Sample records for functionally defined human

  1. Inspiration from heart development: Biomimetic development of functional human cardiac organoids.

    PubMed

    Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying

    2017-10-01

    Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Defining and Applying a Functionality Approach to Intellectual Disability

    ERIC Educational Resources Information Center

    Luckasson, R.; Schalock, R. L.

    2013-01-01

    Background: The current functional models of disability do not adequately incorporate significant changes of the last three decades in our understanding of human functioning, and how the human functioning construct can be applied to clinical functions, professional practices and outcomes evaluation. Methods: The authors synthesise current…

  3. The human stem cell hierarchy is defined by a functional dependence on Mcl-1 for self-renewal capacity.

    PubMed

    Campbell, Clinton J V; Lee, Jung Bok; Levadoux-Martin, Marilyne; Wynder, Tracy; Xenocostas, Anargyros; Leber, Brian; Bhatia, Mickie

    2010-09-02

    The molecular basis for the unique proliferative and self-renewal properties that hierarchically distinguish human stem cells from progenitors and terminally differentiated cells remains largely unknown. We report a role for the Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) as an indispensable regulator of self-renewal in human stem cells and show that a functional dependence on Mcl-1 defines the human stem cell hierarchy. In vivo pharmacologic targeting of the Bcl-2 family members in human hematopoietic stem cells (HSCs) and human leukemic stem cells reduced stem cell regenerative and self-renewal function. Subsequent protein expression studies showed that, among the Bcl-2 family members, only Mcl-1 was up-regulated exclusively in the human HSC fraction on in vivo regeneration of hematopoiesis. Short hairpin RNA-knockdown of Mcl-1 in human cord blood cells did not affect survival in the HSC or hematopoietic progenitor cell fractions in vitro but specifically reduced the in vivo self-renewal function of human HSCs. Moreover, knockdown of Mcl-1 in ontogenetically primitive human pluripotent stem cells resulted in almost complete ablation of stem cell self-renewal function. Our findings show that Mcl-1 is an essential regulator of stem cell self-renewal in humans and therefore represents an axis for therapeutic interventions.

  4. Functional Glycomic Analysis of Human Milk Glycans Reveals the Presence of Virus Receptors and Embryonic Stem Cell Biomarkers*

    PubMed Central

    Yu, Ying; Mishra, Shreya; Song, Xuezheng; Lasanajak, Yi; Bradley, Konrad C.; Tappert, Mary M.; Air, Gillian M.; Steinhauer, David A.; Halder, Sujata; Cotmore, Susan; Tattersall, Peter; Agbandje-McKenna, Mavis; Cummings, Richard D.; Smith, David F.

    2012-01-01

    Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens. PMID:23115247

  5. Neuromuscular Junction Formation between Human Stem cell-derived Motoneurons and Human Skeletal Muscle in a Defined System

    PubMed Central

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman; Hickman, James

    2011-01-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time lapse recordings and their subsequent quenching by D-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. PMID:21944471

  6. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system.

    PubMed

    Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J

    2011-12-01

    Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Social Behaviorism, Human Motivation, and the Conditioning Therapies.

    ERIC Educational Resources Information Center

    Staats, Arthur W.

    The author conceives of the human emotional system as being composed of three functions of motivational stimuli: (a) the attitudinal or emotional, (b) the reinforcing, and (c) the discriminative controlling function which the stimuli acquire. He defines and describes each of these functions and their effect on integrated learning principles. He…

  8. Functional differentiation of human pluripotent stem cells on a chip.

    PubMed

    Giobbe, Giovanni G; Michielin, Federica; Luni, Camilla; Giulitti, Stefano; Martewicz, Sebastian; Dupont, Sirio; Floreani, Annarosa; Elvassore, Nicola

    2015-07-01

    Microengineering human "organs-on-chips" remains an open challenge. Here, we describe a robust microfluidics-based approach for the differentiation of human pluripotent stem cells directly on a chip. Extrinsic signal modulation, achieved through optimal frequency of medium delivery, can be used as a parameter for improved germ layer specification and cell differentiation. Human cardiomyocytes and hepatocytes derived on chips showed functional phenotypes and responses to temporally defined drug treatments.

  9. HSI top-down requirements analysis for ship manpower reduction

    NASA Astrophysics Data System (ADS)

    Malone, Thomas B.; Bost, J. R.

    2000-11-01

    U.S. Navy ship acquisition programs such as DD 21 and CVNX are increasingly relying on top down requirements analysis (TDRA) to define and assess design approaches for workload and manpower reduction, and for ensuring required levels of human performance, reliability, safety, and quality of life at sea. The human systems integration (HSI) approach to TDRA begins with a function analysis which identifies the functions derived from the requirements in the Operational Requirements Document (ORD). The function analysis serves as the function baseline for the ship, and also supports the definition of RDT&E and Total Ownership Cost requirements. A mission analysis is then conducted to identify mission scenarios, again based on requirements in the ORD, and the Design Reference Mission (DRM). This is followed by a mission/function analysis which establishes the function requirements to successfully perform the ship's missions. Function requirements of major importance for HSI are information, performance, decision, and support requirements associated with each function. An allocation of functions defines the roles of humans and automation in performing the functions associated with a mission. Alternate design concepts, based on function allocation strategies, are then described, and task networks associated with the concepts are developed. Task network simulations are conducted to assess workloads and human performance capabilities associated with alternate concepts. An assessment of the affordability and risk associated with alternate concepts is performed, and manning estimates are developed for feasible design concepts.

  10. Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates

    PubMed Central

    Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.

    2016-01-01

    Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture. PMID:27371764

  11. Detectability of auditory signals presented without defined observation intervals

    NASA Technical Reports Server (NTRS)

    Watson, C. S.; Nichols, T. L.

    1976-01-01

    Ability to detect tones in noise was measured without defined observation intervals. Latency density functions were estimated for the first response following a signal and, separately, for the first response following randomly distributed instances of background noise. Detection performance was measured by the maximum separation between the cumulative latency density functions for signal-plus-noise and for noise alone. Values of the index of detectability, estimated by this procedure, were approximately those obtained with a 2-dB weaker signal and defined observation intervals. Simulation of defined- and non-defined-interval tasks with an energy detector showed that this device performs very similarly to the human listener in both cases.

  12. Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data.

    PubMed

    Kim, Jungmin; Park, Juyong; Lee, Wonjae

    2018-01-01

    The quality of life for people in urban regions can be improved by predicting urban human mobility and adjusting urban planning accordingly. In this study, we compared several possible variables to verify whether a gravity model (a human mobility prediction model borrowed from Newtonian mechanics) worked as well in inner-city regions as it did in intra-city regions. We reviewed the resident population, the number of employees, and the number of SNS posts as variables for generating mass values for an urban traffic gravity model. We also compared the straight-line distance, travel distance, and the impact of time as possible distance values. We defined the functions of urban regions on the basis of public records and SNS data to reflect the diverse social factors in urban regions. In this process, we conducted a dimension reduction method for the public record data and used a machine learning-based clustering algorithm for the SNS data. In doing so, we found that functional distance could be defined as the Euclidean distance between social function vectors in urban regions. Finally, we examined whether the functional distance was a variable that had a significant impact on urban human mobility.

  13. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  14. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System

    PubMed Central

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2013-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy. PMID:24516722

  15. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System.

    PubMed

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2014-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.

  16. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop.

    PubMed

    Jones, Peter A; Martienssen, Robert

    2005-12-15

    Epigenetic processes control the packaging and function of the human genome and contribute to normal and pathologic states, including cancer. The time is ripe to undertake an international effort to identify all the chemical changes and relationships between chromatin constituents that provide function to the genetic code. A timely workshop of leading experts, convened by the American Association for Cancer Research (AACR), confirmed that the technology is at hand to begin defining human epigenomes at high resolution.

  17. IDENTIFICATION AND CHARACTERIZATION OF DISEASE USING PULMONARY FUNCTION TESTS

    EPA Science Inventory

    Abstract
    Pulmonary function testing is used routinely in human medicine to objectively define functional deficits in individuals with respiratory disease. Despite the fact that respiratory disease is a common problem in veterinary medicine, evaluation of the small animal pa...

