Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.
Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël
2008-09-01
Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.
Chemical reactions directed Peptide self-assembly.
Rasale, Dnyaneshwar B; Das, Apurba K
2015-05-13
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.
Chemical Reactions Directed Peptide Self-Assembly
Rasale, Dnyaneshwar B.; Das, Apurba K.
2015-01-01
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Hai-dong; Cui, Guo-hong; Yang, Jia-jun
Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. Thismore » designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.« less
Self-assembled peptide nanostructures for functional materials
NASA Astrophysics Data System (ADS)
Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.
2016-10-01
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Okesola, Babatunde O; Mata, Alvaro
2018-05-21
Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.
Tailoring peptide amphiphiles and their assemblies for biomedical applications
NASA Astrophysics Data System (ADS)
Lin, Brian
Peptide amphiphiles (PAs) are molecules composed of a peptide conjugated to a hydrophobic moiety, commonly a fatty acid. They closely resemble the structure of naturally occurring lipopeptides, produced by microbes as signaling and antimicrobial agents. The amphiphilic nature of PAs in concert with the large number of discovered functional peptides inspired scientists to exploit this molecular architecture for producing synthetic self-assembled bioactive materials. PA assemblies are sought after for a wide breadth of applications including disease therapy, regenerative medicine, and catalysis. However, with PAs, the peptide chemistry is a double-edged sword. The peptide component contributes significantly to both the activity and self-assembly. The physiochemical properties of different PAs lead to unique aggregation stability and morphological characteristics which are unpredictable, a priori. Therefore it is challenging to design bioactive PAs and control their self-assembly, simultaneously. This limitation slows the development of PAs for medical use. In this dissertation, methods to control the self-assembly of PAs and the effects of acylating a functional peptide will be discussed. In one part, efforts to direct the self-assembly of PAs into small spherical aggregates, a morphology infrequently observed, will be described. In another section, a strategy to control the stability of PA assemblies will be discussed. In the last section, a pH-responsive membrane perturbing peptide was modified with fatty acid tails and the properties of the resulting PAs will be presented. This dissertation provides some fundamental insight for the use and design of PA self-assemblies.
Peptide self-assembly: thermodynamics and kinetics.
Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai
2016-10-21
Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.
Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto
2015-10-14
The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.
Xiang, Xu; Ding, Xiaochu; Moser, Trevor; Gao, Qi; Shokuhfar, Tolou; Heiden, Patricia A
2015-04-01
Peptide-functionalized polymeric nanoparticles were designed and self-assembled into continuous nanoparticle fibers and three-dimensional scaffolds via ionic complementary peptide interaction. Different nanoparticle compositions can be designed to be appropriate for each desired drug, so that the release of each drug is individually controlled and the simultaneous sustainable release of multiple drugs is achieved in a single scaffold. A self-assembled scaffold membrane was incubated with NIH3T3 fibroblast cells in a culture dish that demonstrated non-toxicity and non-inhibition on cell proliferation. This type of nanoparticle scaffold combines the advantages of peptide self-assembly and the versatility of polymeric nanoparticle controlled release systems for tissue engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Dongni; Zhang, Shuangying; Zhao, Yuyuan; Ao, Ningjian; Ramakrishna, Seeram; He, Liumin
2018-03-16
RADA16-I (Ac-(RADA) 4 -CONH 2 ) is a widely investigated self-assembling peptide (SAP) in the biomedical field. It can undergo ordered self-assembly to form stable secondary structures, thereby further forming a nanofiber hydrogel. The modification of RADA16-I with functional peptide motifs has become a popular research topic. Researchers aim to exhibit particular biomedical signaling, and subsequently, further expand its applications. However, only a few fundamental reports are available on the influences of the peptide motifs on self-assembly mechanisms of designer functional RADA16-I SAPs. In this study, we designed RGD-modified RADA16-I SAPs with a series of net charges and amphiphilicities. The assembly/reassembly of these functionally designer SAPs was thoroughly studied using Raman spectroscopy, CD spectroscopy, and AFM. The nanofiber morphology and the secondary structure largely depended on the balance between the hydrophobic effects versus like-charge repulsions of the motifs, which should be to the focus in order to achieve a tailored nanostructure. Our study would contribute insight into considerations for sophisticated design of SAPs for biomedical applications.
Carter, Joshua D; LaBean, Thomas H
2011-03-22
An interesting alternative to top-down nanofabrication is to imitate biology, where nanoscale materials frequently integrate organic molecules for self-assembly and molecular recognition with ordered, inorganic minerals to achieve mechanical, sensory, or other advantageous functions. Using biological systems as inspiration, researchers have sought to mimic the nanoscale composite materials produced in nature. Here, we describe a combination of self-assembly, molecular recognition, and templating, relying on an oligonucleotide covalently conjugated to a high-affinity gold-binding peptide. After integration of the peptide-coupled DNA into a self-assembling superstructure, the templated peptides recognize and bind gold nanoparticles. In addition to providing new ways of building functional multinanoparticle systems, this work provides experimental proof that a single peptide molecule is sufficient for immobilization of a nanoparticle. This molecular construction strategy, combining DNA assembly and peptide recognition, can be thought of as programmable, granular, artificial biomineralization. We also describe the important observation that the addition of 1-2% Tween 20 surfactant to the solution during gold particle binding allows the gold nanoparticles to remain soluble within the magnesium-containing DNA assembly buffer under conditions that usually lead to the aggregation and precipitation of the nanoparticles.
Wang, Baichuan; Sun, Caixia; Shao, Zengwu; Yang, Shuhua; Che, Biao; Wu, Qiang; Liu, Jianxiang
2014-01-01
Designer self-assembling peptide nanofiber hydrogel scaffolds have been considered as promising biomaterials for tissue engineering because of their excellent biocompatibility and biofunctionality. Our previous studies have shown that a novel designer functionalized self-assembling peptide nanofiber hydrogel scaffold (RLN/RADA16, LN-NS) containing N-terminal peptide sequence of link protein (link N) can promote nucleus pulposus cells (NPCs) adhesion and three-dimensional (3D) migration and stimulate biosynthesis of type II collagen and aggrecan by NPCs in vitro. The present study has extended these investigations to determine the effects of this functionalized LN-NS on bone marrow stem cells (BMSCs), a potential cell source for NP regeneration. Although the functionalized LN-NS cannot promote BMSCs proliferation, it significantly promotes BMSCs adhesion compared with that of the pure RADA16 hydrogel scaffold. Moreover, the functionalized LN-NS remarkably stimulates biosynthesis and deposition of type II collagen and aggrecan. These data demonstrate that the functionalized peptide nanofiber hydrogel scaffold containing link N peptide as a potential matrix substrate will be very useful in the NP tissue regeneration. PMID:25243141
Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles.
Unzueta, Ugutz; Ferrer-Miralles, Neus; Cedano, Juan; Zikung, Xu; Pesarrodona, Mireia; Saccardo, Paolo; García-Fruitós, Elena; Domingo-Espín, Joan; Kumar, Pradeep; Gupta, Kailash C; Mangues, Ramón; Villaverde, Antonio; Vazquez, Esther
2012-11-01
Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides. Copyright © 2012 Elsevier Ltd. All rights reserved.
Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides
Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; ...
2014-06-19
Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less
Seki, Takakazu; So, Christopher R; Page, Tamon R; Starkebaum, David; Hayamizu, Yuhei; Sarikaya, Mehmet
2018-02-06
The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.
Cheng, Tzu-Yun; Chen, Ming-Hong; Chang, Wen-Han; Huang, Ming-Yuan; Wang, Tzu-Wei
2013-03-01
Brain injury is almost irreparable due to the poor regenerative capability of neural tissue. Nowadays, new therapeutic strategies have been focused on stem cell therapy and supplying an appropriate three dimensional (3D) matrix for the repair of injured brain tissue. In this study, we specifically linked laminin-derived IKVAV motif on the C-terminal to enrich self-assembling peptide RADA(16) as a functional peptide-based scaffold. Our purpose is providing a functional self-assembling peptide 3D hydrogel with encapsulated neural stem cells to enhance the reconstruction of the injured brain. The physiochemical properties reported that RADA(16)-IKVAV can self-assemble into nanofibrous morphology with bilayer β-sheet structure and become gelationed hydrogel with mechanical stiffness similar to brain tissue. The in vitro results showed that the extended IKVAV sequence can serve as a signal or guiding cue to direct the encapsulated neural stem cells (NSCs) adhesion and then towards neuronal differentiation. Animal study was conducted in a rat brain surgery model to demonstrate the damage in cerebral neocortex/neopallium loss. The results showed that the injected peptide solution immediately in situ formed the 3D hydrogel filling up the cavity and bridging the gaps. The histological analyses revealed the RADA(16)-IKVAV self-assembling peptide hydrogel not only enhanced survival of encapsulated NSCs but also reduced the formation of glial astrocytes. The peptide hydrogel with IKVAV extended motifs also showed the support of encapsulated NSCs in neuronal differentiation and the improvement in brain tissue regeneration after 6 weeks post-transplantation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides
Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet
2012-01-01
The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620
Tuning peptide self-assembly by an in-tether chiral center
Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang
2018-01-01
The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.
CHEMO/mechanical energy conversiona via supramolecular self-assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn, David G.; Conticello, Vincent
With the assembly codes for protein/peptide self-assembly sufficiently developed to control these phases, we are positioned to address critical requirements for generating unique self-propagating functional assemblies such as chemical batteries and engines that can be used to extend the capability of living cells. These integrative functional assemblies can then be used within cells to create new functions that will address the world’s energy challenges.
Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.
Hnilova, Marketa; Karaca, Banu Taktak; Park, James; Jia, Carol; Wilson, Brandon R; Sarikaya, Mehmet; Tamerler, Candan
2012-05-01
Development of versatile and flexible assembly systems for fabrication of functional hybrid nanomaterials with well-defined hierarchical and spatial organization is of a significant importance in practical nanobiotechnology applications. Here we demonstrate a bio-enabled self-assembly technique for fabrication of multi-layered protein and nanometallic assemblies utilizing a modular gold-binding (AuBP1) fusion tag. To accomplish the bottom-up assembly we first genetically fused the AuBP1 peptide sequence to the C'-terminus of maltose-binding protein (MBP) using two different linkers to produce MBP-AuBP1 hetero-functional constructs. Using various spectroscopic techniques, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), we verified the exceptional binding and self-assembly characteristics of AuBP1 peptide. The AuBP1 peptide tag can direct the organization of recombinant MBP protein on various gold surfaces through an efficient control of the organic-inorganic interface at the molecular level. Furthermore using a combination of soft-lithography, self-assembly techniques and advanced AuBP1 peptide tag technology, we produced spatially and hierarchically controlled protein multi-layered assemblies on gold nanoparticle arrays with high molecular packing density and pattering efficiency in simple, reproducible steps. This model system offers layer-by-layer assembly capability based on specific AuBP1 peptide tag and constitutes novel biological routes for biofabrication of various protein arrays, plasmon-active nanometallic assemblies and devices with controlled organization, packing density and architecture. Copyright © 2011 Wiley Periodicals, Inc.
Müller, Michael; König, Finja; Meyer, Nina; Gattlen, Jasmin; Pieles, Uwe; Peters, Kirsten; Kreikemeyer, Bernd; Mathes, Stephanie; Saxer, Sina
2018-01-01
Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy. PMID:29657766
NASA Astrophysics Data System (ADS)
Lou, Chenguang; Martos-Maldonado, Manuel C.; Madsen, Charlotte S.; Thomsen, Rasmus P.; Midtgaard, Søren Roi; Christensen, Niels Johan; Kjems, Jørgen; Thulstrup, Peter W.; Wengel, Jesper; Jensen, Knud J.
2016-07-01
Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design.
Dynamic peptide libraries for the discovery of supramolecular nanomaterials
NASA Astrophysics Data System (ADS)
Pappas, Charalampos G.; Shafi, Ramim; Sasselli, Ivan R.; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V.
2016-11-01
Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.
Dynamic peptide libraries for the discovery of supramolecular nanomaterials.
Pappas, Charalampos G; Shafi, Ramim; Sasselli, Ivan R; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V
2016-11-01
Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.
Enzyme-mediated self-assembly of highly ordered structures from disordered proteins
NASA Astrophysics Data System (ADS)
Athamneh, Ahmad I.; Barone, Justin R.
2009-10-01
Wheat gluten is an amorphous storage protein. Trypsin hydrolysis of wheat gluten produced glutamine-rich peptides. Some peptides were able to self-assemble into fibrous structures extrinsic to native wheat gluten. The final material was an in situ formed peptide composite of highly ordered nanometer-sized fibrils and micron-sized fibers embedded in an unassembled peptide matrix. Fourier transform infrared spectroscopic and x-ray diffraction data suggested that the new structures resembled that of cross- β fibrils found in some insect silk and implicated in prion diseases. The largest self-assembled fibers were about 10 µm in diameter with right-handed helicity and appeared to be bundles of smaller nanometer-sized fibrils. Results demonstrated the potential for utilizing natural mechanisms of protein self-assembly to design advanced materials that can provide a wide range of structural and chemical functionality.
Self-assembled nanocages based on the coiled coil bundle motif
NASA Astrophysics Data System (ADS)
Sinha, Nairiti; Villegas, Jose; Saven, Jeffery; Kiick, Kristi; Pochan, Darrin
Computational design of coiled coil peptide bundles that undergo solution phase self-assembly presents a diverse toolbox for engineering new materials with tunable and pre-determined nanostructures that can have various end applications such as in drug delivery, biomineralization and electronics. Self-assembled cages are especially advantageous as the cage geometry provides three distinct functional sites: the interior, the exterior and the solvent-cage interface. In this poster, syntheses and characterization of a peptide cage based on computationally designed homotetrameric coiled coil bundles as building blocks is discussed. Techniques such as Transmission Electron Microscopy (TEM), Small-Angle Neutron Scattering (SANS) and Analytical Ultracentrifugation (AUC) are employed to characterize the size, shape and molecular weight of the self-assembled peptide cages under different pH and temperature conditions. Various self-assembly pathways such as dialysis and thermal quenching are shown to have a significant impact on the final structure of these peptides in solution. Comparison of results with the target cage design can be used to iteratively improve the peptide design and provide greater understanding of its interactions and folding.
Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation
So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet
2012-01-01
Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341
Charge transport in vertically aligned, self-assembled peptide nanotube junctions.
Mizrahi, Mordechay; Zakrassov, Alexander; Lerner-Yardeni, Jenny; Ashkenasy, Nurit
2012-01-21
The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood. We describe here a layer-by-layer deposition methodology of short self-assembled cyclic peptide nanotubes, which results in vertically oriented nanotubes on gold substrates. Using this novel deposition methodology, we have fabricated molecular junctions with a conductive atomic force microscopy tip as a second electrode. Studies of the junctions' current-voltage characteristics as a function of the nanotube length revealed an efficient charge transfer in these supramolecular structures, with a low current attenuation constant of 0.1 Å(-1), which indicate that electron transfer is dominated by hopping. Moreover, the threshold voltage to field-emission dominated transport was found to increase with peptide length in a manner that depends on the nature of the contact with the electrodes. The flexibility in the design of the peptide monomers and the ability to control their sequential order over the nanotube by means of the layer-by-layer assembly process, which is demonstrated in this work, can be used to engineer the electronic properties of self-assembled peptide nanotubes toward device applications.
Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.
Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou
2014-06-25
We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.
Self-assembly of keratin peptides: Its implication on the performance of electrospun PVA nanofibers
Kadirvelu, Kavitha; Fathima, Nishter Nishad
2016-01-01
Drawing inspiration from the field of designer self-assembling materials, this work is aimed to focus on the self-assembling nature of extracted peptides. Hair keratin, a proteinacious reject in tanning industry has been chosen since they have been extracted and used for wide range of applications. Keratin source was subjected to five hydrolysis treatments (viz., sulphitolysis, β-mercaptoethanol, ionic liquid, thioglycolic acid and alkali) and assayed for functional groups. This was followed by the prediction of secondary structure using circular dichroism, determining the microstructural level to which the extracted peptide has self-assembled. Sulphitolysis and thioglycolic acid based hydrolysates exist in monomeric conformation, whereas β-mercaptoethanol based hydrolysate exhibited dimeric conformation. The subsequent part of the study is to incorporate these peptides into the nanofibers to study the structural implication of keratin peptides on its characteristics. Accordingly, the peptides were electrospun with PVA and subjected to morphological, mechanical, thermal and biological characterizations. Monomeric nanofiber mat has high tensile strength of around 5.5 MPa and offered lower mass transport resistance, whereas dimeric mat has high Tm of around 290 °C and was more biocompatible. These results help in understanding the extraction-structure-function aspect of the hydrolysates stressing the role of extraction methods on the choice of application. PMID:27812004
Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkley, Deborah A.; Rokhlenko, Yekaterina; Marine, Jeannette E.
Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometrymore » in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.« less
NASA Astrophysics Data System (ADS)
Nagarkar, Radhika P.
2009-12-01
The objective of this dissertation is to apply rational peptide design to fabricate nanomaterials via self-assembly. This has been demonstrated in structurally diverse systems with an aim of deciphering the underlying principles governing how sequence affects the peptide's ability to adopt a specific secondary structure and ultimate material properties that are realized from the association of these secondary structural elements. Several amyloidogenic proteins have been shown to self-assemble into fibrils using a mechanism known as domain swapping. Here, discreet units of secondary structure are exchanged among discreet proteins during self-assembly to form extended networks with precise three dimensional organization. The possibility of using these mechanisms to design peptides capable of controlled assembly and fibril formation leading to materials with targeted properties is explored. By altering the placement of a beta-turn sequence that varies the size and location of the exchanged strand, twisting, non-twisting and laminated fibrillar nanostructures are obtained. Hydrogels prepared from these strand swapping beta-hairpins have varied rheological properties due to differences in their fibrillar nanostructures. In a second distinct design, alpha/beta-proteins are used to prepare environmentally sensitive hydrogels. Here, multiple distinct motifs for structural integrity and dynamic response within a single self-assembling peptide allow the amyloid-like fibrils formed to controllably alter their nano-topography in response to an external stimulus such as temperature. The development of these self-assembling alpha/beta-protein motifs also necessitated the design of pH sensitive antiparallel coiled coils. Exploring the basic principles responsible for pH dependent conformational changes in coiled coils can lead to new insights in the control of protein structure and function. Lastly, this dissertation discusses the interface between biomolecules and inorganic materials. Here, a new methodology of functionalizing titania nanoparticles with peptides is developed. In all of these different material forming systems, extensive biophysical characterization by circular dichroism spectroscopy, fourier transform infrared spectroscopy, X-ray diffraction and analytical ultracentrifugation is performed to understand peptide folding and self-assembly. Careful nanostructural characterization by electron and force microscopies is performed to elucidate self-assembly mechanisms and has proved to be vital in applying the iterative design process to develop responsive nanomaterials.
Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.
Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K
2016-01-26
Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.
NASA Astrophysics Data System (ADS)
Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.
2017-03-01
Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved.
Shape-specific nanostructured protein mimics from de novo designed chimeric peptides.
Jiang, Linhai; Yang, Su; Lund, Reidar; Dong, He
2018-01-30
Natural proteins self-assemble into highly-ordered nanoscaled architectures to perform specific functions. The intricate functions of proteins have provided great impetus for researchers to develop strategies for designing and engineering synthetic nanostructures as protein mimics. Compared to the success in engineering fibrous protein mimetics, the design of discrete globular protein-like nanostructures has been challenging mainly due to the lack of precise control over geometric packing and intermolecular interactions among synthetic building blocks. In this contribution, we report an effective strategy to construct shape-specific nanostructures based on the self-assembly of chimeric peptides consisting of a coiled coil dimer and a collagen triple helix folding motif. Under salt-free conditions, we showed spontaneous self-assembly of the chimeric peptides into monodisperse, trigonal bipyramidal-like nanoparticles with precise control over the stoichiometry of two folding motifs and the geometrical arrangements relative to one another. Three coiled coil dimers are interdigitated on the equatorial plane while the two collagen triple helices are located in the axial position, perpendicular to the coiled coil plane. A detailed molecular model was proposed and further validated by small angle X-ray scattering experiments and molecular dynamics (MD) simulation. The results from this study indicated that the molecular folding of each motif within the chimeric peptides and their geometric packing played important roles in the formation of discrete protein-like nanoparticles. The peptide design and self-assembly mechanism may open up new routes for the construction of highly organized, discrete self-assembling protein-like nanostructures with greater levels of control over assembly accuracy.
NASA Astrophysics Data System (ADS)
Keten, Sinan
Hybrid peptide-polymer conjugates have the potential to combine the advantages of natural proteins and synthetic polymers, resulting in biomaterials with improved stability, controlled assembly, and tailored functionalities. However, the effect of polymer conjugation on peptide structural organization and functionality, along with the behavior of polymers at the interface with biomolecules remain to be fully understood. This talk will summarize our recent efforts towards establishing a modeling framework to design entropic forces in helix-polymer conjugates and polymer-conjugated peptide nanotubes to achieve hierarchical self-assembling systems with predictable order. The first part of the talk will discuss how self-assembly principles found in biology, combined with polymer physics concepts can be used to create artificial membranes that mimic certain features of ion channels. Thermodynamics and kinetics aspects of self-assembly and how it governs the growth and stacking sequences of peptide nanotubes will be discussed, along with its implications for nanoscale transport. The second part of the talk will review advances related to modeling polymer conjugated coiled coils at relevant length and time scales. Atomistic simulations combined with sampling techniques will be presented to discuss the energy landscapes governing coiled-coil stability, revealing cascades of events governing disassembly. This will be followed by a discussion of mechanisms through which polymers can stabilize small proteins, such as shielding of solvents, and how specific peptide sequences can reciprocate by altering polymer conformations. Correlations between mechanical and thermal stability of peptides will be discussed. Finally, coarse-grained simulations will provide insight into how the location of polymer attachment changes entropic forces and higher-level organization in helix bundle assemblies. Our findings set the stage for a materials-by-design capability towards dictating complex topologies of polymer-peptide conjugate systems.
Li, Xiaochuan; Cheng, Shi; Wu, Yaohong; Ying, Jingwei; Wang, Chaofeng; Wen, Tianyong; Bai, Xuedong; Ji, Wei; Wang, Deli; Ruan, Dike
2018-04-01
Although nucleus pulposus (NP) tissue engineering has achieved tremendous success, researches still face the huge obstacles in maintaining cell survival and function. A novel functional self-assembled peptide RADA-KPSS was constructed by conjugating BMP-7 short active fragment (KPSS) to the C-terminus of RADA16-I that displays anti-inflammatory and anti-apoptosis effects. However, whether this functional self-assembled RADA-KPSS peptide can alleviate inflammation and NPC apoptosis induced by tumor necrosis factor-alpha (TNF-α) has not been studied. Therefore, we cultured NPCs treated with TNF-α for 48 h with the RADA-KPSS peptide, and compared the results to those with RADA16-I peptide. The cell apoptosis rate, inflammatory mediator secretion, expression of matrix-degrading enzymes, and extracellular matrix (ECM) protein levels were evaluated. The expression of nuclear factor-κB-p65 (NF-κB-p65) protein was also tested. TNF-α-treated NPCs cultured with the RADA16-I peptide showed up-regulated gene expression for matrix-degrading enzymes, such as matrix metalloproteinases-3 (MMP-3), MMP-9, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4), and down-regulated gene expression for ECM proteins such as aggrecan, collagen II, and Sox-9. The RADA-KPSS peptide could attenuate the expression of MMP-3, MMP-9, and ADAMTS-4, promote accumulation of ECM proteins, and increase secretion of glycosaminoglycan as compared with the RADA16-I peptide. Moreover, the TNF-α-damaged NPCs was further demonstrated to inhibit NF-κB-p65, IL-1, IL-6, and prostaglandin E-2 proteins and decrease cell apoptosis in RADA-KPSS peptide. In conclusion, the functional self-assembled RADA-KPSS peptides have anti-inflammatory and anti-apoptotic effects by promoting anabolic processes and inhibiting catabolic processes in intervertebral disk degeneration. These peptides may be feasible for clinical applications in NP tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1082-1091, 2018. © 2017 Wiley Periodicals, Inc.
Wang, Juan; Yuan, Chengqian; Han, Yuchun; Wang, Yilin; Liu, Xiaomin; Zhang, Suojiang; Yan, Xuehai
2017-11-01
The interaction between water and biomolecules including peptides is of critical importance for forming high-level architectures and triggering life's functions. However, the bulk aqueous environment has limitations in detecting the kinetics and mechanisms of peptide self-assembly, especially relating to interactions of trace water. With ionic liquids (ILs) as a nonconventional medium, herein, it is discovered that trace amounts of water play a decisive role in triggering self-assembly of a biologically derived dipeptide. ILs provide a suitable nonaqueous environment, enabling us to mediate water content and follow the dynamic evolution of peptide self-assembly. The trace water is found to be involved in the assembly process of dipeptide, especially leading to the formation of stable noncovalent dipeptide oligomers in the early stage of nucleation, as evident by both experimental studies and theoretical simulations. The thermodynamics of the growth process is mainly governed by a synergistic effect of hydrophobic interaction and hydrogen bonds. Each step of assembly presents a different trend in thermodynamic energy. The dynamic evolution of assembly process can be efficiently mediated by changing trace water content. The decisive role of trace water in triggering and mediating self-assembly of biomolecules provides a new perspective in understanding supramolecular chemistry and molecular self-organization in biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.
Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis
2018-01-08
We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.
Effect of Anions on Nanofiber Formation of β-sheet Propensity Amphiphile Peptide
NASA Astrophysics Data System (ADS)
Shamsudeen, H.; Tan, H. L.; Eshak, Z.
2018-05-01
Peptide self-assembly forms different nanostructures under simple alteration in the solution environment. Understanding the mechanism of the assembly will help us to control and tailor functional nanomaterials. This study aims to investigate the influence of anions on the self-assembly morphology and shape using a synthetic peptide of FFFFKK. Circular Dichoism (CD) and Environmental Scanning Electron Microscope (ESEM) were used to determine the secondary structure and self-assembly morphology, while Image J imaging software was used to measure diameter size. In the absence of anion, FFFFKK formed anti-parallel β-sheet that adopted sizeable fibrillar structure with a minimal increment over the first 7 hours of assembly. Irregular structure was observed in the presence of Iodide ion (I-) with a less stable secondary structure such as β-turn and β-loop. In the presence of perchlorate ion (ClO4 -), needle-like structure was observed with predominantly β-sheet structure. Our study showed that peptide morphology can be controlled by using different anions with careful selection of amino acid residues in peptide sequence.
Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.
Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M
2017-02-01
Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.
NASA Astrophysics Data System (ADS)
Carny, Ohad; Gazit, Ehud
2011-04-01
Any attempt to uncover the origins of life must tackle the known `blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
Carny, Ohad; Gazit, Ehud
2011-04-01
Any attempt to uncover the origins of life must tackle the known 'blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makabe, Koki; Biancalana, Matthew; Yan, Shude
2010-02-08
{beta}-Rich self-assembly is a major structural class of polypeptides, but still little is known about its atomic structures and biophysical properties. Major impediments for structural and biophysical studies of peptide self-assemblies include their insolubility and heterogeneous composition. We have developed a model system, termed peptide self-assembly mimic (PSAM), based on the single-layer {beta}-sheet of Borrelia outer surface protein A. PSAM allows for the capture of a defined number of self-assembly-like peptide repeats within a water-soluble protein, making structural and energetic studies possible. In this work, we extend our PSAM approach to a highly hydrophobic peptide sequence. We show that amore » penta-Ile peptide (Ile{sub 5}), which is insoluble and forms {beta}-rich self-assemblies in aqueous solution, can be captured within the PSAM scaffold in a form capable of self-assembly. The 1.1-{angstrom} crystal structure revealed that the Ile{sub 5} stretch forms a highly regular {beta}-strand within this flat {beta}-sheet. Self-assembly models built with multiple copies of the crystal structure of the Ile5 peptide segment showed no steric conflict, indicating that this conformation represents an assembly-competent form. The PSAM retained high conformational stability, suggesting that the flat {beta}-strand of the Ile{sub 5} stretch primed for self-assembly is a low-energy conformation of the Ile{sub 5} stretch and rationalizing its high propensity for self-assembly. The ability of the PSAM to 'solubilize' an otherwise insoluble peptide stretch suggests the potential of the PSAM approach to the characterization of self-assembling peptides.« less
Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway
NASA Astrophysics Data System (ADS)
Kim, Kyunghee; Pochan, Darrin
Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.
Self-assembled Nanomaterials for Chemotherapeutic Applications
NASA Astrophysics Data System (ADS)
Shieh, Aileen
The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display increased stability and controlled release of the active drug in vitro.
Assembling new technologies at the interface of materials science and biology
NASA Astrophysics Data System (ADS)
Stendahl, John C.
Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA nanofibers were used in conjunction with fibrous poly(L-lactic acid] fabrics to create chemically functional scaffolds to facilitate islet cell transplantation. In transplant studies in diabetic mice, the use of scaffolds for islet delivery was shown to significantly improve transplant outcomes over free islet injections. Together, these studies illustrate that molecular self-assembly can be used to create functional materials for a variety of applications. These materials utilize noncovalent interactions to produce supramolecular structures that have important impacts on properties.
Artificial transmembrane ion channels from self-assembling peptide nanotubes
NASA Astrophysics Data System (ADS)
Ghadiri, M. Reza; Granja, Juan R.; Buehler, Lukas K.
1994-05-01
NATURALLY occurring membrane channels and pores are formed from a large family of diverse proteins, peptides and organic secon-dary metabolites whose vital biological functions include control of ion flow, signal transduction, molecular transport and produc-tion of cellular toxins. But despite the availability of a large amount of biochemical information about these molecules1, the design and synthesis of artificial systems that can mimic the bio-logical function of natural compounds remains a formidable task2-12. Here we present a simple strategy for the design of artifi-cial membrane ion channels based on a self-assembled cylindrical β-sheet peptide architecture13. Our systems-essentially stacks of peptide rings-display good channel-mediated ion-transport activ-ity with rates exceeding 107 ions s-1, rivalling the performance of many naturally occurring counterparts. Such molecular assemblies should find use in the design of novel cytotoxic agents, membrane transport vehicles and drug-delivery systems.
Self Assembled Bi-functional Peptide Hydrogels with Biomineralization-Directing Peptides
Gungormus, Mustafa; Branco, Monica; Fong, Hanson; Schneider, Joel P.; Tamerler, Candan; Sarikaya, Mehmet
2014-01-01
A peptide-based hydrogel has been designed that directs the formation of hydroxyapatite. MDG1, a twenty-seven residue peptide, undergoes triggered folding to form an unsymmetrical β-hairpin that self-assembles in response to an increase in solution ionic strength to yield a mechanically rigid, self supporting hydrogel. The C-terminal portion of MDG1 contains a heptapeptide (MLPHHGA) capable of directing the mineralization process. Circular dichroism spectroscopy indicates that the peptide folds and assembles to form a hydrogel network rich in β-sheet secondary structure. Oscillatory rheology indicates that the hydrogel is mechanical rigid (G′ ∼ 2500 Pa) before mineralization. In separate experiments, mineralization was induced both biochemically and with cementoblast cells. Mineralization-domain had little effect on the mechanical rigidity of the gel. SEM and EDS show that MDG1 gels are capable of directing the formation of hydroxapatite. Control hydrogels, prepared by peptides either lacking the mineral-directing portion or reversing its sequence, indicated that the heptapeptide is necessary and its actions are sequence specific. PMID:20591477
Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides.
Abb, Sabine; Harnau, Ludger; Gutzler, Rico; Rauschenbach, Stephan; Kern, Klaus
2016-01-12
The sequence of a peptide programs its self-assembly and hence the expression of specific properties through non-covalent interactions. A large variety of peptide nanostructures has been designed employing different aspects of these non-covalent interactions, such as dispersive interactions, hydrogen bonding or ionic interactions. Here we demonstrate the sequence-controlled fabrication of molecular nanostructures using peptides as bio-organic building blocks for two-dimensional (2D) self-assembly. Scanning tunnelling microscopy reveals changes from compact or linear assemblies (angiotensin I) to long-range ordered, chiral honeycomb networks (angiotensin II) as a result of removal of steric hindrance by sequence modification. Guided by our observations, molecular dynamic simulations yield atomistic models for the elucidation of interpeptide-binding motifs. This new approach to 2D self-assembly on surfaces grants insight at the atomic level that will enable the use of oligo- and polypeptides as large, multi-functional bio-organic building blocks, and opens a new route towards rationally designed, bio-inspired surfaces.
RAFT Nano-constructs: surfing to biological applications.
Boturyn, Didier; Defrancq, Eric; Dolphin, Gunnar T; Garcia, Julian; Labbe, Pierre; Renaudet, Olivier; Dumy, Pascal
2008-02-01
Biologically programmed molecular recognition provides the basis of all natural systems and supplies evolution-optimized functional materials from self-assembly of a limited number of molecular building blocks. Biomolecules such as peptides, nucleic acids and carbohydrates represent a diverse supply of structural building blocks for the chemist to design and fabricate new functional nanostructured architectures. In this context, we review here the chemistry we have developed to conjugate peptides with nucleic acids, carbohydrates, and organic molecules, as well as combinations thereof using a template-assembled approach. With this methodology, we have prepared new integrated functional systems exhibiting designed properties in the field of nanovectors, biosensors as well as controlled peptide self-assembly. Thus this molecular engineering approach allows for the rational design of systems with integrated tailor-made properties and paves the way to more elaborate applications by bottom-up design in the domain of nanobiosciences.
Patterning nanofibrils through the templated growth of multiple modified amyloid peptides
Sakai, Hiroki; Watanabe, Ken; Kudoh, Fuki; Kamada, Rui; Chuman, Yoshiro; Sakaguchi, Kazuyasu
2016-01-01
There has been considerable interest in the patterning of functionalized nanowires because of the potential applications of these materials to the construction of nanodevices. A variety of biomolecular building blocks containing amyloid peptides have been used to functionalize nanowires. However, the patterning of self-assembled nanowires can be challenging because of the difficulties associated with controlling the self-assembly of these functionalized building blocks. Herein, we present a versatile approach for the patterning of nanowires based on the combination of templated fibril growth with a versatile functionalization method using our structure-controllable amyloid peptides (SCAPs). Using this approach, we have succeeded in the formation of multi-type nanowires with tandem domain structures in high yields. Given that the mixing-SCAP method can lead to the formation of tandem fibrils, it is noteworthy that our method allowed us to control the initiation of fibril formation from the gold nanoparticles, which were attached to a short fibril as initiation points. This approach could be used to prepare a wide variety of fibril patterns, and therefore holds great potential for the development of novel self-assembled nanodevices. PMID:27559011
Self-assembling peptide-based building blocks in medical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji
Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. Themore » studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.« less
Molecular Self-Assembly Strategy for Generating Catalytic Hybrid Polypeptides
Ikezoe, Yasuhiro; Pike, Douglas H.; Nanda, Vikas; Matsui, Hiroshi
2016-01-01
Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β-sheets and amyloid fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. The enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality. PMID:27116246
Molecular self-assembly strategy for generating catalytic hybrid polypeptides
Maeda, Yoshiaki; Fang, Justin; Ikezoe, Yasuhiro; ...
2016-04-26
Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β- sheets and amyloidmore » fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. Furthermore, the enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality.« less
Bacterial expression of self-assembling peptide hydrogelators
NASA Astrophysics Data System (ADS)
Sonmez, Cem
For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to chemical synthesis.
Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli
2014-01-01
G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.
Biochemical functionalization of peptide nanotubes with phage displayed peptides
NASA Astrophysics Data System (ADS)
Swaminathan, Swathi; Cui, Yue
2016-09-01
The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.
pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier.
Liang, Ju; Wu, Wen-Lan; Xu, Xiao-Ding; Zhuo, Ren-Xi; Zhang, Xian-Zheng
2014-02-01
An acid-responsive amphiphilic peptide that contains KKGRGDS sequence in hydrophilic head and VVVVVV sequence in hydrophobic tail was designed and prepared. In neutral or basic medium, this amphiphilic peptide can self-assemble into micelles through hydrogen bonding and hydrophobic interactions. If changing the solution pH to an acidic environment, the electrostatic repulsion interaction among the ionized lysine (K) residues will prevent the self-assembly of the amphiphilic peptide, leading to the dissociation of micelles. The anti-tumor drug of doxorubicin (DOX) was chosen and loaded into the self-assembled micelles of the amphiphilic peptide to investigate the influence of external pH change on the drug release behavior. As expected, the micelles show a sustained DOX release in neutral medium (pH 7.0) but fast release behavior in acidic medium (pH 5.0). When incubating these DOX-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD sequence to deliver the drug into HeLa cells. Combined with the low cytotoxicity of the amphiphilic peptide against both HeLa and COS7 cells, the amphiphilic peptide reported in this work may be promising in clinical application for targeted drug delivery. Copyright © 2013 Elsevier B.V. All rights reserved.
Peptide-directed self-assembly of hydrogels
Kopeček, Jindřich; Yang, Jiyuan
2009-01-01
This review focuses on the self-assembly of macromolecules mediated by the biorecognition of peptide/protein domains. Structures forming α-helices and β-sheets have been used to mediate self-assembly into hydrogels of peptides, reactive copolymers and peptide motifs, block copolymers, and graft copolymers. Structural factors governing the self-assembly of these molecules into precisely defined three-dimensional structures (hydrogels) are reviewed. The incorporation of peptide motifs into hybrid systems, composed of synthetic and natural macromolecules, enhances design opportunities for new biomaterials when compared to individual components. PMID:18952513
A multi-stimuli responive, self-assembling, boronic acid dipeptide
Jones, Brad Howard; Martinez, Alina Marissa; Wheeler, Jill S.; ...
2015-08-11
Modification of the dipeptide of phenylalanine, FF, with a boronic acid (BA) functionality imparts unique aqueous self-assembly behavior that responds to multiple stimuli. Changes in pH and ionic strength are used to trigger hydrogelation via the formation of nanoribbon networks. Thus, we show for the first time that the binding of polyols to the BA functionality can modulate a peptide between its assembled and disassembled states.
Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels.
Florine, Emily M; Miller, Rachel E; Liebesny, Paul H; Mroszczyk, Keri A; Lee, Richard T; Patwari, Parth; Grodzinsky, Alan J
2015-02-01
Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix production and integration with native tissue.
Self-Assembly of Tetraphenylalanine Peptides.
Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Díaz, Angélica; Pérez-Madrigal, Maria M; Estrany, Francesc; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos
2015-11-16
Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel β-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ernenwein, Dawn M.
2011-12-01
Bottom-up self-assembly of peptides has driven the research progress for the following two projects: protein delivery vehicles of collagen microflorettes and the assembly of gold nanoparticles with coiled-coil peptides. Collagen is the most abundant protein in the mammals yet due to immunogenic responses, batch-to-batch variability and lack of sequence modifications, synthetic collagen has been designed to self-assemble into native collagen-like structures. In particular with this research, metal binding ligands were incorporated on the termini of collagen-like peptides to generate micron-sized particles, microflorettes. The over-arching goal of the first research project is to engineer MRI-active microflorettes, loaded with His-tagged growth factors with differential release rates while bound to stem cells that can be implemented toward regenerative cell-based therapies. His-tagged proteins, such as green fluorescent protein, have successfully been incorporated on the surface and throughout the microflorettes. Protein release was monitored under physiological conditions and was related to particle degradation. In human plasma full release was obtained within six days. Stability of the microflorettes under physiological conditions was also examined for the development of a therapeutically relevant delivery agent. Additionally, MRI active microflorettes have been generated through the incorporation of a gadolinium binding ligand, DOTA within the collagen-based peptide sequence. To probe peptide-promoted self-assemblies of gold nanoparticles (GNPs) by non-covalent, charge complementary interactions, a highly anionic coiled-coil peptide was designed and synthesized. Upon formation of peptide-GNP interactions, the hydrophobic domain of the coiled-coil were shown to promote the self-assembly of peptide-GNPs clustering. Hydrophobic forces were found to play an important role in the assembly process, as a peptide with an equally overall negative charge, but lacking an ordered hydrophobic face had no effect on GNP assembly. The self-assembly system herein is advantageous due to its reversible nature upon addition of high salt concentrations which masks the surface charge. There is great potential for using this uniquely designed self-assembled peptide-gold nanoparticle system for exploring the interplay between peptide ligation and GNP self-assembly.
NASA Astrophysics Data System (ADS)
Altunbas, Aysegul
Self-assembly represents a robust and powerful paradigm for the bottom-up construction of nanostructures. Self-assembled peptide hydrogels are emerging as promising routes to novel multifunctional materials. The 20 amino acid MAX1and MAX8 peptides self-assemble into a three dimensional network of entangled, branched fibrils rich in beta-sheet secondary structure with a high density of lysine groups exposed on the fibril-surfaces. These hydrogels form self-supporting structures that shear thin upon application of shear and then immediately recover to a solid hydrogel upon cessation of shear which facilitates the local delivery of the hydrogel into a site in vivo. Templated condensation of silica precursors on self-assembled nanoscale peptide fibrils with various surface functionalities can be used to mimic biosilicification. This template-defined approach towards biomineralization was utilized for the controlled fabrication of 3D hybrid nanostructures. We report a study on the structure-property relationship of self-assembled peptide hydrogels where mineralization of individual fibrils through sol-gel chemistry was achieved. The nanostructure and consequent mechanical characteristics of these hybrid networks can be modulated by changing the stoichiometric parameters of the sol-gel process. Construction of such organic-inorganic hybrid networks by sol-gel processing of self-assembled peptide hydrogels has improved mechanical properties and resulted in materials with ˜ 3 orders of magnitude higher stiffness. The physical characterization of the hybrid networks via electron microscopy and small angle scattering is detailed and correlated with changes in the network mechanical behavior. The resultant high fidelity templating process suggests that the peptide substrate can be used to template the coating of other functional inorganic materials. Self-assembling peptide hydrogels encapsulating an anti-tumorigenic drug, curcumin, have been prepared and demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time in vitro. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical characterization methods and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded beta-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated by changing the morphological characteristics of the peptide hydrogel network. Lastly, MAX8 hydrogel cytocompatibility and biocompatibility was assessed with the future aim of utilizing this hydrogel as a scaffold in liver regeneration studies in rats. MAX8 hydrogel cytotoxity was evaluated using MC3T3-E1 and MG63 cell lines. Encapsulation, syringe delivery and subsequent viability of MG63 cells in hydrogels was also assessed to study the feasibility of using hydrogel/cell constructs as minimally invasive cell delivery vehicles. Biocompatibility was evaluated by monitoring inflammatory response induced by the MAX8 hydrogel via a subcutaneous mice model. Biocompatibility of MAX8 hydrogels at sites other than the subcutaneous region was also investigated using a cylindrical punch resection model in rat liver. The preliminary biocompatibility studies provide an elemental understanding of MAX8 hydrogel behavior in vivo.
Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.
Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi
2016-02-01
Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.
Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics.
Singh, Nishant; Kumar, Mohit; Miravet, Juan F; Ulijn, Rein V; Escuder, Beatriu
2017-01-23
This Minireview concerns recent advances in the design, synthesis, and application of low molecular-weight peptidic hydrogelators. The sequence-specific combinations of amino acid side chain functionalities combined with hydrogen bonding of amide backbones and hydrophobic (aromatic) capping groups give these peptidic molecules the intrinsic tendency to self-assemble. The most prevalent designs include N-capped amino acid residues, bolamphiphilic peptides, and amphipathic peptides. Factors such as hydrophobic effects, the Hofmeister effect, and tunable ionization influence their aggregation properties. The self-assembly of simple bio-inspired building blocks into higher organized structures allows comparisons to be drawn with proteins and their complex functionalities, providing preliminary insights into complex biological functions and also enabling their application in a wide range of fields including catalysis, biomedical applications, and mimicry of natural dissipative systems. The Minireview is concluded by a short summary and outlook, highlighting the advances and steps required to bridge the gaps in the understanding of such systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Catalytic diversity in self-propagating peptide assemblies
NASA Astrophysics Data System (ADS)
Omosun, Tolulope O.; Hsieh, Ming-Chien; Childers, W. Seth; Das, Dibyendu; Mehta, Anil K.; Anthony, Neil R.; Pan, Ting; Grover, Martha A.; Berland, Keith M.; Lynn, David G.
2017-08-01
The protein-only infectious agents known as prions exist within cellular matrices as populations of assembled polypeptide phases ranging from particles to amyloid fibres. These phases appear to undergo Darwinian-like selection and propagation, yet remarkably little is known about their accessible chemical and biological functions. Here we construct simple peptides that assemble into well-defined amyloid phases and define paracrystalline surfaces able to catalyse specific enantioselective chemical reactions. Structural adjustments of individual amino acid residues predictably control both the assembled crystalline order and their accessible catalytic repertoire. Notably, the density and proximity of the extended arrays of enantioselective catalytic sites achieve template-directed polymerization of new polymers. These diverse amyloid templates can now be extended as dynamic self-propagating templates for the construction of even more complex functional materials.
Peptide assemblies: from cell scaffolds to immune adjuvants
NASA Astrophysics Data System (ADS)
Collier, Joel
2011-03-01
This talk will discuss two interrelated aspects of peptide self-assemblies in biological applications: their use as matrices for regenerative medicine, and their use as chemically defined adjuvants for directing immune responses against engineered antigens. In the first half of the presentation, the design of peptide self-assemblies as analogues for the extracellular matrix will be described, with a focus on self-assemblies displaying multiple different cell-binding peptides. We conducted multi-factorial investigations of peptide co-assemblies containing several different ligand-bearing peptides using statistical ``design of experiments'' (DoE). Using the DoE techniques of factorial experimentation and response surface modeling, we systematically explored how precise combinations of ligand-bearing peptides modulated endothelial cell growth, in the process finding interactions between ligands not previously appreciated. By investigating immune responses against the materials intended for tissue engineering applications, we discovered that the basic self-assembling peptides were minimally immunogenic or non-immunogenic, even when delivered in strong adjuvants. -But when they were appended to an appropriately restricted epitope peptide, these materials raised strong and persistent antibody responses. These responses were dependent on covalent conjugation between the epitope and self-assembling domains of the peptides, were mediated by T cells, and could be directed towards both peptide epitopes and conjugated protein antigens. In addition to their demonstrated utility as scaffolds for regenerative medicine, peptide self-assemblies may also be useful as chemically defined adjuvants for vaccines and immunotherapies. This work was funded by NIH/NIDCR (1 R21 DE017703-03), NIH/NIBIB (1 R01 EB009701-01), and NSF (CHE-0802286).
Membrane-Based Functions in the Origin of Cellular Life
NASA Technical Reports Server (NTRS)
Wilson, Michael A.
2003-01-01
How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.
Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard
2015-08-03
The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ciociola, Tecla; Pertinhez, Thelma A; Giovati, Laura; Sperindè, Martina; Magliani, Walter; Ferrari, Elena; Gatti, Rita; D'Adda, Tiziana; Spisni, Alberto; Conti, Stefania; Polonelli, Luciano
2016-04-01
Synthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Taniguchi, Suguru; Watanabe, Noriko; Nose, Takeru; Maeda, Iori
2016-01-01
Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Self-Assembly of an α-Helical Peptide into a Crystalline Two-Dimensional Nanoporous Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnotti, Elizabeth L.; Hughes, Spencer A.; Dillard, Rebecca S.
Sequence-specific peptides have been demonstrated to self-assemble into structurally defined nanoscale objects including nanofibers, nanotubes, and nanosheets. The latter structures display significant promise for the construction of hybrid materials for functional devices due to their extended planar geometry. Realization of this objective necessitates the ability to control the structural features of the resultant assemblies through the peptide sequence. The design of a amphiphilic peptide, 3FD-IL, is described that comprises two repeats of a canonical 18 amino acid sequence associated with straight α-helical structures. Peptide 3FD-IL displays 3-fold screw symmetry in a helical conformation and self-assembles into nanosheets based on hexagonalmore » packing of helices. Biophysical evidence from TEM, cryo-TEM, SAXS, AFM, and STEM measurements on the 3FD-IL nanosheets support a structural model based on a honeycomb lattice, in which the length of the peptide determines the thickness of the nanosheet and the packing of helices defines the presence of nanoscale channels that permeate the sheet. The honeycomb structure can be rationalized on the basis of geometrical packing frustration in which the channels occupy defect sites that define a periodic superlattice. In conclusion, the resultant 2D materials may have potential as materials for nanoscale transport and controlled release applications.« less
Self-Assembly of an α-Helical Peptide into a Crystalline Two-Dimensional Nanoporous Framework
Magnotti, Elizabeth L.; Hughes, Spencer A.; Dillard, Rebecca S.; ...
2016-11-22
Sequence-specific peptides have been demonstrated to self-assemble into structurally defined nanoscale objects including nanofibers, nanotubes, and nanosheets. The latter structures display significant promise for the construction of hybrid materials for functional devices due to their extended planar geometry. Realization of this objective necessitates the ability to control the structural features of the resultant assemblies through the peptide sequence. The design of a amphiphilic peptide, 3FD-IL, is described that comprises two repeats of a canonical 18 amino acid sequence associated with straight α-helical structures. Peptide 3FD-IL displays 3-fold screw symmetry in a helical conformation and self-assembles into nanosheets based on hexagonalmore » packing of helices. Biophysical evidence from TEM, cryo-TEM, SAXS, AFM, and STEM measurements on the 3FD-IL nanosheets support a structural model based on a honeycomb lattice, in which the length of the peptide determines the thickness of the nanosheet and the packing of helices defines the presence of nanoscale channels that permeate the sheet. The honeycomb structure can be rationalized on the basis of geometrical packing frustration in which the channels occupy defect sites that define a periodic superlattice. In conclusion, the resultant 2D materials may have potential as materials for nanoscale transport and controlled release applications.« less
NASA Astrophysics Data System (ADS)
Begum Dikecoglu, F.; Topal, Ahmet E.; Ozkan, Alper D.; Deniz Tekin, E.; Tekinay, Ayse B.; Guler, Mustafa O.; Dana, Aykutlu
2018-07-01
Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.
Dikecoglu, F Begum; Topal, Ahmet E; Ozkan, Alper D; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu
2018-07-13
Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.
Hartmann, B M; Kaar, W; Yoo, I K; Lua, L H L; Falconer, R J; Middelberg, A P J
2009-12-01
One of the major expenses associated with recombinant peptide production is the use of chromatography in the isolation and purification stages of a bioprocess. Here we report a chromatography-free isolation and purification process for recombinant peptide expressed in Escherichia coli (E. coli). Initial peptide release is by homogenization and then by enzymatic cleavage of the peptide-containing fusion protein, directly in the E. coli homogenate. Release is followed by selective solvent precipitation (SSP) to isolate and purify the peptide away from larger cell contaminants. Specifically, we expressed in E. coli the self-assembling beta-sheet forming peptide P(11)-2 in fusion to thioredoxin. Homogenate was heat treated (55 degrees C, 15 min) and then incubated with tobacco etch virus protease (TEVp) to release P(11)-2 having a native N-terminus. SSP with ethanol at room temperature then removed contaminating proteins in an integrated isolation-purification step; it proved necessary to add 250 mM NaCl to homogenate to prevent P(11)-2 from partitioning to the precipitate. This process structure gave recombinant P(11)-2 peptide at 97% polypeptide purity and 40% overall yield, without a single chromatography step. Following buffer-exchange of the 97% pure product by bind-elute chromatography into defined chemical conditions, the resulting peptide was shown to be functionally active and able to form self-assembled fibrils. To the best of our knowledge, this manuscript reports the first published process for chromatography-free recombinant peptide release, isolation and purification. The process proved able to deliver functional recombinant peptide at high purity and potentially low cost, opening cost-sensitive materials applications for peptide-based materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, Hiroshi
Work is reported in these areas: Large-scale & reconfigurable 3D structures of precise nanoparticle assemblies in self-assembled collagen peptide grids; Binary QD-Au NP 3D superlattices assembled with collagen-like peptides and energy transfer between QD and Au NP in 3D peptide frameworks; Catalytic peptides discovered by new hydrogel-based combinatorial phage display approach and their enzyme-mimicking 2D assembly; New autonomous motors of metal-organic frameworks (MOFs) powered by reorganization of self-assembled peptides at interfaces; Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular recognition-based cross-linking of surface peptides; and Biomimetic fabrication of strong freestanding genetically-engineered collagen peptide filmsmore » reinforced by quantum dot joints. We gained the broad knowledge about biomimetic material assembly from nanoscale to microscale ranges by coassembling peptides and NPs via biomolecular recognition. We discovered: Genetically-engineered collagen-like peptides can be self-assembled with Au NPs to generate 3D superlattices in large volumes (> μm{sup 3}); The assembly of the 3D peptide-Au NP superstructures is dynamic and the interparticle distance changes with assembly time as the reconfiguration of structure is triggered by pH change; QDs/NPs can be assembled with the peptide frameworks to generate 3D superlattices and these QDs/NPs can be electronically coupled for the efficient energy transfer; The controlled assembly of catalytic peptides mimicking the catalytic pocket of enzymes can catalyze chemical reactions with high selectivity; and, For the bacteria-mimicking swimmer fabrication, peptide-MOF superlattices can power translational and propellant motions by the reconfiguration of peptide assembly at the MOF-liquid interface.« less
Self-assembling amphiphilic peptides†
Dehsorkhi, Ashkan; Castelletto, Valeria; Hamley, Ian W
2014-01-01
The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined. © 2014 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons, Ltd. PMID:24729276
Computational studies of sequence-specific driving forces in peptide self-assembly
NASA Astrophysics Data System (ADS)
Jeon, Joohyun
Peptides are biopolymers made from various sequences of twenty different types of amino acids, connected by peptide bonds. There are practically an infinite number of possible sequences and tremendous possible combinations of peptide-peptide interactions. Recently, an increasing number of studies have shown a stark variety of peptide self-assembled nanomaterials whose detailed structures depend on their sequences and environmental factors; these have end uses in medical and bio-electronic applications, for example. To understand the underlying physics of complex peptide self-assembly processes and to delineate sequence specific effects, in this study, I use various simulation tools spanning all-atom molecular dynamics to simple lattice models and quantify the balance of interactions in the peptide self-assembly processes. In contrast to the existing view that peptides' aggregation propensities are proportional to the net sequence hydrophobicity and inversely proportional to the net charge, I show the more nuanced effects of electrostatic interactions, including the cooperative effects between hydrophobic and electrostatic interactions. Notably, I suggest rather unexpected, yet important roles of entropies in the small scale oligomerization processes. Overall, this study broadens our understanding of the role of thermodynamic driving forces in peptide self-assembly.
