulose results in poor processability and solubility, necessitating the search for solvents that can efficiently dissolve this material. Thus, ionic liquids (ILs) have recently been shown to be well suited for this purpose, although the corresponding dissolution mechanism has not been studied in detail. Herein, we adopt a molecular dynamics (MD) approach to study the dissolution of model cellulose crystal structures in imidazolium-based ILs and gain deep mechanistic insights, demonstrating that dissolution involves IL penetration-induced cleavage of hydrogen bonds between cellulose molecular chains. Moreover, we reveal that in ILs with high cellulose dissolving power (powerful solvents, such as 1-allyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium chloride), the above molecular chains are peeled from the crystal phase and subsequently dispersed in the solvent, whereas no significant structural changes are observed in poor-dissolving-power solvents. Finally, we utilize MD trajectory analysis to show that the solubility of microcrystalline cellulose is well correlated with the number of intermolecular hydrogen bonds in cellulose crystals. The obtained results allow us to conclude that both anions and cations of high-dissolving-power ILs contribute to the stepwise breakage of hydrogen bonds between cellulose chains, whereas this breakage does not occur to a sufficient extent in poorly solubilizing ILs.
Ionic liquids as novel solvents for ionic polymer transducers
NASA Astrophysics Data System (ADS)
Bennett, Matthew D.; Leo, Donald J.
2004-07-01
The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.
Ionic liquids as an electrolyte for the electro synthesis of organic compounds.
Kathiresan, Murugavel; Velayutham, David
2015-12-25
The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.
Vibrational Stark Effect to Probe the Electric-Double Layer of the Ionic Liquid-Metal Electrodes
NASA Astrophysics Data System (ADS)
Garcia Rey, Natalia; Moore, Alexander Knight; Toyouchi, Shuichi; Dlott, Dana
2017-06-01
Vibrational sum frequency generation (VSFG) spectroscopy is used to study the effect of room temperature ionic liquids (RTILs) in situ at the electrical double layer (EDL). RTILs have been recognized as electrolytes without solvent for applications in batteries, supercapacitors and electrodeposition^{1}. The molecular response of the RTIL in the EDL affects the performance of these devices. We use the vibrational Stark effect on CO as a probe to detect the changes in the electric field affected by the RTIL across the EDL on metal electrodes. The Stark effect is a shift in the frequency in response to an externally applied electric field and also influenced by the surrounding electrolyte and electrode^{2}. The CO Stark shift is monitored by the CO-VSFG spectra on Pt or Ag in a range of different imidazolium-based RTILs electrolytes, where their composition is tuned by exchanging the anion, the cation or the imidazolium functional group. We study the free induction decay (FID)^{3} of the CO to monitor how the RTIL structure and composition affect the vibrational relaxation of the CO. Combining the CO vibrational Stark effect and the FID allow us to understand how the RTIL electrochemical response, molecular orientation response and collective relaxation affect the potential drop of the electric field across the EDL, and, in turn, how determines the electrical capacitance or reactivity of the electrolyte/electrode interface. ^{1}Fedorov, M. V.; Kornyshev, A. A., Ionic Liquids at Electrified Interfaces. Chem. Rev. 2014, 114, 2978-3036. ^{2} (a) Lambert, D. K., Vibrational Stark Effect of Adsorbates at Electrochemical Interfaces. Electrochim. Acta 1996, 41, 623-630. (b) Oklejas, V.; Sjostrom, C.; Harris, J. M., SERS Detection of the Vibrational Stark Effect from Nitrile-Terminated SAMs to Probe Electric Fields in the Diffuse Double-Layer. J. Am. Chem. Soc. 2002, 124, 2408-2409. ^{3}Symonds, J. P. R.; Arnolds, H.; Zhang, V. L.; Fukutani, K.; King, D. A.,Broadband Femtosecond Sum-Frequency Spectroscopy of CO on Ru{1010} in the Frequency and Time Domains. J. Chem. Phys. 2004, 120, 7158-7164.
Hydrogen-bonding interactions between a nitrile-based functional ionic liquid and DMSO
NASA Astrophysics Data System (ADS)
Zheng, Yan-Zhen; Zhou, Yu; Deng, Geng; Yu, Zhi-Wu
2016-11-01
Task-specific ionic liquids (TSILs) have been introduced by incorporating additional functional groups in the cation or anion to impart specific properties or reactivates. In this work, the hydrogen-bonding interactions between a nitrile-functional TSIL 1-propylnitrile-3-methylimidazolium tetrafluoroborate ([PCNMIM][BF4]) and dimethyl sulphoxide (DMSO) were investigated in detail by attenuated total reflection infrared spectroscopy (ATR-IR), combined with hydrogen nuclear magnetic resonance (1H NMR) and density functional theory calculations (DFT). It was found that, first, introducing a nitrile group into the alkyl chain does not change the main interaction site in the cation. It is still the C2 hydrogen. So the v(C2-H) is more sensitive to the environmental change and can be used as an indicator of the environments change of IL. Second, the wavenumber shift changes of v(C2-H) have two turning points (xDMSO ≈ 0.6 and 0.9), dividing the dilution process into three stages. Combined with the calculation results, the dilution process is identified as: From larger ion clusters to smaller ion clusters (xDMSO < 0.6), then to ion pairs (0.6
Wiedemann, Christoph; Ohlenschläger, Oliver; Mrestani-Klaus, Carmen; Bordusa, Frank
2017-09-13
NMR spectroscopy was used to study systematically the impact of imidazolium-based ionic liquid (IL) solutions on a TAT-derived model peptide containing Xaa-Pro peptide bonds. The selected IL anions cover a wide range of the Hofmeister series of ions. Based on highly resolved one- and two-dimensional NMR spectra individual 1 H and 13 C peptide chemical shift differences were analysed and a classification of IL anions according to the Hofmeister series was derived. The observed chemical shift changes indicate significant interactions between the peptide and the ILs. In addition, we examined the impact of different ILs towards the cis/trans equilibrium state of the Xaa-Pro peptide bonds. In this context, the IL cations appear to be of exceptional importance for inducing an alteration of the native cis/trans equilibrium state of Xaa-Pro bonds in favour of the trans-isomers.
García-Alvarez-Coque, M C; Ruiz-Angel, M J; Berthod, A; Carda-Broch, S
2015-07-09
The popularity of ionic liquids (ILs) has grown during the last decades in several analytical separation techniques. Consequently, the number of reports devoted to the applications of ILs is still increasing. This review is focused on the use of ILs (mainly imidazolium-based associated to chloride and tetrafluoroborate) as mobile phase additives in high-performance liquid chromatography (HPLC). In this approach, ILs just function as salts, but keep several kinds of intermolecular interactions, which are useful for chromatographic separations. Both cation and anion can be adsorbed on the stationary phase, creating a bilayer. This gives rise to hydrophobic, electrostatic and other specific interactions with the stationary phase and solutes, which modify the retention behaviour and peak shape. This review updates the advances in this field, with emphasis on topics not always deeply considered in the literature, such as the mechanisms of retention, the estimation of the suppressing potency of silanols, modelling and optimisation of the chromatographic performance, and the comparison with other additives traditionally used to avoid the silanol problem. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo
Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.
NASA Astrophysics Data System (ADS)
Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.
2018-01-01
Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.
Wang, Caihong; Ma, Xiaofeng; Kitazawa, Yuzo; Kobayashi, Yumi; Zhang, Shiguo; Kokubo, Hisashi; Watanabe, Masayoshi
2016-12-01
Instead of the reported photoinduced lower critical solution temperature (LCST) phase transition behavior in ionic liquids (ILs) achieved by photofunctional polymers, this study reports the facile photoinduced LCST phase behavior of nonfunctionalized polymers (poly(benzyl methacrylate) (PBnMA) and poly(2-phenylethyl methacrylate) (PPhEtMA)) in mixed ILs (1,3-dimethylimidazolium bis(trifluoromethanesulfonyl)amide; [C 1 mim][NTf 2 ] and a newly designed functionalized IL containing an azobenzene moiety (1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide; [Azo][NTf 2 ])) as a small-molecular photo trigger. Interestingly, the length of the alkyl spacer between the ester and aryl groups, which is the only structural difference between the two polymers, leads to two different photoresponsive LCST phase transition behaviors. On the basis of spectroscopic studies, the different phase transition behaviors of PBnMA and PPhEtMA may attribute to the different cooperative interactions between the polymers and [C 1 mim][NTf 2 ]. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids.
Matsumoto, Michio; Shimizu, Sunao; Sotoike, Rina; Watanabe, Masayoshi; Iwasa, Yoshihiro; Itoh, Yoshimitsu; Aida, Takuzo
2017-11-15
Electric double layer (EDL) capacitors are promising as next-generation energy accumulators if their capacitances and operation voltages are both high. However, only few electrolytes can simultaneously fulfill these two requisites. Here we report that an oligomeric ionic liquid such as IL4 TFSI with four imidazolium ion units in its structure provides a wide electrochemical window of ∼5.0 V, similar to monomeric ionic liquids. Furthermore, electrochemical impedance measurements using Au working electrodes demonstrated that IL4 TFSI exhibits an exceptionally high EDL capacitance of ∼66 μF/cm 2 , which is ∼6 times as high as those of monomeric ionic liquids so far reported. We also found that an EDL-based field effect transistor (FET) using IL4 TFSI as a gate dielectric material and SrTiO 3 as a channel material displays a very sharp transfer curve with an enhanced carrier accumulation capability of ∼64 μF/cm 2 , as determined by Hall-effect measurements.
Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells
Hwang, Daesub; Kim, Dong Young; Jo, Seong Mu; Armel, Vanessa; MacFarlane, Douglas R.; Kim, Dongho; Jang, Sung-Yeon
2013-01-01
We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2–4 mScm−1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices. PMID:24343425
NASA Astrophysics Data System (ADS)
Zhang, Ling; Cao, Wugang; Alvarez, Pedro J. J.; Qu, Xiaolei; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang
2018-05-01
Aiming to remove ionic liquid pollutants from water, an ordered mesoporous carbon CMK-3 (OMC) was prepared and modified by oxidation with nitric acid. A commercial microporous activated carbon adsorbent, Filtrasorb-300 (AC), was used as benchmark. Boehm titration showed that oxidized OMC had a substantially higher oxygen content than oxidized AC. Adsorption of the hydrophilic imidazolium-based ionic liquid 1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) on OMC and AC was well-described by the Freundlich isotherm model. Surface oxidation markedly enhanced [Bmim]Cl adsorption by both OMC and AC. Nevertheless, [Bmim]Cl adsorption was much higher on oxidized OMC than on oxidized AC. Increasing pH had negligible influence on [Bmim]Cl adsorption on pristine OMC, but enhanced adsorption on oxidized OMC. Regeneration tests showed stable performance of oxidized OMC over five adsorption-desorption cycles. Thus, oxidized OMC can be a highly effective adsorbent for the removal of hydrophilic ionic liquids from water.
Zhang, Biao; Sudre, Guillaume; Quintard, Guilhem; Serghei, Anatoli; David, Laurent; Bernard, Julien; Fleury, Etienne; Charlot, Aurélia
2017-02-10
In this study, we report on the simple and straightforward preparation of ionogels arising from the addition of guar gum (a plant-based polysaccharide) in a solution of precisely-defined poly(ionic liquid) chains (PIL) in imidazolium-based ionic liquid (IL). The development of intermolecular polar interactions (mainly hydrogen bonds) and topologic chain entanglements induces the formation of physical biohybrid ionogels, whose elastic properties can be easily tuned by varying the composition (up to 30000Pa). The combined presence of guar gum and PIL confers excellent dimensional stability to the ionogels with no IL exudation combined with high thermal properties (up to 310°C). The resulting materials are shown to exhibit gel scattering profiles and high conductivities (> 10 -4 S/cm at 30°C). The benefit linked to the formation of guar/PIL associations in IL medium enables to find a good compromise between the mechanical cohesion and the mobility ensuring the ionic transport. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lacrămă, Ana-Maria; Putz, Mihai V.; Ostafe, Vasile
2007-01-01
Within the recently launched the spectral-structure activity relationship (S-SAR) analysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, along with the associated algebraic correlation factor in terms of the measured and predicted activity norms. The reliability of the present scheme is tested by assessing the Hansch factors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicity endpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium, choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, while confirming the cationic dominant influence when only lipophylicity is considered, demonstrate that the anionic effect dominates all other more specific interactions. It was also proved that the S-SAR vectorial model predicts considerably higher activity for the ionic liquids than for its anionic and cationic subsystems separately, in all considered cases. Moreover, through applying the least norm-correlation path principle, the complete toxicological hierarchies are presented, unfolding the ecological rules of combined cationic and anionic influences in ionic liquid toxicity.
Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin
2018-01-01
A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br) and TFSI− in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively. PMID:29642456
Radošević, Kristina; Železnjak, Jelena; Cvjetko Bubalo, Marina; Radojčić Redovniković, Ivana; Slivac, Igor; Gaurina Srček, Višnja
2016-09-01
With the advent of ionic liquids, much was expected concerning their applicability as an alternative to organic solvents in the chemical technology and biotechnology fields. However, the most studied and commonly used ionic liquids based on imidazolium and pyridinium were found not to be as environmentally friendly as it was first expected. Therefore, a new generation of alternative solvents named natural ionic liquids and deep eutectic solvents, composed of natural and/or renewable compounds, have come into focus in recent years. Since the number of newly synthesized chemicals increases yearly, simple and reliable methods for their ecotoxicological assessment are necessary. Permanent fish cell lines can serve as a test system for the evaluation of a chemical's cytotoxicity. This paper presents research results on the cytotoxic effects on Channel Catfish Ovary (CCO) cell line induced by fifteen cholinium-based ionic liquids and deep eutectic solvents. Based on the decrease in cell viability, the most obvious toxic effect on CCO cells was caused by ionic liquid choline oxalate, while other solvents tested exhibited low cytotoxicity. Therefore, we can conclude that cholinium-based ionic liquids and deep eutectic solvents are comparatively less toxic to CCO cells than conventional ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.
Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids
NASA Astrophysics Data System (ADS)
Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong
2018-03-01
The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.
Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids
Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong
2018-01-01
The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands. PMID:29600245
Transports of ionic liquids in ionic polymer conductor network composite actuators
NASA Astrophysics Data System (ADS)
Liu, Yang; Liu, Sheng; Lin, Junhong; Wang, Dong; Jain, Vaibhav; Montazami, Reza; Heflin, James R.; Li, Jing; Madsen, Louis; Zhang, Q. M.
2010-04-01
We investigate the influence of ionic liquids on the electromechanical performance of Ionic Polymer Conductor Network Composite (IPCNC) bending actuators. Two imidazolium ionic liquids (ILs) with one cation, which is 1-ethyl-3- methylimidazolium ([EMI+]), and two different anions, which are tetrafluoroborate ([BF4-]) and trifluoromethanesulfonate ([Tf-]), are chosen for the study. By combining the time domain electric and electromechanical responses, we developed a new model that describes the ion transports in IPCNC actuators. The time constant of excess cation and anion migration in various composite electrodes are deduced: 6s and 25s in RuO2/Nafion; 7.9s and 36.3s in RuO2/Aquivion; 4.8s and 53s in Au/PAH, respectively. NMR is also applied to provide quantitative measures of self-diffusion coefficients independently for IL anions and cations both in pure ILs and in ILs absorved into ionomers. All the results indicate that the motion of cation, in the studied pure ionic liquids, polymer matrix and conductor network composites, is faster than that of anion. Moreover, the CNC morphology is playing a crucial role in determining the ion transport in the porous electrodes.
Arellanes-Lozada, Paulina; Olivares-Xometl, Octavio; Guzmán-Lucero, Diego; Likhanova, Natalya V.; Domínguez-Aguilar, Marco A.; Lijanova, Irina V.; Arce-Estrada, Elsa
2014-01-01
Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC12), poly(1-vinyl-3-octylimidazolium) (PImC8) and poly(1-vinyl-3-butylimidazolium) (PImC4) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4) by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4) to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions. PMID:28788156
Sakamoto, Takeshi; Ogawa, Takafumi; Nada, Hiroki; Nakatsuji, Koji; Mitani, Masato; Soberats, Bartolome; Kawata, Ken; Yoshio, Masafumi; Tomioka, Hiroki; Sasaki, Takao; Kimura, Masahiro; Henmi, Masahiro; Kato, Takashi
2018-01-01
Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.
NASA Astrophysics Data System (ADS)
Watters, Arianna L.; Palmese, Giuseppe R.
2014-09-01
Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.
Ionic liquids: dissecting the enthalpies of vaporization.
Köddermann, Thorsten; Paschek, Dietmar; Ludwig, Ralf
2008-03-14
We calculate the heats of vaporisation for imidazolium-based ionic liquids [C(n)mim][NTf(2)] with n=1, 2, 4, 6, 8 by means of molecular dynamics (MD) simulations and discuss their behavior with respect to temperature and the alkyl chain length. We use a force field developed recently. The different cohesive energies contributing to the overall heats of vaporisations are discussed in detail. With increasing alkyl chain length, the Coulomb contribution to the heat of vaporisation remains constant at around 80 kJ mol(-1), whereas the van der Waals interaction increases continuously. The calculated increase of about 4.7 kJ mol(-1) per CH(2)-group of the van der Waals contribution in the ionic liquid exactly coincides with the increase in the heats of vaporisation for n-alcohols and n-alkanes, respectively. The results support the importance of van der Waals interactions even in systems completely composed of ions.
Ogawa, Takafumi; Nakatsuji, Koji; Mitani, Masato; Soberats, Bartolome; Kawata, Ken; Yoshio, Masafumi; Tomioka, Hiroki; Sasaki, Takao; Kimura, Masahiro
2017-01-01
Abstract Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self‐organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self‐organized sub‐nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub‐nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability. PMID:29375969
Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics
Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim
2015-01-01
We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593
Santos, João H; e Silva, Francisca A; Ventura, Sónia P M; Coutinho, João A P; de Souza, Ranyere L; Soares, Cleide M F; Lima, Álvaro S
2015-01-01
The comparative evaluation of distinct types of ionic liquid-based aqueous biphasic systems (IL-ABS) and more conventional polymer/salt-based ABS to the extraction of two antioxidants, eugenol and propyl gallate, is focused. In a first approach, IL-ABS composed of ILs and potassium citrate (C6H5K3O7/C6H8O7) buffer at pH 7 were applied to the extraction of two antioxidants, enabling the assessment of the impact of IL cation core on the extraction. The second approach uses ABS composed of polyethylene glycol (PEG) and potassium phosphate (K2HPO4/KH2PO4) buffer at pH 7 with imidazolium-based ILs as adjuvants. Their application to the extraction of the compounds allowed the investigation of the impact of the presence/absence of IL, the PEG molecular weight, and the alkyl side chain length of the imidazolium cation on the partition. It is possible to maximize the extractive performance of both antioxidants up to 100% using both types of IL-ABS. The IL enhances the performance of ABS technology. The data puts in evidence the pivotal role of the appropriate selection of the ABS components and design to develop a successful extractive process, from both environmental and performance points of view. © 2014 American Institute of Chemical Engineers.
Aono, Masami; Miyazaki, Hisashi; Takekiyo, Takahiro; Tsuzuki, Seiji; Abe, Hiroshi
2018-02-21
We investigated the optical absorption and photoconductivity of iodine-excess ionic liquids (ILs) based on 1-alkyl-3-methyl imidazolium iodide ([C n mim][I]; n = 3, 4, and 6). The iodide concentration m was 2 ≦ m ≦ 8, which was determined by the molar fraction [C n mim] + : [I m ] - = 1 : m. By adding iodine, an absorption edge shifted from 282 nm in the UV region to around 600 nm in the visible-light region. The optical bandgaps E o decreased gradually from 2.3 eV to 1.9 eV with increasing m from 2 to 8. The alkyl-side chain lengths of the cations have little effect on the E o . This experimental result was confirmed by ab initio molecular orbital calculations. The effects were reflected in the photoconductivity of the ILs, as expected. [C 4 mim][I m ] exhibited greater photo-induced electron generation compared with [C 3 mim][I m ] and [C 6 mim][I m ]. The photoconductivity in both [C 3 mim][I m ] and [C 6 mim][I m ] increased slightly with increasing m. The trend of photoconductivity in [C 4 mim][I m ] exhibited an N-shaped form. The highest photoconductivity 1.6 was observed in [C 4 mim][I 8 ].
Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua
2015-08-04
Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.
NASA Astrophysics Data System (ADS)
Yang, Yudong; Ahn, Myungmo; Im, Dojin; Oh, Jungmin; Kang, Inseok
2017-11-01
General electrohydrodynamic behavior of ionic liquid droplets under an electric field is investigated using MD simulations. Especially, a unique behavior of ion depletion of an ionic liquid droplet under a uniform electric field is studied. Shape deformation due to electric stress and ion distributions inside the droplet are calculated to understand the ionic motion of imidazolium-based ionic liquid droplets with 200 ion pairs of 2 kinds of ionic liquids: EMIM-NTf2 and EMIM-ES. The intermolecular force between cations and anions can be significantly different due to the nature of the structure and charge distribution of the ions. Together with an analytical interpretation of the conducting droplet in an electric field, the MD simulation successfully explains the mechanism of selective ion depletion of an ionic liquid droplet in an electric field. The selective ion depletion phenomenon has been adopted to explain the experimentally observed retreating motion of a droplet in a uniform electric field. The effect of anions on the cation depletion phenomenon can be accounted for from a direct approach to the intermolecular interaction. This research was supproted by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1D1A1B05035211).
Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect.
Hu, Zhonghan; Margulis, Claudio J
2007-11-01
Ionic liquids (ILs) have recently attracted significant attention from academic and industrial sources. This is because, while their vapor pressures are negligible, many of them are liquids at room temperature and can dissolve a wide range of polar and nonpolar organic and inorganic molecules. In this Account, we discuss the progress of our laboratory in understanding the dynamics, spectroscopy, and fluid dynamics of selected imidazolium-based ILs using computational and analytical tools that we have recently developed. Our results indicate that the red edge effect, the non-Newtonian behavior, and the existence of locally heterogeneous environments on a time scale relevant to chemical and photochemical reactivity are closely linked to the viscosity and highly structured character of these liquids.
Design and position control of AF lens actuator for mobile phone using IPMC-EMIM
NASA Astrophysics Data System (ADS)
Kim, Sung-Joo; Kim, Chul-Jin; Park, No-Cheol; Yang, Hyun-Seok; Park, Young-Pil; Park, Kang-Ho; Lee, Hyung-Kun; Choi, Nak-Jin
2008-03-01
IPMC-EMIM (Ionic Polyer Metal Composites + 1-ethyl-3- methyl imidazolium trifluromethane sulfonate, EMIM-Tfo) is fabricated by substituting ionic liquid for water in Nafion film, which improves water sensitiveness of IPMC and guarantees uniform performance regardless of the surrounding environment. In this paper, we will briefly introduce the procedure of fabrication of IPMC-EMIM and proceed to introduce the Hook-type actuator using IPMC-EMIM and application to AF Lens actuator. Parameters of Hook-type actuator are estimated from experimental data. In the simulation, The proposed AF Lens Actuator is assumed to be a linear system and based on estimated parameters, PID controller will be designed and controlled motion of AF Lens actuator will be shown through simulation.
NASA Astrophysics Data System (ADS)
Androulaki, Eleni; Vergadou, Niki; Ramos, Javier; Economou, Ioannis G.
2012-06-01
Molecular dynamics (MD) simulations have been performed in order to investigate the properties of [C n mim+][Tf2N-] (n = 4, 8, 12) ionic liquids (ILs) in a wide temperature range (298.15-498.15 K) and at atmospheric pressure (1 bar). A previously developed methodology for the calculation of the charge distribution that incorporates ab initio quantum mechanical calculations based on density functional theory (DFT) was used to calculate the partial charges for the classical molecular simulations. The wide range of time scales that characterize the segmental dynamics of these ILs, especially at low temperatures, required very long MD simulations, on the order of several tens of nanoseconds, to calculate the thermodynamic (density, thermal expansion, isothermal compressibility), structural (radial distribution functions between the centers of mass of ions and between individual sites, radial-angular distribution functions) and dynamic (relaxation times of the reorientation of the bonds and the torsion angles, self-diffusion coefficients, shear viscosity) properties. The influence of the temperature and the cation's alkyl chain length on the above-mentioned properties was thoroughly investigated. The calculated thermodynamic (primary and derivative) and structural properties are in good agreement with the experimental data, while the extremely sluggish dynamics of the ILs under study renders the calculation of their transport properties a very complicated and challenging task, especially at low temperatures.
Adak, Sunita; Datta, Sougata; Bhattacharya, Santanu; Banerjee, Rintu
2015-11-01
An insight into the effects of new ionic liquid-type gemini imidazolium cationic surfactants on the structure and function of the lipases is of prime importance for their potential application. Changes in the activity, stability and structure of Rhizopus oryzae lipase in the presence of novel gemini surfactants, [C16-3-C16im]Br2 and [C16-12-C16im]Br2 were probed in the present study. Surfactant with shorter spacer length, [C16-3-C16im]Br2 was found to be better in improving the hydrolytic activity and thermal stability of the lipase. For both the surfactants, activation was concentration dependent. CD spectroscopy results showed a decrease in α-helix and an increase in β-sheet content in the presence of these surfactants. A higher structural change observed in presence of [C16-12-C16im]Br2 correlated with lower enzyme activity. Isothermal titration calorimetric studies showed the binding to be spontaneous in nature based on sequential two site binding model. The forces involved in binding were found to differ for the two surfactants proving that the spacer length is an important factor which governs the interaction. These surfactants could be used as promising components both in enzyme modification and media engineering for attaining the desired goals in biocatalytic reactions. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nykaza, Jacob Richard
In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B.
2008-09-01
In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C2C1im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C2C1im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H2O )-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C2C1im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.
Spickermann, C; Thar, J; Lehmann, S B C; Zahn, S; Hunger, J; Buchner, R; Hunt, P A; Welton, T; Kirchner, B
2008-09-14
In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C(2)C(1)im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C(2)C(1)im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H(2)O)-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C(2)C(1)im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.
Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco
2014-09-04
The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental importance of cation alkyl chain length and its functionalization is demonstrated.
Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.
Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo
2017-06-01
Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Tianpei; Xie, Zhirong; Wu, Qingyin; Yan, Wenfu
2016-03-07
A series of temperature-dependent gel-type ionic liquid compounds have been synthesized from 1-(3-sulfonic group) propyl-3-methyl imidazolium (abbreviated as MIMPS) and three vanadium-substituted heteropoly acids H5SiW11VO40, H5SiMo11VO40 and H7SiW9V3O40. The designed and synthesized gel-type polyoxometalate ionic liquids (POM-ILs) have demonstrated a tendency to exhibit a layered structure. Moreover, they can undergo a phase transformation from a viscous gel-state to a liquid-state below 100 °C, and ionic conductivity up to 10(-3) S cm(-1) was observed at 120 °C. Cyclic voltammetry was carried out to study their electrochemical properties in organic solutions, and it was found that the oxidizability of the three POM-ILs decreases in the order: [MIMPS]7SiW9V3O40 > [MIMPS]5SiMo11VO40 > [MIMPS]5SiW11VO40. This result indicates that the redox behavior can be tuned by changing the chemical composition of the heteropolyanions.
Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion
Suarez, Sophia N.; Wishart, James F.; Rua, Armando; ...
2015-10-28
Multi-nuclear ( 1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T 1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, asmore » shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV ‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less
Do TFSA anions slither? Pressure exposes the role of TFSA conformational exchange in self-diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suarez, Sophia N.; Wishart, James F.; Rua, Armando
Multi-nuclear ( 1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T 1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, asmore » shown by their respective activation volumes (28.8 ± 2.5 cm³/mol for TFSA vs. 14.6 ± 1.3 cm³/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV ‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis.« less
Yu, Fang; Sun, Li; Zhou, Yanmei; Gao, Bin; Gao, Wenli; Bao, Chong; Feng, Caixia; Li, Yonghong
2016-12-01
Modified biochars produced from different agricultural wastes were used as low-cost biosorbents to remove hydrophilic ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). Herein, the biosorbents based on peanut shell, corn stalk and wheat straw (denoted as PB-K-N, CB-K-N and WB-K-N) all exhibited higher [BMIM][Cl] removal than many other carbonaceous adsorbents and the adsorption capacities were as the following: PB-K-N > CB-K-N > WB-K-N. The characterizations of biosorbents indicated that they had great deal of similarity in morphological, textural and surface chemical properties such as possessing simultaneously accessible microporous structure and abundant oxygen-containing functional groups. Additionally, adsorption of [BMIM][Cl] onto PB-K-N, CB-K-N and WB-K-N prepared from the modified process, which was better described by pseudo-second order kinetic and Freundlich isotherm models. Therefore, the viable approach could also be applied in other biomass materials treatment for the efficient removal of ILs from aqueous solutions, as well as recycling agricultural wastes to ease their disposal pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Elise B.; Smith, L. Taylor; Williamson, Tyler K.
2013-11-21
Ionic liquids (ILs) are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long-term aging effect of the temperature on these materials. Imizadolium-, quaternary ammonium-, pyridinium-, and pyrrolidnium-based ILs with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 h (15 weeks) at 200 °C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. Finally, it was found that the minor changes in the cation chemistry could greatlymore » affect the properties of the ILs over time.« less
Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min
2006-01-01
Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505
Fluorescent tris-imidazolium sensors for picric acid explosive.