  18. NIH Human Microbiome Project defines normal bacterial makeup of the body

    Cancer.gov

    Microbes inhabit just about every part of the human body, living on the skin, in the gut, and up the nose. Sometimes they cause sickness, but most of the time, microorganisms live in harmony with their human hosts, providing vital functions essential for

  19. CRISPR-mediated HDAC2 disruption identifies two distinct classes of target genes in human cells.

    PubMed

    Somanath, Priyanka; Herndon Klein, Rachel; Knoepfler, Paul S

    2017-01-01

    The transcriptional functions of the class I histone deacetylases (HDACs) HDAC1 and HDAC2 are mainly viewed as both repressive and redundant based on murine knockout studies, but they may have additional independent roles and their physiological functions in human cells are not as clearly defined. To address the individual epigenomic functions of HDAC2, here we utilized CRISPR-Cas9 to disrupt HDAC2 in human cells. We find that while HDAC2 null cells exhibited signs of cross-regulation between HDAC1 and HDAC2, specific epigenomic phenotypes were still apparent using RNA-seq and ChIP assays. We identified specific targets of HDAC2 repression, and defined a novel class of genes that are actively expressed in a partially HDAC2-dependent manner. While HDAC2 was required for the recruitment of HDAC1 to repressed HDAC2-gene targets, HDAC2 was dispensable for HDAC1 binding to HDAC2-activated targets, supporting the notion of distinct classes of targets. Both active and repressed classes of gene targets demonstrated enhanced histone acetylation and methylation in HDAC2-null cells. Binding of the HDAC1/2-associated SIN3A corepressor was altered at most HDAC2-targets, but without a clear pattern. Overall, our study defines two classes of HDAC2 targets in human cells, with a dependence of HDAC1 on HDAC2 at one class of targets, and distinguishes unique functions for HDAC2.

  20. Ecosystem health: I. Measuring ecosystem health

    NASA Astrophysics Data System (ADS)

    Schaeffer, David J.; Herricks, Edwin E.; Kerster, Harold W.

    1988-07-01

    Ecosystem analysis has been advanced by an improved understanding of how ecosystems are structured and how they function. Ecology has advanced from an emphasis on natural history to consideration of energetics, the relationships and connections between species, hierarchies, and systems theory. Still, we consider ecosystems as entities with a distinctive character and individual characteristics. Ecosystem maintenance and preservation form the objective of impact analysis, hazard evaluation, and other management or regulation activities. In this article we explore an approach to ecosystem analysis which identifies and quantifies factors which define the condition or state of an ecosystem in terms of health criteria. We relate ecosystem health to human/nonhuman animal health and explore the difficulties of defining ecosystem health and suggest criteria which provide a functional definition of state and condition. We suggest that, as has been found in human/nonhuman animal health studies, disease states can be recognized before disease is of clinical magnitude. Example disease states for ecosystems are functionally defined and discussed, together with test systems for their early detection.

  1. Digital Systems Validation Handbook. Volume 2

    DTIC Science & Technology

    1992-07-01

    imitate human intelligence functions. ASSURANCE ASSESSMENT. (4) Procedures whose purpose is to ensure that a proposed system functions according to...The spectrum (20 to 20,000 Hz) of human hearing, often defined as extending from approximately 20 Hz to 50 kHz and sometimes to 150 kHz. Audio noise...contained body of code which can be called by other routines to perform a function. SUPER-DIAGNOSTIC FILTER. (7) An algorithm which provides all the

  2. Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data

    PubMed Central

    Park, Juyong

    2018-01-01

    The quality of life for people in urban regions can be improved by predicting urban human mobility and adjusting urban planning accordingly. In this study, we compared several possible variables to verify whether a gravity model (a human mobility prediction model borrowed from Newtonian mechanics) worked as well in inner-city regions as it did in intra-city regions. We reviewed the resident population, the number of employees, and the number of SNS posts as variables for generating mass values for an urban traffic gravity model. We also compared the straight-line distance, travel distance, and the impact of time as possible distance values. We defined the functions of urban regions on the basis of public records and SNS data to reflect the diverse social factors in urban regions. In this process, we conducted a dimension reduction method for the public record data and used a machine learning-based clustering algorithm for the SNS data. In doing so, we found that functional distance could be defined as the Euclidean distance between social function vectors in urban regions. Finally, we examined whether the functional distance was a variable that had a significant impact on urban human mobility. PMID:29432440

  3. Defined Engineered Human Myocardium with Advanced Maturation for Applications in Heart Failure Modelling and Repair

    PubMed Central

    Tiburcy, Malte; Hudson, James E.; Balfanz, Paul; Schlick, Susanne; Meyer, Tim; Liao, Mei-Ling Chang; Levent, Elif; Raad, Farah; Zeidler, Sebastian; Wingender, Edgar; Riegler, Johannes; Wang, Mouer; Gold, Joseph D.; Kehat, Izhak; Wettwer, Erich; Ravens, Ursula; Dierickx, Pieterjan; van Laake, Linda W.; Goumans, Marie Jose; Khadjeh, Sara; Toischer, Karl; Hasenfuss, Gerd; Couture, Larry A.; Unger, Andreas; Linke, Wolfgang A.; Araki, Toshiyuki; Neel, Benjamin; Keller, Gordon; Gepstein, Lior; Wu, Joseph C.; Zimmermann, Wolfram-Hubertus

    2017-01-01

    Background Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modelling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) towards an adult phenotype under defined conditions. Methods We systematically investigated cell composition, matrix and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We employed morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M-bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency-response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and NT-proBNP release; all are classical hallmarks of heart failure. Additionally, we demonstrate scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions We provide proof-of-concept for a universally applicable technology for the engineering of macro-scale human myocardium for disease modelling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions. PMID:28167635

  4. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.

    PubMed

    Tiburcy, Malte; Hudson, James E; Balfanz, Paul; Schlick, Susanne; Meyer, Tim; Chang Liao, Mei-Ling; Levent, Elif; Raad, Farah; Zeidler, Sebastian; Wingender, Edgar; Riegler, Johannes; Wang, Mouer; Gold, Joseph D; Kehat, Izhak; Wettwer, Erich; Ravens, Ursula; Dierickx, Pieterjan; van Laake, Linda W; Goumans, Marie Jose; Khadjeh, Sara; Toischer, Karl; Hasenfuss, Gerd; Couture, Larry A; Unger, Andreas; Linke, Wolfgang A; Araki, Toshiyuki; Neel, Benjamin; Keller, Gordon; Gepstein, Lior; Wu, Joseph C; Zimmermann, Wolfram-Hubertus

    2017-05-09

    Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β 1 - and β 2 -adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions. © 2017 American Heart Association, Inc.

  5. Comparative Oncogenomics for Peripheral Nerve Sheath Cancer Gene Discovery

    DTIC Science & Technology

    2015-06-01

    neurofibromas and MPNSTs, establish gene signatures defining distinct tumor subtypes and functionally test the role of selected driver mutations ...allografted tumor cells, and a variety of in vitro functional assays. We will validate the relevance of these mutated mouse genes in human neurofibromas...and MPNSTs by determining whether these same genes are mutated in human tumors. 15. SUBJECT TERMS Nothing listed 16. SECURITY CLASSIFICATION OF: 17

  6. ASTM lights the way for tissue engineered medical products standards: jump start for combination medical products that restore biological function of human tissues.

    PubMed

    Picciolo, G L; Stocum, D L

    2001-01-01

    Everybody hopes for better health and restoration of impaired bodily function, and now that hope is illuminated by the promise of powerful biological tools that make human cells grow and replace human tissue. ASTM Committee F04 on Medical and Surgical Materials and Devices is taking the lead by defining some of those tools as standards that can be used for the development, production, testing, and regulatory approval of medical products.

  7. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    PubMed Central

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116

  8. Biological and physicochemical characterization of a serum- and xeno-free chemically defined cryopreservation procedure for adult human progenitor cells.

    PubMed

    Zeisberger, Steffen M; Schulz, Julia C; Mairhofer, Mario; Ponsaerts, Peter; Wouters, Guy; Doerr, Daniel; Katsen-Globa, Alisa; Ehrbar, Martin; Hescheler, Jurgen; Hoerstrup, Simon P; Zisch, Andreas H; Kolbus, Andrea; Zimmermann, Heiko

    2011-01-01

    While therapeutic cell transplantations using progenitor cells are increasingly evolving towards phase I and II clinical trials and chemically defined cell culture is established, standardization in biobanking is still in the stage of infancy. In this study, the EU FP6-funded CRYSTAL (CRYo-banking of Stem cells for human Therapeutic AppLication) consortium aimed to validate novel Standard Operating Procedures (SOPs) to perform and validate xeno-free and chemically defined cryopreservation of human progenitor cells and to reduce the amount of the potentially toxic cryoprotectant additive (CPA) dimethyl sulfoxide (DMSO). To achieve this goal, three human adult progenitor and stem cell populations-umbilical cord blood (UCB)-derived erythroid cells (UCB-ECs), UCB-derived endothelial colony forming cells (UCB-ECFCs), and adipose tissue (AT)-derived mesenchymal stromal cells (AT-MSCs)-were cryopreserved in chemically defined medium supplemented with 10% or 5% DMSO. Cell recovery, cell repopulation, and functionality were evaluated postthaw in comparison to cryopreservation in standard fetal bovine serum (FBS)-containing freezing medium. Even with a reduction of the DMSO CPA to 5%, postthaw cell count and viability assays indicated no overall significant difference versus standard cryomedium. Additionally, to compare cellular morphology/membrane integrity and ice crystal formation during cryopreservation, multiphoton laser-scanning cryomicroscopy (cryo-MPLSM) and scanning electron microscopy (SEM) were used. Neither cryo-MPLSM nor SEM indicated differences in membrane integrity for the tested cell populations under various conditions. Moreover, no influence was observed on functional properties of the cells following cryopreservation in chemically defined freezing medium, except for UCB-ECs, which showed a significantly reduced differentiation capacity after cryopreservation in chemically defined medium supplemented with 5% DMSO. In summary, these results demonstrate the feasibility and robustness of standardized xeno-free cryopreservation of different human progenitor cells and encourage their use even more in the field of tissue-engineering and regenerative medicine.