Puiu, Mihaela; Bala, Camelia
2018-04-01
Redox-tagged peptides have emerged as functional materials with multiple applications in the area of sensing and biosensing applications due to their high stability, excellent redox properties and versatility of biomolecular interactions. They allow direct observation of molecular interactions in a wide range of affinity and enzymatic assays and act as electron mediators. Short helical peptides possess the ability to self-assemble in specific configurations with the possibility to develop in highly-ordered, stable 1D, 2D and 3D architectures in a hierarchical controlled manner. We provide here a brief overview of the electrochemical techniques available to study the electron transfer in peptide films with particular interest in developing biosensors with immobilized peptide motifs, for biological and clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Lakshmanan, Anupama; Hauser, Charlotte A.E.
2011-01-01
In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures. PMID:22016623
Synthesis of Mikto-Arm Star Peptide Conjugates.
Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang
2018-01-01
Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.
Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration
Bradshaw, Michael; Ho, Diwei; Fear, Mark W.; Gelain, Fabrizio; Wood, Fiona M.; Iyer, K. Swaminathan
2014-01-01
There is a need to develop economical, efficient and widely available therapeutic approaches to enhance the rate of skin wound healing. The optimal outcome of wound healing is restoration to the pre-wound quality of health. In this study we investigate the cellular response to biological stimuli using functionalized nanofibers from the self-assembling peptide, RADA16. We demonstrate that adding different functional motifs to the RADA16 base peptide can influence the rate of proliferation and migration of keratinocytes and dermal fibroblasts. Relative to unmodified RADA16; the Collagen I motif significantly promotes cell migration, and reduces proliferation. PMID:25384420
Bruning, Marc; Kreplak, Laurent; Leopoldseder, Sonja; Müller, Shirley A; Ringler, Philippe; Duchesne, Laurence; Fernig, David G; Engel, Andreas; Ucurum-Fotiadis, Zöhre; Mayans, Olga
2010-11-10
The development of biomatrices for technological and biomedical applications employs self-assembled scaffolds built from short peptidic motifs. However, biopolymers composed of protein domains would offer more varied molecular frames to introduce finer and more complex functionalities in bioreactive scaffolds using bottom-up approaches. Yet, the rules governing the three-dimensional organization of protein architectures in nature are complex and poorly understood. As a result, the synthetic fabrication of ordered protein association into polymers poses major challenges to bioengineering. We have now fabricated a self-assembling protein nanofiber with predictable morphologies and amenable to bottom-up customization, where features supporting function and assembly are spatially segregated. The design was inspired by the cross-linking of titin filaments by telethonin in the muscle sarcomere. The resulting fiber is a two-protein system that has nanopatterned peptide display capabilities as shown by the recruitment of functionalized gold nanoparticles at regular intervals of ∼ 5 nm, yielding a semiregular linear array over micrometers. This polymer promises the uncomplicated display of biologically active motifs to selectively bind and organize matter in the fine nanoscale. Further, its conceptual design has high potential for controlled plurifunctionalization.
NASA Astrophysics Data System (ADS)
Han, Wei; MacEwan, Sarah R.; Chilkoti, Ashutosh; López, Gabriel P.
2015-07-01
The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well.The programmed self-assembly of block copolymers into higher order nanoscale structures offers many attractive attributes for the development of new nanomaterials for numerous applications including drug delivery and biosensing. The incorporation of biomimetic silaffin peptides in these block copolymers enables the formation of hybrid organic-inorganic materials, which can potentially enhance the utility and stability of self-assembled nanostructures. We demonstrate the design, synthesis and characterization of amphiphilic elastin-like polypeptide (ELP) diblock copolymers that undergo temperature-triggered self-assembly into well-defined spherical micelles. Genetically encoded incorporation of the silaffin R5 peptide at the hydrophilic terminus of the diblock ELP leads to presentation of the silaffin R5 peptide on the coronae of the micelles, which results in localized condensation of silica and the formation of near-monodisperse, discrete, sub-100 nm diameter hybrid ELP-silica particles. This synthesis method, can be carried out under mild reaction conditions suitable for bioactive materials, and will serve as the basis for the development and application of functional nanomaterials. Beyond silicification, the general strategies described herein may also be adapted for the synthesis of other biohybrid nanomaterials as well. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01407g
Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Vora, Gary J.; Delehanty, James B.; Susumu, Kimihiro; Mei, Bing C.; Dawson, Philip E.; Medintz, Igor L.
2015-01-01
One of the principle hurdles to wider incorporation of semiconductor quantum dots (QDs) in biology is the lack of facile linkage chemistries to create different types of functional QD-bioconjugates. A two-step modular strategy for the presentation of biomolecules on CdSe/ZnS core/shell QDs is described here which utilizes a chemoselective, aniline-catalyzed hydrazone coupling chemistry to append hexahistidine sequences onto peptides and DNA. This specifically provides them the ability to ratiometrically self-assemble to hydrophilic QDs. The versatility of this labeling approach was highlighted by ligating proteolytic substrate peptides, an oligoarginine cell-penetrating peptide, or a DNA-probe to cognate hexahistidine peptidyl sequences. The modularity allowed subsequently self-assembled QD constructs to engage in different types of targeted bioassays. The self-assembly and photophysical properties of individual QD conjugates were first confirmed by gel electrophoresis and Förster resonance energy transfer analysis. QD-dye-labeled peptide conjugates were then used as biosensors to quantitatively monitor the proteolytic activity of caspase-3 or elastase enzymes from different species. These sensors allowed the determination of the corresponding kinetic parameters, including the Michaelis constant (KM) and the maximum proteolytic activity (Vmax). QDs decorated with cell-penetrating peptides were shown to be successfully internalized by HEK 293T/17 cells, while nanocrystals displaying peptide-DNA conjugates were utilized as fluorescent probes in hybridization microarray assays. This modular approach for displaying peptides or DNA on QDs may be extended to other more complex biomolecules such as proteins or utilized with different types of nanoparticle materials. PMID:20099912
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansbach, Rachael A.; Ferguson, Andrew L.
Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of how the microscopic peptide chemistry influences the properties of the aggregates is vital for rational peptide design. We construct a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly parameterized against all-atom calculations and perform molecular dynamics simulations of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We observe a hierarchical assembly mechanism wherein ~2-8 peptides assemble into stacks with aligned aromatic cores that subsequently form elliptical aggregates and ultimately amore » branched network with a fractal dimensionality of ~1.5. The assembly dynamics are well described by a Smoluchowski coagulation process for which we extract rate constants from the molecular simulations to both furnish insight into the microscopic assembly kinetics and extrapolate our aggregation predictions to time and length scales beyond the reach of molecular simulation. Lastly, this study presents new molecular-level understanding of the morphology and dynamics of the spontaneous self-assembly of DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-grained models of optoelectronic peptides for the exploration and design of π-conjugated peptides with tunable optoelectronic properties.« less
Mansbach, Rachael A.; Ferguson, Andrew L.
2017-02-10
Self-assembled aggregates of peptides containing aromatic groups possess optoelectronic properties that make them attractive targets for the fabrication of biocompatible electronics. Molecular-level understanding of how the microscopic peptide chemistry influences the properties of the aggregates is vital for rational peptide design. We construct a coarse-grained model of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp (DFAG-OPV3-GAFD) peptides containing OPV3 (distyrylbenzene) π-conjugated cores explicitly parameterized against all-atom calculations and perform molecular dynamics simulations of the self-assembly of hundreds of molecules over hundreds of nanoseconds. We observe a hierarchical assembly mechanism wherein ~2-8 peptides assemble into stacks with aligned aromatic cores that subsequently form elliptical aggregates and ultimately amore » branched network with a fractal dimensionality of ~1.5. The assembly dynamics are well described by a Smoluchowski coagulation process for which we extract rate constants from the molecular simulations to both furnish insight into the microscopic assembly kinetics and extrapolate our aggregation predictions to time and length scales beyond the reach of molecular simulation. Lastly, this study presents new molecular-level understanding of the morphology and dynamics of the spontaneous self-assembly of DFAG-OPV3-GAFD peptides and establishes a systematic protocol to develop coarse-grained models of optoelectronic peptides for the exploration and design of π-conjugated peptides with tunable optoelectronic properties.« less
Tsunoda, Masashi; Sugaya, Chiemi; Sugiura, Yumiko; Nagai, Yusuke; Sakanishi, Kotaro
2016-01-01
Self-assembling peptides have been developed as clinical materials, which could scaffold to regenerate nerve cells and hemostatic materials in vivo. However, there has not been enough information for their in vivo application. The safety of self-assembling peptides for the application on the brain was examined using behavioral tests for each rat in this study. Self-assembling peptide gel was administered to the surface of the brain at a volume of 20 µL at 1.5%. After 2 months, the open field test and the prepulse inhibition (PPI) test were performed. There were no significant differences between the peptide gel and the control groups in locomotor distances and in %PPIs in the PPI test. The mean values of the percentage of time the rats stayed in the central area of the open field during the first 5 min and instances of center rearing or face washing in the peptide gel group were significantly higher than those in the control. There were amorphous substance in the subarachnoid region, and infiltrations of mononuclear cells were also observed in the self-assembling peptide gel group. Although the meaning of the effects observed in this study was not fully elucidated, the self-assembling gel produced marginal but significant behavioral and histological effects.
Harnessing supramolecular peptide nanotechnology in biomedical applications.
Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming
2017-01-01
The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected.
NASA Astrophysics Data System (ADS)
Davis, Michael E.; Hsieh, Patrick C. H.; Takahashi, Tomosaburo; Song, Qing; Zhang, Shuguang; Kamm, Roger D.; Grodzinsky, Alan J.; Anversa, Piero; Lee, Richard T.
2006-05-01
Strategies for cardiac repair include injection of cells, but these approaches have been hampered by poor cell engraftment, survival, and differentiation. To address these shortcomings for the purpose of improving cardiac function after injury, we designed self-assembling peptide nanofibers for prolonged delivery of insulin-like growth factor 1 (IGF-1), a cardiomyocyte growth and differentiation factor, to the myocardium, using a "biotin sandwich" approach. Biotinylated IGF-1 was complexed with tetravalent streptavidin and then bound to biotinylated self-assembling peptides. This biotin sandwich strategy allowed binding of IGF-1 but did not prevent self-assembly of the peptides into nanofibers within the myocardium. IGF-1 that was bound to peptide nanofibers activated Akt, decreased activation of caspase-3, and increased expression of cardiac troponin I in cardiomyocytes. After injection into rat myocardium, biotinylated nanofibers provided sustained IGF-1 delivery for 28 days, and targeted delivery of IGF-1 in vivo increased activation of Akt in the myocardium. When combined with transplanted cardiomyocytes, IGF-1 delivery by biotinylated nanofibers decreased caspase-3 cleavage by 28% and increased the myocyte cross-sectional area by 25% compared with cells embedded within nanofibers alone or with untethered IGF-1. Finally, cell therapy with IGF-1 delivery by biotinylated nanofibers improved systolic function after experimental myocardial infarction, demonstrating how engineering the local cellular microenvironment can improve cell therapy. engineering | maturation | scaffold
The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.
Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R
2016-05-01
The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.
Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
Brown, Noam; Lei, Jiangtao; Zhan, Chendi; Shimon, Linda J W; Adler-Abramovich, Lihi; Wei, Guanghong; Gazit, Ehud
2018-04-24
Self-assembly is a process of key importance in natural systems and in nanotechnology. Peptides are attractive building blocks due to their relative facile synthesis, biocompatibility, and other unique properties. Diphenylalanine (FF) and its derivatives are known to form nanostructures of various architectures and interesting and varied characteristics. The larger triphenylalanine peptide (FFF) was found to self-assemble as efficiently as FF, forming related but distinct architectures of plate-like and spherical nanostructures. Here, to understand the effect of triaromatic systems on the self-assembly process, we examined carboxybenzyl-protected diphenylalanine (z-FF) as a minimal model for such an arrangement. We explored different self-assembly conditions by changing solvent compositions and peptide concentrations, generating a phase diagram for the assemblies. We discovered that z-FF can form a variety of structures, including nanowires, fibers, nanospheres, and nanotoroids, the latter were previously observed only in considerably larger or co-assembly systems. Secondary structure analysis revealed that all assemblies possessed a β-sheet conformation. Additionally, in solvent combinations with high water ratios, z-FF formed rigid and self-healing hydrogels. X-ray crystallography revealed a "wishbone" structure, in which z-FF dimers are linked by hydrogen bonds mediated by methanol molecules, with a 2-fold screw symmetry along the c-axis. All-atom molecular dynamics (MD) simulations revealed conformations similar to the crystal structure. Coarse-grained MD simulated the assembly of the peptide into either fibers or spheres in different solvent systems, consistent with the experimental results. This work thus expands the building block library for the fabrication of nanostructures by peptide self-assembly.
Modulating β-lactoglobulin nanofibril self-assembly at pH 2 using glycerol and sorbitol.
Dave, Anant C; Loveday, Simon M; Anema, Skelte G; Jameson, Geoffrey B; Singh, Harjinder
2014-01-13
β-Lactoglobulin (β-lg) forms fibrils when heated at 80 °C, pH 2, and low ionic strength (<0.015 mM). When formed at protein concentrations <3%, these fibrils are made up of peptides produced from the acid hydrolysis of the β-lg monomer. The present study investigated the effects of the polyhydroxy alcohols (polyols) glycerol and sorbitol (0-50% w/v) on β-lg self-assembly at pH 2. Glycerol and sorbitol stabilize native protein structure and modulate protein functionality by preferential exclusion. In our study, both polyols decreased the rate of β-lg self-assembly but had no effect on the morphology of fibrils. The mechanism of these effects was studied using circular dichroism spectroscopy and SDS-PAGE. Sorbitol inhibited self-assembly by stabilizing β-lg against unfolding and hydrolysis, resulting in fewer fibrillogenic species, whereas glycerol inhibited nucleation without inhibiting hydrolysis. Both polyols increased the viscosity of the solutions, but viscosity appeared to have little effect on fibril assembly, and we believe that self-assembly was not diffusion-limited under these conditions. This is in agreement with previous reports for other proteins assembling under different conditions. The phenomenon of peptide self-assembly can be decoupled from protein hydrolysis using glycerol.
Membrane peptides and their role in protobiological evolution
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; Chipot, Christophe
2003-01-01
How simple membrane peptides performed such essential protocellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we explain how these peptides fold at water-membrane interfaces, insert into membranes, self-assemble into higher-order structures and acquire functions. We have investigated the interfacial behavior and folding of several peptides built of leucine and glutamine residues and have demonstrated that many of them tend to adopt ordered structures. Further, we have studied the insertion of an alpha-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)3 into a model membrane. The transmembrane state is metastable, and approximately 15 kcal mol(-1) is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)3 and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self-assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to re-engineer the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.
Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles
Altunbas, Aysegul; Lee, Seung Joon; Rajasekaran, Sigrid A.; Schneider, Joel P.; Pochan, Darrin J.
2011-01-01
Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded β-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide. PMID:21601921
Sprenger, K G; Pfaendtner, Jim
2016-06-07
Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.
Koutsopoulos, Sotirios
2016-04-01
Until the mid-1980s, mainly biologists were conducting peptide research. This changed with discoveries that opened new paths of research involving the use of peptides in bioengineering, biotechnology, biomedicine, nanotechnology, and bioelectronics. Peptide engineering and rational design of novel peptide sequences with unique and tailor-made properties further expanded the field. The discovery of short self-assembling peptides, which upon association form well-defined supramolecular architectures, created new and exciting areas of research. Depending on the amino acid sequence, the pH, and the type of the electrolyte in the medium, peptide self-assembly leads to the formation of nanofibers, which are further organized to form a hydrogel. In this review, the application of ionic complementary peptides which self-assemble to form nanofiber hydrogels for tissue engineering and regenerative medicine will be discussed through a selective presentation of the most important work performed during the last 25 years. © 2016 Wiley Periodicals, Inc.
Synthetic approaches to construct viral capsid-like spherical nanomaterials.
Matsuura, Kazunori
2018-06-06
This feature article describes recent progress in synthetic strategies to construct viral capsid-like spherical nanomaterials using the self-assembly of peptides and/or proteins. By mimicking the self-assembly of spherical viral capsids and clathrin, trigonal peptide conjugates bearing β-sheet-forming peptides, glutathiones, or coiled-coil-forming peptides were developed to construct viral capsid-like particles. β-Annulus peptides from tomato bushy stunt virus self-assembled into viral capsid-like nanocapsules with a size of 30-50 nm, which could encapsulate various guest molecules and be decorated with different molecules on their surface. Rationally designed fusion proteins bearing symmetric assembling units afforded precise viral capsid-like polyhedral assemblies. These synthetic approaches to construct artificial viruses could become useful guidelines to develop novel drug carriers, vaccine platforms, nanotemplates and nanoreactors.
Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides
NASA Astrophysics Data System (ADS)
Nikoofard, Narges; Maghsoodi, Fahimeh
2018-04-01
Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.
Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.
Nikoofard, Narges; Maghsoodi, Fahimeh
2018-04-07
Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.
Rajbhandary, Annada; Nilsson, Bradley L
2017-03-01
Low molecular weight agents that undergo self-assembly into fibril networks with hydrogel properties are promising biomaterials. Most low molecular weight hydrogelators are discovered empirically or serendipitously due to imperfect understanding of the mechanisms of self-assembly, the packing structure of self-assembled materials, and how the self-assembly process corresponds to emergent hydrogelation. Herein, the mechanisms of self-assembly and hydrogelation of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-PhePhe), a well-studied low molecular weight hydrogelator, is probed by systematic comparison with derivatives in which Phe residues are replaced by corresponding N-benzyl glycine peptoid (Nphe) analogs. Peptoids are peptidomimetics that shift display of side chain functionality from the α-carbon to the terminal nitrogen. This alters the hydrogen bonding capacity, the side chain presentation geometry, amide cis/trans isomerization equilibrium, and β-sheet potential of the peptoid relative to the corresponding amino acid in the context of peptidic polymers. It was found that amino acid/peptoid hybrids Fmoc-Phe-Nphe and Fmoc-Nphe-Phe have altered fibril self-assembly propensity and reduced hydrogelation capacity relative to the parent dipeptide, and that fibril self-assembly of the dipeptoid, Fmoc-Nphe-Nphe, is completely curtailed. These findings provide insight into the potential of low molecular weight peptoids and peptide/peptoid hybrids as hydrogelation agents and illuminate the importance of hydrogen bonding and π-π interaction geometry in facilitating self-assembly of Fmoc-Phe-Phe. © 2016 Wiley Periodicals, Inc.
2016-01-01
Self-assembling amphiphilic designer peptides have been successfully applied as nanomaterials in biomedical applications. Understanding molecular interactions at the peptide–membrane interface is crucial, since interactions at this site often determine (in)compatibility. The present study aims to elucidate how model membrane systems of different complexity (in particular single-component phospholipid bilayers and lipoproteins) respond to the presence of amphiphilic designer peptides. We focused on two short anionic peptides, V4WD2 and A6YD, which are structurally similar but showed a different self-assembly behavior. A6YD self-assembled into high aspect ratio nanofibers at low peptide concentrations, as evidenced by synchrotron small-angle X-ray scattering and electron microscopy. These supramolecular assemblies coexisted with membranes without remarkable interference. In contrast, V4WD2 formed only loosely associated assemblies over a large concentration regime, and the peptide promoted concentration-dependent disorder on the membrane arrangement. Perturbation effects were observed on both membrane systems although most likely induced by different modes of action. These results suggest that membrane activity critically depends on the peptide’s inherent ability to form highly cohesive supramolecular structures. PMID:27741400
Modification of β-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation
2016-01-01
β-Sheet forming peptides have attracted significant interest for the design of hydrogels for biomedical applications. One of the main challenges is the control and understanding of the correlations between peptide molecular structure, the morphology, and topology of the fiber and network formed as well as the macroscopic properties of the hydrogel obtained. In this work, we have investigated the effect that functionalizing these peptides through their hydrophobic face has on their self-assembly and gelation. Our results show that the modification of the hydrophobic face results in a partial loss of the extended β-sheet conformation of the peptide and a significant change in fiber morphology from straight to kinked. As a consequence, the ability of these fibers to associate along their length and form large bundles is reduced. These structural changes (fiber structure and network topology) significantly affect the mechanical properties of the hydrogels (shear modulus and elasticity). PMID:27089379
Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel.
Martin, Adam D; Wojciechowski, Jonathan P; Warren, Holly; in het Panhuis, Marc; Thordarson, Pall
2016-03-14
The mechanism and design rules associated with the self-assembly of short peptides into hydrogels is currently not well understood. In this work, four diphenylalanine-based peptides have been synthesised, bearing heterocyclic capping groups which have different degrees of hydrogen bonding potential and nitrogen substitution. For these four peptides, zeta potential and electrical impedance spectroscopy measurements were undertaken to monitor gelation, with the impedance data showing different gelation times for each peptide hydrogel. Through a combination of atomic force microscopy and rheological measurmeents, including dynamic strain and frequency sweeps, and thixotropic tests, the relationship between the mechanism of self-assembly in these hydrogels and their macroscopic behaviour can be established. It is observed that the degree of nitrogen substitution affects the self-assembly mechanisms of the hydrogels and as such, that there is an interplay between branching and bundling self-assembly pathways that are responsible for the final properties of each hydrogel.
Koutsopoulos, Sotirios; Unsworth, Larry D.; Nagai, Yusuke; Zhang, Shuguang
2009-01-01
The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct determination of diffusion coefficients for lysozyme, trypsin inhibitor, BSA, and IgG both inside the hydrogel and after being released into the solution. The results of the FCS analyses and the calculated pristine in-gel diffusion coefficients were compared with the values obtained from the Stokes–Einstein equation, Fickian diffusion models, and the literature. The release kinetics suggested that protein diffusion through nanofiber hydrogels depended primarily on the size of the protein. Protein diffusivities decreased, with increasing hydrogel nanofiber density providing a means of controlling the release kinetics. Secondary and tertiary structure analyses and biological assays of the released proteins showed that encapsulation and release did not affect the protein conformation and functionality. Our results show that this biocompatible and injectable designer self-assembling peptide hydrogel system may be useful as a carrier for therapeutic proteins for sustained release applications. PMID:19273853
Directed surface attachment of nanomaterials via coiled-coil-driven self-assembly
NASA Astrophysics Data System (ADS)
White, Simon J.; Johnson, Steven; Szymonik, Michal; Wardingley, Richard A.; Pye, Douglas; Davies, A. Giles; Wälti, Christoph; Stockley, Peter G.
2012-12-01
Numerous nanoscale devices and materials have been fabricated in recent years using a variety of biological scaffolds. However, the interfacing of these devices and materials into existing circuits and ordered arrays has proved problematic. Here, we describe a simple solution to this problem using self-assembly of the peptide coiled-coil heterodimer ACID:BASE to immobilize M13 bacteriophage particles to specific locations on a patterned gold surface. Surface plasmon resonance demonstrated that free ACID peptides will assemble onto a surface derivatized with BASE. We then displayed the ACID peptide on the pIX coat protein of M13 and showed that these phage particles permit formation of the coiled-coil resulting in specific surface attachment. The ACID:immobilized BASE affinities appear to be similar for free peptide and phage-displayed ACID. Finally, we fabricated two gold electrodes, separated by a 200 nm gap, coated one of them with BASE and showed that this allows localization of the M13:ACID onto the functionalized electrode.
Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
Kang, Myungshim; Chakraborty, Kaushik; Loverde, Sharon M
2018-06-25
We report here on long-time all-atomistic molecular dynamics simulations of functional supramolecular nanotubes composed by the self-assembly of peptide-drug amphiphiles (DAs). These DAs have been shown to possess an inherently high drug loading of the hydrophobic anticancer drug camptothecin. We probe the self-assembly mechanism from random with ∼0.4 μs molecular dynamics simulations. Furthermore, we also computationally characterize the interfacial structure, directionality of π-π stacking, and water dynamics within several peptide-drug nanotubes with diameters consistent with the reported experimental nanotube diameter. Insight gained should inform the future design of these novel anticancer drug delivery systems.
Engineering β-sheet peptide assemblies for biomedical applications.
Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen
2016-03-01
Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.
Self-assembly of short amyloidogenic peptides at the air-water interface.
Chaudhary, Nitin; Nagaraj, Ramakrishnan
2011-08-01
Short peptide stretches in amyloidogenic proteins can form amyloid fibrils in vitro and have served as good models for studying amyloid fibril formation. Recently, these amyloidogenic peptides have gained considerable attention, as non-amyloid ordered structures can be obtained from these peptides by carefully tuning the conditions of self-assembly, especially pH, temperature and presence of organic solvents. We have examined the effect of surface pressure on the self-assembled structures of two amyloidogenic peptides, Pβ(2)m (Ac-DWSFYLLYYTEFT-am) and AcPHF6 (Ac-VQIVYK-am) at the air-water interface when deposited from different solvents. Both the peptides are surface-active and form Thioflavin T (ThT) positive structures at the air-water interface. There is considerable hysteresis in the compression and expansion isotherms, suggesting the occurrence of structural rearrangements during compression. Preformed Pβ(2)m fibrillar structures at the air-water interface are disrupted as peptide is compressed to lower molecular areas but restored if the film is expanded, suggesting that the process is reversible. AcPHF6, on the other hand, shows largely sheet-like structures at lower molecular areas. The solvents used for dissolution of the peptides appear to influence the nature of the aggregates formed. Our results show that like hydrostatic pressure, surface pressure can also be utilized for modulating the self-assembly of the amyloidogenic and self-assembling peptides. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gazit, Ehud
2013-03-01
The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.
Liu, Yanfei; Zhang, Ling; Wei, Wei
2017-01-01
Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways. PMID:28176898
Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E
2017-06-21
While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.
pH-directed self-assembling helical peptide conformation
USDA-ARS?s Scientific Manuscript database
The beta-sheet and alpha-helix peptide conformation are two of the most fundamentally ordered secondary structures found in proteins and peptides. They also give rise to self-assembling motifs that form macromolecular channels and nanostructures. Through design these conformations can yield enhance...
Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine
NASA Astrophysics Data System (ADS)
Shu, Jessica Yo
The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly, biological evaluations were performed to investigate the potential of micelles as drug delivery vehicles. In vitro cell studies demonstrated that the micelles can be used as a delivery vehicle to tailor the cellular uptake, time release, and intracellular trafficking of drugs. In vivo biodistribution and pharmacokinetic experiments showed long blood circulation. This work demonstrates that peptide-polymer conjugates can be used as building blocks to generate hierarchical functional nanostructures with a wide range of applications, only one of which is drug delivery.
Datta, Dhrubajyoti; Tiwari, Omshanker; Ganesh, Krishna N
2018-02-15
During the last two decades, the molecular self-assembly of the short peptide diphenylalanine (Phe-Phe) motif has attracted increasing focus due to its unique morphological structure and utility for potential applications in biomaterial chemistry, sensors and bioelectronics. Due to the ease of their synthetic modifications and a plethora of available experimental tools, the self-assembly of free and protected diphenylalanine scaffolds (H-Phe-Phe-OH, Boc-Phe-Phe-OH and Boc-Phe-Phe-OMe) has unfurled interesting tubular, vesicular or fibrillar morphologies. Developing on this theme, here we attempt to examine the effect of structure and properties (hydrophobic and H-bonding) modifying the functional C-terminus conjugated substituents on Boc-Phe-Phe on its self-assembly process. The consequent self-sorting due to H-bonding, van der Waals force and π-π interactions, generates monodisperse nano-vesicles from these peptides characterized via their SEM, HRTEM, AFM pictures and DLS experiments. The stability of these vesicles to different external stimuli such as pH and temperature, encapsulation of fluorescent probes inside the vesicles and their release by external trigger are reported. The results point to a new direction in the study and applications of the Phe-Phe motif to rationally engineer new functional nano-architectures.
Rational design and application of responsive alpha-helical peptide hydrogels.
Banwell, Eleanor F; Abelardo, Edgardo S; Adams, Dave J; Birchall, Martin A; Corrigan, Adam; Donald, Athene M; Kirkland, Mark; Serpell, Louise C; Butler, Michael F; Woolfson, Derek N
2009-07-01
Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs, and as supports for cell growth and tissue engineering. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials. Here, we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely alpha-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of alpha-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks of fibrils melt on heating, whereas those formed through hydrophobic fibril-fibril interactions strengthen when warmed. The hSAFs are dual-peptide systems that gel only on mixing, which gives tight control over assembly. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture.
Rational design and application of responsive α-helical peptide hydrogels
Banwell, Eleanor F.; Abelardo, Edgardo S.; Adams, Dave J.; Birchall, Martin A.; Corrigan, Adam; Donald, Athene M.; Kirkland, Mark; Serpell, Louise C.; Butler, Michael F.; Woolfson, Derek N.
2009-01-01
Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs; and as supports for cell growth and tissue engineering1. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials2-4. Here we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely α-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of α-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks melt upon heating, whereas those formed via hydrophobic interactions strengthen when warmed. The hSAFs are dual-peptide systems that only gel on mixing, which gives tight control over assembly5. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture. PMID:19543314
Rational design and application of responsive α-helical peptide hydrogels
NASA Astrophysics Data System (ADS)
Banwell, Eleanor F.; Abelardo, Edgardo S.; Adams, Dave J.; Birchall, Martin A.; Corrigan, Adam; Donald, Athene M.; Kirkland, Mark; Serpell, Louise C.; Butler, Michael F.; Woolfson, Derek N.
2009-07-01
Biocompatible hydrogels have a wide variety of potential applications in biotechnology and medicine, such as the controlled delivery and release of cells, cosmetics and drugs, and as supports for cell growth and tissue engineering. Rational peptide design and engineering are emerging as promising new routes to such functional biomaterials. Here, we present the first examples of rationally designed and fully characterized self-assembling hydrogels based on standard linear peptides with purely α-helical structures, which we call hydrogelating self-assembling fibres (hSAFs). These form spanning networks of α-helical fibrils that interact to give self-supporting physical hydrogels of >99% water content. The peptide sequences can be engineered to alter the underlying mechanism of gelation and, consequently, the hydrogel properties. Interestingly, for example, those with hydrogen-bonded networks of fibrils melt on heating, whereas those formed through hydrophobic fibril-fibril interactions strengthen when warmed. The hSAFs are dual-peptide systems that gel only on mixing, which gives tight control over assembly. These properties raise possibilities for using the hSAFs as substrates in cell culture. We have tested this in comparison with the widely used Matrigel substrate, and demonstrate that, like Matrigel, hSAFs support both growth and differentiation of rat adrenal pheochromocytoma cells for sustained periods in culture.
Wang, Jianhao; Zhang, Chencheng; Liu, Li; Kalesh, Karunakaran A; Qiu, Lin; Ding, Shumin; Fu, Minli; Gao, Li-Qian; Jiang, Pengju
2016-08-01
Polyhistidine peptides are effective ligands to coat quantum dots (QDs). It is known that both the number of histidine (His) residues repeats and their structural arrangements in a peptide ligand play important roles in the assembly of the peptide onto CdSe/ZnS QDs. However, due to steric hindrance, a peptide sequence with more than six His residue tandem repeats would hardly coordinate well with Zn(2+) in the QD shell to further enhance the binding affinity. To solve this problem, a His-containing peptide ligand, ATTO 590-E2 G (NH)6 (ATTO-NH), was specifically designed and synthesized for assembly with QDs. With sequential injection of QDs and ATTO-NH into the capillary electrophoresis with fluorescence detection, strong Förster resonance energy transfer phenomenon between the QDs and the ATTO 590 dye was observed, indicating efficient self-assembly of the novel peptide onto the QDs to form ATTO-NH capped QDs inside the capillary. The binding stability of the ligand onto the QD was then systematically investigated by titrating with imidazole, His, and a his-tag containing competitive peptide. It is believed that this new in-capillary assay significantly reduced the sample consumption and the analysis time. By functionalizing QDs with certain metal cation-specific group fused peptide ligand, the QD-based probes could be even extended to the online detection of metal cations for monitoring environment in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells
Zamuner, Annj; Cavo, Marta; Scaglione, Silvia; Messina, Grazia Maria Lucia; Russo, Teresa; Gloria, Antonio; Marletta, Giovanni; Dettin, Monica
2016-01-01
Hydrogels from self-assembling ionic complementary peptides have been receiving a lot of interest from the scientific community as mimetic of the extracellular matrix that can offer three-dimensional supports for cell growth or can become vehicles for the delivery of stem cells, drugs or bioactive proteins. In order to develop a 3D “architecture” for mesenchymal stem cells, we propose the introduction in the hydrogel of conjugates obtained by chemoselective ligation between a ionic-complementary self-assembling peptide (called EAK) and three different bioactive molecules: an adhesive sequence with 4 Glycine-Arginine-Glycine-Aspartic Acid-Serine-Proline (GRGDSP) motifs per chain, an adhesive peptide mapped on h-Vitronectin and the growth factor Insulin-like Growth Factor-1 (IGF-1). The mesenchymal stem cell adhesion assays showed a significant increase in adhesion and proliferation for the hydrogels decorated with each of the synthesized conjugates; moreover, such functionalized 3D hydrogels support cell spreading and elongation, validating the use of this class of self-assembly peptides-based material as very promising 3D model scaffolds for cell cultures, at variance of the less realistic 2D ones. Furthermore, small amplitude oscillatory shear tests showed that the presence of IGF-1-conjugate did not alter significantly the viscoelastic properties of the hydrogels even though differences were observed in the nanoscale structure of the scaffolds obtained by changing their composition, ranging from long, well-defined fibers for conjugates with adhesion sequences to the compact and dense film for the IGF-1-conjugate. PMID:28773852
Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration.
Loo, Yihua; Goktas, Melis; Tekinay, Ayse B; Guler, Mustafa O; Hauser, Charlotte A E; Mitraki, Anna
2015-11-18
Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogels constructed via self-assembly of beta-hairpin molecules
NASA Astrophysics Data System (ADS)
Ozbas, Bulent
There is a recent and growing interest in hydrogel materials that are formed via peptide self-assembly for tissue engineering applications. Peptide based materials are excellent candidates for diverse applications in biomedical field due to their responsive behavior and complex self-assembled structures. However, there is very limited information on the self-assembly and resultant network and mechanical properties of these types of hydrogels. The main goal of this dissertation is to investigate the self-assembly mechanism and viscoelastic properties of hydrogels that can be altered by changing solution conditions as well as the primary structure of the peptide. These hydrogels are formed via intramolecular folding and consequent self-assembly of 20 amino acid long beta-hairpin peptide molecules (Max1). The peptide molecules are locally amphiphilic with two linear strands of alternating hydrophobic valine and hydrophilic lysine amino acids connected with a Dproline-LProline turn sequence. Circular dichroism and FTIR spectroscopy show that at physiological conditions peptides are unfolded in the absence of salt. By raising the ionic strength of the solution electrostatic interactions between charged lysines are screened and the peptide arms are forced into a beta-sheet secondary structure stabilized by the turn sequence. These folded molecules intermolecularly assemble via hydrophobic collapse and hydrogen bonding into a three dimensional network. Folding and self-assembly of these molecules can also be triggered by increasing temperature and/or pH of the peptide solution. In addition, the random-coil to beta-sheet transition of the beta-hairpin peptides is pH and, with proper changes in the peptide sequence, thermally reversible. Rheological measurements demonstrate that the resultant supramolecular structure forms an elastic material, whose structure, and thus modulus, can be tuned by magnitude of the stimulus. Hydrogels recover their initial viscoelastic properties after cessation of high magnitude of strain due to the physically crosslinked network structure and strong inter-fibrillar interactions. These interactions can be turned off by either condensing anions or covalently attaching PEG chains on lysine-decorated fibrillar surfaces. TEM, SANS, and rheological data reveal that the elasticity arises from a network consisting of semiflexible fibrillar assemblies that are monodisperse in width. The experimental results are compared with scaling relationships developed for permanently crosslinked semiflexible biopolymer networks. (Abstract shortened by UMI.)
Liquid crystal organization of self-assembling cyclic peptides.
Amorín, Manuel; Pérez, Ana; Barberá, Joaquín; Ozores, Haxel Lionel; Serrano, José Luis; Granja, Juan R; Sierra, Teresa
2014-01-21
Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.
Dynamic reassembly of peptide RADA16 nanofiber scaffold
NASA Astrophysics Data System (ADS)
Yokoi, Hidenori; Kinoshita, Takatoshi; Zhang, Shuguang
2005-06-01
Nanofiber structures of some peptides and proteins as biological materials have been studied extensively, but their molecular mechanism of self-assembly and reassembly still remains unclear. We report here the reassembly of an ionic self-complementary peptide RADARADARADARADA (RADA16-I) that forms a well defined nanofiber scaffold. The 16-residue peptide forms stable -sheet structure and undergoes molecular self-assembly into nanofibers and eventually a scaffold hydrogel consisting of >99.5% water. In this study, the nanofiber scaffold was sonicated into smaller fragments. Circular dichroism, atomic force microscopy, and rheology were used to follow the kinetics of the reassembly. These sonicated fragments not only quickly reassemble into nanofibers that were indistinguishable from the original material, but their reassembly also correlated with the rheological analyses showing an increase of scaffold rigidity as a function of nanofiber length. The disassembly and reassembly processes were repeated four times and, each time, the reassembly reached the original length. We proposed a plausible sliding diffusion model to interpret the reassembly involving complementary nanofiber cohesive ends. This reassembly process is important for fabrication of new scaffolds for 3D cell culture, tissue repair, and regenerative medicine. atomic force microscopy | circular dichroism | dynamic behaviors | ionic self-complementary peptides | nanofiber hydrogels
Protein-like Nanoparticles Based on Orthogonal Self-Assembly of Chimeric Peptides.
Jiang, Linhai; Xu, Dawei; Namitz, Kevin E; Cosgrove, Michael S; Lund, Reidar; Dong, He
2016-10-01
A novel two-component self-assembling chimeric peptide is designed where two orthogonal protein folding motifs are linked side by side with precisely defined position relative to one another. The self-assembly is driven by a combination of symmetry controlled molecular packing, intermolecular interactions, and geometric constraint to limit the assembly into compact dodecameric protein nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S
2016-08-24
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.
Paramonov, Sergey E; Jun, Ho-Wook; Hartgerink, Jeffrey D
2006-06-07
The role of hydrogen bonding and amphiphilic packing in the self-assembly of peptide-amphiphiles (PAs) was investigated using a series of 26 PA derivatives, including 19 N-methylated variants and 7 alanine mutants. These were studied by circular dichroism spectroscopy, a variety of Fourier transform infrared spectroscopies, rheology, and vitreous ice cryo-transmission electron microscopy. From these studies, we have been able to determine which amino acids are critical for the self-assembly of PAs into nanofibers, why the nanofiber is favored over other possible nanostructures, the orientation of hydrogen bonding with respect to the nanofiber axis, and the constraints placed upon the portion of the peptide most intimately associated with the biological environment. Furthermore, by selectively eliminating key hydrogen bonds, we are able to completely change the nanostructure resulting from self-assembly in addition to modifying the macroscopic mechanical properties associated with the assembled gel. This study helps to clarify the mechanism of self-assembly for peptide amphiphiles and will thereby help in the design of future generations of PAs.
Programmable biofilm-based materials from engineered curli nanofibres.
Nguyen, Peter Q; Botyanszki, Zsofia; Tay, Pei Kun R; Joshi, Neel S
2014-09-17
The significant role of biofilms in pathogenicity has spurred research into preventing their formation and promoting their disruption, resulting in overlooked opportunities to develop biofilms as a synthetic biological platform for self-assembling functional materials. Here we present Biofilm-Integrated Nanofiber Display (BIND) as a strategy for the molecular programming of the bacterial extracellular matrix material by genetically appending peptide domains to the amyloid protein CsgA, the dominant proteinaceous component in Escherichia coli biofilms. These engineered CsgA fusion proteins are successfully secreted and extracellularly self-assemble into amyloid nanofibre networks that retain the functions of the displayed peptide domains. We show the use of BIND to confer diverse artificial functions to the biofilm matrix, such as nanoparticle biotemplating, substrate adhesion, covalent immobilization of proteins or a combination thereof. BIND is a versatile nanobiotechnological platform for developing robust materials with programmable functions, demonstrating the potential of utilizing biofilms as large-scale designable biomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan
Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactionsmore » between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.« less
Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides.
Koss, K M; Unsworth, L D
2016-10-15
Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering. Copyright © 2016. Published by Elsevier Ltd.
2014-02-20
spectroscopy was applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial ...modified antimicrobial peptide cecropin P1 (CP1) was chemically immobilized onto SAM with a maleimide terminal group. Two important characteristics...applied to investigate such structures of peptides immobilized on self-assembled monolayers (SAMs). Here cysteine-modified antimicrobial peptide cecropin
Modulating Charge Transfer Through Cyclic D,L α-Peptide Self-Assembly
Horne, W. Seth; Ashkenasy, Nurit; Ghadiri, M. Reza
2007-01-01
We describe a concise solid support-based synthetic method for the preparation of cyclic D,L α-peptides bearing 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond directed self-assembly of the cyclic D,L α-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic D,L α-peptide nanotubes with interesting optical and electronic properties. PMID:15624124
Human Performance and Biosystems
2013-03-08
carbon nanotube binding peptides *A mutant laccase designed at UW self- assembles into active crystals Leucine βroll Linker (S) α-helix (H...cognitive functions, bio-molecular repair and bio- resiliency Bioenergy: • Portable H2 Fuel Generated from H2O or Cellulose : - Cheap, self
Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration.
Sun, Yuqiao; Li, Wen; Wu, Xiaoli; Zhang, Na; Zhang, Yongnu; Ouyang, Songying; Song, Xiyong; Fang, Xinyu; Seeram, Ramakrishna; Xue, Wei; He, Liumin; Wu, Wutian
2016-01-27
Self-assembling peptide (SAP) RADA16-I (Ac-(RADA)4-CONH2) has been suffering from a main drawback associated with low pH, which damages cells and host tissues upon direct exposure. In this study, we presented a strategy to prepare nanofiber hydrogels from two designer SAPs at neutral pH. RADA16-I was appended with functional motifs containing cell adhesion peptide RGD and neurite outgrowth peptide IKVAV. The two SAPs were specially designed to have opposite net charges at neutral pH, the combination of which created a nanofiber hydrogel (-IKVAV/-RGD) characterized by significantly higher G' than G″ in a viscoelasticity examination. Circular dichroism, Fourier transform infrared spectroscopy, and Raman measurements were performed to investigate the secondary structure of the designer SAPs, indicating that both the hydrophobic/hydrophilic properties and electrostatic interactions of the functional motifs play an important role in the self-assembling behavior of the designer SAPs. The neural progenitor cells (NPCs)/stem cells (NSCs) fully embedded in the 3D-IKVAV/-RGD nanofiber hydrogel survived, whereas those embedded within the RADA 16-I hydrogel hardly survived. Moreover, the -IKVAV/-RGD nanofiber hydrogel supported NPC/NSC neuron and astrocyte differentiation in a 3D environment without adding extra growth factors. Studies of three nerve injury models, including sciatic nerve defect, intracerebral hemorrhage, and spinal cord transection, indicated that the designer -IKVAV/-RGD nanofiber hydrogel provided a more permissive environment for nerve regeneration than the RADA 16-I hydrogel. Therefore, we reported a new mechanism that might be beneficial for the synthesis of SAPs for in vitro 3D cell culture and nerve regeneration.
2015-01-01
Synthetic collagen mimetic peptides are used to probe the role of hydrophobic forces in mediating protein self-assembly. Higher order association is an integral property of natural collagens, which assemble into fibers and meshes that comprise the extracellular matrix of connective tissues. The unique triple-helix fold fully exposes two-thirds of positions in the protein to solvent, providing ample opportunities for engineering interaction sites. Inclusion of just a few hydrophobic groups in a minimal peptide promotes a rich variety of self-assembly behaviors, resulting in hundred-nanometer to micron size nanodiscs and nanofibers. Morphology depends primarily on the length of hydrophobic domains. Peptide discs contain lipophilic domains capable of sequestering small hydrophobic dyes. Combining multiple peptide types result in composite structures of discs and fibers ranging from stars to plates-on-a-string. These systems provide valuable tools to shed insight into the fundamental principles underlying hydrophobicity-driven higher order protein association that will facilitate the design of self-assembling systems in biomaterials and nanomedical applications. PMID:25390880
Self-assembling electroactive hydrogels for flexible display technology
NASA Astrophysics Data System (ADS)
Jones, Scott L.; Hou Wong, Kok; Thordarson, Pall; Ladouceur, François
2010-12-01
We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.
Generic concept to program the time domain of self-assemblies with a self-regulation mechanism.
Heuser, Thomas; Steppert, Ann-Kathrin; Lopez, Catalina Molano; Zhu, Baolei; Walther, Andreas
2015-04-08
Nature regulates complex structures in space and time via feedback loops, kinetically controlled transformations, and under energy dissipation to allow non-equilibrium processes. Although man-made static self-assemblies realize excellent control over hierarchical structures via molecular programming, managing their temporal destiny by self-regulation is a largely unsolved challenge. Herein, we introduce a generic concept to control the time domain by programming the lifetimes of switchable self-assemblies in closed systems. We conceive dormant deactivators that, in combination with fast promoters, enable a unique kinetic balance to establish an autonomously self-regulating, transient pH-state, whose duration can be programmed over orders of magnitude-from minutes to days. Coupling this non-equilibrium state to pH-switchable self-assemblies allows predicting their assembly/disassembly fate in time, similar to a precise self-destruction mechanism. We demonstrate a platform approach by programming self-assembly lifetimes of block copolymers, nanoparticles, and peptides, enabling dynamic materials with a self-regulation functionality.
Kim, Won-Geun; Song, Hyerin; Kim, Chuntae; Moon, Jong-Sik; Kim, Kyujung; Lee, Seung-Wuk; Oh, Jin-Woo
2016-11-15
Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction. Incorporation of specific binding peptide (His Pro Gln: HPQ) gives M13 bacteriophage high selectivity for the streptavidin. Our M13 phage-based SPR sensor takes advantage of simplicity of self-assembly compared with relatively complex photolithography techniques or chemical conjugations. Additionally, designed structure which is composed of functionalized M13 bacteriophage can simultaneously improve the sensitivity and selectivity of SPR sensor evidently. By taking advantages of the genetic engineering and self-assembly, we propose the simple method for fabricating novel M13 phage-based SPR sensor system which has a high sensitivity and high selectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Design of Nanostructured Biological Materials Through Self-Assembly of Peptides and Proteins
2002-01-01
of applications, including scaffolding for tissue repair in regenerative medicine, drug delivery and biological surface engineering. Tirrell and...colleagues [2] designed artificial proteins that undergo self-assembly to form hydrogels responsive to pH and other environmental changes. Ghadiri and...showed that other β-sheet peptide systems can also undergo self-assembly into regular nanofiber structures. Although they share no sequence
Mayans, Enric; Ballano, Gema; Sendros, Javier; Font-Bardia, Merçè; Campos, J Lourdes; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos
2017-07-19
A diphenylalanine (FF) amphiphile blocked at the C terminus with a benzyl ester (OBzl) and stabilized at the N terminus with a trifluoroacetate (TFA) anion was synthetized and characterized. Aggregation of peptide molecules was studied by considering a peptide solution in an organic solvent and adding pure water, a KCl solution, or another organic solvent as co-solvent. The choice of the organic solvent and co-solvent and the solvent/co-solvent ratio allowed the mixture to be tuned by modulating the polarity, the ionic strength, and the peptide concentration. Differences in the properties of the media used to dissolve the peptides resulted in the formation of different self-assembled microstructures (e.g. fibers, branched-like structures, plates, and spherulites). Furthermore, crystals of TFA⋅FF-OBzl were obtained from the aqueous peptide solutions for X-ray diffraction analysis. The results revealed a hydrophilic core constituted by carboxylate (from TFA), ester, and amide groups, and the core was found to be surrounded by a hydrophobic crown with ten aromatic rings. This segregated organization explains the assemblies observed in the different solvent mixtures as a function of the environmental polarity, ionic strength, and peptide concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ikezoe, Yasuhiro; Washino, Gosuke; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi
2012-01-01
There have developed a variety of microsystems that harness energy and convert it to mechanical motion. Here we developed new autonomous biochemical motors by integrating metal-organic framework (MOF) and self-assembling peptides. MOF is applied as an energy-storing cell that assembles peptides inside nanoscale pores of the coordination framework. The robust assembling nature of peptides enables reconfiguring their assemblies at the water-MOF interface, which is converted to fuel energy. Re-organization of hydrophobic peptides could create the large surface tension gradient around the MOF and it efficiently powers the translation motion of MOF. As a comparison, the velocity of normalized by volume for the DPA-MOF particle is faster and the kinetic energy per the unit mass of fuel is more than twice as large as the one for previous gel motor systems. This demonstration opens the new application of MOF and reconfigurable molecular self-assembly and it may evolve into the smart autonomous motor that mimic bacteria to swim and harvest target chemicals by integrating recognition units. PMID:23104155
Rational design of fiber forming supramolecular structures
Wang, Benjamin K; Kanahara, Satoko M
2016-01-01
Recent strides in the development of multifunctional synthetic biomimetic materials through the self-assembly of multi-domain peptides and proteins over the past decade have been realized. Such engineered systems have wide-ranging application in bioengineering and medicine. This review focuses on fundamental fiber forming α-helical coiled-coil peptides, peptide amphiphiles, and amyloid-based self-assembling peptides; followed by higher order collagen- and elastin-mimetic peptides with an emphasis on chemical / biological characterization and biomimicry. PMID:27022140
NASA Astrophysics Data System (ADS)
Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He
2015-11-01
Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05233e
Wang, Chong; Sha, Yinlin
2010-04-01
We used a de novo designed, beta-hairpin forming T1 peptide as a model to investigate the kinetics of peptide fibrogenesis by a combination of light scattering (LS), circular dichroism (CD), fluorescence, and atomic force microscopy (AFM). The results demonstrate that the T1 fibrogenesis undergoes a consecutive stepwise process, with a high degree of cooperation, presenting sigmoidal time-courses of the peptide aggregation, the subsequent conformational conversion of the backbone, and the peptide sidechains' rearrangement. We suggest that the conformational conversion was initiated after the peptide aggregates reach a dimensional size threshold, which could be a key step in the formation of beta-structural nuclei that catalyze the subsequent reactions. Furthermore, besides triggering the peptide aggregation, the interactions between the peptide sidechains predominately facilitate the regular alignment of the peptide molecules and the formation of a well-defined suprastructure. This work provides an insight of the hierarchical self-assembly of beta-hairpin forming peptides. It is helpful for designing beta-structural peptides for self-assembly into nanowires, which would have potential applications in the construction of nano-materials.
Fu, Iris W; Markegard, Cade B; Chu, Brian K; Nguyen, Hung D
2013-10-01
Smart biomaterials that are self-assembled from peptide amphiphiles (PA) are known to undergo morphological transitions in response to specific physiological stimuli. The design of such customizable hydrogels is of significant interest due to their potential applications in tissue engineering, biomedical imaging, and drug delivery. Using a novel coarse-grained peptide/polymer model, which has been validated by comparison of equilibrium conformations from atomistic simulations, large-scale molecular dynamics simulations are performed to examine the spontaneous self-assembly process. Starting from initial random configurations, these simulations result in the formation of nanostructures of various sizes and shapes as a function of the electrostatics and temperature. At optimal conditions, the self-assembly mechanism for the formation of cylindrical nanofibers is deciphered involving a series of steps: (1) PA molecules quickly undergo micellization whose driving force is the hydrophobic interactions between alkyl tails; (2) neighboring peptide residues within a micelle engage in a slow ordering process that leads to the formation of β-sheets exposing the hydrophobic core; (3) spherical micelles merge together through an end-to-end mechanism to form cylindrical nanofibers that exhibit high structural fidelity to the proposed structure based on experimental data. As the temperature and electrostatics vary, PA molecules undergo alternative kinetic mechanisms, resulting in the formation of a wide spectrum of nanostructures. A phase diagram in the electrostatics-temperature plane is constructed delineating regions of morphological transitions in response to external stimuli. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular Dynamics Studies of Self-Assembling Biomolecules and DNA-functionalized Gold Nanoparticles
NASA Astrophysics Data System (ADS)
Cho, Vince Y.
This thesis is organized as following. In Chapter 2, we use fully atomistic MD simulations to study the conformation of DNA molecules that link gold nanoparticles to form nanoparticle superlattice crystals. In Chapter 3, we study the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber by using CGMD simulations. Compared to fully atomistic MD simulations, CGMD simulations prove to be computationally cost-efficient and reasonably accurate for exploring self-assembly, and are used in all subsequent chapters. In Chapter 4, we apply CGMD methods to study the self-assembly of small molecule-DNA hybrid (SMDH) building blocks into well-defined cage-like dimers, and reveal the role of kinetics and thermodynamics in this process. In Chapter 5, we extend the CGMD model for this system and find that the assembly of SMDHs can be fine-tuned by changing parameters. In Chapter 6, we explore superlattice crystal structures of DNA-functionalized gold nanoparticles (DNA-AuNP) with the CGMD model and compare the hybridization.
Luo, Zhongli; Zhang, Shuguang
2012-07-07
Chirality is absolutely central in chemistry and biology. The recent findings of chiral self-assembling peptides' remarkable chemical complementarity and structural compatibility make it one of the most inspired designer materials and structures in nanobiotechnology. The emerging field of designer chemistry and biology further explores biological and medical applications of these simple D,L- amino acids through producing marvellous nanostructures under physiological conditions. These self-assembled structures include well-ordered nanofibers, nanotubes and nanovesicles. These structures have been used for 3-dimensional tissue cultures of primary cells and stem cells, sustained release of small molecules, growth factors and monoclonal antibodies, accelerated wound-healing in reparative and regenerative medicine as well as tissue engineering. Recent advances in molecular designs have also led to the development of 3D fine-tuned bioactive tissue culture scaffolds. They are also used to stabilize membrane proteins including difficult G-protein coupled receptors for designing nanobiodevices. One of the self-assembling peptides has been used in human clinical trials for accelerated wound-healings. It is our hope that these peptide materials will open doors for more and diverse clinical uses. The field of chiral self-assembling peptide nanobiotechnology is growing in a number of directions that has led to many surprises in areas of novel materials, synthetic biology, clinical medicine and beyond.
Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J W; Patolsky, Fernando; Gazit, Ehud
2015-04-01
The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.