Roy, Bijan; Bar, Arun Kumar; Gole, Bappaditya; Mukherjee, Partha Sarathi
2013-02-01
Two new anthracene-functionalized fluorescent tris-imidazolium salts have been synthesized, characterized, and proven to be selective sensors for picric acid, which is a common constituent of many powerful explosives. Theoretical studies revealed an unusual ground-state electron transfer from picrate anion to the sensor molecules.
Khan, Imran; Kurnia, Kiki A; Mutelet, Fabrice; Pinho, Simão P; Coutinho, João A P
2014-02-20
For an adequate choice or design of ionic liquids, the knowledge of their interaction with other solutes and solvents is an essential feature for predicting the reactivity and selectivity of systems involving these compounds. In this work, the activity coefficient of water in several imidazolium-based ionic liquids with the common cation 1-butyl-3-methylimidazolium was measured at 298.2 K. To contribute to a deeper insight into the interaction between ionic liquids and water, COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies. The results showed good agreement between experimental and predicted activity coefficient of water in ionic liquids and that the interaction of water and ionic liquids was strongly influenced by the hydrogen bonding of the anion with water. Accordingly, the intensity of interaction of the anions with water can be ranked as the following: [CF3SO3](-) < [SCN](-) < [TFA](-) < Br(-) < [TOS](-) < Cl(-) < [CH3SO3](-) [DMP](-) < [Ac](-). In addition, fluorination and aromatization of anions are shown to reduce their interaction with water. The effect of temperature on the activity coefficient of water at infinite dilution was measured by inverse gas chromatography and predicted by COSMO-RS. Further analysis based on COSMO-RS provided information on the nature of hydrogen bonding between water and anion as well as the possibility of anion-water complex formation.
Santos, Luísa D F; Coutinho, João A P; Ventura, Sónia P M
2015-01-01
Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water-in-oil or oil-in-water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil-in-water emulsions), the imidazolium-based IL acts as an enhancer of the lipase catalytic capacity, super-activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers.
Ziembowicz, Francieli Isa; Bender, Caroline Raquel; Frizzo, Clarissa Piccinin; Martins, Marcos Antonio Pinto; de Souza, Thiane Deprá; Kloster, Carmen Luisa; Santos Garcia, Irene Teresinha; Villetti, Marcos Antonio
2017-09-07
Alkylimidazolium salts are an important class of ionic liquids (ILs) due to their self-assembly capacity when in solution and due to their potential applications in chemistry and materials science. Therefore, detailed knowledge of the physicochemical properties of this class of ILs and their mixtures with natural polymers is highly desired. This work describes the interactions between a homologous series of mono- (C n MIMBr) and dicationic imidazolium (C n (MIM) 2 Br 2 ) ILs with cellulose ethers in aqueous medium. The effects of the alkyl chain length (n = 10, 12, 14, and 16), type, and concentration range of ILs (below and above their cmc) on the binding to methylcellulose (MC) were evaluated. The thermodynamic parameters showed that the interactions are favored by the increase of the IL hydrocarbon chain length, and that the binding of monocationic ILs to MC is driven by entropy. The monocationic ILs bind more effectively on the methoxyl group of MC when compared to dicationic ILs, and this outcome may be rationalized by considering the structural difference between the conventional (C n MIMBr) and the bolaform (C n (MIM) 2 Br 2 ) surfactant ILs. The C 16 MIMBr interacts more strongly with hydroxypropylcellulose when compared to methylcellulose, indicating that the strength of the interaction also depends on the hydrophobicity of the cellulose ethers. Our findings highlight that several parameters should be taken into account when designing new complex formulations.
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-08-01
The direct coupling between ionic liquid-based single-drop microextraction and gas chromatography/mass spectrometry is proposed for the rapid and simple determination of benzene, toluene, ethylbenzene and xylenes isomers (BTEX) in water samples. The extraction procedure exploits not only the high affinity of the selected ionic liquid (1-methyl-3-octyl-imidazolium hexaflourophosphate) to these aromatic compounds but also its special properties like viscosity, low vapour pressure and immiscibility with water. All the variables involved in the extraction process have been studied in depth. The developed method allows the determination of these single-ring compounds in water under the reference concentration level fixed by the international legislation. In this case, limits of detection were in the range 20 ng L(-1) (obtained for benzene) and 91 ng L(-1) (for o-xylene). The repeatability of the proposed method, expressed as RSD (n=5), varied between 3.0% (o-xylene) and 5.2% (toluene).
Ionic liquid-based reagents improve the stability of midterm fecal sample storage.
Hao, Lilan; Xia, Zhongkui; Yang, Huanming; Wang, Jian; Han, Mo
2017-08-01
Fecal samples are widely used in metagenomic research, which aims to elucidate the relationship between human health and the intestinal microbiota. However, the best conditions for stable and reliable storage and transport of these samples at room temperature are still unknown, and whether samples stored at room temperature for several days will maintain their microbiota composition is still unknown. Here, we established and tested a preservation method using reagents containing imidazolium- or pyridinium-based ionic liquids. We stored human fecal samples in these reagents for up to 7 days at different temperatures. Subsequently, all samples were sequenced and compared with fresh samples and/or samples treated under other conditions. The 16S rRNA sequencing results suggested that ionic liquid-based reagents could stabilize the composition of the microbiota in fecal samples during a 7-day storage period, particularly when stored at room temperature. Thus, this method may have implications in the storage of fecal samples for metagenomic research. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Xiaoyan; Lu, Kai; Qi, Meiling; Fu, Ruonong
2009-11-01
The selectivity and thermal stability of ionic liquids as the stationary phases for capillary gas chromatography (CGC) have attracted much attention of researchers in recent years. In this study, 1-vinyl-3-benzyl imidazolium-bis(trifluoromethane-sulphonyl)imidate (VBIm-NTf2) was synthesized and polymerized (PVBIm-NTf2) in a CGC column. In comparison with VBIm-NTf2, PVBIm-NTf2 exhibits much better thermal stability and chromatographic selectivity, and achieves satisfactory resolution for Grob test mixture, alcohols mixture, esters mixture and aromatics mixture with narrow and symmetric peak shapes. The satisfactory resolution and selectivity of the polymerized column still remain after conditioned at 250 degrees C for 6 h. Additionally, the Abraham solvation parameters of PVBIm-NTf2 were determined and the interactions between the stationary phase and solutes were elucidated. The present work demonstrates that the polymerization is an effective way to improve the selectivity and thermal stability of common ionic liquids as CGC stationary phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hongyang; Chu, Benjamin; Hsiao, Benjamin S.
Fluorinated ionic liquid (F-IL), 1-(3-perfluorooctylpropyl)-3-methylimidazolium bis(perfluoroethylsufonyl)amine, had been successfully prepared and employed to modify multi-wall carbon nanotubes (MWCNTs) for improving the processability of fluoro-ethylene-propylene (FEP). The thermally decomposed temperature of F-IL was higher than 350 °C measured by thermal gravimetric analysis (TGA) which indicated that the fluorinated ionic liquid could be suitable for melting blend with FEP (blending at 290 °C) by a twin-screw extruder. Through “cation-π” interaction between the imidazolium cation of F-IL and the graphene surface of MWCNTs, MWCNTs can be modified with F-IL and used as nanofillers to improve the dispersity of MWCNTs in fluorocopolymer FEP verifiedmore » by SEM images of the FEP nanocomposite. The structural characterization and mechanical property of FEP nanocomposite during the deformation were investigated by tensile experiments and simultaneous time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques.« less
Merouani, Slimane; Hamdaoui, Oualid; Haddad, Boumediene
2018-03-01
In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf 2 ]), and in water has been made for a wide range of cavitation parameters including frequency (140-1000kHz), acoustic intensity (0.5-1Wcm -2 ), liquid temperature (20-50°C) and external static pressure (0.7-1.5atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf 2 ] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water. Copyright © 2017 Elsevier B.V. All rights reserved.
Kapoor, Utkarsh; Shah, Jindal K
2018-01-11
Segregation of polar and nonpolar domains in ionic liquids for which either the cation or anion is responsible for inducing nonpolar domains is well understood. On the other hand, information regarding the nanoscale heterogeneities originating due to the presence of nonpolar content on both the ions is rudimentary at this point. The present contribution is aimed at addressing this question and focuses on a molecular dynamics simulation study to probe nanoscale structural and aggregation features of the 1-n-alkyl-3-methylimidazolium [C n mim] octylsulfate [C 8 SO 4 ] ionic liquid homologous series (n = 2, 4, 6, 8, 10, and 12). The objective of this work is to determine the effect of increasing alkyl chain length in the cation on nonpolar domain formation, especially when the alkyl chain lengths from both the ions participate in defining such domains. The results indicate that all the ionic liquids form nonpolar domains, morphology of which gradually changes from globular, sponge-like to layer-like structure with increase in the cationic alkyl chain length. The length of the nonpolar domains calculated from the total structure factor for [C 10 mim][C 8 SO 4 ] is considerably higher than that reported for other imidazolium-based ionic liquid containing smaller anions. The structure factor for [C 12 mim][C 8 SO 4 ] ionic liquid contains multiple intermediate peaks separating the charge alternation peak and pre-peak, which points to nonpolar domains of varying lengths, an observation that remains to be validated. Analysis of the heterogeneous order parameters and orientational correlation functions of the alkyl chains further suggests an increase in the spatial heterogeneity and long-range order along the homologous series. The origin of rich diversity of structures obtained by introducing nonpolar content on both the ions is discussed.
Abd El-Hady, D; Albishri, H M
2015-07-01
Two novel sensors based on human serum albumin (HSA)-ionic liquid (IL) and bovine serum albumin (BSA)-ionic liquid (IL) composites modified glassy carbon electrode (GCE) were produced for simultaneous determination of water soluble vitamins B2, B6 and C in human plasma following analytes focusing by IL micelles collapse (AFILMC). For selective and efficient extraction, vitamins were dissolved in 3.0molL(-1) micellar solution of 1-octyl-3-methyl imidazolium bromide IL. The extracted vitamins were hydrodynamically injected by 25mbar for 20s into a running buffer of 12.5mmolL(-1) phosphate at pH 6.0 followed by electrochemical detection (ECD) on protein/1-octyl-3-methyl imidazolium hexafluorophosphate IL/GC sensors. The chemical stability of proposed sensors was achieved up to 7 days without any decomposition of PF6-based IL/protein and adsorption of interfering ions. In the current work, the sensitivity enhancement factor (SEF) up to 5000-fold was achieved using the AFILMC/ECD setup compared to conventional CE/UV. Under optimal conditions, linear calibration graphs were obtained from 0.5, 0.5 and 1.0 to 1500.0µgmL(-1) of vitamins B2, B6 and C, respectively. Detection limits of analytes were ranged from 180.0 to 520.0ngmL(-1). The proposed AFILMC/ECD setup was successfully applied to the assay of trace level quantification of vitamins in human plasma samples and also their binding constants with HSA and BSA were determined. The concurrent use of IL micelles for the proposed separation and detection processes exhibited some advantages, such as, a reduction of use toxic solvents, an efficient extraction and a direct injection of samples with a short-single run. Furthermore, IL micelles, having variable possibility of interactions, facilitated the successful achievements of AFILMC/ECD setup for the quantification of vitamins in plasma matrices. Copyright © 2015 Elsevier B.V. All rights reserved.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-04-11
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.
Ferreira, Thania Alexandra; Rodriguez, Jose Antonio; Paez-Hernandez, María Elena; Guevara-Lara, Alfredo; Barrado, Enrique; Hernandez, Prisciliano
2017-01-01
An evaluation of the chromium(VI) adsorption capacity of four magnetite sorbents coated with a polymer phase containing polymethacrylic acid or polyallyl-3-methylimidazolium is presented. Factors that influence the chromium(VI) removal such as solution pH and contact time were investigated in batch experiments and in stirred tank reactor mode. Affinity and rate constants increased with the molar ratio of the imidazolium. The highest adsorption was obtained at pH 2.0 due to the contribution of electrostatic interactions. PMID:28772865
Lee, Byeol-Nim; Son, Tae Yang; Park, Chi Hoon; Kim, Tae Hyun; Nam, Sang Yong
2018-09-01
In this study, various poly(ether ether ketone) were synthesized using three different monomers and the imidazolium group was introduced into synthesized poly(ether ether ketone)s by using substitution reaction. Synthesized polymers were used to prepare anion exchange membranes and to evaluate its properties. Thermal, chemical and structural properties were carried out using thermogravimetric analysis, nuclear magnetic resonance. The anion exchange membranes with different imidazolium moieties were characterized by several different analytical techniques such as water up take, ion exchange capacity, hydroxide conductivity for checking the possibility to apply the anion exchange membrane fuel cell. Consequently, results of characterization were studied to understand the correlation between stabilities of the membrane and functional group and polymer backbone structures. And we confirm membrane performance was improved by increasing imidazolium cation groups.
Wang, Hui; Gao, Jiajia; Yu, Nana; Qu, Jingang; Fang, Fang; Wang, Huili; Wang, Mei; Wang, Xuedong
2016-07-01
In traditional ionic liquids (ILs)-based microextraction, the hydrophobic and hydrophilic ILs are often used as extractant and disperser, respectively. However, the functional effects of ILs are not utilized in microextraction procedures. Herein, we introduced 1-naphthoic acid into imidazolium ring to synthesize a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]), and its structure was characterized by IR, (1)H NMR and MS. On the basis of its acidic property and lower solubility than common [CnMIM][BF4], it was used as a mixing dispersive solvent with [C4MIM][BF4] in "functionalized ionic liquid-based no organic solvent microextraction (FIL-NOSM)". Utilization of [C4MIM][NPA] in FIL-NOSM procedures has two obvious advantages: (1) it promoted the non-polar environment, increased volume of the sedimented phase, and thus could enhance the extraction recoveries of triclosan (TCS) and methyltriclosan (MTCS) by more than 10%; and (2) because of the acidic property, it can act as a pH modifier, avoiding extra pH adjustment step. By combining single factor optimization and central composite design, the main factors in the FIL-NOSM method were optimized. Under the optimal conditions, the relative recoveries of TCS and MTCS reached up to 98.60-106.09%, and the LODs of them were as low as 0.12-0.15µgL(-1) in plasma and urine samples. In total, this [C4MIM][NPA]-based FIL-NOSM method provided high extraction efficiency, and required less pretreatment time and unutilized any organic solvent. To the best of our knowledge, this is the first application of [C4mim][NPA]-based microextraction method for the simultaneous quantification of trace TCS and MTCS in human fluids. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tith, Rany; Dutta, Jaydeep; Jung, Kichang; Martinez-Morales, Alfredo A.
2017-05-01
LiFePO4 is a highly researched cathode material that serves as an alternative material for traditional commercial lithiumion batteries such as LiCoO2. Currently, there are a number of different methods to synthesize LiFePO4 including: hydrothermal, solid state, spray pyrolysis, and coprecipitation. Our proposed method has the potential to provide an ecologically friendly and economically competitive way to synthesize LiFePO4 by utilizing ionic liquid and water, as a composite synthesis medium. The addition of water to ionic liquid can be beneficial as it can act as a mineralizer to bring insoluble precursors to form LiFePO4 seed crystals. Furthermore, this method provides the possibility of recycling the ionic liquid for repeated synthesis processes. In this work, we study the effects of ionic liquid to water ratio on the crystallinity and morphology of the synthesized material. Our group was able to conclude a reaction medium utilizing a ratio of equal parts of 1-ethyl-3-methyl imidazolium trifluoromethane sulfonate (EMIM Otf) and water, or a slightly favored ionic liquid ratio, increases the efficacy of the synthesis route. Crystallinity and purity was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) was used to determine morphology and crystal sizes, and energy dispersion spectroscopy (EDX) was used for elemental analysis.
Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties
Tafur, Juan P.; Santos, Florencio; Fernández Romero, Antonio J.
2015-01-01
Gel Polymer Electrolytes (GPEs) composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2. PMID:26610580
Matsagar, Babasaheb M; Hossain, Shahriar A; Islam, Tofazzal; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Dhepe, Paresh L; Wu, Kevin C-W
2017-10-18
The conversion of raw biomass into C5-sugars and furfural was demonstrated with the one-pot method using Brønsted acidic ionic liquids (BAILs) without any mineral acids or metal halides. Various BAILs were synthesized and characterized using NMR, FT-IR, TGA, and CHNS microanalysis and were used as the catalyst for raw biomass conversion. The remarkably high yield (i.e. 88%) of C5 sugars from bagasse can be obtained using 1-methyl-3(3-sulfopropyl)-imidazolium hydrogen sulfate ([C 3 SO 3 HMIM][HSO 4 ]) BAIL catalyst in a water medium. Similarly, the [C 3 SO 3 HMIM][HSO 4 ] BAIL also converts the bagasse into furfural with very high yield (73%) in one-pot method using a water/toluene biphasic solvent system.
Effect of SO2 on the transport properties of an imidazolium ionic liquid and its lithium solution.
Monteiro, Marcelo J; Ando, Rômulo A; Siqueira, Leonardo J A; Camilo, Fernanda F; Santos, Paulo S; Ribeiro, Mauro C C; Torresi, Roberto M
2011-08-11
Transport coefficients have been measured as a function of the concentration of sulfur dioxide, SO(2), dissolved in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [BMMI][Tf(2)N], as well as in its lithium salt solution, Li[Tf(2)N]. The SO(2) reduces viscosity and density and increases conductivity and diffusion coefficients in both the neat [BMMI][Tf(2)N] and the [BMMI][Tf(2)N]-Li[Tf(2)N] solution. The conductivity enhancement is not assigned to a simple viscosity effect; the weakening of ionic interactions upon SO(2) addition also plays a role. Microscopic details of the SO(2) effect were unraveled using Raman spectroscopy and molecular dynamics (MD) simulations. The Raman spectra suggest that the Li(+)-[Tf(2)N] interaction is barely affected by SO(2), and the SO(2)-[Tf(2)N] interaction is weaker than previously observed in an investigation of an ionic liquid containing the bromide anion. Transport coefficients calculated by MD simulations show the same trend as the experimental data with respect to SO(2) content. The MD simulations provide structural information on SO(2) molecules around [Tf(2)N], in particular the interaction of the sulfur atom of SO(2) with oxygen and fluorine atoms of the anion. The SO(2)-[BMMI] interaction is also important because the [BMMI] cations with above-average mobility have a larger number of nearest-neighbor SO(2) molecules. © 2011 American Chemical Society
Jiang, Wei; Yan, Tianying; Wang, Yanting; Voth, Gregory A
2008-03-13
Molecular dynamics (MD) simulations have been performed to investigate the structure and dynamics of an energetic ionic liquid, 1-hydroxyethyl-4-amino-1,2,4-triazolium nitrate (HEATN). The generalized amber force field (GAFF) was used, and an electronically polarizable model was further developed in the spirit of our previous work (Yan, T.; Burnham, C. J.; Del Popolo, M. G.; Voth, G. A. J. Phys. Chem. B 2004, 108, 11877). In the process of simulated annealing from a liquid state at 475 K down to a glassy state at 175 K, the MD simulations identify a glass-transition temperature region at around 250-275 K, in agreement with experiment. The self-intermediate scattering functions show vanishing boson peaks in the supercooled region, indicating that HEATN may be a fragile glass former. The coupling/decoupling of translational and reorientational ion motion is also discussed, and various other physical properties of the liquid state are intensively studied at 400 K. A complex hydrogen bond network was revealed with the calculation of partial radial distribution functions. When compared to the similarly sized 1-ethyl-4-methyl-1,4-imidazolium nitrate ionic liquid, EMIM+/NO3-, a hydrogen bond network directly resulting in the poorer packing efficiency of ions is observed, which is responsible for the lower melting/glass-transition point. The structural properties of the liquid/vacuum interface shows that there is vanishing layering at the interface, in accordance with the poor ion packing. The effects of electronic polarization on the self-diffusion, viscosity, and surface tension of HEATN are found to be significant, in agreement with an earlier study on EMIM+/NO3- (Yan, T.; Burnham, C. J.; Del Popolo, M. G.; Voth, G. A. J. Phys. Chem. B 2004, 108, 11877).
Refractive index measurement of imidazolium based ionic liquids in the Vis-NIR
NASA Astrophysics Data System (ADS)
Arosa, Yago; Rodríguez Fernández, Carlos Damián; López Lago, Elena; Amigo, Alfredo; Varela, Luis Miguel; Cabeza, Oscar; de la Fuente, Raúl
2017-11-01
In this paper spectrally resolved white light interferometry is applied for measuring the refractive index of different ionic liquids over a wide spectral band from 400 to 1000 nm. The measuring device is compound by a Michelson interferometer whose output is analyzed by means of two spectrometers. The first one is a homemade prism spectrometer which provides the interferogram produced by the sample over a wide continuum spectrum. The second one is a commercial diffraction grating spectrometer used to make high precision measurements of the displacement between the Michelson mirrors by interferometry. Both instruments combined allow the retrieval of the refractive index of the sample over a wide visible-near infrared continuum spectrum with deviations on the fourth decimal. A group of 14 different ionic liquids based on the 1-alkyl-3-methylimidazolium cation have been studied through this technique. The measured refractive index of the ionic liquids is used to calculate their electronic polarizability. This makes possible to gain insight into the microscopic behavior of the compounds. To give a better picture, the liquids have been classified in four groups and their refractive indices and polarizabilities are compared in order to find correlations between these magnitudes and the structure of the liquids.
Understanding the impact of ionic liquid pretreatment on eucalyptus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centikol, Ozgul; Dibble, Dean; Cheng, Gang
2010-01-01
The development of cost-competitive biofuels necessitates the realization of advanced biomass pretreatment technologies. Ionic liquids provide a basis for one of the most promising pretreatment technologies and are known to allow effective processing of cellulose and some biomass species. Here, we demonstrate that the ionic liquid 1-ethyl-3-methyl imidazolium acetate, [C2mim][OAc], induces structural changes at the molecular level in the cell wall of Eucalyptus globulus. Deacetylation of xylan, acetylation of the lignin units, selective removal of guaiacyl units (increasing the syringyl:guaiacyl ratio) and decreased {beta}-ether content were the most prominent changes observed. Scanning electron microscopy images of the plant cell wallmore » sections reveal extensive swelling during [C2mim][OAc] pretreatment. X-ray diffraction measurements indicate a change in cellulose crystal structure from cellulose I to cellulose II after [C2mim][OAc] pretreatment. Enzymatic saccharification of the pretreated material produced increased sugar yields and improved hydrolysis kinetics after [C2mim][OAc] pretreatment. These results provide new insight into the mechanism of ionic liquid pretreatment and reaffirm that this approach may be promising for the production of cellulosic biofuels from woody biomass.« less
Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation.
Domínguez, Carmen M; Munoz, Macarena; Quintanilla, Asunción; de Pedro, Zahara M; Casas, Jose A
2017-10-15
In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50-90 °C), catalyst load (10-50 mg L -1 Fe 3+ ), initial IL concentration (100-2000 mg L -1 ), and hydrogen peroxide dose (10-200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C 4 mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe 3+ ] 0 = 50 mg L -1 ; [H 2 O 2 ] 0 = 100% of the stoichiometric amount), the complete removal of [C 4 mim]Cl (1000 mg L -1 ) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe 3+ amount and H 2 O 2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol -1 . The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Kaisheng; Henan Normal University, School of Chemistry and Environmental Science, Key Laboratory of Green Chemical Media and Reactions, Xin xiang, Henan 453007; Lu, Weiwei
A novel method was proposed for successful fabrication of CuS nanostructures with various morphologies. At the ionic liquids (ILs)-modulated CHCl{sub 3}-H{sub 2}O interface, copper cupferronate [Cu(cup){sub 2}] in CHCl{sub 3} reacted with thiourea in water to generate CuS nanostructures via a solvothermal reaction process. The effects of alkyl chain length of imidazolium cations and nature of anions of the ILs, molar ratio of Cu(cup){sub 2} to thiourea, the reaction temperature and time on the morphology of the products were studied systematically. It was shown that by changing alkyl chain length of imidazolium cations and nature of anions of the ILs,more » CuS nanostructures with various morphologies, including flowers, urchins, large nanodisks and nanoparticles, could be obtained at the liquid-liquid interface, and the ILs played important template roles in directing the formation of CuS nanostructures. Furthermore, the as-prepared CuS samples exhibited high catalytic activity for photodegradation of methyl orange and thermal decomposition of ammonium perchlorate. - Graphical abstract: At the ionic liquids-modulated CHCl{sub 3}-H{sub 2}O interface, the CuS nanostructures with the various morphologies of flowers, urchins, large nanodisks and nanoparticles have been successfully prepared via a solvothermal reaction process. Highlights: Black-Right-Pointing-Pointer The properties of oil-H{sub 2}O interface can be modulated by employing different ILs. Black-Right-Pointing-Pointer The modulated interface has been used to prepare CuS nanostructures with various morphologies. Black-Right-Pointing-Pointer The CuS samples exhibited high catalytic activity for the photodegradation of methyl orange.« less
NASA Astrophysics Data System (ADS)
Magurudeniya, Harsha; Ringstrand, Bryan; Jungjohann, Katherine; Firestone, Millicent
Incorporation of nanoparticles(NPs) into polymer matrices has attracted interest, offering a means to create multi-functional materials combining the attributes of polymers (flexibility, processability, mechanical durability) with the opto-electrical properties of NPs. Synthesis of a self-supporting, hierarchically structured Au NP-network polymer was accomplished via a ``one-pot'' reaction employing a mesophase of AuCl3 and an imidazolium based-ionic liquid (IL) containing a acrylate group. In-situ generation of NPs was achieved by reduction of Au3+which in turn yields concomitant initiation of the polymerization of the mesophase. FT-IR and thermal analysis confirmed acrylate cross-linking. X-ray scattering confirms preservation of the mesophase within the NP composite. TEM showed a distribution of the NPs within the composite of primarily non-spherical morphologies. The co-integration of a macromer, PEG diacrylate, served as a reducing agent for the Au and the amount incorporated into the mesophase allowed for manipulation of the swelling factor of the resultant nanocomposite in a ethanol, providing means to modulate the plasmonic resonance of the NPs. This methodology provides means for organizing NPs within the structured regions of the poly(IL) matrix. Such composites may be of interest for photonic/sensing applications.
Li, Chun-Ting; Lee, Chuan-Pei; Lee, Chi-Ta; Li, Sie-Rong; Sun, Shih-Sheng; Ho, Kuo-Chuan
2015-04-13
A novel ionic-liquid mediator, 1-butyl-3-{2-oxo-2-[(2,2,6,6-tetramethylpiperidin-4-yl)amino]ethyl}-1H-imidazol-3-ium selenocyanate (ITSeCN), has been successfully synthesized for dye-sensitized solar cells (DSSCs). ITSeCN possesses dual redox channels, imidazolium-functionalized 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) and selenocyanate, which can serve as the cationic redox mediator and the anionic redox mediator, respectively. Therefore, ITSeCN has a favorable redox nature, which results in a more positive standard potential, larger diffusivity, and better kinetic heterogeneous rate constant than those of iodide. The DSSC with the ITSeCN electrolyte shows an efficiency of 8.38 % with a high open-current voltage (VOC ) of 854.3 mV, and this VOC value is about 150 mV higher than that for the iodide-based DSSC. Moreover, different electrocatalytic materials were employed to trigger the redox reaction of ITSeCN. The ITSeCN-based DSSC with the CoSe counter electrode achieved the best performance of 9.01 %, which suggested that transition-metal compound-type materials would be suitable for our newly synthesized ITSeCN mediator. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids
Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; ...
2015-07-26
Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (E BP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among E BP, the anionmore » radius, and the glass transition temperature T g, we conclude that both E BP and T g in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the E BP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less
Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction.
Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael
2010-11-01
Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.
Imidazolium-Based Ionic Liquids as Efficient Reagents for the C-O Bond Cleavage of Lignin.
Thierry, Marina; Majira, Amel; Pégot, Bruce; Cezard, Laurent; Bourdreux, Flavien; Clément, Gilles; Perreau, François; Boutet-Mercey, Stéphanie; Diter, Patrick; Vo-Thanh, Giang; Lapierre, Catherine; Ducrot, Paul-Henri; Magnier, Emmanuel; Baumberger, Stéphanie; Cottyn, Betty
2018-01-23
The demethylation of lignin in ionic liquids (ILs) was investigated by using pure lignin model monomers and dimers together with dioxane-isolated lignins from poplar, miscanthus, and maize. Different methylimidazolium ILs were compared and the samples were treated with two different heating processes: microwave irradiation and conventional heating in a sealed tube. The conversion yield and influence of the treatment on the lignin structure were assessed by 31 P NMR spectroscopy, size-exclusion chromatography, and thioacidolysis. The acidic methylimidazolium IL [HMIM]Br was shown to be an effective combination of solvent and reagent for the demethylation and depolymerization of lignin. The relatively mild reaction conditions, the clean work-up, and the ability to reuse the IL makes the described procedure an attractive and new green method for the conversion of lignin to produce phenol-rich lignin oligomers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular dynamics study of ionic liquid confined in silicon nanopore
NASA Astrophysics Data System (ADS)
Liu, Y. S.; Sha, M. L.; Cai, K. Y.