  9. Human chimera-type galectin-3: defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation.

    PubMed

    Kopitz, Jürgen; Vértesy, Sabine; André, Sabine; Fiedler, Sabine; Schnölzer, Martina; Gabius, Hans-Joachim

    2014-09-01

    Many human proteins have a modular design with receptor and structural domains. Using adhesion/growth-regulatory galectin-3 as model, we describe an interdisciplinary strategy to define the functional significance of its tail established by nine non-triple helical collagen-like repeats (I-IX) and the N-terminal peptide. Genetic engineering with sophisticated mass spectrometric product analysis provided the tools for biotesting, i.e. eight protein variants with different degrees of tail truncation. Evidently,various aspects of galectin-3 activity (cis binding and cell bridging) are affected by tail shortening in a different manner. Thus, this combined approach reveals an unsuspected complexity of structure-function relationship, encouraging further application beyond this chimera-type galectin. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. The impact of ex vivo clinical grade activation protocols on human T-cell phenotype and function for the generation of genetically modified cells for adoptive cell transfer therapy.

    PubMed

    Tumeh, Paul C; Koya, Richard C; Chodon, Thinle; Graham, Nicholas A; Graeber, Thomas G; Comin-Anduix, Begoña; Ribas, Antoni

    2010-10-01

    Optimized conditions for the ex vivo activation, genetic manipulation, and expansion of human lymphocytes for adoptive cell therapy may lead to protocols that maximize their in vivo function. We analyzed the effects of 4 clinical grade activation and expansion protocols over 3 weeks on cell proliferative rate, immunophenotype, cell metabolism, and transduction efficiency of human peripheral blood mononuclear cells (PBMCs). Peak lentiviral transduction efficiency was early (days 2 to 4), at a time when cells showed a larger size, maximal uptake of metabolic substrates, and the highest level of proximal T-cell receptor signaling engagement. Anti-CD2/3/28 activation beads induced greater proliferation rate and skewed PBMCs early on to a CD4 phenotype when compared with the cells cultured in OKT3. Multicolor surface phenotyping demonstrated that changes in T-cell surface markers that define T-cell functional phenotypes were dependent on the time spent in culture as opposed to the particular activation protocol. In conclusion, ex vivo activation of human PBMCs for adoptive cell therapy demonstrate defined immunophenotypic and functional signatures over time, with cells early on showing larger sizes, higher transduction efficiency, maximal metabolic activity, and zeta-chain-associated protein-70 activation.

  11. The impact of ex vivo clinical grade activation protocols on human T cell phenotype and function for the generation of genetically modified cells for adoptive cell transfer therapy

    PubMed Central

    Tumeh, Paul C.; Koya, Richard C.; Chodon, Thinle; Graham, Nicholas A.; Graeber, Thomas G.; Comin-Anduix, Begoña; Ribas, Antoni

    2011-01-01

    Optimized conditions for the ex vivo activation, genetic manipulation, and expansion of human lymphocytes for adoptive cell therapy (ACT) may lead to protocols that maximize their in vivo function. We analyzed the effects of four clinical grade activation and expansion protocols over three weeks on cell proliferative rate, immunophenotype, cell metabolism, and transduction efficiency of human peripheral blood mononuclear cells (PBMCs). Peak lentiviral transduction efficiency was early (days 2 to 4), at a time when cells demonstrated a larger size, maximal uptake of metabolic substrates, and the highest level of proximal TCR signaling engagement. Anti-CD2/3/28 activation beads induced greater proliferation rate and skewed PBMCs early on to a CD4 phenotype when compared to the cells cultured in OKT3. Multicolor surface phenotyping demonstrated that changes in T cell surface markers that define T cell functional phenotypes were dependent on the time spent in culture as opposed to the particular activation protocol. In conclusion, ex vivo activation of human PBMCs for ACT demonstrate defined immunophenotypic and functional signatures over time, with cells early on showing larger sizes, higher transduction efficiency, maximal metabolic activity and ZAP-70 activation. PMID:20842061

  12. Empirical study on human acupuncture point network

    NASA Astrophysics Data System (ADS)

    Li, Jian; Shen, Dan; Chang, Hui; He, Da-Ren

    2007-03-01

    Chinese medical theory is ancient and profound, however is confined by qualitative and faint understanding. The effect of Chinese acupuncture in clinical practice is unique and effective, and the human acupuncture points play a mysterious and special role, however there is no modern scientific understanding on human acupuncture points until today. For this reason, we attend to use complex network theory, one of the frontiers in the statistical physics, for describing the human acupuncture points and their connections. In the network nodes are defined as the acupuncture points, two nodes are connected by an edge when they are used for a medical treatment of a common disease. A disease is defined as an act. Some statistical properties have been obtained. The results certify that the degree distribution, act degree distribution, and the dependence of the clustering coefficient on both of them obey SPL distribution function, which show a function interpolating between a power law and an exponential decay. The results may be helpful for understanding Chinese medical theory.

  13. The Potential da Vinci in All of Us

    ERIC Educational Resources Information Center

    Petto, Sarah; Petto, Andrew

    2009-01-01

    The study of the human form is fundamental to both science and art curricula. For vertebrates, perhaps no feature is more important than the skeleton to determine observable form and function. As Leonard da Vinci's famous Proportions of the Human Figure (Virtruvian Man) illustrates, the size, shape, and proportions of the human body are defined by…

  14. White Matter Connectivity of the Thalamus Delineates the Functional Architecture of Competing Thalamocortical Systems

    PubMed Central

    O'Muircheartaigh, Jonathan; Keller, Simon S.; Barker, Gareth J.; Richardson, Mark P.

    2015-01-01

    There is an increasing awareness of the involvement of thalamic connectivity on higher level cortical functioning in the human brain. This is reflected by the influence of thalamic stimulation on cortical activity and behavior as well as apparently cortical lesion syndromes occurring as a function of small thalamic insults. Here, we attempt to noninvasively test the correspondence of structural and functional connectivity of the human thalamus using diffusion-weighted and resting-state functional MRI. Using a large sample of 102 adults, we apply tensor independent component analysis to diffusion MRI tractography data to blindly parcellate bilateral thalamus according to diffusion tractography-defined structural connectivity. Using resting-state functional MRI collected in the same subjects, we show that the resulting structurally defined thalamic regions map to spatially distinct, and anatomically predictable, whole-brain functional networks in the same subjects. Although there was significant variability in the functional connectivity patterns, the resulting 51 structural and functional patterns could broadly be reduced to a subset of 7 similar core network types. These networks were distinct from typical cortical resting-state networks. Importantly, these networks were distributed across the brain and, in a subset, map extremely well to known thalamocortico-basal-ganglial loops. PMID:25899706

  15. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation

    PubMed Central

    Bazzini, Ariel A; Johnstone, Timothy G; Christiano, Romain; Mackowiak, Sebastian D; Obermayer, Benedikt; Fleming, Elizabeth S; Vejnar, Charles E; Lee, Miler T; Rajewsky, Nikolaus; Walther, Tobias C; Giraldez, Antonio J

    2014-01-01

    Identification of the coding elements in the genome is a fundamental step to understanding the building blocks of living systems. Short peptides (< 100 aa) have emerged as important regulators of development and physiology, but their identification has been limited by their size. We have leveraged the periodicity of ribosome movement on the mRNA to define actively translated ORFs by ribosome footprinting. This approach identifies several hundred translated small ORFs in zebrafish and human. Computational prediction of small ORFs from codon conservation patterns corroborates and extends these findings and identifies conserved sequences in zebrafish and human, suggesting functional peptide products (micropeptides). These results identify micropeptide-encoding genes in vertebrates, providing an entry point to define their function in vivo. PMID:24705786