Controlled release of TGF-beta 1 from RADA self-assembling peptide hydrogel scaffolds
Zhou, Ao; Chen, Shuo; He, Bin; Zhao, Weikang; Chen, Xiaojun; Jiang, Dianming
2016-01-01
Bioactive mediators, cytokines, and chemokines have an important role in regulating and optimizing the synergistic action of materials, cells, and cellular microenvironments for tissue engineering. RADA self-assembling peptide hydrogels have been proved to have an excellent ability to promote cell proliferation, wound healing, tissue repair, and drug delivery. Here, we report that D-RADA16 and L-RADA16-RGD self-assembling peptides can form stable second structure and hydrogel scaffolds, affording the slow release of growth factor (transforming growth factor cytokine-beta 1 [TGF-beta 1]). In vitro tests demonstrated that the plateau release amount can be obtained till 72 hours. Moreover, L-RADA16, D-RADA16, and L-RADA16-RGD self-assembling peptide hydrogels containing TGF-beta 1 were used for 3D cell culture of bone mesenchymal stem cells of rats for 2 weeks. The results revealed that these three RADA16 peptide hydrogels had a significantly favorable influence on proliferation of bone mesenchymal stem cells and hold some promise in slow and sustained release of growth factor. PMID:27703332
Spatially selective assembly of quantum dot light emitters in an LED using engineered peptides.
Demir, Hilmi Volkan; Seker, Urartu Ozgur Safak; Zengin, Gulis; Mutlugun, Evren; Sari, Emre; Tamerler, Candan; Sarikaya, Mehmet
2011-04-26
Semiconductor nanocrystal quantum dots are utilized in numerous applications in nano- and biotechnology. In device applications, where several different material components are involved, quantum dots typically need to be assembled at explicit locations for enhanced functionality. Conventional approaches cannot meet these requirements where assembly of nanocrystals is usually material-nonspecific, thereby limiting the control of their spatial distribution. Here we demonstrate directed self-assembly of quantum dot emitters at material-specific locations in a color-conversion LED containing several material components including a metal, a dielectric, and a semiconductor. We achieve a spatially selective immobilization of quantum dot emitters by using the unique material selectivity characteristics provided by the engineered solid-binding peptides as smart linkers. Peptide-decorated quantum dots exhibited several orders of magnitude higher photoluminescence compared to the control groups, thus, potentially opening up novel ways to advance these photonic platforms in applications ranging from chemical to biodetection.
In vivo architectonic stability of fully de novo designed protein-only nanoparticles.
Céspedes, María Virtudes; Unzueta, Ugutz; Tatkiewicz, Witold; Sánchez-Chardi, Alejandro; Conchillo-Solé, Oscar; Álamo, Patricia; Xu, Zhikun; Casanova, Isolda; Corchero, José Luis; Pesarrodona, Mireia; Cedano, Juan; Daura, Xavier; Ratera, Imma; Veciana, Jaume; Ferrer-Miralles, Neus; Vazquez, Esther; Villaverde, Antonio; Mangues, Ramón
2014-05-27
The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.
Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material
NASA Astrophysics Data System (ADS)
Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana
2014-08-01
In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less
Deshmukh, Sanket; Solomon, Lee A.; Kamath, Ganesh; ...
2016-08-24
Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides has still remained elusive. Here, using a multi-stage atomistic-coarse-grained approach, complemented by circular dichroism/infra-red spectroscopy and dynamic light scattering experiments, we highlight the dual nature of water in dictating the mechanism and dynamics of self-assembly of peptide amphiphiles (PAs). Our computational study shows that (i) Water cage formation and breakage near the hydrophobic groups controls the fusion dynamics and aggregation of PAs in the micellar stage, and (ii) Enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards themore » fiber phase and stimulates structure and order in the PAs when they assemble into a hexagonal nanofiber architecture. Finally, spectroscopy and microscopy studies authenticate our computational observation that water ordering near the PAs increases with increase in time. The measured infra-red O-H bond stretch frequency reminiscent of ice-like suggests that the solvated water becomes increasingly solid-like with increased structural order in the assembled peptide network – thus shedding light on the role of water in a self-assembly process.« less
Composition and method for self-assembly and mineralization of peptide-amphiphiles
Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX
2012-02-28
The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.
Composition and method for self-assembly and mineralization of peptide amphiphiles
Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Houston, TX
2009-06-30
The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.
A minimal length rigid helical peptide motif allows rational design of modular surfactants
NASA Astrophysics Data System (ADS)
Mondal, Sudipta; Varenik, Maxim; Bloch, Daniel Nir; Atsmon-Raz, Yoav; Jacoby, Guy; Adler-Abramovich, Lihi; Shimon, Linda J. W.; Beck, Roy; Miller, Yifat; Regev, Oren; Gazit, Ehud
2017-01-01
Extensive work has been invested in the design of bio-inspired peptide emulsifiers. Yet, none of the formulated surfactants were based on the utilization of the robust conformation and self-assembly tendencies presented by the hydrophobins, which exhibited highest surface activity among all known proteins. Here we show that a minimalist design scheme could be employed to fabricate rigid helical peptides to mimic the rigid conformation and the helical amphipathic organization. These designer building blocks, containing natural non-coded α-aminoisobutyric acid (Aib), form superhelical assemblies as confirmed by crystallography and microscopy. The peptide sequence is amenable to structural modularity and provides the highest stable emulsions reported so far for peptide and protein emulsifiers. Moreover, we establish the ability of short peptides to perform the dual functions of emulsifiers and thickeners, a feature that typically requires synergistic effects of surfactants and polysaccharides. This work provides a different paradigm for the molecular engineering of bioemulsifiers.
Proteinase K-catalyzed synthesis of linear and star oligo(L-phenylalanine) conjugates.
Ageitos, Jose M; Baker, Peter J; Sugahara, Michihiro; Numata, Keiji
2013-10-14
Chemoenzymatic synthesis of peptides is a green and clean chemical reaction that offers high yields without using organic synthesis and serves as an alternative to traditional peptide synthesis methods. This report describes the chemoenzymatic synthesis of oligo(L-phenylalanine) mediated by proteinase K from Tritirachium album, which is one of the most widely used proteases in molecular biological studies. The synthesized linear oligo-phenylalanine showed a unique self-assembly in aqueous solutions. To further functionalize linear oligo(L-phenylalanine) as a low-molecular-weight gelator, it was cosynthesized with tris(2-aminoethyl)amine to obtain star-oligo(L-phenylalanine), which was bioconjugated to demonstrate its self-assembly into fluorescent fibers. The self-assembled fibers of star-oligo(L-phenylalanine) formed fibrous networks with various branching ratios, which depended on the molecular weights and molecular aspect ratios of star-oligo(L-phenylalanine). This is the first study to demonstrate that proteinase K is a suitable enzyme for chemoenzymatic cosynthesis of oligopeptides and star-shaped heteropeptides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavor, John
The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are tomore » construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.« less
Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Del Valle, Luis J; Pérez-Madrigal, Maria M; Estrany, Francesc; Jiménez, Ana I; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos
2016-06-28
Homopeptides with 2, 3 and 4 phenylalanine (Phe) residues and capped with fluorenylmethoxycarbonyl and fluorenylmethyl esters at the N-terminus and C-terminus, respectively, have been synthesized to examine their self-assembly capabilities. Depending on the conditions, the di- and triphenylalanine derivatives self-organize into a wide variety of stable polymorphic structures, which have been characterized: stacked braids, doughnut-like shapes, bundled arrays of nanotubes, corkscrew-like shapes and spherulitic microstructures. These highly aromatic Phe-based peptides also form incipient branched dendritic microstructures, even though they are highly unstable, making their manipulation very difficult. Conversely, the tetraphenylalanine derivative spontaneously self-assembles into stable dendritic microarchitectures made of branches growing from nucleated primary frameworks. The fractal dimension of these microstructures is ∼1.70, which provides evidence for self-similarity and two-dimensional diffusion controlled growth. DFT calculations at the M06L/6-31G(d) level have been carried out on model β-sheets since this is the most elementary building block of Phe-based peptide polymorphs. The results indicate that the antiparallel β-sheet is more stable than the parallel one, with the difference between them growing with the number of Phe residues. Thus, the cooperative effects associated with the antiparallel disposition become more favorable when the number of Phe residues increases from 2 to 4, while those of the parallel disposition remained practically constant.
Lipid-peptide-polymer conjugates and nanoparticles thereof
Xu, Ting; Dong, He; Shu, Jessica
2015-06-02
The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.
Self-assembling multidomain peptide fibers with aromatic cores
USDA-ARS?s Scientific Manuscript database
Self-assembling multidomain peptides have been shown to have desirable properties, such as the ability to form hydrogels that rapidly recover following shear-thinning and the potential to be tailored by amino acid selection to vary their elasticity and encapsulate and deliver proteins and cells. Her...
The pH-dependent assembly of Chaplin E from Streptomyces coelicolor.
Dokouhaki, Mina; Hung, Andrew; Day, Li; Gras, Sally L
2017-05-01
Chaplin E, is one of five self-assembling peptides secreted by Streptomyces coelicolor that assist aerial growth by lowering the surface tension of water. Although the surface activity of a mixture of chaplin peptides has observed to depend on pH, it is unclear how the solvent environment (i.e. pH) influences the structure, assembly and subsequent functionality of these individual peptides. In this study, the conformation and fibril forming propensity of the Chaplin E peptide was assessed as a function of pH using a combination of experimental measurements and molecular dynamics simulations. At an acidic pH of 3.0, Chaplin E retained a random coil structure, whereas at the isoelectric point of 6.7 or a basic pH of 10.0, Chaplin E rapidly formed amyloid fibrils rich in β-sheet structure with high efficiency (>93%). Molecular dynamics simulations indicate the persistence of greater α-helical content at the N-terminus at high pH; this is likely partly due to the lack of electrostatic repulsion between residues His6 and Lys10. Since fibril formation was observed at high but not at low pH, we propose that the presence of an N-terminal α-helix in the monomeric form of Chaplin E is required for aggregation and conversion to β-amyloid fibrils. The pH sensitivity of Chaplin E peptide structure provides a route to control peptide assembly and may be important for the physiological function of this peptide, as a surface active agent in the transition from vegetative to aerial growth and could assist Streptomyces coelicolor in response to environmental fluctuations in pH. Copyright © 2017 Elsevier Inc. All rights reserved.
Makam, Pandeeswar; Gazit, Ehud
2018-05-21
Molecular self-assembly is a ubiquitous process in nature and central to bottom-up nanotechnology. In particular, the organization of peptide building blocks into ordered supramolecular structures has gained much interest due to the unique properties of the products, including biocompatibility, chemical and structural diversity, robustness and ease of large-scale synthesis. In addition, peptides, as short as dipeptides, contain all the molecular information needed to spontaneously form well-ordered structures at both the nano- and the micro-scale. Therefore, peptide supramolecular assembly has been effectively utilized to produce novel materials with tailored properties for various applications in the fields of material science, engineering, medicine, and biology. To further expand the conformational space of peptide assemblies in terms of structural and functional complexity, multicomponent (two or more) peptide supramolecular co-assembly has recently evolved as a promising extended approach, similar to the structural diversity of natural sequence-defined biopolymers (proteins) as well as of synthetic covalent co-polymers. The use of this methodology was recently demonstrated in various applications, such as nanostructure physical dimension control, the creation of non-canonical complex topologies, mechanical strength modulation, the design of light harvesting soft materials, fabrication of electrically conducting devices, induced fluorescence, enzymatic catalysis and tissue engineering. In light of these significant advancements in the field of peptide supramolecular co-assembly in the last few years, in this tutorial review, we provide an updated overview and future prospects of this emerging subject.
Khalily, Mohammad Aref; Usta, Hakan; Ozdemir, Mehmet; Bakan, Gokhan; Dikecoglu, F Begum; Edwards-Gayle, Charlotte; Hutchinson, Jessica A; Hamley, Ian W; Dana, Aykutlu; Guler, Mustafa O
2018-05-31
π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.
Piccirillo, Germano; Pepe, Antonietta; Bedini, Emiliano; Bochicchio, Brigida
2017-02-21
Synthetic (glyco)peptides inspired by proteins able to self-assemble are appealing biomaterials in the field of tissue engineering and regenerative medicine. Herein, for the first time, taking advantage of thiol-ene chemistry coupled to solid-phase peptide synthesis, a self-assembling peptide inspired by elastin protein was bioconjugated to three carbohydrates in order to obtain the corresponding glycopeptides. They were studied at the molecular and supramolecular level. The results show that the carbohydrate influences the molecular conformation of the glycopeptide and its self-aggregation properties as well. As future perspective, the results could enable us to tune the final self-aggregation properties of the glycopeptide by changing the sugar moiety. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Heredia, A.; Bdikin, I.; Kopyl, S.; Mishina, E.; Semin, S.; Sigov, A.; German, K.; Bystrov, V.; Gracio, J.; Kholkin, A. L.
2010-11-01
Diphenylalanine (FF) peptide nanotubes (PNTs) represent a unique class of self-assembled functional biomaterials owing to a wide range of useful properties including nanostructural variability, mechanical rigidity and chemical stability. In addition, strong piezoelectric activity has recently been observed paving the way to their use as nanoscale sensors and actuators. In this work, we fabricated both horizontal and vertical FF PNTs and examined their optical second harmonic generation and local piezoresponse as a function of temperature. The measurements show a gradual decrease in polarization with increasing temperature accompanied by an irreversible phase transition into another crystalline phase at about 140-150 °C. The results are corroborated by the molecular dynamic simulations predicting an order-disorder phase transition into a centrosymmetric (possibly, orthorhombic) phase with antiparallel polarization orientation in neighbouring FF rings. Partial piezoresponse hysteresis indicates incomplete polarization switching due to the high coercive field in FF PNTs.
Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio
2014-08-21
Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.
Examination of the solution behaviors of the giant inorganic-organic amphiphilic hybrids
NASA Astrophysics Data System (ADS)
Zhang, Baofang
Presently, the self-assembly behaviors of traditional small surfactants and amphiphilic block copolymers are fairly well understood. In comparison, rather little is known about the self-assembly behaviors of the giant inorganic-organic amphiphilic hybrids in solution. It remains a wide open field to explore. Giant inorganic-organic amphiphilic hybrids, consisting of nanoscale inorganic clusters and organic functional groups, represent a novel class of functional hybrid materials. They have unique physical and chemical properties and potential applications in catalysis, electronic, optics, magnetic materials, medicine and biology. Therefore, as emerging building blocks, they have promising prospects in the advanced materials. In this PhD work, several representative giant inorganic-organic amphiphilic hybrids (triangular-shaped polyoxometalate (POM)-containing inorganic/organic amphiphilic hybrids, POM-containing fluorosurfactants hybrids, POM-containing peptide hybrids POM-peptide hybrids and polyhedral oligometric silsesquioxane (POSS)-polystyrene (PS) are chosen for studying their self-assembly behaviors in solution. Based on the knowledge of the physical chemistry, colloid and polymer science, we focus on the mechanism of the self-assembly process, and the morphology control of the supramolecular structures through the internal and external conditions, such as the composition of the giant amphiphilies, molecular architectures, solvent nature, temperature, concentration, and extrally added salts. It is found that the counterion-meditated interactions dominate the self-assembly of triangular-shaped hybrids in acetone/water mixed solutions, due to the highly dominant hydrophilic portions; the solvent-swelling effect, instead of the charge effect, dominates the whole self-assembly process of the POM-containing fluorosurfactants; the analogy between small surfactants and giant amphiphiles POSS-PS allows a rough assessment of the possible morphologies of the supramolecular structures, and the particular values of the molecular packing parameter can be translated via simple geometrical relations into specific shape of the equilibrium supramolecular structures. For the experiments, laser light scattering (LLS) technique is used to monitor the entire self-assembly processes. The morphology and size of the supramolecular structures are determined by using dynamic light scattering (DLS) and static light scattering (SLS). Electron microscopies (TEM, SEM and AFM) are used to confirm the assembly structures and size. The stability of the assembly solution system is characterized by zeta potential.
Lakshmanan, Anupama; Cheong, Daniel W; Accardo, Angelo; Di Fabrizio, Enzo; Riekel, Christian; Hauser, Charlotte A E
2013-01-08
The self-assembly of abnormally folded proteins into amyloid fibrils is a hallmark of many debilitating diseases, from Alzheimer's and Parkinson diseases to prion-related disorders and diabetes type II. However, the fundamental mechanism of amyloid aggregation remains poorly understood. Core sequences of four to seven amino acids within natural amyloid proteins that form toxic fibrils have been used to study amyloidogenesis. We recently reported a class of systematically designed ultrasmall peptides that self-assemble in water into cross-β-type fibers. Here we compare the self-assembly of these peptides with natural core sequences. These include core segments from Alzheimer's amyloid-β, human amylin, and calcitonin. We analyzed the self-assembly process using circular dichroism, electron microscopy, X-ray diffraction, rheology, and molecular dynamics simulations. We found that the designed aliphatic peptides exhibited a similar self-assembly mechanism to several natural sequences, with formation of α-helical intermediates being a common feature. Interestingly, the self-assembly of a second core sequence from amyloid-β, containing the diphenylalanine motif, was distinctly different from all other examined sequences. The diphenylalanine-containing sequence formed β-sheet aggregates without going through the α-helical intermediate step, giving a unique fiber-diffraction pattern and simulation structure. Based on these results, we propose a simplified aliphatic model system to study amyloidosis. Our results provide vital insight into the nature of early intermediates formed and suggest that aromatic interactions are not as important in amyloid formation as previously postulated. This information is necessary for developing therapeutic drugs that inhibit and control amyloid formation.
Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less
Thermodynamics, morphology, and kinetics of early-stage self-assembly of π-conjugated oligopeptides
None, None
2016-03-22
Synthetic oligopeptides containing π-conjugated cores self-assemble novel materials with attractive electronic and photophysical properties. All-atom, explicit solvent molecular dynamics simulations of Asp-Phe-Ala-Gly-OPV3-Gly-Ala-Phe-Asp peptides were used to parameterize an implicit solvent model to simulate early-stage self-assembly. Under low-pH conditions, peptides assemble into β-sheet-like stacks with strongly favorable monomer association free energies of ΔF ≈ -25kBT. Aggregation at high-pH produces disordered aggregates destabilized by Coulombic repulsion between negatively charged Asp termini (ΔF ≈ -5kBT). In simulations of hundreds of monomers over 70 ns we observe the spontaneous formation of up to undecameric aggregates under low-pH conditions. Modeling assembly as a continuous-time Markovmore » process, we infer transition rates between different aggregate sizes and microsecond relaxation times for early-stage assembly. Our data suggests a hierarchical model of assembly in which peptides coalesce into small clusters over tens of nanoseconds followed by structural ripening and diffusion limited aggregation on longer time scales. This work provides new molecular-level understanding of early-stage assembly, and a means to study the impact of peptide sequence and aromatic core chemistry upon the thermodynamics, assembly kinetics, and morphology of the supramolecular aggregates.« less
Self-Assembly of Natural and Synthetic Drug Amphiphiles into Discrete Supramolecular Nanostructures
Lock, Lye Lin; LaComb, Michelle; Schwarz, Kelly; Cheetham, Andrew G.; Lin, Yi-an; Zhang, Pengcheng
2014-01-01
Molecular assembly provides an effective approach to construct discrete supramolecular nanostructures of various sizes and shapes in a simple manner. One important technological application of the resulting nanostructures is their potential use as anticancer drug carriers to facilitate targeted delivery to tumour sites and consequently to improve clinical outcomes. In this carrier-assisted delivery strategy, anticancer drugs have been almost exclusively considered as the cargo to be carried and delivered, and their potential as molecular building blocks has been largely ignored. In this discussion, we report the use of anticancer drugs as molecular building units to create discrete supramolecular nanostructures that contain a high and quantitative drug loading and also have the potential for self-delivery. We first show the direct assembly of two amphiphilic drug molecules (methotrexate and folic acid) into discrete nanostructures. Our results reveal that folic acid exhibits rich self-assembly behaviours via Hoogsteen hydrogen bonding in various solvent conditions, whereas methotrexate was unable to assemble into any well-defined nanostructures under the same conditions, despite its similar chemical structures. Considering the low water solubility of most anticancer drugs, hydrophilic segments must be conjugated to the drug in order to bestow the necessary amphiphilicity. We have demonstrated this for camptothecin through the attachment of β-sheet-forming peptides with overall hydrophilicity. We found that the intermolecular interactions among camptothecin segments and those among β-sheet peptides act together to define the formation of stable one-dimensional nanostructures in dilute solutions, giving rise to nanotubes or nanofibers depending upon the processing conditions used. These results lead us to believe that self-assembly of drugs into discrete nanostructures not only offers an innovative way to craft self-delivering anticancer drugs, but also extends the paradigm of using molecular assembly as a toolbox to achieve functional nanostructures, to a new area which is specifically focused on the direct assembly of functional molecules (e.g. drugs, or imaging agents) into nanostructures of their own. PMID:24611283
Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuecheng; Li, Bo; Li, Songsong
Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less
Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides
Zhou, Yuecheng; Li, Bo; Li, Songsong; ...
2017-08-17
Advances in supramolecular assembly have enabled the design and synthesis of functional materials with well-defined structures across multiple length scales. Biopolymer-synthetic hybrid materials can assemble into supramolecular structures with a broad range of structural and functional diversity through precisely controlled noncovalent interactions between subunits. Despite recent progress, there is a need to understand the mechanisms underlying the assembly of biohybrid/synthetic molecular building blocks, which ultimately control the emergent properties of hierarchical assemblies. Here in this work, we study the concentration-driven self-assembly and gelation of π-conjugated synthetic oligopeptides containing different π-conjugated cores (quaterthiophene and perylene diimide) using a combination of particlemore » tracking microrheology, confocal fluorescence microscopy, optical spectroscopy, and electron microscopy. Our results show that π-conjugated oligopeptides self-assemble into β-sheet-rich fiber-like structures at neutral pH, even in the absence of electrostatic screening of charged residues. A critical fiber formation concentration c fiber and a critical gel concentration c gel are determined for fiber-forming π-conjugated oligopeptides, and the linear viscoelastic moduli (storage modulus G' and loss modulus G") are determined across a wide range of peptide concentrations. These results suggest that the underlying chemical structure of the synthetic π-conjugated cores greatly influences the self-assembly process, such that oligopeptides appended to π-conjugated cores with greater torsional flexibility tend to form more robust fibers upon increasing peptide concentration compared to oligopeptides with sterically constrained cores. Overall, our work focuses on the molecular assembly of π-conjugated oligopeptides driven by concentration, which is controlled by a combination of enthalpic and entropic interactions between oligopeptide subunits.« less
Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations
Tamamis, Phanourios; Adler-Abramovich, Lihi; Reches, Meital; Marshall, Karen; Sikorski, Pawel; Serpell, Louise; Gazit, Ehud; Archontis, Georgios
2009-01-01
Abstract Studies of peptide-based nanostructures provide general insights into biomolecular self-assembly and can lead material engineering toward technological applications. The diphenylalanine peptide (FF) self-assembles into discrete, hollow, well ordered nanotubes, and its derivatives form nanoassemblies of various morphologies. Here we demonstrate for the first time, to our knowledge, the formation of planar nanostructures with β-sheet content by the triphenylalanine peptide (FFF). We characterize these structures using various microscopy and spectroscopy techniques. We also obtain insights into the interactions and structural properties of the FF and FFF nanostructures by 0.4-μs, implicit-solvent, replica-exchange, molecular-dynamics simulations of aqueous FF and FFF solutions. In the simulations the peptides form aggregates, which often contain open or ring-like peptide networks, as well as elementary and network-containing structures with β-sheet characteristics. The networks are stabilized by polar and nonpolar interactions, and by the surrounding aggregate. In particular, the charged termini of neighbor peptides are involved in hydrogen-bonding interactions and their aromatic side chains form “T-shaped” contacts, as in three-dimensional FF crystals. These interactions may assist the FF and FFF self-assembly at the early stage, and may also stabilize the mature nanostructures. The FFF peptides have higher network propensities and increased aggregate stabilities with respect to FF, which can be interpreted energetically. PMID:19527662
Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P
2003-01-01
Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.
Milton, Deanna L.; Schneck, Amy N.; Ziech, Dominique A.; Ba, Mariam; Facemyer, Kevin C.; Halayko, Andrew J.; Baker, Jonathan E.; Gerthoffer, William T.; Cremo, Christine R.
2011-01-01
The 10S self-inhibited monomeric conformation of myosin II has been characterized extensively in vitro. Based upon its structural and functional characteristics, it has been proposed to be an assembly-competent myosin pool in equilibrium with filaments in cells. It is known that myosin filaments can assemble and disassemble in nonmuscle cells, and in some smooth muscle cells, but whether or not the disassembled pool contains functional 10S myosin has not been determined. Here we address this question using human airway smooth muscle cells (hASMCs). Using two antibodies against different epitopes on smooth muscle myosin II (SMM), two distinct pools of SMM, diffuse, and stress-fiber–associated, were visualized by immunocytochemical staining. The two SMM pools were functional in that they could be interconverted in two ways: (i) by exposure to 10S- versus filament-promoting buffer conditions, and (ii) by exposure to a peptide that shifts the filament-10S equilibrium toward filaments in vitro by a known mechanism that requires the presence of the 10S conformation. The effect of the peptide was not due to a trivial increase in SMM phosphorylation, and its specificity was demonstrated by use of a scrambled peptide, which had no effect. Based upon these data, we conclude that hASMCs contain a significant pool of functional SMM in the 10S conformation that can assemble into filaments upon changing cellular conditions. This study provides unique direct evidence for the presence of a significant pool of functional myosin in the 10S conformation in cells. PMID:21205888
NASA Astrophysics Data System (ADS)
Mansbach, Rachael; Ferguson, Andrew
Self-assembling π-conjugated peptides are attractive candidates for the fabrication of bioelectronic materials possessing optoelectronic properties due to electron delocalization over the conjugated peptide groups. We present a computational and theoretical study of an experimentally-realized optoelectronic peptide that displays triggerable assembly in low pH to resolve the microscopic effects of flow and pH on the non-equilibrium morphology and kinetics of assembly. Using a combination of molecular dynamics simulations and hydrodynamic modeling, we quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to influence assembly. We also show that there is a critical pH below which aggregation proceeds irreversibly, and quantify the relationship between pH, charge density, and aggregate size. Our work provides new fundamental understanding of pH and flow of non-equilibrium π-conjugated peptide assembly, and lays the groundwork for the rational manipulation of environmental conditions and peptide chemistry to control assembly and the attendant emergent optoelectronic properties. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0011847, and by the Computational Science and Engineering Fellowship from the University of Illinois at Urbana-Champaign.
NASA Technical Reports Server (NTRS)
McMillan, R. Andrew; Howard, Jeanie; Zaluzec, Nestor J.; Kagawa, Hiromi K.; Li, Yi-Fen; Paavola, Chad D.; Trent, Jonathan D.
2004-01-01
Self-assembling biomolecules that form highly ordered structures have attracted interest as potential alternatives to conventional lithographic processes for patterning materials. Here we introduce a general technique for patterning materials on the nanoscale using genetically modified protein cage structures called chaperonins that self-assemble into crystalline templates. Constrained chemical synthesis of transition metal nanoparticles is specific to templates genetically functionalized with poly-Histidine sequences. These arrays of materials are ordered by the nanoscale structure of the crystallized protein. This system may be easily adapted to pattern a variety of materials given the rapidly growing list of peptide sequences selected by screening for specificity for inorganic materials.
Opal-like Multicolor Appearance of Self-Assembled Photonic Array.
Arnon, Zohar A; Pinotsi, Dorothea; Schmidt, Matthias; Gilead, Sharon; Guterman, Tom; Sadhanala, Aditya; Ahmad, Shahab; Levin, Aviad; Walther, Paul; Kaminski, Clemens F; Fändrich, Marcus; Kaminski Schierle, Gabriele S; Adler-Abramovich, Lihi; Shimon, Linda J W; Gazit, Ehud
2018-06-20
Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.
Coiled-coil peptide-polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here in this paper, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide-polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formedmore » at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide-polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation.« less
Lund, Reidar; Ang, JooChuan; Shu, Jessica Y.; ...
2016-10-26
Coiled-coil peptide-polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here in this paper, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide-polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formedmore » at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide-polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation.« less
Intracellular Peptide Self-Assembly: A Biomimetic Approach for in Situ Nanodrug Preparation.
Du, Wei; Hu, Xiaomu; Wei, Weichen; Liang, Gaolin
2018-04-18
Most nanodrugs are preprepared by encapsulating or loading the drugs with nanocarriers (e.g., dendrimers, liposomes, micelles, and polymeric nanoparticles). However, besides the low bioavailability and fast excretion of the nanodrugs in vivo, nanocarriers often exhibit in vitro and in vivo cytotoxicity, oxidative stress, and inflammation. Self-assembly is a ubiquitous process in biology where it plays important roles and underlies the formation of a wide variety of complex biological structures. Inspired by some cellular nanostructures (e.g., actin filaments, microtubules, vesicles, and micelles) in biological systems which are formed via molecular self-assembly, in recent decades, scientists have utilized self-assembly of oligomeric peptide under specific physiological or pathological environments to in situ construct nanodrugs for lesion-targeted therapies. On one hand, peptide-based nanodrugs always have some excellent intrinsic chemical (specificity, intrinsic bioactivity, biodegradability) and physical (small size, conformation) properties. On the other hand, stimuli-regulated intracellular self-assembly of nanodrugs is quite an efficient way to accumulate the drugs in lesion location and can realize an in situ slow release of the drugs. In this review article, we provided an overview on recent design principles for intracellular peptide self-assembly and illustrate how these principles have been applied for the in situ preparation of nanodrugs at the lesion location. In the last part, we list some challenges underlying this strategy and their possible solutions. Moreover, we envision the future possible theranostic applications of this strategy.
Molecular Mechanism of Thioflavin-T Binding to the Surface of [beta]-Rich Peptide Self-Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancalana, Matthew; Makabe, Koki; Koide, Akiko
A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of which also inhibit fibrillization. Among these, the benzothiol dye Thioflavin-T (ThT) has been used for decades in the diagnosis of protein-misfolding diseases and in kinetic studies of self-assembly (fibrillization). Despite its importance, efforts to characterize the ThT-binding mechanism at the atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-assemblies. To overcome these challenges, we have developed a minimalist approach to designing a ThT-binding site in a 'peptide self-assembly mimic' (PSAM) scaffold. PSAMs are engineered water-soluble proteins that mimicmore » a segment of beta-rich peptide self-assembly, and they are amenable to standard biophysical techniques and systematic mutagenesis. The PSAM beta-sheet contains rows of repetitive amino acid patterns running perpendicular to the strands (cross-strand ladders) that represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand ladder consisting of contiguous tyrosines. The X-ray crystal structures suggest that ThT interacts with the beta-sheet by docking onto surfaces formed by a single tyrosine ladder, rather than in the space between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across four or more beta-strands formed the minimal binding site for ThT. Our work thus provides structural insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies, and proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.« less
USDA-ARS?s Scientific Manuscript database
Intercerebral inoculation of 263K Scrapie brain homogenate (PrPsc) with a self-assembling RADA-peptide (RADA) significantly delayed disease onset and increased hamster survival. Time of survival was dependent on the dose of RADA and pre-incubation with PrPsc prior to inoculation. RADA treatment resu...
Fibrous microcapsules and methods of assembly and use thereof
Stupp, Samuel; Rozkiewicz, Dorota
2015-01-27
The present invention relates to assembly of peptide amphiphiles and biopolymers into fibrous microcapsules, and uses thereof. In particular, the present invention provides devices, compositions, and methods for interfacial self-assembly of peptide amphiphiles and biopolyments into fibrous microcapsules, and uses thereof.
Smart hydrogels from laterally-grafted peptide assembly.
Li, Wen; Park, Il-soo; Kang, Seong-Kyun; Lee, Myongsoo
2012-09-11
Small peptides carrying laterally-grafted azobenzene units self-assemble into photo-responsive hydrogels which are applied as a smart matrix for controlling the dye molecules release. We demonstrate that a delicate balance among peptides interactions plays a pivotal role in the photo-responsive gel-sol transition.
Solid-phase synthesis of self-assembling multivalent π-conjugated peptides
Sanders, Allix M.; Kale, Tejaswini S.; Katz, Howard E.; ...
2017-02-07
Here, we present a completely solid-phase synthetic strategy to create three- and four-fold peptide-appended π-electron molecules, where the multivalent oligopeptide presentation is dictated by the symmetries of reactive handles placed on discotic π-conjugated cores. Carboxylic acid and anhydride groups were viable amidation and imidation partners, respectively, and oligomeric π-electron discotic cores were prepared through Pd-catalyzed cross-couplings. Due to intermolecular hydrogen bonding between the three or four peptide axes, these π-peptide hybrids self-assemble into robust one-dimensional nanostructures with high aspect ratios in aqueous solution. The preparation of these systems via solid-phase methods will be detailed along with their self-assembly properties, asmore » revealed by steady-state spectroscopy and transmission electron microscopy and electrical characterization using field-effect transistor measurements.« less
Fujita, Seiya; Matsuura, Kazunori
2014-01-01
A viral β-annulus peptide connected with a zinc oxide (ZnO)-binding sequence (HCVAHR) at its N-terminal was synthesized, and the inclusion behavior of quantum-sized ZnO nanoparticles into the peptide nanocapsules formed by self-assembly of the peptide in water was investigated. Dynamic light scattering (DLS) measurements showed that ZnO nanoparticles (approximately 10 nm) in the presence of the peptide (0.1 mM) formed assemblies with an average size of 48 ± 24 nm, whereas ZnO nanoparticles in the absence of the peptide formed large aggregates. Transmission electron microscopy (TEM) observations of the ZnO nanoparticles in the presence of the peptide revealed that ZnO nanoparticles were encapsulated into the peptide nanocapsules with a size of approximately 50 nm. Fluorescence spectra of a mixture of the peptide and ZnO nanoparticles suggested that the ZnO surface and the peptide interact. Template synthesis of ZnO nanoparticles with the peptide nanocapsules afforded larger nanoparticles (approximately 40 nm), which are not quantum-sized ZnO. PMID:28344248
pH-dependent and pH-independent self-assembling behavior of surfactant-like peptides
NASA Astrophysics Data System (ADS)
Gurevich, Leonid; Fojan, Peter
2012-02-01
Self-assembly of amphiphilic peptides designed during the last years by several research groups leads to a large variety of 3D-structures that already found applications in stabilization of large protein complexes, cell culturing systems etc. In this report, we present synthesis and characterization of two novel families of amphiphilic peptides KAn and KAnW (n=6,5,4) that exhibits clear charge separation controllable by pH of the environment. As the pH changes from acidic to basic, the charge on the ends of the peptide molecule varies eventually leading to reorganization of KAn micelles and even micellar inversion. On contrary, the bulky geometry of the tryptophan residue in KAnW limits the variation of the surfactant parameter and hence largely prevents assembly into spherical or cylindrical micelles while favouring flatter geometries. The studied short peptide families demonstrate formation of ordered aggregates with well-defined secondary structure from short unstructured peptides and provide a simple system where factors responsible for self-assembly can be singled out and studied one by one. The ability to control the shape and structure of peptide aggregates can provide basis for novel designer pH sensitive materials including drug delivery and controlled release systems.
NASA Astrophysics Data System (ADS)
Krishna, Ohm Divyam
2011-12-01
Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the collapse of the thermo-responsive polymer upon heating (to above the LCST) leads to the assembly of these hybrid materials as micrometer sized spheres. At 75 °C a morphological transformation from spheres to fibrils were observed. These studies provided unique perspectives about the impact of stimuli-responsive polymers and the triple-helix forming peptides on each other; and how temperature as a stimulus can be employed to sequentially guide the assembly. The development of self-assembling hybrid materials with multiple sensitivities to temperature would offer useful opportunities in the design of stimuli-responsive nano-materials. The CLP-Cys peptide sequence has been designed to incorporate biologically relevant amino acid triplets (GEKGER) and its positive impact was seen via recruitment of human mesenchymal stem cells (hMSCs) for adhesion, spreading and proliferation on CLP-Cys functionalized glass and hyaluronic acid based hydrogel surfaces. Therefore, the prospects of these materials in biomedical applications including wound healing and tissue engineering are promising.
Development of a Coarse-grained Model of Polypeptoids for Studying Self-assembly in Solution
NASA Astrophysics Data System (ADS)
Du, Pu; Rick, Steven; Kumar, Revati
Polypeptoid, a class of highly tunable biomimetic analogues of peptides, are used as a prototypical model system to study self-assembly. The focus of this work is to glean insight into the effect of electrostatic and other non-covalent secondary interactions on the self-assembly of sequence-defined polypeptoids, with different charged and uncharged side groups, in solution that will complement experiments. Atomistic (AA) molecular dynamics simulation can provide a complete description of self-assembly of polypeptoid systems. However, the long simulation length and time scales needed for these processes require the development of a computationally cheaper alternative, namely coarse-grained (CG) models. A CG model for studying polypeptoid micellar interactions is being developed, parameterized on atomistic simulations, using a hybridized approach involving the OPLS-UA force filed and the Stillinger-Weber (SW) potential form. The development of the model as well as the results from the simulations on the self-assembly as function of polypeptoid chemical structure and sequences will be presented.
Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure.
Koga, Tomoyuki; Aso, Eri; Higashi, Nobuyuki
2016-11-29
Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser) ester -b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.
Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.
Moriuchi, Toshiyuki; Hirao, Toshikazu
2010-07-20
The highly ordered molecular assemblies in proteins can have a variety of functions, as observed in enzymes, receptors, and the like. Synthetic scientists are constructing bioinspired systems by harnessing the self-assembling properties of short peptides. Secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in protein folding, which is mostly directed and stabilized by hydrogen bonding and the hydrophobic interactions of side chains. The design of secondary structure mimics that are composed of short peptides has attracted much attention, both for gaining fundamental insight into the factors affecting protein folding and for developing pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. Ferrocenes are an organometallic scaffold with a central reverse-turn unit based on the inter-ring spacing of about 3.3 A, which is a suitable distance for hydrogen bonding between attached peptide strands. The conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA should provide novel systems that reflect properties of both the ferrocene and the biologically derived moieties. In this Account, we focus on recent advances in the design of ferrocene-peptide bioconjugates, which help illustrate the peptidomimetic basis for protein folding and the means of constructing highly ordered molecular assemblies. Ferrocene-peptide bioconjugates are constructed to form chirality-organized structures in both solid and solution states. The ferrocene serves as a reliable organometallic scaffold for the construction of protein secondary structures via intramolecular hydrogen bonding: the attached dipeptide strands are constrained within the appropriate dimensions. The introduction of the chiral dipeptide chains into the ferrocene scaffold induces the conformational enantiomerization of the ferrocenyl moiety; the chirality-organized structure results from intramolecular hydrogen bonding. The configuration and sequence of the amino acids are instrumental in the process. Regulation of the directionality and specificity of hydrogen bonding is a key component in the design of various molecular assemblies. Ferrocene-peptide bioconjugates also have a strong tendency to self-assemble through the contributions of available hydrogen-bonding donors in the solid state. Some ferrocene-peptide bioconjugates bearing only one dipeptide chain exhibit a helically ordered molecular assembly through a network of intermolecular (rather than intramolecular) hydrogen bonds. The propensity to form the chiral helicity appears to be controlled by the chirality of the dipeptide chains. Organization of host molecules is a useful strategy for forming artificial receptors. The conformationally regulated ferrocene-peptide bioconjugate provides the chirality-organized binding site for size-selective and chiral recognition of dicarboxylic acids through multipoint hydrogen bonds. Metal ions serve a variety of purposes in proteins, including structural stabilization for biological function. The complexation of ferrocene-peptide bioconjugates with palladium(II) compounds not only stabilizes the chirality conformational regulation but also induces conformational regulation of the dipeptide chain through complexation and intramolecular chirality organization. Construction of the chirality-organized ferrocene-peptide bioconjugates is also achieved by metal-directed assembly. These varied examples amply demonstrate the value of ferrocene-peptide bioconjugates in asserting architectural control over highly ordered molecular assemblies.
NASA Astrophysics Data System (ADS)
Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng
2018-04-01
Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug (S)-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.
Fan, Qin; Ji, Yujie; Wang, Jingjing; Wu, Li; Li, Weidong; Chen, Rui; Chen, Zhipeng
2018-04-01
Peptide-drug conjugates (PDCs) as self-assembly prodrugs have the unique and specific features to build one-component nanomedicines. Supramolecular structure based on PDCs could form various morphologies ranging from nanotube, nanofibre, nanobelt to hydrogel. However, the assembly process of PDCs is too complex to predict or control. Herein, we investigated the effects of extrinsic factors on assembly morphology and the possible formation of nanostructures based on PDCs. To this end, we designed a PDC consisting of hydrophobic drug ( S )-ketoprofen (Ket) and valine-glutamic acid dimeric repeats peptide (L-VEVE) to study their assembly behaviour. Our results showed that the critical assembly concentration of Ket-L-VEVE was 0.32 mM in water to form various nanostructures which experienced from micelle, nanorod, nanofibre to nanoribbon. The morphology was influenced by multiple factors including molecular design, assembly time, pH and hydrogen bond inhibitor. On the basis of experimental results, we speculated the possible assembly mechanism of Ket-L-VEVE. The π-π stacking interaction between Ket molecules could serve as an anchor, and hydrogen bonded-induced β-sheets and hydrophilic/hydrophobic balance between L-VEVE peptide play structure-directing role in forming filament-like or nanoribbon morphology. This work provides a new sight to rationally design and precisely control the nanostructure of PDCs based on aromatic fragment.
Self-assembling peptide amphiphiles and related methods for growth factor delivery
Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA
2009-06-09
Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.
Self-assembling peptide amphiphiles and related methods for growth factor delivery
Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA
2012-03-20
Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.
Self-assembling peptide amphiphiles and related methods for growth factor delivery
Stupp, Samuel I; Donners, Jack J.J.M.; Silva, Gabriel A; Behanna, Heather A; Anthony, Shawn G
2013-11-12
Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.
Thermal stability of self-assembled peptide vaccine materials.
Sun, Tao; Han, Huifang; Hudalla, Gregory A; Wen, Yi; Pompano, Rebecca R; Collier, Joel H
2016-01-01
The majority of current vaccines depend on a continuous "cold chain" of storage and handling between 2 and 8°C. Vaccines experiencing temperature excursions outside this range can suffer from reduced potency. This thermal sensitivity results in significant losses of vaccine material each year and risks the administration of vaccines with diminished protective ability, issues that are heightened in the developing world. Here, using peptide self-assemblies based on the fibril-forming peptide Q11 and containing the epitopes OVA323-339 from ovalbumin or ESAT651-70 from Mycobacterium tuberculosis, the chemical, conformational, and immunological stability of supramolecular peptide materials were investigated. It was expected that these materials would exhibit advantageous thermal stability owing to their adjuvant-free and fully synthetic construction. Neither chemical nor conformational changes were observed for either peptide when stored at 45°C for 7days. ESAT651-70-Q11 was strongly immunogenic whether it was stored as a dry powder or as aqueous nanofibers, showing undiminished immunogenicity even when stored as long as six months at 45°C. This result was in contrast to ESAT651-70 conjugated to a protein carrier and adjuvanted with alum, which demonstrated marked thermal sensitivity in these conditions. Antibody titers and affinities were undiminished in mice for OVA323-339-Q11 if it was stored as assembled nanofibers, yet some diminishment was observed for material stored as a dry powder. The OVA study was done in a different mouse strain and with a different prime/boost regimen, and so it should not be compared directly with the study for the ESAT epitope. This work indicates that peptide self-assemblies can possess attractive thermal stability properties in the context of vaccine development. Almost all current vaccines must be maintained within a tight and refrigerated temperature range, usually between 2 and 8°C. This presents significant challenges for their distribution, especially in the developing world. Here we report on the surprisingly robust thermal stability of a self-assembled peptide vaccine. In particular a self-assembled peptide vaccine containing a tuberculosis epitope maintained all of its potency in mice when exposed to an extreme thermal treatment of six months at 45°C. In a different mouse model, we investigated another model epitope and found some storage conditions where potency was diminished. Overall this study illustrates that some self-assembled peptide vaccines can have remarkable thermal stability. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Functional Hydrogel Materials Inspired by Amyloid
NASA Astrophysics Data System (ADS)
Schneider, Joel
2012-02-01
Protein assembly resulting in the formation of amyloid fibrils, assemblies rich in cross beta-sheet structure, is normally thought of as a deleterious event associated with disease. However, amyloid formation is also involved in a diverse array of normal biological functions such as cell adhesion, melanin synthesis, insect defense mechanism and modulation of water surface tension by fungi and bacteria. These findings indicate that Nature has evolved to take advantage of large, proteinaceous fibrillar assemblies to elicit function. We are designing functional materials, namely hydrogels, from peptides that self-assembled into fibrillar networks, rich in cross beta-sheet structure. These gels can be used for the direct encapsulation and delivery of small molecule-, protein- and cell-based therapeutics. Loaded gels exhibit shear-thinning/self-healing mechanical properties enabling their delivery via syringe. In addition to their use for delivery, we have found that some of these gels display antibacterial activity. Although cytocompatible towards mammalian cells, the hydrogels can kill a broad spectrum of bacteria on contact.
Molecular Origin of the Self-Assembly of Lanreotide into Nanotubes: A Mutational Approach☆
Valéry, Céline; Pouget, Emilie; Pandit, Anjali; Verbavatz, Jean-Marc; Bordes, Luc; Boisdé, Isabelle; Cherif-Cheikh, Roland; Artzner, Franck; Paternostre, Maité
2008-01-01
Lanreotide, a synthetic, therapeutic octapeptide analog of somatostatin, self-assembles in water into perfectly hollow and monodisperse (24-nm wide) nanotubes. Lanreotide is a cyclic octapeptide that contains three aromatic residues. The molecular packing of the peptide in the walls of a nanotube has recently been characterized, indicating four hierarchical levels of organization. This is a fascinating example of spontaneous self-organization, very similar to the formation of the gas vesicle walls of Halobacterium halobium. However, this unique peptide self-assembly raises important questions about its molecular origin. We adopted a directed mutation approach to determine the molecular parameters driving the formation of such a remarkable peptide architecture. We have modified the conformation by opening the cycle and by changing the conformation of a Lys residue, and we have also mutated the aromatic side chains of the peptide. We show that three parameters are essential for the formation of lanreotide nanotubes: i), the specificity of two of the three aromatic side chains, ii), the spatial arrangement of the hydrophilic and hydrophobic residues, and iii), the aromatic side chain in the β-turn of the molecule. When these molecular characteristics are modified, either the peptides lose their self-assembling capability or they form less-ordered architectures, such as amyloid fibers and curved lamellae. Thus we have determined key elements of the molecular origins of lanreotide nanotube formation. PMID:17993497
NASA Astrophysics Data System (ADS)
Sharma, Ankita; Tiwari, Priyanka; Dutt Konar, Anita
2018-06-01
Peptide self-assembled nanostructures have attracted attention recently owing to their promising applications in diversified avenues. To validate the importance of sidechains in supramolecular architectural stabilization, herein this report describes the self-assembly propensities involving weak interactions in a series of model tripeptides Boc-Xaa-Aib-Yaa-OMe I-IV, (where Xaa = 4-F-Phe/NMeSer/Ile & Yaa = Tyr in peptide I-III respectively and Xaa = 4-F-Phe & Yaa = Ile in peptide IV) differing in terminal side chains. The solid state structural analysis reveals that tripeptide (I) displays supramolecular preference for double helical architecture. However, when slight modification has been introduced in the N-terminal side chains disfavour the double helical organisation (Peptide II and III). Indeed the peptides display sheet like ensemble within the framework. Besides replacement of C-terminal Tyr by Ile in peptide I even do not promote the architecture, emphasizing the dominant role of balance of side chains in stabilizing double helical organisation. The CD measurements, concentration dependant studies, NMR titrations and ROESY spectra are well in agreement with the solid state conformational investigation. Moreover the morphological experiments utilizing FE-SEM, support the heterogeneity present in the peptides. Thus this work may not only hold future promise in understanding the structure and function of neurodegenerative diseases but also assist in rational design of protein modification in biologically active peptides.
Vigneswaran, Yalini; Han, Huifang; De Loera, Roberto; Wen, Yi; Zhang, Xing; Sun, Tao; Mora-Solano, Carolina; Collier, Joel H
2016-08-01
Biomaterials used in the context of tissue engineering or wound repair are commonly designed to be "nonimmunogenic." However, previously it has been observed that self-assembled peptide nanofiber materials are noninflammatory despite their immunogenicity, suggesting that they may be appropriate for use in wound-healing contexts. To test this hypothesis, mice were immunized with epitope-containing peptide self-assemblies until they maintained high antibody titers against the material, then gels of the same peptide assemblies were applied within full-thickness dermal wounds. In three different murine dermal-wounding models with different baseline healing rates, even significantly immunogenic peptide assemblies did not delay healing. Conversely, adjuvanted peptide assemblies, while raising similar antibody titers to unadjuvanted assemblies, did delay wound healing. Analysis of the healing wounds indicated that compared to adjuvanted peptide assemblies, the unadjuvanted assemblies exhibited a progression of the dominant T-cell subset from CD4(+) to CD8(+) cells in the wound, and CD4(+) cell populations displayed a more Th2-slanted response. These findings illustrate an example of a significant antibiomaterial adaptive immune response that does not adversely affect wound healing despite ongoing antibody production. This material would thus be considered "immunologically compatible" in this specific context rather than "nonimmunogenic," a designation that is expected to apply to a range of other protein- and peptide-based biomaterials in wound-healing and tissue-engineering applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1853-1862, 2016. © 2016 Wiley Periodicals, Inc.
Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment.
Christensen, Mikkel; Skeby, Katrine K; Schiøtt, Birgit
2017-09-12
Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.
Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels
Nagarkar, Radhika P.; Schneider, Joel P.
2009-01-01
Summary Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxycarbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide’s final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed. PMID:19031061
Chen, Si; Fan, Jin-Xuan; Qiu, Wen-Xiu; Liu, Li-Han; Cheng, Han; Liu, Fan; Yan, Guo-Ping; Zhang, Xian-Zheng
2017-11-01
In recent decades, diverse drug delivery systems (DDS) constructed by self-assembly of dendritic peptides have shown advantages and improvable potential for cancer treatment. Here, an arginine-enriched dendritic amphiphilic chimeric peptide CRRK(RRCG(Fmoc)) 2 containing multiple thiol groups is programmed to form drug-loaded nano-micelles by self-assembly. With a rational design, the branched hydrophobic groups (Fmoc) of the peptides provide a strong hydrophobic force to prevent the drug from premature release, and the reduction-sensitive disulfide linkages formed between contiguous peptides can control drug release under reducing stimulation. As expected, specific to multidrug resistance (MDR) tumor cells, the arginine-enriched peptide/drug (PD) nano-micelles show accurate nuclear localization ability to prevent the drug being pumped by P-glycoprotein (P-gp) in vitro, as well as exhibiting satisfactory efficacy for MDR tumor treatment in vivo. This design successfully realizes stimuli-responsive drug release aimed at MDR tumor cells via an ingenious sequence arrangement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite
2017-09-01
The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping
2016-01-01
Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786
Aggeli, A.; Nyrkova, I. A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T. C. B.; Semenov, A. N.; Boden, N.
2001-01-01
A generic statistical mechanical model is presented for the self-assembly of chiral rod-like units, such as β-sheet-forming peptides, into helical tapes, which with increasing concentration associate into twisted ribbons (double tapes), fibrils (twisted stacks of ribbons), and fibers (entwined fibrils). The finite fibril width and helicity is shown to stem from a competition between the free energy gain from attraction between ribbons and the penalty because of elastic distortion of the intrinsically twisted ribbons on incorporation into a growing fibril. Fibers are stabilized similarly. The behavior of two rationally designed 11-aa residue peptides, P11-I and P11-II, is illustrative of the proposed scheme. P11-I and P11-II are designed to adopt the β-strand conformation and to self-assemble in one dimension to form antiparallel β-sheet tapes, ribbons, fibrils, and fibers in well-defined solution conditions. The energetic parameters governing self-assembly have been estimated from the experimental data using the model. The 8-nm-wide fibrils consist of eight tapes, are extremely robust (scission energy ≈200 kBT), and sufficiently rigid (persistence length l̃fibril ≈ 20–70 μm) to form nematic solutions at peptide concentration c ≈ 0.9 mM (volume fraction ≈0.0009 vol/vol), which convert to self-supporting nematic gels at c > 4 mM. More generally, these observations provide a new insight into the generic self-assembling properties of β-sheet-forming peptides and shed new light on the factors governing the structures and stability of pathological amyloid fibrils in vivo. The model also provides a prescription of routes to novel macromolecules based on a variety of self-assembling chiral units, and protocols for extraction of the associated energy changes. PMID:11592996
Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes
NASA Astrophysics Data System (ADS)
Reches, Meital; Gazit, Ehud
2003-04-01
Tubular nanostructures are suggested to have a wide range of applications in nanotechnology. We report our observation of the self-assembly of a very short peptide, the Alzheimer's β-amyloid diphenylalanine structural motif, into discrete and stiff nanotubes. Reduction of ionic silver within the nanotubes, followed by enzymatic degradation of the peptide backbone, resulted in the production of discrete nanowires with a long persistence length. The same dipeptide building block, made of D-phenylalanine, resulted in the production of enzymatically stable nanotubes.
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansbach, Rachael A.; Ferguson, Andrew L.
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
Control of the hierarchical assembly of π-conjugated optoelectronic peptides by pH and flow
Mansbach, Rachael A.; Ferguson, Andrew L.
2017-01-01
Self-assembled nanoaggregates of p-conjugated peptides possess optoelectronic properties due to electron delocalization over the conjugated peptide groups that make them attractive candidates for the fabrication of bioelectronic materials. We present a computational and theoretical study to resolve the microscopic effects of pH and flow on the non-equilibrium morphology and kinetics of early-stage assembly of an experimentally-realizable optoelectronic peptide that displays pH triggerable assembly. Employing coarse-grained molecular dynamics simulations, we probe the effects of pH on growth kinetics and aggregate morphology to show that control of the peptide protonation state by pH can be used to modulate the assembly rates, degreemore » of molecular alignment, and resulting morphologies within the self-assembling nanoaggregates. We also quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to show that flow influences cluster alignment and assembly rate during early-stage assembly only at extremely high shear rates. This suggests that observed improvements in optoelectronic properties at experimentally-accessible shear rates are due to the alignment of large aggregates of hundreds of monomers on time scales in excess of hundreds of nanoseconds. Lastly, our work provides new fundamental understanding of the effects of pH and flow to control the morphology and kinetics of early-stage assembly of p-conjugated peptides and lays the groundwork for the rational manipulation of environmental conditions to direct assembly and the attendant emergent optoelectronic properties.« less
RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells.