2017-05-01
Molecular dynamics simulations was carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like silicon nanopore with pore size of 5.5 nm. It is clearly shown that the mass and number densities of the confined ILs are oscillatory, high density layers are also formed in the vicinity of the silicon surface, which indicates the existence of solid-like high density IL layers. The orientational investigation shows that the imidazolium ring of [BMIM] cation lies preferentially flat on the surface of the silicon pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are significantly slower than those observed in bulk systems. Our results suggest that the interactions between the pore walls and the ILs can strongly affect the structural and dynamical properties of the confined ILs.
NASA Astrophysics Data System (ADS)
Zeindlhofer, Veronika; Berger, Magdalena; Steinhauser, Othmar; Schröder, Christian
2018-05-01
Ionic liquids increase the solubility of various coffee ingredients in aqueous solution but little is known about the underlying mechanism. Kirkwood-Buff integrals as well as the potential of mean force indicate that the imidazolium cations are accumulated at the surface of the solutes, removing water molecules from the solute surface. Although hydrogen bonding of the anions to hydroxy groups of the solutes can be detected, their concentration at the surface is less enhanced compared to the cations. The decomposition into solvation shells by Voronoi tessellation reveals that structural features are only observed in the first solvation shell. Nevertheless, the depletion of water and the excess concentration of the ions and, in particular, of the cations are visible in the next solvation shells as well. Therefore, classical arguments of hydrotropic theory fail to explain this behavior.
Aluminium Electrodeposition from Ionic Liquid: Effect of Deposition Temperature and Sonication †
Berretti, Enrico; Giaccherini, Andrea; Martinuzzi, Stefano M.; Innocenti, Massimo; Schubert, Thomas J.S.; Stiemke, Frank M.; Caporali, Stefano
2016-01-01
Since their discovery, ionic liquids (ILs) have attracted a wide interest for their potential use as a medium for many chemical processes, in particular electrochemistry. As electrochemical media they allow the electrodeposition of elements that are impossible to reduce in aqueous media. We have investigated the electrodeposition of aluminium from 1-butyl-3-methyl-imidazolium chloride ((Bmim)Cl)/AlCl3 (40/60 mol %) as concerns the effect of deposition parameters on the quality of the deposits. Thick (20 μm) aluminium coatings were electrodeposited on brass substrates at different temperatures and mixing conditions (mechanical stirring and sonication). These coatings were investigated by means of scanning electron microscope, roughness measurements, and X-ray diffraction to assess the morphology and the phase composition. Finally, electrochemical corrosion tests were carried out with the intent to correlate the deposition parameters to the anti-corrosion properties. PMID:28773839
Calza, Paola; Vione, Davide; Fabbri, Debora; Aigotti, Riccardo; Medana, Claudio
2015-09-15
The photoinduced transformation of two ionic liquids, 1-methylimidazolium hydrogensulfate (HMIM) and 1-ethyl-3-methylimidazolium hydrogensulfate (EMIM), was investigated under photocatalytic conditions in the presence of irradiated TiO2. We monitored substrate disappearance, transformation products (TPs), degree of mineralization, and toxicity of the irradiated systems. Acute toxicity measures suggested in both cases the occurrence of more toxic TPs than the parent molecules. A total of five TPs were detected by HPLC-HRMS from HMIM and nine from EMIM. Complete mineralization and stoichiometric release of nitrogen was achieved for both compounds within 4 h of irradiation. The photochemical transformation kinetics and pathways in surface waters (direct photolysis and indirect photoreactions) were studied for EMIM, to assess its persistence in sunlit water bodies such as rivers or lakes. Environmental phototransformation would be dominated by direct photolysis, with half-life times of up to one month under fine-weather conditions.
Liu, Runqiang; Zhang, Yijun; Bai, Lianyang; Huang, Mingxian; Chen, Jun; Zhang, Yuping
2014-04-11
A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-aminopropylsilanized silica gel and the CBDMPC bonded chiral stationary phase (CSP) was obtained. Chromatographic evaluation of the prepared CSPs was conducted by high performance liquid chromatographic (HPLC) and baseline separation of three typical fungicides including hexaconazole, metalaxyl and myclobutanil was achieved using n-hexane/isopropanol as the mobile phase with a flow rate 1.0 mL/min. Experimental results also showed that AMIMCl could be recycled easily and reused in the preparation of CSPs as an effective reaction media.
Liu, Runqiang; Zhang, Yijun; Bai, Lianyang; Huang, Mingxian; Chen, Jun; Zhang, Yuping
2014-01-01
A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-aminopropylsilanized silica gel and the CBDMPC bonded chiral stationary phase (CSP) was obtained. Chromatographic evaluation of the prepared CSPs was conducted by high performance liquid chromatographic (HPLC) and baseline separation of three typical fungicides including hexaconazole, metalaxyl and myclobutanil was achieved using n-hexane/isopropanol as the mobile phase with a flow rate 1.0 mL/min. Experimental results also showed that AMIMCl could be recycled easily and reused in the preparation of CSPs as an effective reaction media. PMID:24733066
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habasaki, Junko, E-mail: habasaki.j.aa@m.titech.ac.jp; Ngai, K. L.
The typical ionic liquid, 1-ethyl-3-methyl imidazolium nitrate (EMIM-NO{sub 3}), was examined by molecular dynamics simulations of an all-atomistic model to show the characteristics of networks of cages and/or bonds in the course of vitrification of this fragile glass-former. The system shows changes of dynamics at two characteristic temperatures, T{sub B} (or T{sub c}) and the glass transition temperature T{sub g}, found in other fragile glass forming liquids [K. L. Ngai and J. Habasaki, J. Chem. Phys. 141, 114502 (2014)]. On decreasing temperature, the number of neighboring cation-anion pairs, N{sub B}, within the first minimum of the pair correlation function, g(r){submore » min}, increases. On crossing T{sub B} (>T{sub g}), the system volume and diffusion coefficient both show changes in temperature dependence, and as usual at T{sub g}. The glass transition temperature, T{sub g}, is characterized by the saturation of the total number of “bonds,” N{sub B} and the corresponding decrease in degree of freedom, F = [(3N − 6) − N{sub B}], of the system consisting of N particles. Similar behavior holds for the other ion-ion pairs. Therefore, as an alternative, the dynamics of glass transition can be interpreted conceptually by rigidity percolation. Before saturation occurring at T{sub g}, the number of bonds shows a remarkable change at around T{sub B}. This temperature is associated with the disappearance of the loosely packed coordination polyhedra of anions around cation (or vice versa), related to the loss of geometrical freedom of the polyhedra, f{sub g}, of each coordination polyhedron, which can be defined by f{sub g} = [(3N{sub V} − 6) − N{sub b}]. Here, 3N{sub v} is the degree of freedom of N{sub V} vertices of the polyhedron, and N{sub b} is number of fictive bonds. The packing of polyhedra is characterized by the soft percolation of cages, which allows further changes with decreasing temperature. The power spectrum of displacement of the central ion in the cage is found to be correlated with the fluctuation of N{sub b} of cation-cation (or anion-anion) pairs in the polyhedron, although the effect from the coordination shells beyond the neighboring ions is not negligible.« less
Li, Xiaoning; Guo, Wenli; Wu, Yibo; Li, Wei; Gong, Liangfa; Zhang, Xiaoqian; Li, Shuxin; Shang, Yuwei; Yang, Dan; Wang, Hao
2018-03-06
To identify ionic liquids (ILs) that could be used as solvents in isobutylene (IB) polymerization, the interactions between IB and eight different ILs based on the 1-butyl-3-methylimidazolium cation ([Bmim] + ) were investigated using density functional theory (DFT). The anions in the ILs were chloride, hexafluorophosphate, tetrafluoroborate, bis[(trifluoromethyl)sulfonyl]imide, tetrachloroaluminate ([AlCl 4 ] - ), tetrachloroferrate, acetate, and trifluoroacetate. The interaction geometries were explained by changes in the total energy, intermolecular distances, Hirshfeld charges, and the electrostatic potential surface. The IL solvents were screened by comparing their interaction intensities with IB to the interaction intensities of reference ILs ([AlCl 4 ] - -based ILs) with IB. The microscopic mechanism for IB dissolution was rationalized by invoking a previously reported microscopic mechanism for the dissolution of gases in ILs. Computation results revealed that hydrogen (H) bonding between C2-H on the imidazolium ring and the anions plays a key role in ion pair (IP) formation. The addition of IB leads to slight changes in the dominant interactions of the IP. IB molecules occupied cavities created by small angular rearrangements of the anions, just as CO 2 does when it is dissolved in an IL. The limited total free space in the ILs and the much larger size of IB than CO 2 were found to be responsible for the poor solubility of IB compared with that of CO 2 in the ILs.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-01-01
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches. PMID:28788602
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostofian, Barmak; Cheng, Xiaolin; Smith, Jeremy C.
2014-09-02
Ionic liquids have become a popular solvent for cellulose pretreatment in biorefineries due to their efficiency in dissolution and their reusability. Understanding the interactions between cations, anions, and cellulose is key to the development of better solvents and the improvement of pretreatment conditions. While previous studies described the interactions between ionic liquids and cellulose fibers, shedding light on the initial stages of the cellulose dissolution process, we study the end state of that process by exploring the structure and dynamics of a single cellulose decamer solvated in 1-butyl-3-methyl-imidazolium chloride (BmimCl) and in water using replica-exchange molecular dynamics. In both solvents,more » global structural features of the cellulose chain are similar. However, analyses of local structural properties show that cellulose explores greater conformational variability in the ionic liquid than in water. For instance, in BmimCl the cellulose intramolecular hydrogen bond O3H'••• O5 is disrupted more often resulting in greater flexibility of the solute. Our results indicate that the cellulose chain is more dynamic in BmimCl than in water, which may play a role in the favorable dissolution of cellulose in the ionic liquid. Here, the calculation of the configurational entropy of the cellulose decamer confirms its higher conformational flexibility in BmimCl than in water at elevated temperatures.« less
The vapour of imidazolium-based ionic liquids: a mass spectrometry study.
Deyko, A; Lovelock, K R J; Licence, P; Jones, R G
2011-10-06
Eight common dialkylimidazolium-based ionic liquids have been successfully evaporated in ultra-high vacuum and their vapours analysed by line of sight mass spectrometry using electron ionisation. The ionic liquids investigated were 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(n)C(1)Im][Tf(2)N] (where n = 2, 4, 6, 8), 1-alkyl-3-methylimidazolium tetrafluoroborate, [C(n)C(1)Im][BF(4)] (where n = 4, 8), 1-butyl-3-methylimidazolium octylsulfate, [C(4)C(1)Im][C(8)OSO(3)] and 1-butyl-3-methylimidazolium tetrachloroferrate, [C(4)C(1)Im][FeCl(4)]. All ionic liquids studied here evaporated as neutral ion pairs; no evidence of decomposition products in the vapour phase were observed. Key fragment cations of the ionised vapour of the ionic liquids are identified. The appearance energies, E(app), of the parent cation were measured and used to estimate the ionisation energies, E(i), for the vapour phase neutral ion pairs. Measured ionisation energies ranged from 10.5 eV to 13.0 eV. Using both the identity and E(app) values, the fragmentation pathways for a number of fragment cations are postulated. It will be shown that the enthalpy of vaporisation, Δ(vap)H, can successfully be measured using more than one fragment cation, although caution is required as many fragment cations can also be formed by ionisation of decomposition products.
Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant.
Salado, Manuel; Ramos, F Javier; Manzanares, Valentin M; Gao, Peng; Nazeeruddin, Mohammad Khaja; Dyson, Paul J; Ahmad, Shahzada
2016-09-22
The principle limitation of perovskite solar cells is related to their instability and, hence, their limited lifetime. Herein, we employ an imidazolium iodide dopant, 1-methyl-3-(1H,1H,2H,2H-nonafluorohexyl)-imidazolium iodide, containing a perfluorous appendage, which leads to prolonged (unencapsulated, under Ar atmosphere) device activities exceeding 100 days without compromising the power conversion efficiency and other photovoltaic parameters. The extended lifetime of the device can be attributed, at least in part, to the hydrophobic nature of the imidazolium iodide salt. The functionalization of the perovskite material was found to have negligible influence on the perovskite crystal structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thomaz, Joseph E; Bailey, Heather E; Fayer, Michael D
2017-11-21
The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C n mimNTf 2 , n = 2, 4, 6, 10: ethyl-Emim; butyl-Bmim; hexyl-Hmim; decyl-Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ∼350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ∼4, for EmimNTf 2 , with the effect decreasing as the chain length increases. By DmimNTf 2 , the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.
NASA Astrophysics Data System (ADS)
Thomaz, Joseph E.; Bailey, Heather E.; Fayer, Michael D.
2017-11-01
The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (CnmimNTf2, n = 2, 4, 6, 10: ethyl—Emim; butyl—Bmim; hexyl—Hmim; decyl—Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ˜350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ˜4, for EmimNTf2, with the effect decreasing as the chain length increases. By DmimNTf2, the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.
Moosavi, Majid; Khashei, Fatemeh; Sedghamiz, Elaheh
2017-12-20
In this work, the structural and dynamical properties of two imidazolium-based geminal dicationic ionic liquids (GDILs), i.e. [C n (mim) 2 ][NTf 2 ] 2 with n = 3 and 5, have been studied to obtain a fundamental understanding of the molecular basis of the macroscopic and microscopic properties of the bulk liquid phase. To achieve this purpose, molecular dynamics (MD) simulation, density functional theory (DFT) and atoms in molecule (AIM) methods were used. Interaction energies, charge transfers and hydrogen bonds between the cation and anions of each studied GDIL were investigated by DFT calculations and also AIM. The mean square displacement (MSD), self-diffusion coefficient, and transference number of the cation and anions, and also the density, viscosity and electrical conductivity of the studied GDILs, were computed at 333.15 K and at 1 atm. The simulated values were in good agreement with the experimental data. The effect of linkage alkyl chain length on the thermodynamic, transport and structural properties of these GDILs has been investigated. The structural features of these GDILs were characterized by calculating the partial site-site radial distribution functions (RDFs) and spatial distribution functions (SDFs). The heterogeneity order parameter (HOP) has been used to describe the spatial structures of these GDILs and the distribution of the angles formed between two cation heads and the middle carbon atom of the linkage alkyl chain was analyzed in these ILs. To investigate the temporal heterogeneity of the studied GDILs, the deviation of the self-part of the van Hove correlation function, G s (r[combining right harpoon above],t), from the Gaussian distribution of particle displacement and also the second-order non-Gaussian parameter, α 2 (t), were used. Since, the transport and interfacial properties and ionic characteristics of these GDILs were studied experimentally in our previous studies as a function of linkage chain length and temperature, in this work, we try to give a better perspective of the structure and dynamics of these systems at a molecular level.
Through-plane conductivities of membranes for nonaqueous redox flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.
In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less
Through-plane conductivities of membranes for nonaqueous redox flow batteries
Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; ...
2015-08-13
In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
Azobenzene-based organic salts with ionic liquid and liquid crystalline properties
Stappert, Kathrin; Muthmann, Johanna; Spielberg, Eike T.; ...
2015-07-23
Two sets of new azobenzene-based bromide salts are synthesized, and their thermal photochromic properties are studied. Both sets are based on the imidazolium cation. The first set (1) features a symmetric biscation where two imidazolium head groups (Im) with different alkyl chains (Cn) are connected to a central azobenzene unit (Azo): [Azo(C1-Im-Cn) 2]; n = 6, 8, 10, 12, 14. The other one contains an n-alkyl-imidazolium cation (Cn-Im) bearing a terminal azobenzene unit (C1-Azo) substituted with an alkoxy chain (O-Cm) of either two (2) or six (3) carbon atoms: [C1-Azo-O-Cm-Im-Cn]; m = 2, n = 8, 10, 12 and mmore » = 6, n = 8, 10, 12, 14, 16. For both cation classes, the influence of alkyl chains of varying length on the thermal phase behavior was investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). For five compounds (Azo(-C1-Im-C12) 2 (1d), Azo(-C1-Im-C12) 2 (1e), C1-Azo-O-C2-Im-C10 (2b), C1-Azo-O-C2-Im-C12 (2c), and C1-Azo-O-C6-Im-C16 (3e)), the formation of a liquid crystalline phase was observed. The biscationic salts (1) are all comparatively high melting organic salts (180–240 °C), and only the two representatives with long alkylchains (C12 and C14) exhibit liquid crystallinity. The monocationic salts with an O–C2 bridge (2) melt between 140 and 170 °C depending on the alkyl chain length, but from an alkyl chain of 10 and more carbon atoms on they form a smectic A liquid crystalline phase. The representatives of the third set with a O–C6 bridge qualify as ionic liquids with melting points less than 100 °C. However, only the representative with a hexadecyl chain forms a liquid crystalline phase. Representative single crystals for all sets of cations could be grown that allowed for single crystal structure analysis. Together with small-angle X-ray scattering experiments they allow for a more detailed understanding of the thermal properties. As a result, through irradiation with UV-light (320–366 nm) all compounds undergo trans–cis isomerization, which reverses under visible light (440 nm).« less
Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W
2017-12-06
Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.
Umapathi, Reddicherla; Venkatesu, Pannuru
2017-01-01
Different biophysical techniques such as fluorescence spectroscopy, dynamic light scattering (DLS), viscosity (η) and Fourier transform infrared (FTIR) spectroscopy have been carried out to characterize the effect of imidazolium-based ionic liquids (ILs) on the thermo-responsive triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly-(ethylene glycol) (PEG-PPG-PEG). In addition, to demonstrate the distinct morphological changes of various self-assembled morphologies, we further employed field emission scanning electron microscope (FESEM). To investigate the effect of alkyl chain length of the cation, concentration of the ILs and the related Hofmeister series on the phase behaviour of PEG-PPG-PEG, we used a series of ILs possessing same Cl - anion and a set of cation [C n mim] + with increasing alkyl chain length of cation such as 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]) and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]). The critical micellization temperature (CMT) of the copolymer in the presence of well hydrated cations is directly correlated to their hydration. The overall specific ranking of ILs in decreasing the CMT of PEG-PPG-PEG in aqueous solution was [Emim][Cl]>[Bmim][Cl]>[Hmim][Cl]>[Dmim][Cl]. The trend of these ILs followed the well-known Hofmeister series of cations of ILs. The present study provides important information about the solution properties that can be helpful to tune the IL or temperature-sensitive copolymer CMT and micelle shapes which are crucial for understanding the drug delivery mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces.
Amorim, Patrícia M; Ferraria, Ana M; Colaço, Rogério; Branco, Luís C; Saramago, Benilde
2017-01-01
In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified. Although the use of ionic liquids (ILs) as additives to base oils in the lubrication of steel/steel or other types of metal/ metal tribological pairs has been investigated, the number of studies involving Si is very low. In this work, we tested imidazolium-based ILs as additives to the base oil polyethylene glycol (PEG) to lubricate Si surfaces. The friction coefficients were measured in a nanotribometer. The viscosity of the PEG + IL mixtures as well as their contact angles on the Si surface were measured. The topography and chemical composition of the substrates surfaces were determined with atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. Due to the hygroscopic properties of PEG, the first step was to assess the effect of the presence of water. Then, a series of ILs based on the cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-vinylimidazolium [EVIM], 1-(2-hydroxyethyl)-3-methylimidazolium [C 2 OHMIM] and 1-allyl-3-methylimidazolium [AMIM] combined with the anions dicyanamide [DCA], trifluoromethanesulfonate [TfO], and ethylsulfate [EtSO 4 ] were added to dry PEG. All additives (2 wt %) led to a decrease in friction coefficient as well as an increase in viscosity (with the exception of [AMIM][TfO]) and improved the Si wettability. The additives based on the anion [EtSO 4 ] exhibited the most promising tribological behavior, which was attributed to the strong interaction with the Si surface ensuring the formation of a stable surface layer, which hinders the contact between the sliding surfaces.
Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces
Amorim, Patrícia M; Ferraria, Ana M; Colaço, Rogério; Branco, Luís C
2017-01-01
In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified. Although the use of ionic liquids (ILs) as additives to base oils in the lubrication of steel/steel or other types of metal/ metal tribological pairs has been investigated, the number of studies involving Si is very low. In this work, we tested imidazolium-based ILs as additives to the base oil polyethylene glycol (PEG) to lubricate Si surfaces. The friction coefficients were measured in a nanotribometer. The viscosity of the PEG + IL mixtures as well as their contact angles on the Si surface were measured. The topography and chemical composition of the substrates surfaces were determined with atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. Due to the hygroscopic properties of PEG, the first step was to assess the effect of the presence of water. Then, a series of ILs based on the cations 1-ethyl-3-methylimidazolium [EMIM], 1-butyl-3-methylimidazolium [BMIM], 1-ethyl-3-vinylimidazolium [EVIM], 1-(2-hydroxyethyl)-3-methylimidazolium [C2OHMIM] and 1-allyl-3-methylimidazolium [AMIM] combined with the anions dicyanamide [DCA], trifluoromethanesulfonate [TfO], and ethylsulfate [EtSO4] were added to dry PEG. All additives (2 wt %) led to a decrease in friction coefficient as well as an increase in viscosity (with the exception of [AMIM][TfO]) and improved the Si wettability. The additives based on the anion [EtSO4] exhibited the most promising tribological behavior, which was attributed to the strong interaction with the Si surface ensuring the formation of a stable surface layer, which hinders the contact between the sliding surfaces. PMID:29046844
NASA Astrophysics Data System (ADS)
Thasneema K., K.; Thayyil, M. Shahin; Krishna Kumar N., S.; Govindaraj, G.; Saheer, V. C.
2018-04-01
Usually ionic liquids consists of a large organic cation with low symmetry such as imidazolium, pyridinium, quaternary ammonium or phosponium etc combined with enormously wide range of inorganic or organic symmetric anion with melting point below 100. Ionic liquids existing in an extremely large number of possible ion pair combinations. It offers a very wide range of thermo physical properties led to the concept of designer solvents for specific applications. Due to the features of high chemical and thermal stability, low vapor pressure non flammability high ionic conductivity, and they show a good solvent ability towards a great variety of organic or inorganic compounds, ionic liquids have a widespread use in many areas such as batteries, fuel cell, solar cells, super capacitors etc. The main focus of this work is the study of molecular dynamics and conductivity relaxation of amorphous Trihexyl tetradecyl phosphonium dicyanamide ([P14,6,6,6][N(CN)2]) ionic liquid which is proved as a better electrolyte in super capacitors, over a wide frequency 10-2 Hz to 107 Hz and the temperature range between 123k and 265 k by means of Broadband Dielectric Spectroscopy. We observe alpha conductivity relaxation and secondary relaxation above and below Glass Transition Temperature. The experimental results were analyzed using electric modulus representation. The analysis emphasis the inter molecular interaction and the nature of glass forming system, whether it is fragile or strong system. The ionic liquid shows a fragile behavior and the fragility index m=123.59. TGA result of the sample exhibit a good resistance to thermal decomposition, up to 300°C.
Rodriguez Castillo, Alfredo Santiago; Guihéneuf, Solène; Le Guével, Rémy; Biard, Pierre-François; Paquin, Ludovic; Amrane, Abdeltif; Couvert, Annabelle
2016-04-15
Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF6(-), NTf2(-) and NfO(-). Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD28 of aqueous samples (compound concentration,1mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kausteklis, Jonas; Aleksa, Valdemaras; Iramain, Maximiliano A.; Brandán, Silvia Antonia
2018-07-01
The cation-anion interactions present in the 1-butyl-3-methylimidazolium nitrate ionic liquid [BMIm][NO3] were studied by using density functional theory (DFT) calculations and the experimental FT-Raman spectrum in liquid phase and its available FT-IR spectrum. For the three most stable conformers found in the potential energy surface and their 1-butyl-3-methylimidazolium [BMIm] cation, the atomic charges, molecular electrostatic potentials, stabilization energies, bond orders and topological properties were computed by using NBO and AIM calculations and the hybrid B3LYP level of theory with the 6-31G* and 6-311++G** basis sets. The force fields, force constants and complete vibrational assignments were also reported for those species by using their internal coordinates and the scaled quantum mechanical force field (SQMFF) approach. The dimeric species of [BMIm][NO3] were also considered because their presence could probably explain the most intense bands observed at 1344 and 1042 cm-1 in both experimental FT-IR and FT-Raman spectra, respectively. The geometrical parameters suggest monodentate cation-anion coordination while the studies by charges, NBO and AIM calculations support bidentate coordinations between those two species. Additionally several quantum chemical descriptors were also calculated in order to interpret various molecular properties such as electronic structure, reactivity of those species and predict their gas phase behaviours.
Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao
2015-05-01
A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lee, Jeongwoo; Faruk Emon, Md Omar; Vatani, Morteza; Choi, Jae-Won
2017-03-01
Ionic liquid (IL)/polymer composites (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4)/2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BACOEA)) were fabricated to use as sensing materials for stretchable piezoresistive tactile sensors. The detectability of the IL/polymer composites was enhanced because the ionic transport properties of EMIMBF4 in the composites were improved by the synergic actions between the coordinate sites generated by the local motion of BACOEA chain segments under enough activation energy. The performance of the piezoresistive sensors was investigated with the degree of crosslinking and polymerization of the IL/polymer composites. As the compressive strain was increased, the distance between two electrodes decreased, and the motion of polymer chains and IL occurred, resulting in a decrease in the electrical resistance of the sensors. We have confirmed that the sensitivity of the sensors are affected by the degree of crosslink and polymerization of the IL/polymer composites. In addition, all of the materials (skins, sensing material, and electrode) used in this study are photo-curable, and thus the stretchable piezoresistive tactile sensors can be successfully fabricated by 3D printing.
NASA Astrophysics Data System (ADS)
Uysal, Ahmet; Zhou, Hua; Lee, Sang Soo; Fenter, Paul; Feng, Guang; Li, Song; Cummings, Peter; Fulvio, Pasquale; Dai, Sheng; McDonough, Jake; Gogotsi, Yury
2014-03-01
Electrical double layer capacitors (EDLCs) with room temperature ionic liquid (RTIL) electrolytes and carbon electrodes are promising candidates for energy storage devices with high power density and long cycle life. We studied the potential and time dependent changes in the electric double layer (EDL) structure of an imidazolium-based room temperature ionic liquid (RTIL) electrolyte at an epitaxial graphene (EG) surface. We used in situ x-ray reflectivity (XR) to determine the EDL structure at static potentials, during cyclic voltammetry (CV) and potential step measurements. The static potential structures were also investigated with fully atomistic molecular dynamics (MD) simulations. Combined XR and MD results show that the EDL structure has alternating anion/cation layers within the first nanometer of the interface. The dynamical response of the EDL to potential steps has a slow component (>10 s) and the RTIL structure shows hysteresis during CV scans. We propose a conceptual model that connects nanoscale interfacial structure to the macroscopic measurements. This material is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science (SC), Office of Basic Energy
What Determines CO₂ Solubility in Ionic Liquids? A Molecular Simulation Study.
Klähn, Marco; Seduraman, Abirami
2015-08-06
Molecular dynamics (MD) simulations of 10 different pure and CO2-saturated ionic liquids are performed to identify the factors that determine CO2 solubility. Imidazolium-based cations with varying alkyl chain length and functionalization are paired with anions of different hydrophobicity and size. Simulations are carried out with an empirical force field based on liquid-phase charges. The partial molar volume of CO2 in ionic liquids (ILs) varies from 30 to 40 cm(3)/mol. This indicates that slight ion displacements are necessary to enable CO2 insertions. However, the absorption of CO2 does not affect the overall organization of ions in the ILs as demonstrated by almost equal cation-anion radial distribution functions of pure ILs and ILs saturated with CO2. The solubility of CO2 in ILs is not influenced by direct CO2-ion interactions. Instead, a strong correlation between the ratio of unoccupied space in pure ILs and their ability to absorb CO2 is found. This preformed unoccupied space is regularly dispersed throughout the ILs and needs to be expanded by slight ion displacements to accommodate CO2. The amount of preformed unoccupied space is a good indicator for ion cohesion in ILs. Weak electrostatic cation-anion interaction densities in ILs, i.e., weak ion cohesion, leads to larger average distances between ions and hence to more unoccupied space. Weak ion cohesion facilitates ion displacement to enable an expansion of empty space to accommodate CO2. Moreover, it is demonstrated that the strength of ion cohesion is primarily determined by the ion density, which in turn is given by the ion sizes. Ion cohesion is influenced additionally to a smaller extent by local electrostatic interactions among ion moieties between which CO2 is inserted and which do not depend on the ion density. Overall, the factors that determine the solubility of CO2 in ILs are identified consistently across a large variety of constituting ions through MD simulations.
Fakhraee, Mostafa; Gholami, Mohammad Reza
2016-04-14
The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.
High-capacity NO2 denuder systems operated at various temperatures (298-473 K).