  16. Atrial fibrillation driver mechanisms: Insight from the isolated human heart.

    PubMed

    Csepe, Thomas A; Hansen, Brian J; Fedorov, Vadim V

    2017-01-01

    Although there have been great technological advances in the treatment of atrial fibrillation (AF), current therapies remain limited due to a narrow understanding of AF mechanisms in the human heart. This review will highlight our recent studies on explanted human hearts where we developed and employed a novel functional-structural mapping approach by integrating high-resolution simultaneous endo-epicardial and panoramic optical mapping with 3D gadolinium-enhanced MRI to define the spatiotemporal characteristics of AF drivers and their structural substrates. The results allow us to postulate that the primary mechanism of AF maintenance in human hearts is a limited number of localized intramural microanatomic reentrant AF drivers anchored to heart-specific 3D fibrotically insulated myobundle tracks, which may remain hidden to clinical single-surface electrode mapping. We suggest that ex vivo human heart studies, by using an integrated 3D functional and structural mapping approach, will help to reveal defining features of AF drivers as well as validate and improve clinical approaches to detect and target these AF drivers in patients with cardiac diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Space-time modeling in EPA's Ecosystem Services Research Program

    EPA Science Inventory

    The US EPA is conducting a long-term research program on the effects of human actions on ecosystem services. Ecosystem services are defined in this program as “the products of ecological functions or processes that directly or indirectly contribute to human well-being.” Modelin...

  18. The Human Likeness Dimension of the “Uncanny Valley Hypothesis”: Behavioral and Functional MRI Findings

    PubMed Central

    Cheetham, Marcus; Suter, Pascal; Jäncke, Lutz

    2011-01-01

    The uncanny valley hypothesis (Mori, 1970) predicts differential experience of negative and positive affect as a function of human likeness. Affective experience of humanlike robots and computer-generated characters (avatars) dominates “uncanny” research, but findings are inconsistent. Importantly, it is unknown how objects are actually perceived along the hypothesis’ dimension of human likeness (DOH), defined in terms of human physical similarity. To examine whether the DOH can also be defined in terms of effects of categorical perception (CP), stimuli from morph continua with controlled differences in physical human likeness between avatar and human faces as endpoints were presented. Two behavioral studies found a sharp category boundary along the DOH and enhanced visual discrimination (i.e., CP) of fine-grained differences between pairs of faces at the category boundary. Discrimination was better for face pairs presenting category change in the human-to-avatar than avatar-to-human direction along the DOH. To investigate brain representation of physical change and category change along the DOH, an event-related functional magnetic resonance imaging study used the same stimuli in a pair-repetition priming paradigm. Bilateral mid-fusiform areas and a different right mid-fusiform area were sensitive to physical change within the human and avatar categories, respectively, whereas entirely different regions were sensitive to the human-to-avatar (caudate head, putamen, thalamus, red nucleus) and avatar-to-human (hippocampus, amygdala, mid-insula) direction of category change. These findings show that Mori’s DOH definition does not reflect subjective perception of human likeness and suggest that future “uncanny” studies consider CP and the DOH’s category structure in guiding experience of non-human objects. PMID:22131970

  19. Sparse EEG/MEG source estimation via a group lasso

    PubMed Central

    Lim, Michael; Ales, Justin M.; Cottereau, Benoit R.; Hastie, Trevor

    2017-01-01

    Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group lasso, a sparse-prior inverse that has been adapted to take advantage of functionally-defined regions of interest for the definition of physiologically meaningful groups within a functionally-based common space. Detailed simulations using realistic source-geometries and data from a human Visual Evoked Potential experiment demonstrate that the group-lasso method has improved performance over traditional ℓ2 minimum-norm methods. In addition, we show that pooling source estimates across subjects over functionally defined regions of interest results in improvements in the accuracy of source estimates for both the group-lasso and minimum-norm approaches. PMID:28604790

  20. Generation of Functional Human Retinal Ganglion Cells with Target Specificity from Pluripotent Stem Cells by Chemically Defined Recapitulation of Developmental Mechanism.

    PubMed

    Teotia, Pooja; Chopra, Divyan A; Dravid, Shashank Manohar; Van Hook, Matthew J; Qiu, Fang; Morrison, John; Rizzino, Angie; Ahmad, Iqbal

    2017-03-01

    Glaucoma is a complex group of diseases wherein a selective degeneration of retinal ganglion cells (RGCs) lead to irreversible loss of vision. A comprehensive approach to glaucomatous RGC degeneration may include stem cells to functionally replace dead neurons through transplantation and understand RGCs vulnerability using a disease in a dish stem cell model. Both approaches require the directed generation of stable, functional, and target-specific RGCs from renewable sources of cells, that is, the embryonic stem cells and induced pluripotent stem cells. Here, we demonstrate a rapid and safe, stage-specific, chemically defined protocol that selectively generates RGCs across species, including human, by recapitulating the developmental mechanism. The de novo generated RGCs from pluripotent cells are similar to native RGCs at the molecular, biochemical, functional levels. They also express axon guidance molecules, and discriminate between specific and nonspecific targets, and are nontumorigenic. Stem Cells 2017;35:572-585. © 2016 AlphaMed Press.

  1. Visuals and Visualisation of Human Body Systems

    ERIC Educational Resources Information Center

    Mathai, Sindhu; Ramadas, Jayashree

    2009-01-01

    This paper explores the role of diagrams and text in middle school students' understanding and visualisation of human body systems. We develop a common framework based on structure and function to assess students' responses across diagram and verbal modes. Visualisation is defined in terms of understanding transformations on structure and relating…

  2. Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus

    PubMed Central

    Gustafsson, Erika; Haas, Pieter-Jan; Walse, Björn; Hijnen, Marcel; Furebring, Christina; Ohlin, Mats; van Strijp, Jos AG; van Kessel, Kok PM

    2009-01-01

    Background The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) blocks the Complement fragment C5a receptor (C5aR) and formylated peptide receptor (FPR) and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity. Results In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS31–121 protein. Mapped epitopes were verified by in vitro mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding. Conclusion Conformational epitopes recognized by human antibodies have been mapped on the CHIPS surface and amino acid residues involved in both antibody and C5aR interaction could be defined. This information has implications for the development of an effective anti-inflammatory agent based on a functional CHIPS molecule with low interaction with human IgG. PMID:19284584

  3. Microbial astronauts: assembling microbial communities for advanced life support systems.

    PubMed

    Roberts, M S; Garland, J L; Mills, A L

    2004-02-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment. Copyright 2004 Springer-Verlag

  4. Microbial astronauts: assembling microbial communities for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment. Copyright 2004 Springer-Verlag.

  5. Reference in human and non-human primate communication: What does it take to refer?

    PubMed

    Sievers, Christine; Gruber, Thibaud

    2016-07-01

    The concept of functional reference has been used to isolate potentially referential vocal signals in animal communication. However, its relatedness to the phenomenon of reference in human language has recently been brought into question. While some researchers have suggested abandoning the concept of functional reference altogether, others advocate a revision of its definition to include contextual cues that play a role in signal production and perception. Empirical and theoretical work on functional reference has also put much emphasis on how the receiver understands the referential signal. However, reference, as defined in the linguistic literature, is an action of the producer, and therefore, any definition describing reference in non-human animals must also focus on the producer. To successfully determine whether a signal is used to refer, we suggest an approach from the field of pragmatics, taking a closer look at specific situations of signal production, specifically at the factors that influence the production of a signal by an individual. We define the concept of signaller's reference to identify intentional acts of reference produced by a signaller independently of the communicative modality, and illustrate it with a case study of the hoo vocalizations produced by wild chimpanzees during travel. This novel framework introduces an intentional approach to referentiality. It may therefore permit a closer comparison of human and non-human animal referential behaviour and underlying cognitive processes, allowing us to identify what may have emerged solely in the human lineage.

  6. Properties of language networks and language systems. Comment on "Approaching human language with complex networks" by Cong and Liu

    NASA Astrophysics Data System (ADS)

    Yu, Shuiyuan; Xu, Chunshan

    2014-12-01

    Language is generally considered a defining feature of human beings, a key medium for interpersonal communication, a fundamental tool for human thinking and an important vehicle for culture transmission. For the anthropoids to evolve into human being, the emergence of linguistic system is a vital step. Then, how can language serve functions so complicated and so important? To answer this question, it is necessary to probe into a central topic in linguistics: the structure of language, which has been inevitably involved in various fields of linguistic research-the functions of languages, the evolution of languages, the typology of languages, etc.