Burgess, Kyle A; Workman, Victoria L; Elsawy, Mohamed A; Miller, Aline F; Oceandy, Delvac; Saiani, Alberto
2018-01-01
Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four β-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution-pronase-was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed.
ERIC Educational Resources Information Center
Albin, Tyler J.; Fry, Melany M.; Murphy, Amanda R.
2014-01-01
This laboratory experiment gives upper-division organic or biochemistry undergraduate students a comprehensive look at the synthesis, chemical characterization, self-assembly, and secondary structure determination of small, N-acylated peptides inspired by the protein structure of silkworm silk. All experiments can be completed in one 4 h lab…
Jacob, Reeba S; Ghosh, Dhiman; Singh, Pradeep K; Basu, Santanu K; Jha, Narendra Nath; Das, Subhadeep; Sukul, Pradip K; Patil, Sachin; Sathaye, Sadhana; Kumar, Ashutosh; Chowdhury, Arindam; Malik, Sudip; Sen, Shamik; Maji, Samir K
2015-06-01
Amyloids are highly ordered protein/peptide aggregates associated with human diseases as well as various native biological functions. Given the diverse range of physiochemical properties of amyloids, we hypothesized that higher order amyloid self-assembly could be used for fabricating novel hydrogels for biomaterial applications. For proof of concept, we designed a series of peptides based on the high aggregation prone C-terminus of Aβ42, which is associated with Alzheimer's disease. These Fmoc protected peptides self assemble to β sheet rich nanofibrils, forming hydrogels that are thermoreversible, non-toxic and thixotropic. Mechanistic studies indicate that while hydrophobic, π-π interactions and hydrogen bonding drive amyloid network formation to form supramolecular gel structure, the exposed hydrophobic surface of amyloid fibrils may render thixotropicity to these gels. We have demonstrated the utility of these hydrogels in supporting cell attachment and spreading across a diverse range of cell types. Finally, by tuning the stiffness of these gels through modulation of peptide concentration and salt concentration these hydrogels could be used as scaffolds that can drive differentiation of mesenchymal stem cells. Taken together, our results indicate that small size, ease of custom synthesis, thixotropic nature makes these amyloid-based hydrogels ideally suited for biomaterial/nanotechnology applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multifunctional hybrid networks based on self assembling peptide sequences
NASA Astrophysics Data System (ADS)
Sathaye, Sameer
The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This loose packing can be attributed to the designed wedge and trough shapes of the peptides disturbing formation of a uniform bilayer type structure proposed in the case of MAX1 with each hairpin having a flat hydrophobic surface. Although designed changes in hydrophobic shape of the peptide nanofibril core in the new peptides were found to significantly influence the self-assembled nanostructure and network rheological behavior, a lack of direct morphological and rheological evidence to prove shape specific hydrophobic interactions between wedge and trough shaped beta-hairpins was encountered. In the second approach, peptides with established differences in assembly kinetics and bulk mechanical properties of assembled peptide hydrogels were used to develop composite materials with diverse morphological and mechanical properties by blending with the biopolymer hyaluronic acid. The diverse properties of the composites have been correlated to the specific peptide hydrogels used to develop the composite and the different stages of peptide assembly at which blending with hyaluronic acid was carried out. Finally along with overall conclusions, the new area of co-assembly of peptides in solution has been explored and discussed as potential future work following the research discussed in this dissertation. Strategies such as construction of composite hydrogels from blends of MAX1/MAX8 peptide hydrogels and biologically important anionic species such as heparin biopolymer and DNA have been discussed. Another area of future work discussed is the design and study of peptides that can incorporate chemically crosslinkable functional groups in their hydrophobic amino acid side chains that can be covalently crosslinked after peptide assembly into fibrils. Such covalent crosslinking can potentially lead to stiffer individual peptide fibrils due to additional bond formation at the fibrillar core and therefore much stiffer hydrogels due to a synergistic effect. These enhanced stiffness values can render these new hydrogels excellent candidates for applications like development of extracellular mimetic materials and substrates with easily tunable stiffness values for stem cell differentiation studies.
USDA-ARS?s Scientific Manuscript database
Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic s...
Tamamis, Phanourios; Kasotakis, Emmanouil; Mitraki, Anna; Archontis, Georgios
2009-11-26
The self-assembly of peptides and proteins into nanostructures is related to the fundamental problems of protein folding and misfolding and has potential applications in medicine, materials science and nanotechnology. Natural peptides, corresponding to sequence repeats from self-assembling proteins, may constitute elementary building blocks of such nanostructures. In this work, we study by implicit-solvent replica-exchange simulations the self-assembly of two amyloidogenic sequences derived from the naturally occurring fiber shaft of the adenovirus, the octapeptide NSGAITIG (asparagine-serine-glycine-alanine-isoleucine-threonine-isoleucine-glycine) and its hexapeptide counterpart, GAITIG. In accordance with their amyloidogenic capacity, both peptides form readily intermolecular beta-sheets, stabilized by extensive main- and side-chain contacts involving the C-terminal moieties (segments 3-8 and 2-6, respectively). The structural and energetic properties of these sheets are analyzed extensively. The N-terminal residues Asn1 and Ser2 of the octapeptide remain disordered in the sheets, suggesting that these residues are exposed at the exterior of the fibrils and accessible. On the basis of insight provided by the simulations, cysteine residues were recently substituted at positions 1 and 2 of NSGAITIG; the newly designed peptides maintain their amyloidogenic properties and can bind to silver, gold and platinum nanoparticles [Kasotakis et al. Biopolymers 2009, 92, 164-172]. Computational investigation can identify suitable positions for rational modification of peptide building blocks, aiming at the fabrication of novel biomaterials.
Fabrication of artificial toroid nanostructures by modified β-sheet peptides.
Li, Wen; Li, Jingfang; Lee, Myongsoo
2013-09-25
Facial peptide P1 carrying repeating hydrophobic and hydrophilic residues as well as lysine terminals self-assemble into uniform toroid structures. The sensitive balance between the hydrophobic interactions and electrostatic repulsion dominates the formation of highly curved assemblies.
Development of self-assembling nanowires containing electronically active oligothiophenes
NASA Astrophysics Data System (ADS)
Tsai, Wei-Wen
This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the modification of a class of peptide lipids. The tripeptide segments in the molecular structure promote beta-sheet formation in nonpolar organic solvents, which is the main driving force for their self-assembly into 1D nanowires. Left-handed helical nanowires were formed with diameters of 8.9 nm and pitches between 50--150 nm. Substitutions of oligothiophenes lead to unprecedented supercoiling phenomena manifested as the transformation from helical to coiled or curved nanowires. We proposed that the curving of the nanowires is the consequence of relaxation from torsionally strained nanohelices, a process similar to supercoiling of strained DNA double helix. This process is governed by the mismatch in intermolecular distances required for peptide beta-sheets vs. pi-pi interactions of the conjugated segments decorating the periphery of the nanowires. Circular dichroism revealed helical arrangements of the conjugated moieties in these peptide lipids manifesting supercoiling phenomena. Peptide lipids without helical arrangement of the conjugated segments only exhibit helical morphologies. The self-assembly process of peptide lipids also leads to hierarchical assemblies of energetically favored single, double, and triple-helical nanostructures with well-defined dimensions. Self-assembled nanowires from oligothiophene-substituted peptide lipids revealed increased conductivity of 1.39--1.41 x 10-5 S/cm, two orders of magnitude higher than unassembled films and one order of magnitude higher than unsubstituted peptide lipids. The role of the primary beta-helix in controlling supramolecular organization was investigated by varying the chirality of the tripeptide segments, GAA. Four diastereomers of a peptide lipid substituted with p-toluene carboxylates were compared using L or D-alanines. Molecules with all L residues self-assemble into left-handed helical nanofibers with a pitch of 160 +/- 30 nm. Substitution of one or two D-alanines leads to assemblies of cylindrical nanofibers without any twisting, left-handed helices with smaller pitches (40 +/- 6 nm), or aggregates without regular shapes. We believe these effects are steric in nature that changes the beta-sheet sub-structure within the nanofibers. These principles could be utilized as strategies to optimize the morphologies and properties of nanostructures based on these amphiphilic molecules.
Golland, Luca; Schmidlin, Patrick R; Schätzle, Marc
To test the remineralisation potential of a single application of self-assembling peptides or acidic fluoride solution using quantitative light-induced fluorescence (QLF) in vitro. Bovine enamel disks were prepared, and white spot lesions were created on one half of the disk with an acidic buffer solution. After demineralisation, disks were allocated into three groups of 11 specimens each. Group A served as a control group and received no treatment. Group B had a single application of fluoride, and group C was treated once with self-assembling peptides. All disks were embedded in a plastic mold (diameter 15 mm, height 9 mm) with an a-silicone, and remineralisation was initiated using a pH-cycling protocol for five days. Four experimental regions on each disk were measured prior to the start of the study (T0), after demineralisation (T1) and after the remineralisation process (T2) using QLF. After demineralisation, all areas showed a distinct loss of fluorescence, with no statistically significant difference between the groups (ΔF from -69.3 to -10.2). After remineralisation, samples of group B (treated with fluoride) showed a statistically significant fluorescence increase (ΔF from T1 to T2 15.2 ± 7.3) indicating remineralisation, whereas the samples of control group A and group C (treated with self-assembling peptides) showed no significant changes in ΔF of 1.1 ± 1.9 and 2.5 ± 1.9, respectively. Application of self-assembling peptides on demineralised bovine enamel did not lead to increased fluorescence using QLF, indicating either lack of remineralisation or irregular crystals. Increased fluorescence using QLF indicated mineral gain following a single application of a highly concentrated fluoride.
Gillams, Richard J; Jia, Tony Z
2018-05-08
An increasing body of evidence relates the wide range of benefits mineral surfaces offer for the development of early living systems, including adsorption of small molecules from the aqueous phase, formation of monomeric subunits and their subsequent polymerization, and supramolecular assembly of biopolymers and other biomolecules. Each of these processes was likely a necessary stage in the emergence of life on Earth. Here, we compile evidence that templating and enhancement of prebiotically-relevant self-assembling systems by mineral surfaces offers a route to increased structural, functional, and/or chemical complexity. This increase in complexity could have been achieved by early living systems before the advent of evolvable systems and would not have required the generally energetically unfavorable formation of covalent bonds such as phosphodiester or peptide bonds. In this review we will focus on various case studies of prebiotically-relevant mineral-templated self-assembling systems, including supramolecular assemblies of peptides and nucleic acids, from nanoscience and surface science. These fields contain valuable information that is not yet fully being utilized by the origins of life and astrobiology research communities. Some of the self-assemblies that we present can promote the formation of new mineral surfaces, similar to biomineralization, which can then catalyze more essential prebiotic reactions; this could have resulted in a symbiotic feedback loop by which geology and primitive pre-living systems were closely linked to one another even before life’s origin. We hope that the ideas presented herein will seed some interesting discussions and new collaborations between nanoscience/surface science researchers and origins of life/astrobiology researchers.
Qiao, Zeng-Ying; Zhao, Wen-Jing; Cong, Yong; Zhang, Di; Hu, Zhiyuan; Duan, Zhong-Yu; Wang, Hao
2016-05-09
One of the major challenges in current cancer therapy is to maximize therapeutic effect and evaluate tumor progression under the scheduled treatment protocol. To address these challenges, we synthesized the cytotoxic peptide (KLAKLAK)2 (named KLAK) conjugated amphiphilic poly(β-thioester)s copolymers (H-P-K) composed of reactive oxygen species (ROS) sensitive backbones and hydrophilic polyethylene glycol (PEG) side chains. H-P-K could self-assemble into micelle-like nanoparticles by hydrophobic interaction with copolymer backbones as cores and PEG and KLAK as shells. The assembled polymer-peptide nanoparticles remarkably improved cellular internalization and accumulation of therapeutic KLAK in cells. Compared to free KLAK peptide, the antitumor activity of H-P-K was significantly enhanced up to ∼400 times, suggesting the effectiveness of the nanoscaled polymer-peptide conjugation as biopharmaceuticals. The higher antitumor activity of nanoparticles was attributed to the efficient disruption of mitochondrial membranes and subsequent excessive ROS production in cells. To realize the ROS monitoring and treatment evaluation, we encapsulated squaraine (SQ) dyes as built-in reporters in ROS-sensitive H-P-K micelles. The overgenerated ROS around mitochondria stimulated the swelling of nanoparticles and subsequent release of SQ, which formed H-aggregates and significantly increased the photoacoustic (PA) signal. We believed that this self-assembled polymer-peptide nanotherapeutics incorporating built-in reporters has great potential for high antitumor performance and in situ treatment evaluation.
Molecular Structure of a Helical ribbon in a Peptide Self-Assembly
NASA Astrophysics Data System (ADS)
Hwang, Wonmuk; Marini, Davide; Kamm, Roger D.; Zhang, Shuguang
2002-03-01
We have studied the molecular structure of nanometer scale helical ribbons observed during self-assembly of the peptide KFE8 (amino acid sequence: FKFEFKFE) (NanoLetters (2002, in press)). By analyzing the hydrogen bonding patterns between neighboring peptide backbones, we constructed a number of possible β-sheets. Using all possible combinations of these, we built helical ribbons with dimensions close to those found experimentally and performed molecular dynamics simulations to identify the most stable structure. Solvation effects were implemented by the analytic continuum electrostatics (ACE) model developed by Schaefer and Karplus (J. Phys. Chem. 100, 1578 (1996)). By applying electrostatic double layer theory, we incorporated the effect of pH by scaling the amount of charge on the sidechains. Our results suggest that the helical ribbon is comprised of a double β-sheet where the inner and the outer helices have distinct hydrogen bonding patterns. Our approach has general applicability to the study of helices formed by the self-assembly of β-sheet forming peptides with various amino acid sequences.
NASA Astrophysics Data System (ADS)
Zou, Da-Wei; Tie, Zuo-Xiu; Qin, Meng; Lu, Chun-Mei; Wang, Wei
2009-08-01
The ionic-complementary peptide EMK16-II is used to investigate the effects of hydrophobic and electrostatic interactions on the self-assembling process by atomic force microscopy and circular dichroism spectra. It is found that the increase of hydrophobicity of the peptides promotes the aggregation of fibrils in pure water. The effects of phosphate with different concentrations on electrostatic interactions are also investigated. It is found that the self-assembling process is enhanced at a low concentration of phosphate and more ordered fibrillar aggregates are formed. When the concentration of phosphate increases to a certain value (9 mM), only a few fibrils are found to be formed. No fibrils but amorphous aggregates exist when the concentration further increases. A physical interpretation is presented such that one divalent anion can interact with two positively charged residual groups in different peptide molecules like a “bridge" which destroys the ionic-complementary feature and largely inhibits the formation of ordered fibrils.
NASA Astrophysics Data System (ADS)
Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.
2012-04-01
Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications. Electronic supplementary information (ESI) available: Supporting methods and data about CD spectral analysis of SAPeptide solutions (Fig. S1), neural differentiation of murine and human NSCs (Fig. S2) on SAPeptide scaffolds, and their statistical analysis (Table S1). See DOI: 10.1039/c2nr30220a
Nanorings of self-assembled fullerene C(70) as templating nanoreactors.
Iyer, K Swaminathan; Saunders, Martin; Becker, Thomas; Evans, Cameron W; Raston, Colin L
2009-11-18
Micelles, polyelectrolytes, peptides, and plasmid DNA with well-defined growth cavities can function as templates for the synthesis of metal nanocrystals. In a similar way, carbon-based toroidal 'nanoreactors' composed of clustered fullerenes could be used to synthesize nanohybrids by forming metal nanocrystals within the confines of the ring.
2015-01-01
Progress in self-assembly and supramolecular chemistry has been directed toward obtaining macromolecular assemblies with higher degrees of complexity, simulating the highly structured environment in natural systems. One approach to this type of complexity are multistep, multicomponent, self-assembling systems that allow approaches comparable to traditional multistep synthetic organic chemistry; however, only a few examples of this approach have appeared in the literature. Our previous work demonstrated nanofibrous mimics of the extracellular matrix. Here we demonstrate the ability to create a unique hydrogel, developed by stepwise self-assembly of multidomain peptide fibers and liposomes. The two-component system allows for controlled release of bioactive factors at multiple time points. The individual components of the self-assembled gel and the composite hydrogel were characterized by TEM, SEM, and rheometry, demonstrating that peptide nanofibers and lipid vesicles both retain their structural integrity in the composite gel. The rheological robustness of the hydrogel is shown to be largely unaffected by the presence of liposomes. Release studies from the composite gels loaded with different growth factors EGF, MCP-1, and PlGF-1 showed delay and prolongation of release by liposomes entrapped in the hydrogel compared to more rapid release from the hydrogel alone. This bimodal release system may have utility in systems where timed cascades of biological signals may be valuable, such as in tissue regeneration. PMID:25308335
NASA Astrophysics Data System (ADS)
Brown, Alexandra M.; Miranda-Alarćon, Yoliem S.; Knoll, Grant A.; Santora, Anthony M.; Banerjee, Ipsita A.
In this work, self-assembled tumor targeting nanostructured surfaces were developed from a newly designed amphiphile by conjugating boc protected isoleucine with 2,2‧ ethylenedioxy bis ethylamine (IED). To target mouse mammary tumor cells, a short peptide sequence derived from the human alpha-fetoprotein (AFP), LSEDKLLACGEG was attached to the self-assembled nanostructures. Tumor targeting and cell proliferation were examined in the presence of nanoscale assemblies. To further obliterate mouse breast tumor cells, the chemotherapeutic drug tamoxifen was then entrapped into the nanoassemblies. Our studies indicated that the targeting systems were able to efficiently encapsulate and release tamoxifen. Cell proliferation studies showed that IED-AFP peptide loaded with tamoxifen decreased the proliferation of breast cancer cells while in the presence of the IED-AFP peptide nanoassemblies alone, the growth was relatively slower. In the presence of human dermal fibroblasts however cell proliferation continued similar to controls. Furthermore, the nanoscale assemblies were found to induce apoptosis in mouse breast cancer cells. To examine live binding interactions, SPR analysis revealed that tamoxifen encapsulated IED-AFP peptide nanoassemblies bound to the breast cancer cells more efficiently compared to unencapsulated assemblies. Thus, we have developed nanoscale assemblies that can specifically bind to and target tumor cells, with increased toxicity in the presence of a chemotherapeutic drug.
Hydrophobic Drug Encapsulation Mechanisms of an Injectable Self-Assembling Peptide Hydrogel
NASA Astrophysics Data System (ADS)
Sun, Jessie E. P.; Schneider, Joel P.; Pochan, Darrin J.
2012-02-01
We examined a beta-hairpin peptide network that is a shear thinning injectable solid with immediate rehealing behavior. These rheological properties result from the entangled and branched fibrillar nanostructure of the hydrogel networks. The fibrils are formed by the intramolecular folding and subsequent intermolecular assembly of the self-assembling peptides. Taking advantage of the nanofibrillar peptide structures, the hydrogel can be used to encapsulate curcumin, a hydrophobic, natural anticancer agent and indian spice. The hydrogel shields curcumin from the environment while depositing it exactly where it is intended through syringe injection, taking advantage of the hydrogel shear thinning and rehealing behavior. How the network envelopes and interacts with the curcumin is examined using fluoresence and electron microscopy methods to better understand the exact mechanisms and behaviors of the gel itself and the gel-curcumin construct.
Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.
Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin
2015-06-16
In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with reasonable quantity and purity from active aggregates. Owing to the structural simplicity, strong hydrophobicity, and high aggregating efficiency, these peptides can be further explored for enzyme production and immobilization.
Ordered Self-Assembled Monolayers of Peptide Nucleic Acids with DNA Recognition Capability
NASA Astrophysics Data System (ADS)
Briones, C.; Mateo-Marti, E.; Gómez-Navarro, C.; Parro, V.; Román, E.; Martín-Gago, J. A.
2004-11-01
We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.
Peptide Assembly-Driven Metal-Organic Framework (MOF) Motors for Micro Electric Generator
Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu
2014-01-01
Peptide-MOF motors, whose motions are driven by anisotropic surface gradients created via peptide self-assembly around nanopores of MOFs, can rotate microscopic rotors and magnet fast enough to generate electric power of 0.1 µW. To make the peptide-MOF generator recyclable, a new MOF is applied as a host motor engine, which has a more rigid framework with higher H2O affinity so that peptide release occurs more efficiently via guest exchange without the destruction of MOF. PMID:25418936
Designing non-native iron-binding site on a protein cage for biological synthesis of nanoparticles.
Peng, Tao; Paramelle, David; Sana, Barindra; Lee, Chiu Fan; Lim, Sierin
2014-08-13
In biomineralization processes, a supramolecular organic structure is often used as a template for inorganic nanomaterial synthesis. The E2 protein cage derived from Geobacillus stearothermophilus pyruvate dehydrogenase and formed by the self-assembly of 60 subunits, has been functionalized with non-native iron-mineralization capability by incorporating two types of iron-binding peptides. The non-native peptides introduced at the interior surface do not affect the self-assembly of E2 protein subunits. In contrast to the wild-type, the engineered E2 protein cages can serve as size- and shape-constrained reactors for the synthesis of iron nanoparticles. Electrostatic interactions between anionic amino acids and cationic iron molecules drive the formation of iron oxide nanoparticles within the engineered E2 protein cages. The work expands the investigations on nanomaterial biosynthesis using engineered host-guest encapsulation properties of protein cages. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bis-polymer lipid-peptide conjugates and nanoparticles thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ting; Dong, He; Shu, Jessica
The present invention provides bis-polymer lipid-peptide conjugates containing a hydrophobic block and headgroup containing a helical peptide and two polymer blocks. The conjugates can self-assemble to form helix bundle subunits, which in turn assemble to provide micellar nanocarriers for drug cargos and other agents. Particles containing the conjugates and methods for forming the particles are also disclosed.
Russell, Shane R; Claridge, Shelley A
2016-04-01
Because noncovalent interface functionalization is frequently required in graphene-based devices, biomolecular self-assembly has begun to emerge as a route for controlling substrate electronic structure or binding specificity for soluble analytes. The remarkable diversity of structures that arise in biological self-assembly hints at the possibility of equally diverse and well-controlled surface chemistry at graphene interfaces. However, predicting and analyzing adsorbed monolayer structures at such interfaces raises substantial experimental and theoretical challenges. In contrast with the relatively well-developed monolayer chemistry and characterization methods applied at coinage metal surfaces, monolayers on graphene are both less robust and more structurally complex, levying more stringent requirements on characterization techniques. Theory presents opportunities to understand early binding events that lay the groundwork for full monolayer structure. However, predicting interactions between complex biomolecules, solvent, and substrate is necessitating a suite of new force fields and algorithms to assess likely binding configurations, solvent effects, and modulations to substrate electronic properties. This article briefly discusses emerging analytical and theoretical methods used to develop a rigorous chemical understanding of the self-assembly of peptide-graphene interfaces and prospects for future advances in the field.
Application of surface analytical methods in thin film analysis
NASA Astrophysics Data System (ADS)
Wen, Xingu
Self-assembly and the sol-gel process are two promising methods for the preparation of novel materials and thin films. In this research, these two methods were utilized to prepare two types of thin films: self-assembled monolayers of peptides on gold and SiO2 sol-gel thin films modified with Ru(II) complexes. The properties of the resulting thin films were investigated by several analytical techniques in order to explore their potential applications in biomaterials, chemical sensors, nonlinear optics and catalysis. Among the analytical techniques employed in the study, surface analytical techniques, such as X-ray photoelectron spectroscopy (XPS) and grazing angle reflection absorption Fourier transform infrared spectroscopy (RA-FTIR), are particularly useful in providing information regarding the compositions and structures of the thin films. In the preparation of peptide thin films, monodisperse peptides were self-assembled on gold substrate via the N-terminus-coupled lipoic acid. The film compositions were investigated by XPS and agreed well with the theoretical values. XPS results also revealed that the surface coverage of the self-assembled films was significantly larger than that of the physisorbed films and that the chemisorption between the peptides and gold surface was stable in solvent. Studies by angle dependent XPS (ADXPS) and grazing angle RA-FTIR indicated that the peptides were on average oriented at a small angle from the surface normal. By using a model of orientation distribution function, both the peptide tilt angle and film thickness can be well calculated. Ru(II) complex doped SiO2 sol-gel thin films were prepared by low temperature sol-gel process. The ability of XPS coupled with Ar + ion sputtering to provide both chemical and compositional depth profile information of these sol-gel films was evaluated. This technique, together with UV-VIS and electrochemical measurements, was used to investigate the stability of Ru complexes in the composite films. The stability of Ru complexes with respect to dopant leaching was dependent on the film microstructures. Three methods aiming to improve the dopant stability were also explored. In addition, the ion exchange properties of the composite films, upon exposure to various ions in aqueous solutions, were investigated by XPS, and the ion exchange mechanism was elucidated.
Qin, Haifang; Jiang, Xiyuan; Fan, Jie; Wang, Jianpeng; Liu, Li; Qiu, Lin; Wang, Jianhao; Jiang, Pengju
2017-01-01
Capillary electrophoresis with fluorescence detection was utilized to probe the self-assembly between cyanine group dye labeled tetrahistidine containing peptide and CdSe/ZnS quantum dots, inside the capillary. Quantum dots and cyanine group dye labeled tetrahistidine containing peptide were injected into the capillary one after the other and allowed to self-assemble. Their self-assembly resulted into a measurable Förster resonance energy transfer signal between quantum dots and cyanine group dye labeled tetrahistidine containing peptide. The Förster resonance energy transfer signal increased upon increasing the cyanine group dye labeled tetrahistidine containing peptide/quantum dot molar ratio and reached a plateau at the 32/1 molar ratio. Additionally, the Förster resonance energy transfer signal was also affected by the increment of the interval time of injection and the sampling time. Online ligand exchange experiments were used to assess, the potential of a monovalent ligand of imidazole and a hexavalent ligand peptide, to displace surface bound cyanine group dye labeled peptide ligands from the quantum dots surface. Under optimal conditions, a linear relationship between the integrated peak areas and hexavalent ligand peptide was obtained at a hexavalent ligand concentration range of 0-0.5 mM. Therefore, the present assay has the potential to be applied in the online ligands detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peptides for functionalization of InP semiconductors.
Estephan, Elias; Saab, Marie-belle; Larroque, Christian; Martin, Marta; Olsson, Fredrik; Lourdudoss, Sebastian; Gergely, Csilla
2009-09-15
The challenge is to achieve high specificity in molecular sensing by proper functionalization of micro/nano-structured semiconductors by peptides that reveal specific recognition for these structures. Here we report on surface modification of the InP semiconductors by adhesion peptides produced by the phage display technique. An M13 bacteriophage library has been used to screen 10(10) different peptides against the InP(001) and the InP(111) surfaces to finally isolate specific peptides for each orientation of the InP. MALDI-TOF/TOF mass spectrometry has been employed to study real affinity of the peptide towards the InP surfaces. The peptides serve for controlled placement of biotin onto InP to bind then streptavidin. Our Atomic Force Microscopy study revealed a total surface coverage of molecules when the InP surface was functionalized by its specific biotinylated peptide (YAIKGPSHFRPS). Finally, fluorescence microscopy has been employed to demonstrate the preferential attachment of the peptide onto a micro-patterned InP surface. Use of substrate specific peptides could present an alternative solution for the problems encountered in the actually existing sensing methods and molecular self-assembly due to the unwanted unspecific interactions.
Besar, Kalpana; Ardoña, Herdeline Ann M; Tovar, John D; Katz, Howard E
2015-12-22
π-Conjugated peptide materials are attractive for bioelectronics due to their unique photophysical characteristics, biofunctional interfaces, and processability under aqueous conditions. In order to be relevant for electrical applications, these types of materials must be able to support the passage of current and the transmission of applied voltages. Presented herein is an investigation of both the current and voltage transmission activities of one-dimensional π-conjugated peptide nanostructures. Observations of the nanostructures as both semiconducting and gate layers in organic field-effect transistors (OFETs) were made, and the effect of systematic changes in amino acid composition on the semiconducting/conducting functionality of the nanostructures was investigated. These molecular variations directly impacted the hole mobility values observed for the nanomaterial active layers over 3 orders of magnitude (∼0.02 to 5 × 10(-5) cm(2) V(-1) s(-1)) when the nanostructures had quaterthiophene cores and the assembled peptide materials spanned source and drain electrodes. Peptides without the quaterthiophene core were used as controls and did not show field-effect currents, verifying that the transport properties of the nanostructures rely on the semiconducting behavior of the π-electron core and not just ionic rearrangements. We also showed that the nanomaterials could act as gate electrodes and assessed the effect of varying the gate dielectric layer thickness in devices where the conventional organic semiconductor pentacene spanned the source and drain electrodes in a top-contact OFET, showing an optimum performance with 35-40 nm dielectric thickness. This study shows that these peptides that self-assemble in aqueous environments can be used successfully to transmit electronic signals over biologically relevant distances.
Cui, Guo-hong; Shao, Shui-jin; Yang, Jia-jun; Liu, Jian-ren; Guo, Hai-dong
2016-03-01
The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-β peptide (Aβ) in the form of amyloid plaques and neuronal loss. Neural stem cell (NSC) is being scrutinized as a promising cell replacement therapy for various neurodegenerative diseases. However, the unfavorable niche at the site of degenerative disease is hostile to the survival and differentiation of transplanted cells. Here, we undertook in vitro and in vivo works to examine whether a designer self-assemble peptide (DSP), which contains one functional domain Tyr-Ile-Gly-Ser-Arg (YIGSR) derived from laminin, promotes the survival and neuronal differentiation of NSC and behavioral improvement. We found that DSP could undergo spontaneous assembly into well-ordered nanofibers, and it not only facilitated the cell viability in normal culture condition, but also decreased the number of apoptotic cells induced by Aβ in vitro. NSC seeded in DSP showed much more neuronal differentiation than that seeded in self-assemble peptide (SP) or alone. In the AD model, NSC transplantation in DSP-treated AD rats demonstrated much more obvious cognitive rescue with restoration of learning/memory function compared with NSC transplantation in SP, NSC alone, or DSP alone treated ones. Interestingly, DSP enhanced the survival and neuronal differentiation of transplanted NSC. Apoptosis levels in the CA1 region and Aβ level in the hippocampus were significantly decreased in the group of NSC transplantation in DSP. Moreover, synaptic function, indicated by the expression of pre-synaptic protein synapsin-1, was restored and the secretion of anti-inflammatory and neurotrophic factors were increased, such as IL-10, brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), and insulin-like growth factor 1 (IGF-1), while the expression of pro-inflammatory factors were decreased, such as TNF-α and IL-1β. These data firstly unveiled that the biomaterial DSP can maximize the therapeutic benefits of NSC transplantation for AD through improving the survival and differentiation of transplanted stem cells and promoting the effects of neuroprotection, anti-neuroinflammatory and paracrine action. Our results may have important clinical implications for the design of future NSC-based strategies using the biomaterials for various neurodegenerative diseases including AD.
Zerfaß, Christian; Braukmann, Sandra; Nietzsche, Sandor; Hobe, Stephan; Paulsen, Harald
2015-04-01
We report the recombinant bacterial expression and purification at high yields of a polycationic oligopeptide, P5S3. The sequence of P5S3 was inspired by a diatom silaffin, a silica precipitating peptide. Like its native model, P5S3 exhibits silica biomineralizing activity, but furthermore has unusual self-assembling properties. P5S3 is efficiently expressed in Escherichia coli as fusion with ketosteroid isomerase (KSI), which causes deposition in inclusion bodies. After breaking the fusion by cyanogen bromide reaction, P5S3 was purified by cation exchange chromatography, taking advantage of the exceptionally high content of basic amino acids. The numerous cationic charges do not prevent, but may even promote counterion-independent self-assembly which in turn leads to silica precipitation. Enzymatic phosphorylation, a common modification in native silica biomineralizing peptides, can be used to modify the precipitation activity. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lima, Filipe C. D. A.; Iost, Rodrigo M.; Crespilho, Frank N.; Caldas, Marília J.; Calzolari, Arrigo; Petrilli, Helena M.
2013-03-01
We report the investigation of electron tunneling mechanism of peptide ferrocenyl-glycylcystamine self-assembled monolayers (SAMs) onto Au (111) electrode surfaces. Recent experimental investigations showed that electron transfer in peptides can occur across long distances by separating the donor from the acceptor. This mechanism can be further fostered by the presence of electron donor terminations of Fc terminal units on SAMs but the charge transfer mechanism is still not clear. We study the interaction of the peptide ferrocenyl-glycylcystamine on the Au (111) from first principles calculations to evaluate the electron transfer mechanism. For this purpose, we used the Kohn Sham (KS) scheme for the Density Functional Theory (DFT) as implemented in the Quantum-ESPRESSO suit of codes, using Vandebilt ultrasoft pseudopotentials and GGA-PBE exchange correlation functional to evaluate the ground-state atomic and electronic structure of the system. The analysis of KS orbital at the Fermi Energy showed high electronic density localized in Fc molecules and the observation of a minor contribution from the solvent and counter ion. Based on the results, we infer evidences of electron tunneling mechanism from the molecule to the Au(111). We acknowledge FAPESP for grant support. Also, LCCA/USP, RICE and CENAPAD for computational resources.
Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators.
Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Uemura, Takashi; Zheng, Yongtai; Kitagawa, Susumu; Matsui, Hiroshi
2015-01-14
Peptide-metal-organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. A new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peptide assembly-driven metal-organic framework (MOF) motors for micro electric generators
Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L.; ...
2014-11-22
Peptide–metal–organic framework (Pep-MOF) motors, whose motions are driven by anisotropic surface tension gradients created via peptide self-assembly around frameworks, can rotate microscopic rotors and magnets fast enough to generate an electric power of 0.1 μW. Finally, a new rigid Pep-MOF motor can be recycled by refilling the peptide fuel into the nanopores of the MOF.
Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide.
Jiang, Tao; Xu, Chunfu; Zuo, Xiaobing; Conticello, Vincent P
2014-08-04
A collagen-mimetic peptide, NSIII, has been designed with three sequential blocks having positive, neutral, and negative charges, respectively. The non-canonical imino acid, (2S,4S)-4-aminoproline (amp), was used to specify the positive charges at the Xaa positions of (Xaa-Yaa-Gly) triads in the N-terminal domain of NSIII. Peptide NSIII underwent self-assembly from aqueous solution to form a highly homogeneous population of nanosheets. Two-dimensional crystalline sheets formed in which the length of the peptide defined the height of the sheets. These results contrasted with prior results on a similar multi-domain collagen-mimetic polypeptides in which the sheets had highly polydisperse distribution of sizes in the (x/y)- and (z)-dimensions. The structural differences between the two nanosheet assemblies were interpreted in terms of the relative stereoelectronic effects of the different aminoproline derivatives on the local triple helical conformation of the peptides. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo
2016-04-28
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.
Zhang, Chunqiu; Shafi, Ramim; Lampel, Ayala; MacPherson, Douglas; Pappas, Charalampos G; Narang, Vishal; Wang, Tong; Maldarelli, Charles; Ulijn, Rein V
2017-11-13
The reversible regulation of catalytic activity is a feature found in natural enzymes which is not commonly observed in artificial catalytic systems. Here, we fabricate an artificial hydrolase with pH-switchable activity, achieved by introducing a catalytic histidine residue at the terminus of a pH-responsive peptide. The peptide exhibits a conformational transition from random coil to β-sheet by changing the pH from acidic to alkaline. The β-sheet self-assembles to form long fibrils with the hydrophobic edge and histidine residues extending in an ordered array as the catalytic microenvironment, which shows significant esterase activity. Catalytic activity can be reversible switched by pH-induced assembly/disassembly of the fibrils into random coils. At higher concentrations, the peptide forms a hydrogel which is also catalytically active and maintains its reversible (de-)activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo
2016-04-01
In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation. Electronic supplementary information (ESI) available: Additional figures (Tables S1-S3 and Fig. S1-S6). See DOI: 10.1039/c6nr01072e
Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent
NASA Astrophysics Data System (ADS)
Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan
2009-07-01
Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.
Rapid Growth of Acetylated Aβ(16-20) into Macroscopic Crystals.
Bortolini, Christian; Klausen, Lasse Hyldgaard; Hoffmann, Søren Vrønning; Jones, Nykola C; Saadeh, Daniela; Wang, Zegao; Knowles, Tuomas P J; Dong, Mingdong
2018-05-22
Aberrant assembly of the amyloid-β (Aβ) is responsible for the development of Alzheimer's disease, but can also be exploited to obtain highly functional biomaterials. The short Aβ fragment, KLVFF (Aβ 16-20 ), is crucial for Aβ assembly and considered to be an Aβ aggregation inhibitor. Here, we show that acetylation of KLVFF turns it into an extremely fast self-assembling molecule, reaching macroscopic ( i.e., mm) size in seconds. We show that KLVFF is metastable and that the self-assembly can be directed toward a crystalline or fibrillar phase simply through chemical modification, via acetylation or amidation of the peptide. Amidated KLVFF can form amyloid fibrils; we observed folding events of such fibrils occurring in as little as 60 ms. The ability of single KLVFF molecules to rapidly assemble as highly ordered macroscopic structures makes it a promising candidate for applications as a rapid-forming templating material.
Lu, Sheng; Bennett, W F Drew; Ding, Yong; Zhang, Lei; Fan, Helen Y; Zhao, Danyang; Zheng, Tao; Ouyang, Ping-Kai; Li, Jason; Wu, Yan; Xu, Wen; Chu, Dafeng; Yuan, Yongfang; Heerklotz, Heiko; Karttunen, Mikko; Chen, P
2015-12-09
Most drug delivery systems have been developed for efficient delivery to tumor sites via targeting and on-demand strategies, but the carriers rarely execute synergistic therapeutic actions. In this work, C8, a cationic, pH-triggered anticancer peptide, is developed by incorporating histidine-mediated pH-sensitivity, amphipathic helix, and amino acid pairing self-assembly design. We designed C8 to function as a pH-responsive nanostructure whose cytotoxicity can be switched on and off by its self-assembly: Noncytotoxic β-sheet fibers at high pH with neutral histidines, and positively charged monomers with membrane lytic activity at low pH. The selective activity of C8, tested for three different cancer cell lines and two noncancerous cell lines, is shown. Based on liposome leakage assays and multiscale computer simulations, its physical mechanisms of pore-forming action and selectivity are proposed, which originate from differences in the lipid composition of the cellular membrane and changes in hydrogen bonding. C8 is then investigated for its potential as a drug carrier. C8 forms a nanocomplex with ellipticine, a nonselective model anticancer drug. It selectively targets cancer cells in a pH-responsive manner, demonstrating enhanced efficacy and selectivity. This study provides a novel powerful strategy for the design and development of multifunctional self-assembling peptides for therapeutic and drug delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yan, Jin; He, Wangxiao; Yan, Siqi; Niu, Fan; Liu, Tianya; Ma, Bohan; Shao, Yongping; Yan, Yuwei; Yang, Guang; Lu, Wuyuan; Du, Yaping; Lei, Bo; Ma, Peter X
2018-02-27
Developing a sophisticated nanomedicine platform to deliver therapeutics effectively and safely into tumor/cancer cells remains challenging in the field of nanomedicine. In particular, reliable peptide drug delivery systems capable of overcoming biological barriers are still lacking. Here, we developed a simple, rapid, and robust strategy to manufacture nanoclusters of ∼90 nm in diameter that are self-assembled from lanthanide-doped nanoparticles (5 nm), two anticancer peptides with different targets (BIM and PMI), and one cyclic peptide iNGR targeted to cancer cells. The peptide-lanthanide nanoclusters (LDC-PMI-BIM-iNGR) enhanced the resistance of peptide drugs to proteolysis, disassembled in response to reductive conditions that are present in the tumor microenvironment and inhibited cancer cell growth in vitro and in vivo. Notably, LDC-PMI-BIM-iNGR exhibited extremely low systemic toxicity and side effects in vivo. Thus, the peptide-lanthanide nanocluster may serve as an ideal multifunctional platform for safe, targeted, and efficient peptide drug delivery in cancer therapy.
Mende, Franziska; Beisswenger, Michael; Seitz, Oliver
2010-08-18
Peptide thioesters are important building blocks in the total synthesis of proteins and protein domains via fragment ligation. However, synthetic access of peptide thioesters still is a bottleneck of this powerful ligation chemistry. The commonly used methods for the Fmoc-based synthesis of peptide thioesters involve nonautomated solution steps that have to be performed after the solid-phase assembly of the peptide. Usually, HPLC purification is required. Herein, a method that enables crude peptides to be used in divergent native chemical ligations reactions is described. We present an Fmoc-based solid-phase synthesis of peptide thioesters with self-purification which facilitates access to these important building blocks, since the often cumbersome HPLC purification can be avoided. Fmoc-protected amino acids are coupled on a safety catch sulfonamide resin. The self-purifying effect is achieved through the combination of (a) N-terminal coupling of a cleavable cyclization linker and subsequent backbone-to-side chain cyclization, (b) activation of the sulfonamide linkage by alkylation, (c) thiolysis for the selective detachment of truncation products, and (d) TFA cleavage for the liberation of the desired peptide thioester in unprotected form. We have previously shown a method wherein cyclization was performed after carboxymethylation of the sulfonamide. However, the automation of this method was difficult and side reactions at methionine residues hampered the general applicability. The new design involves peptide synthesis on a modified carboxy-functionalized sulfonamide linker, a substantially milder activation of the sulfonamide bond and the use of monomethoxytrityl as well as 2-phenyl-isopropyl protecting groups. This approach solved the problems with methionine containing peptides and enabled the complete automation of the self-purifying synthesis of peptide thioesters. The study also addressed problems in the synthesis of difficult peptides. Aggregated truncation products can resist extraction and contaminate full-length thioesters obtained after TFA cleavage. It is shown that significant enhancements of the purity were achieved when mild acidic extractions were included in the wash protocols after thiolysis. The potential of the method was demonstrated in the parallel synthesis of 20-40 amino acid long peptide thioesters, which were obtained in excellent purities. The thioesters and cysteinyl peptides were used without purification in the assembly of immobilized SH3 protein domains of SHO1 in yeast. A cysteine scan by native chemical ligation suggested single amino acid to cysteine substitutions that (a) confer useful ligation yields, (b) support correct folding, and (c) sustain the function of the folded protein domain. The chemical synthesis of the SH3-domain of SHO1 succeeded in highest yields when cysteine placements at positions S23, F24, and E36 were avoided. The synthetic SH3 mutants were examined in a binding assay, which indicated that N27C, L30C, and D34C mutations provide functional SH3-domain.
Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly
NASA Astrophysics Data System (ADS)
Pochan, Darrin
2007-03-01
Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).
Jiang, Hao; Ehlers, Martin; Hu, Xiao-Yu; Zellermann, Elio; Schmuck, Carsten
2018-05-22
Peptide amphiphiles capable of assembling into multidimensional nanostructures have attracted much attention over the past decade due to their potential applications in materials science. Herein, a novel diacetylene-derived peptide gemini amphiphile with a fluorenylmethyloxycarbonyl (Fmoc) group at the N-terminus is reported to hierarchically assemble into spherical micelles, one-dimensional nanorods, two-dimensional foamlike networks and lamellae. Solvent polarity shows a remarkable effect on the self-assembled structures by changing the balance of four weak noncovalent interactions (hydrogen-bonding, π-π stacking, hydrophobic interaction, and electrostatic repulsion). We also show the time-evolution not only from spherical micelles to helical nanofibers in aqueous solution, but also from branched wormlike micelles to foamlike networks in methanol solution. In this work, the presence of the Fmoc group plays a key role in the self-assembly process. This work provides an efficient strategy for precise morphological control, aiding the future development in materials science.
NASA Astrophysics Data System (ADS)
Salick, Daphne Ann
Every year, millions of people suffer from tissue loss or failure. One approach to repair damaged or diseased tissue is through tissue/organ transplantation. However, one of the major problems which exist with this approach is that there are more people in need of a transplant than there are donors. Over the past several decades, scientists and doctors have come together to find a way to overcome this challenge. This collaboration has led to the development of biomimetic scaffolds, which closely mimic the desired tissue of interest to act as a substitute for the unfunctional tissue, with hopes to improve the quality of life. The Schneider and Pochan labs have developed a biomimetic scaffold using self-assembling beta-hairpin peptides. The self-assembly event can be triggered in response to physiological conditions, which is dictated by the monomer, to form non covalently crosslinked mechanically rigid hydrogels. In vitro studies showed that hydrogels were cytocompatible and may not elicit a pro-inflammatory response from murine macrophages. These material properties show promise for the use of these hydrogels in tissue engineering. When implanting a material into a host, a major concern is the introduction of infection. Infection, if not prevented or halted, results in poor tissue integration and function, ultimately leading to implant removal from the host. Interestingly, the beta-hairpin hydrogels were shown to exhibit antibacterial properties against pathogens commonly found in hospital environments. This inherently antibacterial hydrogel is advantageous because it may help decrease or diminish bacterial contamination when implanted in vivo, which may help to increase the success of implants. Also, a unique and exciting feature of these peptide-based hydrogels is their ability to shear-thin and self-heal. Hydrogels can be directly formed in a syringe and be subsequently delivered to a tissue defect in a minimally invasive manner where they will recover to their original mechanical rigidity. The resultant syringe-delivered gel was also shown to possess antibacterial properties. Aside from the material's inherent antibacterial activity, these peptide-based scaffolds display degradation that can be controlled using an exogenously added enzyme. This suggests that by using peptide design, the gel network degradation can be controlled to allow for the proper formation of functional tissue. The work described in this thesis shows these described attributes, as well as, the potential of these peptide-based gels for use as tissue substitutes.
Tuning of peptide assembly through force balance adjustment.
Cao, Meiwen; Cao, Changhai; Zhang, Lijuan; Xia, Daohong; Xu, Hai
2013-10-01
Controlled self-assembly of amphiphilic tripeptides into distinct nanostructures is achieved via a controlled design of the molecular architecture. The tripeptide Ac-Phe-Phe-Lys-CONH2 (FFK), hardly soluble in water, forms long amyloid-like tubular structures with the aid of β-sheet hydrogen bonding and aromatic π-π stacking. Substitution of phenylalanine (F) with tyrosine (Y), that is, only a subtle structural variation in adding a hydroxyl group to the phenyl ring, results in great change in molecular self-assembly behavior. When one F is substituted with Y, the resulting molecules of FYK and YFK self-assemble into long thinner fibrils with high propensity for lateral association. When both Fs are substituted with Y, the resulting YYK molecule forms spherical aggregates. Introduction of hydroxyl groups into the molecule modifies aromatic interactions and introduces hydrogen bonding. Moreover, since the driving forces for peptide self-assembly including hydrogen bonding, electrostatic repulsion, and π-π stacking have high interdependence with each other, changes in aromatic interaction induce a Domino effect and cause a shift of force balance to a new state. This leads to significant variations in self-assembly behavior. Copyright © 2013 Elsevier Inc. All rights reserved.
Raza, Faisal; Zafar, Hajra; Zhu, Ying; Ren, Yuan; -Ullah, Aftab; Khan, Asif Ullah; He, Xinyi; Han, Han; Aquib, Md; Boakye-Yiadom, Kofi Oti; Ge, Liang
2018-01-01
Hydrogels evolved as an outstanding carrier material for local and controlled drug delivery that tend to overcome the shortcomings of old conventional dosage forms for small drugs (NSAIDS) and large peptides and proteins. The aqueous swellable and crosslinked polymeric network structure of hydrogels is composed of various natural, synthetic and semisynthetic biodegradable polymers. Hydrogels have remarkable properties of functionality, reversibility, sterilizability, and biocompatibility. All these dynamic properties of hydrogels have increased the interest in their use as a carrier for peptides and proteins to be released slowly in a sustained manner. Peptide and proteins are remarkable therapeutic agents in today’s world that allow the treatment of severe, chronic and life-threatening diseases, such as diabetes, rheumatoid arthritis, hepatitis. Despite few limitations, hydrogels provide fine tuning of proteins and peptides delivery with enormous impact in clinical medicine. Novels drug delivery systems composed of smart peptides and molecules have the ability to drive self-assembly and form hydrogels at physiological pH. These hydrogels are significantly important for biological and medical fields. The primary objective of this article is to review current issues concerned with the therapeutic peptides and proteins and impact of remarkable properties of hydrogels on these therapeutic agents. Different routes for pharmaceutical peptides and proteins and superiority over other drugs candidates are presented. Recent advances based on various approaches like self-assembly of peptides and small molecules to form novel hydrogels are also discussed. The article will also review the literature concerning the classification of hydrogels on a different basis, polymers used, “release mechanisms” their physical and chemical characteristics and diverse applications. PMID:29346275
Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.
Solomon, Lee A; Sykes, Matthew E; Wu, Yimin A; Schaller, Richard D; Wiederrecht, Gary P; Fry, H Christopher
2017-09-26
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.
NASA Astrophysics Data System (ADS)
Guan, Fengyi; Lu, Jiaju; Wang, Xiumei
2017-03-01
A clear understanding on cell migration behaviors contributes to designing novel biomaterials in tissue engineering and elucidating related tissue regeneration processes. Many traditional evaluation methods on cell migration including scratch assay and transwell migration assay possess all kinds of limitations. In this study, a novel honeycomb cell assay kit was designed and made of photosensitive resin by 3D printing. This kit has seven hexagonal culture chambers so that it can evaluate the horizontal cell migration behavior in response to six surrounding environments simultaneously, eliminating the effect of gravity on cells. Here this cell assay kit was successfully applied to evaluate endothelial cell migration cultured on self-assembling peptide (SAP) RADA (AcN-RADARADARADARADA-CONH2) nanofiber hydrogel toward different functionalized SAP hydrogels. Our results indicated that the functionalized RADA hydrogels with different concentration of bioactive motifs of KLT or PRG could induce cell migration in a dose-dependent manner. The total number and migration distance of endothelial cells on functionalized SAP hydrogels significantly increased with increasing concentration of bioactive motif PRG or KLT. Therefore, the honeycomb cell assay kit provides a simple, efficient and convenient tool to investigate cell migration behavior in response to multi-environments simultaneously.
NASA Astrophysics Data System (ADS)
Chow, Lesleyann W.
A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown to attach and maintain viability on these membranes. Finally, HBPA nanofibers were used to control the release of small hydrophobic molecules. HBPA nanofiber gels released nitric oxide (NO) to inhibit neointimal hyperplasia, a major cause for vascular graft or stent failure. HBPA/heparin gels were shown to prolong the release of NO generated from NO donors, significantly reducing neointimal hyperplasia in injured carotid arteries in vivo.
Simulation of Peptides at Aqueous Interfaces
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, M.; Chipot, C.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Behavior of peptides at water-membrane interfaces is of great interest in studies on cellular transport and signaling, membrane fusion, and the action of toxins and antibiotics. Many peptides, which exist in water only as random coils, can form sequence-dependent, ordered structures at aqueous interfaces, incorporate into membranes and self-assembly into functional units, such as simple ion channels. Multi -nanosecond molecular dynamics simulations have been carried out to study the mechanism and energetics of interfacial folding of both non-polar and amphiphilic peptides, their insertion into membranes and association into higher-order structures. The simulations indicate that peptides fold non-sequentially, often through a series of amphiphilic intermediates. They further incorporate into the membrane in a preferred direction as folded monomers, and only then aggregate into dimers and, possibly, further into "dimers of dimers".
Simulation-based Discovery of Cyclic Peptide Nanotubes
NASA Astrophysics Data System (ADS)
Ruiz Pestana, Luis A.
Today, there is a growing need for environmentally friendly synthetic membranes with selective transport capabilities to address some of society's most pressing issues, such as carbon dioxide pollution, or access to clean water. While conventional membranes cannot stand up to the challenge, thin nanocomposite membranes, where vertically aligned subnanometer pores (e.g. nanotubes) are embedded in a thin polymeric film, promise to overcome some of the current limitations, namely, achieving a monodisperse distribution of subnanometer size pores, vertical pore alignment across the membrane thickness, and tunability of the pore surface chemistry. Self-assembled cyclic peptide nanotubes (CPNs), are particularly promising as selective nanopores because the pore size can be controlled at the subnanometer level, exhibit high chemical design flexibility, and display remarkable mechanical stability. In addition, when conjugated with polymer chains, the cyclic peptides can co-assemble in block copolymer domains to form nanoporous thin films. CPNs are thus well positioned to tackle persistent challenges in molecular separation applications. However, our poor understanding of the physics underlying their remarkable properties prevents the rational design and implementation of CPNs in technologically relevant membranes. In this dissertation, we use a simulation-based approach, in particular molecular dynamics (MD) simulations, to investigate the critical knowledge gaps hindering the implementation of CPNs. Computational mechanical tests show that, despite the weak nature of the stabilizing hydrogen bonds and the small cross section, CPNs display a Young's modulus of approximately 20 GPa and a maximum strength of around 1 GPa, placing them among the strongest proteinaceous materials known. Simulations of the self-assembly process reveal that CPNs grow by self-similar coarsening, contrary to other low-dimensional peptide systems, such as amyloids, that are believed to grow through nucleation and elongation. We also establish a generic route that does not require complex chemical synthesis pathways or elaborated design rules to direct the self-assembly of binary mixtures of polymer conjugated cyclic peptides towards nanotubes with specific stripped patterns. The study of the molecular transport properties shows that bioinspired single point amino acid mutations can be effectively used to regulate the ion flow rate over an order of magnitude depending on the size and polarity of the functional groups inserted in the nanotube lumen. Our computational framework circumvents synthetic challenges, and lays the foundation for developing artificial nanochannels for separation applications.