Wolf, Jan-Christoph; Niessner, Reinhard
2012-12-01
In this study, we investigated several coatings for high-temperature, high-capacity, and high-efficiency denuder-based NO(2) removal, with the scope to face the harsh conditions and requirements of automotive exhaust gas sampling. As first coating, we propose a potassium iodide (KI)/polyethylene glycol coating with a high removal efficiency (ε > 98%) for about 2 h and 50 ppm NO(2) at room temperature (298 K). At elevated temperatures (423 K), the initial capacity (100 ppmh) is decreased to 15 ppmh. Furthermore, this is the first proposal of the ionic liquid methyl-butyl-imidazolium iodide ([BMIm(+)][I(-)]) as denuder coating material. At room temperature, this ionic liquid exhibits far greater capacity (300 ppmh) and NO(2) removal efficiency (ε > 99.9%) than KI. Nevertheless, KI exhibits a slightly (~10%) higher capacity at elevated temperatures than [BMIm(+)][I(-)]. Both coatings presented are suitable for applications requiring selective denuding of NO(2) at temperatures up to 423 K.
Anodic behavior of uranium in AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid
NASA Astrophysics Data System (ADS)
Jiang, Yidong; Luo, Lizhu; Wang, Shaofei; Bin, Ren; Zhang, Guikai; Wang, Xiaolin
2018-01-01
The oxidation state of metals unambiguously affects its anodic behavior in ionic liquid. We systematically investigated the anodic behavior of uranium with different surface oxidation states by electrochemical measurements, spectroscopic methods and surface analysis techniques. In the anodic process, metal uranium can be oxidized to U3+. The corresponding products accumulated on the metal/ILs interface will form a viscous layer. The anodic behavior of uranium is also strongly dependent upon the surface oxide states including thickness and homogeneity of the oxide film. With an increase in the thickness of oxide film, it will be breached at potentials in excess of a critical value. A uniform oxide on uranium surface can be breached evenly, and then the underlying metal starts to dissolve forming a viscous layer which can facilitate uniformly stripping of oxide, thus giving an oxide-free surface. Otherwise, a nonuniform oxide can result in a severe pitted surface with residue oxygen.
Hassan Hassan Abdellatif, Faten; Babin, Jérôme; Arnal-Herault, Carole; David, Laurent; Jonquieres, Anne
2018-09-15
Membranes made from cellulose acetate grafted with imidazolium or ammonium ionic liquids (ILs) containing different anions were considered for ethyl tert-butyl ether biofuel purification by pervaporation. The new cellulosic materials were obtained after bromide (Br - ) exchange by different anions (Tf 2 N - , BF 4 - , AcO - ). IL structure-membrane property relationships revealed that the membrane properties were strongly improved by varying the anion structure, molecular size and hydrogen bonding acceptor ability β in the Kamlet-Taft polarity scale. The grafted ammonium IL with AcO - anion combined the highest parameter β with big cation/anion sizes and finally led to the best membrane properties with a normalized pervaporation flux of 0.41 kg/h m 2 (almost 20 times that of virgin cellulose acetate) for a reference thickness of 5 μm and a permeate ethanol content of 100%. Such properties thus corresponded to an outstanding separation factor at 50 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.
Santos, Cherry S; Baldelli, Steven
2009-01-29
The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.
Method of making ionic liquid mediated sol-gel sorbents
Malik, Abdul; Shearrow, Anne M.
2017-01-31
Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.
A sealed optical cell for the study of lithium-electrode|electrolyte interfaces
NASA Astrophysics Data System (ADS)
Howlett, P. C.; MacFarlane, D. R.; Hollenkamp, A. F.
A sealed, symmetrical, lithium optical cell, which enables optical images of lithium surface deposits and in situ Raman spectra to be obtained simply and conveniently during charge-discharge cycling of lithium metal electrodes, has been designed and tested. A conventional aprotic liquid, 1 M lithium hexafluorophosphate in propylene carbonate, and an experimental ionic liquid, 20 mol% lithium bis(trifluoromethanesulfonyl)amide in 1-ethyl 3-methyl imidazolium bis(trifluoromethanesulfonyl)amide, are investigated as electrolyte solutions. Images obtained from the cell with the former electrolyte solution demonstrate the problems associated with cycling lithium metal electrodes. Images obtained with the latter electrolyte solution provide clear evidence that continued investigation of ionic liquids for use with lithium metal electrodes is warranted. Operation of the cell with the conventional electrolyte yields Raman spectra of good quality. The spectra display vibrational modes which arise from the electrolyte, as well as several additional modes which are associated with the deposits formed during cycling.
Tailoring the properties of acetate-based ionic liquids using the tricyanomethanide anion.
Lepre, L F; Szala-Bilnik, J; Padua, A A H; Traïkia, M; Ando, R A; Costa Gomes, M F
2016-08-17
The equilibrium and transport properties of mixtures of two ionic liquids - [C4C1Im][OAc] and [C4C1Im][C(CN)3] - were determined and interpreted at the molecular level using vibration spectroscopy, NMR and molecular dynamics simulation. The non-ideality of the mixtures [C4C1Im][OAc](1-x)[C(CN)3]x was characterized by V(E) = +0.28 cm(3) mol(-1) (293 K, x = 0.65) and H(E) = -2.2 kJ mol(-1) for x = 0.5. These values could be explained by a rearrangement of the hydrogen-bond network of the mixture that favours the interaction of the acetate anion with the imidazolium cation at position C2. The dynamic properties of the mixture are also dramatically influenced by the composition with a decrease of the viscosity and an increase of self-diffusion coefficients of the ions when the amount of tricyanomethanide anion increases in the mixture.
Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua
2016-11-01
Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Dong-Won; Sivakkumar, S. R.; MacFarlane, Douglas R.; Forsyth, Maria; Sun, Yang-Kook
A poly(3-methylthiophene) (PMT)/multi-walled carbon nanotube (CNT) composite is synthesized by in situ chemical polymerization. The PMT/CNT composite is used as an active cathode material in lithium metal polymer cells assembled with ionic liquid (IL) electrolytes. The IL electrolyte consists of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF 4) and LiBF 4. A small amount of vinylene carbonate is added to the IL electrolyte to prevent the reductive decomposition of the imidazolium cation in EMIBF 4. A porous poly(vinylidene fluoride- co-hexafluoropropylene) (P(VdF- co-HFP)) film is used as a polymer membrane for assembling the cells. Electrochemical properties of the PMT/CNT composite electrode in the IL electrolyte are evaluated and the effect of vinylene carbonate on the cycling performance of the lithium metal polymer cells is investigated. The cells assembled with a non-flammable IL electrolyte and a PMT/CNT composite cathode are promising candidates for high-voltage-power sources with enhanced safety.
An experimental and theoretical study of reaction mechanisms between nitriles and hydroxylamine.
Vörös, Attila; Mucsi, Zoltán; Baán, Zoltán; Timári, Géza; Hermecz, István; Mizsey, Péter; Finta, Zoltán
2014-10-28
The industrially relevant reaction between nitriles and hydroxylamine yielding amidoximes was studied in different molecular solvents and in ionic liquids. In industry, this procedure is carried out on the ton scale in alcohol solutions and the above transformation produces a significant amount of unexpected amide by-product, depending on the nature of the nitrile, which can cause further analytical and purification issues. Although there were earlier attempts to propose mechanisms for this transformation, the real reaction pathway is still under discussion. A new detailed reaction mechanistic explanation, based on theoretical and experimental proof, is given to augment the former mechanisms, which allowed us to find a more efficient, side-product free procedure. Interpreting the theoretical results obtained, it was shown that the application of specific imidazolium, phosphonium and quaternary ammonium based ionic liquids could decrease simultaneously the reaction time while eliminating the amide side-product, leading to the targeted product selectively. This robust and economic procedure now affords a fast, selective amide free synthesis of amidoximes.
NASA Astrophysics Data System (ADS)
Shadrack Jabes, B.; Krekeler, C.; Klein, R.; Delle Site, L.
2018-05-01
We employ the Grand Canonical Adaptive Resolution Simulation (GC-AdResS) molecular dynamics technique to test the spatial locality of the 1-ethyl 3-methyl imidazolium chloride liquid. In GC-AdResS, atomistic details are kept only in an open sub-region of the system while the environment is treated at coarse-grained level; thus, if spatial quantities calculated in such a sub-region agree with the equivalent quantities calculated in a full atomistic simulation, then the atomistic degrees of freedom outside the sub-region play a negligible role. The size of the sub-region fixes the degree of spatial locality of a certain quantity. We show that even for sub-regions whose radius corresponds to the size of a few molecules, spatial properties are reasonably reproduced thus suggesting a higher degree of spatial locality, a hypothesis put forward also by other researchers and that seems to play an important role for the characterization of fundamental properties of a large class of ionic liquids.
Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D
2008-02-28
This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].
Task-specific ionic liquid as a new green inhibitor of mild steel corrosion
NASA Astrophysics Data System (ADS)
Kowsari, E.; Payami, M.; Amini, R.; Ramezanzadeh, B.; Javanbakht, M.
2014-01-01
The corrosion inhibition effects of an imidazolium-based task specific ionic liquid (TSIL) were investigated on a low carbon steel in 1 M HCl solution. Samples were exposed to 1 M HCl solution without and with different concentrations of TSIL. Weight loss measurements, potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), atomic force microscope (AFM) and contact angle measurements were utilized to investigate the inhibition effects of TSIL. The results obtained from the polarization studies revealed that both the anodic and cathodic branches slopes affected in the presence of TSIL. It was shown that TSIL behaved as a mixed type inhibitor with a dominant effect on the anodic reaction rate depression. It was shown that the increase in polarization resistance and the decrease in corrosion current density were more pronounced using 100 mg/L of TSIL after 2 h immersion time. It was also shown that the adsorption of TSIL followed a Langmuir adsorption isotherm.
Cagliero, Cecilia; Nan, He; Bicchi, Carlo; Anderson, Jared L
2016-08-12
Nine crosslinked polymeric ionic liquid (PIL)-based SPME sorbent coatings were designed and screened in this study for the trace level determination of acrylamide in brewed coffee and coffee powder using gas chromatography-mass spectrometry (GC-MS). The structure of the ionic liquid (IL) monomer was tailored by introducing different functional groups to the cation and the nature of the IL crosslinker was designed by altering both the structure of the cation as well as counteranions. The extraction efficiency of the new PIL coatings towards acrylamide was investigated and compared to a previously reported PIL sorbent coating. All PIL fibers exhibited excellent analytical precision and linearity. The PIL fiber coating consisting of 50% 1,12-di(3-vinylbenzylbenzimidazolium)dodecane dibis[(trifluoromethyl)sulfonyl]imide as IL crosslinker in 1-vinyl-3-(10-hydroxydecyl)imidazolium bis[(trifluoromethyl)sulfonyl]imide IL monomer resulted in a limit of quantitation of 0.5μgL(-1) with in-solution SPME sampling. The hydroxyl moiety appended to the IL cation was observed to significantly increase the sensitivity of the PIL coating toward acrylamide. The quantitation of acrylamide in brewed coffee and coffee powder was performed using the different PIL-based fibers by the method of standard addition after a quenching reaction using ninhydrin to inhibit the formation of interfering acrylamide in the GC inlet, mainly by asparagine thermal degradation. Excellent repeatability with relative standard deviations below 10% were obtained on the real coffee samples and the structure of the coatings appeared intact by scanning electron microscopy after coffee sampling proving the matrix-compatibility of the PIL sorbent coatings. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan
2016-04-01
In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.
NASA Astrophysics Data System (ADS)
Larush, L.; Borgel, V.; Markevich, E.; Haik, O.; Zinigrad, E.; Aurbach, D.; Semrau, G.; Schmidt, M.
We report herein on the possibility of using ionic liquids (ILs) as additives to conventional electrolyte solutions, based on alkyl carbonates and LiPF 6 for attenuating thermal reactions in Li battery systems. As a model, a Li-Li 0.5CoO 2 system was used. The ionic liquids chosen included cations based on derivatives of pyrrolidinium and imidazolium, and the anions bioxalato borate (C 4O 8B -, BOB), (CH 3SO 2) 2N - (TFSI), and PF 3(C 2S 5) 3 - (FAP). The thermal behavior of solutions alone, solutions with Li metal, Li 0.5CoO 2 and Li metal + Li 0.5CoO 2 was studied. It was found that the presence of 10% of ILs, with derivatives of pyrrolidinium cations and FAP or TFSI anions in standard EC-DMC/LiPF 6 solutions, improves considerably the thermal stability of Li 0.5CoO 2 in electrolyte solutions. The onset temperatures of the thermal reactions of Li 0.5CoO 2 with solution species are higher and their heat evolution is considerably lower, when they contain these ionic liquids as additives. This finding opens the door for further studies and optimization of the use of selected ILs as additives that may improve the safety features of Li-ion batteries.
Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids
NASA Astrophysics Data System (ADS)
Seeger, Zoe L.; Kobayashi, Rika; Izgorodina, Ekaterina I.
2018-05-01
The prediction of physicochemical properties of ionic liquids such as conductivity and melting point would substantially aid the targeted design of ionic liquids for specific applications ranging from solvents for extraction of valuable chemicals to biowaste to electrolytes in alternative energy devices. The previously published study connecting the interaction energies of single ion pairs (1 IP) of ionic liquids to their thermodynamic and transport properties has been extended to larger systems consisting of two ion pairs (2 IPs), in which many-body and same-ion interactions are included. Routinely used cations, of the imidazolium and pyrrolidinium families, were selected in the study coupled with chloride, tetrafluoroborate, and dicyanamide. Their two ion pair clusters were subjected to extensive configuration screening to establish most stable structures. Interaction energies of these clusters were calculated at the spin-ratio scaled MP2 (SRS-MP2) level for the correlation interaction energy, and a newly developed scaled Hartree-Fock method for the rest of energetic contributions to interaction energy. A full geometry screening for each cation-anion combination resulted in 192 unique structures, whose stability was assessed using two criteria—widely used interaction energy and total electronic energy. Furthermore, the ratio of interaction energy to its dispersion component was correlated with experimentally observed melting points in 64 energetically favourable structures. These systems were also used to test the correlation of the dispersion contribution to interaction energy with measured conductivity.
NASA Astrophysics Data System (ADS)
Mao, Hui; Song, Jinling; Zhang, Qian; Liu, Daliang; Gong, Naiqi; Li, Ying; Wu, Qiong; Verpoort, Francis; Song, Xi-Ming
2013-05-01
Copolymerization of styrene (St) and 1-vinyl-3-ethylimidazolium bromide (VEIB), novel poly(St-co-VEIB) microspheres were generated. Owing to the presence of imidazolium groups, such microspheres having an average diameter of 125 nm, behave electropositively when dispersed in aqueous solution. Furthermore, due to the presence of imidazolium groups, having a capacity of ion-exchange and weak reducibility on the surface of the PS microspheres, [Fe(CN)6]3- was absorbed on the surface of poly(St-co-VEIB) microspheres, and simultaneously, Fe3+ was reduced to Fe2+. Thus, in situ growth of Prussian blue (PB) nanoparticles could occur on the surface of poly(St-co-VEIB) microspheres without the addition of any other reducing agent. This methodology, utilizing the ion-exchange and weak reducibility properties of the imidazolium groups on the surface of micro-/nanostructures is a novel general method for assembling hierarchical nanostructured materials. Finally, the electrochemical property of the strawberry-like PS/PB composite microspheres was also investigated by applying a glassy carbon electrode. A good repeatability of the cyclic voltammetry responses, having a good linearity and sensitivity, for the electrocatalytic reduction of H2O2 was obtained.
Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji
2016-03-21
Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.
NASA Astrophysics Data System (ADS)
Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji
2016-03-01
Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.
Calabrese, Carla; Liotta, Leonarda F; Carbonell, Esther; Giacalone, Francesco; Gruttadauria, Michelangelo; Aprile, Carmela
2017-03-22
Six new hybrid materials composed of carbon nanohorns (CNHs) and highly cross-linked imidazolium salts were easily synthesized using a one-step procedure based on the radical oligomerization of bis-vinylimidazolium salts (bVImiX) in the presence of pristine CNHs. The hybrid materials were characterized and employed as the sole catalysts for the conversion of carbon dioxide into cyclic carbonate by reaction with epoxides. The solids displayed excellent turnover number and productivity. Moreover, four catalysts were investigated in recycling experiments. Two catalysts containing an octyl linker between the imidazolium units and a bromide or an iodide anion showed no loss in activity after three cycles. The other two catalysts containing a p-xylyl linker and a bromide anion and different CNHs/bVImiX ratios showed an unprecedented increase of activity after recycling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya
2015-10-01
Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.
Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film.
Safavi, Afsaneh; Farjami, Fatemeh
2010-07-01
The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (E(o)(')) of -0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 microM with a detection limit of 0.14 microM at a signal/noise ratio of 3. The apparent Michaelis constant (K(m)(app)) for the electrocatalytic reaction was 22.6 microM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors. 2010 Elsevier Inc. All rights reserved.
Majhi, Paresh Kumar; Schnakenburg, Gregor; Streubel, Rainer
2014-11-28
Synthesis of the first P(V)-bridged bis(NHC) ligand 7 was achieved via deprotonation of P(V)-functionalized bis(imidazolium) salt 6, which was obtained via oxidative desulfurization of bis(imidazole-2-thion-4-yl)phosphane 2. Bis(imidazolium) salt 6 was also employed to synthesize the corresponding silver complex 8. All new products were firmly established by spectroscopic and spectrometric methods as well as elemental analysis and, in addition, X-ray crystal structure analysis in the case of 3.
Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan
2016-04-14
Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.
Martins, Mónia A R; Neves, Catarina M S S; Kurnia, Kiki A; Carvalho, Pedro J; Rocha, Marisa A A; Santos, Luís M N B F; Pinho, Simão P; Freire, Mara G
2016-01-15
In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf 2 ] (with n = 1-8 and 10) and asymmetric [C n C 1 im][NTf 2 ] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.
Ramírez-González, Pedro E; Ren, Gan; Saielli, Giacomo; Wang, Yanting
2016-06-30
In this work, we have performed molecular dynamics (MD) simulations to compare the structural and dynamical properties of three ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium tetrafluorborate ([EMI(+)][BF4(-)]), 1,1'-dimethyl-4,4'-bipyridinium bis(tetrafluorborate) ([VIO(2+)][BF4(-)]2), and 1,1'-dimethyl-4,4'-bipyridinium bis(trifluoromethylsulfonyl)imide (bistriflimide in short) ([VIO(2+)][Tf2N(-)]2), aiming to discover the influence of ion rigidity on the physical properties of ILs. [VIO(2+)] is more rigid than [EMI(+)], and [BF4(-)] is more rigid than [Tf2N(-)]. [VIO(2+)][BF4(-)]2 has an anion distribution different from the other two by the higher and sharper peaks in the cation-anion radial distribution functions, reflecting a close-packed local structure of anions around cations. [VIO(2+)][BF4(-)]2 and [VIO(2+)][Tf2N(-)]2 have similar dynamics much slower than [EMI(+)][BF4(-)], and [VIO(2+)][Tf2N(-)]2 shows a more isotropic molecular distribution than [VIO(2+)][BF4(-)]2 and [EMI(+)][BF4(-)]. Additionally, we have simulated two modified viologen-based ILs to reinforce our interpretations. We conclude from the above simulation results that the rigidity of anions influences the alignment of cations and that the rigidity of cations shows a large obstacle to their rotational capacity. Moreover, we have observed a slower diffusion of [VIO(2+)][BF4(-)]2 due to the electrostatic correlations, which stabilizes the ion-cage effect.
Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa
2013-04-12
Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Schrekker, Clarissa M L; Sokolovicz, Yuri C A; Raucci, Maria G; Selukar, Balaji S; Klitzke, Joice S; Lopes, William; Leal, Claudio A M; de Souza, Igor O P; Galland, Griselda B; Dos Santos, João Henrique Z; Mauler, Raquel S; Kol, Moshe; Dagorne, Samuel; Ambrosio, Luigi; Teixeira, Mário L; Morais, Jonder; Landers, Richard; Fuentefria, Alexandre M; Schrekker, Henri S
2016-08-24
Candida species have great ability to colonize and form biofilms on medical devices, causing infections in human hosts. In this study, poly(l-lactide) films with different imidazolium salt (1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS)) contents were prepared, using the solvent casting process. Poly(l-lactide)-imidazolium salt films were obtained with different surface morphologies (spherical and directional), and the presence of the imidazolium salt in the surface was confirmed. These films with different concentrations of the imidazolium salts C16MImCl and C16MImMeS presented antibiofilm activity against isolates of Candida tropicalis, Candida parapsilosis, and Candida albicans. The minor antibiofilm concentration assay enabled one to determine that an increasing imidazolium salt content promoted, in general, an increase in the inhibition percentage of biofilm formation. Scanning electron microscopy micrographs confirmed the effective prevention of biofilm formation on the imidazolium salt containing biomaterials. Lower concentrations of the imidazolium salts showed no cytotoxicity, and the poly(l-lactide)-imidazolium salt films presented good cell adhesion and proliferation percentages with human mesenchymal stem cells. Furthermore, no acute microscopic lesions were identified in the histopathological evaluation after contact between the films and pig ear skin. In combination with the good morphological, physicochemical, and mechanical properties, these poly(l-lactide)-based materials with imidazolium salt additives can be considered as promising biomaterials for use in the manufacturing of medical devices.
NASA Astrophysics Data System (ADS)
Kohanoff, Jorge; Pinilla, Carlos; Youngs, Tristan G. A.; Artacho, Emilio; Soler, José M.
2011-10-01
The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004), 10.1103/PhysRevLett.92.246401], as efficiently implemented in the SIESTA code [G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009), 10.1103/PhysRevLett.103.096102]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by ≈7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Pópolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007), 10.1063/1.2715571]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010), 10.1088/0953-8984/22/7/074203]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields.
Gupta, Krishna M.; Zhang, Kang; Jiang, Jianwen
2015-01-01
A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery. PMID:26242874
NASA Astrophysics Data System (ADS)
Gupta, Krishna M.; Zhang, Kang; Jiang, Jianwen
2015-08-01
A molecular simulation study is reported on glucose recovery from aqueous solutions by adsorption in metal-organic framework MIL-101. The F atom of MIL-101 is identified to be the most favorable adsorption site. Among three MIL-101-X (X = H, NH2 or CH3), the parent MIL-101 exhibits the highest adsorption capacity and recovery efficacy. Upon functionalization by -NH2 or -CH3 group, the steric hindrance in MIL-101 increases; consequently, the interactions between glucose and framework become less attractive, thus reducing the capacity and mobility of glucose. The presence of ionic liquid, 1-ethyl-3-methyl-imidazolium acetate, as an impurity reduces the strength of hydrogen-bonding between glucose and MIL-101, and leads to lower capacity and mobility. Upon adding anti-solvent (ethanol or acetone), a similar adverse effect is observed. The simulation study provides useful structural and dynamic properties of glucose in MIL-101, and it suggests that MIL-101 might be a potential candidate for glucose recovery.
Bucky gel actuators optimization towards haptic applications
NASA Astrophysics Data System (ADS)
Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide
2014-03-01
An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).
Vinaches, Paloma; Bernardo-Gusmão, Katia; Pergher, Sibele B C
2017-08-06
Zeolite synthesis is a wide area of study with increasing popularity. Several general reviews have already been published, but they did not summarize the study of imidazolium species in zeolite synthesis. Imidazolium derivatives are promising compounds in the search for new zeolites and can be used to help understand the structure-directing role. Nearly 50 different imidazolium cations have already been used, resulting in a variety of zeolitic types, but there are still many derivatives to be studied. In this context, the purpose of this short review is to help researchers starting in this area by summarizing the most important concepts related to imidazolium-based zeolite studies and by presenting a table of recent imidazolium derivatives that have been recently studied to facilitate filling in the knowledge gaps.
Shirota, Hideaki; Kakinuma, Shohei; Itoyama, Yu; Umecky, Tatsuya; Takamuku, Toshiyuki
2016-01-28
The microscopic aspects of the two series of mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4])-benzene and 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)amide ([MOIm][NTf2])-benzene were investigated by several spectroscopic techniques such as attenuated total reflectance IR (ATR-IR), NMR, and fs-Raman-induced Kerr effect spectroscopy (fs-RIKES). All three different spectroscopic results indicate that the anions more strongly interact with the cations in the [MOIm][BF4]-benzene mixtures than in the [MOIm][NTf2]-benzene mixtures. This also explains the different miscibility features between the two mixture systems well. The xC6H6 dependences of the chemical shifts and the C-H out-of-plane bending mode of benzene are similar: the changes are large in the high benzene concentration (xC6H6 > ∼ 0.6) compared to the low benzene concentration. In contrast, the linear xC6H6 dependences of the first moments of the low-frequency spectra less than 200 cm(-1) were observed in both the [MOIm][BF4]-benzene and [MOIm][NTf2]-benzene systems. The difference in the xC6H6 dependent features between the chemical shifts and intramolecular vibrational mode and the intermolecular/interionic vibrational bands might come from the different probing space scales. The traces of the parallel aromatic ring structure and the T-shape structure were found in the ATR-IR and NMR experiments, but fs-RIKES did not observe a clear trace of the local structure. This might imply that the interactions between the imidazolium and benzene rings are not strong enough to librate the imidazolium and benzene rings together. The bulk properties, such as miscibility, density, viscosity, and surface tension, of the two ionic liquid-benzene mixture series were also compared to the microscopic aspects.
Lu, Lu; Huang, Xirong; Qu, Yinbo
2011-10-01
The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Dongrui
Corrosion inhibitors as effective anti-corrosion applications were widely studied and drawn much attention in both academe and industrial area. In this work, a systematic work, including inhibitors selection, anti-corrosion property and characterization, influence on scale formation, testing system design and so on, were reported. The corrosion inhibition performance of four imidazolium ionic liquids in carbon dioxide saturated NaCl solution was investigated by using electrochemical and surface analysis technologies. The four compounds are 1-ethyl-3-methylimidazolium chloride (a), 1-butyl-3-methylimidazolium chloride (b), 1-hexyl-3-methylimidazolium chloride (c), 1-decyl-3-methylimidazolium chloride (d). Under the testing conditions, compound d showed the highest inhibition efficiency and selected as the main object of further study. As a selected representative formula, 1-decyl-3-methylimidazolium chloride was studied in detail about its corrosion inhibition performance on mild steel in carbon dioxide saturated NaCl brine at pH 3.8 and 6.8. Electrochemical and surface analysis techniques were used to characterize the specimen corrosion process during the immersion in the blank and inhibiting solutions. The precorrosion of specimen surface showed significant and different influences on the anti-corrosion property of DMICL at pH 3.8 and 6.8. The corrosion inhibition efficiency (IE) was calculated based on parameters obtained from electrochemical techniques; the achieved IE was higher than 98% at the 25th hour for the steel with a well-polished surface at pH 3.8. The fitting parameters obtained from electrochemical data helped to account for the interfacial changes. As proved in previous research, 1-decyl-3-methylimidazolium chloride could be used as good corrosion inhibitors under certain conditions. However, under other conditions, such chemicals, as well as other species in oil transporting system, could be a factor influencing the evolution of protective surface inorganic layer. In this part, the FeCO3 layer evolution process for API 5L X52 carbon steel in CO2-saturated NaCl brine in the absence and in the presence of 1-decyl-3-methylimidazolium chloride ionic liquid was characterized using electrochemical techniques. Two models were developed to account for the interfacial evolution: the first model considered the balance of positive and negative charges at the interface of the metal and electrolyte in blank solution, while the second one considered the layer coverage and evolution with the imidazolium compound. The corrosion testing system is scientifically and practically critical for corrosion testing and simulations. In this part, a flowing fluid loop cell (FFLC) system was constructed to simulate the corrosion environment in the pipeline. Main content of this work include the construction of the flowing fluid cell loop (FFLC) system, as well as FFLC-based corrosion/anticorrosion tests under simulated acid conditions. Electrochemical Impedance Spectroscopy (EIS) and Linear Polarization Resistance (LPR) were used as prime techniques to quantify and characterize the corrosion behaviors of carbon steel specimen. The Eff vs. Reynolds number (Re) plots for the specimen located in the chamber and in the loop branch were provided.
NASA Astrophysics Data System (ADS)
Throckmorton, James A.
This dissertation explores the application of a room temperature ionic liquid (RTIL) to problems in the chemistry, processing, and modification of thermosetting polymers. In particular, the solution properties and reaction chemistry of 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-DCN) are applied to problems of nanoparticle dispersion and processing, graphite exfoliation, cyanate ester (CE) cure, and the environmental degradation of CEs. Nanoparticle Dispersion: Nanocomposite processing can be simplified by using the same compound as both a nanoparticle solvent and an initiator for polymerization. This dual-function molecule can be designed both for solvent potential and reaction chemistry. EMIM-DCN, previously shown by our lab to act as an epoxy initiator, is used in the synthesis of silica and acid expanded graphite composites. These composites are then characterized for particle dispersion and physical properties. Individual particle dispersion of silica nanocomposites is shown, and silica nanocomposites at low loading show individual particle dispersion and improved modulus and fracture toughness. GNP nanocomposites show a 70% increase in modulus along with a 10-order of magnitude increase in electrical conductivity at 6.5 vol%, and an electrical percolation threshold of 1.7 vol%. Direct Graphite Exfoliation By Laminar Shear: This work presents a laminar-shear alternative to chemical processing and chaotic flow-fields for the direct exfoliation of graphite and the single-pot preparation of nanocomposites. Additionally, we develop the theory of laminar flow through a 3-roll mill, and apply that theory to the latest developments in the theory of graphite interlayer shear. The resulting nanocomposite shows low electrical percolation (0.5 vol%) and low thickness (1-3 layer) graphite/graphene flakes. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. Cyanate Ester Cure: Dicyanamide-containing ionic liquids decrease the cure temperature of bi- and tri-functional CEs. During the cure reaction, the dicyanamide anion completely reacts and is incorporated into the triazine network. The cure effect was found in many dicyanamide-containing ionic liquids with diverse cations. This invention creates a novel, ionic thermoset polymer. The dicyanamide initiator provides an alternative to metal and hydroxyl catalysts (which have been shown to accelerate degradation and possess human and environmental toxicity). Additionally, the ionic character of the new polymer, rare among thermosets, lends itself to future research and novel applications. RTIL initiation also paves the way to new CE technologies, including RTIL-CE nanocomposites, prepared by graphite exfoliation and nanocomposite dispersion techniques developed herin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nhalil, Hariharan; Whiteside, Vincent R.; Sellers, Ian R.