  7. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions.

    PubMed

    Wuchty, S; Rajagopala, S V; Blazie, S M; Parrish, J R; Khuri, S; Finley, R L; Uetz, P

    2017-01-01

    The functions of roughly a third of all proteins in Streptococcus pneumoniae , a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein's function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae . We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae , the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins.

  8. Determination of Death: A Scientific Perspective on Biological Integration

    PubMed Central

    Condic, Maureen L.

    2016-01-01

    Human life is operationally defined by the onset and cessation of organismal function. At postnatal stages of life, organismal integration critically and uniquely requires a functioning brain. In this article, a distinction is drawn between integrated and coordinated biologic activities. While communication between cells can provide a coordinated biologic response to specific signals, it does not support the integrated function that is characteristic of a living human being. Determining the loss of integrated function can be complicated by medical interventions (i.e., “life support”) that uncouple elements of the natural biologic hierarchy underlying our intuitive understanding of death. Such medical interventions can allow living human beings who are no longer able to function in an integrated manner to be maintained in a living state. In contrast, medical intervention can also allow the cells and tissues of an individual who has died to be maintained in a living state. To distinguish between a living human being and living human cells, two criteria are proposed: either the persistence of any form of brain function or the persistence of autonomous integration of vital functions. Either of these criteria is sufficient to determine a human being is alive. PMID:27075193

  9. Human grooming in comparative perspective: People in six small-scale societies groom less but socialize just as much as expected for a typical primate.

    PubMed

    Jaeggi, Adrian V; Kramer, Karen L; Hames, Raymond; Kiely, Evan J; Gomes, Cristina; Kaplan, Hillard; Gurven, Michael

    2017-04-01

    Grooming has important utilitarian and social functions in primates but little is known about grooming and its functional analogues in traditional human societies. We compare human grooming to typical primate patterns to test its hygienic and social functions. Bayesian phylogenetic analyses were used to derive expected human grooming time given the potential associations between grooming, group size, body size, terrestriality, and several climatic variables across 69 primate species. This was compared against observed times dedicated to grooming, other hygienic behavior, and conversation among the Maya, Pumé, Sanöma, Tsimane', Yanomamö, and Ye'kwana (mean number of behavioral scans = 23,514). Expected grooming time for humans was 4% (95% Credible Interval = 0.07%-14%), similar to values observed in primates, based largely on terrestriality and phylogenetic signal (mean λ = 0.56). No other covariates strongly associated with grooming across primates. Observed grooming time across societies was 0.8%, lower than 89% of the expected values. However, the observed times dedicated to any hygienic behavior (3.0%) or "vocal grooming," that is conversation (7.3%), fell within the expected range. We found (i) that human grooming may be a (recent) phylogenetic outlier when defined narrowly as parasite removal but not defined broadly as personal hygiene, (ii) there was no support for thermoregulatory functions of grooming, and (iii) no support for the "vocal grooming" hypothesis of language having evolved as a less time-consuming means of bonding. Thus, human grooming reflects decreased hygienic needs, but similar social needs compared to primate grooming. © 2017 Wiley Periodicals, Inc.

  10. Advanced Video Analysis Needs for Human Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Campbell, Paul D.

    1994-01-01

    Evaluators of human task performance in space missions make use of video as a primary source of data. Extraction of relevant human performance information from video is often a labor-intensive process requiring a large amount of time on the part of the evaluator. Based on the experiences of several human performance evaluators, needs were defined for advanced tools which could aid in the analysis of video data from space missions. Such tools should increase the efficiency with which useful information is retrieved from large quantities of raw video. They should also provide the evaluator with new analytical functions which are not present in currently used methods. Video analysis tools based on the needs defined by this study would also have uses in U.S. industry and education. Evaluation of human performance from video data can be a valuable technique in many industrial and institutional settings where humans are involved in operational systems and processes.

  11. You're a What? Automation Technician

    ERIC Educational Resources Information Center

    Mullins, John

    2010-01-01

    Many people think of automation as laborsaving technology, but it sure keeps Jim Duffell busy. Defined simply, automation is a technique for making a device run or a process occur with minimal direct human intervention. But the functions and technologies involved in automated manufacturing are complex. Nearly all functions, from orders coming in…

  12. DESIGN FOR THINKING, A FIRST BOOK IN SEMANTICS.

    ERIC Educational Resources Information Center

    UPTON, ALBERT

    THIS BOOK ABOUT THE FUNCTIONS OF LANGUAGE IN HUMAN LIFE EMPHASIZES LEARNING HOW TO CLASSIFY, DEFINE, AND ANALYZE. FOLLOWING AN EXPLANATION OF THE PHYSIOLOGICAL AND PSYCHOLOGICAL ROOTS OF LANGUAGE, CHAPTERS ON ANALYSIS, MEANING, SIGNS, AMBIGUITY, SEMANTIC GROWTH, AND METAPHOR LEAD TO A DESCRIPTION OF THE COMMUNICATIVE FUNCTION OF LANGUAGE,…

  13. A Commentary on Phytoestrogens and Disease

    ERIC Educational Resources Information Center

    Hard, Alison; Edelstein, Sari

    2015-01-01

    On the most basic level, phytoestrogens can be defined as compounds found in plants that exhibit estrogen-like activity in the human body. Phytoestrogens are considered functional foods because of their diverse physiological effects beyond basic nutritional functions. The 2 primary categories of phytoestrogens found in food are lignans and…

  14. Vital Soil: Function, Value and Properties.

    USDA-ARS?s Scientific Manuscript database

    This article is a review of the book, Vital Soil: Function, Value and Properties. Soil vitality has been defined as the ability of soil ecosystems to stay in balance in a changing world. The soil environment and the life that it supports developed over centuries and millennia, but careless human ac...

  15. 21 CFR 822.3 - How do you define the terms used in this part?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., the restoration or continuation of a bodily function important to the continuation of human life and....3 Section 822.3 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... information in support of a postmarket surveillance plan. (f) Life-supporting or life-sustaining device used...

  16. 21 CFR 822.3 - How do you define the terms used in this part?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., the restoration or continuation of a bodily function important to the continuation of human life and....3 Section 822.3 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... information in support of a postmarket surveillance plan. (f) Life-supporting or life-sustaining device used...

  17. A Method for Identification and Analysis of Non-Overlapping Myeloid Immunophenotypes in Humans

    PubMed Central

    Gustafson, Michael P.; Lin, Yi; Maas, Mary L.; Van Keulen, Virginia P.; Johnston, Patrick B.; Peikert, Tobias; Gastineau, Dennis A.; Dietz, Allan B.

    2015-01-01

    The development of flow cytometric biomarkers in human studies and clinical trials has been slowed by inconsistent sample processing, use of cell surface markers, and reporting of immunophenotypes. Additionally, the function(s) of distinct cell types as biomarkers cannot be accurately defined without the proper identification of homogeneous populations. As such, we developed a method for the identification and analysis of human leukocyte populations by the use of eight 10-color flow cytometric protocols in combination with novel software analyses. This method utilizes un-manipulated biological sample preparation that allows for the direct quantitation of leukocytes and non-overlapping immunophenotypes. We specifically designed myeloid protocols that enable us to define distinct phenotypes that include mature monocytes, granulocytes, circulating dendritic cells, immature myeloid cells, and myeloid derived suppressor cells (MDSCs). We also identified CD123 as an additional distinguishing marker for the phenotypic characterization of immature LIN-CD33+HLA-DR- MDSCs. Our approach permits the comprehensive analysis of all peripheral blood leukocytes and yields data that is highly amenable for standardization across inter-laboratory comparisons for human studies. PMID:25799053

  18. In Vivo Characterization of Human APOA5 Haplotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahituv, Nadav; Akiyama, Jennifer; Chapman-Helleboid, Audrey

    2006-10-01

    Increased plasma triglycerides concentrations are an independent risk factor for cardiovascular disease. Numerous studies support a reproducible genetic association between two minor haplotypes in the human apolipoprotein A5 gene (APOA5) and increased plasma triglyceride concentrations. We thus sought to investigate the effect of these minor haplotypes (APOA5*2 and APOA5*3) on ApoAV plasma levels through the precise insertion of single-copy intact APOA5 haplotypes at a targeted location in the mouse genome. While we found no difference in the amount of human plasma ApoAV in mice containing the common APOA5*1 and minor APOA5*2 haplotype, the introduction of the single APOA5*3 defining allelemore » (19W) resulted in 3-fold lower ApoAV plasma levels consistent with existing genetic association studies. These results indicate that S19W polymorphism is likely to be functional and explain the strong association of this variant with plasma triglycerides supporting the value of sensitive in vivo assays to define the functional nature of human haplotypes.« less

  19. Discovery and Characterization of Chromatin States for Systematic Annotation of the Human Genome

    NASA Astrophysics Data System (ADS)

    Ernst, Jason; Kellis, Manolis

    A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal chromatin states in human T cells, based on recurrent and spatially coherent combinations of chromatin marks.We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, largescale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.