Highly sensitive graphene biosensor by monomolecular self-assembly of receptors on graphene surface
NASA Astrophysics Data System (ADS)
Kim, Ji Eun; No, Young Hyun; Kim, Joo Nam; Shin, Yong Seon; Kang, Won Tae; Kim, Young Rae; Kim, Kun Nyun; Kim, Yong Ho; Yu, Woo Jong
2017-05-01
Graphene has attracted a great deal of interest for applications in bio-sensing devices because of its ultra-thin structure, which enables strong electrostatic coupling with target molecules, and its excellent electrical mobility promising for ultra-fast sensing speeds. However, thickly stacked receptors on the graphene's surface interrupts electrostatic coupling between graphene and charged biomolecules, which can reduce the sensitivity of graphene biosensors. Here, we report a highly sensitive graphene biosensor by the monomolecular self-assembly of designed peptide protein receptors. The graphene channel was non-covalently functionalized using peptide protein receptors via the π-π interaction along the graphene's Bravais lattice, allowing ultra-thin monomolecular self-assembly through the graphene lattice. In thickness dependent characterization, a graphene sensor with a monomolecular receptor (thickness less than 3 nm) showed five times higher sensitivity and three times higher voltage shifts than graphene sensors with thick receptor stacks (thicknesses greater than 20 nm), which is attributed to excellent gate coupling between graphene and streptavidin via an ultrathin receptor insulator. In addition to having a fast-inherent response time (less than 0.6 s) based on fast binding speed between biotin and streptavidin, our graphene biosensor is a promising platform for highly sensitive real-time monitoring of biomolecules with high spatiotemporal resolution.
NASA Astrophysics Data System (ADS)
Deng, Li; Zhao, Yurong; Zhou, Peng; Xu, Hai; Wang, Yanting
2016-12-01
Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross-β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804), the National Natural Science Foundation of China (Grant Nos. 91227115, 11421063, 11504431, and 21503275), the Fundamental Research Funds for Central Universities of China (Grant No. 15CX02025A), and the Application Research Foundation for Post-doctoral Scientists of Qingdao City, China (Grant No. T1404096).
Functionalization of DNA Nanostructures for Cell Signaling Applications
NASA Astrophysics Data System (ADS)
Pedersen, Ronnie O.
Transforming growth factor beta (TGF-beta) is an important cytokine responsible for a wide range of different cellular functions including extracellular matrix formation, angiogenesis and epithelial-mesenchymal transition. We have sought to use self-assembling DNA nanostructures to influence TGF-beta signaling. The predictable Watson Crick base pairing allows for designing self-assembling nanoscale structures using oligonucleotides. We have used the method of DNA origami to assemble structures functionalized with multiple peptides that bind TGF-beta receptors outside the ligand binding domain. This allows the nanostructures to cluster TGF-beta receptors and lower the energy barrier of ligand binding thus sensitizing the cells to TGF-beta stimulation. To prove efficacy of our nanostructures we have utilized immunofluorescent staining of Smad2/4 in order to monitor TGF-beta mediated translocation of Smad2/4 to the cell nucleus. We have also utilized Smad2/4 responsive luminescence constructs that allows us to quantify TGF-beta stimulation with and without nanostructures. To functionalize our nanostructures we relied on biotin-streptavidin linkages. This introduces a multivalency that is not necessarily desirable in all designs. Therefore we have investigated alternative means of functionalization. The first approach is based on targeting DNA nanostructure by using zinc finger binding proteins. Efficacy of zinc finger binding proteins was assayed by the use of enzyme-linked immunosorbent (ELISA) assay and atomic force microscopy (AFM). While ELISA indicated a relative specificity of zinc finger proteins for target DNA sequences AFM showed a high degree of non-specific binding and insufficient affinity. The second approach is based on using peptide nucleic acid (PNA) incorporated in the nanostructure through base pairing. PNA is a synthetic DNA analog consisting of a backbone of repeating N-(2-aminoethyl)-glycine units to which purine and pyrimidine bases are linked by amide bonds. The solid phase synthesis of PNA allows for convenient extension of the backbone into a peptide segment enabling peptide functionalization of DNA nanostructures. We have investigated how the neutral character of PNA alters the incorporation in DNA based nanostructures compared to a DNA control using biotinylation and AFM. Results indicate that PNA can successfully be used as a way of functionalizing DNA nanostructures. Additionally we have shown that functionalized nanostructures are capable of sensitizing cells to TGF-beta stimulation.
2-d and 1-d Nanomaterials Construction through Peptide Computational Design and Solution Assembly
NASA Astrophysics Data System (ADS)
Pochan, Darrin
Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic/H-bonding/hydrophobic interactions to define hierarchical material structure and consequent properties. Importantly, while biomimicry has been a successful strategy for the design of new peptide molecules for intermolecular assembly, computational tools have been developed to de novo design peptide molecules required for construction of pre-determined, desired nanostructures and materials. A new system comprised of coiled coil bundle motifs theoretically designed to assemble into designed, one and two-dimensional nanostructures will be introduced. The strategy provides the opportunity for arbitrary nanostructure formation, i.e. structures not observed in nature, with peptide molecules. Importantly, the desired nanostructure was chosen first while the peptides needed for coiled coil formation and subsequent nanomaterial formation were determined computationally. Different interbundle, two-dimensional nanostructures are stabilized by differences in amino acid composition exposed on the exterior of the coiled coil bundles. Computation was able to determine molecules required for different interbundle symmetries within two-dimensional sheets stabilized by subtle differences in amino acid composition of the inherent peptides. Finally, polymers were also created through covalent interactions between bundles that allowed formation of architectures spanning flexible network forming chains to ultra-stiff polymers, all with the same building block peptides. The success of the computational design strategy is manifested in the nanomaterial results as characterized by electron microscopy, scattering methods, and biophysical techniques. Support from NSF DMREF program under awards DMR-1234161 and DMR-1235084.
Reductionist Approach in Peptide-Based Nanotechnology.
Gazit, Ehud
2018-06-20
The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.
Peptide adsorption to cyanine dye aggregates revealed by cryo-transmission electron microscopy.
von Berlepsch, Hans; Brandenburg, Enrico; Koksch, Beate; Böttcher, Christoph
2010-07-06
The binding interaction between aggregates of the 5-chloro-2-[[5-chloro-3-(3-sulfopropyl)-3H-benzothiazol-2-ylidene]methyl]-3-(3-sulfopropyl)benzothiazolium hydroxide inner salt ammonium salt (CD-1) and alpha-helix, as well as beta-sheet forming de novo designed peptides, was investigated by absorption spectroscopy, circular dichroism spectroscopy, and cryogenic transmission electron microscopy. Both pure dye and pure peptides self-assembled into well-defined supramolecular assemblies in acetate buffer at pH = 4. The dye formed sheetlike and tubular H- and J-aggregates and the peptides alpha-helical coiled-coil assemblies or beta-sheet rich fibrils. After mixing dye and peptide solutions, tubular aggregates with an unusual ultrastructure were found, most likely due to the decoration of dye tubes with monolayers of peptide assemblies based on the strong electrostatic attraction between the oppositely charged species. There was neither indication of a transfer of chirality from the peptides to the dye aggregates nor the opposite effect of a structural transfer from dye aggregates onto the peptides secondary structure.
Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.
Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B
2017-02-15
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP 22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin self-assembly on their own. The results of these investigations confirm the viability of the electrostatic repulsion approach to the modulation of amyloid formation and may aid the design and development of potential therapeutic agents.
Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
Zeng, Like; Jiang, Linan; Teng, Weibing; Cappello, Joseph; Zohar, Yitshak; Wu, Xiaoyi
2014-07-01
Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional metabolite assemblies—a review
NASA Astrophysics Data System (ADS)
Aizen, Ruth; Tao, Kai; Rencus-Lazar, Sigal; Gazit, Ehud
2018-05-01
Metabolites are essential for the normal operation of cells and fulfill various physiological functions. It was recently found that in several metabolic disorders, the associated metabolites could self-assemble to generate amyloid-like structures, similar to canonical protein amyloids that have a role in neurodegenerative disorders. Yet, assemblies with typical amyloid characteristics are also known to have physiological function. In addition, many non-natural proteins and peptides presenting amyloidal properties have been used for the fabrication of functional nanomaterials. Similarly, functional metabolite assemblies are also found in nature, demonstrating various physiological roles. A notable example is the structural color formed by guanine crystals or fluorescent crystals in feline eyes responsible for enhanced night vision. Moreover, some metabolites have been used for the in vitro fabrication of functional materials, such as glycine crystals presenting remarkable piezoelectric properties or indigo films used to assemble organic semi-conductive electronic devices. Therefore, we believe that the study of metabolite assemblies is not only important in order to understand their role in normal physiology and in pathology, but also paves a new route in exploring the fabrication of organic, bio-compatible materials.
One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces
NASA Astrophysics Data System (ADS)
Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.
2017-02-01
The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.
Biocompatible Electroactive Tetra(aniline)-Conjugated Peptide Nanofibers for Neural Differentiation.
Arioz, Idil; Erol, Ozlem; Bakan, Gokhan; Dikecoglu, F Begum; Topal, Ahmet E; Urel, Mustafa; Dana, Aykutlu; Tekinay, Ayse B; Guler, Mustafa O
2018-01-10
Peripheral nerve injuries cause devastating problems for the quality of patients' lives, and regeneration following damage to the peripheral nervous system is limited depending on the degree of the damage. Use of nanobiomaterials can provide therapeutic approaches for the treatment of peripheral nerve injuries. Electroactive biomaterials, in particular, can provide a promising cure for the regeneration of nerve defects. Here, a supramolecular electroactive nanosystem with tetra(aniline) (TA)-containing peptide nanofibers was developed and utilized for nerve regeneration. Self-assembled TA-conjugated peptide nanofibers demonstrated electroactive behavior. The electroactive self-assembled peptide nanofibers formed a well-defined three-dimensional nanofiber network mimicking the extracellular matrix of the neuronal cells. Neurite outgrowth was improved on the electroactive TA nanofiber gels. The neural differentiation of PC-12 cells was more advanced on electroactive peptide nanofiber gels, and these biomaterials are promising for further use in therapeutic neural regeneration applications.
Peptide tessellation yields micrometre-scale collagen triple helices
NASA Astrophysics Data System (ADS)
Tanrikulu, I. Caglar; Forticaux, Audrey; Jin, Song; Raines, Ronald T.
2016-11-01
Sticky-ended DNA duplexes can associate spontaneously into long double helices; however, such self-assembly is much less developed with proteins. Collagen is the most prevalent component of the extracellular matrix and a common clinical biomaterial. As for natural DNA, the ~103-residue triple helices (~300 nm) of natural collagen are recalcitrant to chemical synthesis. Here we show how the self-assembly of short collagen-mimetic peptides (CMPs) can enable the fabrication of synthetic collagen triple helices that are nearly a micrometre in length. Inspired by the mathematics of tessellations, we derive rules for the design of single CMPs that self-assemble into long triple helices with perfect symmetry. Sticky ends thus created are uniform across the assembly and drive its growth. Enacting this design yields individual triple helices that, in length, match or exceed those in natural collagen and are remarkably thermostable, despite the absence of higher-order association. The symmetric assembly of CMPs provides an enabling platform for the development of advanced materials for medicine and nanotechnology.
Secchi, Valeria; Franchi, Stefano; Santi, Marta; Vladescu, Alina; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Dettin, Monica; Zamuner, Annj; Iucci, Giovanna; Battocchio, Chiara
2018-03-07
In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH₂ that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.
Wang, Guixiang; Su, Xiaoli; Xu, Qingjun; Xu, Guiyun; Lin, Jiehua; Luo, Xiliang
2018-03-15
Direct detection of targets in complex biological media with conventional biosensors is an enormous challenge due to the nonspecific adsorption and severe biofouling. In this work, a facile strategy for sensitive and low fouling detection of adenosine triphosphate (ATP) is developed through the construction of a mixed self-assembled biosensing interface, which was composed of zwitterionic peptide (antifouling material) and ATP aptamer (bio-recognition element). The peptide and aptamer (both containing thiol groups) were simultaneously self-assembled onto gold electrode surface electrodeposited with gold nanoparticles. The developed aptasensor possessed high selectivity and sensitivity for ATP, and it showed a wide linear response range towards ATP from 0.1pM to 5nM. Owing to the presence of peptide with excellent antifouling property in the biosensing interface, the aptasensor can detect ATP in complex biological media with remarkably reduced biofouling or nonspecific adsorption effect. Moreover, it can directly detect ATP in 1% human whole blood without suffering from any significant interference, indicating its great potential for practical assaying of ATP in biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes
NASA Astrophysics Data System (ADS)
Weinberger, Andreas; Walter, Vivien; MacEwan, Sarah R.; Schmatko, Tatiana; Muller, Pierre; Schroder, André P.; Chilkoti, Ashutosh; Marques, Carlos M.
2017-03-01
Although cationic cell-penetrating peptides (CPPs) are able to bind to cell membranes, thus promoting cell internalization by active pathways, attachment of cargo molecules to CPPs invariably reduces their cellular uptake. We show here that CPP binding to lipid bilayers, a simple model of the cell membrane, can be recovered by designing cargo molecules that self-assemble into spherical micelles and increase the local interfacial density of CPP on the surface of the cargo. Experiments performed on model giant unilamellar vesicles under a confocal laser scanning microscope show that a family of thermally responsive elastin-like polypeptides that exhibit temperature-triggered micellization can promote temperature triggered attachment of the micelles to membranes, thus rescuing by self-assembly the cargo-induced loss of the CPP affinity to bio-membranes.
Self-assembled arginine-rich peptides as effective antimicrobial agents.
Mi, Gujie; Shi, Di; Herchek, Whitney; Webster, Thomas J
2017-04-01
Bacteria can adapt to their ever-changing environment to develop a resistance to commonly used antibiotics. This escalating evolution of bacteria coupled with a diminished number of effective antibiotics has caused a global healthcare crisis. New antimicrobials and novel approaches to tackle this problem are urgently needed. Antimicrobial peptides are of particular interest in this endeavor due to their broad spectrum antimicrobial properties as well as ability to combat multi-drug resistant bacteria. Most peptides have both hydrophobic and hydrophilic regions that enable them to be soluble in an aqueous solution, yet can insert into and subsequently disintegrate lipid rich membranes through diverse mechanisms. In this study, a novel class of cationic nanoparticles (formed by the self-assembly of an amphiphilic peptide) were shown to have strong antimicrobial properties against gram-positive bacteria, specifically Staphylococcus aureus, Staphylococcus epidermidis, and methicillin-resistant Staphylococcus aureus (MRSA) with minimal toxicity to human dermal fibroblasts. The particular self-assembled structure tested here included an arginine rich nanoparticle (C 17 H 35 GR7RGDS or amphiphilic peptide nanoparticles, APNPs) which incorporated seven arginine residues (imparting a positive charge to improve membrane interactions), a hydrophobic block which drove the self-assembly process, and the presence of an amino acid quadruplet arginine-glycine-aspartic acid-serine (RGDS) which may render these nanoparticles capable of attracting healthy cells while competing bacterial adherence to fibronectin, an adhesive protein found on cell surfaces. As such, this in vitro study demonstrated that the presently formulated APNPs should be further studied for a wide range of antibacterial applications where antibiotics are no longer useful. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1046-1054, 2017. © 2017 Wiley Periodicals, Inc.
Tao, Kai; Wang, Jiqian; Zhou, Peng; Wang, Chengdong; Xu, Hai; Zhao, Xiubo; Lu, Jian R
2011-03-15
We report the characterization of self-assembly of two short β-amyloid (Aβ) peptides (16-22), KLVFFAE and Ac-KLVFFAE-NH2, focusing on examining the effect of terminal capping. At pH 2.0, TEM and AFM imaging revealed that the uncapped peptide self-assembled into long, straight, and unbranched nanofibrils with a diameter of 3.8 ± 1.0 nm while the capped one formed nanotapes with a width of 70.0 ± 25.0 nm. CD analysis indicated the formation of β-sheet structures in both aggregated systems, but the characteristic CD peaks were less intense and less red-shifted for the uncapped than the capped one, indicative of weaker hydrogen bonding and weaker π-π stacking. Fluorescence and rheological measurements also confirmed stronger intermolecular attraction associated with the capped nanotapes. At acidic pH 2, each uncapped KLVFFAE molecule carries two positive charges at the N-terminus, and the strong electrostatic repulsion favors interfacial curving and twisting within the β-sheet, causing weakening of hydrogen bonds and π-π stacking. In contrast, capping reduces the charge by half, and intermolecular electrostatic repulsion is drastically reduced. As a result, the lateral attraction of β-sheets favors stronger lamellar structuring, leading to the formation of rather flat nanotapes. Flat tapes with similar morphological structure were also formed by the capped peptide at pH 12.0 where the charge on the capping end was reversed. This study has thus demonstrated how self-assembled nanostructures of small peptides can be manipulated through simple molecular structure design and tuning of electrostatic interaction.
Yataka, Yusuke; Sawada, Toshiki; Serizawa, Takeshi
2016-10-04
The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.
Reddy, Samala Murali Mohan; Shanmugam, Ganesh
2016-09-19
Although the role of intermolecular aromatic π-π interactions in the self-assembly of di-l-phenylalanine (l-Phe-l-Phe, FF), a peptide that is known for hierarchical structure, is well established, the influence of intramolecular π-π interactions on the morphology of the self-assembled structure of FF has not been studied. Herein, the role of intramolecular aromatic π-π interactions is investigated for FF and analogous alanine (Ala)-containing dipeptides, namely, l-Phe-l-Ala (FA) and l-Ala-l-Phe (AF). The results reveal that these dipeptides not only form self-assemblies, but also exhibit remarkable differences in structural morphology. The morphological differences between FF and the analogues indicate the importance of intramolecular π-π interactions, and the structural difference between FA and AF demonstrates the crucial role of the nature of intramolecular side-chain interactions (aromatic-aliphatic or aliphatic-aromatic), in addition to intermolecular interactions, in deciding the final morphology of the self-assembled structure. The current results emphasise that intramolecular aromatic π-π interaction may not be essential to induce self-assembly in smaller peptides, and π (aromatic)-alkyl or alkyl-π (aromatic) interactions may be sufficient. This work also illustrates the versatility of aromatic and a combination of aromatic and aliphatic residues in dipeptides in the formation of structurally diverse self-assembled structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi
2008-01-01
The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413
Ordered Array of Gold Nanoparticles Promoted by Functional Peptides
NASA Astrophysics Data System (ADS)
Matsukawa, Nozomu; Yamashita, Ichiro
2011-05-01
It was successfully demonstrated that 5-nm-diameter gold nanoparticles (GNPs) with 15% size distribution, the surface of which was modified by the synthesized peptides composed of the carbonaceous material affinity peptide (NHBP-1), linker of 11 amino acids and C-terminal cysteine, self-assembled into a two-dimensional (2D) ordered array on a silicon substrate in a spin drying process. NHBP-1 generated an attractive force large enough for the GNP to make 2D collections of GNPs in the course of the spin drying process, and the long linker of 11 amino acids cancelled out the ill effect of size distribution of GNP on the 2D ordered array formation.
Self-Assembly of Peptides at the Air/Water Interface
NASA Astrophysics Data System (ADS)
Sayar, Mehmet
2013-03-01
Peptides are commonly used as building blocks for design and development of novel materials with a variety of application areas ranging from drug design to biotechnology. The precise control of molecular architecture and specific nature of the nonbonded interactions among peptides enable aggregates with well defined structural and functional properties. The interaction of peptides with interfaces leads to dramatic changes in their conformational and aggregation behavior. In this talk, I will discuss our research on the interplay of intermolecular forces and influence of interfaces. In the first part the amphiphilic nature of short peptide oligomers and their behavior at the air/water interface will be discussed. The surface driving force and its decomposition will be analyzed. In the second part aggregation of peptides in bulk water and at an interface will be discussed. Different design features which can be tuned to control aggregation behavior will be analyzed.
Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna
2013-02-12
Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.
NASA Astrophysics Data System (ADS)
Lin, Adam Yuh; Lunsford, Jessica; Bear, Adham Sean; Young, Joseph Keith; Eckels, Phillip; Luo, Laureen; Foster, Aaron Edward; Drezek, Rebekah Anna
2013-02-01
Nanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity. AuNVs were synthesized using a self-assembling conjugation method and optimized using DC-to-splenocyte interferon-γ enzyme-linked immunosorbent spot assays. The AuNV design has shown successful peptide conjugation with approximately 90% yield while remaining smaller than 80 nm in diameter. DCs uptake AuNVs with minimal toxicity and are able to process the vaccine peptides on the particles to stimulate cytotoxic T lymphocytes (CTLs). These high-peptide density AuNVs can stimulate CTLs better than free peptides and have great potential as carriers for various vaccine types.
Self-assembled bionanostructures: proteins following the lead of DNA nanostructures
2014-01-01
Natural polymers are able to self-assemble into versatile nanostructures based on the information encoded into their primary structure. The structural richness of biopolymer-based nanostructures depends on the information content of building blocks and the available biological machinery to assemble and decode polymers with a defined sequence. Natural polypeptides comprise 20 amino acids with very different properties in comparison to only 4 structurally similar nucleotides, building elements of nucleic acids. Nevertheless the ease of synthesizing polynucleotides with selected sequence and the ability to encode the nanostructural assembly based on the two specific nucleotide pairs underlay the development of techniques to self-assemble almost any selected three-dimensional nanostructure from polynucleotides. Despite more complex design rules, peptides were successfully used to assemble symmetric nanostructures, such as fibrils and spheres. While earlier designed protein-based nanostructures used linked natural oligomerizing domains, recent design of new oligomerizing interaction surfaces and introduction of the platform for topologically designed protein fold may enable polypeptide-based design to follow the track of DNA nanostructures. The advantages of protein-based nanostructures, such as the functional versatility and cost effective and sustainable production methods provide strong incentive for further development in this direction. PMID:24491139
Narrowing the diversification of supramolecular assemblies by preorganization.
Wang, Zhongyan; Liang, Chunhui; Shang, Yuna; He, Shuangshuang; Wang, Ling; Yang, Zhimou
2018-03-13
We designed and synthesized three phosphorylated peptides as precursors of the same peptide Nap-YYY. We found that different precursors led to different materials with almost identical chemical compositions at the final stages. Only Nap-YpYY could form very uniform nanofibers in a stable supramolecular hydrogel by enzyme-instructed self-assembly (EISA) at the physiological temperature (37 °C). In contrast, de-phosphorylation of the other two precursors (Nap-pYYY and Nap-YYpY) resulted in diverse nanostructures in metastable hydrogels with precipitates. The formation of uniform nanomaterials in the stable hydrogels was due to the preorganization property of the precursor Nap-YpYY, which facilitated rapid folding and accelerated the kinetics of hydrogelation of the resulting peptide Nap-YYY generated by the EISA process. Our study demonstrated the importance of the precursor for the self-assembly of nanomaterials and provided a useful strategy to manipulate them.
Molecular biomimetics: GEPI-based biological routes to technology.
Tamerler, Candan; Khatayevich, Dmitriy; Gungormus, Mustafa; Kacar, Turgay; Oren, E Emre; Hnilova, Marketa; Sarikaya, Mehmet
2010-01-01
In nature, the viability of biological systems is sustained via specific interactions among the tens of thousands of proteins, the major building blocks of organisms from the simplest single-celled to the most complex multicellular species. Biomolecule-material interaction is accomplished with molecular specificity and efficiency leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, Mother Nature developed molecular recognition by successive cycles of mutation and selection. Molecular specificity of probe-target interactions, e.g., ligand-receptor, antigen-antibody, is always based on specific peptide molecular recognition. Using biology as a guide, we can now understand, engineer, and control peptide-material interactions and exploit them as a new design tool for novel materials and systems. We adapted the protocols of combinatorially designed peptide libraries, via both cell surface or phage display methods; using these we select short peptides with specificity to a variety of practical materials. These genetically engineered peptides for inorganics (GEPI) are then studied experimentally to establish their binding kinetics and surface stability. The bound peptide structure and conformations are interrogated both experimentally and via modeling, and self-assembly characteristics are tested via atomic force microscopy. We further engineer the peptide binding and assembly characteristics using a computational biomimetics approach where bioinformatics based peptide-sequence similarity analysis is developed to design higher generation function-specific peptides. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems in a wide-range of applications from tissue engineering, disease diagnostics, and therapeutics to various areas of nanotechnology where integration is required among inorganic, organic and biological materials. Here, we describe lessons from biology with examples of protein-mediated functional biological materials, explain how novel peptides can be designed with specific affinity to inorganic solids using evolutionary engineering approaches, give examples of their potential utilizations in technology and medicine, and, finally, provide a summary of challenges and future prospects. (c) 2010 Wiley Periodicals, Inc.
Horgan, Conor C; Rodriguez, Alexandra L; Li, Rui; Bruggeman, Kiara F; Stupka, Nicole; Raynes, Jared K; Day, Li; White, John W; Williams, Richard J; Nisbet, David R
2016-07-01
The nanofibrillar structures that underpin self-assembling peptide (SAP) hydrogels offer great potential for the development of finely tuned cellular microenvironments suitable for tissue engineering. However, biofunctionalisation without disruption of the assembly remains a key issue. SAPS present the peptide sequence within their structure, and studies to date have typically focused on including a single biological motif, resulting in chemically and biologically homogenous scaffolds. This limits the utility of these systems, as they cannot effectively mimic the complexity of the multicomponent extracellular matrix (ECM). In this work, we demonstrate the first successful co-assembly of two biologically active SAPs to form a coassembled scaffold of distinct two-component nanofibrils, and demonstrate that this approach is more bioactive than either of the individual systems alone. Here, we use two bioinspired SAPs from two key ECM proteins: Fmoc-FRGDF containing the RGD sequence from fibronectin and Fmoc-DIKVAV containing the IKVAV sequence from laminin. Our results demonstrate that these SAPs are able to co-assemble to form stable hybrid nanofibres containing dual epitopes. Comparison of the co-assembled SAP system to the individual SAP hydrogels and to a mixed system (composed of the two hydrogels mixed together post-assembly) demonstrates its superior stable, transparent, shear-thinning hydrogels at biological pH, ideal characteristics for tissue engineering applications. Importantly, we show that only the coassembled hydrogel is able to induce in vitro multinucleate myotube formation with C2C12 cells. This work illustrates the importance of tissue engineering scaffold functionalisation and the need to develop increasingly advanced multicomponent systems for effective ECM mimicry. Successful control of stem cell fate in tissue engineering applications requires the use of sophisticated scaffolds that deliver biological signals to guide growth and differentiation. The complexity of such processes necessitates the presentation of multiple signals in order to effectively mimic the native extracellular matrix (ECM). Here, we establish the use of two biofunctional, minimalist self-assembling peptides (SAPs) to construct the first co-assembled SAP scaffold. Our work characterises this construct, demonstrating that the physical, chemical, and biological properties of the peptides are maintained during the co-assembly process. Importantly, the coassembled system demonstrates superior biological performance relative to the individual SAPs, highlighting the importance of complex ECM mimicry. This work has important implications for future tissue engineering studies. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, Yu; Zhang, Huixi; Kiick, Kristi; Saven, Jeffrey; Pochan, Darrin
Peptides with well-defined secondary-structures have the ability to exhibit specific, local shapes, which enables the design of complex nanostructures through intermolecular assembly. Our computationally designed coiled-coil homotetrameric peptide building block can self-assemble into 2-D nanomaterial lattices with predetermined symmetries by control of the coiled-coil bundle exterior amino acid residues. And the assemblies can be controlled kinetically. Firstly, the solution pH influences the assembly by affecting the external charged state of peptide bundles which can lead the bundles to be either repulsive or attractive to each other. At room temperature when peptides are under the least charged pH conditions, disordered aggregates are formed that slowly transformed into the desired 2-D lattice structures over long periods of time (weeks). Around neutral pH, even subtle charge differences that come from small pH changes can have an influence on the thickness of afterwards formed plates. Secondly, the solution temperature can largely eliminate the formation of disordered aggregates and accelerate the assembling of matured, desired nanomaterial plates by providing extra energy for the organization process of assembly building blocks. The ability to control the assembly process kinetically makes our peptide plate assemblies very promising templates for further applications to develop inorganic-organic hybrid materials. Funding acknowledged from NSF DMREF program under awards DMR-1234161 and DMR-1235084.
Liu, Jingping; Zhang, Lanlan; Yang, Zehong; Zhao, Xiaojun
2011-01-01
Background A nanoscale injectable in situ-forming hydrogel drug delivery system was developed in this study. The system was based on a self-assembling peptide RADA16 solution, which can spontaneously form a hydrogel rapidly under physiological conditions. We used the RADA16 hydrogel for the controlled release of paclitaxel (PTX), a hydrophobic antitumor drug. Methods The RADA16-PTX suspension was prepared simply by magnetic stirring, followed by atomic force microscopy, circular dichroism analysis, dynamic light scattering, rheological analysis, an in vitro release assay, and a cell viability test. Results The results indicated that RADA16 and PTX can interact with each other and that the amphiphilic peptide was able to stabilize hydrophobic drugs in aqueous solution. The particle size of PTX was markedly decreased in the RADA16 solution compared with its size in water. The RADA16-PTX suspension could form a hydrogel in culture medium, and the elasticity of the hydrogel showed a positive correlation with peptide concentration. In vitro release measurements indicated that hydrogels with a higher peptide concentration had a longer half-release time. The RADA16-PTX hydrogel could effectively inhibit the growth of the breast cancer cell line, MDA-MB-435S, in vitro, and hydrogels with higher peptide concentrations were more effective at inhibiting tumor cell proliferation. The RADA16-PTX hydrogel was effective at controlling the release of PTX and inhibiting tumor cell growth in vitro. Conclusion Self-assembling peptide hydrogels may work well as a system for drug delivery. PMID:22114478
A novel form of β-strand assembly observed in Aβ33-42 adsorbed onto graphene
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Weber, Jeffrey K.; Liu, Lei; Dong, Mingdong; Zhou, Ruhong; Li, Jingyuan
2015-09-01
Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which toxic peptides assemble and mediate neuropathic effects are still poorly understood. In this work, we employ molecular dynamics simulations to study the adsorption and assembly of the fragment Aβ33-42 (taken from the Aβ-42 peptide widely associated with Alzheimer's disease) on a graphene surface. We observe that such Aβ33-42 fragments, which are largely hydrophobic in character, readily adsorb onto the graphitic surface and coalesce into a well-structured, β-strand-like assembly. Strikingly, the structure of such complex is quite unique: hydrophobic side-chains extend over the graphene surface and interact with adjacent peptides, yielding a well-defined mosaic of hydrophobic interaction patches. This ordered structure is markedly depleted of backbone hydrogen bonds. Hence, our simulation results reveal a distinct type of β-strand assembly, maintained by hydrophobic side-chain interactions. Our finding suggests the backbone hydrogen bond is no longer crucial to the peptide assembly. Further studies concerning whether such β-strand assembly can be realized in other peptide systems and in biologically-relevant contexts are certainly warranted.Peptide assembly plays a seminal role in the fabrication of structural and functional architectures in cells. Characteristically, peptide assemblies are often dominated by β-sheet structures, wherein component molecules are connected by backbone hydrogen bonds in a parallel or an antiparallel fashion. While β-rich peptide scaffolds are implicated in an array of neurodegenerative diseases, the mechanisms by which toxic peptides assemble and mediate neuropathic effects are still poorly understood. In this work, we employ molecular dynamics simulations to study the adsorption and assembly of the fragment Aβ33-42 (taken from the Aβ-42 peptide widely associated with Alzheimer's disease) on a graphene surface. We observe that such Aβ33-42 fragments, which are largely hydrophobic in character, readily adsorb onto the graphitic surface and coalesce into a well-structured, β-strand-like assembly. Strikingly, the structure of such complex is quite unique: hydrophobic side-chains extend over the graphene surface and interact with adjacent peptides, yielding a well-defined mosaic of hydrophobic interaction patches. This ordered structure is markedly depleted of backbone hydrogen bonds. Hence, our simulation results reveal a distinct type of β-strand assembly, maintained by hydrophobic side-chain interactions. Our finding suggests the backbone hydrogen bond is no longer crucial to the peptide assembly. Further studies concerning whether such β-strand assembly can be realized in other peptide systems and in biologically-relevant contexts are certainly warranted. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00555h
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chun-Long; Zuckermann, Ronald N.; DeYoreo, James J.
The exquisite self-assembly of proteins and peptides in nature into highly ordered functional materials has inspired innovative approaches to biomimetic materials design and synthesis. Here we report the assembly of peptoids—a class of highly stable sequence-defined synthetic polymers—into biomimetic materials on mica surfaces. The assembling 12-mer peptoid contains alternating acidic and aromatic residues, and the presence of Ca2+ cations creates peptoid-peptoid and peptoid-mica interactions that drive assembly. In situ atomic force microscopy (AFM) shows that peptoids first assemble into discrete nanoparticles, these particles then transform into hexagonally-patterned nanoribbons on mica surfaces. AFM-based dynamic force spectroscopy (DFS) studies show that peptoid-micamore » interactions are much stronger than peptoidpeptoid interactions in the presence of Ca2+, illuminating the physical parameters that drive peptoid assembly. We further demonstrate the display of functional groups at the N-terminus of assembling peptoid sequence to produce biomimetic materials with similar hierarchical structures. This research demonstrates that surface-directed peptoid assembly can be used as a robust platform to develop biomimetic coating materials for applications.« less
Minimalist Prion-Inspired Polar Self-Assembling Peptides.
Díaz-Caballero, Marta; Navarro, Susanna; Fuentes, Isabel; Teixidor, Francesc; Ventura, Salvador
2018-06-04
Nature provides copious examples of self-assembling supramolecular nanofibers. Among them, amyloid structures have found amazing applications as advanced materials in fields such as biomedicine and nanotechnology. Prions are a singular subset of proteins able to switch between a soluble conformation and an amyloid state. The ability to transit between these two conformations is encoded in the so-called prion domains (PrDs), which are long and disordered regions of low complexity, enriched in polar and uncharged amino acids such as Gln, Asn, Tyr, Ser, and Gly. The polar nature of PrDs results in slow amyloid formation, which allows kinetic control of fiber assembly. This approach has been exploited for fabrication of multifunctional materials because in contrast to most amyloids, PrDs lack hydrophobic stretches that can nucleate their aggregation, their assembly depends on the establishment of a large number of weak interactions along the complete domain. The length and low complexity of PrDs make their chemical synthesis for applied purposed hardly affordable. Here, we designed four minimalist polar binary patterned peptides inspired in PrDs, which include the [Q/N/G/S]-Y-[Q/N/G/S] motif frequently observed in these domains: NYNYNYN, QYQYQYQ, SYSYSYS, and GYGYGYG. Despite their small size, they all recapitulate the properties of full-length PrDs, self-assembling into nontoxic amyloids under physiological conditions. Thus, they constitute small building blocks for the construction of tailored prion-inspired nanostructures. We exploited Tyr residues in these peptides to generate highly stable dityrosine cross-linked assemblies for the immobilization of metal nanoparticles in the fibrils surface and to develop an electrocatalytic amyloid scaffold. Moreover, we show that the shorter and more polar NYNNYN, QYQQYQ, and SYSSYS hexapeptides also self-assemble into amyloid-like structures, consistent with the presence of these tandem motifs in human prion-like proteins.
2012-01-01
Combined results of theoretical molecular dynamic simulations and in vitro spectroscopic (circular dichroism and fluorescence) studies are presented, providing the atomistic and secondary structure details of the process by which a selected small molecule may destabilize the β-sheet ordered “amyloid” oligomers formed by the model undecapeptide of amyloid β-peptide 25–35 [Aβ(25–35)]. Aβ(25–35) was chosen because it is the shortest fragment capable of forming large β-sheet fibrils and retaining the toxicity of the full length Aβ(1–40/42) peptides. The conformational transition, that leads to the formation of β-sheet fibrils from soluble unordered structures, was found to depend on the environmental conditions, whereas the presence of myricetin destabilizes the self-assembly and antagonizes this conformational shift. In parallel, we analyzed several molecular dynamics trajectories describing the evolution of five monomer fragments, without inhibitor as well as in the presence of myricetin. Other well-known inhibitors (curcumin and (−)-tetracycline), found to be stronger and weaker Aβ(1–42) aggregation inhibitors, respectively, were also studied. The combined in vitro and theoretical studies of the Aβ(25–35) self-assembly and its inhibition contribute to understanding the mechanism of action of well-known inhibitors and the peptide amino acid residues involved in the interaction leading to a rational drug design of more potent new molecules able to antagonize the self-assembly process. PMID:23173074
Figueira, T. N.; Palermo, L. M.; Veiga, A. S.; Huey, D.; Alabi, C. A.; Santos, N. C.; Welsch, J. C.; Mathieu, C.; Niewiesk, S.; Moscona, A.
2016-01-01
ABSTRACT Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo. We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. IMPORTANCE Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. PMID:27733647
Figueira, T N; Palermo, L M; Veiga, A S; Huey, D; Alabi, C A; Santos, N C; Welsch, J C; Mathieu, C; Horvat, B; Niewiesk, S; Moscona, A; Castanho, M A R B; Porotto, M
2017-01-01
Measles virus (MV) infection is undergoing resurgence and remains one of the leading causes of death among young children worldwide despite the availability of an effective measles vaccine. MV infects its target cells by coordinated action of the MV hemagglutinin (H) and fusion (F) envelope glycoproteins; upon receptor engagement by H, the prefusion F undergoes a structural transition, extending and inserting into the target cell membrane and then refolding into a postfusion structure that fuses the viral and cell membranes. By interfering with this structural transition of F, peptides derived from the heptad repeat (HR) regions of F can inhibit MV infection at the entry stage. In previous work, we have generated potent MV fusion inhibitors by dimerizing the F-derived peptides and conjugating them to cholesterol. We have shown that prophylactic intranasal administration of our lead fusion inhibitor efficiently protects from MV infection in vivo We show here that peptides tagged with lipophilic moieties self-assemble into nanoparticles until they reach the target cells, where they are integrated into cell membranes. The self-assembly feature enhances biodistribution and the half-life of the peptides, while integration into the target cell membrane increases fusion inhibitor potency. These factors together modulate in vivo efficacy. The results suggest a new framework for developing effective fusion inhibitory peptides. Measles virus (MV) infection causes an acute illness that may be associated with infection of the central nervous system (CNS) and severe neurological disease. No specific treatment is available. We have shown that fusion-inhibitory peptides delivered intranasally provide effective prophylaxis against MV infection. We show here that specific biophysical properties regulate the in vivo efficacy of MV F-derived peptides. Copyright © 2016 American Society for Microbiology.
Louros, Nikolaos N; Chrysina, Evangelia D; Baltatzis, Georgios E; Patsouris, Efstratios S; Hamodrakas, Stavros J; Iconomidou, Vassiliki A
2016-03-01
Human zona pellucida (ZP) is composed of four glycoproteins, namely ZP1, ZP2, ZP3 and ZP4. ZP proteins form heterodimers, which are incorporated into filaments through a common bipartite polymerizing component, designated as the ZP domain. The latter is composed of two individually folded subdomains, named ZP-N and ZP-C. Here, we have synthesized six 'aggregation-prone' peptides, corresponding to a common interface of human ZP2, ZP3 and ZP4. Experimental results utilizing electron microscopy, X-ray diffraction, ATR FT-IR spectroscopy and polarizing microscopy indicate that these peptides self-assemble forming fibrils with distinct amyloid-like features. Finally, by performing detailed modeling and docking, we attempt to shed some light in the self-assembly mechanism of human ZP proteins. © 2016 Federation of European Biochemical Societies.
NASA Astrophysics Data System (ADS)
Ilitchev, Alexandre I.; Giammona, Maxwell J.; Do, Thanh D.; Wong, Amy G.; Buratto, Steven K.; Shea, Joan-Emma; Raleigh, Daniel P.; Bowers, Michael T.
2016-06-01
Amyloid formation by human islet amyloid polypeptide (hIAPP) has long been implicated in the pathogeny of type 2 diabetes mellitus (T2DM) and failure of islet transplants, but the mechanism of IAPP self-assembly is still unclear. Numerous fragments of hIAPP are capable of self-association into oligomeric aggregates, both amyloid and non-amyloid in structure. The N-terminal region of IAPP contains a conserved disulfide bond between cysteines at position 2 and 7, which is important to hIAPP's in vivo function and may play a role in in vitro aggregation. The importance of the disulfide bond in this region was probed using a combination of ion mobility-based mass spectrometry experiments, molecular dynamics simulations, and high-resolution atomic force microscopy imaging on the wildtype 1-8 hIAPP fragment, a reduced fragment with no disulfide bond, and a fragment with both cysteines at positions 2 and 7 mutated to serine. The results indicate the wildtype fragment aggregates by a different pathway than either comparison peptide and that the intact disulfide bond may be protective against aggregation due to a reduction of inter-peptide hydrogen bonding.
Maury, Carl Peter J
2018-05-01
A crucial stage in the origin of life was the emergence of the first molecular entity that was able to replicate, transmit information, and evolve on the early Earth. The amyloid world hypothesis posits that in the pre-RNA era, information processing was based on catalytic amyloids. The self-assembly of short peptides into β-sheet amyloid conformers leads to extraordinary structural stability and novel multifunctionality that cannot be achieved by the corresponding nonaggregated peptides. The new functions include self-replication, catalytic activities, and information transfer. The environmentally sensitive template-assisted replication cycles generate a variety of amyloid polymorphs on which evolutive forces can act, and the fibrillar assemblies can serve as scaffolds for the amyloids themselves and for ribonucleotides proteins and lipids. The role of amyloid in the putative transition process from an amyloid world to an amyloid-RNA-protein world is not limited to scaffolding and protection: the interactions between amyloid, RNA, and protein are both complex and cooperative, and the amyloid assemblages can function as protometabolic entities catalyzing the formation of simple metabolite precursors. The emergence of a pristine amyloid-based in-put sensitive, chiroselective, and error correcting information-processing system, and the evolvement of mutualistic networks were, arguably, of essential importance in the dynamic processes that led to increased complexity, organization, compartmentalization, and, eventually, the origin of life.
Shivhare, Kriti; Garg, Charu; Priyam, Ayushi; Gupta, Alka; Sharma, Ashwani Kumar; Kumar, Pradeep
2018-01-01
Molecular self-assembly of biodegradable amphiphilic polymers allows rational design of biocompatible nanomaterials for drug delivery. Use of substituted polysaccharides for such applications offers the ease of design and synthesis, and provides higher biofunctionality and biocompatibility to nanomaterials. The present work focuses on the synthesis, characterization and potential biomedical applications of self-assembled polysaccharide-based materials. We demonstrated that the synthesized amphiphilic inulin self-assembled in aqueous medium into nanostructures with average size in the range of 146-486nm and encapsulated hydrophobic therapeutic molecule, ornidazole. Hydrophophic dehydropeptide was conjugated with inulin via a biocompatible ester linkage. Dehydrophenylalanine, an unusual amino acid, was incorporated in the peptide to make it stable at a broader range of pH as well as against proteases. The resulting core-shell type of nanostructures could encapsulate ornidazole in the hydrophobic core and released it in a controlled fashion. By taking the advantage of inulin, which gets degraded in the colon by colonic bacteria, the effect of enzyme, inulinase, present in the microflora of the large intestine, on inulin-peptide degradation followed by drug release has been studied. Altogether, small peptide conjugated to inulin offers novel scaffold for the future design of nanostructures with potential applications in the field of targeted drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Covalent Functionalization of NiTi Surfaces with Bioactive Peptide Amphiphile Nanofibers
Sargeant, Timothy D.; Rao, Mukti S.; Koh, Chung-Yan
2009-01-01
Surface modification enables the creation of bioactive implants using traditional material substrates without altering the mechanical properties of the bulk material. For applications such as bone plates and stents, it is desirable to modify the surface of metal alloy substrates to facilitate cellular attachment, proliferation, and possibly differentiation. In this work we present a general strategy for altering the surface chemistry of nickel-titanium shape memory alloy (NiTi) in order to covalently attach self-assembled peptide amphiphile (PA) nanofibers with bioactive functions. Bioactivity in the systems studied here includes biological adhesion and proliferation of osteoblast and endothelial cell types. The optimized surface treatment creates a uniform TiO2 layer with low levels of Ni on the NiTi surface, which is subsequently covered with an aminopropylsilane coating using a novel, lower temperature vapor deposition method. This method produces an aminated surface suitable for covalent attachment of PA molecules containing terminal carboxylic acid groups. The functionalized NiTi surfaces have been characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), and atomic force microscopy (AFM). These techniques offer evidence that the treated metal surfaces consist primarily of TiO2 with very little Ni, and also confirm the presence of the aminopropylsilane overlayer. Self-assembled PA nanofibers presenting the biological peptide adhesion sequence Arg-Gly-Asp-Ser are capable of covalently anchoring to the treated substrate, as demonstrated by spectrofluorimetry and AFM. Cell culture and scanning electron microscopy (SEM) demonstrate cellular adhesion, spreading, and proliferation on these functionalized metal surfaces. Furthermore, these experiments demonstrate that covalent attachment is crucial for creating robust PA nanofiber coatings, leading to confluent cell monolayers. PMID:18083225
Chaquilla-Quilca, G; Balandrán-Quintana, R R; Azamar-Barrios, J A; Ramos-Clamont Montfort, G; Mendoza-Wilson, A M; Mercado-Ruiz, J N; Madera-Santana, T J; López-Franco, Y L; Luna-Valdez, J G
2016-06-01
There are very few reports on the self-assembly of peptides derived from proteins of agro industrial byproducts origin. Although it has been claimed that purity is a determining factor in peptide self-assembly, whether proteins extracted using water along with other components also form self-assembled structures is not known. The results of this work prove that albumins from wheat bran, a byproduct obtained from the milling industry, can form tubular nanostructures during their hydrolysis with the V8 protease in the presence of Ca(2+). Electron microscopy of the hydrolysate revealed that under specific conditions, long filaments are formed, which are nanotubes of several microns in length, with inner and outer diameters of 100 and 200 nm, respectively. The infrared analysis of the hydrolysate identified (-)OOC-Ca(2+) interactions and changes in beta sheet content in response to variations in protein/V8/Ca(2+) molar ratios. A model that explains the probable mechanism of the observed self-assembly is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Kinetics of the as Grown and Annealed Self-Assembled Monolayer Studied by Force Spectroscopy
NASA Astrophysics Data System (ADS)
Habib, Huma; Yasar, M.; Mehmood, S.; Rafique, Saima; Bhatti, A. S.; Naeem, Aisha
The growth of biological systems like DNA, peptides and proteins are accredited to the self-assembly processes from the molecular level to the nanoscale. The flawless immobilization of DNA on any surface is quite an important step to the development of DNA-based biosensors. The present paper reports the use of atomic force microscopy to determine the mechanical properties of the as grown and annealed self-assembled monolayer (SAM) as well as the mutated DNA immobilized on the SAM. The SAM of alkane thiol (16-mercapto-1-hexadecanol) was developed on Au surface, which was then annealed and analyzed for its structural and mechanical properties. The surface coverage, height and monolayer’s order was studied as a function of incubation time and annealing time. Excessive annealing led to the defragmentation and desorption of SAM structures due to breaking of hydrocarbon bonds. AFM was employed to determine the detach separation, pull-off and work of adhesion of the as grown and annealed SAM.
Wang, Yu; Cui, Min; Jiao, Mingxia; Luo, Xiliang
2018-06-25
Accurate detection of protein biomarkers in complex media remains a challenge due to severe nonspecific adsorption and biofouling, and sensing interfaces that combine the high sensitivity and antifouling ability are highly desirable. Herein, an antifouling sensing interface capable of sensitively assaying immunoglobulin E (IgE) in biological samples was constructed. The sensing interface was fabricated through the self-assembly of a zwitterionic peptide and the IgE aptamer onto a macroporous Au substrate, which was electrochemically fabricated with the aid of multilayer polystyrene nanospheres self-assembled on glassy carbon electrode. Due to the huge surface area arising from porous morphology and high specificity of aptamer, the developed electrochemical biosensor exhibits ultrahigh sensitivity and selectivity towards IgE, with the linear range of 0.1-10 pg mL -1 , and a very low limit of detection down to 42 fg mL -1 . Interestingly, owing to the presence of the zwitterionic peptide, the biosensing interface can satisfyingly reduce the nonspecific adsorption and fouling effect. Consequently, the biosensor was successfully applied to detect IgE in complex biological samples, indicating great promise of this peptide-based sensing interface for antifouling assays. Graphical abstract ᅟ.
Franchi, Stefano; Braic, Mariana; Skála, Tomáš; Nováková, Jaroslava; Zamuner, Annj
2018-01-01
In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5–200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization. PMID:29518968
The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.
Elliott, Tim; Williams, Anthony
2005-10-01
Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.
A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration
NASA Astrophysics Data System (ADS)
Raspa, A.; Marchini, A.; Pugliese, R.; Mauri, M.; Maleki, M.; Vasita, R.; Gelain, F.
2015-12-01
The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine.The development of therapeutic approaches for spinal cord injury (SCI) is still a challenging goal to achieve. The pathophysiological features of chronic SCI are glial scar and cavity formation: an effective therapy will require contribution of different disciplines such as materials science, cell biology, drug delivery and nanotechnology. One of the biggest challenges in SCI regeneration is to create an artificial scaffold that could mimic the extracellular matrix (ECM) and support nervous system regeneration. Electrospun constructs and hydrogels based on self-assembling peptides (SAPs) have been recently preferred. In this work SAPs and polymers were assembled by using a coaxial electrospinning setup. We tested the biocompatibility of two types of coaxially electrospun microchannels: the first one made by a core of poly(ε-caprolactone) and poly(d,l-lactide-co-glycolide) (PCL-PLGA) and a shell of an emulsion of PCL-PLGA and a functionalized self-assembling peptide Ac-FAQ and the second one made by a core of Ac-FAQ and a shell of PCL-PLGA. Moreover, we tested an annealed scaffold by PCL-PLGA microchannel heat-treatment. The properties of coaxial scaffolds were analyzed using scanning electron microscopy (SEM), Fourier transform spectroscopy (FTIR), contact angle measurements and differential scanning calorimetry (DSC). In vitro cytotoxicity was assessed via viability and differentiation assays with neural stem cells (NSCs); whereas in vivo inflammatory response was evaluated following scaffold implantation in rodent spinal cords. Emulsification of the outer shell turned out to be the best choice in terms of cell viability and tissue response: thus suggesting the potential of using functionalized SAPs in coaxial electrospinning for applications in regenerative medicine. Electronic supplementary information (ESI) available: In vivo analysis to evaluate tissue reaction in the scaffold implant walls (Fig. S1) and to test axonal regeneration (Fig. S2). Waters LC-MS Alliance-3100 analysis to confirm the molecular weight and the integrity of peptides following the electrospray process (Fig. S3). Water contact angle of electrospun nanofibrous mats (Fig. S4). See DOI: 10.1039/c5nr03698d
Short peptides self-assemble to produce catalytic amyloids
NASA Astrophysics Data System (ADS)
Rufo, Caroline M.; Moroz, Yurii S.; Moroz, Olesia V.; Stöhr, Jan; Smith, Tyler A.; Hu, Xiaozhen; Degrado, William F.; Korendovych, Ivan V.
2014-04-01
Enzymes fold into unique three-dimensional structures, which underlie their remarkable catalytic properties. The requirement to adopt a stable, folded conformation is likely to contribute to their relatively large size (>10,000 Da). However, much shorter peptides can achieve well-defined conformations through the formation of amyloid fibrils. To test whether short amyloid-forming peptides might in fact be capable of enzyme-like catalysis, we designed a series of seven-residue peptides that act as Zn2+-dependent esterases. Zn2+ helps stabilize the fibril formation, while also acting as a cofactor to catalyse acyl ester hydrolysis. These results indicate that prion-like fibrils are able to not only catalyse their own formation, but they can also catalyse chemical reactions. Thus, they might have served as intermediates in the evolution of modern-day enzymes. These results also have implications for the design of self-assembling nanostructured catalysts including ones containing a variety of biological and non-biological metal ions.
Coupling of carbon and peptide nanotubes.
Montenegro, Javier; Vázquez-Vázquez, Carlos; Kalinin, Arseny; Geckeler, Kurt E; Granja, Juan R
2014-02-12
Two of the main types of nanotubular architectures are the single-walled carbon nanotubes (SWCNTs) and the self-assembling cyclic peptide nanotubes (SCPNs). We here report the preparation of the dual composite resulting from the ordered combination of both tubular motifs. In the resulting architecture, the SWCNTs can act as templates for the assembly of SCPNs that engage the carbon nanotubes noncovalently via pyrene "paddles", each member of the resulting hybrid stabilizing the other in aqueous solution. The particular hybrids obtained in the present study formed highly ordered oriented arrays and display complementary properties such as electrical conductivity. Furthermore, a self-sorting of the cyclic peptides toward semiconducting rather than metallic SWCNTs is also observed in the aqueous dispersions. It is envisaged that a broad range of exploitable properties may be achieved and/or controlled by varying the cyclic peptide components of similar SWCNT/SCPN hybrids.
Self-Assembled Hydrogels from Poly[N-(2-hydroxypropyl)methacrylamide] Grafted with β-Sheet Peptides
Radu-Wu, Larisa C.; Yang, Jiyuan; Wu, Kuangshi; Kopeček, Jindřich
2009-01-01
A new hybrid hydrogel based on poly[N-(2-hydroxypropyl)methacrylamide] grafted with a β-sheet peptide, Beta11, was designed. Circular dichroism spectroscopy indicated that the folding ability of β-sheet peptide was retained in the hybrid system, whereas the sensitivity of the peptide towards temperature and pH variations was hindered. The polymer backbone also prevented the twisting of the fibrils that resulted from the antiparallel arrangement of the β-strands, as proved by Fourier transform infrared spectroscopy. Thioflavin T binding experiments and transmission electron microscopy showed fibril formation with minimal lateral aggregation. As a consequence, the graft copolymer self-assembled into a hydrogel in aqueous environment. This process was mediated by association of β-sheet domains. Scanning electron microscopy revealed a particular morphology of the network, characterized by long-range order and uniformly aligned lamellae. Microrheology results confirmed that concentration-dependent gelation occurred. PMID:19591463
Self-assembling peptide amphiphile nanostructures for cancer therapy
NASA Astrophysics Data System (ADS)
Soukasene, Stephen
The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially target tumor blood vessel formation, while the other is directed toward the ErbB2 receptor, which is over-expressed in certain aggressive breast cancers. Two peptide sequences from the literature that target breast cancer are also incorporated into PA molecules and we assess their biological affinity in vitro and in vivo.
Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Lee A.; Sykes, Matthew E.; Wu, Yimin A.
Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrinmore » molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.« less
Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide.