Here, we report synthesis, crystal and electronic structures, and optical properties of two new Hg-based zero-dimensional hybrid organic-inorganic halides (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium). (HIm) 2Hg 3Cl 8 crystallizes in the triclinic P-1 space group with a pseudo-layered structure made of organic imidazolium cation layers and anionic inorganic layers containing [Hg 2Cl 6] 2- units and linear [HgCl 2] 0 molecules. (HIm)HgI 3 crystallizes in the monoclinic P2 1/c space group featuring anionic [HgI 3]- units that are surrounded by imidazolium cations. Based on density functional theory calculations, (HIm) 2Hg 3Cl 8 has an indirect band gap, whereas (HIm)HgImore » 3 has a direct band gap with the measured onsets of optical absorption at 3.43 and 2.63 eV, respectively. (HIm) 2Hg 3Cl 8 and (HIm)HgI 3 are broadband light emitters with broad photoluminescence peaks centered at 548 nm (2.26 eV) and 582 nm (2.13 eV), respectively. In conclusion, following the crystal and electronic structure considerations, the PL peaks are assigned to self-trapped excitons.« less
Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems
Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Pauly, Jérôme; Coutinho, João A. P.
2010-01-01
Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS. PMID:20480041
NASA Astrophysics Data System (ADS)
Saravanan, A. V. Sai; Abishek, B.; Anantharaj, R.
2018-04-01
The fundamental natures of the molecular level interaction and charge transfer between specific radioactive elements and ionic liquids of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[NTf2]-), 1-Butyl-3-methylimidazolium ethylsulfate ([BMIM]+[ES]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were investigated utilising HF theory and B3LYP hybrid DFT. The ambiguity in reaction mechanism of the interacting species dictates to employ Effective Core Potential (ECP) basis sets such as UGBS, SDD, and SDDAll to account for the relativistic effects of deep core electrons in the system involving potential, heavy and hazardous radioactive elements present in nuclear waste. The SCF energy convergence of each system validates the characterisation of the molecular orbitals as a linear combination of atomic orbitals utilising fixed MO coefficients and the optimized geometry of each system is visualised based on which Mulliken partial charge analysis is carried out to account for the polarising behaviour of the radioactive element and charge transfer between the IL phase by comparison with the bare IL species.
Xu, Junhua; Zhao, Shen; Ji, Yuanchun; Song, Yu-Fei
2013-01-07
Amphiphilic lanthanide-containing polyoxometalates (POMs) were prepared by surfactant encapsulation. Investigation of these lanthanide-containing POMs in oxidative desulfurization (ODS) showed that highly efficient deep desulfurization could be achieved in only 14 min with 100% conversion of dibenzothiophene under mild conditions by using (DDA)(9)LaW(10)/[omim]PF(6) (DDA=dimethyldioctadecylammonium, omim=1-octyl-3-methyl-imidazolium) in the presence of H(2) O(2) . Furthermore, deep desulfurization proceeds smoothly in model oil with an S content as low as 50 ppm. A scaled-up experiment in which the volume of model oil was increased from 5 to 1000 mL with S content of 1000 ppm indicated that about 99% sulfur removal can be achieved in 40 mins in an ionic-liquid emulsion system. To the best of our knowledge, the (DDA)(9)LaW(10)/[omim]PF(6) catalyst system with H(2)O(2) as oxidant is one of the most efficient desulfurization systems reported so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kim, Sung-Soo; Kang, Donghwi; Sohn, Byeong-Hyeok
2017-06-01
We report the synthesis of arrayed nanorings with tunable physical dimensions from thin films of polystyrene-block-poly(4-vinylpyridine) (PS-P4VP) micelles. For accurate control of the inner and outer diameters of the nanorings, we added imidazolium-based ionic liquids (ILs) into the micellar solution, which were eventually incorporated into the micellar cores. We observed the structural changes of the micellar cores coated on a substrate due to the presence of ILs. The spin-coated micellar cores were treated with an acidic precursor solution and generated toroid nanostructures, of which size depended on the amount of IL loaded into the micelles. We then treated the transformed micellar films with oxygen plasma to produce arrays of various metal and oxide nanorings on a substrate. The spacings and diameters of nanorings were governed by the molecular weight of the PS-P4VP and the amount of IL used. We also demonstrated that arrayed Pt nanorings enabled the fabrication of reduced graphene oxide anti-nanoring arrays via a catalytic tailoring process.
NASA Astrophysics Data System (ADS)
Romanos, G. E.; Stefanopoulos, K. L.; Vangeli, O. C.; Mergia, K.; Beltsios, K. G.; Kanellopoulos, N. K.; Lairez, D.
2012-02-01
In the present study, [bmim][PF6] ionic liquid (IL) was introduced into the pores of two ordered mesoporous silicas (MCM-41 and SBA-15) having different pore sizes by means of two different processes: a) with physical imbibition from a methanol solution under high vacuum and b) by chemically immobilising the IL with silanisation of the pore surface followed by reaction with butyl-methyl imidazolium chloride and anion exchange with PF6, the process termed as the "grafting to" method. Both the extent of IL entrapment and the structural properties of the IL phase under confinement were investigated by SANS, contrast-matching SANS, XRD and nitrogen adsorption measurements. The results show that the pores of chemically prepared samples are not totally filled by IL and also suggest for ordering of the silylated IL phase. On the other hand, the physically prepared samples are almost or totally filled with IL whereas no evidence for ordering of the confined IL phase was observed.
Ionic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies.
Kuzmina, O; Symianakis, E; Godfrey, D; Albrecht, T; Welton, T
2017-08-16
We studied leaching of Cu and Fe from naturally occurring chalcopyrite ore using aqueous solutions of ionic liquids (ILs) based on imidazolium and ethylammonium cations and hydrogensulfate, nitrate, acetate or dicyanamide anions. Liquid, solid and gas phases of the leaching systems were characterised. We have shown that nonoxidative leaching is greatly dependant not only on temperature and pH, but on the anion species of the IL. Solutions of 1-butylimidazolium hydrogen sulfate exhibited the best leaching performance among hydrogen sulphate ILs. We have suggested that the formation of an oxide layer in some ILs may be responsible for a reduced leaching ability. The analysis of the gas phase showed the production of CO 2 and CS 2 in all leached samples. Our results suggested that the CS 2 produced upon leaching could be responsible for decreasing the sulfur, but not oxide, layer on the surface of chalcopyrite samples and therefore more efficient leaching. This is the first study, to our knowledge, to provide a systematic comparison of the leaching performance of ILs composed of different anions and cations and without added oxidants.
Zheng, J P; Goonetilleke, P C; Pettit, C M; Roy, D
2010-05-15
Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. Certain theoretical and experimental aspects of CV and EIS necessary for quantitative evaluation of the capacitance characteristics of such systems are explored. The experiments use 1-ethyl-3-methyl imidazolium ethylsulfate as a model IL electrolyte in combination with a porous electrode of carbon nanotubes (CNTs). The results are compared with those obtained with a nonporous glassy carbon (GC) electrode. The time is constant, and hence the power delivery characteristics of the experimental cell are affected by the electrolyte resistance and residual faradaic reactions of the IL, as well as by the spatially inhomogeneous electrode surfaces. It is shown that adequate characterization of these IL-electrode systems can be achieved by combining CV with EIS. A phenomenological framework for utilizing this combination is discussed.
Yang, Hongpeng; Chen, Li; Zhou, Cunshan; Yu, Xiaojie; Yagoub, Abu ElGasim A; Ma, Haile
2018-04-15
Polyethylene glycol (PEG) is widely used in the polymer-salt systems. However, the low polarity of the PEG-rich phase limits the application of aqueous biphasic systems (ABS). To overcome this disadvantage, a small quantity of ionic liquid (IL) was used as an adjuvant in ABS to enlarge the polarity range. Therefore, an innovative study involving addition of 4wt% imidazolium-based ILs to the PEG 600/NaH 2 PO 4 ABS, aiming at controlling the phase behavior and extraction ability, was carried out. The phase diagrams, the tie-lines and the partitioning behavior of l-phenylalanine and ILs were studied in these systems. The results reveal that l-phenylalanine preferentially partitions for the PEG-rich phase. The addition of 4wt% IL to ABS controls the partitioning behavior of l-phenylalanine, which depends on the type of IL employed. Moreover, it is verified that increasing temperature lead to a decrease in the partition coefficient of l-phenylalanine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.
Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T
2013-08-06
The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.
Bahrani, Samaneh; Raeissi, Sona; Sarshar, Mohammad
2015-06-01
In this study, an imidazolium-based ionic liquid (IL), 1,3-dimethylimidazolium dimethyl phosphate ([Mmim][DMP]), was applied for pretreating sugarcane bagasse to produce bioethanol. The main goal of this study was to investigate the feasibility of bagasse pretreatment with this IL, and to verify the effect of different operational parameters on the pretreatment process. Results indicated that temperature and duration of IL-pretreatment have optimum values. Within the range investigated, a maximum fermentable sugar conversion of 70.38% was achieved with this IL at 120°C and 120min. The corresponding value was 28.65% for the untreated biomass. The main cause for the observed enhancement in enzymatic hydrolysis was the reduction of cellulose crystallinity in the IL-pretreated biomass, as compared to the untreated sample, because it resulted in higher accessibility of the enzymes to the biomass after pretreatment. Moreover, the results indicated that aqueous [Mmim][DMP] mixtures are not as effective for pretreatment as the pure IL. Copyright © 2015 Elsevier Ltd. All rights reserved.
Initial stages of aggregation in aqueous solutions of ionic liquids: molecular dynamics studies.
Bhargava, B L; Klein, Michael L
2009-07-16
Structures formed by 1-alkyl-3-methylimidazolium bromide aqueous solutions with decyl, dodecyl, tetradecyl, and hexadecyl chains have been studied using molecular dynamics (MD) simulations. Spontaneous self-assembly of the amphiphilic cations to form quasi-spherical polydisperse aggregates has been observed in all of the systems, with the size and nature of the aggregates varying with chain length. In all systems, the cation alkyl tails are buried deep inside the aggregates with the polar imidazolium group exposed to exploit the favorable interactions with water. Aggregation numbers steadily increase with the chain length. The hexadecyl aggregates have the most ordered internal structure of the systems studied, and the alkyl chains in these cations show the least number of gauche defects.
Wang, Wenpin; Xu, Min; Wang, Shubo; Xie, Xiaofeng; Lv, Yafei; Ramani, Vijay K
2014-06-02
A series of cross-linked fluorinated poly (aryl ether oxadiazole) membranes (FPAEOM) derivatized with imidazolium groups were prepared. Poly (N-vinylimidazole) (PVI) was used as the bifunctional cross-linking agent to: a) lower vanadium permeability, b) enhance dimensional stability, and c) concomitantly provide added ion exchange capacity in the resultant anion exchange membranes. At a molar ratio of PVI to FPAEOM of 1.5, the resultant membrane (FPAEOM-1.5 PVI) had an ion exchange capacity of 2.2 meq g-1, a vanadium permeability of 6.8×10-7 cm2 min-1, a water uptake of 68 wt.%, and an ionic conductivity of 22.0 mS cm-1, all at 25°C. Single cells prepared with the FPAEOM-1.5 PVI membrane exhibited a higher coulombic efficiency (> 92%) and energy efficiency (> 86%) after 40 test cycles in vanadium redox flow battery. The imidazolium cation showed high chemical stability in highly acidic and oxidizing vanadium solution as opposed to poor stability in alkaline solutions. Based on our DFT studies, this was attributed to the lower HOMO energy (-7.265 eV) of the HSO4- ion (compared to the OH- ion; -5.496 eV) and the larger HOMO-LUMO energy gap (6.394 eV) of dimethylimidazolium bisulfate ([DMIM] [HSO4]) as compared to [DMIM] [OH] (5.387 eV).
Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu; Hisaeda, Yoshio; Song, Xi-Ming
2016-08-01
Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40-1220nM), especially having a lower detection limit (17.3nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of SO3(-) groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilar, Kartik; Rua, Armando; Suarez, Sophia N.
A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less
Pilar, Kartik; Rua, Armando; Suarez, Sophia N.; ...
2017-05-11
A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less
Wang, Li; Chen, Siyuan; Ding, Yiming; Zhu, Qiang; Zhang, Nijia; Yu, Shuqing
2018-01-01
The present work determines the anticancer activity of bio-mediated synthesized cadmium sulfide nanoparticles using the ionic liquid and bacterial cells (Shewanella oneidensis). Bacterial cells have been exposed to be important resources that hold huge potential as ecofriendly, cost-effective, evading toxic of dangerous chemicals and the alternative of conventional physiochemical synthesis. The Shewanella oneidensis is an important kind of metal reducing bacterium, known as its special anaerobic respiratory and sulfate reducing capacity. The crystalline nature, phase purity and surface morphology of biosynthesized cadmium sulfide nanoparticles were analyzed by Fourier transform infrared spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive spectroscopy and Transmission electron microscopy. The use of imidazolium based ionic liquids as soft templating agent for controlling self-assembly and crystal growth direction of metal sulfide nanoparticles has also advanced as an important method. The microscopic techniques showed that the nanoparticles are designed on the nano form and have an excellent spherical morphology, due to the self-assembled mechanism of ionic liquid assistance. The antitumor efficiency of the cadmium sulfide nanoparticles was investigated against brain cancer cell lines using rat glioma cell lines. The effectively improved nano-crystalline and morphological structure of CdS nanoparticles in the presence of IL exhibit excellent cytotoxicity and dispersion ability on the cell shape is completely spread out showing a nice toxic environment against cancer cells. The cytotoxicity effect of cadmium sulfide nanoparticles was discussed with a diagrammatic representation. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhao, Shuo; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Sheng, Xiaoli; Fang, Jiasheng; Zhang, Mingyu; Yang, Yong
2017-04-01
Here we present a facile method for the preparation of highly dispersive ZnO materials by using ionic liquid 1-methyl-3-[3‧-(trimethoxysilyl) propyl] imidazolium chloride as the template. The influence of ionic liquid concentration and calcined atmosphere on the photoactivity is studied. The samples were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscope (SEM), N2 gas sorption and ultraviolet-visible diffuse reflectance spectroscopy. The results showed that the as-fabricated ZnO materials consisted of individual microrods with self-assembled bowknot-like architecture whose size was about 1 μm. The formation mechanism of the bowknot-like ZnO materials which is based on the self-assembly of ionic liquid is tentatively elucidated. Moreover, the ZnO-2.6N sample exhibited the higher activity for the photodegradation of MB than the photodegradation of MO and RhB. Furthermore, it was found that the ZnO materials calcined under air atmosphere showed the better photocatalytic activities than that of samples calcined under nitrogen atmosphere in the degradation of methylene blue (MB) under UV irradiation. And the special structure, surface area, adsorption capability of dye, the separation rate of photogenerated electron-hole pairs and band gap had effects on the photocatalytic activity of ZnO photocatalysts. O2rad - was the main active species for the photocatalytic degradation of MB. It is valuable to develop this facile route preparing the highly dispersive bowknot-like ZnO materials and the ZnO materials can be beneficial for environmental protection.
Zhang, Cheng; Park, Rodney A; Anderson, Jared L
2016-04-01
Structurally-tuned ionic liquids (ILs) have been previously applied as the second dimension column in comprehensive two-dimensional gas chromatography (GC×GC) and have demonstrated high selectivity in the separation of individual aliphatic hydrocarbons from other aliphatic hydrocarbons. However, the maximum operating temperatures of these stationary phases limit the separation of analytes with high boiling points. In order to address this issue, a series of polymeric ionic liquid (PIL)-based stationary phases were prepared in this study using imidazolium-based IL monomers via in-column free radical polymerization. The IL monomers were functionalized with long alkyl chain substituents to provide the needed selectivity for the separation of aliphatic hydrocarbons. Columns were prepared with different film thicknesses to identify the best performing stationary phase for the separation of kerosene. The bis[(trifluoromethyl)sulfonyl]imide ([NTf2](-))-based PIL stationary phase with larger film thickness (0.28μm) exhibited higher selectivity for aliphatic hydrocarbons and showed a maximum allowable operating temperature of 300°C. PIL-based stationary phases containing varied amount of IL-based crosslinker were prepared to study the effect of the crosslinker on the selectivity and thermal stability of the resulting stationary phase. The optimal resolution of aliphatic hydrocarbons was achieved when 50% (w/w) of crosslinker was incorporated into the PIL-based stationary phase. The resulting stationary phase exhibited good selectivity for different groups of aliphatic hydrocarbons even after being conditioned at 325°C. Finally, the crosslinked PIL-based stationary phase was compared with SUPELCOWAX 10 and DB-17 columns for the separation of aliphatic hydrocarbons in diesel fuel. Better resolution of aliphatic hydrocarbons was obtained when employing the crosslinked PIL-based stationary phase as the second dimension column. Copyright © 2016 Elsevier B.V. All rights reserved.
Schutt, Timothy C; Hegde, Govind A; Bharadwaj, Vivek S; Johns, Adam J; Maupin, C Mark
2017-02-02
Many studies have suggested that the processing of lignocellulosic biomass could provide a renewable feedstock to supplant much of the current demand on petroleum sources. Currently, alkyl imidazolium-based ionic liquids (ILs) have shown considerable promise in the pretreatment, solvation, and hydrolysis of lignocellulosic materials although their high cost and unfavorable viscosity has limited their widespread use. Functionalizing these ILs with an oligo(ethoxy) tail has previously been shown through experiment to decrease the IL's viscosity resulting in enhanced mass transport characteristics, in addition to other favorable traits including decreased inhibition of some enzymes. Additionally, the use of cosolvents to mitigate the cost and unfavorable traits of ILs is an area of growing interest with particular attention on water as the presence of water in biomass processes is inevitable. Through the use of biased and unbiased molecular dynamics (MD) simulations, this study provides a molecular-level perspective of the various solvent-solvent and solvent-solute interactions in binary mixtures of water and 1-methyltriethoxy-3-ethylimidazolium acetate ([Me-(OEt) 3 -Et-IM + ] [OAc - ]) in the presence of model cellulose compounds (i.e., glucose and cellobiose). It is observed that at ∼75% w/w IL and water a transition in the nanostructure of the solvent occurs between water-like and IL-like solvation characteristics. It is shown that H-bonding interactions between the anion and water are a major driving force that significantly impacts the solvent properties of the IL as well as conformational preferences of the cellulosic model compound. In addition, it is found that the oligo(ethoxy) cation tail is responsible for the reduction in the propensity for tail aggregation as compared to alkyl tails of similar length, which, combined with increased ionic shielding, results in increased diffusion and enhanced water-like solvation characteristics.
Kundu, Niloy; Banik, Debasis; Roy, Arpita; Kuchlyan, Jagannath; Sarkar, Nilmoni
2015-10-14
In this article, we have investigated the effect of a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]-BF4), on the aggregation properties of a biological surfactant, sodium deoxycholate (NaDC), in water. In solution, unlike conventional surfactants it shows stepwise aggregation and the effect of the conventional ionic liquid on the aggregation properties is rather interesting. We have observed concentration dependent dual role of the ionic liquid; at their low concentration, the aggregated structure of NaDC reorganizes itself into an elongated rod like structure. However, the aggregated network is disintegrated into small aggregates upon further addition of ionic liquid. TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy) and FLIM (Fluorescence Lifetime Imaging Microscopy) images also confirmed the structural alteration of NaDC upon varying the concentration of the ionic liquid. The proton NMR data indicate that hydrophobic as well as electrostatic interaction is solely responsible for such structural adaptation of NaDC in the presence of an ionic liquid. The host-guest interaction inside the aggregates is monitored using Coumarin-153 (C-153) and the location of C-153 is probed by varying the excitation wavelength from 375 nm to 440 nm and the two binding sites of the aggregates are affected in a different fashion in the presence of ionic liquid. Excitation in the blue region selects the fluorophores which preferably bind to the buried region of the aggregates, whereas 440 nm excitation corresponds to the guest molecules which are exposed to the solvent molecules. The average solvation time of C-153 is increased in the presence of 1.68 wt% [bmim]-BF4 at λexc = 440 nm i.e. the probe molecules relocate themselves to a more restricted region. However, the average solvation time became 2.6 times faster in the presence of 11.2 wt% [bmim]-BF4, which corresponds to a more polar and exposed region. The time resolved anisotropy measurements and polarity determined by pyrene also supported our results in addition to solvation dynamics measurements. In summary, ionic liquids can modulate the host-guest interaction of bile salt aggregates, which can be used as nanocarriers for drug delivery.
Sun, Min; Bu, Yanan; Feng, Juanjuan; Luo, Chuannan
2016-01-01
A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate monomer and 1,6-di-(3-vinylimidazolium) hexane bihexafluorophosphate cross-linking agent. Coupled to high-performance liquid chromatography, the monolith was used as a solid-phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5-400 μg/L for 3-nitrophenol, 2-nitrophenol, and 2,5-dichlorophenol and 2-400 μg/L for 4-chlorophenol, 2-methylphenol, and 2,4,6-trichlorophenol (R(2) = 0.9973-0.9988). The limits of detection were 0.5 μg/L for 3-nitrophenol and 2-nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5-113%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan
2016-11-01
Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.
M13 bacteriophage purification using poly(ionic liquids) as alternative separation matrices.
Jacinto, Maria João; Patinha, David J S; Marrucho, Isabel M; Gonçalves, João; Willson, Richard C; Azevedo, Ana M; Aires-Barros, M Raquel
2018-01-12
M13 is a filamentous, non-lytic bacteriophage that infects Escherichia coli via the F pilus. Currently, phage M13 is widely used in phage display technology and bio-nanotechnology, and is considered a possible antibacterial therapeutic agent, among other applications. Conventional phage purification involves 5-7 operational steps, with high operational costs and significant product loss (approximately 60%). In this work, we propose a scalable purification process for M13 bacteriophage using a novel stationary phase based on a polymeric ionic liquid (PIL) with a positively charged backbone structure. Poly (1-vinyl-3-ethyl imidazolium bis(trifluoromethylsulfonyl) imide) - poly(VEIM-TFSI) predominantly acted as an anion exchanger under binding-elution mode. This revealed to be a rapid and simple method for the recovery of phage M13 with an overall separation yield of over 70% after a single downstream step. To the best of our knowledge, PILs have never been used as separation matrices for biological products and the results obtained, together with the large number of cations and anions available to prepare PILs, illustrate well the large potential of the proposed methodology. Copyright © 2017 Elsevier B.V. All rights reserved.
CNT/conductive polymer composites for low-voltage driven EAP actuators
NASA Astrophysics Data System (ADS)
Sugino, Takushi; Shibata, Yoshiyuki; Kiyohara, Kenji; Asaka, Kinji
2012-04-01
We investigated the effects of additives incorporated into the electrode layer in order to improve the actuation performance of dry-type carbon nanotube (CNT) actuators. Especially, the addition of conductive nano-particles such as polyaniline (PANI) and polypyrrole (PPy) improves actuation performance very much rather than the addition of nonconductive nano-particles such as mesoprous silica (MCM-41 type). In this paper, we studied on the influences of applied voltage, species of ionic liquid (IL), amounts of IL, thickness of actuator to optimize actuation performance. Imidazolium type ionic liquids with three different anions, that is, 1-ethyl-3-methylimidazolium (EMI) as a cation and tetrafluoroborate (BF4), trifluoromethanesulfonate (OTf), and bis(trifluoromethanesulfonyl)imide (TFSI) as anions were chosen in this study. EMIBF4 is the most suitable IL for our CNT actuator including PANI in the electrode layer. We tuned the amount of IL and the thickness of actuator. As a result, the strain was improved to be 2.2% at 0.1 Hz by applying the voltage of 2.5 V. This improved value is almost 2 times larger than our previous results. We also show the potential of improved CNT actuators for a thin and light Braille display.
Cheng, H.-W.; Dienemann, J.-N.; Stock, P.; Merola, C.; Chen, Y.-J.; Valtiner, M.
2016-01-01
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations. PMID:27452615
Cheng, H-W; Dienemann, J-N; Stock, P; Merola, C; Chen, Y-J; Valtiner, M
2016-07-25
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.
Hawkins, Cory A; Rud, Anna; Guthrie, Margaret L; Dietz, Mark L
2015-06-26
The separation of nine N,N'-dialkylimidazolium-based ionic liquids (ILs) by an isocratic hydrophilic interaction high-performance liquid chromatographic method using an unmodified silica column was investigated. The chosen analytical conditions using a 90:10 acetonitrile-ammonium formate buffer mobile phase on a high-purity, unmodified silica column were found to be efficient, robust, and sensitive for the determination of ILs in a variety of solutions. The retention window (k' = 2-11) was narrower than that of previous methods, resulting in a 7-min runtime for the nine IL homologues. The lower limit of quantification of the method, 2-3 μmol L(-1), was significantly lower than those reported previously for HPLC-UV methods. The effects of systematically modifying the IL cation alkyl chain length, column temperature, and mobile-phase water and buffer content on solute retention were examined. Cation exchange was identified as the dominant retention mechanism for most of the solutes, with a distinct (single methylene group) transition to a dominant partitioning mode at the highest solute polarity. Copyright © 2015 Elsevier B.V. All rights reserved.
Mehmood, Nasir; Husson, Eric; Jacquard, Cédric; Wewetzer, Sandra; Büchs, Jochen; Sarazin, Catherine; Gosselin, Isabelle
2015-01-01
Ionic liquids (ILs) are considered as suitable candidates for lignocellulosic biomass pretreatment prior enzymatic saccharification and, obviously, for second-generation bioethanol production. However, several reports showed toxic or inhibitory effects of residual ILs on microorganisms, plants, and animal cells which could affect a subsequent enzymatic saccharification and fermentation process. In this context, the impact of two hydrophilic imidazolium-based ILs already used in lignocellulosic biomass pretreatment was investigated: 1-ethyl-3-methylimidazolium acetate [Emim][OAc] and 1-ethyl-3-methylimidazolium methylphosphonate [Emim][MeO(H)PO2]. Their effects were assessed on the model yeast for ethanolic fermentation, Saccharomyces cerevisiae, grown in a culture medium containing glucose as carbon source and various IL concentrations. Classical fermentation parameters were followed: growth, glucose consumption and ethanol production, and two original factors: the respiratory status with the oxygen transfer rate (OTR) and carbon dioxide transfer rate (CTR) of yeasts which were monitored online by respiratory activity monitoring systems (RAMOS). In addition, yeast morphology was characterized by environmental scanning electron microscope (ESEM). The addition of ILs to the growth medium inhibited the OTR and switched the metabolism from respiration (conversion of glucose into biomass) to fermentation (conversion of glucose to ethanol). This behavior could be observed at low IL concentrations (≤5% IL) while above there is no significant growth or ethanol production. The presence of IL in the growth medium also induced changes of yeast morphology, which exhibited wrinkled, softened, and holed shapes. Both ILs showed the same effects, but [Emim][MeO(H)PO2] was more biocompatible than [Emim][OAc] and could be better tolerated by S. cerevisiae. These two imidazolium-derived ILs were appropriate candidates for useful pretreatment of lignocellulosic biomass in the context of second-generation bioethanol production. This fundamental study provides additional information about the toxic effects of ILs. Indeed, the investigations highlighted the better tolerance by S. cerevisiae of [Emim][MeO(H)PO2] than [Emim][OAc].
Singh, Upendra Kumar; Patel, Rajan
2018-05-25
In vitro refolding of denatured protein and the influence of the alkyl chain on the refolding of a protein were tested using long chain imidazolium chloride salts, 1-methyl-3-octylimidazolium chloride [C 8 mim][Cl], and 1-decyl-3-methylimidazolium chloride [C 10 mim][Cl]. The horse heart cytochrome c (h-cyt c) was denatured by urea and guanidinium hydrochloride (GdnHCl), as well as by base-induced denaturation at pH 13, to provide a broad overview of the overall refolding behavior. The variation in the alkyl chain of the ionic liquids (ILs) showed a profound effect on the refolding of denatured h-cyt c. The ligand-induced refolding was correlated to understand the mechanism of the conformational stability of proteins in aqueous solutions of ILs. The results showed that the long chain ILs having the [C 8 mim] + and [C 10 mim] + cations promote the refolding of alkali-denatured h-cyt c. The IL having the [C 10 mim] + cation efficiently refolded the alkali-denatured h-cyt c with the formation of the MG state, whereas the IL having the [C 8 mim] + cation, which is known to be compatible for protein stability, shows slight refolding and forms a different transition state. The lifetime results show successful refolding of alkaline-denatured h-cyt c by both of the ILs, however, more refolding was observed in the case of [C 10 mim][Cl], and this was correlated with the fast and medium lifetimes (τ 1 and τ 2 ) obtained, which show an increase accompanied by an increase in secondary structure. The hydrophobic interactions plays an important role in the refolding of chemically and alkali-denatured h-cyt c by long chain imidazolium ILs. The formation of the MG state by [C 10 mim][Cl] was also confirmed, as some regular structure exists far below the CMC of IL. The overall results suggested that the [C 10 mim] + cation bound to the unfolded h-cyt c triggers its refolding by electrostatic and hydrophobic interactions that stabilize the MG state.