  20. A 90-Kilodalton Endothelial Cell Molecule Mediating Lymphocyte Binding in Humans

    NASA Astrophysics Data System (ADS)

    Salmi, Marko; Jalkanen, Sirpa

    1992-09-01

    Interactions between leukocyte surface receptors and their ligands on vascular endothelial cells control lymphocyte traffic between the blood and various lymphoid organs, as well as extravasation of leukocytes into sites of inflammation. A heretofore undescribed 90-kilodalton human endothelial cell adhesion molecule (VAP-1) defined by a monoclonal antibody 1B2 is described. The expression pattern, molecular mass, functional properties, and an amino-terminal amino acid sequence define VAP-1 as an endothelial ligand for lymphocytes. VAP-1 helps to elucidate the complex heterotypic cell interactions that direct tissue-selective lymphocyte migration in man.

  1. Synthetic Substrata to Instruct Human Pluripotent Stem Cell Fate: From Novel Ligands to Functional Biomaterials

    NASA Astrophysics Data System (ADS)

    Musah, Samira

    Human pluripotent stem (hPS) cells have the remarkable capacity to self-renew indefinitely and differentiate into desired cell types. They can serve as a virtually unlimited supply of cells for applications ranging from drug screening to cell therapies to understanding human development. Reaping the promise of hPS cells hinges on effective defined culture and differentiation conditions. Efforts to generate chemically-defined environments for hPS cell propagation and directed differentiation have been hindered by access to only a handful of ligands to target hPS cells. Additionally, progress has been limited also by lack of knowledge regarding the relevant functional properties of the cell culture substratum. To address these problems, I first employed forward-chemical-genetics coupled with self-assembled monolayer technology to identify novel peptides that bind to hPS cell-surface receptors. I then developed a controlled synthesis of hydrogels with tailored peptide display and mechanical properties. This approach yielded synthetic hydrogels with specific mechanical properties that function in a defined medium to robustly support hPS cell self-renewal. Finally, by starting from molecular level understanding that matrix elasticity regulates developmental pathways, I generated a highly efficient hydrogel platform that restricts hPS cell differentiation to neurons, even without soluble inductive factors. These results indicate that insoluble cues can be important information conduits to guide hPS cell fate decisions. I envision that the blueprint provided by this work can be utilized to devise new materials to guide hPS cell fate.

  2. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells

    PubMed Central

    Belair, David G.; Whisler, Jordan A.; Valdez, Jorge; Velazquez, Jeremy; Molenda, James A.; Vickerman, Vernella; Lewis, Rachel; Daigh, Christine; Hansen, Tyler D.; Mann, David A.; Thomson, James A.; Griffith, Linda G.; Kamm, Roger D.; Schwartz, Michael P.; Murphy, William L.

    2015-01-01

    Here we describe a strategy to model blood vessel development using a well-defined iPSC-derived endothelial cell type (iPSC-EC) cultured within engineered platforms that mimic the 3D microenvironment. The iPSC-ECs used here were first characterized by expression of endothelial markers and functional properties that included VEGF responsiveness, TNF-α-induced upregulation of cell adhesion molecules (MCAM/CD146; ICAM1/CD54), thrombin-dependent barrier function, shear stress-induced alignment, and 2D and 3D capillary-like network formation in Matrigel. The iPSC-ECs also formed 3D vascular networks in a variety of engineering contexts, yielded perfusable, interconnected lumen when co-cultured with primary human fibroblasts, and aligned with flow in microfluidics devices. iPSC-EC function during tubule network formation, barrier formation, and sprouting was consistent with that of primary ECs, and the results suggest a VEGF-independent mechanism for sprouting, which is relevant to therapeutic anti-angiogenesis strategies. Our combined results demonstrate the feasibility of using a well-defined, stable source of iPSC-ECs to model blood vessel formation within a variety of contexts using standard in vitro formats. PMID:25190668

  3. Human epidermal langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase.

    PubMed

    von Bubnoff, Dagmar; Bausinger, Huguette; Matz, Heike; Koch, Susanne; Häcker, Georg; Takikawa, Osamu; Bieber, Thomas; Hanau, Daniel; de la Salle, Henri

    2004-08-01

    Langerhans cells (LC) are a special subset of dendritic cells integrating cutaneous immunity. The study of LC function is of major interest not only for efforts of vaccine design and immunotherapy but also for gaining an insight into the pathogenesis of immune-mediated cutaneous diseases and neoplasias. Recently, defined antigen-presenting cells were described that express indoleamine 2,3-dioxygenase (IDO) and inhibit T cell proliferation in vitro and in vivo. Here, we show that stimulation with interferon-gamma (IFN-gamma) induces the expression of functionally active IDO in highly purified human epidermal LC. The induction of IDO after stimulation of LC with IFN-gamma seems to follow a defined kinetic with rapid upregulation followed by a downregulation after about 24 h of culture. Accordingly, proliferation of T cells induced by anti-CD3 antibodies was modulated by supernatants of IFN-gamma-activated human epidermal LC. Importantly, downregulation of T cell proliferation by supernatants of 24 h IFN-gamma-activated LC was prevented by inhibition of IDO. These results indicate that LC not only have the capacity to stimulate but also to inhibit T cells, and suggest that LC possess an immunoregulatory function in promoting T cell tolerance by production of IDO.

  4. Functions of the human frontoparietal attention network: Evidence from neuroimaging

    PubMed Central

    Scolari, Miranda; Seidl-Rathkopf, Katharina N; Kastner, Sabine

    2016-01-01

    Human frontoparietal cortex has long been implicated as a source of attentional control. However, the mechanistic underpinnings of these control functions have remained elusive due to limitations of neuroimaging techniques that rely on anatomical landmarks to localize patterns of activation. The recent advent of topographic mapping via functional magnetic resonance imaging (fMRI) has allowed the reliable parcellation of the network into 18 independent subregions in individual subjects, thereby offering unprecedented opportunities to address a wide range of empirical questions as to how mechanisms of control operate. Here, we review the human neuroimaging literature that has begun to explore space-based, feature-based, object-based and category-based attentional control within the context of topographically defined frontoparietal cortex. PMID:27398396

  5. Human spleen and red blood cells

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  6. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.

  7. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de; Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg; Sommer, Eva

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IRmore » were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.« less

  8. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions

    PubMed Central

    Rajagopala, S. V.; Blazie, S. M.; Parrish, J. R.; Khuri, S.; Finley, R. L.

    2017-01-01

    ABSTRACT The functions of roughly a third of all proteins in Streptococcus pneumoniae, a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein’s function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae. We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae, the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins. PMID:28744484

  9. Generation of functional hepatocytes from human spermatogonial stem cells.

    PubMed

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-02-23

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration.

  10. Generation of functional hepatocytes from human spermatogonial stem cells

    PubMed Central

    Chen, Zheng; Sun, Min; Yuan, Qingqing; Niu, Minghui; Yao, Chencheng; Hou, Jingmei; Wang, Hong; Wen, Liping; Liu, Yun; Li, Zheng; He, Zuping

    2016-01-01

    To generate functional human hepatocytes from stem cells and/or extra-hepatic tissues could provide an important source of cells for treating liver diseases. Spermatogonial stem cells (SSCs) have an unlimited plasticity since they can dedifferentiate and transdifferentiate to other cell lineages. However, generation of mature and functional hepatocytes from human SSCs has not yet been achieved. Here we have for the first time reported direct transdifferentiation of human SSCs to mature and functional hepatocytes by three-step induction using the defined condition medium. Human SSCs were first transdifferentiated to hepatic stem cells, as evidenced by their morphology and biopotential nature of co-expressing hepatocyte and cholangiocyte markers but not hallmarks for embryonic stem cells. Hepatic stem cells were further induced to differentiate into mature hepatocytes identified by their morphological traits and strong expression of CK8, CK18, ALB, AAT, TF, TAT, and cytochrome enzymes rather than CK7 or CK19. Significantly, mature hepatocytes derived from human SSCs assumed functional attributes of human hepatocytes, because they could produce albumin, remove ammonia, and uptake and release indocyanine green. Moreover, expression of β-CATENIN, HNF4A, FOXA1 and GATA4 was upregulated during the transdifferentiation of human SSCs to mature hepatocytes. Collectively, human SSCs could directly transdifferentiate to mature and functional hepatocytes. This study could offer an invaluable source of human hepatocytes for curing liver disorders and drug toxicology screening and provide novel insights into mechanisms underlying human liver regeneration. PMID:26840458

  11. Lactobacilli Activate Human Dendritic Cells that Skew T Cells Toward T Helper 1 Polarization

    DTIC Science & Technology

    2005-01-06

    Species Modulate the Phenotype and Function of MDCs. Previous studies have shown that Lactobacillus plantarum and Lactobacillus rhamnosus can induce...cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded...several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and

  12. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    PubMed

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Human centromere genomics: now it's personal.