Yala, Jean-Fabrice; Thebault, Pascal; Héquet, Arnaud; Humblot, Vincent; Pradier, Claire-Marie; Berjeaud, Jean-Marc
2011-02-01
A peptide antibiotic, gramicidin A, was covalently bound to cystamine self-assembled monolayers on gold surfaces. Each step of the surface functionalization was characterized by polarization modulation infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. The antimicrobial activity of the anchored gramicidin was tested against three Gram-positive bacteria (Listeria ivanovii, Enterococcus faecalis, and Staphylococcus aureus), the Gram-negative bacterium Escherichia coli and the yeast Candida albicans. The results revealed that the adsorbed gramicidin reduced, from 60% for E. coli to 90% for C. albicans, the number of culturable microorganisms attached to the surface. The activity was proven to be persistent overtime, up to 6 months after the first use. The bacteria attached to the functionalized surfaces were permeabilized as shown by confocal microscopy. Taken together, these results indicate a bacteriostatic mode of action of the immobilized peptide. Finally, using green fluorescent protein-expressing bacteria, it was shown that the development of a bacterial biofilm was delayed on peptide-grafted surfaces for at least 24 h.
A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs
Sun, Lijuan; Zhao, Xiaojun
2012-01-01
Mechanical strength of nanofiber scaffolds formed by the self-assembling peptide RADA16-I or its derivatives is not very good and limits their application. To address this problem, we inserted spidroin uncrystalline motifs, which confer incomparable elasticity and hydrophobicity to spider silk GGAGGS or GPGGY, into the C-terminus of RADA16-I to newly design two peptides: R3 (n-RADARADARADARADA-GGAGGS-c) and R4 (n-RADARADARADARADA-GPGGY-c), and then observed the effect of these motifs on biophysical properties of the peptide. Atomic force microscopy, transmitting electron microscopy, and circular dichroism spectroscopy confirm that R3 and R4 display β-sheet structure and self-assemble into long nanofibers. Compared with R3, the β-sheet structure and nanofibers formed by R4 are more stable; they change to random coil and unordered aggregation at higher temperature. Rheology measurements indicate that novel peptides form hydrogel when induced by DMEM, and the storage modulus of R3 and R4 hydrogel is 0.5 times and 3 times higher than that of RADA16-I, respectively. Furthermore, R4 hydrogel remarkably promotes growth of liver cell L02 and liver cancer cell SMCC7721 compared with 2D culture, determined by MTT assay. Novel peptides still have potential as hydrophobic drug carriers; they can stabilize pyrene microcrystals in aqueous solution and deliver this into a lipophilic environment, identified by fluorescence emission spectra. Altogether, the spider fibroin motif GPGGY most effectively enhances mechanical strength and hydrophobicity of the peptide. This study provides a new method in the design of nanobiomaterials and helps us to understand the role of the amino acid sequence in nanofiber formation. PMID:22346352
Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick
2011-02-15
Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase with large water channels. Time-resolved X-ray diffraction (XRD) scans allowed us to detect metastable intermediate and coexisting structures and monitor the temperature-induced phase sequences of mixed systems containing glycerol monooleate, a soluble protein macromolecule, and an interfacial curvature modulating agent. These observed states correspond to the stages of the growth of the nanofluidic channel network. With the application of a thermal stimulus, the system becomes progressively more ordered into a double-diamond cubic lattice formed by a bicontinuous lipid membrane. High-resolution freeze-fracture electronic microscopy indicates that nanodomains are induced by the inclusion of proteins into nanopockets of the supramolecular cubosomic assemblies. These results contribute to the understanding of the structure and dynamics of functionalized self-assembled lipid nanosystems during stimuli-triggered LC phase transformations.
Cryo-transmission electron microscopy structure of a gigadalton peptide fiber of de novo design
Sharp, Thomas H.; Bruning, Marc; Mantell, Judith; Sessions, Richard B.; Thomson, Andrew R.; Zaccai, Nathan R.; Brady, R. Leo; Verkade, Paul; Woolfson, Derek N.
2012-01-01
Nature presents various protein fibers that bridge the nanometer to micrometer regimes. These structures provide inspiration for the de novo design of biomimetic assemblies, both to address difficulties in studying and understanding natural systems, and to provide routes to new biomaterials with potential applications in nanotechnology and medicine. We have designed a self-assembling fiber system, the SAFs, in which two small α-helical peptides are programmed to form a dimeric coiled coil and assemble in a controlled manner. The resulting fibers are tens of nm wide and tens of μm long, and, therefore, comprise millions of peptides to give gigadalton supramolecular structures. Here, we describe the structure of the SAFs determined to approximately 8 Å resolution using cryotransmission electron microscopy. Individual micrographs show clear ultrastructure that allowed direct interpretation of the packing of individual α-helices within the fibers, and the construction of a 3D electron density map. Furthermore, a model was derived using the cryotransmission electron microscopy data and side chains taken from a 2.3 Å X-ray crystal structure of a peptide building block incapable of forming fibers. This was validated using single-particle analysis techniques, and was stable in prolonged molecular-dynamics simulation, confirming its structural viability. The level of self-assembly and self-organization in the SAFs is unprecedented for a designed peptide-based material, particularly for a system of considerably reduced complexity compared with natural proteins. This structural insight is a unique high-resolution description of how α-helical fibrils pack into larger protein fibers, and provides a basis for the design and engineering of future biomaterials. PMID:22847414
Self-assembly of peptide-amphiphile nanofibers under physiological conditions
Stupp, Samuel I [Chicago, IL; Hartgerink, Jeffrey D [Pearland, TX; Beniash, Elia [Auburndale, MA
2011-11-22
The present invention provides a method of promoting neuron growth and development by contacting cells with a peptide amphiphile molecule in an aqueous solution in the presence of a metal ion. According to the method, the peptide amphiphile forms a cylindrical micellar nanofiber composed of beta-sheets, which promote neuron growth and development.
USDA-ARS?s Scientific Manuscript database
Peptide hydrogels are considered injectable materials for drug delivery and tissue engineering applications. Most published hydrogel-forming sequences contain either alternating-charged and noncharged residues or amphiphilic blocks. Here, we report a self-assembling peptide, h9e (FLIVIGSIIGPGGDGPGGD...
Selective detection of target proteins by peptide-enabled graphene biosensor.
Khatayevich, Dmitriy; Page, Tamon; Gresswell, Carolyn; Hayamizu, Yuhei; Grady, William; Sarikaya, Mehmet
2014-04-24
Direct molecular detection of biomarkers is a promising approach for diagnosis and monitoring of numerous diseases, as well as a cornerstone of modern molecular medicine and drug discovery. Currently, clinical applications of biomarkers are limited by the sensitivity, complexity and low selectivity of available indirect detection methods. Electronic 1D and 2D nano-materials such as carbon nanotubes and graphene, respectively, offer unique advantages as sensing substrates for simple, fast and ultrasensitive detection of biomolecular binding. Versatile methods, however, have yet to be developed for simultaneous functionalization and passivation of the sensor surface to allow for enhanced detection and selectivity of the device. Herein, we demonstrate selective detection of a model protein against a background of serum protein using a graphene sensor functionalized via self-assembling multifunctional short peptides. The two peptides are engineered to bind to graphene and undergo co-assembly in the form of an ordered monomolecular film on the substrate. While the probe peptide displays the bioactive molecule, the passivating peptide prevents non-specific protein adsorption onto the device surface, ensuring target selectivity. In particular, we demonstrate a graphene field effect transistor (gFET) biosensor which can detect streptavidin against a background of serum bovine albumin at less than 50 ng/ml. Our nano-sensor design, allows us to restore the graphene surface and utilize each sensor in multiple experiments. The peptide-enabled gFET device has great potential to address a variety of bio-sensing problems, such as studying ligand-receptor interactions, or detection of biomarkers in a clinical setting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Template-directed synthesis of silica nanotubes for explosive detection.
Yildirim, Adem; Acar, Handan; Erkal, Turan S; Bayindir, Mehmet; Guler, Mustafa O
2011-10-01
Fluorescent porous organic-inorganic thin films are of interest of explosive detection because of their vapor phase fluorescence quenching property. In this work, we synthesized fluorescent silica nanotubes using a biomineralization process through self-assembled peptidic nanostructures. We designed and synthesized an amyloid-like peptide self-assembling into nanofibers to be used as a template for silica nanotube formation. The amine groups on the peptide nanofibrous system were used for nucleation of silica nanostructures. Silica nanotubes were used to prepare highly porous surfaces, and they were doped with a fluorescent dye by physical adsorption for explosive sensing. These porous surfaces exhibited fast, sensitive, and highly selective fluorescence quenching against nitro-explosive vapors. The materials developed in this work have vast potential in sensing applications due to enhanced surface area. © 2011 American Chemical Society
Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides.
Reynolds, Nicholas P; Adamcik, Jozef; Berryman, Joshua T; Handschin, Stephan; Zanjani, Ali Asghar Hakami; Li, Wen; Liu, Kun; Zhang, Afang; Mezzenga, Raffaele
2017-11-07
Amyloidogenic model peptides are invaluable for investigating assembly mechanisms in disease related amyloids and in protein folding. During aggregation, such peptides can undergo bifurcation leading to fibrils or crystals, however the mechanisms of fibril-to-crystal conversion are unclear. We navigate herein the energy landscape of amyloidogenic peptides by studying a homologous series of hexapeptides found in animal, human and disease related proteins. We observe fibril-to-crystal conversion occurring within single aggregates via untwisting of twisted ribbon fibrils possessing saddle-like curvature and cross-sectional aspect ratios approaching unity. Changing sequence, pH or concentration shifts the growth towards larger aspect ratio species assembling into stable helical ribbons possessing mean-curvature. By comparing atomistic calculations of desolvation energies for association of peptides we parameterise a kinetic model, providing a physical explanation of fibril-to-crystal interconversion. These results shed light on the self-assembly of amyloidogenic peptides, suggesting amyloid crystals, not fibrils, represent the ground state of the protein folding energy landscape.
Secchi, Valeria; Franchi, Stefano; Fioramonti, Marco; Polzonetti, Giovanni; Iucci, Giovanna; Bochicchio, Brigida; Battocchio, Chiara
2017-08-01
Regenerative medicine is taking great advantage from the use of biomaterials in the treatments of a wide range of diseases and injuries. Among other biomaterials, self-assembling peptides are appealing systems due to their ability to spontaneously form nanostructured hydrogels that can be directly injected into lesions. Indeed, self-assembling peptide scaffolds are expected to behave as biomimetic matrices able to surround cells, to promote specific interactions, and to control and modify cell behavior by mimicking the native environment as well. We selected three pentadecapeptides inspired by Human Tropoelastin, a natural protein of the extracellular matrix, expected to show high biocompatibility. Moreover, the here proposed self-assembling peptides (SAPs) are able to spontaneously aggregate in nanofibers in biological environment, as revealed by AFM (Atomic Force Microscopy). Peptides were characterized by XPS (X-ray Photoelectron Spectroscopy) and IRRAS (Infrared Reflection Absorption Spectroscopy) both as lyophilized (not aggregated) and as aggregated (nanofibers) samples in order to investigate some potential differences in their chemical composition and intermolecular interactions, and to analyze the surface and interface of nanofibers. Finally, an accurate investigation of the biological properties of the SAPs and of their interaction with cells was performed by culturing for the first time human Mesenchymal Stem Cells (hMSCs) in presence of SAPs. The final aim of this work was to assess if Human Tropoelastin-inspired nanostructured fibers could exert a cytotoxic effect and to evaluate their biocompatibility, cellular adhesion and proliferation. Copyright © 2017 Elsevier B.V. All rights reserved.
The amyloid architecture provides a scaffold for enzyme-like catalysts.
Al-Garawi, Z S; McIntosh, B A; Neill-Hall, D; Hatimy, A A; Sweet, S M; Bagley, M C; Serpell, L C
2017-08-03
Natural biological enzymes possess catalytic sites that are generally surrounded by a large three-dimensional scaffold. However, the proportion of the protein molecule that participates in the catalytic reaction is relatively small. The generation of artificial or miniature enzymes has long been a focus of research because enzyme mimetics can be produced with high activity at low cost. These enzymes aim to mimic the active sites without the additional architecture contributed by the protein chain. Previous work has shown that amyloidogenic peptides are able to self-assemble to create an active site that is capable of binding zinc and catalysing an esterase reaction. Here, we describe the structural characterisation of a set of designed peptides that form an amyloid-like architecture and reveal that their capability to mimic carbonic anhydrase and serve as enzyme-like catalysts is related to their ability to self-assemble. These amyloid fibril structures can bind the metal ion Zn 2+ via a three-dimensional arrangement of His residues created by the amyloid architecture. Our results suggest that the catalytic efficiency of amyloid-like assembly is not only zinc-dependent but also depends on an active centre created by the peptides which is, in turn, dependent on the ordered architecture. These fibrils have good esterase activity, and they may serve as good models for the evolution of modern-day enzymes. Furthermore, they may be useful in designing self-assembling fibrils for applications as metal ion catalysts. This study also demonstrates that the ligands surrounding the catalytic site affect the affinity of the zinc-binding site to bind the substrate contributing to the enzymatic activity of the assembled peptides.
Inversion of Supramolecular Chirality by Sonication-Induced Organogelation
Maity, Sibaprasad; Das, Priyadip; Reches, Meital
2015-01-01
Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508
Programmable assembly of nanoarchitectures using genetically engineered viruses.
Huang, Yu; Chiang, Chung-Yi; Lee, Soo Kwan; Gao, Yan; Hu, Evelyn L; De Yoreo, James; Belcher, Angela M
2005-07-01
Biological systems possess inherent molecular recognition and self-assembly capabilities and are attractive templates for constructing complex material structures with molecular precision. Here we report the assembly of various nanoachitectures including nanoparticle arrays, hetero-nanoparticle architectures, and nanowires utilizing highly engineered M13 bacteriophage as templates. The genome of M13 phage can be rationally engineered to produce viral particles with distinct substrate-specific peptides expressed on the filamentous capsid and the ends, providing a generic template for programmable assembly of complex nanostructures. Phage clones with gold-binding motifs on the capsid and streptavidin-binding motifs at one end are created and used to assemble Au and CdSe nanocrytals into ordered one-dimensional arrays and more complex geometries. Initial studies show such nanoparticle arrays can further function as templates to nucleate highly conductive nanowires that are important for addressing/interconnecting individual nanostructures.
Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine
Chung, Woo-Jae; Lee, Doe-Young; Yoo, So Young
2014-01-01
M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature. PMID:25540583
Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine.
Chung, Woo-Jae; Lee, Doe-Young; Yoo, So Young
2014-01-01
M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature.
Molecular biomimetics: utilizing nature's molecular ways in practical engineering.
Tamerler, Candan; Sarikaya, Mehmet
2007-05-01
In nature, proteins are the machinery that accomplish many functions through their specific recognition and interactions in biological systems from single-celled to multicellular organisms. Biomolecule-material interaction is accomplished via molecular specificity, leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, molecular recognition and, consequently, functions developed through successive cycles of mutation and selection. Using biology as a guide, we can now understand, engineer and control peptide-material interactions and exploit these to tailor novel materials and systems for practical applications. We adapted combinatorial biology protocols to display peptide libraries, either on the cell surface or on phages, to select short peptides specific to a variety of practical materials systems. Following the selection step, we determined the kinetics and stability of peptide binding experimentally to understand the bound peptide structure via modeling and its assembly via atomic force microscopy. The peptides were further engineered to have multiple repeats or their amino acid sequences varied to tailor their function. Both nanoparticles and flat inorganic substrates containing multimaterials patterned at the nano- and microscales were used for self-directed immobilization of molecular constructs. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems with wide ranging applications, from tissue engineering, drug delivery and biosensors, to nanotechnology and bioremediation. Here we give examples of protein-mediated functional materials in biology, peptide selection and engineering with affinity to inorganics, demonstrate potential utilizations in materials science, engineering and medicine, and describe future prospects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franz, Johannes; Graham, Daniel J.; Schmüser, Lars
2015-03-01
Biophysical studies of the interaction of peptides with model membranes provide a simple yet effective approach to understand the transport of peptides and peptide based drug carriers across the cell membrane. Therein, the authors discuss the use of self-assembled monolayers fabricated from the full membrane-spanning thiol (FMST) 3-((14-((4'-((5-methyl-1-phenyl-35-(phytanyl)oxy-6,9,12,15,18,21,24,27,30,33,37-undecaoxa-2,3-dithiahenpentacontan-51-yl)oxy)-[1,1'-biphenyl]-4-yl)oxy)tetradecyl)oxy)-2-(phytanyl)oxy glycerol for ultrahigh vacuum (UHV) based experiments. UHV-based methods such as electron spectroscopy and mass spectrometry can provide important information about how peptides bind and interact with membranes, especially with the hydrophobic core of a lipid bilayer. Moreover, near-edge x-ray absorption fine structure spectra and x-ray photoelectron spectroscopy (XPS) data showed thatmore » FMST forms UHV-stable and ordered films on gold. XPS and time of flight secondary ion mass spectrometry depth profiles indicated that a proline-rich amphipathic cell-penetrating peptide, known as sweet arrow peptide is located at the outer perimeter of the model membrane.« less
2011-01-01
Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK)2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli) when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs) under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might also provide hints for protein aggregation-related diseases. PMID:21320350
An innovative pre-targeting strategy for tumor cell specific imaging and therapy
NASA Astrophysics Data System (ADS)
Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng
2015-08-01
A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the ``biotin-avidin'' interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments. Electronic supplementary information (ESI) available: Experimental details, peptide structures, molecular weights, and additional data. See DOI: 10.1039/c5nr03862f
2015-01-01
Conspectus Supramolecular assemblies formed from spontaneous self-assembly of amphiphilic macromolecules are explored as biomimetic architectures and for applications in areas such as sensing, drug delivery, and diagnostics. Macromolecular assemblies are usually preferred, compared with their simpler small molecule counterparts, due to their low critical aggregate concentrations (CAC) and high thermodynamic stability. This Account focuses on the structural and functional aspects of assemblies formed from dendrimers, specifically facially amphiphilic dendrons that form micelle or inverse micelle type supramolecular assemblies depending on the nature of the solvent medium. The micelle type assemblies formed from facially amphiphilic dendrons sequester hydrophobic guest molecules in their interiors. The stability of these assemblies is dependent on the relative compatibility of the hydrophilic and hydrophobic functionalities with water, often referred to as hydrophilic–lipophilic balance (HLB). Disruption of the HLB, using an external stimulus, could lead to disassembly of the aggregates, which can then be utilized to cause an actuation event, such as guest molecule release. Studying these possibilities has led to (i) a robust and general strategy for stimulus-induced disassembly and molecular release and (ii) the introduction of a new approach to protein-responsive supramolecular disassembly. The latter strategy provides a particularly novel avenue for impacting biomedical applications. Most of the stimuli-sensitive supramolecular assemblies have been designed to be responsive to factors such pH, temperature, and redox conditions. The reason for this interest stems from the fact that certain disease microenvironments have aberrations in these factors. However, these variations are the secondary imbalances in biology. Imbalances in protein activity are the primary reasons for most, if not all, human pathology. There have been no robust strategies in stimulus-responsive assemblies that respond to these variations. The facially amphiphilic dendrimers provide a unique opportunity to explore this possibility. Similarly, the propensity of these molecules to form inverse micelles in apolar solvents and thus bind polar guest molecules, combined with the fact that these assemblies do not thermodynamically equilibrate in biphasic mixtures, was used to predictably simplify peptide mixtures. The structure–property relationships developed from these studies have led to a selective and highly sensitive detection of peptides in complex mixtures. Selectivity in peptide extraction was achieved using charge complementarity between the peptides and the hydrophilic components present in inverse micellar interiors. These findings will have implications in areas such as proteomics and biomarker detection. PMID:24937682
Peptide mediated intracellular delivery of semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Kapur, Anshika; Safi, Malak; Domitrovic, Tatiana; Medina, Scott; Palui, Goutam; Johnson, John E.; Schneider, Joel; Mattoussi, Hedi
2017-02-01
As control over the growth, stabilization and functionalization of inorganic nanoparticles continue to advance, interest in integrating these materials with biological systems has steadily grown in the past decade. Much attention has been directed towards identifying effective approaches to promote cytosolic internalization of the nanoparticles while avoiding endocytosis. We describe the use of NωV virus derived gamma peptide and a chemically synthesized anticancer peptide, SVS-1 peptide, as vehicles to promote the non-endocytic uptake of luminescent quantum dots (QDs) inside live cells. The gamma peptide is expressed in E. coli as a fusion protein with poly-his tagged MBP (His-MBP-γ) to allow self-assembly onto QDs via metal-histidine conjugation. Conversely, the N-terminal cysteine residue of the SVS-1 peptide is attached to the functionalized QDs via covalent coupling chemistry. Epi-fluorescence microscopy images show that the QD-conjugate staining is distributed throughout the cytoplasm of cell cultures. Additionally, the QD staining does not show co-localization with transferrin-dye-labelled endosomes or DAPI stained nuclei. The QD uptake observed in the presence of physical and pharmacological endocytosis inhibitors further suggest that a physical translocation of QDs through the cell membrane is the driving mechanism for the uptake.
Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures.
Koussa, Mounir A; Sotomayor, Marcos; Wong, Wesley P
2014-05-15
Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. Copyright © 2014. Published by Elsevier Inc.
Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures
Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.
2014-01-01
Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941
Elbert, Donald L.
2011-01-01
Recapitulating the elegant structures formed during development is an extreme synthetic and biological challenge. Great progress has been made in developing materials to support transplanted cells, yet the complexity of tissues is far beyond that found in even the most advanced scaffolds. Self-assembly is a motif used in development and a route for the production of complex materials. Self-assembly of peptides, proteins and other molecules at the nanoscale is promising, but in addition, intriguing ideas are emerging for self-assembly of micron-scale structures. In this brief review, very recent advances in the assembly of micron-scale cell aggregates and microgels will be described and discussed. PMID:21524904
Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups.
Martin, Adam D; Wojciechowski, Jonathan P; Robinson, Andrew B; Heu, Celine; Garvey, Christopher J; Ratcliffe, Julian; Waddington, Lynne J; Gardiner, James; Thordarson, Pall
2017-03-08
Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy.
Tanaka, Akiko; Fukuoka, Yuki; Morimoto, Yuka; Honjo, Takafumi; Koda, Daisuke; Goto, Masahiro; Maruyama, Tatsuo
2015-01-21
We report cancer cell death initiated by the intracellular molecular self-assembly of a peptide lipid, which was derived from a gelator precursor. The gelator precursor was designed to form nanofibers via molecular self-assembly, after cleavage by a cancer-related enzyme (matrix metalloproteinase-7, MMP-7), leading to hydrogelation. The gelator precursor exhibited remarkable cytotoxicity to five different cancer cell lines, while the precursor exhibited low cytotoxicity to normal cells. Cancer cells secrete excessive amounts of MMP-7, which converted the precursor into a supramolecular gelator prior to its uptake by the cells. Once inside the cells, the supramolecular gelator formed a gel via molecular self-assembly, exerting vital stress on the cancer cells. The present study thus describes a new drug where molecular self-assembly acts as the mechanism of cytotoxicity.
NASA Astrophysics Data System (ADS)
Barrett, John Christopher
Inducing a strong and specific immune response is the hallmark of a successful vaccine. Nanoparticles have emerged as promising vaccine delivery devices to discover and elicit immune responses. Modular platforms are attractive for their engineerability and broad potential applications. Fine-tuning a nanoparticle vaccine to create an immune response with specific antibody and other cellular responses is influenced by many factors such as shape, size and composition. Peptide amphiphile micelles are a unique biomaterials platform that can function as a modular vaccine delivery system, enabling control over many of these important factors. Peptide amphiphiles (PAs) consist of a hydrophilic peptide antigen conjugated to a hydrophobic lipid tail. The PAs then self-assemble into micelles, with the micelle characteristics determined by the chemical composition of the PA and micelle preparation methods. PA micelles contain a large design space, so it is important to have a basic understanding of how each design feature can affect the platform's interaction with the immune system. In this dissertation, the structure, composition, and biodistribution properties of PA micelles are evaluated for their ability to impact an immune response against a Group A Streptococcus B cell antigen (J8). Through structural design and physical characterization, micelles are shown to self-assemble into either short rod-like or long cylindrical shapes. Analyzing these shape effects on the immune response showed that cylindrical micelles induced higher antibody titers than rod-like micelles, providing evidence that the cylindrical micelle shape is important to induce immune responses and a possible mechanism of action. Shape was also seen to impact the activation profile of dendritic cells, B cells and T cells. Assembly into cylindrical micelles also stabilizes the secondary structure of peptide antigens, which may impact the immune response raised. In composition, the hydrophobic/hydrophilic interface of PA micelles enabled the precise entrapment of amphiphilic adjuvants which were found to not alter micelle formation or shape. These heterogeneous micelles significantly enhanced murine antibody responses when compared to animals vaccinated with non-adjuvanted micelles or soluble J8 peptide supplemented with a classical adjuvant. PAs were also shown to traffic more efficiently to the lymph node than free peptide. Characterization of these design features and their impact on an immune response provides a valuable foundation of knowledge to apply when expanding the peptide amphiphile micelle platform to other vaccine applications.
Biological response on a titanium implant-grade surface functionalized with modular peptides☆
Yazici, H.; Fong, H.; Wilson, B.; Oren, E.E.; Amos, F.A.; Zhang, H.; Evans, J.S.; Snead, M.L.; Sarikaya, M.; Tamerler, C.
2015-01-01
Titanium (Ti) and its alloys are among the most successful implantable materials for dental and orthopedic applications. The combination of excellent mechanical and corrosion resistance properties makes them highly desirable as endosseous implants that can withstand a demanding biomechanical environment. Yet, the success of the implant depends on its osteointegration, which is modulated by the biological reactions occurring at the interface of the implant. A recent development for improving biological responses on the Ti-implant surface has been the realization that bifunctional peptides can impart material binding specificity not only because of their molecular recognition of the inorganic material surface, but also through their self-assembly and ease of biological conjugation properties. To assess peptide-based functionalization on bioactivity, the present authors generated a set of peptides for implant-grade Ti, using cell surface display methods. Out of 60 unique peptides selected by this method, two of the strongest titanium binding peptides, TiBP1 and TiBP2, were further characterized for molecular structure and adsorption properties. These two peptides demonstrated unique, but similar molecular conformations different from that of a weak binder peptide, TiBP60. Adsorption measurements on a Ti surface revealed that their disassociation constants were 15-fold less than TiBP60. Their flexible and modular use in biological surface functionalization were demonstrated by conjugating them with an integrin recognizing peptide motif, RGDS. The functionalization of the Ti surface by the selected peptides significantly enhanced the bioactivity of osteoblast and fibroblast cells on implant-grade materials. PMID:23159566
Bioengineered-inorganic nanosystems for nanophotonics and bio-nanotechnology
NASA Astrophysics Data System (ADS)
Leong, Kirsty; Zin, Melvin T.; Ma, Hong; Huang, Fei; Sarikaya, Mehmet; Jen, Alex K.
2008-08-01
Here we nanoengineered tunable quantum dot and cationic conjugated polymer nanoarrays based on surface plasmon enhanced fluorescence where we achieved a 15-fold and 25-fold increase in their emission intensities, respectively. These peptide mediated hybrid systems were fabricated by horizontally tuning the localized surface plasmon resonance of gold nanoarrays and laterally tuning the distance of the fluorophore from the metal surface. This approach permits a comprehensive control both laterally (i.e., lithographically defined gold nanoarrays) and vertically (i.e., QD/CCP-metal distance) of the collectively behaving QD-NP and CP-NP assemblies by way of biomolecular recognition. The highest photoluminescence was achieved when the quantum dots and cationic conjugated polymers were self-assembled at a distance of 16.00 nm and 18.50 nm from the metal surface, respectively. Specifically, we demonstrated the spectral tuning of plasmon resonant metal nanoarrays and the self-assembly of protein-functionalized QDs/CCPs in a step-wise fashion with a concomitant incremental increase in separation from the metal surface through biotin-streptavidin spacer units. These well-controlled self-assembled patterned arrays provide highly organized architectures for improving optoelectronic devices and/or increasing the sensitivity of bio-chemical sensors.
Nanoparticle bioconjugate for controlled cellular delivery of doxorubicin
NASA Astrophysics Data System (ADS)
Sangtani, Ajmeeta; Petryayeva, Eleonora; Wu, Miao; Susumu, Kimihiro; Oh, Eunkeu; Huston, Alan L.; Lasarte-Aragones, Guillermo; Medintz, Igor L.; Algar, W. Russ; Delehanty, James B.
2018-02-01
Nanoparticle (NP)-mediated drug delivery offers the potential to overcome limitations of systemic delivery, including the ability to specifically target cargo and control release of NP-associated drug cargo. Doxorubicin (DOX) is a widely used FDA-approved cancer therapeutic; however, multiple side effects limit its utility. Thus, there is wide interest in modulating toxicity after cell delivery. Our goal here was to realize a NP-based DOX-delivery system that can modulate drug toxicity by controlling the release kinetics of DOX from the surface of a hard NP carrier. To achieve this, we employed a quantum dot (QD) as a central scaffold which DOX was appended via three different peptidyl linkages (ester, disulfide, hydrazone) that are cleavable in response to various intracellular conditions. Attachment of a cell penetrating peptide (CPP) containing a positively charged polyarginine sequence facilitates endocytosis of the ensemble. Polyhistidine-driven metal affinity coordination was used to self-assemble both peptides to the QD surface, allowing for fine control over both the ratio of peptides attached to the QD as well as DOX dose delivered to cells. Microplate-based Förster resonance energy transfer assays confirmed the successful ratiometric assembly of the conjugates and functionality of the linkages. Cell delivery experiments and cytotoxicity assays were performed to compare the various cleavable linkages to a control peptide where DOX is attached through an amide bond. The role played by various attachment chemistries used in QD-peptide-drug assemblies and their implications for the rationale in design of NPbased constructs for drug delivery is described here.
A Library of the Nanoscale Self-Assembly of Amino Acids on Metal Surfaces
NASA Astrophysics Data System (ADS)
Iski, Erin; Yitamben, Esmeralda; Guisinger, Nathan
2012-02-01
The investigation of the hierarchical self-assembly of amino acids on surfaces represents a unique test-bed for the origin of enantio-favoritism in biology and the transmission of chirality from single molecules to complete surface layers. These chiral systems, in particular the assembly of isoleucine and alanine on Cu(111), represent a direct link to the understanding of certain biological processes, specifically the preference for some amino acids to form alpha helices vs. beta-pleated sheets in the secondary structure of proteins. Low temperature, ultra-high vacuum, scanning tunneling microscopy (LT UHV-STM) is used to study the hierarchical self-assembly of different amino acids on a Cu(111) single crystal in an effort to build a library of their two-dimensional structure with molecular-scale resolution for enhanced protein and peptide studies. Both enantiopure and racemic structures are studied in order to elucidate how chirality can affect the self-assembly of the amino acids. In some cases, density functional theory (DFT) models can be used to confirm the experimental structure. The advent of such a library with fully resolved, two-dimensional structures at different molecular coverages would address some of the complex questions surrounding the preferential formation of alpha helices vs. beta-pleated sheets in proteins and lead to a better understanding of the key role played by these amino acids in protein sequencing.
Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers
Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron
2016-01-01
Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic–inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material. PMID:26916536
Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers
NASA Astrophysics Data System (ADS)
Eckshtain-Levi, Meital; Capua, Eyal; Refaely-Abramson, Sivan; Sarkar, Soumyajit; Gavrilov, Yulian; Mathew, Shinto P.; Paltiel, Yossi; Levy, Yaakov; Kronik, Leeor; Naaman, Ron
2016-02-01
Chirality-induced spin selectivity is a recently-discovered effect, which results in spin selectivity for electrons transmitted through chiral peptide monolayers. Here, we use this spin selectivity to probe the organization of self-assembled α-helix peptide monolayers and examine the relation between structural and spin transfer phenomena. We show that the α-helix structure of oligopeptides based on alanine and aminoisobutyric acid is transformed to a more linear one upon cooling. This process is similar to the known cold denaturation in peptides, but here the self-assembled monolayer plays the role of the solvent. The structural change results in a flip in the direction of the electrical dipole moment of the adsorbed molecules. The dipole flip is accompanied by a concomitant change in the spin that is preferred in electron transfer through the molecules, observed via a new solid-state hybrid organic-inorganic device that is based on the Hall effect, but operates with no external magnetic field or magnetic material.
Computational design of co-assembling protein-DNA nanowires
NASA Astrophysics Data System (ADS)
Mou, Yun; Yu, Jiun-Yann; Wannier, Timothy M.; Guo, Chin-Lin; Mayo, Stephen L.
2015-09-01
Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.
Specific peptide for functionalization of GaN
NASA Astrophysics Data System (ADS)
Estephan, E.; Larroque, C.; Cloitre, T.; Cuisinier, F. J. G.; Gergely, C.
2008-04-01
Nanobiotechnology aims to exploit biomolecular recognition and self-assembly capabilities for integrating advanced materials into medicine and biology. However frequent problems are encountered at the interface of substrate-biological molecule, as the direct physical adsorption of biological molecules is dependent of unpredictable non-specific interactions with the surface, often causing their denaturation. Therefore, a proper functionalization of the substrate should avoid a loss of biological activity. In this work we address the functionalization of the semiconductor GaN (0001) for biosensing applications. The basic interest of using III-V class semiconductors is their good light emitting properties and a fair chemical stability that allows various applications of these materials. The technology chosen to elaborate GaN-specific peptides is the combinatorial phage-display method, a biological screening procedure based on affinity selection. An M13 bacteriophage library has been used to screen 10 10 different peptides against the GaN (0001) surface to finally isolate one specific peptide. The preferential attachment of the biotinylated selected peptide onto the GaN (0001), in close proximity to a surface of different chemical and structural composition has been demonstrated by fluorescence microscopy. Further physicochemical studies have been initiated to evaluate the semiconductor-peptide interface and understand the details in the specific recognition of peptides for semiconductor substrates. Fourier Transform Infrared spectroscopy in Attenuated Total Reflection mode (FTIR-ATR) has been employed to prove the presence of peptides on the surface. Our Atomic Force Microscopy (AFM) studies on the morphology of the GaN surface after functionalization revealed a total surface coverage by a very thin, homogeneous peptide layer. Due to its good biocompatibility, functionalized GaN devices might evolve in a new class of implantable biosensors for medical applications.
NASA Astrophysics Data System (ADS)
Annamalai, Jayshree; Nallamuthu, Thangaraju
2015-06-01
In this study, biosynthesis of self-assembled gold nanoparticles (GNPs) was accomplished using an aqueous extract of green microalga, Chlorella vulgaris. The optical, physical, chemical and bactericidal properties of the GNPs were investigated to identify their average shape and size, crystal nature, surface chemistry and toxicity, via UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and antimicrobial activity. The sizes of the spherical self-assembled cores of the synthesized GNPs ranged from 2 to 10 nm. The XRD patterns showed a (111) preferential orientation and the crystalline nature of the GNPs. The results of the FTIR analysis suggested that the peptides, proteins, phenol and flavonoid carried out the dual function of effective Au III reduction and successful capping of the GNPs. Human pathogen Candida albicans and Staphylococcus aureus were susceptible to synthesized aqueous GNPs. Thus, biosynthesis, stabilization and self-assembly of the GNPs by Chlorella vulgaris extract can be an example of green chemistry and effective drug in the medicinal field.
NASA Astrophysics Data System (ADS)
Xu, An-Ping; Yang, Pei-Pei; Yang, Chao; Gao, Yu-Juan; Zhao, Xiao-Xiao; Luo, Qiang; Li, Xiang-Dan; Li, Li-Zhong; Wang, Lei; Wang, Hao
2016-07-01
We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions.We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions. Electronic supplementary information (ESI) available: Experimental details; Fig. S1-S9. See DOI: 10.1039/c6nr03580a
Milardi, Danilo; Sciacca, Michele F M; Pappalardo, Matteo; Grasso, Domenico M; La Rosa, Carmelo
2011-01-01
Human islet amyloid polypeptide (hIAPP) is known to misfold and aggregate into amyloid deposits that may be found in pancreatic tissues of patients affected by type 2 diabetes. Recent studies have shown that the highly amyloidogenic peptide LANFLVH, corresponding the N-terminal 12-18 region of IAPP, does not induce membrane damage. Here we assess the role played by the aromatic residue Phe in driving both amyloid formation and membrane interaction of LANFLVH. To this aim, a set of variant heptapeptides in which the aromatic residue Phe has been substituted with a Leu and Ala is studied. Differential scanning calorimetry (DSC) and membrane-leakage experiments demonstrated that Phe substitution noticeably affects the peptide-induced changes in the thermotropic properties of the lipid bilayer but not its membrane damaging potential. Atomic force microscopy (AFM), ThT fluorescence and Congo red birefringence assays evidenced that the Phe residue is not required for fibrillogenesis, but it can influence the self-assembling kinetics. Molecular dynamics simulations have paralleled the outcome of the experimental trials also providing informative details about the structure of the different peptide assemblies. These results support a general theory suggesting that aromatic residues, although capable of affecting the self-assembly kinetics of small peptides and peptide-membrane interactions, are not essential either for amyloid formation or membrane leakage, and indicate that other factors such as β-sheet propensity, size and hydrophobicity of the side chain act synergistically to determine peptide properties.
Tarabout, Christophe; Roux, Stéphane; Gobeaux, Frédéric; Fay, Nicolas; Pouget, Emilie; Meriadec, Cristelle; Ligeti, Melinda; Thomas, Daniel; IJsselstijn, Maarten; Besselievre, François; Buisson, David-Alexandre; Verbavatz, Jean-Marc; Petitjean, Michel; Valéry, Céline; Perrin, Lionel; Rousseau, Bernard; Artzner, Franck; Paternostre, Maité; Cintrat, Jean-Christophe
2011-01-01
Supramolecular self-assembly is an attractive pathway for bottom-up synthesis of novel nanomaterials. In particular, this approach allows the spontaneous formation of structures of well-defined shapes and monodisperse characteristic sizes. Because nanotechnology mainly relies on size-dependent physical phenomena, the control of monodispersity is required, but the possibility of tuning the size is also essential. For self-assembling systems, shape, size, and monodispersity are mainly settled by the chemical structure of the building block. Attempts to change the size notably by chemical modification usually end up with the loss of self-assembly. Here, we generated a library of 17 peptides forming nanotubes of monodisperse diameter ranging from 10 to 36 nm. A structural model taking into account close contacts explains how a modification of a few Å of a single aromatic residue induces a fourfold increase in nanotube diameter. The application of such a strategy is demonstrated by the formation of silica nanotubes of various diameters. PMID:21518895
Self-assembling choline mimicks with enhanced binding affinities to C-LytA protein
Shi, Yang; Zhou, Hao; Zhang, Xiaoli; Wang, Jingyu; Long, Jiafu; Yang, Zhimou; Ding, Dan
2014-01-01
Streptococcus pneumoniae (pneumococcus) causes multiple illnesses in humans. Exploration of effective inhibitors with multivalent attachment sites for choline-binding modules is of great importance to reduce the pneumococcal virulence. In this work, we successfully developed two self-assembling choline mimicks, Ada-GFFYKKK' and Nap-GFFYKKK', which have the abilities to self-assemble into nanoparticles and nanofibers, respectively, yielding multivalent architectures. Additionally, the best characterized choline-binding module, C-terminal moiety of the pneumococcal cell-wall amidase LytA (C-LytA) was also produced with high purity. The self-assembling Ada-GFFYKKK' and Nap-GFFYKKK' show strong interactions with C-LytA, which possess much higher association constant values to the choline-binding modules as compared to the individual peptide Fmoc-K'. This study thus provides a self-assembly approach to yield inhibitors that are very promising for reducing the pneumococcal virulence. PMID:25315737
Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2003-01-01
Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4-7 helices. The helices could arrange themselves such that they formed pores capable of transporting ions and small molecules across membranes. Stability of transmembrane aggregates of simple proteins is often only marginal and, therefore, it can be regulated by environmental signals or small sequence modifications in the region of interhelical interactions. A key step in the earliest evolution of membrane proteins was the emergence of selectivity for specific substrates. Many channels could become selective if one or only a few properly chosen amino acids are properly placed along the channel, acting as filters or gates. This is a convenient evolutionary solution because it does not require imposing conditions on the whole sequence.
Giri, Shibashish; Acikgöz, Ali; Bader, Augustinus
2015-01-01
Background Currently, undifferentiated cells are found in all tissue and term as local stem cells which are quiescent in nature and less in number under normal healthy conditions but activate upon injury and repair the tissue or organs via automated activating mechanism. Due to very scanty presence of local resident somatic local stem cells in healthy organs, isolation and expansion of these adult stems is an immense challenge for medical research and cell based therapy. Particularly organ like liver, there is an ongoing controversy about existence of liver stem cells. Methods Herein, Hepatic stem cells population was identified during culture of primary hepatocyte cells upon immediate isolation of primary hepatocyte cells. These liver stem cells has been expanded extensively and differentiated into primary hepatocytes under defined culture conditions in a nanostructured self assembling peptides modular bioreactor that mimic the state of art of liver microenvironment and compared with Matrigel as a positive control. Nanostructured self assembling peptides were used a defined extracellular matrix and Matrigel was used for undefined extracellular matrix. Proliferation of hepatic stem cells was investigated by two strategies. First strategy is to provide high concentration of hepatocyte growth factor (HGF) and second strategy is to evaluate the role of recombinant human erythropoietin (rHuEPO) in presence of trauma/ischemia cytokines (IL-6, TNF-α). Expansion to hepatic differentiation is observed by morphological analysis and was evaluated for the expression of hepatocyte-specific genes using RT-PCR and biochemical methods. Results Hepatocyte-specific genes are well expressed at final stage (day 21) of differentiation period. The differentiated hepatocytes exhibited functional hepatic characteristics such as albumin secretion, urea secretion and cytochrome P450 expression. Additionally, immunofluorescence analysis revealed that hepatic stem cells derived hepatocytes exhibited mature hepatocyte markers (albumin, CK-19, CPY3A1, alpha 1-antitrypsin). Expansion and hepatic differentiation was efficiently in nanostructured self assembling peptides without such batch to batch variation while there was much variation in Matrigel coated bioreactor. In conclusion, the results of the study suggest that the nanostructured self assembling peptides coated bioreactor supports expansion as well as hepatic differentiation of liver stem cells which is superior than Matrigel. Conclusion This defined microenvironment conditions in bioreactor module can be useful for research involving bioartificial liver system, stem cell research and engineered liver tissue which could contribute to regenerative cell therapies or drug discovery and development. PMID:26155038
Peptide-templated noble metal catalysts: syntheses and applications
Wang, Wei; Anderson, Caleb F.; Wang, Zongyuan; Wu, Wei
2017-01-01
Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches. PMID:28507701
Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups
Martin, Adam D.; Wojciechowski, Jonathan P.; Robinson, Andrew B.; Heu, Celine; Garvey, Christopher J.; Ratcliffe, Julian; Waddington, Lynne J.; Gardiner, James; Thordarson, Pall
2017-01-01
Using small angle neutron scattering (SANS), it is shown that the existence of pre-assembled structures at high pH for a capped diphenylalanine hydrogel is controlled by the selection of N-terminal heterocyclic capping group, namely indole or carbazole. At high pH, changing from a somewhat hydrophilic indole capping group to a more hydrophobic carbazole capping group results in a shift from a high proportion of monomers to self-assembled fibers or wormlike micelles. The presence of these different self-assembled structures at high pH is confirmed through NMR and circular dichroism spectroscopy, scanning probe microscopy and cryogenic transmission electron microscopy. PMID:28272523
A Two-Tailed Phosphopeptide Crystallizes to Form a Lamellar Structure.
Pellach, Michal; Mondal, Sudipta; Harlos, Karl; Mance, Deni; Baldus, Marc; Gazit, Ehud; Shimon, Linda J W
2017-03-13
The crystal structure of a designed phospholipid-inspired amphiphilic phosphopeptide at 0.8 Å resolution is presented. The phosphorylated β-hairpin peptide crystallizes to form a lamellar structure that is stabilized by intra- and intermolecular hydrogen bonding, including an extended β-sheet structure, as well as aromatic interactions. This first reported crystal structure of a two-tailed peptidic bilayer reveals similarities in thickness to a typical phospholipid bilayer. However, water molecules interact with the phosphopeptide in the hydrophilic region of the lattice. Additionally, solid-state NMR was used to demonstrate correlation between the crystal structure and supramolecular nanostructures. The phosphopeptide was shown to self-assemble into semi-elliptical nanosheets, and solid-state NMR provides insight into the self-assembly mechanisms. This work brings a new dimension to the structural study of biomimetic amphiphilic peptides with determination of molecular organization at the atomic level. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Kohei; Ji, Wei; Palmer, Liam C.
Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less
Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion
Sato, Kohei; Ji, Wei; Palmer, Liam C.; ...
2017-06-22
Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptidesmore » were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.« less
Drug-Triggered and Cross-Linked Self-Assembling Nanofibrous Hydrogels
Kumar, Vivek A.; Shi, Siyu; Wang, Benjamin K.; Li, I-Che; Jalan, Abhishek A.; Sarkar, Biplab; Wickremasinghe, Navindee C.; Hartgerink, Jeffrey D.
2015-01-01
Self-assembly of multidomain peptides (MDP) can be tailored to carry payloads that modulate the extracellular environment. Controlled release of growth factors, cytokines, and small-molecule drugs allows for unique control of in vitro and in vivo responses. In this study, we demonstrate this process of ionic cross-linking of peptides using multivalent drugs to create hydrogels for sustained long-term delivery of drugs. Using phosphate, heparin, clodronate, trypan, and suramin, we demonstrate the utility of this strategy. Although all multivalent anions result in good hydrogel formation, demonstrating the generality of this approach, suramin led to the formation of the best hydrogels per unit concentration and was studied in greater detail. Suramin ionically cross-linked MDP into a fibrous meshwork as determined by scanning and transmission electron microscopy. We measured material storage and loss modulus using rheometry and showed a distinct increase in G′ and G″ as a function of suramin concentration. Release of suramin from scaffolds was determined using UV spectroscopy and showed prolonged release over a 30 day period. Suramin bioavailability and function were demonstrated by attenuated M1 polarization of THP-1 cells compared to positive control. Overall, this design strategy has allowed for the development of a novel class of polymeric delivery vehicles with generally long-term release and, in the case of suramin, cross-linked hydrogels that can modulate cellular phenotype. PMID:25831137
Molecular self-assembly using peptide nucleic acids.
Berger, Or; Gazit, Ehud
2017-01-01
Peptide nucleic acids (PNAs) are extensively studied for the control of genetic expression since their design in the 1990s. However, the application of PNAs in nanotechnology is much more recent. PNAs share the specific base-pair recognition characteristic of DNA together with material-like properties of polyamides, both proteins and synthetic polymers, such as Kevlar and Nylon. The first application of PNA was in the form of PNA-amphiphiles, resulting in the formation of either lipid integrated structures, hydrogels or fibrillary assemblies. Heteroduplex DNA-PNA assemblies allow the formation of hybrid structures with higher stability as compared with pure DNA. A systematic screen for minimal PNA building blocks resulted in the identification of guanine-containing di-PNA assemblies and protected guanine-PNA monomer spheres showing unique optical properties. Finally, the co-assembly of PNA with thymine-like three-faced cyanuric acid allowed the assembly of poly-adenine PNA into fibers. In summary, we believe that PNAs represent a new and important family of building blocks which converges the advantages of both DNA- and peptide-nanotechnologies. © 2016 Wiley Periodicals, Inc.
Membrane-targeted self-assembling cyclic peptide nanotubes.
Rodríguez-Vázquez, Nuria; Ozores, H Lionel; Guerra, Arcadio; González-Freire, Eva; Fuertes, Alberto; Panciera, Michele; Priegue, Juan M; Outeiral, Juan; Montenegro, Javier; Garcia-Fandino, Rebeca; Amorin, Manuel; Granja, Juan R
2014-01-01
Peptide nanotubes are novel supramolecular nanobiomaterials that have a tubular structure. The stacking of cyclic components is one of the most promising strategies amongst the methods described in recent years for the preparation of nanotubes. This strategy allows precise control of the nanotube surface properties and the dimensions of the tube diameter. In addition, the incorporation of 3- aminocycloalkanecarboxylic acid residues in the nanotube-forming peptides allows control of the internal properties of the supramolecular tube. The research aimed at the application of membrane-interacting self-assembled cyclic peptide nanotubes (SCPNs) is summarized in this review. The cyclic peptides are designed to interact with phospholipid bilayers to induce nanotube formation. The properties and orientation of the nanotube can be tuned by tailoring the peptide sequence. Hydrophobic peptides form transmembrane pores with a hydrophilic orifice, the nature of which has been exploited to transport ions and small molecules efficiently. These synthetic ion channels are selective for alkali metal ions (Na(+), K(+) or Cs(+)) over divalent cations (Ca(2+)) or anions (Cl(-)). Unfortunately, selectivity was not achieved within the series of alkali metal ions, for which ion transport rates followed the diffusion rates in water. Amphipathic peptides form nanotubes that lie parallel to the membrane. Interestingly, nanotube formation takes place preferentially on the surface of bacterial membranes, thus making these materials suitable for the development of new antimicrobial agents.
Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis
NASA Astrophysics Data System (ADS)
Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.
2015-11-01
Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.
Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis
Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.
2015-01-01
Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes. PMID:26555958
Computer Modeling of Protocellular Functions: Peptide Insertion in Membranes
NASA Technical Reports Server (NTRS)
Rodriquez-Gomez, D.; Darve, E.; Pohorille, A.
2006-01-01
Lipid vesicles became the precursors to protocells by acquiring the capabilities needed to survive and reproduce. These include transport of ions, nutrients and waste products across cell walls and capture of energy and its conversion into a chemically usable form. In modem organisms these functions are carried out by membrane-bound proteins (about 30% of the genome codes for this kind of proteins). A number of properties of alpha-helical peptides suggest that their associations are excellent candidates for protobiological precursors of proteins. In particular, some simple a-helical peptides can aggregate spontaneously and form functional channels. This process can be described conceptually by a three-step thermodynamic cycle: 1 - folding of helices at the water-membrane interface, 2 - helix insertion into the lipid bilayer and 3 - specific interactions of these helices that result in functional tertiary structures. Although a crucial step, helix insertion has not been adequately studied because of the insolubility and aggregation of hydrophobic peptides. In this work, we use computer simulation methods (Molecular Dynamics) to characterize the energetics of helix insertion and we discuss its importance in an evolutionary context. Specifically, helices could self-assemble only if their interactions were sufficiently strong to compensate the unfavorable Free Energy of insertion of individual helices into membranes, providing a selection mechanism for protobiological evolution.
Supramolecular amplification of amyloid self-assembly by iodination
NASA Astrophysics Data System (ADS)
Bertolani, Arianna; Pirrie, Lisa; Stefan, Loic; Houbenov, Nikolay; Haataja, Johannes S.; Catalano, Luca; Terraneo, Giancarlo; Giancane, Gabriele; Valli, Ludovico; Milani, Roberto; Ikkala, Olli; Resnati, Giuseppe; Metrangolo, Pierangelo
2015-06-01
Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents.
Larnaudie, Sophie C; Brendel, Johannes C; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Catrouillet, Sylvain; Sanchis, Joaquin; Coverdale, James P C; Song, Ji-Inn; Habtemariam, Abraha; Sadler, Peter J; Jolliffe, Katrina A; Perrier, Sébastien
2018-01-08
Functional drug carrier systems have potential for increasing solubility and potency of drugs while reducing side effects. Complex polymeric materials, particularly anisotropic structures, are especially attractive due to their long circulation times. Here, we have conjugated cyclic peptides to the biocompatible polymer poly(2-hydroxypropyl methacrylamide) (pHPMA). The resulting conjugates were functionalized with organoiridium anticancer complexes. Small angle neutron scattering and static light scattering confirmed their self-assembly and elongated cylindrical shape. Drug-loaded nanotubes exhibited more potent antiproliferative activity toward human cancer cells than either free drug or the drug-loaded polymers, while the nanotubes themselves were nontoxic. Cellular accumulation studies revealed that the increased potency of the conjugate appears to be related to a more efficient mode of action rather than a higher cellular accumulation of iridium.
Preparing Synthetic Aβ in Different Aggregation States
Stine, W. Blaine; Jungbauer, Lisa; Yu, Chunjiang; LaDu, Mary Jo
2013-01-01
This chapter outlines protocols that produce homogenous preparations of oligomeric and fibrillar amyloid -β peptide (Aβ). While there are several isoforms of this peptide, the 42 amino acid form is the focus because of its genetic and pathological link to Alzheimer’s disease (AD). Past decades of AD research highlight the dependence of Aβ42 function on its structural assembly state. Biochemical, cellular and in vivo studies of Aβ42 usually begin with purified peptide obtained by chemical synthesis or recombinant expression. The initial steps to solubilize and prepare these purified dry peptide stocks are critical to controlling the structural assembly of Aβ. To develop homogenous Aβ42 assemblies, we initially monomerize the peptide, erasing any “structural history” that could seed aggregation, by using a strong solvent. It is this starting material that has allowed us to define and optimize conditions that consistently produce homogenous solutions of soluble oligomeric and fibrillar Aβ42 assemblies. These preparations have been developed and characterized by using atomic force microscopy (AFM) to identify the structurally discrete species formed by Aβ42 under specific solution conditions. These preparations have been used extensively to demonstrate a variety of functional differences between oligomeric and fibrillar Aβ42. We also present a protocol for fluorescently labeling oligomeric Aβ42 that does not affect structure, as measured by AFM, or function, as measured by a cellular uptake assay. These reagents are critical experimental tools that allow for defining specific structure/function connections. PMID:20967580
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Tao; Meyer, Travis A.; Modlin, Charles
In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less
Jiang, Tao; Meyer, Travis A.; Modlin, Charles; ...