Liquid-liquid equilibria of binary mixtures of a lipidic ionic liquid with hydrocarbons.
Green, Blane D; Badini, Alexander J; O'Brien, Richard A; Davis, James H; West, Kevin N
2016-01-28
Although structurally diverse, many ionic liquids (ILs) are polar in nature due to the strong coulombic forces inherent in ionic compounds. However, the overall polarity of the IL can be tuned by incorporating significant nonpolar content into one or more of the constituent ions. In this work, the binary liquid-liquid equilibria of one such IL, 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide, with several hydrocarbons (n-hexane, n-octane, n-decane, cyclohexane, methylcyclohexane, 1-octene) is measured over the temperature range 0-70 °C at ambient pressure using a combination of cloud point and gravimetric techniques. The phase behavior of the systems are similar in that they exhibit two phases: one that is 60-90 mole% hydrocarbon and a second phase that is nearly pure hydrocarbon. Each phase exhibits a weak dependence of composition on temperature (steep curve) above ∼10 °C, likely due to swelling and restructuring of the nonpolar nano-domains of the IL being limited by energetically unfavorable restructuring in the polar nano-domains. The solubility of the n-alkanes decreases with increasing size (molar volume), a trend that continues for the cyclic alkanes, for which upper critical solution temperatures are observed below 70 °C. 1-Octene is found to be more soluble than n-octane, attributable to a combination of its lower molar volume and slightly higher polarity. The COSMO-RS model is used to predict the T-x'-x'' diagrams and gives good qualitative agreement of the observed trends. This work presents the highest known solubility of n-alkanes in an IL to date and tuning the structure of the ionic liquid to maximize the size/shape trends observed may provide the basis for enhanced separations of nonpolar species.
Our recently discovered, selective, on-resin route to N(s)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently
Exploring 12'-apo-beta-carotenoic-12'-acid as an ultrafast polarity probe for ionic liquids.
Lohse, Peter W; Bürsing, Reinhard; Lenzer, Thomas; Oum, Kawon
2008-03-13
The ultrafast excited-state dynamics of the carbonyl-containing carotenoid 12'-apo-beta-carotenoic-12'-acid (12'CA) have been used for probing the microscopic environment in various ionic liquids (ILs). The following IL cations were investigated: 1,3-di-n-alkyl-imidazolium featuring different n-alkyl chain lengths and also additional methylation at the C2 position, triethylsulfonium, as well as two tetraalkylammonium ions. These were combined with different anions: [BF4]-, [PF6]-, ethyl sulfate ([EtOSO3]-), and bis(trifluoromethylsulfonyl)amide ([Tf2N]-). The probe molecule was excited via the S0 --> S2 transition at 425 or 430 nm, and the characteristic stimulated emission decay of the low-lying excited electronic S1/ICT (intramolecular charge transfer) state of 12'CA was monitored in the near IR (850 or 860 nm). Its lifetime tau1 is sensitive to the micropolarity-induced stabilization of S1/ICT relative to S0. The lifetime tau1 of the S1/ICT state varies only moderately in all ionic liquids studied here ( approximately 40-110 ps), which lies in the range between ethanol (109 ps) and methanol (49 ps). While organic solvents show an excellent correlation of tau1 with the solvent polarity function Deltaf = (epsilon - 1)/(epsilon + 2) - (n2 - 1)/(n2 + 2), where epsilon and n are the static dielectric constant and the refractive index of the solvent, respectively, this is not the case for ILs. This is due to dominant local electrostatic probe-cation interactions which cannot be easily quantified by macroscopic quantities. Methylation at the C2 position of 1,3-di-n-alkyl-imidazolium reduces the accessibility of the cation and therefore the electrostatic stabilization of the probe, resulting in an increase of tau1. A similar increase is observed upon extension of one of the n-alkyl chains from ethyl to n-decyl. Tetraalkylammonium ILs show an increased tau1 probably due to their more delocalized positive charge which cannot interact so favorably with the probe, in contrast to trialkylsulfonium ILs where the charge is more localized on the sulfur atom. The dependence of tau1 on the IL anion is much weaker, the only notable exception being [EtOSO3]-, where 12'CA experiences a less polar local environment than expected on the basis of extrapolated static dielectric constants. This is possibly due to the competition of the anion and probe for the cation interaction sites. Considerable electrostatic probe-cation interactions can be also introduced by addition of large amounts of LiClO4 salt to ethanol and diethyl ether. In this case, tau1 also strongly decreases, indicating an efficient coordination of Li+ cation(s) with the carbonyl oxygen at the negative end of the probe molecule. The S1/ICT --> S0 internal conversion of the 12'CA probe in ILs accelerates with increasing temperature, which can be characterized by an apparent activation energy of a few kJ mol-1, which is expected for energy-dependent nonradiative processes.
Salado, Manuel; Fernández, M Asunción; Holgado, Juan P; Kazim, Samrana; Nazeeruddin, Mohammad Khaja; Dyson, Paul J; Ahmad, Shahzada
2017-10-09
Organohalide perovskites have emerged as highly promising replacements for thin-film solar cells. However, their poor stability under ambient conditions remains problematic, hindering commercial exploitation. The addition of a fluorous-functionalized imidazolium cation during the preparation of a highly stable cesium-based mixed perovskite material Cs 0.05 (MA 0.15 FA 0.85 ) 0.95 Pb(I 0.85 Br 0.15 ) 3 (MA=methylammonium; FA=formamidinium) has been shown to influence its stability. The resulting materials, which vary according to the amount of the fluorous-functionalized imidazolium cation present during fabrication, display a prolonged tolerance to atmospheric humidity (>100 days) along with power conversion efficiencies exceeding 16 %. This work provides a general route that can be implemented in a variety of perovskites and highlights a promising way to increase perovskite solar cell stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aldous, Leigh; Black, Jeffrey J; Elias, Maximo C; Gélinas, Bruno; Rochefort, Dominic
2017-09-13
Entropic changes inherent within a redox process typically result in significant temperature sensitivity. This can be utilised positively or can be a detrimental process. This study has investigated the thermoelectrochemical properties (temperature-dependant electrochemistry) of the ferrocenium|ferrocene redox couple in an ionic liquid, and in particular the effect of covalently tethering this redox couple to fixed positive or negative charges. As such, the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide was employed to dissolve ferrocene, as well as cationic-tethered ferrocene (the 1-ethyl-3-(methylferrocenyl)imidazolium cation) and anionic-tethered ferrocene (the ferrocenylsulfonyl(trifluoromethylsulfonyl)imide anion). These systems were characterised in terms of their voltammetry (apparent formal potentials, diffusion coefficients and electron transfer rate constants) and thermoelectrochemistry (temperature coefficients of the cell potential or 'Seebeck coefficients', short circuit current densities and power density outputs). The oxidised cationic species behaved like a dicationic species and was thus 6-fold more effective at converting waste thermal energy to electrical power within a thermoelectrochemical cell than unmodified ferrocene. This was almost exclusively due to a significant boost in the Seebeck coefficient of this redox couple. Conversely, the oxidised anionic species was formally a zwitterion, but this zwitterionic species behaved thermodynamically like a neutral species. The inverted entropic change upon going from ferrocene to anion-tethered ferrocene allowed development of a largely temperature-insensitive reference potential based upon a mixture of acetylferrocene and ferricenyl(iii)sulfonyl(trifluoromethylsulfonyl)imide.
High yield hydrolysis of seaweed-waste biomass using peracetic acid and ionic liquid treatments
NASA Astrophysics Data System (ADS)
Uju, Wijayanta, Agung Tri; Goto, Masahiro; Kamiya, Noriho
2018-02-01
Seaweed is one of the most promising bioethanol feedstocks. This water plant has high carbohydrate content but low lignin content, as a result it will be easier to be hydrolysed. This paper described hydrolysis of seaweed-waste biomass from the carrageenan (SWBC) industry using enzymatic saccharification or ionic liquids-HCl hydrolysis. In the first work, SWBC pretreated by peracetic acid (PAA) followed by ionic liquid (IL) caused enhance the cellulose conversion of enzymatic saccharification. At 48h saccharification, the value conversion almost reached 100%. In addition, the untreated SWBC also produced the cellulose conversion 77%. In the second work, SWBC or Bagasse with or without pretreated by PAA was hydrolyzed using ILs-HCl hydrolysis. The ILs used were 1-buthyl-3-methylpyridium chloride, [Bmpy][Cl] and 1-butyl-3-metyl imidazolium chloride ([Bmim][Cl]). [Bmpy][Cl]-HCl hydrolysis produced higher cellulose conversion than [Bmim][Cl]-HCl hydrolysis. The phenomenon was clearly observed on the Bagasse, which without pretreated by PAA. Furthermore, SWBC hydrolyzed by both ILs in the presence low concentration of HCl produced cellulose conversion 70-98% at 60-90 min of hydrolysis time. High cellulose conversion of SWBC on the both hydrolysis was caused by SWBC had the low lignin (4%). Moreover, IL treatments caused lowering of cellulose hydrogen bonds or even changed the cellulose characteristics from cellulose I to cellulose II which easily to be hydrolyzed. In the case of [Bmpy][Cl], this IL may reduce the degree polymerization of celluloses.
Gangamallaiah, V; Dutt, G B
2013-10-10
Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.
Wen, Qian; Wang, Yuzhi; Xu, Kaijia; Li, Na; Zhang, Hongmei; Yang, Qin
2016-10-05
A novel magnetic adsorbent, benzyl groups functionalized imidazolium-based polymeric ionic liquid (PIL)-coated magnetic multiwalled carbon nanotubes (MWCNTs) (m-MWCNTs@PIL), has been successfully synthesized and applied for the extraction of Cu, Zn-superoxide dismutase (Cu, Zn-SOD). The m-MWCNTs@PIL were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and zeta-potential nanoparticles. In this method, the m-MWCNTs@PIL could interact with Cu, Zn-SOD through hydrogen bonding, π-π and electrostatic interactions. The extraction performance of the m-MWCNTs@PIL in the magnetic solid-phase extraction (MSPE) procedure was investigated, coupled with the determination by UV-vis spectrophotometer. Compared with m-MWCNTs@IL and m-MWCNTs, the m-MWCNTs@PIL exhibited the highest extraction capacity of 29.1 mg/g for Cu, Zn-SOD. The adsorbed Cu, Zn-SOD remained high specific activity after being eluted from m-MWCNTs@PIL by 1 moL/L NaCl solution. Besides, the m-MWCNTs@PIL could be easily recycled and successfully employed in the extraction of Cu, Zn-SOD from real samples. Under the optimal conditions, the precision, repeatability and stability of the proposed method were investigated and the RSDs were 0.29%, 1.68% and 0.54%, respectively. Recoveries were in the range of 82.7-102.3%, with the RSD between 3.47% and 5.35%. On the basis of these results, the developed method has great potential in the extraction of Cu, Zn-SOD or other analytes from biological samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes
NASA Technical Reports Server (NTRS)
Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha
2012-01-01
Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.
Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing
2018-01-12
To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl] > MIP [C4mim][C4F7O2] ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3] > MIP [C4mim][C4F9SO3] > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Lodge, Timothy P; Ueki, Takeshi
2016-01-01
Room temperature ionic liquids are of great interest for many advanced applications, due to the combination of attractive physical properties with essentially unlimited tunability of chemical structure. High chemical and thermal stability, favorable ionic conductivity, and complete nonvolatility are just some of the most important physical characteristics that make ionic liquids promising candidates for emerging technologies. Examples include separation membranes, actuators, polymer gel electrolytes, supercapacitors, ion batteries, fuel cell membranes, sensors, printable plastic electronics, and flexible displays. However, in these and other applications, it is essential to solidify the ionic liquid, while retaining the liquid state properties of interest. A broadly applicable solidification strategy relies on gelation by addition of suitable triblock copolymers with the ABA architecture, producing ion gels or ionogels. In this paradigm, the A end blocks are immiscible with the ionic liquid, and consequently self-assemble into micellar cores, while some fraction of the well-solvated B midblocks bridge between micelles, forming a percolating network. The chemical structures of the A and B repeat units, the molar mass of the blocks, and the concentration of the copolymer in the ionic liquid are all independently tunable to attain desired property combinations. In particular, the modulus of the resulting ion gel can be readily varied between 100 Pa and 1 MPa, with little sacrifice of the transport properties of the ionic liquid, such as ionic conductivity or gas diffusivity. Suitable A blocks can impart thermoreversible gelation (with solidification either on heating or cooling) or even photoreversible gelation. By virtue of the nonvolatility of ionic liquids, a wide range of processing strategies can be employed directly to prepare ion gels in thin or thick film forms, including solvent casting, spin coating, aerosol jet printing, photopatterning, and transfer printing. For higher modulus ion gels it is even possible to employ a manual "cut and stick" strategy for easy device fabrication. Ion gels prepared from common triblock copolymers, for example, with A = polystyrene and B = poly(ethylene oxide) or poly(methyl methacrylate), in imidazolium based ionic liquids provide exceptional performance in membranes for separating CO 2 from N 2 or CH 4 . The same materials also are the best available gate dielectrics for printed plastic electronics, because their high capacitance endows organic transistors with milliamp output currents for sub-1 V applied bias, with switching speeds that can go well beyond 100 kHz, while being amenable to large area roll-to-roll printing. Incorporation of well-designed electroluminescent (e.g., Ru(bpy) 3 -based) or electrochromic (e.g., viologen-based) moieties into ion gels held between transparent electrodes yields flexible color displays operating with sub-1 V dc inputs.
NASA Astrophysics Data System (ADS)
Isik, Dilek
This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from electrochemical impedance spectroscopy. In the context of ARTICLE 1, thin film transistors based on soluble pentacene derivatives (prepared by the research group directed by Professor J. Anthony, at the University of Kentucky) were fabricated and characterized. GIXRD results performed on the thin films suggested a molecular arrangement favorable to charge transport in the source-drain direction, with the pi-pi stacking direction perpendicular to the channel. In ARTICLE 1, HMDS-treated SiO 2 substrates were used, to improve the surface coverage and to limit charge trapping at the dielectric surface. AFM showed good film coverage. The transistors showed ambipolar characteristics, attributed to the good matching between Au electrode work function and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the pentacene derivative. The work reported in ARTICLE 2 deals with pi-conjugated thiopheno-azomethines (both in oligomer and polymer form) and oligothiophene analogues. In the former case, couplings in the polymer are based on azomethine (-N=C-) moieties whereas in the latter case they are based on more conventional protocols (-C=C-). The effect of the coupling protocols on the corresponding thin film transistors behavior was studied. The key conclusion of this study was that thiopheno-azomethines thin films can be effectively incorporated into organic transistors: thin films of oligothiopheno-azomethines and the oligothiophenes exhibit p-type behavior whereas thin films of polythiopheno-azomethine exhibit an ambipolar behavior. The hole mobility of the heat-treated thin films of oligothiopheno-azomethines was three orders of magnitude higher compared to its oligothiophene analogue. AFM, coupled with hyperspectral fluorescence imaging, were used to investigate the micro- and nano-scale surface coverage. For the oligothiopheno-azomethine we were able to quantitatively deduce the surface coverage. To contribute to the exploration of innovative strategies for low power consuming solution based electronics and capitalizing on the expertise of the group in the synthesis of solution deposited WO3 films the electrolyte gating approach was explored in ARTICLE 3. Ionic liquids, that are molten salts at room temperature, were employed as the electrolyte. Ionic liquids are attractive for their low volatility, non-flammability, ionic conductivity and thermal and electrochemical stability. Thin films of WO3 were deposited onto pre-patterned ITO substrates (source-drain interelectrode distance, 1 mm) prepared by wet chemical etching. SEM and AFM showed an interconnected film nanostructure. Electrolyte gated WO3 thin film transistors making use of 1-butyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]), 1-butyl-3-methyl imidazolium hexafluoro phosphate ([BMIM][PF6]), and 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][TFSI]) showed an n-type transistor behavior. The possibility to obtain WO3 electrolyte gated transistors represents an opportunity to fabricate electronic devices working at relatively low operating voltages (about 1 V) by using simple fabrication techniques.
research interests are broadly in computational modeling for renewable energy generation and energy ions transport in fuel cell and bioenergetics enzymes, and functional membrane structure modeling and University Featured Publications Hydroxide Degradation Pathways for Imidazolium Cations: A DFT Study, J. Phys
Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang
2015-05-05
To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Shanti, R.; Morris, Ezra
2012-01-01
The principle motivation of this research work is to develop environmental-friendly polymer electrolytes utilizing corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 1-allyl-3-methylimidazolium chloride ([Amim] Cl) by solution casting technique. The highest ionic conductivity value was achieved for the composition CS:LiTFSI:[Amim] Cl (14 wt. %:6 wt. %:80 wt. %) which exhibits the ionic conductivity value of 5.68 × 10 -2 S cm -1 at 40 °C with the activation energy of 4.86 kJ mol -1. This sample possess high concentration of amorphous phase coupled with greater presence of conducting cations (lithium, Li + and imidazolium, [Amim] +) as depicted by the dielectric loss tangent plot. The conductivity-temperature plots were found to obey Arrhenius rule in which the conductivity mechanism is thermally assisted. The melting temperature of polymer electrolyte decreases with increase in [Amim] Cl content. This is attributed to the good miscibility of [Amim] Cl in CS:LiTFSI matrix inducing structural disorderliness. Reference to the TGA results it is found that the addition of [Amim] Cl diminishes the heat-resistivity whereas enhancement in the thermal stability occurred at the initial addition and declines with further doping of [Amim] Cl.
Extraction of Proanthocyanidins and Anthocyanins from Grape Skin by Using Ionic Liquids
2017-01-01
Summary In this study, eight different types of imidazolium-based ionic liquids (ILs) were applied as new solvents in the extraction of flavonoids from grape skin, and compared to the conventional organic solvent extraction that was not reported earlier. The structure of anions, cations and concentration of ILs significantly affected extraction yields. The highest mass fractions of proanthocyanidins and anthocyanins were obtained with 2.5 mol/L of 1-butyl-3-methylimidazolium bromide [C4mim][Br] and 2.5 mol/L of 1-ethyl-3-methylimidazolium bromide [C2mim][Br], respectively. The studied ILs provided an excellent preliminary result in the extraction of anthocyanins. Significantly higher mass fractions of total and all free anthocyanins were extracted with 2.5 mol/L of [C2mim][Br] and 2.5 mol/L of 1-methylimidazolium hydrogen sulfate [mim][HSO4] than with conventional solvent with the exception of anthocyanin-3-O-acetylmonoglucosides in the latter. On the other hand, 2.5 mol/L of [C4mim][Br] and 2.5 mol/L of 1-(4-sulfobutyl)-3-methylimidazolium hydrogen sulfate [sC4mim][HSO4] showed significantly higher selectivity towards anthocyanin-3-O-acetylmonoglucosides and anthocyanin-3-(6-O-p-coumaroyl)monoglucosides. PMID:29089857
New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†
Zhao, Hua; Baker, Gary A.; Holmes, Shaletha
2012-01-01
The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901
Wu, Mian; Zhang, Haibo; Zhao, Faqiong; Zeng, Baizhao
2014-11-19
A novel poly(3,4-ethylenedioxythiophene)-ionic liquid (i.e., 1-hydroxyethyl-3-methyl imidazolium-bis[(trifluoromethyl)sulfonyl]imide) composite film was electrodeposited on a Pt wire for headspace solid-phase microextraction. The film showed nodular structure and had large specific surface. In addition, it displayed high thermal stability (up to 300°C) and durable property (could be used for more than 200 times). Coupled with gas chromatography-flame ionization detection, the resulting fiber was applied to the headspace solid-phase microextraction and determination of several alcohols (i.e., linalool, nonanol, terpineol, geraniol, decanol and dodecanol). It presented higher extraction capability in comparison with the poly(3,4-ethylenedioxythiophene) and commercial polydimethylsiloxane/divinylbenzene fiber. Under the optimized conditions, the linear ranges exceeded three magnitudes with correlation coefficients above 0.9952 and the low limits of detection were 34.2-81.3ng L(-1). For different alcohols the repeatabilities (defined as RSD) were <5.8% and <7.8% for single fiber (n=5) and fiber-to-fiber (n=4), respectively. The proposed method was applied to the determination of these alcohols in real samples with acceptable recoveries from 81.1% to 106.6%. Copyright © 2014 Elsevier B.V. All rights reserved.
Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B
2011-12-16
Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.
(Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids.
Peric, Brezana; Sierra, Jordi; Martí, Esther; Cruañas, Robert; Garau, Maria Antonia; Arning, Jürgen; Bottin-Weber, Ulrike; Stolte, Stefan
2013-10-15
Ionic liquids (ILs) are a promising group of compounds with a large variety of possible structures and uses. They are considered as a potential "green" replacement for traditional volatile organic solvents, but their impact on the environment is often neglected or not studied enough. In the present study, selected representatives of two ILs groups were analyzed: a new family of protic ILs (derived from aliphatic amines and organic acids) and some frequently used aprotic ILs (substituted imidazolium and piridinium chlorides). The aquatic toxicity (test organisms Vibrio fischeri, Pseudokirchneriella subcapitata and Lemna minor) and biodegradability tests were carried out. The additional tests with enzyme (acetylcholinesterase) and leukemia rat cells (IPC-81) provided more in-depth evaluation of toxicity. In our comparative hazard assessment protic ILs have EC50 values >100 mg L(-1) in all of the tests performed, except in the case of three representatives toward Lemna minor. They also show good biodegradability rates. The EC50 values for aprotic ILs are various orders of magnitude lower than the ones for protic ILs in most of the tests and they show a lower biodegradability potential. These findings indicate that protic ILs can be considered as environmentally safer alternatives for more toxic ILs and organic solvents. Copyright © 2013 Elsevier B.V. All rights reserved.
Bado-Nilles, Anne; Diallo, Alpha-Oumar; Marlair, Guy; Pandard, Pascal; Chabot, Laure; Geffard, Alain; Len, Christophe; Porcher, Jean-Marc; Sanchez, Wilfried
2015-01-01
This paper proposed a potential industrial accompaniment to reduce ionic liquid harmfulness by a novel combination of OECD Daphnia magna standardized test and fish immunomarkers. The combination of these two tests allowed multicriteria examination of ILs impacts in different organisms and trophic levels. The work provided new data for legislation and opened a door towards an integrative environmental evaluation due to direct implications of immune system in fish and ecosystem health. Whatever the species, each IL tested induced deleterious effects suggesting that toxic impact was especially due to IL lipophilicity properties. Nevertheless, cation moieties of ILs seemed to draw overall toxicity of ILs to significant extent as supported by lower cell mortality shown with imidazolium-based ILs compared to phosphonium-based ILs. However, the anions moieties have some additional effect, as revealed by quite dissimilar toxicity within same IL family. Concerning the more integrative biomarkers, the cationic-based ILs tested possessed also dissimilar effect on immune system of fish, especially on leucocyte distribution, lysosomal membrane integrity and phagocytosis activity. These results confirm that ILs toxicity could be influenced by design and that chemical engineering processes can integrate ecological footprint reduction strategies for successful IL utilization in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Rezaeian, Mojtaba; Izadyar, Mohammad; Nakhaei Pour, Ali
2018-06-25
The kinetics and mechanism of CO 2 absorption by ionic liquids (ILs) were studied, theoretically. The studied ILs are composed of 1-ethyl-3-methylimidazolium [Emim] + as the cation with a general formula of the [Emim][X] (X = Gly - , Ala - , Lys - , Arg - ). To investigate the alkyl chain length and the number of the amine group effects on the CO 2 absorption, different amino acid anions were chosen. On the basis of the enthalpy changes during CO 2 capture, a chemisorption nature is confirmed. An increase in the number of amine (-NH 2 ) groups in the ILs structures, facilitates the CO 2 absorption. According to kinetic results, the rate of CO 2 absorption by [Emim][Gly] is higher than that of [Emim][Ala]. This can be interpreted by a higher steric hindrance in [Emim][Ala] due to an additional methyl group in the amino acid chain. Donor-acceptor interactions and C-N bond formation were investigated by natural bond orbital analysis. Moreover, topological studies show a covalent nature for the C-N bond critical point that showing CO 2 capture is a chemisorption process. Finally, on the basis of kinetic energy results, donor-acceptor interaction and topological analysis, [Emim][Arg] is proposed as the best candidate for CO 2 absorption from the kinetic and thermodynamic viewpoints.
Zhang, Cheng; Zhang, Shuai; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Zhou, Tongtong
2017-10-01
Given their increasingly widespread application, the toxic effects of ionic liquids (ILs) have become the subject of significant attention in recent years. Therefore, the present study assessed the acute toxic effects of 1-alkyl-3-methylimidazolium nitrate ([C n mim]NO 3 (n = 2, 4, 6, 8, 10, 12)) on Chlorella vulgaris and Daphnia magna. The sensitivity of the tested organism Daphnia magna and the investigated IL concentrations in water using high-performance liquid chromatography (HPLC) were also evaluated to demonstrate the reliability of the present study. The results illustrated that Daphnia magna is indeed sensitive to the reference toxicant and the investigated ILs were stable in the aquatic environment. The 50% effect concentration (EC 50 ) was used to represent the acute toxic effects on Chlorella vulgaris and Daphnia magna. With the increasing alkyl-chain lengths, the toxicity of the investigated ILs increased in both the test organisms. Accordingly, the alkyl-chain lengths can cause significantly toxic effects on aquatic organisms, and Daphnia magna are much more sensitive than Chlorella vulgaris to the imidazolium-based ILs used in the present study. Furthermore, the present study provides more information on the acute toxic effects of 1-alkyl-3-methylimidazolium nitrate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Storch, Jan; Zadny, Jaroslav; Strasak, Tomas; Kubala, Martin; Sykora, Jan; Dusek, Michal; Cirkva, Vladimir; Matejka, Pavel; Krbal, Milos; Vacek, Jan
2015-02-02
Herein we demonstrate the synthesis of a helicene-based imidazolium salt. The salt was prepared by starting from racemic 2-methyl[6]helicene, which undergoes radical bromination to yield 2-(bromomethyl)[6]helicene. Subsequent treatment with 1-butylimidazole leads to the corresponding salt 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide. The prepared salt was subsequently characterized by using NMR spectroscopy and X-ray analysis, various optical spectrometric techniques, and computational chemistry tools. Finally, the imidazolium salt was immobilized onto a SiO2 substrate as a crystalline or amorphous deposit. The deposited layers were used for the development of organic molecular semiconductor devices and the construction of a fully reversible humidity sensor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hugar, Kristina M.; Kostalik, IV, Henry A.; Coates, Geoffrey W.
2015-06-11
Highly base-stable cationic moieties are a critical component of anion exchange membranes (AEMs) in alkaline fuel cells (AFCs); however, the commonly employed organic cations have limited alkaline stability. To address this problem, we synthesized and characterized the stability of a series of imidazolium cations in 1, 2, or 5 M KOH/CD 3OH at 80 °C, systematically evaluating the impact of substitution on chemical stability. The substituent identity at each position of the imidazolium ring has a dramatic effect on the overall cation stability. In conclusion, we report imidazolium cations that have the highest alkaline stabilities reported to date, >99% cationmore » remaining after 30 days in 5 M KOH/CD 3OH at 80 °C.« less
Liu, Yating; Li, Yan; Wei, Yun
2014-12-01
Magnetic particles with suitable surface modification are capable of binding proteins selectively, and magnetic separations have advantages of rapidity, convenience, and high selectivity. In this paper, new magnetic nanoparticles modified with imidazolium ionic liquid (Fe3O4 @SiO2 @ILs) were successfully fabricated. N-Methylimidazolium was immobilized onto silica-coated magnetic nanoparticles via γ-chloropropyl modification as a magnetic nanoadsorbent for heme protein separation. The particle size was about 90 nm without significant aggregation during the preparation process. Hemoglobin as one of heme proteins used in this experiment was compared with other nonheme proteins. It has been found that the magnetic nanoparticles can be used for more rapid, efficient, and specific adsorption of hemoglobin with a binding capacity as high as 5.78 mg/mg. In comparison with other adsorption materials of proteins in the previous reports, Fe3 O4 @SiO2 @ILs magnetic nanoparticles exhibit the excellent performance in isolation of heme proteins with higher binding capacity and selectivity. In addition, a short separation time makes the functionalized nanoparticles suitable for purifying unstable proteins, as well as having other potential applications in a variety of biomedical fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of Ionic Liquids on the Structure and Dynamics of Collagen.