    PubMed

    Hayden, Karen E

    2012-07-01

    Advances in human genomics have accelerated studies in evolution, disease, and cellular regulation. However, centromere sequences, defining the chromosomal interface with spindle microtubules, remain largely absent from ongoing genomic studies and disconnected from functional, genome-wide analyses. This disparity results from the challenge of predicting the linear order of multi-megabase-sized regions that are composed almost entirely of near-identical satellite DNA. Acknowledging these challenges, the field of human centromere genomics possesses the potential to rapidly advance given the availability of individual, or personalized, genome projects matched with the promise of long-read sequencing technologies. Here I review the current genomic model of human centromeres in consideration of those studies involving functional datasets that examine the role of sequence in centromere identity.

  14. Generation of Megakaryocytes and Platelets from Human Pluripotent Stem Cells.

    PubMed

    Pick, Marjorie

    2016-01-01

    Human pluripotent stem cells (hPSC) have the potential to produce any tissue type in the body and thus represent a source of cells for regenerative medicine. Here we have shown that human platelets can be produced from embryonic or induced pluripotent stem cells in a defined culture system. We describe a serum- and feeder-free culture system that enabled the generation of megakaryocyte (Mk) progenitors and functional platelets from hPSCs. After 13 days the differentiated population included precursor cells that formed colonies containing differentiated Mks, and after 20 days these Mks were able to fragment into platelet-like particles that were functional. This protocol represents an important step towards the generation of human platelets for therapeutic use.

  15. Human Factors Operability Timeline Analysis to Improve the Processing Flow of the Orion Spacecraft

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Schlierf, Roland; Miller, Darcy; Posada, Juan; Haddock, Mike; Haddad, Mike; Tran, Donald; Henderon, Gena; Barth, Tim

    2011-01-01

    This slide presentation reviews the use of Human factors and timeline analysis to have a more efficient and effective processing flow. The solution involved developing a written timeline of events that included each activity within each functional flow block. Each activity had computer animation videos and pictures of the people involved and the hardware. The Human Factors Engineering Analysis Tool (HFEAT) was improved by modifying it to include the timeline of events. The HFEAT was used to define the human factors requirements and design solutions were developed for these requirements. An example of a functional flow block diagram is shown, and a view from one of the animations (i.e., short stack pallet) is shown and explained.

  16. Aesthetic emotions goals. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid

    2015-06-01

    Review by Koelsch et al. [10] presents an interdisciplinary theory of emotions, including a neurobiological emotion theory originating in four core emotional systems. The Quartet Theory (QT) includes specifically human emotions and considers the role of language for emotions. This comment considers questions about how the QT can address aesthetic emotions, what class of emotions they are, and what their function in cognition is. Can QT help defining aesthetic emotions neurally and functionally? Such a definition of aesthetic emotions would be necessary for their scientific exploration, because as widely used today there is no definition, aesthetics is defined through art, and art through aesthetics. Since contents of many art museums are not accepted as art by many artists and admirers of art, it is not clear what should be the subject of aesthetic emotions research.

  17. Genic insights from integrated human proteomics in GeneCards.

    PubMed

    Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron

    2016-01-01

    GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several GeneCards sections and help promote and organize the genome-wide structural and functional knowledge of the human proteome. Database URL:http://www.genecards.org/. © The Author(s) 2016. Published by Oxford University Press.

  18. Long noncoding RNAs as enhancers of gene expression.

    PubMed

    Ørom, U A; Derrien, T; Guigo, R; Shiekhattar, R

    2010-01-01

    The human genome contains thousands of long noncoding RNAs (ncRNAs) transcribed from diverse genomic locations. A large set of long ncRNAs is transcribed independent of protein-coding genes. We have used the GENCODE annotation of the human genome to identify 3019 long ncRNAs expressed in various human cell lines and tissue. This set of long ncRNAs responds to differentiation signals in primary human keratinocytes and is coexpressed with important regulators of keratinocyte development. Depletion of a number of these long ncRNAs leads to the repression of specific genes in their surrounding locus, supportive of an activating function for ncRNAs. Using reporter assays, we confirmed such activating function and show that such transcriptional enhancement is mediated through the long ncRNA transcripts. Our studies show that long ncRNAs exhibit functions similar to classically defined enhancers, through an RNA-dependent mechanism.

  19. Coastal habitats as surrogates for taxonomic, functional and trophic structures of benthic faunal communities.

    PubMed

    Törnroos, Anna; Nordström, Marie C; Bonsdorff, Erik

    2013-01-01

    Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.

  20. Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems

    NASA Astrophysics Data System (ADS)

    Hook, Vivian; Bandeira, Nuno

    2015-12-01

    Neuropeptides regulate intercellular signaling as neurotransmitters of the central and peripheral nervous systems, and as peptide hormones in the endocrine system. Diverse neuropeptides of distinct primary sequences of various lengths, often with post-translational modifications, coordinate and integrate regulation of physiological functions. Mass spectrometry-based analysis of the diverse neuropeptide structures in neuropeptidomics research is necessary to define the full complement of neuropeptide signaling molecules. Human neuropeptidomics has notable importance in defining normal and dysfunctional neuropeptide signaling in human health and disease. Neuropeptidomics has great potential for expansion in translational research opportunities for defining neuropeptide mechanisms of human diseases, providing novel neuropeptide drug targets for drug discovery, and monitoring neuropeptides as biomarkers of drug responses. In consideration of the high impact of human neuropeptidomics for health, an observed gap in this discipline is the few published articles in human neuropeptidomics compared with, for example, human proteomics and related mass spectrometry disciplines. Focus on human neuropeptidomics will advance new knowledge of the complex neuropeptide signaling networks participating in the fine control of neuroendocrine systems. This commentary review article discusses several human neuropeptidomics accomplishments that illustrate the rapidly expanding diversity of neuropeptides generated by protease processing of pro-neuropeptide precursors occurring within the secretory vesicle proteome. Of particular interest is the finding that human-specific cathepsin V participates in producing enkephalin and likely other neuropeptides, indicating unique proteolytic mechanisms for generating human neuropeptides. The field of human neuropeptidomics has great promise to solve new mechanisms in disease conditions, leading to new drug targets and therapeutic agents for human diseases.

  1. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  2. The brain-life theory: towards a consistent biological definition of humanness.

    PubMed Central

    Goldenring, J M

    1985-01-01

    This paper suggests that medically the term a 'human being' should be defined by the presence of an active human brain. The brain is the only unique and irreplaceable organ in the human body, as the orchestrator of all organ systems and the seat of personality. Thus, the presence or absence of brain life truly defines the presence or absence of human life in the medical sense. When viewed in this way, human life may be seen as a continuous spectrum between the onset of brain life in utero (eight weeks gestation), until the occurrence of brain death. At any point human tissue or organ systems may be present, but without the presence of a functional human brain, these do not constitute a 'human being', at least in a medical sense. The implications of this theory for various ethical concerns such as in vitro fertilisation and abortion are discussed. This theory is the most consistent possible for the definition of a human being with no contradictions inherent. However, having a good theory of definition of a 'human being' does not necessarily solve the ethical problems discussed herein. PMID:4078859

  3. Evolution of sequence-defined highly functionalized nucleic acid polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.

    2018-03-01

    The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

  4. Proteome-scale human interactomics

    PubMed Central

    Luck, Katja; Sheynkman, Gloria M.; Zhang, Ivy; Vidal, Marc

    2017-01-01

    Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome-scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. PMID:28284537

  5. Characterization of CTL Recognized Epitopes on Human Breast Tumors

    DTIC Science & Technology

    1996-09-01

    maturation and effector function of cellular immune cytotoxic effectors such as CTL (11). (c) The epitopes defined on tumor Ag are self-peptides of...have been reported to be expressed in breast and ovarian cancer cells (18), and they apparently function by maintaining the undifferentiated state...Body of the Report The purpose of the present work continues to be the characterization of the functional significance of the CTL epitopes as potential

  6. Mapping Watershed Integrity for the Conterminous United States

    EPA Science Inventory

    Watersheds provide a variety of ecosystem services valued by society. Production of these services is partially a function of the degree to which watersheds are altered by human activities. In a recent manuscript, Flotemersch and others (in preparation), defined watershed integr...