2017-09-26
In this paper, we describe the co-assembly of two different building units: collagen-mimetic peptides and DNA origami. Two peptides CP ++ and sCP ++ are designed with a sequence comprising a central block (Pro-Hyp-Gly) and two positively charged domains (Pro-Arg-Gly) at both N- and C-termini. Co-assembly of peptides and DNA origami two-layer (TL) nanosheets affords the formation of one-dimensional nanowires with repeating periodicity of similar to 10 nm. Structural analyses suggest a face-to-face stacking of DNA nanosheets with peptides aligned perpendicularly to the sheet surfaces. We demonstrate the potential of selective peptide-DNA association between face-to-face and edge-to-edge packing by tailoringmore » the size of DNA nanostructures. Finally, this study presents an attractive strategy to create hybrid biomolecular assemblies from peptide and DNA-based building blocks that takes advantage of the intrinsic chemical and physical properties of the respective components to encode structural and, potentially, functional complexity within readily accessible biomimetic materials.« less
Lara Carrillo, John Alejandro; Fierro Medina, Ricardo; Manríquez Rocha, Juan; Bustos Bustos, Erika; Insuasty Cepeda, Diego Sebastián; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny
2017-11-14
In order to obtain gold electrode surfaces modified with Human Papillomavirus L1 protein (HPV L1)-derived peptides, two sequences, SPINNTKPHEAR and YIK, were chosen. Both have been recognized by means of sera from patients infected with HPV. The molecules, Fc-Ahx-SPINNTKPHEAR, Ac-C- Ahx -(Fc)KSPINNTKPHEAR, Ac-C- Ahx -SPINNTKPHEAR(Fc)K, C- Ahx -SPINNTKPHEAR, and (YIK)₂- Ahx -C, were designed, synthesized, and characterized. Our results suggest that peptides derived from the SPINNTKPHEAR sequence, containing ferrocene and cysteine residues, are not stable and not adequate for electrode surface modification. The surface of polycrystalline gold electrodes was modified with the peptides C-Ahx-SPINNTKPHEAR or (YIK)₂-Ahx-C through self-assembly. The modified polycrystalline gold electrodes were characterized via infrared spectroscopy and electrochemical measurements. The thermodynamic parameters, surface coverage factor, and medium pH effect were determined for these surfaces. The results indicate that surface modification depends on the peptide sequence (length, amino acid composition, polyvalence, etc.). The influence of antipeptide antibodies on the voltammetric response of the modified electrode was evaluated by comparing results obtained with pre-immune and post-immune serum samples.
Serna, Naroa; Sánchez-García, Laura; Sánchez-Chardi, Alejandro; Unzueta, Ugutz; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio
2017-09-15
The emergence of bacterial antibiotic resistances is a serious concern in human and animal health. In this context, naturally occurring cationic antimicrobial peptides (AMPs) might play a main role in a next generation of drugs against bacterial infections. Taking an innovative approach to design self-organizing functional proteins, we have generated here protein-only nanoparticles with intrinsic AMP microbicide activity. Using a recombinant version of the GWH1 antimicrobial peptide as building block, these materials show a wide antibacterial activity spectrum in absence of detectable toxicity on mammalian cells. The GWH1-based nanoparticles combine clinically appealing properties of nanoscale materials with full biocompatibility, structural and functional plasticity and biological efficacy exhibited by proteins. Because of the largely implemented biological fabrication of recombinant protein drugs, the protein-based platform presented here represents a novel and scalable strategy in antimicrobial drug design, that by solving some of the limitations of AMPs offers a promising alternative to conventional antibiotics. The low molecular weight antimicrobial peptide GWH1 has been engineered to oligomerize as self-assembling protein-only nanoparticles of around 50nm. In this form, the peptide exhibits potent and broad antibacterial activities against both Gram-positive and Gram-negative bacteria, without any harmful effect over mammalian cells. As a solid proof-of-concept, this finding strongly supports the design and biofabrication of nanoscale antimicrobial materials with in-built functionalities. The protein-based homogeneous composition offer advantages over alternative materials explored as antimicrobial agents, regarding biocompatibility, biodegradability and environmental suitability. Beyond the described prototype, this transversal engineering concept has wide applicability in the design of novel nanomedicines for advanced treatments of bacterial infections. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Liu, Feifei; Wang, Jianhao; Yang, Li; Liu, Li; Ding, Shumin; Fu, Minli; Deng, Linhong; Gao, Li-Qian
2016-08-01
As is well known, quantum dots (QDs) have become valuable probes for cancer imaging. In particular, QD-labeled targeting peptides are capable of identifying cancer or tumors cells. A new colorectal cancer targeting peptide, cyclo(1, 9)-CTPSPFSHC, has strong targeting ability and also shows great potential in the identification and treatment of colon cancer. Herein, we synthesized a dual functional polypeptide, cyclo(1, 9)-CTPSPFSHCD2 G2 DP9 G3 H6 (H6 -TCP), to investigate its interaction with QDs inside the capillary. Fluorescence-coupled CE was adopted and applied to characterize the self-assembly of H6 -TCP onto QDs. It was indicated that the formation of the assembly was affected by H6 -TCP/QD molar ratio and sampling time. This novel in-capillary assay greatly reduced the sample consumption and the detection time, which was beneficial for the environment. It is expected that this kind of detection method could find more applications to provide more useful information for cancer diagnosis and detection of harm and hazardous substances/organisms in the environment in the future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tan, Roger S; Naruchi, Kentaro; Amano, Maho; Hinou, Hiroshi; Nishimura, Shin-Ichiro
2015-09-18
A novel strategy for the development of a high performance nanoparticules platform was established by means of cell surface mimetic quantum-dots (QDs)-anchored peptides/glycopeptides, which was developed as a model system for nanoparticle-based drug delivery (NDD) vehicles with defined functions helping the specific intracellular trafficking after initial endocytosis. In this paper, we proposed a standardized protocol for the preparation of multifunctional QDs that allows for efficient cellular uptake and rapid escaping from the endolysosomal system and subsequent cytoplasmic molecular delivery to the target cellular compartment. Chemoselective ligation of the ketone-functionalized hexahistidine derivative facilitated both efficient endocytic entry and rapid endolysosomal escape of the aminooxy/phosphorylcholine self-assembled monolayer-coated QDs (AO/PCSAM-QDs) to the cytosol in various cell lines such as human normal and cancer cells, while modifications of these QDs with cell-penetrating arginine-rich peptides showed poor cellular uptake and induced self-aggregation of AO/PCSAM-QDs. Combined use of hexahistidylated AO/PCSAM-QDs with serglycine-like glycopeptides, namely synthetic proteoglycan initiators (PGIs), elicited the entry and controlled intracellular trafficking, Golgi localization, and also excretion of these nanoparticles, which suggested that the present approach would provide an ideal platform for the design of high performance NDD systems.
Iwamoto, T; Grove, A; Montal, M O; Montal, M; Tomich, J M
1994-06-01
A strategy for the synthesis of peptides and oligomeric proteins designed to form transmembrane ion channels is described. A folding motif that exhibits a functional ionic pore encompasses amphipathic alpha-helices organized as a four-helix bundle around a central hydrophilic pore. The channel-forming activity of monomeric amphipathic peptides may be examined after reconstitution in lipid bilayers in which peptides self-assemble into conductive oligomers. The covalent attachment of channel-forming peptides to the lysine epsilon-amino groups of a template molecule (KKKPGKEKG) specifies oligomeric number and facilitates the study of ionic permeation and channel blockade. Here we describe detailed protocols for the total synthesis of peptides and template-assembled four-helix bundle proteins, exemplified with the sequence of M2 delta (EKM-STAISVLLAQAVFLLLTSQR), considered involved in lining the pore of the nicotinic acetylcholine receptor channel. For comparison, the synthesis of a second four-helix bundle, T4CaIVS3 with the sequence of predicted transmembrane segment S3 (DPWNVFDFLIVIGSIIDVILSE) of the fourth repeat of the L-type voltage-gated calcium channel, is included. Peptides and proteins are synthesized step-wise by solid-phase methods, purified by reversed-phase HPLC, and homogeneity ascertained by analytical HPLC, capillary zone electrophoresis, SDS/PAGE, amino acid analysis and sequencing. Optimization of synthetic procedures for hydrophobic molecules include reducing resin substitution to avoid steric hindrance and aggregation of the final product. Protocols for the preparation of the samples prior to HPLC purification as well as the conditions and columns required for successful purification are presented. The methods developed are generally applicable for the chemical synthesis, purification and characterization of amphipathic peptides and template directed helical bundle proteins.
Ait-Goughoulte, Malika; Hourioux, Christophe; Patient, Romuald; Trassard, Sylvie; Brand, Denys; Roingeard, Philippe
2006-01-01
SUMMARY Hepatitis C virus (HCV) core protein, expressed with a Semliki forest virus (SFV) replicon, self-assembles into HCV-like particles (HCV-LP) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV assembly and morphogenesis by electron microscopy. We used this model to investigate whether the processing of the HCV core protein by the signal peptide peptidase (SPP) is required for the HCV-LP assembly. We designed several mutants as there are conflicting reports concerning the cleavage of mutant proteins by SPP. Production of the only core mutant protein that escaped SPP processing led to the formation of multiple layers of electron-dense ER membrane, with no evidence of HCV-LP assembly. Our data shed light on the HCV core residues involved in SPP cleavage and suggest that this cleavage is essential for HCV assembly. PMID:16528035
Functionalized Nanostructures with Application in Regenerative Medicine
Perán, Macarena; García, María A.; López-Ruiz, Elena; Bustamante, Milán; Jiménez, Gema; Madeddu, Roberto; Marchal, Juan A.
2012-01-01
In the last decade, both regenerative medicine and nanotechnology have been broadly developed leading important advances in biomedical research as well as in clinical practice. The manipulation on the molecular level and the use of several functionalized nanoscaled materials has application in various fields of regenerative medicine including tissue engineering, cell therapy, diagnosis and drug and gene delivery. The themes covered in this review include nanoparticle systems for tracking transplanted stem cells, self-assembling peptides, nanoparticles for gene delivery into stem cells and biomimetic scaffolds useful for 2D and 3D tissue cell cultures, transplantation and clinical application. PMID:22489186
Shank, Lalida P.; Broughman, James R.; Takeguchi, Wade; Cook, Gabriel; Robbins, Ashley S.; Hahn, Lindsey; Radke, Gary; Iwamoto, Takeo; Schultz, Bruce D.; Tomich, John M.
2006-01-01
Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor α1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 ± 5 to 390 ± 220 μM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis. PMID:16387776
Characterization of the major cyanogen bromide fragment of alpha-A crystallin
NASA Technical Reports Server (NTRS)
Ifeanyi, F.; Takemoto, L.; Spooner, B. S. (Principal Investigator)
1991-01-01
Alpha crystallin from the bovine lens has been digested with cyanogen bromide, and the major fragment (CB-1) has been purified using reverse phase HPLC. Characterization of this fragment by Edman degradation and antisera to synthetic peptides indicates that it originates from alpha-A crystallin, but lacks the N-terminal methionine and the last 35 amino acids from the C-terminus of the molecule. The purified CB-1 fragment binds as well as native alpha crystallin to lens membrane, but is unable to self-assemble into the correct size of high molecular weight oligomeric complexes characteristic of the intact alpha-A chain. Together, these results demonstrate that the alpha-A chain is comprised of at least two functional domains, one of which is involved in binding of alpha-A crystallin to lens membrane, and another which is necessary for correct self-assembly of the molecule into high molecular weight oligomers.
A Parametric Rosetta Energy Function Analysis with LK Peptides on SAM Surfaces.
Lubin, Joseph H; Pacella, Michael S; Gray, Jeffrey J
2018-05-08
Although structures have been determined for many soluble proteins and an increasing number of membrane proteins, experimental structure determination methods are limited for complexes of proteins and solid surfaces. An economical alternative or complement to experimental structure determination is molecular simulation. Rosetta is one software suite that models protein-surface interactions, but Rosetta is normally benchmarked on soluble proteins. For surface interactions, the validity of the energy function is uncertain because it is a combination of independent parameters from energy functions developed separately for solution proteins and mineral surfaces. Here, we assess the performance of the RosettaSurface algorithm and test the accuracy of its energy function by modeling the adsorption of leucine/lysine (LK)-repeat peptides on methyl- and carboxy-terminated self-assembled monolayers (SAMs). We investigated how RosettaSurface predictions for this system compare with the experimental results, which showed that on both surfaces, LK-α peptides folded into helices and LK-β peptides held extended structures. Utilizing this model system, we performed a parametric analysis of Rosetta's Talaris energy function and determined that adjusting solvation parameters offered improved predictive accuracy. Simultaneously increasing lysine carbon hydrophilicity and the hydrophobicity of the surface methyl head groups yielded computational predictions most closely matching the experimental results. De novo models still should be interpreted skeptically unless bolstered in an integrative approach with experimental data.
Hine, Nicholas D. M.; Mostofi, Arash A.; Yarovsky, Irene
2013-01-01
Experimental studies have demonstrated that nanoparticles can affect the rate of protein self-assembly, possibly interfering with the development of protein misfolding diseases such as Alzheimer's, Parkinson's and prion disease caused by aggregation and fibril formation of amyloid-prone proteins. We employ classical molecular dynamics simulations and large-scale density functional theory calculations to investigate the effects of nanomaterials on the structure, dynamics and binding of an amyloidogenic peptide apoC-II(60-70). We show that the binding affinity of this peptide to carbonaceous nanomaterials such as C60, nanotubes and graphene decreases with increasing nanoparticle curvature. Strong binding is facilitated by the large contact area available for π-stacking between the aromatic residues of the peptide and the extended surfaces of graphene and the nanotube. The highly curved fullerene surface exhibits reduced efficiency for π-stacking but promotes increased peptide dynamics. We postulate that the increase in conformational dynamics of the amyloid peptide can be unfavorable for the formation of fibril competent structures. In contrast, extended fibril forming peptide conformations are promoted by the nanotube and graphene surfaces which can provide a template for fibril-growth. PMID:24339760
Self-assembling cyclic systems as drug carriers
NASA Astrophysics Data System (ADS)
Banerjee, A.; Yadav, A.
2013-12-01
Self-assembling cyclic systems have been of interest to researchers for over a decade now, and their wide variety applications have been explored from electronic devices to medicinal purposes. But still their discovery for newer innovative applications remains as valuable as before. In this study, ab initio Hartree-Fock molecular orbital calculations have been performed on peptidic and peptidomimetic cyclic compounds to identify characteristics required in compounds for efficient self-aggregation. The effect of these characteristics in determining the pore size and length of nanotube has been studied. Effect of backbone and substituents on environment of outer and inner surface and carriage properties has been studied in detail. Self-aggregating compounds (Ala)12 and (Ala)10 have been predicted to form a tubular structure with dimensions in nanoscale. They have been predicted to work as novel drug carriers having inert outer wall and inner pore. A peptidic self-aggregating compound (Ala)12 has been studied and suggested as carrier for antibiotic gentamicin to exemplify carriage properties of the designed compound. Such novel self-aggregatory systems are expected to help simplify the drug delivery process and increase bioavailability of various drugs.
Li, Shang; Zou, Rongfeng; Tu, Yaoquan
2017-01-01
Peptide drugs have been difficult to translate into effective therapies due to their low in vivo stability. Here, we report a strategy to develop peptide-based therapeutic nanoparticles by screening a peptide library differing by single-site amino acid mutations of lysine-modified cholesterol. Certain cholesterol-modified peptides are found to promote and stabilize peptide α-helix formation, resulting in selectively cell-permeable peptides. One cholesterol-modified peptide self-assembles into stable nanoparticles with considerable α-helix propensity stabilized by intermolecular van der Waals interactions between inter-peptide cholesterol molecules, and shows 68.3% stability after incubation with serum for 16 h. The nanoparticles in turn interact with cell membrane cholesterols that are disproportionately present in cancer cell membranes, inducing lipid raft-mediated endocytosis and cancer cell death. Our results introduce a strategy to identify peptide nanoparticles that can effectively reduce tumor volumes when administered to in in vivo mice models. Our results also provide a simple platform for developing peptide-based anticancer drugs. PMID:29163910
Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing
2014-03-21
Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H(+) through the polymersome membrane was 5.659 × 10(-26) cm(2) s(-1), while that of liposomes was 1.017 × 10(-24) cm(2) s(-1). The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.
NASA Astrophysics Data System (ADS)
Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing
2014-02-01
Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.
Nanostructures as promising tools for delivery of antimicrobial peptides.
Brandelli, A
2012-07-01
Antimicrobial peptides have been extensively investigated for their potential applications as therapeutics and food biopreservatives. The antimicrobial activity may be impaired by the susceptibility for proteolytic degradation and undesirable interactions of the antimicrobial peptide in the biological environment. Development of nanostructures for entrapment and delivery of antimicrobial peptides may represent an alternative to the direct application of these substances. Lipid nanovesicles have been developed for encapsulation of antimicrobial peptides. Phosphatidylcholine is often employed in liposome manufacture, which is mostly achieved by the thin-film hydration method. Nanofibers may allow different physical modes of drug loading, including direct adsorption on the nanofiber surface or the assembly of drug-loaded nanoparticles. Self-assembled peptides reveal attractive features as nanostructures for applications in drug delivery and promising as antimicrobial agent for treatment of brain infections. Magnetic nanoparticles and nanotubules are also potential structures for entrapment of antimicrobial peptides. Nanoparticles can be also chemically modified with specific cell surface ligands to enhance cell adhesion and site specific delivery. This article reviews the most important nanostructures as promising tools for peptide delivery systems.
Assembly and intracellular delivery of quantum dot-fluorescent protein bioconjugates
NASA Astrophysics Data System (ADS)
Medintz, Igor L.; Pons, Thomas; Delehanty, James B.; Susumu, Kimihiro; Dawson, Philip E.; Mattoussi, Hedi
2008-02-01
We have previously assembled semiconductor quantum dot (QD)-based fluorescence resonance energy transfer (FRET) sensors that can specifically detect nutrients, explosives or enzymatic activity. These sensors utilized the inherent benefits of QDs as FRET donors to optimize signal transduction. In this report we functionalize QDs with the multi-subunit multi-chromophore b-phycoerythrin (b-PE) light harvesting complex using biotin-Streptavidin binding. FRET and gel electrophoretic analyses were used to characterize and confirm the QD-b-PE self-assembly. We found that immobilizing additional cell-penetrating peptides on the nanocrystal surface along with the b-PE was the key factor allowing the mixed surface QD-cargos to undergo endocytosis and intracellular delivery. Our findings on the intracellular uptake promoted by CPP were compared to those collected using microinjection technique, where QD-assemblies were delivered directly into the cytoplasm; this strategy allows bypassing of the endocytic uptake pathway. Intracellular delivery of multifunctional QD-fluorescent protein assemblies has potential applications for use in protein tracking, sensing and diagnostics.
Zhang, Han; Xin, Xia; Sun, Jichao; Zhao, Liupeng; Shen, Jinglin; Song, Zhaohua; Yuan, Shiling
2016-12-15
The discovery of a class of self-assembling peptides that spontaneously undergo self-organization into well-ordered structures opened a new avenue for molecular fabrication of biological materials. In this paper, the structure controlled helical nanofibers were prepared by two artificial β-sheet dipeptides with long alkyl chains derived from l- and d-threonine (Thr) and sodium hydroxide (NaOH). These helical nanofibers have been characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffraction (XRD). It was demonstrated that the helicity of the nanofibers could be easily controlled by changing the chirality of the constituent amino acids in the peptide species (d- or l-threonine). Moreover, the hydrogen bonding interactions between the amide groups as well as the hydrophobic interactions among the alkyl chains play important roles in the self-assembly process. It also can be observed that with the passage of time, the hydrogen bonding interactions between the individual nanofiber induced the conversion from nanofibers to nanobelts. Particularly, gold and silver nanoparticles performed good catalytic ability were synthesized using the assembled nanofibers as template. Copyright © 2016 Elsevier Inc. All rights reserved.
Electrostatic Control of Bioactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberger, Joshua E.; Berns, Eric J.; Bitton, Ronit
2012-03-15
The power of independence: When exhibited on the surface of self-assembling peptide-amphiphile nanofibers, the hydrophobic laminin-derived IKVAV epitope induced nanofiber bundling through interdigitation with neighboring fibers and thus decreased the bioactivity of the resulting materials. The inclusion of charged amino acids in the peptide amphiphiles disrupted the tendency to bundle and led to significantly enhanced neurite outgrowth.
Wang, Jianglin; Wang, Lin; Li, Xin; Mao, Chuanbin
2013-01-01
Biochemical and topographical features of an artificial extracellular matrix (aECM) can direct stem cell fate. However, it is difficult to vary only the biochemical cues without changing nanotopography to study their unique role. We took advantage of two unique features of M13 phage, a non-toxic nanofiber-like virus, to generate a virus-activated aECM with constant ordered ridge/groove nanotopography but displaying different fibronectin-derived peptides (RGD, its synergy site PHSRN, and a combination of RGD and PHSRN). One feature is the self-assembly of phage into a ridge/groove structure, another is the ease of genetically surface-displaying a peptide. We found that the unique ridge/groove nanotopography and the display of RGD and PHSRN could induce the osteoblastic differentiation of mesenchymal stem cells (MSCs) without any osteogenic supplements. The aECM formed through self-assembly and genetic engineering of phage can be used to understand the role of peptide cues in directing stem cell behavior while keeping nanotopography constant. PMID:23393624
Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana
2018-05-17
We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fu, Yankai; Yan, Tingxuan; Xu, Xia
2017-09-28
Transmembrane self-assembling cyclic peptide (SCP) nanotubes are promising candidates for delivering specific molecules through cell membranes. The detailed mechanisms behind the transmembrane processes, as well as stabilization factors of transmembrane structures, are difficult to elucidate through experiments. In this study, the effects of peptide sequence and oligomeric state on the transmembrane capabilities of SCP nanotubes and the perturbation of embedded SCP nanotubes acting on the membrane were investigated based on coarse grained molecular dynamics simulation. The simulation results reveal that hydrophilic SCP oligomers result in the elevation of the energy barrier while the oligomerization of hydrophobic SCPs causes the reduction of the energy barrier, further leading to membrane insertion. Once SCP nanotubes are embedded, membrane properties such as density, thickness, ordering state and lateral mobility are adjusted along the radial direction. This study provides insight into the transmembrane strategy of SCP nanotubes and sheds light on designing novel transport systems.
Effect of oscillation dynamics on long-range electron transfer in a helical peptide monolayer.
Matsushita, Daisuke; Uji, Hirotaka; Kimura, Shunsaku
2018-06-06
Electron transfer (ET) reactions via helical peptides composed of -(Aib-Pro)n- were studied in self-assembled monolayers and compared with -(Ala-Aib)n- peptides. Short Aib-Pro peptides showed slightly higher ET rates due to the better electronic coupling of the Pro residue. But, the 24mer Aib-Pro peptide showed a smaller ET rate than the corresponding Ala-Aib peptide. On the basis of DFT calculations, the deceleration of the ET rate of the longer Aib-Pro peptide is considered to be due to the smaller number of active modes of accordion-like oscillations than the Ala-Aib peptide, which has a strong influence on a long-range ET reaction.
The role of neural precursor cells and self assembling peptides in nerve regeneration
2013-01-01
Objective Cranial nerve injury involves loss of central neural cells in the brain stem and surrounding support matrix, leading to severe functional impairment. Therapeutically targeting cellular replacement and enhancing structural support may promote neural regeneration. We examined the combinatorial effect of neural precursor cells (NPC) and self assembling peptide (SAP) administration on nerve regeneration. Methods Nerve injury was induced by clip compression of the rodent spinal cord. SAPs were injected immediately into the injured cord and NPCs at 2 weeks post-injury. Behavioral analysis was done weekly and rats were sacrificed at 11 weeks post injury. LFB-H&E staining was done on cord tissue to assess cavitation volume. Motor evoked potentials (MEP) were measured at week 11 to assess nerve conduction and Kaplan meier curves were created to compare survival estimates. Results NPCs and SAPs were distributed both caudal and rostral to the injury site. Behavioral analysis showed that SAP + NPC transplantation significantly improved locomotor score p <0.03) and enhanced survival (log rank test, p = 0.008) compared to control. SAP + NPC treatment also improved nerve conduction velocity (p = 0.008) but did not affect cavitation volume (p = 0.73). Conclusion Combinatorial NPC and SAP injection into injured nerve tissue may enhance neural repair and regeneration. PMID:24351041
The role of neural precursor cells and self assembling peptides in nerve regeneration.
Zhao, Xiao; Yao, Gordon S; Liu, Yang; Wang, Jian; Satkunendrarajah, Kajana; Fehlings, Michael
2013-12-19
Cranial nerve injury involves loss of central neural cells in the brain stem and surrounding support matrix, leading to severe functional impairment. Therapeutically targeting cellular replacement and enhancing structural support may promote neural regeneration. We examined the combinatorial effect of neural precursor cells (NPC) and self assembling peptide (SAP) administration on nerve regeneration. Nerve injury was induced by clip compression of the rodent spinal cord. SAPs were injected immediately into the injured cord and NPCs at 2 weeks post-injury. Behavioral analysis was done weekly and rats were sacrificed at 11 weeks post injury. LFB-H&E staining was done on cord tissue to assess cavitation volume. Motor evoked potentials (MEP) were measured at week 11 to assess nerve conduction and Kaplan Meier curves were created to compare survival estimates. NPCs and SAPs were distributed both caudal and rostral to the injury site. Behavioral analysis showed that SAP + NPC transplantation significantly improved locomotor score p <0.03) and enhanced survival (log rank test, p = 0.008) compared to control. SAP + NPC treatment also improved nerve conduction velocity (p = 0.008) but did not affect cavitation volume (p = 0.73). Combinatorial NPC and SAP injection into injured nerve tissue may enhance neural repair and regeneration.
Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.
Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin
2015-01-01
A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.
NASA Astrophysics Data System (ADS)
Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan
2015-04-01
Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to modify the implant site and tailor it to a desirable bioactivity.
Synergistic gene and drug tumor therapy using a chimeric peptide.
Han, Kai; Chen, Si; Chen, Wei-Hai; Lei, Qi; Liu, Yun; Zhuo, Ren-Xi; Zhang, Xian-Zheng
2013-06-01
Co-delivery of gene and drug for synergistic therapy has provided a promising strategy to cure devastating diseases. Here, an amphiphilic chimeric peptide (Fmoc)2KH7-TAT with pH-responsibility for gene and drug delivery was designed and fabricated. As a drug carrier, the micelles self-assembled from the peptide exhibited a much faster doxorubicin (DOX) release rate at pH 5.0 than that at pH 7.4. As a non-viral gene vector, (Fmoc)(2)KH(7)-TAT peptide could satisfactorily mediate transfection of pGL-3 reporter plasmid with or without the existence of serum in both 293T and HeLa cell-lines. Besides, the endosome escape capability of peptide/DNA complexes was investigated by confocal laser scanning microscopy (CLSM). To evaluate the co-delivery efficiency and the synergistic anti-tumor effect of gene and drug, p53 plasmid and DOX were simultaneously loaded in the peptide micelles to form micelleplexes during the self-assembly of the peptide. Cellular uptake and intracellular delivery of gene and drug were studied by CLSM and flow cytometry respectively. And p53 protein expression was determined via Western blot analysis. The in vitro cytotoxicity and in vivo tumor inhibition effect were also studied. Results suggest that the co-delivery of gene and drug from peptide micelles resulted in effective cell growth inhibition in vitro and significant tumor growth restraining in vivo. The chimeric peptide-based gene and drug co-delivery system will find great potential for tumor therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Banerji, Biswadip; Chatterjee, Moumita; Pal, Uttam; Maiti, Nakul C
2017-07-06
Both hydrogen-bonding and hydrophobic interactions play a significant role in molecular assembly, including self-assembly of proteins and peptides. In this study, we report the formation of annular protofibrillar structure (diameter ∼500 nm) made of a newly synthesized s-benzyl-protected cysteine tripeptide, which was primarily stabilized by hydrogen-bonding and hydrophobic interactions. Atomic force microscopy and field emission scanning electron microscopy analyses found small oligomers (diameter ∼60 nm) to bigger annular (outer diameter ∼300 nm; inner diameter, 100 nm) and protofibrillar structures after 1-2 days of incubation. Rotating-frame Overhauser spectroscopic (ROESY) analysis revealed the presence of several nonbonded proton-proton interactions among the residues, such as amide protons with methylene group, aromatic protons with tertiary butyl group, and methylene protons with tertiary butyl group. These added significant stability to bring the peptides closer to form a well-ordered assembled structure. Hydrogen-deuterium exchange NMR measurement further suggested that two individual amide protons among the three amide groups were strongly engaged with the adjacent tripeptide via H-bond interaction. However, the remaining amide proton was found to be exposed to solvent and remained noninteracting with other tripeptide molecules. In addition to chemical shift values, a significant change in amide bond vibrations of the tripeptide was found due to the formation of the self-assembled structure. The amide I mode of vibrations involving two amide linkages appeared at 1641 and 1695 cm -1 in the solid state. However, in the assembled state, the stretching band at 1695 cm -1 became broad and slightly shifted to ∼1689 cm -1 . On the contrary, the band at 1641 cm -1 shifted to 1659 cm -1 and indicated that the -C═O bond associated with this vibration became stronger in the assembled state. These changes in Fourier transform infrared spectroscopy frequency clearly indicated changes in the amide backbone conformation and the associated hydrogen-bonding pattern due to the formation of the assembled structure. In addition to hydrogen bonding, molecular dynamics simulation indicated that the number of π-π interactions also increased with increasing number of tripeptides participated in the self-assembly process. Combined results envisaged a cross β-sheet assembly unit consisting of four intermolecular hydrogen bonds. Such noncovalent peptide assemblies glued by hydrogen-bonding and other weak forces may be useful in developing nanocapsule and related materials.
Lee, Won-Kyu; Han, Jason J; Jin, Bong-Suk; Boo, Doo Wan; Yu, Yeon Gyu
2009-12-18
Seven transmembrane (7TM) synthetic peptides mimicking the alpha-helical TM domains of the human serotonin receptor subtype-6 (5-HT(6)) were autonomously reconstituted in detergent micelle and liposome environments. The degree of assembly of the 7TM peptides was characterized by monitoring the fluorescence resonance energy transfer (FRET) between donor and acceptor probes labeled at the amino termini of the second and fourth TM-peptides, respectively. The FRET efficiency of these peptides significantly increased when the 7TM peptides were reconstituted in liposome compare to detergent micelles. Furthermore, the 7TM peptides reconstituted in liposomes selectively bound to free serotonin and serotonin-conjugated magnetic beads, yielding a dissociation constant of 0.84 microM. These results show that the seven individual TM domains of 5-HT(6) can spontaneously assemble into liposomes in a conformation that mimics a native structure, and further demonstrate that specific interactions between TM helices play a critical role in the folding and stabilizing of GPCRs. The autonomous assembly of 7TM-peptides can be applied to the screening of agonists for GPCRs that are difficult to manipulate.
NASA Astrophysics Data System (ADS)
Mozhdehi, Davoud; Luginbuhl, Kelli M.; Simon, Joseph R.; Dzuricky, Michael; Berger, Rüdiger; Varol, H. Samet; Huang, Fred C.; Buehne, Kristen L.; Mayne, Nicholas R.; Weitzhandler, Isaac; Bonn, Mischa; Parekh, Sapun H.; Chilkoti, Ashutosh
2018-05-01
Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials—fatty-acid-modified elastin-like polypeptides—using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.
D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics.
Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing
2017-02-01
Nanostructures formed by peptides that self-assemble in water through non-covalent interactions have attracted considerable attention because peptides possess several unique advantages, such as modular design and easiness of synthesis, convenient modification with known functional motifs, good biocompatibility, low immunogenicity and toxicity, inherent biodegradability, and fast responses to a wide range of external stimuli. After about two decades of development, peptide-based supramolecular nanostructures have already shown great potentials in the fields of biomedicine. Among a range of biomedical applications, using such nanostructures for cancer therapy has attracted increased interests since cancer remains the major threat for human health. Comparing with L-peptides, nanostructures containing peptides made of D-amino acid (i.e., D-peptides) bear a unique advantage, biostability (i.e., resistance towards most of endogenous enzymes). The exploration of nanostructures containing D-amino acids, especially their biomedical applications, is still in its infancy. Herein we review the recent progress of D-amino acid-containing supramolecular nanofibers as an emerging class of biomaterials that exhibit unique features for the development of cancer therapeutics. In addition, we give a brief perspective about the challenges and promises in this research direction. Copyright © 2016 Elsevier B.V. All rights reserved.
Biocatalytic Self-Assembly on Magnetic Nanoparticles.
Conte, Maria P; Sahoo, Jugal Kishore; Abul-Haija, Yousef M; Lau, K H Aaron; Ulijn, Rein V
2018-01-24
Combining (bio)catalysis and molecular self-assembly provides an effective approach for the production and processing of self-assembled materials by exploiting catalysis to direct the assembly kinetics and hence controlling the formation of ordered nanostructures. Applications of (bio)catalytic self-assembly in biologically interfacing systems and in nanofabrication have recently been reported. Inspired by self-assembly in biological cells, efforts to confine catalysts on flat or patterned surfaces to exert spatial control over molecular gelator generation and nanostructure self-assembly have also emerged. Building on our previous work in the area, we demonstrate in this report the use of enzymes immobilized onto magnetic nanoparticles (NPs) to spatially localize the initiation of peptide self-assembly into nanofibers around NPs. The concept is generalized for both an equilibrium biocatalytic system that forms stable hydrogels and a nonequilibrium system that normally has a preset lifetime. Characterization of the hydrogels shows that self-assembly occurs at the site of enzyme immobilization on the NPs to give rise to gels with a "hub-and-spoke" morphology, where the nanofibers are linked through the enzyme-NP conjugates. This NP-controlled arrangement of self-assembled nanofibers enables both remarkable enhancements in the shear strength of hydrogel systems and a dramatic extension of the hydrogel stability in the nonequilibrium system. We are also able to show that the use of magnetic NPs enables the external control of both the formation of the hydrogel and its overall structure by application of an external magnetic field. We anticipate that the enhanced properties and stimuli-responsiveness of our NP-enzyme system will have applications ranging from nanomaterial fabrication to biomaterials and biosensing.
Hogrebe, Nathaniel J; Reinhardt, James W; Tram, Nguyen K; Debski, Anna C; Agarwal, Gunjan; Reilly, Matthew A; Gooch, Keith J
2018-04-01
A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
De Simone, Alfonso; Derreumaux, Philippe
2010-04-01
The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.
1999-07-06
Properties of a Proline-Rich Domain from Serum Apolipoprotein B 3:50-4:10 Coffee break 4:10-4:50 Debbie Kendall University of Conn, USA...reversible transition between an alpha-helix and a 3(10) helix in a fluorescence labeled peptide G. Hungerford, M. Martinez-Insua. DJS Birch and B.D. Moore
Akasov, Roman; Gileva, Anastasia; Zaytseva-Zotova, Daria; Burov, Sergey; Chevalot, Isabelle; Guedon, Emmanuel; Markvicheva, Elena
2017-01-01
To design novel 3D in vitro co-culture models based on the RGD-peptide-induced cell self-assembly technique. Multicellular spheroids from M-3 murine melanoma cells and L-929 murine fibroblasts were obtained directly from monolayer culture by addition of culture medium containing cyclic RGD-peptide. To reach reproducible architecture of co-culture spheroids, two novel 3D in vitro models with well pronounced core-shell structure from tumor spheroids and single mouse fibroblasts were developed based on this approach. The first was a combination of a RGD-peptide platform with the liquid overlay technique with further co-cultivation for 1-2 days. The second allowed co-culture spheroids to generate within polyelectrolyte microcapsules by cultivation for 2 weeks. M-3 cells (a core) and L-929 fibroblasts (a shell) were easily distinguished by confocal microscopy due to cell staining with DiO and DiI dyes, respectively. The 3D co-culture spheroids are proposed as a tool in tumor biology to study cell-cell interactions as well as for testing novel anticancer drugs and drug delivery vehicles.
Tyrosine Templating in the Self-Assembly and Crystallization of Silk Fibroin.
Partlow, Benjamin P; Bagheri, Mehran; Harden, James L; Kaplan, David L
2016-11-14
Native silk fibers exhibit strength and toughness that rival those of the best synthetic fibers. Despite significant research, further insight is still needed to understand the mechanisms by which silkworms are capable of spinning such tough fibers. Here we propose that π-π and π-OH group interactions of tyrosine side chains provide templating effects, such that the crystal-forming domains are in registration, thereby fostering the self-assembly of the spinning dope. Intrinsic fluorescence measurements, in conjunction with circular dichroism, showed that during self-assembly of regenerated silk solutions, the tyrosine residues were localized in a more hydrophobic local environment, suggesting preferential assembly. In situ Fourier transform infrared spectroscopy indicated that cross-linking of the tyrosine residues resulted in the development of extended β-sheet structure. Additionally, control of cross-link density directly influenced the degree of crystallinity upon drying. Molecular dynamics simulations were performed on silk mimetic peptides in order to more thoroughly understand the role of tyrosines. The results indicated that tyrosine residues tended to transiently colocate in solution due to π-π interactions and hydrogen bonds with adjacent residues and with the peptide backbone. These more stable tyrosine interactions resulted in reduced lateral chain fluctuations and increased incidence of coordinated intrachain association, while introduction of a dityrosine bond directly promoted the formation of β-sheet structures. In total, the experimental and modeling data support a critical role for tyrosine-tyrosine interactions as a key early feature in the self-assembly of regenerated silk protein chains and therefore are important in the robust and unusual mechanical properties ultimately achieved in the process.
Sikorska, Emilia; Dawgul, Małgorzata; Greber, Katarzyna; Iłowska, Emilia; Pogorzelska, Aneta; Kamysz, Wojciech
2014-10-01
In this work, the self-organization and the behavior of the surfactant-like peptides in the presence of biological membrane models were studied. The studies were focused on synthetic palmitic acid-containing lipopeptides, C16-KK-NH2 (I), C16-KGK-NH2 (II) and C16-KKKK-NH2 (III). The self-assembly was explored by molecular dynamics simulations using a coarse-grained force field. The critical micellar concentration was estimated by the surface tension measurements. The thermodynamics of the peptides binding to the anionic and zwitterionic lipids were established using isothermal titration calorimetry (ITC). The influence of the peptides on the lipid acyl chain ordering was determined using FTIR spectroscopy. The compounds studied show surface-active properties with a distinct CMC over the millimolar range. An increase in the steric and electrostatic repulsion between polar head groups shifts the CMC toward higher values and reduces the aggregation number. An analysis of the peptide-membrane binding revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions enabling the lipopeptides to interact with the lipid bilayer. In the case of C16-KKKK-NH2 (III), compensation of the electrostatic and hydrophobic interactions upon binding to the anionic membrane has been suggested and consequently no overall binding effects were noticed in ITC thermograms and FTIR spectra. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel Structures of Self-Associating Stapled Peptides
Bhattacharya, Shibani; Zhang, Hongtao; Cowburn, David; Debnath, Asim K.
2012-01-01
Hydrocarbon stapling of peptides is a powerful technique to transform linear peptides into cell-permeable helical structures that can bind to specific biological targets. In this study, we have used high resolution solution NMR techniques complemented by Dynamic Light Scattering to characterize extensively a family of hydrocarbon stapled peptides with known inhibitory activity against HIV-1 capsid assembly to evaluate the various factors that modulate activity. The helical peptides share a common binding motif but differ in charge, the length and position of the staple. An important outcome of the study was to show the peptides share a propensity to self-associate into organized polymeric structures mediated predominantly by hydrophobic interactions between the olefinic chain and the aromatic side-chains from the peptide. We have also investigated in detail the structural significance of the length and position of the staple, and of olefinic bond isomerization in stabilizing the helical conformation of the peptides as potential factors driving polymerization. This study presents the numerous challenges of designing biologically active stapled peptides and the conclusions have broad implications for optimizing a promising new class of compounds in drug discovery. PMID:22170623
Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.
Jin, Hyo-Eon; Lee, Seung-Wuk
2018-01-01
M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.
VaxCelerate II: Rapid development of a self-assembling vaccine for Lassa fever
Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C
2014-01-01
Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d. A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4+ T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models. PMID:25483693
VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever.
Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C
2014-01-01
Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.
NASA Astrophysics Data System (ADS)
Silva, Diego; Natalello, Antonino; Sanii, Babak; Vasita, Rajesh; Saracino, Gloria; Zuckermann, Ronald N.; Doglia, Silvia Maria; Gelain, Fabrizio
2012-12-01
The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ~8 nm to ~70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G') -from ~1000 to ~27 000 Pa - exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine approaches.The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ~8 nm to ~70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G') -from ~1000 to ~27 000 Pa - exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine approaches. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32656f
Kar, Sudeshna; Drew, Michael G B; Pramanik, Animesh
2011-09-01
In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe (I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: α-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while β-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated β-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.
Valéry, Céline; Deville-Foillard, Stéphanie; Lefebvre, Christelle; Taberner, Nuria; Legrand, Pierre; Meneau, Florian; Meriadec, Cristelle; Delvaux, Camille; Bizien, Thomas; Kasotakis, Emmanouil; Lopez-Iglesias, Carmen; Gall, Andrew; Bressanelli, Stéphane; Le Du, Marie-Hélène; Paternostre, Maïté; Artzner, Franck
2015-01-01
External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. PMID:26190377
Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane
NASA Technical Reports Server (NTRS)
Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A.
1993-01-01
A 16-residue peptide [(Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys)2] has a characteristic beta-sheet circular dichroism spectrum in water. Upon the addition of salt, the peptide spontaneously assembles to form a macroscopic membrane. The membrane does not dissolve in heat or in acidic or alkaline solutions, nor does it dissolve upon addition of guanidine hydrochloride, SDS/urea, or a variety of proteolytic enzymes. Scanning EM reveals a network of interwoven filaments approximately 10-20 nm in diameter. An important component of the stability is probably due to formation of complementary ionic bonds between glutamic and lysine side chains. This phenomenon may be a model for studying the insoluble peptides found in certain neurological disorders. It may also have implications for biomaterials and origin-of-life research.
NASA Astrophysics Data System (ADS)
Prouty, Malcolm D.
2007-12-01
Layer-by-layer (LbL) self-assembly has demonstrated broad perspectives for encapsulating, and the controllable delivery, of drugs. The nano-scale polymer layers have the capability of material protection. Magnetic nanoparticles have great potential to be applied with LbL technology to achieve both "focusing" of the encapsulated drugs to a specific location followed by "switching" them on to release the encapsulated drugs. In this work, Phor21-betaCG(ala), dextran, and dexamethasone were used as model drugs. Encapsulation of these drugs with layer-by-layer self-assembly formed biolnano robotic capsules for controlled delivery and drug release. Silica nanoparticles coated with polyelectrolyte layers of sodium carboxymethyl cellulose (CMC) or gelatin B, along with an oppositely charged peptide drug (Phor2l-betaCG(ala)), were prepared using LbL self-assembly and confirmed using QCM and zeta potential measurements. The peptide drug was assembled as a component of the multilayer walls. The release kinetics of the embedded peptide were determined. Up to 18% of the embedded Phor21-betaCG(ala) was released from the CMC multilayers over a period of 28 hours. The release was based on physiological conditions, and an external control mechanism using magnetic nanoparticles needed to be developed. Magnetic permeability control experiments were setup by applying LbL self-assembly on MnCO3 micro-cores to fabricate polyelectrolyte microcapsules embedded with superparamagnetic gold coated cobalt (Co Au) nanoparticles. An alternating magnetic field was applied to the microcapsules to check for changes in permeability. Permeability experiments were achieved by adding fluorescein isothiocyanate (FITC) labeled dextran to the microcapsule solution. Before an alternating magnetic field was applied, the capsules remained impermeable to the FITC-dextran; however, after an alternating magnetic field was applied for 30 minutes, approximately 99% of the capsules were filled with FITC-dextran, showing that the Co Au embedded microcapsules were indeed "switched on" using an alternating magnetic field. LbL assembly was then applied to encapsulate micronized dexamethasone with biocompatible polyelectrolytes such as protamine sulfate C, chondroitin sulfate sodium salt, and gelatin B, along with a layer of superparamagnetic nanoparticles. The biocompatible polymers were used to retain and protect the vulnerable drug. In vitro drug release kinetics were investigated according to different environmental factors such as temperature and pH. An external oscillating magnetic field was applied to "switch on" and accelerate the drug release. The results were compared to those without applying a magnetic field.
Choonara, Yahya E.; du Toit, Lisa C.; Bijukumar, Divya; Chejara, Dharmesh R.
2018-01-01
Stigmergy, a form of self-organization, was employed here to engineer a self-organizing peptide capable of forming a nano- or micro-structure and that can potentially be used in various drug delivery and biomedical applications. These self-assembling peptides exhibit several desirable qualities for drug delivery, tissue engineering, cosmetics, antibiotics, food science, and biomedical surface engineering. In this study, peptide biomaterial synthesis was carried out using an environment-reliant auto-programmer stigmergic approach. A model protein, α-gliadin (31, 36, and 38 kD), was forced to attain a primary structure with free –SH groups and broken down enzymatically into smaller fragments using chymotrypsin. This breakdown was carried out at different environment conditions (37 and 50 °C), and the fragments were allowed to self-organize at these temperatures. The new peptides so formed diverged according to the environmental conditions. Interestingly, two peptides (with molecular weights of 13.8 and 11.8 kD) were isolated when the reaction temperature was maintained at 50 °C, while four peptides with molecular weights of 54, 51, 13.8, and 12.8 kD were obtained when the reaction was conducted at 37 °C. Thus, at a higher temperature (50 °C), the peptides formed, compared to the original protein, had lower molecular weights, whereas, at a lower temperature (37 °C), two peptides had higher molecular weights and two had lower molecular weights. PMID:29659507
Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes
Zemel, Assaf; Fattal, Deborah R.; Ben-Shaul, Avinoam
2003-01-01
We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking α-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the “toroidal” pore model, whereby a membrane rim larger than ∼1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form “barrel-stave” pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions. PMID:12668433
Physical principles of filamentous protein self-assembly kinetics
NASA Astrophysics Data System (ADS)
Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.
2017-04-01
The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.
Black, Roy A.; Blosser, Matthew C.
2016-01-01
We propose that the first step in the origin of cellular life on Earth was the self-assembly of fatty acids with the building blocks of RNA and protein, resulting in a stable aggregate. This scheme provides explanations for the selection and concentration of the prebiotic components of cells; the stabilization and growth of early membranes; the catalysis of biopolymer synthesis; and the co-localization of membranes, RNA and protein. In this article, we review the evidence and rationale for the formation of the proposed aggregate: (i) the well-established phenomenon of self-assembly of fatty acids to form vesicles; (ii) our published evidence that nucleobases and sugars bind to and stabilize such vesicles; and (iii) the reasons why amino acids likely do so as well. We then explain how the conformational constraints and altered chemical environment due to binding of the components to the membrane could facilitate the formation of nucleosides, oligonucleotides and peptides. We conclude by discussing how the resulting oligomers, even if short and random, could have increased vesicle stability and growth more than their building blocks did, and how competition among these vesicles could have led to longer polymers with complex functions. PMID:27529283
NASA Astrophysics Data System (ADS)
Greenfield, Megan Ann
One of the great challenges in supramolecular chemistry is the design of molecules that can self-assemble into functional aggregates with well-defined three-dimensional structures and bulk material properties. Since the self-assembly of nanostructures is greatly influenced by both the nature of the self-assembling components and the environmental conditions in which the components assemble, this work explores how changes in the molecular design and the environment affect the properties of self-assembled structures. We first explore how to control the mechanical properties of self-assembled fibrillar networks by changing environmental conditions. We report here on how changing pH, screening ions, and solution temperature affect the gelation, stiffness, and response to deformation of peptide amphiphile gels. Although the morphology of PA gels formed by charge neutralization and salt-mediated charge screening are similar by electron microscopy, rheological measurements indicate that the calcium-mediated ionic bridges in CaCl2-PA gels form stronger intra- and inter-fiber crosslinks than the hydrogen bonds formed by the protonated carboxylic acid residues in HCl-PA gels. In contrast, the structure of PA gels changes drastically when the PA solution is annealed prior to gel formation. Annealed PA solutions are birefringent and can form viscoelastic strings of aligned nanofibers when manually dragged across a thin film of CaCl2. These aligned arrays of PA nanofibers hold great promise in controlling the orientation of cells in three-dimensions. Separately, we applied the principles of molecular design to create buckled membrane nanostructures that mimic the shape of viruses. When oppositely charged amphiphilic molecules are mixed they can form vesicles with a periodic two-dimensional ionic lattice that opposes the membrane's natural curvature and can result in vesicle buckling. Our results demonstrate that a large +3 to -1 charge imbalance between the cationic and anionic head groups of amphiphiles enables their co-assembly into small buckled vesicles. In contrast to previous reports, the structures described here form without the rigorous exclusion of salt and are tolerant to physiological salt concentrations. Our work opens a new path for exploring how ionic laterally correlated domains can influence the morphology of self-assembled nanostructures.
Tuning electronic transport via hepta-alanine peptides junction by tryptophan doping.
Guo, Cunlan; Yu, Xi; Refaely-Abramson, Sivan; Sepunaru, Lior; Bendikov, Tatyana; Pecht, Israel; Kronik, Leeor; Vilan, Ayelet; Sheves, Mordechai; Cahen, David
2016-09-27
Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a self-assembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailor-made "building block" peptides.
Nishiyama, Kazusa; Takakusagi, Yoichi; Kusayanagi, Tomoe; Matsumoto, Yuki; Habu, Shiori; Kuramochi, Kouji; Sugawara, Fumio; Sakaguchi, Kengo; Takahashi, Hideyo; Natsugari, Hideaki; Kobayashi, Susumu
2009-01-01
Here, we report on the identification of trimannoside-recognizing peptide sequences from a T7 phage display screen using a quartz-crystal microbalance (QCM) device. A trimannoside derivative that can form a self-assembled monolayer (SAM) was synthesized and used for immobilization on the gold electrode surface of a QCM sensor chip. After six sets of one-cycle affinity selection, T7 phage particles displaying PSVGLFTH (8-mer) and SVGLGLGFSTVNCF (14-mer) were found to be enriched at a rate of 17/44, 9/44, respectively, suggesting that these peptides specifically recognize trimannoside. Binding checks using the respective single T7 phage and synthetic peptide also confirmed the specific binding of these sequences to the trimannoside-SAM. Subsequent analysis revealed that these sequences correspond to part of the primary amino acid sequence found in many mannose- or hexose-related proteins. Taken together, these results demonstrate the effectiveness of our T7 phage display environment for affinity selection of binding peptides. We anticipate this screening result will also be extremely useful in the development of inhibitors or drug delivery systems targeting polysaccharides as well as further investigations into the function of carbohydrates in vivo.
Yucesoy, Deniz T; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M; Snead, Malcolm L; Tamerler, Candan
2015-04-01
Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP's), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis , and E. coli . In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to cover the implant site and tailor it to a desirable bioactivity.
NASA Astrophysics Data System (ADS)
Indelicato, G.; Burkhard, P.; Twarock, R.
2017-04-01
We introduce here a mathematical procedure for the structural classification of a specific class of self-assembling protein nanoparticles (SAPNs) that are used as a platform for repetitive antigen display systems. These SAPNs have distinctive geometries as a consequence of the fact that their peptide building blocks are formed from two linked coiled coils that are designed to assemble into trimeric and pentameric clusters. This allows a mathematical description of particle architectures in terms of bipartite (3,5)-regular graphs. Exploiting the relation with fullerene graphs, we provide a complete atlas of SAPN morphologies. The classification enables a detailed understanding of the spectrum of possible particle geometries that can arise in the self-assembly process. Moreover, it provides a toolkit for a systematic exploitation of SAPNs in bioengineering in the context of vaccine design, predicting the density of B-cell epitopes on the SAPN surface, which is critical for a strong humoral immune response.
Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette; Belsham, Graham J
2013-11-01
The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3C(pro) to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm]), three different amino acid substitutions (E83K, S134C, and K210E) were identified within the VP1 region of the P1-2A precursor compared to the field strain (wild type [wt]). Expression of the O1 Manisa P1-2A (wt or with the S134C substitution in VP1) plus 3C(pro), using a transient expression system, resulted in efficient capsid protein production and self-assembly of empty capsid particles. Removal of the 2A peptide from the capsid protein precursor had no effect on capsid protein processing or particle assembly. However, modification of E83K alone abrogated particle assembly with no apparent effect on protein processing. Interestingly, the K210E substitution, close to the VP1/2A junction, completely blocked processing by 3C(pro) at this cleavage site, but efficient assembly of "self-tagged" empty capsid particles, containing the uncleaved VP1-2A, was observed. These self-tagged particles behaved like the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines.
Self-assembled nanoparticles comprising aptide-SN38 conjugates for use in targeted cancer therapy
NASA Astrophysics Data System (ADS)
Kim, Hyungjun; Lee, Yonghyun; Kang, Sukmo; Choi, Minsuk; Lee, Soyoung; Kim, Sunghyun; Gujrati, Vipul; Kim, Jinjoo; Jon, Sangyong
2016-12-01
Self-assembled nanoparticles (NPs) have been intensively utilized as cancer drug delivery carriers because hydrophobic anticancer drugs may be efficiently loaded into the particle cores. In this study, we synthesized and evaluated the therapeutic index of self-assembled NPs chemically conjugated to a fibronectin extra domain B-specific peptide (APTEDB) and an anticancer agent SN38. The APTEDB-SN38 formed self-assembled structures with a diameter of 58 ± 3 nm in an aqueous solution and displayed excellent drug loading, solubility, and stability properties. A pharmacokinetic study revealed that the blood circulation half-life of SN38 following injection of the APTEDB-SN38 NPs was markedly higher than that of the small molecule CPT-11. The APTEDB-SN38 NPs delivered SN38 to tumor sites by both passive and active targeting. Finally, the APTEDB-SN38 NPs exhibited potent antitumor activities and low toxicities against EDB-expressing tumors (LLC, U87MG) in mice. This system merits further preclinical and clinical investigations for SN38 delivery.
Guiding principles for peptide nanotechnology through directed discovery.
Lampel, A; Ulijn, R V; Tuttle, T
2018-05-21
Life's diverse molecular functions are largely based on only a small number of highly conserved building blocks - the twenty canonical amino acids. These building blocks are chemically simple, but when they are organized in three-dimensional structures of tremendous complexity, new properties emerge. This review explores recent efforts in the directed discovery of functional nanoscale systems and materials based on these same amino acids, but that are not guided by copying or editing biological systems. The review summarises insights obtained using three complementary approaches of searching the sequence space to explore sequence-structure relationships for assembly, reactivity and complexation, namely: (i) strategic editing of short peptide sequences; (ii) computational approaches to predicting and comparing assembly behaviours; (iii) dynamic peptide libraries that explore the free energy landscape. These approaches give rise to guiding principles on controlling order/disorder, complexation and reactivity by peptide sequence design.
Tao, Kai; Wang, Jiqian; Li, Yanpeng; Xia, Daohong; Shan, Honghong; Xu, Hai; Lu, Jian R.