Tarannum, Aafiya; Adams, Alina; Blümich, Bernhard; Fathima, Nishter Nishad
2018-01-25
The changes in the structure and dynamics of collagen treated with two different classes of ionic liquids, bis-choline sulfate (CS) and 1-butyl-3-methyl imidazolium dimethyl phosphate (IDP), have been studied at the molecular and fibrillar levels. At the molecular level, circular dichroic studies revealed an increase in molar ellipticity values for CS when compared with native collagen, indicating cross-linking, albeit pronounced conformational changes for IDP were witnessed indicating denaturation. The impedance was analyzed to correlate the conformational changes with the hydration dynamics of protein. Changes in the dielectric properties of collagen observed upon treatment with CS and IDP reported molecular reorientation in the surrounding water milieu, suggesting compactness or destabilization of the collagen. This was further confirmed by proton transverse NMR relaxation time measurements, which demonstrated that the water mobility changes in the presence of the ILs. At the fibrillar level, differential scanning calorimetry thermograms for rat tail tendon collagen fibers treated with CS show a 5 °C increase in denaturation temperature, suggesting imparted stability. On the contrary, a significant temperature decrease was noticed for IDP, indicating the destabilization of collagen fibers. The obtained results clearly indicate that the changes in the secondary structure of protein are due to the changes in the hydration dynamics of collagen upon interaction with ILs. Thus, this study on the interaction of collagen with ionic liquids unfolds the propensity of ILs to stabilize or destabilize collagen depending on the changes invoked at the molecular level in terms of structure and dynamics of protein, which also got manifested at the fibrillar level.
Gao, Yan'an; Li, Na; Zheng, Liqiang; Zhao, Xueyan; Zhang, Jin; Cao, Quan; Zhao, Mingwei; Li, Zhen; Zhang, Gaoyong
2007-01-01
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) forms nonaqueous microemulsions with benzene with the aid of nonionic surfactant TX-100. The phase diagram of the ternary system was prepared, and the microstructures of the microemulsion were recognized. On the basis of the phase diagram, a series of ionic liquid-in-oil (IL/O) microemulsions were chosen and characterized by dynamic light scattering (DLS), which shows a similar swelling behavior to typical water-in-oil (W/O) microemulsions. The existence of IL pools in the IL/O microemulsion was confirmed by UV/Vis spectroscopic analysis with CoCl2 and methylene blue (MB) as the absorption probes. A constant polarity of the IL pool is observed, even if small amounts of water are added to the microemulsion, thus suggesting that the water molecules are solubilized in the polar outer shell of the microemulsion, as confirmed by FTIR spectra. 1H NMR spectroscopic analysis shows that these water molecules interact with the electronegative oxygen atoms of the oxyethylene (OE) units of TX-100 through hydrogen-bonding interactions, and the electronegative oxygen atoms of the water molecules attract the electropositive imidazolium rings of [bmim][BF4]. Hence, the water molecules are like a glue that stick the IL and OE units more tightly together and thus make the microemulsion system more stable. Considering the unique solubilization behavior of added water molecules, the IL/O microemulsion system may be used as a medium to prepare porous or hollow nanomaterials by hydrolysis reactions.
Sadeghi Moghadam, Behnoosh; Razmkhah, Mohammad; Hamed Mosavian, Mohammad Taghi; Moosavi, Fatemeh
2016-12-07
Electric double layer (EDL) supercapacitors, using ionic liquid electrolytes, have been receiving a great deal of attention in response to the growing demand for energy storage systems. In the present study, the nanoscopic structure of amino acid ionic liquids (AAILs) as biodegradable electrolytes near a neutral graphene surface was studied by molecular dynamics (MD) simulation. In order to explore the influence of the anion type and structure, the effect of the alkyl side-chain length of amino acids on the EDL was investigated. The results for the AAILs, composed of 1-ethyl-3-methylimidazolium ([EMIM]) cations near alanine ([ALA]) and isoleucine ([ILE]) anions, were compared to a conventional electrolyte, [EMIM][PF 6 ]. A lower mobility of AAIL compared to [EMIM][PF 6 ], with diffusions as low as 10 -11 m 2 s -1 , was observed. The structural results demonstrated a layered structure near the surface and most of the adsorbed imidazolium cation rings lay flat on the graphene surface. Both MD and quantum computations were performed to shed light on the charge behavior of AAIL electrolytes. As the current results demonstrate, an increase in the anion side-chain length leads to a decrease in both the number of adsorbed ions on the surface and the thickness of the first adsorbed layer. More impressively, it was observed that a low charge concentration in the EDL of AAILs is due to more side-side interactions. This remarkable feature could introduce AAILs as more efficient electrolyte materials than conventional [EMIM][PF 6 ].
A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.
Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya
2014-03-17
This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gao, Wei; Tian, Yong; Xuan, Xiaopeng
2015-07-01
The cation-cation π-π stacking is uncommon but it is essential for the understanding of some supramolecular structures. We explore theoretically the nature of non-covalent interaction occurring in the stacked structure within modeled clusters of 1,3-dimethylimidazolium and halide. The evidences of the energy decomposition analysis (EDA) and reduced density gradient (RDG) approach are different from those of common π-π interaction. Isosurfaces with RDG also illustrate the strength of the titled π-π interaction and their region. Additionally, we find that the occurrence of this interaction is attributed to a few C-H···X interactions, as depicted using atom in molecule (AIM) method. This work presents a clear picture of the typical cation-cation π-π interaction and can serve to advance the understanding of this uncommon interaction. Copyright © 2015 Elsevier Inc. All rights reserved.
Hu, Yimin; Han, Jie; Ge, Lingling; Guo, Rong
2018-01-31
In this paper, viscoelastic wormlike micelles consisting of cationic liquid-type surfactant, 1-hexadecyl-3-octyl imidazolium bromide ([C 16 imC 8 ]Br), water and different additives were utilized for the synthesis of CdS quantum dots. First, the influence of different additives, such as [Cd(NH 3 ) 6 ]Cl 2 and ethanethioamid (precursors for the synthesis of CdS quantum dots), and temperature on the viscoelasticity of the [C 16 imC 8 ]Br aqueous solution was studied by dynamic and steady rheology. Furthermore, the synthesized CdS quantum dots and their photoluminescence properties were characterized by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX). In the end, the mechanism for the synthesis of CdS quantum dots in [C 16 imC 8 ]Br wormlike micelles is proposed.
Lee, Jaechul; Chuah, Chong Yang; Kim, Jaheon; Kim, Youngsuk; Ko, Nakeun; Seo, Younggyu; Kim, Kimoon; Bae, Tae Hyun; Lee, Eunsung
2018-04-24
Separation of acetylene from carbon dioxide and ethylene is challenging in view of their similar sizes and physical properties. Metal-organic frameworks (MOFs) in general are strong candidates for these separations owing to the presence of functional pore surfaces that can selectively capture a specific target molecule. Here, we report a novel 3D microporous cationic framework named JCM-1. This structure possesses imidazolium functional groups on the pore surfaces and pyrazolate as a metal binding group, which is well known to form strong metal-to-ligand bonds. The selective sorption of acetylene over carbon dioxide and ethylene in JCM-1 was successfully demonstrated by equilibrium gas adsorption analysis as well as dynamic breakthrough measurement. Furthermore, its excellent hydrolytic stability makes the separation processes highly recyclable without a substantial loss in acetylene uptake capacity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Dacheng; Gao, Xiaoshuang; Cheng, Tanyu; Liu, Guohua
2014-05-01
The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.
El Seoud, Omar A; Pires, Paulo Augusto R; Abdel-Moghny, Thanaa; Bastos, Erick L
2007-09-01
A series of surface-active ionic liquids, RMeImCl, has been synthesized by the reaction of purified 1-methylimidazole and 1-chloroalkanes, RCl, R=C(10),C(12),C(14), and C(16), respectively. Adsorption and aggregation of these surfactants in water have been studied by surface tension measurement. Additionally, solution conductivity, electromotive force, fluorescence quenching of micelle-solubilized pyrene, and static light scattering have been employed to investigate micelle formation. The following changes resulted from an increase in the length of R: an increase of micelle aggregation number; a decrease of: minimum area/surfactant molecule at solution/air interface; critical micelle concentration, and degree of counter-ion dissociation. Theoretically-calculated aggregation numbers and those based on quenching of pyrene are in good agreement. Gibbs free energies of adsorption at solution/air interface, DeltaG(ads)(0), and micelle formation in water, DeltaG(mic)(0), were calculated, and compared to those of three surfactant series, alkylpyridinium chlorides, RPyCl, alkylbenzyldimethylammonium chlorides, RBzMe(2)Cl, and benzyl(3-acylaminoethyl)dimethylammonium chlorides, R(')AEtBzMe(2)Cl, respectively. Contributions to the above-mentioned Gibbs free energies from surfactant methylene groups (in the hydrophobic tail) and the head-group were calculated. For RMeImCl, the former energy is similar to that of other cationic surfactants. The corresponding free energy contribution of the head-group to DeltaG(mic)(0) showed the following order: RPyCl approximately RBzMe(2)Cl>RMeImCl>R(')AEtBzMe(2)Cl. The head-groups of the first two surfactant series are more hydrophobic than the imidazolium ring of RMeImCl, this should favor their aggregation. Micellization of RMeImCl, however, is driven by a relatively strong hydrogen-bonding between the chloride ion and the hydrogens in the imidazolium ring, in particular the relatively acidic H2. This interaction more than compensates for the relative hydrophilic character of the diazolium ring. As indicated by the corresponding DeltaG(mic)(0), micellization of R(')AEtBzMe(2)Cl is more favorable than that of RMeImCl because the CONH group of the former surfactant series forms hydrogen bonds to both the counter-ion and the neighboring molecules in the micelle.
Tsarpali, Vasiliki; Belavgeni, Alexia; Dailianis, Stefanos
2015-07-01
This study investigated the cytotoxic, oxidative and genotoxic effects of two commonly used imidazolium ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium) and [omim][BF4] (1-methyl-3-octylimidazolium tetrafluoroborate), on the marine mussel Mytilus galloprovincialis, as well as whether acetone could mediate their toxic profile. In this context, mussels were firstly exposed to different concentrations of [bmim][BF4] or [omim][BF4], with or without the presence of acetone (at a final concentration of 0.06% v/v), for a period of 96h, in order to determine the concentration that causes 50% mussel mortality (LC50 values) in each case. Thereafter, mussels were exposed to sub- and non-lethal concentrations of ILs for investigating their ability to cause lysosomal membrane impairment (with the use of neutral red retention assay/NRRT), superoxide anion and lipid peroxidation byproduct (malondialdehyde/MDA) formation, as well as DNA damage and formation of nuclear abnormalities in hemocytes. The results showed that [omim][BF4] was more toxic than [bmim][BF4] in all cases, while the presence of acetone resulted in a slight attenuation of its toxicity. The different toxic behavior of ILs was further revealed by the significantly lower levels of NRRT values observed in [omim][BF4]-treated mussels, compared to those occurring in [bmim][BF4] in all cases. Similarly, [bmim][BF4]-mediated oxidative and genotoxic effects were observed only in the highest concentration tested (10mgL(-1)), while [omim][BF4]-mediated effects were enhanced at lower concentrations (0.01-0.05mgL(-1)). Overall, the present study showed that [bmim][BF4] and [omim][BF4] could induce not only lethal but also nonlethal effects on mussel M. galloprovincialis. The extent of [bmim][BF4] and/or [omim][BF4]-mediated effects could be ascribed to the length of each IL alkyl chain, as well as to their lipophilicity. Moreover, the role of acetone on the obtained toxic effects of the specific ILs was reported for the first time, giving evidence for its interaction with the ILs and the modulation of their toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Lim, Geraldine S; Jaenicke, Stephan; Klähn, Marco
2015-11-21
The insertion of 1-octyl-3-methylimidazolium cations (OMIM(+)) from a diluted aqueous ionic liquid (IL) solution into a model of a bacterial cell membrane is investigated. Subsequently, the mutual interactions of cations inside the membrane and their combined effect on membrane properties are derived. The ionic liquid solution and the membrane model are simulated using molecular dynamics in combination with empirical force fields. A high propensity of OMIM(+) for membrane insertion is observed, with a cation concentration at equilibrium inside the membrane 47 times larger than in the solvent. Once inserted, cations exhibit a weak effective attraction inside the membrane at a distance of 1.3 nm. At this free energy minimum, negatively charged phosphates of the phospholipids are sandwiched between two OMIM(+) to form energetically favorable OMIM(+)-phosphate-OMIM(+) types of coordination. The cation-cation association free energy is 5.9 kJ mol(-1), whereas the activation barrier for dissociation is 10.1 kJ mol(-1). Subsequently, OMIM(+) are inserted into the leaflet of the membrane bilayer that represents the extracellular side. The cations are evenly distributed with mutual cation distances according to the found optimum distance of 1.3 nm. Because of the short length of the cation alkyl chains compared to lipid fatty acids, voids are generated in the hydrophobic core of the membrane. These voids disorder the fatty acids, because they enable fatty acids to curl into these empty spaces and also cause a thinning of the membrane by 0.6 nm. Additionally, the membrane density increases at its center. The presence of OMIM(+) in the membrane facilitates the permeation of small molecules such as ammonia through the membrane, which is chosen as a model case for small polar solutes. The permeability coefficient of the membrane with respect to ammonia increases substantially by a factor of seven. This increase is caused by a reduction of the involved free energy barriers, which is effected by the cations through the thinning of the membrane and favorable interactions of the delocalized OMIM(+) charge with ammonia inside the membrane. Overall, the results indicate the antimicrobial effect of amphiphilic imidazolium-based cations that are found in various common ILs. This effect is caused by an alteration of the permeability of the bacterial membrane and other property changes.
Klähn, Marco; Lim, Geraldine S; Wu, Ping
2011-11-07
The influence of eight different ionic liquid (IL) solvents on the stability of the lipase Candida antarctica lipase B (CAL-B) is investigated with molecular dynamics (MD) simulations. Considered ILs contain cations that are based either on imidazolium or guanidinium as well as nitrate, tetrafluoroborate or hexafluorophosphate anions. Partial unfolding of CAL-B is observed during high-temperature MD simulations and related changes of CAL-B regarding its radius of gyration, surface area, secondary structure, amount of solvent close to the backbone and interaction strength with the ILs are evaluated. CAL-B stability is influenced primarily by anions in the order NO(3)(-)≪ BF(4)(-) < PF(6)(-) of increasing stability, which agrees with experiments. Cations influence protein stability less than anions but still substantially. Long decyl side chains, polar methoxy groups and guanidinium-based cations destabilize CAL-B more than short methyl groups, other non-polar groups and imidazolium-based cations, respectively. Two distinct causes for CAL-B destabilization are identified: a destabilization of the protein surface is facilitated mostly by strong Coulomb interactions of CAL-B with anions that exhibit a localized charge and strong polarization as well as with polar cation groups. Surface instability is characterized by an unraveling of α-helices and an increase of surface area, radius of gyration and protein-IL total interaction strength of CAL-B, all of which describe a destabilization of the folded protein state. On the other hand, a destabilization of the protein core is facilitated when direct core-IL interactions are feasible. This is the case when long alkyl chains are involved or when particularly hydrophobic ILs induce major conformational changes that enable ILs direct access to the protein core. This core instability is characterized by a disintegration of β-sheets, diffusion of ions into CAL-B and increasing protein-IL van der Waals interactions. This process describes a stabilization of the unfolded protein state. Both of these processes reduce the folding free energy and thus destabilize CAL-B. The results of this work clarify the impact of ions on CAL-B stabilization. An extrapolation of the observed trends enables proposing novel ILs in which protein stability could be enhanced further. This journal is © the Owner Societies 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert
2015-07-07
Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.
Xu, Tao; Waehler, Tobias; Vecchietti, Julia; Bonivardi, Adrian; Bauer, Tanja; Schwegler, Johannes; Schulz, Peter S; Wasserscheid, Peter; Libuda, Joerg
2017-12-06
Hybrid materials consisting of ionic liquid (ILs) films on supported oxides hold a great potential for applications in electronic and energy materials. In this work, we have performed surface science model studies scrutinizing the interaction of ester-functionalized ILs with atomically defined Co 3 O 4 (111) and CoO(100) surfaces. Both supports are prepared under ultra-high vacuum (UHV) conditions in form of thin films on Ir(100) single crystals. Subsequently, thin films of three ILs, 3-butyl-1-methyl imidazolium bis(trifluoromethyl-sulfonyl) imide ([BMIM][NTf 2 ]), 3-(4-methoxyl-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([MBMIM][NTf 2 ]), and 3-(4-isopropoxy-4-oxobutyl)-1-methylimidazolium bis(trifluoromethyl-sulfonyl) imide ([IPBMIM][NTf 2 ]), were deposited on these surfaces by physical vapor deposition (PVD). Time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) were applied to monitor in situ the adsorption, film growth, and thermally induced desorption. By TP-IRAS, we determined the multilayer desorption temperature of [BMIM][NTf 2 ] (360±5 K), [MBMIM][NTf 2 ] (380 K) and [IPBMIM][NTf 2 ] (380 K). Upon deposition below the multilayer desorption temperature, all three ILs physisorb on both cobalt oxide surfaces. However, strong orientation effects are observed in the first monolayer, where the [NTf 2 ] - ion interacts with the surface through the SO 2 groups and the CF 3 groups point towards the vacuum. For the two functionalized ILs, the [MBMIM] + and [IPBMIM] + interact with the surface Co 2+ ions of both surfaces via the CO group of their ester function. A very different behavior is found, if the ILs are deposited above the multilayer desorption temperature (400 K). While for [BMIM][NTf 2 ] and [MBMIM][NTf 2 ] a molecularly adsorbed monolayer film is formed, [IPBMIM][NTf 2 ] undergoes a chemical transformation on the CoO(100) surface. Here, the ester group is cleaved and the cation is chemically linked to the surface by formation of a surface carboxylate. The IL-derived species in the monolayer desorb at temperatures around 500 to 550 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Choi, Eunsong
Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We conclude the study by showing an excellent agreement between the simulation and the experiment.
Analysis of mono- and oligosaccharides in ionic liquid containing matrices.
Wahlström, Ronny; Rovio, Stella; Suurnäkki, Anna
2013-05-24
Ionic liquids (ILs), that is, salts with melting points <100°C, have recently attracted a lot of attention in biomass processing due to their ability to dissolve lignocellulosics. In this work, we studied how two imidazolium-based, hydrophilic, cellulose dissolving ionic liquids 1,3-dimethylimidazolium dimethylphosphate [DMIM]DMP and 1-ethyl-3-methylimidazolium acetate [EMIM]AcO affect the usually employed analytical methods for mono- and oligosaccharides, typical products from hydrolytic treatments of biomass. HPLC methods were severely hampered by the presence of ILs with loss of separation power and severe baseline problems, making their use for saccharide quantification extremely challenging. Problems in DNS photometric assay and chromatography were also encountered at high ionic liquid concentrations and many capillary electrophoresis (CE) methods did not allow an efficient analysis of saccharides in these matrices. In this paper we describe an optimized CE method with pre-column derivatization for the qualitative and quantitative analysis of mono- and oligosaccharides in sample matrices containing moderate (20-40% (v/v)) concentrations of ILs. The IL content and type in the sample matrix was found to affect both peak shape and quantification parameters. Generally, the presence of high IL concentrations (≥20% (v/v)) had a dampening effect on the detection of the analytes. IL in lower concentrations of <20% (v/v) was, however, found to improve peak shape and/or separation in some cases. The optimized CE method has good sensitivity in moderate concentrations of the ionic liquids used, with limits of detection of 5mg/L for cellooligomers up to the size of cellotetraose and 5-20mg/L for cellopentaose and cellohexaose, depending on the matrix. The method was used for analysing the action of a commercial β-glucosidase in ILs and for analysing saccharides in the IL containing hydrolysates from the hydrolysis of microcrystalline cellulose with Trichoderma reesei endoglucanase Cel5A. According to the results, [DMIM]DMP and [EMIM]AcO] showed clear differences in enzyme inactivation. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Espinosa Rodriguez, Tulia
Ionic liquids are molten salts which are liquid at room temperature or at low temperatures and present a unique combination of properties. In the present work, we focus on their use as lubricants in complex tribological problems such as the lubrication of metals that slide against themselves, the development of water based lubricants and new self-lubricated surfaces. When it is difficult to reduce friction and wear by lubrication, as in the case of magnesium alloys, ionic liquids are studied as protective coatings precursors. Surface interactions and corrosion processes with protic and aprotic ionic liquids on copper and steel have been determined in order to develop new lubricants and lubricant additives. In the copper/copper contact, all ionic liquids present better tribological performance than the polyalphaolefin synthetic oil, except for the oleate derivative. New protic ionic liquids are not only exceptional lubricants of the steel/sapphire contact as neat lubricants, but when they are used as additives in water, the formation of a boundary layer after water evaporation occurs, thus reducing friction and wear. The formation of this boundary layer on steel under static conditions is described in order to prevent the running-in period with respect to the solution of ionic liquid in water. The best lubricating behaviour for the copper/copper contact and also for the steel/sapphire contact is obtained for the diprotic ammonium dianionic adipate, that has two carboxylate groups in its anion. A higher polarity and a higher number of ammonium protons, carboxylate and hydroxyl groups would give rise to stronger surface interaction with the metal surfaces and more stable boundary films. The tribological performance of new aprotic thiazolium ionic liquids and commercial aprotic imidazolium ionic liquids has been compared as lubricants of the steel/sapphire contact, obtaining the best results for the bis(trifluoromethanesulfonyl)imide derivatives, and also preventing tribocorrosion processes. The formation of a coating layer on magnesium alloys from phosphonate imidazolium ionic liquids by immersion and by chronoamperometry has been described. The new coatings reduce the abrasive wear in the magnesium-aluminium alloy but they are not effective in the magnesium-zinc alloy, which prevent the formation of continuous coatings. Los liquidos ionicos son sales liquidas a temperatura ambiente o bajas temperaturas que presentan excelentes propiedades fisico-quimicas. En el presente trabajo se estudian como lubricantes en problemas tribologicos complejos como la lubricacion de metales contra si mismos, el desarrollo de lubricantes base agua y de nuevas superficies autolubricadas. Cuando no es posible reducir la friccion y desgaste mediante lubricacion, como en las aleaciones de magnesio, los liquidos ionicos se han estudiado como precursores de recubrimientos protectores. Se han determinado las interacciones superficiales y los procesos de corrosion sobre cobre y sobre acero con diferentes liquidos ionicos proticos y aproticos para desarrollar nuevos lubricantes y aditivos. En el contacto cobre/cobre, excepto el liquido ionico protico derivado del oleato, todos los liquidos ionicos estudiados presentan mejor comportamiento tribologico que el lubricante comercial Polialfaolefina 6. En el contacto acero/zafiro, los nuevos liquidos ionicos proticos son buenos lubricantes cuando se utilizan en estado puro, y, como aditivos en agua, generan peliculas adsorbidas sobre la superficie del metal reduciendo la friccion y el desgaste tras la evaporacion del agua. Para evitar el periodo de alta friccion inicial en presencia de agua, se han generado peliculas superficiales de liquido ionico sobre el acero en condiciones estaticas. El mejor comportamiento lubricante tanto en el contacto cobre/cobre como en el contacto acero/zafiro se obtiene para el liquido ionico protico derivado del anion adipato, con dos grupos carboxilicos. Las interacciones de los grupos hidroxilo y carboxilato con la superficie metalica y los puentes de hidrogeno entre cation y anion podrian ser los responsables del buen comportamiento tribologico. Se ha comparado el comportamiento tribologico de los liquidos ionicos aproticos derivados de imidazolio y tiazolio como lubricantes del contacto acero/zafiro, obteniendose los mejores resultados para los derivados del anion bis(trifluorometanosulfonil)imida, que evita a su vez los procesos de tribocorrosion. Se han generado recubrimientos sobre aleaciones de magnesio con tres liquidos ionicos derivados del anion fosfonato, tanto por inmersion como mediante cronoamperometria. Los nuevos recubrimientos reducen el dano superficial por deslizamiento o abrasion de la aleacion magnesio-aluminio pero no de la aleacion magnesio-cinc, que impide la formacion de recubrimientos continuos.
Enzymatic hydrolysis of cellulose pretreated with ionic liquids and N-methyl Morpholine N-Oxide
NASA Astrophysics Data System (ADS)
Yau Li, Elizabeth
The effect of N-methyl Morpholine N-Oxide (NMMO), 1-ethyl-3-methyl-imidazolium acetate ([Emim]Ac) and 1-ethyl-3-methyl-imidazolium diethyl phosphate ([Emim]DEP) on pretreatment and enzymatic hydrolysis of dissolving pulp was studied. X-ray diffraction measurements of regenerated cellulose from these solvents showed that solvent pretreatment reduces the crystallinity of cellulose. However, crystallinity might not be a major factor affecting the in-situ enzymatic hydrolysis of cellulose in these solvents. Although regenerated cellulose from [Emim]DEP showed the lowest crystallinity index (˜15%), in-situ enzymatic hydrolysis of cellulose dissolved in NMMO showed the highest cellulose conversion (68% compared to 65% for [Emim]Ac and 37% for [Emim]DEP at enzyme loading of 122 FPU/g). Moreover, results showed that enzymes could tolerate up to NMMO concentration of 100 g/L and still yield full conversion of cellulose. Since it is not necessary to remove all the NMMO, less amount of water will be required for the washing step and thus the process will be more economical. The HCH-1 model was used in an attempt to model the enzymatic hydrolysis of cellulose in NMMO. With the incorporation of NMMO inhibition and a factor to account for unreacted cellulose, the model was able to correlate the experimental data of the enzymatic hydrolysis of cellulose (6.68 g/L) at various NMMO concentrations (0, 50, 100, 150 and 250 g/L). However, the experimental results also suggest that NMMO might be deactivating the enzymes rather than inhibiting them. More studies need to be done at varying cellulose, NMMO and enzyme concentrations to find the exact nature of this deactivation of NMMO.
Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinxiu; Chen, Mengjun, E-mail: kyling@swust.edu.cn; Chen, Haiyan
2014-02-15
Highlights: • A Brønsted acidic ILs was used to leach Cu from WPCBs for the first time. • The particle size of WPCBs has significant influence on Cu leaching rate. • Cu leaching rate was higher than 99% under the optimum leaching conditions. • The leaching process can be modeled with shrinking core model, and the E{sub a} was 25.36 kJ/mol. - Abstract: In this work, a Brønsted acidic ionic liquid, 1-butyl-3-methyl-imidazolium hydrogen sulfate ([bmim]HSO{sub 4}), was used to leach copper from waste printed circuit boards (WPCBs, mounted with electronic components) for the first time, and the leaching behavior ofmore » copper was discussed in detail. The results showed that after the pre-treatment, the metal distributions were different with the particle size: Cu, Zn and Al increased with the increasing particle size; while Ni, Sn and Pb were in the contrary. And the particle size has significant influence on copper leaching rate. Copper leaching rate was higher than 99%, almost 100%, when 1 g WPCBs powder was leached under the optimum conditions: particle size of 0.1–0.25 mm, 25 mL 80% (v/v) ionic liquid, 10 mL 30% hydrogen peroxide, solid/liquid ratio of 1/25, 70 °C and 2 h. Copper leaching by [bmim]HSO{sub 4} can be modeled with the shrinking core model, controlled by diffusion through a solid product layer, and the kinetic apparent activation energy has been calculated to be 25.36 kJ/mol.« less
Jia, Jing; Liang, Xiaojing; Wang, Licheng; Guo, Yong; Liu, Xia; Jiang, Shengxiang
2013-12-13
A nanoporous array anodic titanium-supported co-polymeric ionic liquids (NAAT/PILs) solid-phase microextraction (SPME) fiber was prepared in situ on the titanium wire. NAAT was selected as the substrate, in view of its high surface-to-volume ratio, easy preparation, mechanical stability, and rich titanol groups on its surface which can anchor silica coupling agent containing vinyl and then introduce ionic liquid copolymers as sorbents. In this work, 1-vinyl-3-nonanol imidazolium bromide ([C9OHVIm]Br) and 1,4-di(3-vinylimidazolium) butane dibromide ([(VIM)2C4]2[Br]) were synthesized and used as monomer and crosslinker, respectively. Extraction properties of the NAAT/PILs fiber for polar alcohols and volatile fatty acids (VFAs) in aqueous matrix were examined using gaseous sampling-SPME (GS-SPME) and headspace SPME (HS-SPME) mode, respectively. Combining the superior properties of NAAT substrate and the strong hydrogen bond interaction of PILs to polar compounds, the NAAT/PILs SPME fiber showed much higher adsorption affinity to aliphatic alcohols than bare NAAT and pure PILs fibers. The detection limits (LOD) of established GS-SPME-GC-FID method are in the range of 0.35-17.30ngL(-1) with a linear range from 0.01 to 500ngmL(-1). Also, it showed high extraction performance toward volatile fatty acids (VFAs) compounds from aqueous matrix. Under the optimized SPME conditions, wide linear ranges were obtained with correlation coefficients (R(2)) greater than 0.99 and limits of detection were in the range of 0.85-8.74ngL(-1). Moreover, real-world samples were analyzed and good results were obtained. Copyright © 2013. Published by Elsevier B.V.
Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass.
Gräsvik, John; Winestrand, Sandra; Normark, Monica; Jönsson, Leif J; Mikkola, Jyri-Pekka
2014-04-30
Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation. The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance.
Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass
2014-01-01
Background Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose. Results Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation. Conclusions The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance. PMID:24779378
Wei, Xiaoxiao; Wang, Yuzhi; Chen, Jing; Xu, Panli; Zhou, Yigang
2018-05-15
A novel magnetic solid-phase extraction (MSPE) method based on 1-hexyl-3-methyl imidazolium chloride ionic liquid (IL) modified magnetic Fe 3 O 4 nanoparticles, hydroxylated multiwall carbon nanotubes (MWCNTs-OH) and zeolitic imidazolate frameworks (ZIFs) nanocomposites (Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL) were proposed and applied to extract α-chymotrypsin. The magnetic materials were synthesized successfully and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), thermal gravimetric analysis (TGA), fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and zeta potentials. Subsequently, the UV-vis spectrophotometer at about 280 nm was utilized to quantitatively analyze the α-chymotrypsin concentration in the supernatant. Furthermore, single factor experiments revealed that the extraction capacity was influenced by initial α-chymotrypsin concentration, ionic strength, extraction time, extraction temperature and pH value. The extraction capacity could reach up to about 635 mg g -1 under the optimized conditions, absolutely higher than that of extraction for Ovalbumin (OVA), Bovine serum albumin (BSA) and Bovine hemoglobin (BHb). In addition, the regeneration studies showed Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL particles could be reused several times and kept a high extraction capacity. Besides, the study of enzymatic activity also indicated that the activity of the extracted α-chymotrypsin was well maintained 93% of initial activity. What's more, the proposed method was successfully applied to extract α-chymotrypsin in porcine pancreas crude extract with satisfactory results. All of above conclusions highlight the great potential of the proposed Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL-MSPE method in the analysis of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.
Sánchez-Badillo, Joel; Gallo, Marco; Alvarado, Sandra; Glossman-Mitnik, Daniel
2015-08-20
Removal of hydrogen sulfide (H2S) and acid gases from natural gas is accomplished by absorption processes using a solvent. The gas solubility in a liquid can be used to measure the degree of removal of the gas and is quantified by the Henry's constant, the free energy of solvation at infinite dilution, or the excess chemical potential. In this work, Henry's constants and thermodynamic properties of solvation of H2S were calculated in three ionic liquids: [C4mim][PF6], [C4mim][BF4], and [C4mim][Cl] ([C4mim], 1-butyl-3-methyl imidazolium). The first step in this work was the evaluation of the force fields for the gas and condensed phases in order to obtain accurate values for the excess chemical potential for H2S on each ionic liquid using free energy perturbation techniques. In the H2S-[C4mim][PF6] and H2S-[C4mim][BF4] systems, the results obtained by molecular simulation agree with the experimental values reported in the literature. However, the solvation free energy calculated for the H2S-[C4mim][Cl] system can be considered predictive because of the lack of experimental data at the simulated conditions. Based on these results, the best solvent for removing H2S is [C4mim][Cl] because it has the highest affinity for this species (lowest value of the Henry's constant). Also, solvation thermodynamic properties such as enthalpy and entropy were calculated in order to evaluate their contribution to the free energy of solvation.
Ghanem, Ouahid Ben; Shah, Syed Nasir; Lévêque, Jean-Marc; Mutalib, M I Abdul; El-Harbawi, Mohanad; Khan, Amir Sada; Alnarabiji, Mohamad Sahban; Al-Absi, Hamada R H; Ullah, Zahoor
2018-03-01
Over the past decades, Ionic liquids (ILs) have gained considerable attention from the scientific community in reason of their versatility and performance in many fields. However, they nowadays remain mainly for laboratory scale use. The main barrier hampering their use in a larger scale is their questionable ecological toxicity. This study investigated the effect of hydrophobic and hydrophilic cyclic cation-based ILs against four pathogenic bacteria that infect humans. For that, cations, either of aromatic character (imidazolium or pyridinium) or of non-aromatic nature, (pyrrolidinium or piperidinium), were selected with different alkyl chain lengths and combined with both hydrophilic and hydrophobic anionic moieties. The results clearly demonstrated that introducing of hydrophobic anion namely bis((trifluoromethyl)sulfonyl)amide, [NTF 2 ] and the elongation of the cations substitutions dramatically affect ILs toxicity behaviour. The established toxicity data [50% effective concentration (EC 50 )] along with similar endpoint collected from previous work against Aeromonas hydrophila were combined to developed quantitative structure-activity relationship (QSAR) model for toxicity prediction. The model was developed and validated in the light of Organization for Economic Co-operation and Development (OECD) guidelines strategy, producing good correlation coefficient R 2 of 0.904 and small mean square error (MSE) of 0.095. The reliability of the QSAR model was further determined using k-fold cross validation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Small-angle neutron scattering study of a dense microemulsion system formed with an ionic liquid
Kang, T.; Qian, S.; Smith, G. S.; ...
2017-09-07
Mixtures of water, octane and 1-octanol with 1-tetradecyl-3-methylimidazolium chloride (C14MIM·Cl), often referred to as a surface active ionic liquid (SAIL), form water-in-oil microemulsions that have potential application as extraction media for various metal ions. Here in this work, we present a structural study by small-angle neutron scattering (SANS) of dense microemulsions formed by surfactant-rich mixtures of these four compounds to understand how the SAIL can be used to tune the structures and properties of the microemulsions. The SANS experiments revealed that the microemulsions formed are composed of two phases, a water-in-oil microemulsion and a bicontinuous microemulsion, which becomes the dominantmore » phase at high surfactant concentration. In this concentration regime, the surfactant film becomes more rigid, having a higher bending modulus that results from the parallel stacking of the imidazolium ring of the SAIL. At lower surfactant concentrations, the molecular packing of the SAIL does not change with the water content of the microemulsion. Finally, the results presented here correlate well with previously observed changes in the interaction between the IL cation and metal ions (Y. Tong, L. Han and Y. Yang, Ind. Eng. Chem. Res., 2012, 51, 16438–16443), while the capacity of the microemulsion system for water remains high enough for using the system as an extraction medium.« less
Small-angle neutron scattering study of a dense microemulsion system formed with an ionic liquid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, T.; Qian, S.; Smith, G. S.
Mixtures of water, octane and 1-octanol with 1-tetradecyl-3-methylimidazolium chloride (C14MIM·Cl), often referred to as a surface active ionic liquid (SAIL), form water-in-oil microemulsions that have potential application as extraction media for various metal ions. Here in this work, we present a structural study by small-angle neutron scattering (SANS) of dense microemulsions formed by surfactant-rich mixtures of these four compounds to understand how the SAIL can be used to tune the structures and properties of the microemulsions. The SANS experiments revealed that the microemulsions formed are composed of two phases, a water-in-oil microemulsion and a bicontinuous microemulsion, which becomes the dominantmore » phase at high surfactant concentration. In this concentration regime, the surfactant film becomes more rigid, having a higher bending modulus that results from the parallel stacking of the imidazolium ring of the SAIL. At lower surfactant concentrations, the molecular packing of the SAIL does not change with the water content of the microemulsion. Finally, the results presented here correlate well with previously observed changes in the interaction between the IL cation and metal ions (Y. Tong, L. Han and Y. Yang, Ind. Eng. Chem. Res., 2012, 51, 16438–16443), while the capacity of the microemulsion system for water remains high enough for using the system as an extraction medium.« less
Feng, Guang; Zhao, Wei; Cummings, Peter T.; ...
2016-03-29
Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. In order to explore the molecular mechanism, RTILs/carbon pieces mixture we investigated it by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). Our study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presencemore » of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. Furthermore, this work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.« less
NASA Astrophysics Data System (ADS)
Mali, Sawanta S.; Betty, Chirayath A.; Bhosale, Popatrao N.; Patil, Pramod S.; Hong, Chang Kook
2014-06-01
Simple and low temperature hydrothermal process is employed to synthesize exotic nanostructures of TiO2. The nanostructures are obtained merely by changing the nature of the precursors and processing parameters. The chloride and isopropoxide salts of titanium are used to grow high quality thin films comprising anatase nanocorals, rutile nanorods and rutile nanoflowers respectively. A novel route of addition of room temperature ionic liquid (RTIL) is used to synthesize hitherto unexplored nano-morphologies. The Bronsted Acidic Ionic Liquid [BAIL] 0.01 M, 1: 3-ethoxycarbonylethyl-1-methyl-imidazolium chloride [CMIM][HSO4] RTIL directed growth of TiO2 flowers with bunch of aligned nanorods are obtained. The structural, optical and morphological properties of hydrothermally grown TiO2 samples are studied with the different characterization techniques. The influence of these exotic nano-morphologies on the performance of dye sensitized solar cells (DSSCs) is investigated in detail. It is found that [CMIM][HSO4] can facilitate the formation of novel nanoflower morphology with uniform, dense, and collectively aligned in regular petal like oriented TiO2 nanorods and hence improves the dye adsorption and the photovoltaic performance of DSSCs, typically in short-circuit photocurrent and power conversion efficiency. A best power conversion efficiency of 6.63% has been achieved on a DSSC based on nanoflowers (TNF) film obtained from a [CMIM][HSO4] solution.
Casado, Nerea; Hilder, Matthias; Pozo-Gonzalo, Cristina; Forsyth, Maria; Mecerreyes, David
2017-04-22
Biomass-derived polymers, such as lignin, contain quinone/ hydroquinone redox moieties that can be used to store charge. Composites based on the biopolymer lignin and several conjugated polymers have shown good charge-storage properties. However, their performance has been only studied in acidic aqueous media limiting their applications mainly to supercapacitors. Here, we show that PEDOT/lignin (PEDOT: poly(3,4-ethylenedioxythiophene)) biopolymers are electroactive in aprotic ionic liquids (ILs) and we move a step further by assembling sodium full cell batteries using PEDOT/lignin as electrode material and IL electrolytes. Thus, the electrochemical activity and cycling of PEDOT/lignin electrodes was investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (BMPyrFSI), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) IL electrolytes. The effects of water and sodium salt addition to the ILs were investigated to obtain optimum electrolyte systems for sodium batteries. Finally, sodium batteries based on PEDOT/lignin cathode with imidazolium-based IL electrolyte showed higher capacity values than pyrrolidinium ones, reaching 70 mAhg -1 . Our results demonstrate that PEDOT/lignin composites can serve as low cost and sustainable cathode materials for sodium batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-Capacitance Hybrid Supercapacitor Based on Multi-Colored Fluorescent Carbon-Dots.
Genc, Rukan; Alas, Melis Ozge; Harputlu, Ersan; Repp, Sergej; Kremer, Nora; Castellano, Mike; Colak, Suleyman Gokhan; Ocakoglu, Kasim; Erdem, Emre
2017-09-11
Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 μF/cm 2 ) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.
Liu, Tong; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Zhang, Jun; Sun, Xi; Zhang, Cheng
2015-12-17
In the present study, the toxic effects of 1-octyl-3-methylimidazolium chloride ([Omim]Cl), 1-octyl-3-methylimidazolium bromide ([Omim]Br) and 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF4) in soil on Vicia faba (V. faba) seedlings at 0, 100, 200, 400, 600 and 800 mg kg(-1) were assessed for the first time at the cellular and molecular level. Moreover, the toxicity of these three ionic liquids (ILs) was evaluated, and the influence of anions on the toxicity of the ILs was assessed. The results showed that even at 100 mg kg(-1), the growth of V. faba seedlings was inhibited after exposure to the three ILs, and the inhibitory effect was enhanced with increasing concentrations of the three ILs. The level of reactive oxygen species (ROS) was increased after exposure to the three ILs, which resulted in lipid peroxidation, DNA damage and oxidative damage in the cells of the V. faba seedlings. In addition, the anion structure could influence the toxicity of ILs, and toxicity of the three tested ILs decreased in the following order: [Omim]BF4 > [Omim]Br > [Omim]Cl. Moreover, oxidative damage is the primary mechanism by which ILs exert toxic effects on crops, and ILs could reduce the agricultural productivity.
Mączka, Mirosław; Marinho Costa, Nathalia Leal; Gągor, Anna; Paraguassu, Waldeci; Sieradzki, Adam; Hanuza, Jerzy
2016-05-18
We report the synthesis and characterisation of a magnesium formate framework templated by protonated imidazole. Single-crystal X-ray diffraction data showed that this compound crystallizes in the monoclinic structure in the P21/n space group with lattice parameters a = 12.1246(4) Å, b = 12.2087(5) Å, c = 12.4991(4) Å and β = 91.39(1)°. The antiparallel arrangement of the dipole moments associated with imidazolium cations suggests the antiferroelectric character of the room-temperature phase. The studied compound undergoes a structural phase transition at 451 K associated with a halving of the c lattice parameter and the disappearance of the antiferroelectric order. The monoclinic symmetry is preserved and the new metrics are a = 12.261(7) Å, b = 12.290(4) Å, c = 6.280(4) Å, and β = 90.62(5)°. Raman and IR data are consistent with the X-ray diffraction data. They also indicate that the disorder of imidazolium cations plays a significant role in the mechanism of the phase transition. Dielectric data show that the phase transition is associated with a relaxor nature of electric ordering. We also report high-pressure Raman scattering studies of this compound that revealed the presence of two pressure-induced phase transitions near 3 and 7 GPa. The first transition is most likely associated with a rearrangement of the imidazolium cations without any significant distortion of these cations and the magnesium formate framework, whereas the second transition leads to strong distortion of both the framework and imidazolium cations. High-pressure data also show that imidazolium magnesium formate does not show any signs of amorphization up to 11.4 GPa.
Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li
2014-08-05
The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.
Selection of optimum ionic liquid solvents for flavonoid and phenolic acids extraction
NASA Astrophysics Data System (ADS)
Rahman, N. R. A.; Yunus, N. A.; Mustaffa, A. A.
2017-06-01
Phytochemicals are important in improving human health with their functions as antioxidants, antimicrobials and anticancer agents. However, the quality of phytochemicals extract relies on the efficiency of extraction process. Ionic liquids (ILs) have become a research phenomenal as extraction solvent due to their unique properties such as unlimited range of ILs, non-volatile, strongly solvating and may become either polarity. In phytochemical extraction, the determination of the best solvent that can extract highest yield of solute (phytochemical) is very important. Therefore, this study is conducted to determine the best IL solvent to extract flavonoids and phenolic acids through a property prediction modeling approach. ILs were selected from the imidazolium-based anion for alkyl chains ranging from ethyl > octyl and cations consisting of Br, Cl, [PF6], BF4], [H2PO4], [SO4], [CF3SO3], [TF2N] and [HSO4]. This work are divided into several stages. In Stage 1, a Microsoft Excel-based database containing available solubility parameter values of phytochemicals and ILs including its prediction models and their parameters has been established. The database also includes available solubility data of phytochemicals in IL, and activity coefficient models, for solid-liquid phase equilibrium (SLE) calculations. In Stage 2, the solubility parameter values of the flavonoids (e.g. kaempferol, quercetin and myricetin) and phenolic acids (e.g. gallic acid and caffeic acid) are determined either directly from database or predicted using Stefanis and Marrero-Gani group contribution model for the phytochemicals. A cation-anion contribution model is used for IL. In Stage 3, the amount of phytochemicals extracted can be determined by using SLE relationship involving UNIFAC-IL model. For missing parameters (UNIFAC-IL), they are regressed using available solubility data. Finally, in Stage 4, the solvent candidates are ranked and five ILs, ([OMIM] [TF2N], [HeMIM] [TF2N], [HMIM] [TF2N], [HeMIM] [CF3SO3] and [HMIM] [CF3SO3]) were identified and selected.
Medina Ramos, Jonnathan; Zhang, Weiwei; Yoon, Kichul; ...
2018-03-08
Bismuth electrodes undergo distinctive electrochemically induced structural changes in nonaqueous imidazolium ([Im])(+))-based ionic liquid solutions under cathodic polarization. In situ X-ray reflectivity (XR) studies have been undertaken to probe well-ordered Bi (001) films which originally contain a native Bi 2O 3 layer. This oxide layer gets reduced to Bi(0)during the first cyclic voltammetry (CV) scan in acetonitrile solutions containing 1-butyl-3-methylimidazolium ([BMIM](+)) electrolytes. Approximately 60% of the Bi (001) Bragg peak reflectivity is lost during a potential sweep between -1.5 and -1.9 V vs Ag/AgCI due to a similar to 4-10% thinning and a similar to 40% decrease in lateral sizemore » of Bi (001) domains, which are mostly reversed during the anodic scan. Repeated potential cycling enhances the thinning and roughening of the films, suggesting that partial dissolution of Bi ensues during negative polarization. The mechanism of this behavior is understood through molecular dynamics simulations using ReaxFF and density functional theory (DFT) calculations. Both approaches indicate that [Im] + cations bind to the metal surface more strongly than tetrabutylammonium (TBA +) as the potential and the charge on the Bi surface become more negative. ReaxFF simulations predict a higher degree of disorder for a negatively charged Bi (001) slab in the presence of the [Im](+)cations and substantial migration of Bi atoms from the surface. DFT simulations show the formation of Bi center dot center dot center dot[Im] + complexes that lead to the dissolution of Bi atoms from step edges on the Bi (001) surface at potentials between -1.65 and -1.95 V. Bi desorption from a flat terrace requires a potential of approximately -2.25 V. Together, these results suggest the formation of a Bi center dot center dot center dot[Im] + complex through partial cathodic corrosion of the Bi film under conditions (potential and electrolyte composition) that favor the catalytic reduction of CO 2 .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina Ramos, Jonnathan; Zhang, Weiwei; Yoon, Kichul
Bismuth electrodes undergo distinctive electrochemically induced structural changes in nonaqueous imidazolium ([Im])(+))-based ionic liquid solutions under cathodic polarization. In situ X-ray reflectivity (XR) studies have been undertaken to probe well-ordered Bi (001) films which originally contain a native Bi 2O 3 layer. This oxide layer gets reduced to Bi(0)during the first cyclic voltammetry (CV) scan in acetonitrile solutions containing 1-butyl-3-methylimidazolium ([BMIM](+)) electrolytes. Approximately 60% of the Bi (001) Bragg peak reflectivity is lost during a potential sweep between -1.5 and -1.9 V vs Ag/AgCI due to a similar to 4-10% thinning and a similar to 40% decrease in lateral sizemore » of Bi (001) domains, which are mostly reversed during the anodic scan. Repeated potential cycling enhances the thinning and roughening of the films, suggesting that partial dissolution of Bi ensues during negative polarization. The mechanism of this behavior is understood through molecular dynamics simulations using ReaxFF and density functional theory (DFT) calculations. Both approaches indicate that [Im] + cations bind to the metal surface more strongly than tetrabutylammonium (TBA +) as the potential and the charge on the Bi surface become more negative. ReaxFF simulations predict a higher degree of disorder for a negatively charged Bi (001) slab in the presence of the [Im](+)cations and substantial migration of Bi atoms from the surface. DFT simulations show the formation of Bi center dot center dot center dot[Im] + complexes that lead to the dissolution of Bi atoms from step edges on the Bi (001) surface at potentials between -1.65 and -1.95 V. Bi desorption from a flat terrace requires a potential of approximately -2.25 V. Together, these results suggest the formation of a Bi center dot center dot center dot[Im] + complex through partial cathodic corrosion of the Bi film under conditions (potential and electrolyte composition) that favor the catalytic reduction of CO 2 .« less
NASA Astrophysics Data System (ADS)
Vinodha, M.; Senthilkumar, K.
2018-05-01
The structure-activity relationship of fused π-conjugated imidazolium cation with three counter anion molecules, BF4-, CF3SO3- and (CF3SO2)2N-, was studied using electronic structure calculations. The structural, opto-electronic and charge transport properties of these complexes were studied. The charge transfer from π-conjugated imidazolium(I) to counter anion was confirmed in all the studied complexes. Interaction energy varies significantly depending on the counter anion and the stability was found higher for I-BF4 complex than both I-CF3SO3 and I-(CF3SO2)2N complexes. The strong (C-H)+...F- hydrogen bond of length 1.95 Å between fused π-conjugated imidazolium and BF-4 anion is the driving force for the strongest interaction energy in I-BF4 complex. The energy decomposition analysis confirms that the interaction between imidazolium and counter anion is mainly driven by electrostatic and orbital interaction. It has been observed that the absorption spectra of the complex are independent of anion nature but the influence of anion character is observed on frontier molecular orbital pattern. The charge transport property of I-BF4 complex was studied by using tight-binding Hamiltonian approach and found that the hole mobility in I-BF4 is 1.13 × 10-4 cm2 V-1 s-1.
Duin, Marcel A; Clement, Nicolas D; Cavell, Kingsley J; Elsevier, Cornelis J
2003-02-07
A zerovalent platinum(carbene) complex with two monoalkene ligands, which is able to activate C-H bonds of imidazolium salts at room temperature to yield isolable hydrido platinum(II) bis(carbene) compounds, has been synthesised for the first time.
NASA Astrophysics Data System (ADS)
Zhu, Lei; Cui, Li; Miao, Jianjun
2006-03-01
A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.
Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability.
Chen, Ye; Tao, Jing; Deng, Lin; Li, Liang; Li, Jun; Yang, Yang; Khashab, Niveen M
2013-08-14
Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 10(4) Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable.
NASA Astrophysics Data System (ADS)
Raju, Gembali; Vishwanath, S.; Prasad, Archana; Patel, Basant K.; Prabusankar, Ganesan
2016-03-01
New water soluble 4,5-bis imidazolium tagged acridines have been synthesized and structurally characterized by multinuclear NMR and single crystal X-ray diffraction techniques. The DNA binding and anti-microbial activities of these acridine derivatives were investigated by fluorescence and far-UV circular dichroism studies.
2012-01-01
Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved in the aqueous IL solution. Of the three IL studied [C2mim]OAc gave the best saccharification yield, material recovery and delignification. The effects of [C2mim]OAc pretreatment resemble those of aqueous alkali pretreatments while those of [C2mim]Cl and [C4mim]Cl resemble aqueous acid pretreatments. The use of imidazolium IL solvents with shorter alkyl chains results in accelerated dissolution, pretreatment and degradation. PMID:22920045
Zhong, Xiujuan; Liu, Zhiping; Cao, Dapeng
2011-08-25
A cost-effective, classical united-atom (UA) force field for ionic liquids (ILs) was proposed, which can be used in simulations of ILs composed by 1-alkyl-3-methyl-imidazolium cations ([C(n)mim](+)) and seven kinds of anions, including tetrafluoroborate ([BF(4)](-)), hexafluorophosphate ([PF(6)](-)), methylsulfate ([CH(3)SO(4)](-)), trifluoromethylsulfonate ([CF(3)SO(3)](-)), acetate ([CH(3)CO(2)](-)), trifluoroacetate ([CF(3)CO(2)](-)), and bis(trifluoromethylsulfonyl)amide ([NTf(2)](-)). The same strategy in our previous work (J. Phys. Chem. B 2010, 114, 4572) was used to parametrize the force field, in which the effective atom partial charges are fitted by the electrostatic potential surface (ESP) of ion pair dimers to account for the overall effects of polarization in ILs. The total charges (absolute values) on the cation/anion are in the range of 0.64-0.75, which are rescaled to 0.8 for all kinds of ions by a compromise between transferability and accuracy. Extensive molecular dynamics (MD) simulations were performed over a wide range of temperatures to validate the force field, especially on the enthalpies of vaporization (ΔH(vap)) and transport properties, including the self-diffusion coefficient and shear viscosity. The liquid densities were predicted very well for all of the ILs studied in this work with typical deviations of less than 1%. The simulated ΔH(vap) at 298 and 500 K are also in good agreement with the measured values by different experimental methods, with a slight overestimation of about 5 kJ/mol. The influence of ΔC(p) (the difference between the molar heat capacity at constant pressure of the gas and that of liquid) on the calculation of ΔH(vap) is also discussed. The transport coefficients were estimated by the equilibrium MD method using 20-60 ns trajectories to improve the sampling. The proposed force field gives a good description of the self-diffusion coefficients and shear viscosities, which is comparable to the recently developed polarizable force field. Although slightly lower dynamics is found in simulations by our force field, the order of magnitude of the self-diffusion coefficient and viscosity are reproduced for all the ILs very well over a wide temperature range. The largest underestimation of the self-diffusion coefficient is about one-third of the experimental values, while the largest overestimation of the viscosity is about two times the experimental values. © 2011 American Chemical Society
Functionalized ionic liquids and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariprakasha, Humcha Krishnamurthy; Rangan, Krishnaswamy Kasthuri; Sudarshan, Tirumalai Srinivas
2018-01-16
Disclosure of functionalized ionic liquids. Use of disclosed ionic liquids as solvent for carbon dioxide. Use of disclosed ionic liquids as flame retardant. Use of disclosed ionic liquids for coating fabric to obtain flame retardant fabric.
Zeng, Annie Xu; Chin, Sung-Tong; Nolvachai, Yada; Kulsing, Chadin; Sidisky, Leonard M; Marriott, Philip J
2013-11-25
Due to their distinct chemical properties, the application of ionic liquid (IL) compounds as gas chromatography (GC) stationary phases offer unique GC separation especially in the analysis of geometric and positional fatty acid methyl ester (FAME) isomers. Elution behaviour of FAME on several commercialised IL capillary columns including phosphonium based SLB-IL59, SLB-IL60, SLB-IL61 and SLB-IL76 and imidazolium based SLB-IL82, SLB-IL100, and SLB-IL111 as well as a general purpose column SLB-5ms, were evaluated in gas chromatography-mass spectrometry (GC-MS) analysis. The phases were further characterised by using a linear solvation energy relationship (LSER) approach according to the equivalent chain length (ECL) index of FAME. Among all tested IL columns, elution temperatures of saturated FAME increased as their McReynolds' polarity value decreased, except for IL60. ECL values increased markedly as the stationary phase polarity increased, particularly for the polyunsaturated FAME. The LSER study indicated a lowest l/e value at 0.864 for IL111, displaying phase selectivity towards unsaturated FAME, with higher peak capacity within a carbon number isomer group. s and e descriptors calculated from LSER were validated by excellent correlation with dipole moments and lowest unoccupied molecular orbital (LUMO) energies, with R(2) values of 0.99 and 0.92 respectively, calculated using GAUSSIAN. Copyright © 2013 Elsevier B.V. All rights reserved.
Abbasi, Vajihe; Sarafraz-Yazdi, Ali; Amiri, Amirhassan; Vatani, Hossein
2016-01-01
A headspace solid-phase microextraction (HS-SPME) method was developed for isolation of monocyclic aromatic amines from water samples followed by gas chromatography–flame ionization detector (GC–FID). In this work, the effect of the presence of ionic liquid (namely, 1-hexyl-3-methyl-imidazolium hexafluorophosphate [C6MIM][PF6]) was investigated in the sol–gel coating solutions on the morphology and extraction behavior of the resulting hybrid organic–inorganic sol–gel sorbents utilized in SPME. Hydroxy-terminated poly(dimethylsiloxane) (PDMS) was used as the sol–gel active organic component for sol–gel hybrid coatings. Two different coated fibers that were prepared are PDMS and PDMS-IL ([C6MIM][PF6]) fibers. Under the optimal conditions, the method detection limits (S/N = 3) with PDMS-IL were in the range of 0.001–0.1 ng/mL and the limits of quantification (S/N = 10) between 0.005 and 0.5 ng/mL. The relative standard deviations for one fiber (n = 5) were obtained from 3.1 up to 8.5% and between fibers or batch to batch (n = 3) in the range of 5.3–10.1%. The developed method was successfully applied to real water and juice fruits samples while the relative recovery percentages obtained for the spiked water samples at 0.1 ng/mL were from 83.3 to 95.0%. PMID:26759488
The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes.
Kuzmina, O; Hassan, N H; Patel, L; Ashworth, C; Bakis, E; White, A J P; Hunt, P A; Welton, T
2017-09-28
Solvatochromic transition metal (TM)-complexes with weakly associating counter-anions are often used to evaluate traditional neutral solvent and anion coordination ability. However, when employed in ionic liquids (IL) many of the common assumptions made are no longer reliable. This study investigates the coordinating ability of weakly coordinating IL anions in traditional solvents and within IL solvents employing a range of solvatochromic copper complexes. Complexes of the form [Cu(acac)(tmen)][X] (acac = acetylacetonate, tmen = tetramethylethylenediamine) where [X] - = [ClO 4 ] - , Cl - , [NO 3 ] - , [SCN] - , [OTf] - , [NTf 2 ] - and [PF 6 ] - have been synthesised and characterised both experimentally and computationally. ILs based on these anions and imidazolium and pyrrolidinium cations, some of which are functionalised with hydroxyl and nitrile groups, have been examined. IL-anion coordination has been investigated and compared to typical weakly coordinating anions. We have found there is potential for competition at the Cu-centre and cases of anions traditionally assigned as weakly associating that demonstrate a stronger than expected level of coordinating ability within ILs. [Cu(acac)(tmen)][PF 6 ] is shown to contain the least coordinating anion and is established as the most sensitive probe studied here. Using this probe, the donor numbers (DNs) of ILs have been determined. Relative donor ability is further confirmed based on the UV-Vis of a neutral complex, [Cu(sacsac) 2 ] (sacsac = dithioacetylacetone), and DNs evaluated via 23 Na NMR spectroscopy. We demonstrate that ILs can span a wide donor range, similar in breadth to conventional solvents.