2013-01-01
Although one dimensional (1D) Pt nanostructures with well-defined sizes and shapes have fascinating physiochemical properties, their preparation remains a great challenge. Here we report an easy and novel synthesis of 1D Pt nanostructures with controllable morphologies, through the combination of designer self-assembling I3K and phage-displayed P7A peptides. The nanofibrils formed via I3K self-assembly acted as template. Pt precursors ((PtCl4)2− and (PtCl6)2−) were immobilized by electrostatic interaction on the positively charged template surface and subsequent reduction led to the formation of 1D Pt nanostructures. P7A was applied to tune the continuity of the Pt nanostructures. Here, the electrostatic repulsion between the deprotonated C-terminal carboxyl groups of P7A molecules was demonstrated to play a key role. We finally showed that continuous and ordered 1D Pt morphology had a significantly improved electrochemical performance for the hydrogen and methanol electro-oxidation in comparison with either 1D discrete Pt nanoparticle assemblies or isolated Pt nanoparticles. PMID:23995118
Shen, Zu T; Sigalov, Alexander B
2016-06-28
During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities.
Designer bFGF-incorporated d-form self-assembly peptide nanofiber scaffolds to promote bone repair.
He, Bin; Ou, Yunsheng; Chen, Shuo; Zhao, Weikang; Zhou, Ao; Zhao, Jinqiu; Li, Hong; Jiang, Dianming; Zhu, Yong
2017-05-01
d-Form and l-form peptide nanofiber scaffolds can spontaneously form stable β-sheet secondary structures and nanofiber hydrogel scaffolds, and hold some promise in hemostasis and wound healing. We report here on the synthetic self-assembling peptide d-RADA16 and l-RADA16 are both found to produce stable β-sheet secondary structure and nanofiber hydrogel scaffolds based on circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM) and rheology analysis etc. d-RADA16 hydrogel and l-RADA16 hydrogel can enhance obvious bone repair in femoral condyle defects of the Sprague-Dawley (SD) rat model compared to PBS treatment. Based on micro-computed tomography (CT), it was revealed that d-RADA16 hydrogel and l-RADA16 hydrogel were capable to obtain the extensive bone healing. Histological evaluation also found that these two hydrogels facilitate the presence of more mature bone tissue within the femoral condyle defects. Additionally, d-RADA16 hydrogel showed some potential in storing and releasing basic-fibroblast growth factor (bFGF) which was able to further promote bone regeneration based on micro-CT analysis. These results indicate that d-form peptide nanofiber hydrogel have some special capacity for bone repair. Copyright © 2016 Elsevier B.V. All rights reserved.
Biogelx: Cell Culture on Self-Assembling Peptide Gels.
Harper, Mhairi M; Connolly, Michael L; Goldie, Laura; Irvine, Eleanore J; Shaw, Joshua E; Jayawarna, Vineetha; Richardson, Stephen M; Dalby, Matthew J; Lightbody, David; Ulijn, Rein V
2018-01-01
Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.
NASA Astrophysics Data System (ADS)
Musah, Samira
Human pluripotent stem (hPS) cells have the remarkable capacity to self-renew indefinitely and differentiate into desired cell types. They can serve as a virtually unlimited supply of cells for applications ranging from drug screening to cell therapies to understanding human development. Reaping the promise of hPS cells hinges on effective defined culture and differentiation conditions. Efforts to generate chemically-defined environments for hPS cell propagation and directed differentiation have been hindered by access to only a handful of ligands to target hPS cells. Additionally, progress has been limited also by lack of knowledge regarding the relevant functional properties of the cell culture substratum. To address these problems, I first employed forward-chemical-genetics coupled with self-assembled monolayer technology to identify novel peptides that bind to hPS cell-surface receptors. I then developed a controlled synthesis of hydrogels with tailored peptide display and mechanical properties. This approach yielded synthetic hydrogels with specific mechanical properties that function in a defined medium to robustly support hPS cell self-renewal. Finally, by starting from molecular level understanding that matrix elasticity regulates developmental pathways, I generated a highly efficient hydrogel platform that restricts hPS cell differentiation to neurons, even without soluble inductive factors. These results indicate that insoluble cues can be important information conduits to guide hPS cell fate decisions. I envision that the blueprint provided by this work can be utilized to devise new materials to guide hPS cell fate.
NASA Astrophysics Data System (ADS)
Howorka, Stefan
2017-07-01
Membrane nanopores--hollow nanoscale barrels that puncture biological or synthetic membranes--have become powerful tools in chemical- and biosensing, and have achieved notable success in portable DNA sequencing. The pores can be self-assembled from a variety of materials, including proteins, peptides, synthetic organic compounds and, more recently, DNA. But which building material is best for which application, and what is the relationship between pore structure and function? In this Review, I critically compare the characteristics of the different building materials, and explore the influence of the building material on pore structure, dynamics and function. I also discuss the future challenges of developing nanopore technology, and consider what the next-generation of nanopore structures could be and where further practical applications might emerge.
Complex logic functions implemented with quantum dot bionanophotonic circuits.
Claussen, Jonathan C; Hildebrandt, Niko; Susumu, Kimihiro; Ancona, Mario G; Medintz, Igor L
2014-03-26
We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated Förster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock.
Bowness, Paul
2015-01-01
Possession of the human leukocyte antigen (HLA) class I molecule B27 is strongly associated with ankylosing spondylitis (AS), but the pathogenic role of HLA-B27 is unknown. Two broad theories most likely explain the role of HLA-B27 in AS pathogenesis. The first is based on the natural immunological function of HLA-B27 of presenting antigenic peptides to cytotoxic T cells. Thus, HLA-B27-restricted immune responses to self-antigens, or arthritogenic peptides, might drive immunopathology. B27 can also "behave badly," misfolding during assembly and leading to endoplasmic reticulum stress and autophagy responses. β2m-free B27 heavy chain structures including homodimers (B272) can also be expressed at the cell surface following endosomal recycling of cell surface heterotrimers. Cell surface free heavy chains and B272 bind to innate immune receptors on T, NK, and myeloid cells with proinflammatory effects. This review describes the natural function of HLA-B27, its disease associations, and the current theories as to its pathogenic role.
Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.
Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim
2014-07-08
Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.
Creating a stem cell niche in the inner ear using self-assembling peptide amphiphiles
Sayed, Zafar A.; Stephanopoulos, Nicholas; Berns, Eric J.; Wadhwani, Anil R.; Morrissey, Zachery D.; Chadly, Duncan M.; Kobayashi, Shun; Edelbrock, Alexandra N.; Mashimo, Tomoji; Miller, Charles A.; McGuire, Tammy L.; Stupp, Samuel I.; Kessler, John A.
2017-01-01
The use of human embryonic stem cells (hESCs) for regeneration of the spiral ganglion will require techniques for promoting otic neuronal progenitor (ONP) differentiation, anchoring of cells to anatomically appropriate and specific niches, and long-term cell survival after transplantation. In this study, we used self-assembling peptide amphiphile (PA) molecules that display an IKVAV epitope (IKVAV-PA) to create a niche for hESC-derived ONPs that supported neuronal differentiation and survival both in vitro and in vivo after transplantation into rodent inner ears. A feature of the IKVAV-PA gel is its ability to form organized nanofibers that promote directed neurite growth. Culture of hESC-derived ONPs in IKVAV-PA gels did not alter cell proliferation or viability. However, the presence of IKVAV-PA gels increased the number of cells expressing the neuronal marker beta-III tubulin and improved neurite extension. The self-assembly properties of the IKVAV-PA gel allowed it to be injected as a liquid into the inner ear to create a biophysical niche for transplanted cells after gelation in vivo. Injection of ONPs combined with IKVAV-PA into the modiolus of X-SCID rats increased survival and localization of the cells around the injection site compared to controls. Human cadaveric temporal bone studies demonstrated the technical feasibility of a transmastoid surgical approach for clinical intracochlear injection of the IKVAV-PA/ONP combination. Combining stem cell transplantation with injection of self-assembling PA gels to create a supportive niche may improve clinical approaches to spiral ganglion regeneration. PMID:29284013
M13 bacteriophage-activated superparamagnetic beads for affinity separation.
Muzard, Julien; Platt, Mark; Lee, Gil U
2012-08-06
The growth of the biopharmaceutical industry has created a demand for new technologies for the purification of genetically engineered proteins.The efficiency of large-scale, high-gradient magnetic fishing could be improved if magnetic particles offering higher binding capacity and magnetization were available. This article describes several strategies for synthesizing microbeads that are composed of a M13 bacteriophage layer assembled on a superparamagnetic core. Chemical cross-linking of the pVIII proteins to a carboxyl-functionalized bead produces highly responsive superparamagnetic particles (SPM) with a side-on oriented, adherent virus monolayer. Also, the genetic manipulation of the pIII proteins with a His(6) peptide sequence allows reversible assembly of the bacteriophage on a nitrilotriacetic-acid-functionalized core in an end-on configuration. These phage-magnetic particles are successfully used to separate antibodies from high-protein concentration solutions in a single step with a >90% purity. The dense magnetic core of these particles makes them five times more responsive to magnetic fields than commercial materials composed of polymer-(iron oxide) composites and a monolayer of phage could produce a 1000 fold higher antibody binding capacity. These new bionanomaterials appear to be well-suited to large-scale high-gradient magnetic fishing separation and promise to be cost effective as a result of the self-assembling and self-replicating properties of genetically engineered M13 bacteriophage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uraoka, Toshio; Ochiai, Yasutoshi; Fujimoto, Ai; Goto, Osamu; Kawahara, Yoshiro; Kobayashi, Naoya; Kanai, Takanori; Matsuda, Sachiko; Kitagawa, Yuko; Yahagi, Naohisa
2016-06-01
Endoscopic submucosal dissection (ESD) can remove early stage GI tumors of various sizes en bloc; however, success requires reducing the relatively high postprocedure bleeding rate. The aim of this study was to assess the safety and efficacy of a novel, fully synthetic, and self-assembled peptide solution that functions as an extracellular matrix scaffold material to facilitate reconstruction of normal tissues in ESD-induced ulcers. Consecutive patients who underwent gastric ESD were prospectively enrolled. Immediately after the resection, the solution was applied to the site with a catheter. Gastric ulcers were evaluated by endoscopy and classified as active, healing, or scarring stages at weeks 1, 4, and 8 after ESD. Forty-seven patients with 53 lesions, including 14 (29.8%) previously on antithrombotic therapy and 2 (4.3%) requiring heparin bridge therapy, were analyzed; 2 patients were excluded, 1 with perforations and 1 with persistent coagulopathy. The mean size of the en bloc resected specimens was 36.5 ± 11.3 mm. The rate of post-ESD bleeding was 2.0% (1/51; 95% CI, 0.03-10.3). Transitional rate to the healing stage of ESD-induced ulcers at week 1 was 96% (49/51). Subsequent endoscopies demonstrated the scarring stage in 19% (9/48) and 98% (41/42) at weeks 4 and 8, respectively. No adverse effects related to this solution occurred. The use of this novel peptide solution may potentially aid in reducing the delayed bleeding rate by promoting mucosal regeneration and speed of ulcer healing after large endoscopic resections in the stomach. Further studies, particularly randomized controlled studies, are needed to fully evaluate its efficacy. ( 000011548.). Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Chun; Shea, Joan-Emma
Protein aggregation involves the self-assembly of proteins into large β-sheet-rich complexes. This process can be the result of aberrant protein folding and lead to "amyloidosis," a condition characterized by deposits of protein aggregates known as amyloids on various organs of the body [1]. Amyloid-related diseases include, among others, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease, and type II diabetes [2, 3, 4]. In other instances, however, protein aggregation is not a pathological process, but rather a functional one, with aggregates serving as structural scaffolds in a number of organisms [5].
Genetically-Engineered Proteins For Functional Nanoinorganics
2007-02-28
CD) protocols have been successfully implemented; noble metals (Au and Ag, in addition to Pt and Pd previously selected) and oxides ( hydroxyapatite ...nanomasks (Schwartz, Baneyx, and Sarikaya); 7. Biofabrication of material using genetically selected and designed peptides, including hydroxyapatite ...Pt-, silica, and hydroxyapatite -binding peptides) have been determined, and related to their functions (binding and assembly). Again, for the
Asymmetric triplex metallohelices with high and selective activity against cancer cells
NASA Astrophysics Data System (ADS)
Faulkner, Alan D.; Kaner, Rebecca A.; Abdallah, Qasem M. A.; Clarkson, Guy; Fox, David J.; Gurnani, Pratik; Howson, Suzanne E.; Phillips, Roger M.; Roper, David I.; Simpson, Daniel H.; Scott, Peter
2014-09-01
Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli.
Bioinspired second harmonic generation
NASA Astrophysics Data System (ADS)
Sonay, Ali Y.; Pantazis, Periklis
2017-07-01
Second harmonic generation (SHG) is a microscopic technique applicable to a broad spectrum of biological and medical imaging due to its excellent photostability, high signal-to-noise ratio (SNR) and narrow emission profile. Current SHG microscopy techniques rely on two main contrast modalities. These are endogenous SHG generated by tissue structures, which is clinically relevant but cannot be targeted to another location, or SHG nanoprobes, inorganic nanocrystals that can be directed to proteins and cells of interest, but cannot be applied for clinical imaging due to their chemical composition. Here we analyzed SHG signal generated by large-scale peptide assemblies. Our results show the sequence of peptides play an important role on both the morphology and SHG signal of the peptide assemblies. Changing peptide sequence allows confinement of large number of peptides to smaller voxels, generating intense SHG signal. With miniaturization of these peptides and their proper functionalization strategies, such bioinspired nanoparticles would emerge as valuable tools for clinical imaging.
Surface Mediated Self-Assembly of Amyloid Peptides
NASA Astrophysics Data System (ADS)
Fakhraai, Zahra
2015-03-01
Amyloid fibrils have been considered as causative agents in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes and amyloidosis. Amyloid fibrils form when proteins or peptides misfold into one dimensional crystals of stacked beta-sheets. In solution, amyloid fibrils form through a nucleation and growth mechanism. The rate limiting nucleation step requires a critical concentration much larger than those measured in physiological conditions. As such the exact origins of the seeds or oligomers that result in the formation of fully mature fibrils in the body remain topic intense studies. It has been suggested that surfaces and interfaces can enhance the fibrillization rate. However, studies of the mechanism and kinetics of the surface-mediated fibrillization are technologically challenging due to the small size of the oligomer and protofibril species. Using smart sample preparation technique to dry the samples after various incubation times we are able to study the kinetics of fibril formation both in solution and in the vicinity of various surfaces using high-resolution atomic force microscopy. These studies elucidate the role of surfaces in catalyzing amyloid peptide formation through a nucleation-free process. The nucleation free self-assembly is rapid and requires much smaller concentrations of peptides or proteins. We show that this process resembles diffusion limited aggregation and is governed by the peptide adhesion rate, two -dimensional diffusion of the peptides on the surface, and preferential interactions between the peptides. These studies suggest an alternative pathway for amyloid formation may exist, which could lead to new criteria for disease prevention and alternative therapies. Research was partially supported by a seed grant from the National Institute of Aging of the National Institutes of Health (NIH) under Award Number P30AG010124 (PI: John Trojanowski) and the University of Pennsylvania.
Effect of the English Familial Disease Mutation (H6R) on the Monomers and Dimers of Aβ40 and Aβ42
2014-01-01
The self-assembly of the amyloid beta (Aβ) peptides into senile plaques is the hallmark of Alzheimer’s disease. Recent experiments have shown that the English familial disease mutation (H6R) speeds up the fibril formation process of alloforms Aβ40 and Aβ42 peptides altering their toxicity to cells. We used all-atom molecular dynamics simulations at microsecond time scales with the OPLS-AA force field and TIP4P explicit water model to study the structural dynamics of the monomer and dimer of H6R sequences of both peptides. The reason behind the self-assembly acceleration is common that upon mutation the net charge is reduced leading to the weaker repulsive interaction between chains that facilitates the peptide association. In addition, our estimation of the solvation free energy shows that the mutation enhances the hydrophobicity of both peptides speeding up their aggregation. However, we can show that the acceleration mechanisms are different for different peptides: the rate of fibril formation of Aβ42 increases due to increased β-structure at the C-terminal in both monomer and dimer and enhanced stability of salt bridge Asp23-Lys28 in monomer, while the enhancement of turn at residues 25–29 and reduction of coil in regions 10–13, 26–19, and 30–34 would play the key role for Aβ40. Overall, our study provides a detailed atomistic picture of the H6R-mediated conformational changes that are consistent with the experimental findings and highlights the important role of the N-terminal in Aβ peptide aggregation. PMID:24949887
Tobias, Fernando; Keiderling, Timothy A
2016-05-10
Poly(glutamic acid) at low pH self-assembles after incubation at higher temperature into fibrils composed of antiparallel sheets that are stacked in a β2-type structure whose amide carbonyls have bifurcated H-bonds involving the side chains from the next sheet. Oligomers of Glu can also form such structures, and isotope labeling has provided insight into their out-of-register antiparallel structure [ Biomacromolecules 2013 , 14 , 3880 - 3891 ]. In this paper we report IR and VCD spectra and transmission electron micrograph (TEM) images for a series of alternately sequenced oligomers, Lys-(Aaa-Glu)5-Lys-NH2, where Aaa was varied over a variety of polar, aliphatic, or aromatic residues. Their spectral and TEM data show that these oligopeptides self-assemble into different structures, both local and morphological, that are dependent on both the nature of the Aaa side chains and growth conditions employed. Such alternate peptides substituted with small or polar residues, Ala and Thr, do not yield fibrils; but with β-branched aliphatic residues, Val and Ile, that could potentially pack with Glu side chains, these oligopeptides do show evidence of β2-stacking. By contrast, for Leu, with longer side chains, only β1-stacking is seen while with even larger Phe side chains, either β-form can be detected separately, depending on preparation conditions. These structures are dependent on high temperature incubation after reducing the pH and in some cases after sonication of initial fibril forms and reincubation. Some of these fibrillar peptides, but not all, show enhanced VCD, which can offer evidence for formation of long, multistrand, often twisted structures. Substitution of Glu with residues having selected side chains yields a variety of morphologies, leading to both β1- and β2-structures, that overall suggests two different packing modes for the hydrophobic side chains depending on size and type.
Self-Assembly of Large Amyloid Fibers
NASA Astrophysics Data System (ADS)
Ridgley, Devin M.
Functional amyloids found throughout nature have demonstrated that amyloid fibers are potential industrial biomaterials. This work introduces a new "template plus adder" cooperative mechanism for the spontaneous self-assembly of micrometer sized amyloid fibers. A short hydrophobic template peptide induces a conformation change within a highly alpha-helical adder protein to form beta-sheets that continue to assemble into micrometer sized amyloid fibers. This study utilizes a variety of proteins that have template or adder characteristics which suggests that this mechanism may be employed throughout nature. Depending on the amino acid composition of the proteins used the mixtures form amyloid fibers of a cylindrical ( 10 mum diameter, 2 GPa Young's modulus) or tape (5- 10 mum height, 10-20 mum width and 100-200 MPa Young's modulus) morphology. Processing conditions are altered to manipulate the morphology and structural characteristics of the fibers. Spectroscopy is utilized to identify certain amino acid groups that contribute to the self-assembly process. Aliphatic amino acids (A, I, V and L) are responsible for initiating conformation change of the adder proteins to assemble into amyloid tapes. Additional polyglutamine segments (Q-blocks) within the protein mixtures will form Q hydrogen bonds to reinforce the amyloid structure and form a cylindrical fiber of higher modulus. Atomic force microscopy is utilized to delineate the self-assembly of amyloid tapes and cylindrical fibers from protofibrils (15-30 nm width) to fibers (10-20 mum width) spanning three orders of magnitude. The aliphatic amino acid content of the adder proteins' alpha-helices is a good predictor of high density beta-sheet formation within the protein mixture. Thus, it is possible to predict the propensity of a protein to undergo conformation change into amyloid structures. Finally, Escherichia coli is genetically engineered to express a template protein which self-assembles into large amyloid fibers when combined with extracellular myoglobin, an adder protein. The goal of this thesis is to produce, manipulate and characterize the self-assembly of large amyloid fibers for their potential industrial biomaterial applications. The techniques used throughout this study outline various methods to design and engineer amyloid fibers of a tailored modulus and morphology. Furthermore, the mechanisms described here may offer some insight into naturally occurring amyloid forming systems.
Design of self-assembling beta-hairpin pepide-based hydrogels for tissue engineering applications
NASA Astrophysics Data System (ADS)
Butterick, Lisa Ann
The field of tissue engineering aims to repair damaged tissues and organs with diminished function. One approach used in tissue engineering is to introduce cells and/or growth factors to the damaged tissue in either one of two ways. The first method is an invasive procedure where cells are introduced to a preformed scaffold and cultured in vitro. The scaffold is then inserted into the host by making an incision at the site of interest, which must be as large as the preformed scaffold. The second method is a minimally invasive procedure where cells are suspended in a polymeric solution and injected via syringe. After leaving the syringe, the material undergoes a phase transition to form a hydrogel at the site of introduction. Regardless of the delivery mechanism employed, development of an appropriate scaffold conducive to cellular proliferation and extracellular matrix production is critical to the success of the implanted material in persuading the body to repair itself. In working toward this goal, we have developed a family of beta-hairpin peptides, based on the design MAX1, that undergoes intramolecular folding and self-assembly to form rigid hydrogels in response to changes in pH, ionic strength, and temperature. From a molecular design standpoint of view, site specific N-methylation of MAX1 was performed to determine the importance of forming hydrogen bonds during the self-assembly event and its effect on hydrogelation. The remainder of this thesis is dedicated to the development of materials and minimally methodologies to deliver gel/cell constructs via syringe to target sites to aid in tissue repair. A peptide, MAX7CNB was designed that undergoes folding and assembly in response to ultraviolet light to form hydrogel material. In addition, MAX8 was rationally designed to display the appropriate hydrogelation kinetics to achieve homogenous cellular encapsulation throughout the gel matrix. MAX8 gel/cell scaffolds can be easily delivered via syringe to secondary target sites while maintaining cellular homogeneity, viability and remain fixed at the site of introduction. Additionally, preliminary in vitro based studies employing mouse peritoneal macrophages suggest the MAX8 gels are non-inflammatory in nature and may not elicit an in vivo immune response upon implantation. It has been demonstrated throughout this thesis that by employing amino acids as fundamental building blocks, peptide sequences can be designed to undergo molecular recognition, resulting in hydrogel material for use in tissue engineering applications.
Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch
Blees, Andreas; Reichel, Katrin; Trowitzsch, Simon; Fisette, Olivier; Bock, Christoph; Abele, Rupert; Hummer, Gerhard; Schäfer, Lars V.; Tampé, Robert
2015-01-01
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity. PMID:26611325
Peptide nanotube-modified electrodes for enzyme-biosensor applications.
Yemini, Miri; Reches, Meital; Gazit, Ehud; Rishpon, Judith
2005-08-15
The fabrication and notably improved performance of composite electrodes based on modified self-assembled diphenylalanine peptide nanotubes is described. Peptide nanotubes were attached to gold electrodes, and we studied the resulting electrochemical behavior using cyclic voltammetry and chronoamperometry. The peptide nanotube-based electrodes demonstrated a direct and unmediated response to hydrogen peroxide and NADH at a potential of +0.4 V (vs SCE). This biosensor enables a sensitive determination of glucose by monitoring the hydrogen peroxide produced by an enzymatic reaction between the glucose oxidase attached to the peptide nanotubes and glucose. In addition, the marked electrocatalytic activity toward NADH enabled a sensitive detection of ethanol using ethanol dehydrogenase and NAD+. The peptide nanotube-based amperometric biosensor provides a potential new tool for sensitive biosensors and biomolecular diagnostics.
NASA Astrophysics Data System (ADS)
Li, Mao; Ishihara, Shinsuke; Ji, Qingmin; Akada, Misaho; Hill, Jonathan P.; Ariga, Katsuhiko
2012-10-01
Current nanotechnology based on top-down nanofabrication may encounter a variety of drawbacks in the near future so that development of alternative methods, including the so-called bottom-up approach, has attracted considerable attention. However, the bottom-up strategy, which often relies on spontaneous self-assembly, might be inefficient in the development of the requisite functional materials and systems. Therefore, assembly processes controlled by external stimuli might be a plausible strategy for the development of bottom-up nanotechnology. In this review, we demonstrate a paradigm shift from self-assembly to commanded assembly by describing several examples of assemblies of typical functional molecules, i.e. porphyrins and fullerenes. In the first section, we describe recent progress in the design and study of self-assembled and co-assembled supramolecular architectures of porphyrins and fullerenes. Then, we show examples of assembly induced by external stimuli. We emphasize the paradigm shift from self-assembly to commanded assembly by describing the recently developed electrochemical-coupling layer-by-layer (ECC-LbL) methodology.
Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Honghu
Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering.more » Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.« less
Hanagata, Nobutaka
2017-01-01
Unmethylated cytosine-guanine dinucleotide-containing oligodeoxynucleotides (CpG ODNs), which are synthetic agonists of Toll-like receptor 9 (TLR9), activate humoral and cellular immunity and are being developed as vaccine adjuvants to prevent or treat cancers, infectious diseases, and allergies. Free CpG ODNs have been used in many clinical trials implemented to verify their effects. However, recent research has reported that self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes demonstrate higher adjuvant effects than free CpG ODNs, owing to their improved uptake efficiency into cells expressing TLR9. Moreover, protein/peptide-CpG ODN conjugates and nanomaterial-CpG ODN complexes are able to deliver CpG ODNs and antigens (or allergens) to the same types of cells, which enables a higher degree of prophylaxis or therapeutic effect. In this review, the author describes recent trends in the research and development of CpG ODN nanomedicines containing self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes, focusing mainly on the results of preclinical and clinical studies.
Induced helical backbone conformations of self-organizable dendronized polymers.
Rudick, Jonathan G; Percec, Virgil
2008-12-01
Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural information to rationalize function as retrostructural analysis. Retrostructural analysis validates our hypothesis that the self-assembling dendrons induce a helical backbone conformation in cylindrical self-organizable dendronized polymers. This helical conformation mediates unprecedented functions. Self-organizable dendronized polymers have emerged as powerful building blocks for nanoscience by virtue of their dimensions and ability to self-organize. Discrete cylindrical and spherical structures with well-defined dimensions can be visualized and manipulated individually. More importantly, they provide a robust framework for elucidating functions available only at the nanoscale. This Account will highlight structures and functions generated from self-organizable dendronized polymers that enable integration of the nanoworld with its macroscopic universe. Emphasis is placed on those structures and functions derived from the induced helical backbone conformation of cylindrical self-organizable dendronized polymers.
Structural Plasticity of Helical Nanotubes Based on Coiled-Coil Assemblies
Egelman, Edward H.; Xu, C.; DiMaio, F.; ...
2015-01-22
Numerous instances can be seen in evolution in which protein quaternary structures have diverged while the sequences of the building blocks have remained fairly conserved. However, the path through which such divergence has taken place is usually not known. We have designed two synthetic 29-residue α-helical peptides, based on the coiled-coil structural motif, that spontaneously self-assemble into helical nanotubes in vitro. Using electron cryomicroscopy with a newly available direct electron detection capability, we can achieve near-atomic resolution of these thin structures. We show how conservative changes of only one or two amino acids result in dramatic changes in quaternary structure,more » in which the assemblies can be switched between two very different forms. This system provides a framework for understanding how small sequence changes in evolution can translate into very large changes in supramolecular structure, a phenomenon that may have significant implications for the de novo design of synthetic peptide assemblies.« less
Yan, Gengwei; Yamaguchi, Takumi; Suzuki, Tatsuya; Yanaka, Saeko; Sato, Sota; Fujita, Makoto; Kato, Koichi
2017-05-04
Hybridization of a self-assembled, spherical complex with oligosaccharides containing Lewis X, a functional trisaccharide displayed on various cell surfaces, yielded well-defined glycoclusters. The self-assembled glycoclusters exhibited homophilic hyper-assembly in aqueous solution in a Ca 2+ -dependent manner through specific carbohydrate-carbohydrate interactions, offering a structural scaffold for functional biomimetic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Mengfan; Lv, Yuqi; Liu, Xiaojing; Qi, Wei; Su, Rongxin; He, Zhimin
2016-06-08
In this study, an artificial hydrolase was developed by combining the catalytic Ser/His/Asp triad with N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF), followed by coassembly of the peptides into nanofibers (CoA-HSD). The peptide-based nanofibers provide an ideal supramolecular framework to support the functional groups. Compared with the self-assembled catalytic nanofibers (SA-H), which contain only the catalytic histidine residue, the highest activity of CoA-HSD occurs when histidine, serine, and aspartate residues are at a ratio of 40:1:1. This indicates that the well-ordered nanofiber structure and the synergistic effects of serine and aspartate residues contribute to the enhancement in activity. Additionally, for the first time, molecular imprinting was applied to further enhance the activity of the peptide-based artificial enzyme (CoA-HSD). p-NPA was used as the molecular template to arrange the catalytic Ser/His/Asp triad residues in the proper orientation. As a result, the activity of imprinted coassembled CoA-HSD nanofibers is 7.86 times greater than that of nonimprinted CoA-HSD and 13.48 times that of SA-H.
De novo self-assembling collagen heterotrimers using explicit positive and negative design.
Xu, Fei; Zhang, Lei; Koder, Ronald L; Nanda, Vikas
2010-03-23
We sought to computationally design model collagen peptides that specifically associate as heterotrimers. Computational design has been successfully applied to the creation of new protein folds and functions. Despite the high abundance of collagen and its key role in numerous biological processes, fibrous proteins have received little attention as computational design targets. Collagens are composed of three polypeptide chains that wind into triple helices. We developed a discrete computational model to design heterotrimer-forming collagen-like peptides. Stability and specificity of oligomerization were concurrently targeted using a combined positive and negative design approach. The sequences of three 30-residue peptides, A, B, and C, were optimized to favor charge-pair interactions in an ABC heterotrimer, while disfavoring the 26 competing oligomers (i.e., AAA, ABB, BCA). Peptides were synthesized and characterized for thermal stability and triple-helical structure by circular dichroism and NMR. A unique A:B:C-type species was not achieved. Negative design was partially successful, with only A + B and B + C competing mixtures formed. Analysis of computed versus experimental stabilities helps to clarify the role of electrostatics and secondary-structure propensities determining collagen stability and to provide important insight into how subsequent designs can be improved.
Tenascin-C mimetic Peptide nanofibers direct stem cell differentiation to osteogenic lineage.
Sever, Melike; Mammadov, Busra; Guler, Mustafa O; Tekinay, Ayse B
2014-12-08
Extracellular matrix contains various signals for cell surface receptors that regulate cell fate through modulation of cellular activities such as proliferation and differentiation. Cues from extracellular matrix components can be used for development of new materials to control the stem cell fate. In this study, we achieved control of stem cell fate toward osteogenic commitment by using a single extracellular matrix element despite the contradictory effect of mechanical stiffness. For this purpose, we mimicked bone extracellular matrix by incorporating functional sequence of fibronectin type III domain from native tenascin-C on self-assembled peptide nanofibers. When rat mesenchymal stem cells (rMSCs) were cultured on these peptide nanofibers, alkaline phosphatase (ALP) activity and alizarin red staining indicated osteogenic differentiation even in the absence of osteogenic supplements. Moreover, expression levels of osteogenic marker genes were significantly enhanced revealed by quantitative real-time polymerase chain reaction (qRT-PCR), which showed the remarkable bioactive role of this nanofiber system on osteogenic differentiation. Overall, these results showed that tenascin-C mimetic peptides significantly enhanced the attachment, proliferation, and osteogenic differentiation of rMSCs even in the absence of any external bioactive factors and regardless of the suitable stiff mechanical properties normally required for osteogenic differentiation. Thus, these peptide nanofibers provide a promising new platform for bone regeneration.
NASA Astrophysics Data System (ADS)
Araujo Pereira Falcao Pimentel, Tais de
Inspired by the architecture of icosahedral viruses, self-assembling polypeptide nanoparticles (SAPN) with icosahedral symmetry were developed. The building block for the SAPN was a single polypeptide chain. Similarly, the capsid of quite a few small viruses are built from one single peptide chain. The polypeptide chain of the SAPN consists of a pentameric coiled-coil domain at the N-terminus joined by a short linker segment to a trimeric coiled-coil domain at the C-terminus. Here we have studied factors governing self-assembly of the SAPN such as linker constitution and trimer length. The interdomain linker 2i88 afforded the most homogenous nanoparticles as verified by TEM and DLS. Furthermore, AUC and STEM analyses suggest that the nanoparticles formed using the linker 2i88 have a T=3-like architecture confirming computer modeling predictions. As for trimer length, we have shown that it is possible to synthesize SAPN with a trimer that is as short as only 17 amino acids. Given that the N-terminus and C-terminus of the SAPN can be extended to include epitopes and give rise to a repetitive antigen display system, vaccine applications of the SAPN were also investigated here. We grafted parts of the SARS virus' spike protein onto our SAPN to repetitively display this B-cell epitope. Biophysical characterization showed that single nanoparticles of the expected size range were formed. Immunization experiments in mice at University of Colorado Denver revealed that the antibodies elicited were conformation-specific. Moreover, the antibodies significantly inhibited SARS virus infection of Vero E6 cells. SAPN were also functionalized at the C-terminus with a B-cell epitope from the circumsporozoite protein (CSP) of the malaria parasite Plasmodium falciparum and at the N-terminus with CTL epitopes from CSP. The trimeric coiled-coil domains of these malaria SAPN were modified to include a HTL epitope. Even will all these modifications, self-assembly occurred as confirmed by TEM and DLS. In immunization experiments performed at WRAIR good immune responses were obtained. Another biomedical application of SAPN is the development of a peptide-based serodiagnostic assay for tuberculosis (Tb). In an ELISA format, Tb-SAPN showed modest responses in serodiagnosis of Tb.
Peptide π-Electron Conjugates: Organic Electronics for Biology?
Ardoña, Herdeline Ann M; Tovar, John D
2015-12-16
Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.
Nanoliposome is a Promising Carrier of Protein and Peptide Biomolecule for the Treatment of Cancer.
Kumar Giri, Tapan; Giri, Ayan; Kumar Barman, Tapan; Maity, Subhasis
2016-01-01
Nano-liposomes are the newly developed delivery systems for cancer therapy that are finding a position particularly suitable as peptide and protein carriers. These are three-layered self-assembled structures with nanoparticulate carrier systems. The overall pharmacological properties of commonly used protein and peptide in cancer therapy can be improved by the incorporation of protein and peptide into the nano-liposome. The surface modifications can be made liposomes to make compatible with targeting ligands has made these nanocarriers for targeted delivery. This review discusses the method of preparation and characterization of liposome based protein peptide delivery for the treatment of cancer. This review also explores latest work intended for targeted treatment of cancer by nano-liposomal protein and peptide delivery system. This type of delivery is targeting protein and peptide to tumor site by avoiding the reticuloendothelial system. Methods of nano-liposome delivery containing protein and peptide are also highlighted.
An innovative pre-targeting strategy for tumor cell specific imaging and therapy.
Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng
2015-09-21
A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.
Antonucci, Alessandra; Kupis-Rozmysłowicz, Justyna; Boghossian, Ardemis A
2017-04-05
The exquisite structural and optical characteristics of single-walled carbon nanotubes (SWCNTs), combined with the tunable specificities of proteins and peptides, can be exploited to strongly benefit technologies with applications in fields ranging from biomedicine to industrial biocatalysis. The key to exploiting the synergism of these materials is designing protein/peptide-SWCNT conjugation schemes that preserve biomolecule activity while keeping the near-infrared optical and electronic properties of SWCNTs intact. Since sp 2 bond-breaking disrupts the optoelectronic properties of SWCNTs, noncovalent conjugation strategies are needed to interface biomolecules to the nanotube surface for optical biosensing and delivery applications. An underlying understanding of the forces contributing to protein and peptide interaction with the nanotube is thus necessary to identify the appropriate conjugation design rules for specific applications. This article explores the molecular interactions that govern the adsorption of peptides and proteins on SWCNT surfaces, elucidating contributions from individual amino acids as well as secondary and tertiary protein structure and conformation. Various noncovalent conjugation strategies for immobilizing peptides, homopolypeptides, and soluble and membrane proteins on SWCNT surfaces are presented, highlighting studies focused on developing near-infrared optical sensors and molecular scaffolds for self-assembly and biochemical analysis. The analysis presented herein suggests that though direct adsorption of proteins and peptides onto SWCNTs can be principally applied to drug and gene delivery, in vivo imaging and targeting, or cancer therapy, nondirect conjugation strategies using artificial or natural membranes, polymers, or linker molecules are often better suited for biosensing applications that require conservation of biomolecular functionality or precise control of the biomolecule's orientation. These design rules are intended to provide the reader with a rational approach to engineering biomolecule-SWCNT platforms, broadening the breadth and accessibility of both wild-type and engineered biomolecules for SWCNT-based applications.
Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.
Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman
2013-06-01
Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.
Jacobsen, Matthew M; Tokareva, Olena S; Ebrahimi, Davoud; Huang, Wenwen; Ling, Shengjie; Dinjaski, Nina; Li, David; Simon, Marc; Staii, Cristian; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y
2017-09-01
Accurate prediction and validation of the assembly of bioinspired peptide sequences into fibers with defined mechanical characteristics would aid significantly in designing and creating materials with desired properties. This process may also be utilized to provide insight into how the molecular architecture of many natural protein fibers is assembled. In this work, computational modeling and experimentation are used in tandem to determine how peptide terminal modification affects a fiber-forming core domain. Modeling shows that increased terminal molecular weight and hydrophilicity improve peptide chain alignment under shearing conditions and promote consolidation of semicrystalline domains. Mechanical analysis shows acute improvements to strength and elasticity, but significantly reduced extensibility and overall toughness. These results highlight an important entropic function that terminal domains of fiber-forming peptides exhibit as chain alignment promoters, which ultimately has notable consequences on the mechanical behavior of the final fiber products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Shih-Ting; Lin, Yiyang; Spencer, Ryan K.; ...
2017-08-03
Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serinemore » with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. Lastly, we anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.« less
Prediction of Peptide and Protein Propensity for Amyloid Formation
Família, Carlos; Dennison, Sarah R.; Quintas, Alexandre; Phoenix, David A.
2015-01-01
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔG° values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation. PMID:26241652
Mao, Yelin; Satchell, Paul G.; Luan, Xianghong; Diekwisch, Thomas G.H.
2015-01-01
The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species-specific polyproline repeat motifs in the formation of discrete self-assembled matrices and the resulting control of mineral growth. PMID:26194158
Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H
2016-01-01
The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species-specific polyproline repeat motifs in the formation of discrete self-assembled matrices and the resulting control of mineral growth. Copyright © 2015 Elsevier GmbH. All rights reserved.
Protein-Based Therapeutic Killing for Cancer Therapies.
Serna, Naroa; Sánchez-García, Laura; Unzueta, Ugutz; Díaz, Raquel; Vázquez, Esther; Mangues, Ramón; Villaverde, Antonio
2018-03-01
The treatment of some high-incidence human diseases is based on therapeutic cell killing. In cancer this is mainly achieved by chemical drugs that are systemically administered to reach effective toxic doses. As an innovative alternative, cytotoxic proteins identified in nature can be adapted as precise therapeutic agents. For example, individual toxins and venom components, proapoptotic factors, and antimicrobial peptides from bacteria, animals, plants, and humans have been engineered as highly potent drugs. In addition to the intrinsic cytotoxic activities of these constructs, their biological fabrication by DNA recombination allows the recruitment, in single pharmacological entities, of diverse functions of clinical interest such as specific cell-surface receptor binding, self-activation, and self-assembling as nanoparticulate materials, with wide applicability in cell-targeted oncotherapy and theragnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Assembly of Optical Molecules with Supramolecular Concepts
Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko
2009-01-01
Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931
Ozgur, Beytullah; Sayar, Mehmet
2017-04-27
Bioinspired self-assembling peptides serve as powerful building blocks in the manufacturing of nanomaterials with tailored features. Because of their ease of synthesis, biocompatibility, and tunable activity, this emerging branch of biomolecules has become very popular. The triblock peptide architecture designed by the Hartgerink group is a versatile system that allows control over its assembly and has been shown to demonstrate tunable bioactivity. Three main forces, Coulomb repulsion, hydrogen bonding and hydrophobicity act together to guide the triblock peptides' assembly into one-dimensional objects and hydrogels. It was shown previously that both the nanofiber morphology (e.g., intersheet spacing, formation of antiparallel/parallel β-sheets) and hydrogel rheology strictly depend on the choice of the core residue where the triblock peptide fibers with aromatic cores in general form shorter fibers and yield poor hydrogels with respect to the ones with aliphatic cores. However, an elaborate understanding of the molecular reasons behind these changes remained unclear. In this study, by using carefully designed computer based free energy calculations, we analyzed the influence of the core residue on the formation of double-wall fibers and single-wall β-sheets. Our results demonstrate that the aromatic substitution impairs the fiber cores and this impairment is mainly associated with a reduced hydrophobic character of the aromatic side chains. Such weakening is most obvious in tryptophan containing peptides where the fiber core absorbs a significant amount of water. We also show that the ability of tyrosine to form side chain hydrogen bonds plays an indispensable role in the fiber stability. As opposed to the impairment of the fiber cores, single-wall β-sheets with aromatic faces become more stable compared to the ones with aliphatic faces suggesting that the choice of the core residue can also affect the underlying assembly mechanism. We also provide an in-depth comparison of competing structures (zero-dimensional aggregates, short and long fibers) in the triblock peptides' assembly and show that by adjusting the length of the terminal blocks, the fiber growth can be turned on or off while keeping the nanofiber morphology intact.
Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system.
Inostroza-Brito, Karla E; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H; Monge-Marcet, Amàlia; Ferreira, Daniela S; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S; Mata, Alvaro
2015-11-01
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
Co-assembly, spatiotemporal control and morphogenesis of a hybrid protein-peptide system
NASA Astrophysics Data System (ADS)
Inostroza-Brito, Karla E.; Collin, Estelle; Siton-Mendelson, Orit; Smith, Katherine H.; Monge-Marcet, Amàlia; Ferreira, Daniela S.; Rodríguez, Raúl Pérez; Alonso, Matilde; Rodríguez-Cabello, José Carlos; Reis, Rui L.; Sagués, Francesc; Botto, Lorenzo; Bitton, Ronit; Azevedo, Helena S.; Mata, Alvaro
2015-11-01
Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.
Mayans, Enric; Casanovas, Jordi; Gil, Ana M; Jiménez, Ana I; Cativiela, Carlos; Puiggalí, Jordi; Alemán, Carlos
2017-04-25
Microstructures from small phenylalanine-based peptides have attracted great attention lately because these compounds are considered to be a new class of tunable materials. In spite of the extensive studies on uncapped diphenylalanine and tetraphenylalanine peptides, studies on the self-assembly of uncapped triphenylananine (FFF) are very scarce and nonsystematic. In this work, we demonstrate that FFF assemblies can organize in a wide number of well-defined supramolecular structures, which include laminated helical-ribbons, leaflike dendrimers, doughnut-, needle-, and flower-shapes. These organizations are produced by the attractive or repulsive interactions between already formed assemblies and therefore can be controlled through the choice of solvents used as the incubation medium. Thus, the formation of the desired supramolecular structures is regulated through the protonation/deprotonation of the terminal groups, the polarity of the incubation medium, which affects both peptide···solvent interactions and the cavity solvation energy (i.e., solvent···solvent interactions), and the steric interactions between own assemblies that act as building blocks. Finally, the β-sheet disposition in the latter structural motifs has been examined using both theoretical calculations and Fourier transform infrared spectroscopy. Results indicate that FFF molecules can adopt both parallel and antiparallel β-sheets. However, the former one is the most energetically favored because of the formation of π-π stacking interactions between the aromatic rings of hydrogen-bonded strands.
Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko
2013-01-01
Middle-ear mucosa maintains middle-ear pressure. However, the majority of surgical cases exhibit inadequate middle-ear mucosal regeneration, and mucosal transplantation is necessary in such cases. The aim of the present study was to assess the feasibility of transplantation of isolated mucosal cells encapsulated within synthetic self-assembling peptide nanofiber scaffolds using PuraMatrix, which has been successfully used as scaffolding in tissue engineering, for the repair of damaged middle-ear. Middle-ear bullae with mucosa were removed from Sprague Dawley (SD) transgenic rats, transfected with enhanced green fluorescent protein (EGFP) transgene and excised into small pieces, then cultured up to the third passage. After surgical elimination of middle-ear mucosa in SD recipient rats, donor cells were encapsulated within PuraMatrix and transplanted into these immunosuppressed rats. Primary cultured cells were positive for pancytokeratin but not for vimentin, and retained the character of middle-ear epithelial cells. A high proportion of EGFP-expressing cells were found in the recipient middle-ear after transplantation with PuraMatrix, but not without PuraMatrix. These cells retained normal morphology and function, as confirmed by histological examination, immunohistochemistry, and electron microscopy, and multiplied to form new epithelial and subepithelial layers together with basement membrane. The present study demonstrated the feasibility of transplantation of cultured middle-ear mucosal epithelial cells encapsulated within PuraMatrix for regeneration of surgically eliminated mucosa of the middle-ear in SD rats. PMID:23926427
Akiyama, Naotaro; Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko
2013-01-01
Middle-ear mucosa maintains middle-ear pressure. However, the majority of surgical cases exhibit inadequate middle-ear mucosal regeneration, and mucosal transplantation is necessary in such cases. The aim of the present study was to assess the feasibility of transplantation of isolated mucosal cells encapsulated within synthetic self-assembling peptide nanofiber scaffolds using PuraMatrix, which has been successfully used as scaffolding in tissue engineering, for the repair of damaged middle-ear. Middle-ear bullae with mucosa were removed from Sprague Dawley (SD) transgenic rats, transfected with enhanced green fluorescent protein (EGFP) transgene and excised into small pieces, then cultured up to the third passage. After surgical elimination of middle-ear mucosa in SD recipient rats, donor cells were encapsulated within PuraMatrix and transplanted into these immunosuppressed rats. Primary cultured cells were positive for pancytokeratin but not for vimentin, and retained the character of middle-ear epithelial cells. A high proportion of EGFP-expressing cells were found in the recipient middle-ear after transplantation with PuraMatrix, but not without PuraMatrix. These cells retained normal morphology and function, as confirmed by histological examination, immunohistochemistry, and electron microscopy, and multiplied to form new epithelial and subepithelial layers together with basement membrane. The present study demonstrated the feasibility of transplantation of cultured middle-ear mucosal epithelial cells encapsulated within PuraMatrix for regeneration of surgically eliminated mucosa of the middle-ear in SD rats.
Satagopan, Sriram; Sun, Yuan; Parquette, Jon R; Tabita, F Robert
2017-01-01
With increasing concerns over global warming and depletion of fossil-fuel reserves, it is attractive to develop innovative strategies to assimilate CO 2 , a greenhouse gas, into usable organic carbon. Cell-free systems can be designed to operate as catalytic platforms with enzymes that offer exceptional selectivity and efficiency, without the need to support ancillary reactions of metabolic pathways operating in intact cells. Such systems are yet to be exploited for applications involving CO 2 utilization and subsequent conversion to valuable products, including biofuels. The Calvin-Benson-Bassham (CBB) cycle and the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) play a pivotal role in global CO 2 fixation. We hereby demonstrate the co-assembly of two RubisCO-associated multienzyme cascades with self-assembled synthetic amphiphilic peptide nanostructures. The immobilized enzyme cascades sequentially convert either ribose-5-phosphate (R-5-P) or glucose, a simpler substrate, to ribulose 1,5-bisphosphate (RuBP), the acceptor for incoming CO 2 in the carboxylation reaction catalyzed by RubisCO. Protection from proteolytic degradation was observed in nanostructures associated with the small dimeric form of RubisCO and ancillary enzymes. Furthermore, nanostructures associated with a larger variant of RubisCO resulted in a significant enhancement of the enzyme's selectivity towards CO 2 , without adversely affecting the catalytic activity. The ability to assemble a cascade of enzymes for CO 2 capture using self-assembling nanostructure scaffolds with functional enhancements show promise for potentially engineering entire pathways (with RubisCO or other CO 2 -fixing enzymes) to redirect carbon from industrial effluents into useful bioproducts.
Abele, Rupert; Tampé, Robert
2009-08-01
Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.
Kokotidou, C; Jonnalagadda, S V R; Orr, A A; Seoane-Blanco, M; Apostolidou, C P; van Raaij, M J; Kotzabasaki, M; Chatzoudis, A; Jakubowski, J M; Mossou, E; Forsyth, V T; Mitchell, E P; Bowler, M W; Llamas-Saiz, A L; Tamamis, P; Mitraki, A
2018-05-17
The GAIIG sequence, common to the amyloid beta peptide (residues 29-33) and to the HIV gp 120 (residues 24-28 in a typical V3 loop) self-assembles into amyloid fibrils, as suggested by theory and the experiments presented here. The longer YATGAIIGNII sequence from the V3 loop also self-assembles into amyloid fibrils, of which the first three and the last two residues are outside the amyloid GAIIG core. We postulate that this sequence, with suitable selected replacements at the flexible positions, can serve as a designable scaffold for novel amyloid-based materials. Moreover, we report the single X-ray crystal structure of the beta-breaker peptide GAIPIG at 1.05 Å resolution. This structural information could serve as the basis for structure-based design of potential inhibitors of amyloid formation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Self-assembled photosystem-I biophotovoltaics on nanostructured TiO(2 )and ZnO.
Mershin, Andreas; Matsumoto, Kazuya; Kaiser, Liselotte; Yu, Daoyong; Vaughn, Michael; Nazeeruddin, Md K; Bruce, Barry D; Graetzel, Michael; Zhang, Shuguang
2012-01-01
The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth's energy cycle. It is the central molecule in the "Z-scheme" of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71%, electrical power density of 81 µW/cm(2) and photocurrent density of 362 µA/cm(2), over four orders of magnitude higher than any photosystem-based biophotovoltaic to date.
Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO
Mershin, Andreas; Matsumoto, Kazuya; Kaiser, Liselotte; Yu, Daoyong; Vaughn, Michael; Nazeeruddin, Md. K.; Bruce, Barry D.; Graetzel, Michael; Zhang, Shuguang
2012-01-01
The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth’s energy cycle. It is the central molecule in the “Z-scheme” of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71%, electrical power density of 81 µW/cm2 and photocurrent density of 362 µA/cm2, over four orders of magnitude higher than any photosystem-based biophotovoltaic to date. PMID:22355747
Liu, Dongfei; Zhang, Hongbo; Mäkilä, Ermei; Fan, Jin; Herranz-Blanco, Bárbara; Wang, Chang-Fang; Rosa, Ricardo; Ribeiro, António J; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A
2015-01-01
An advanced nanocomposite consisting of an encapsulated porous silicon (PSi) nanoparticle and an acid-degradable acetalated dextran (AcDX) matrix (nano-in-nano), was efficiently fabricated by a one-step microfluidic self-assembly approach. The obtained nano-in-nano PSi@AcDX composites showed improved surface smoothness, homogeneous size distribution, and considerably enhanced cytocompatibility. Furthermore, multiple drugs with different physicochemical properties have been simultaneously loaded into the nanocomposites with a ratiometric control. The release kinetics of all the payloads was predominantly controlled by the decomposition rate of the outer AcDX matrix. To facilitate the intracellular drug delivery, a nona-arginine cell-penetrating peptide (CPP) was chemically conjugated onto the surface of the nanocomposites by oxime click chemistry. Taking advantage of the significantly improved cell uptake, the proliferation of two breast cancer cell lines was markedly inhibited by the CPP-functionalized multidrug-loaded nanocomposites. Overall, this nano-in-nano PSi@polymer composite prepared by the microfluidic self-assembly approach is a universal platform for nanoparticles encapsulation and precisely controlled combination chemotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Self-assembled Nanofibrils for Immunomodulation
NASA Astrophysics Data System (ADS)
Zhao, Fan
This thesis has been mainly focused on applying self-assembled nanofibrils as unique depots for controlled release to modulate immune system, with two major chapters on modulation of innate immunity in chapter 2 and adaptive immunity in chapter 3, respectively. There are 5 chapters in the thesis. Chapter 1 gives a detailed review on the discovery, synthesis and application of self-assembled nanofibrils of therapeutic agents (termed as "self-delivery drugs"), including bioactive molecules; Chapter 2 demonstrates the supramolecular hydrogel of chemotactic peptides as a prolonged inflammation model through proper molecular engineering; Chapter 3 reports a suppressive antibody response achieved by encapsulation of antigens by supramolecular hydrogel of glycopeptide; Chapter 4 illustrates an example of supramolecular hydrogel formation of molecules with extremely low solubility, based on the fact that many small organic drugs have poor solubility. Chapter 5 used beta-galatosidase as a model to study glycosidase-instructed supramolecular hydrogel formation, with potential to target cancer cells due to their distinct metabolic profile.
Amphiphilic Peptide Nanorods Based on Oligo-Phenylalanine as a Biocompatible Drug Carrier.
Song, Su Jeong; Lee, Seulgi; Ryu, Kyoung-Seok; Choi, Joon Sig
2017-09-20
Peptide nanostructure has been widely explored for drug-delivery systems in recent studies. Peptides possess comparatively lower cytotoxicity and are more efficient than polymeric carriers. Here, we propose a peptide nanorod system, composed of an amphiphilic oligo-peptide RH 3 F 8 (Arg-His 3 -Phe 8 ), as a drug-delivery carrier. Arginine is an essential amino acid in typical cell-penetration peptides, and histidine induces endo- and lysosomal escape because of its proton sponge effect. Phenylalanine is introduced to provide rich hydrophobicity for stable self-assembly and drug encapsulation. The self-assembled structure of RH 3 F 8 showed nanorod-shaped morphology, positive surface charge, and retained formation in water for 35 days. RH 3 F 8 , labeled with Nile Red, showed high cellar uptake and accumulation in both cytoplasm and nucleus. The RH 3 F 8 nanorods demonstrated negligible cytotoxicity, as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and hemolysis assays. To confirm the efficiency of drug delivery, curcumin was encapsulated in the RH 3 F 8 nanorod system (RH 3 F 8 -Cur). RH 3 F 8 -Cur showed high encapsulation efficiency (24.63%) under the conditions of 200 μM curcumin. The RH 3 F 8 -Cur retained nanoscale size and positive surface charge, similar to those of the empty RH 3 F 8 nanorods. RH 3 F 8 -Cur displayed a robust anticancer effect in HeLa and A549 cells, and inhibited the proliferation of cancer cells in a zebrafish model. These results indicate that the RH 3 F 8 nanorods may be a promising candidate for a safe and effective drug-delivery system.
Ghosh, Anirban; Bhattacharyya, Dipita; Bhunia, Anirban
2018-02-01
In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T 55 VYVYSRVK 63 ) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.