  7. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk

    PubMed Central

    Intanon, Montira; Arreola, Sheryl Lozel; Pham, Ngoc Hung; Kneifel, Wolfgang; Haltrich, Dietmar; Nguyen, Thu-Ha

    2014-01-01

    Human milk oligosaccharides (HMO) are prominent among the functional components of human breast milk. While HMO have potential applications in both infants and adults, this potential is limited by the difficulties in manufacturing these complex structures. Consequently, functional alternatives such as galacto-oligosaccharides are under investigation, and nowadays, infant formulae are supplemented with galacto-oligosaccharides to mimic the biological effects of HMO. Recently, approaches toward the production of defined human milk oligosaccharide structures using microbial, fermentative methods employing single, appropriately engineered microorganisms were introduced. Furthermore, galactose-containing hetero-oligosaccharides have attracted an increasing amount of attention because they are structurally more closely related to HMO. The synthesis of these novel oligosaccharides, which resemble the core of HMO, is of great interest for applications in the food industry. PMID:24571717

  8. Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys.

    PubMed

    Muntané, Gerard; Santpere, Gabriel; Verendeev, Andrey; Seeley, William W; Jacobs, Bob; Hopkins, William D; Navarro, Arcadi; Sherwood, Chet C

    2017-09-01

    Handedness and language are two well-studied examples of asymmetrical brain function in humans. Approximately 90% of humans exhibit a right-hand preference, and the vast majority shows left-hemisphere dominance for language function. Although genetic models of human handedness and language have been proposed, the actual gene expression differences between cerebral hemispheres in humans remain to be fully defined. In the present study, gene expression profiles were examined in both hemispheres of three cortical regions involved in handedness and language in humans and their homologues in rhesus macaques: ventrolateral prefrontal cortex, posterior superior temporal cortex (STC), and primary motor cortex. Although the overall pattern of gene expression was very similar between hemispheres in both humans and macaques, weighted gene correlation network analysis revealed gene co-expression modules associated with hemisphere, which are different among the three cortical regions examined. Notably, a receptor-enriched gene module in STC was particularly associated with hemisphere and showed different expression levels between hemispheres only in humans.

  9. Recurrent Rearrangements of Human Amylase Genes Create Multiple Independent CNV Series.

    PubMed

    Shwan, Nzar A A; Louzada, Sandra; Yang, Fengtang; Armour, John A L

    2017-05-01

    The human amylase gene cluster includes the human salivary (AMY1) and pancreatic amylase genes (AMY2A and AMY2B), and is a highly variable and dynamic region of the genome. Copy number variation (CNV) of AMY1 has been implicated in human dietary adaptation, and in population association with obesity, but neither of these findings has been independently replicated. Despite these functional implications, the structural genomic basis of CNV has only been defined in detail very recently. In this work, we use high-resolution analysis of copy number, and analysis of segregation in trios, to define new, independent allelic series of amylase CNVs in sub-Saharan Africans, including a series of higher-order expansions of a unit consisting of one copy each of AMY1, AMY2A, and AMY2B. We use fiber-FISH (fluorescence in situ hybridization) to define unexpected complexity in the accompanying rearrangements. These findings demonstrate recurrent involvement of the amylase gene region in genomic instability, involving at least five independent rearrangements of the pancreatic amylase genes (AMY2A and AMY2B). Structural features shared by fundamentally distinct lineages strongly suggest that the common ancestral state for the human amylase cluster contained more than one, and probably three, copies of AMY1. © 2017 WILEY PERIODICALS, INC.

  10. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system.

    PubMed

    Guo, Xiufang; Das, Mainak; Rumsey, John; Gonzalez, Mercedes; Stancescu, Maria; Hickman, James

    2010-12-01

    To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.

  11. Dietary antioxidants and bioflavonoids in atherosclerosis and angiogenesis

    USDA-ARS?s Scientific Manuscript database

    Dietary antioxidants are defined in Dietary Reference Intakes: the Essential Guide to Nutrient Requirements [1] as "substances in foods that significantly decrease the adverse effects of reactive species, such as reactive oxygen and nitrogen species, on normal physiological function in humans." Howe...

  12. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye.

    PubMed

    Kadmiel, Mahita; Janoshazi, Agnes; Xu, Xiaojiang; Cidlowski, John A

    2016-11-01

    Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function. Published by Elsevier Ltd.

  13. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function.

    PubMed

    Orange, Jordan S; Roy-Ghanta, Sumita; Mace, Emily M; Maru, Saumya; Rak, Gregory D; Sanborn, Keri B; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P; Pandey, Rahul

    2011-04-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.

  14. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function

    PubMed Central

    Orange, Jordan S.; Roy-Ghanta, Sumita; Mace, Emily M.; Maru, Saumya; Rak, Gregory D.; Sanborn, Keri B.; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P.; Pandey, Rahul

    2011-01-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function. PMID:21383498

  15. Phonological Processing in Human Auditory Cortical Fields

    PubMed Central

    Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.

    2011-01-01

    We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252

  16. Establishment of a translational endothelial cell model using directed differentiation of induced pluripotent stem cells from Cynomolgus monkey.

    PubMed

    Thoma, Eva C; Heckel, Tobias; Keller, David; Giroud, Nicolas; Leonard, Brian; Christensen, Klaus; Roth, Adrian; Bertinetti-Lapatki, Cristina; Graf, Martin; Patsch, Christoph

    2016-10-25

    Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here, we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs, we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover, we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions, such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.

  17. Functional correlates of the anterolateral processing hierarchy in human auditory cortex.

    PubMed

    Chevillet, Mark; Riesenhuber, Maximilian; Rauschecker, Josef P

    2011-06-22

    Converging evidence supports the hypothesis that an anterolateral processing pathway mediates sound identification in auditory cortex, analogous to the role of the ventral cortical pathway in visual object recognition. Studies in nonhuman primates have characterized the anterolateral auditory pathway as a processing hierarchy, composed of three anatomically and physiologically distinct initial stages: core, belt, and parabelt. In humans, potential homologs of these regions have been identified anatomically, but reliable and complete functional distinctions between them have yet to be established. Because the anatomical locations of these fields vary across subjects, investigations of potential homologs between monkeys and humans require these fields to be defined in single subjects. Using functional MRI, we presented three classes of sounds (tones, band-passed noise bursts, and conspecific vocalizations), equivalent to those used in previous monkey studies. In each individual subject, three regions showing functional similarities to macaque core, belt, and parabelt were readily identified. Furthermore, the relative sizes and locations of these regions were consistent with those reported in human anatomical studies. Our results demonstrate that the functional organization of the anterolateral processing pathway in humans is largely consistent with that of nonhuman primates. Because our scanning sessions last only 15 min/subject, they can be run in conjunction with other scans. This will enable future studies to characterize functional modules in human auditory cortex at a level of detail previously possible only in visual cortex. Furthermore, the approach of using identical schemes in both humans and monkeys will aid with establishing potential homologies between them.

  18. How To Make the Most of Your Human: Design Considerations for Single Pilot Operations

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.

    2015-01-01

    Reconsidering the function allocation between automation and the pilot in the flight deck is the next step in improving aviation safety. The current allocation, based on who does what best, makes poor use of the pilot's resources and abilities. In some cases it may actually handicap pilots from performing their role. Improving pilot performance first lies in defining the role of the pilot - why a human is needed in the first place. The next step is allocating functions based on the needs of that role (rather than fitness), then using automation to target specific human weaknesses in performing that role. Examples are provided (some of which could be implemented in conventional cockpits now). Along the way, the definition of human error and the idea that eliminating/automating the pilot will reduce instances of human error will be challenged.

  19. Making IBM's Computer, Watson, Human

    PubMed Central

    Rachlin, Howard

    2012-01-01

    This essay uses the recent victory of an IBM computer (Watson) in the TV game, Jeopardy, to speculate on the abilities Watson would need, in addition to those it has, to be human. The essay's basic premise is that to be human is to behave as humans behave and to function in society as humans function. Alternatives to this premise are considered and rejected. The viewpoint of the essay is that of teleological behaviorism. Mental states are defined as temporally extended patterns of overt behavior. From this viewpoint (although Watson does not currently have them), essential human attributes such as consciousness, the ability to love, to feel pain, to sense, to perceive, and to imagine may all be possessed by a computer. Most crucially, a computer may possess self-control and may act altruistically. However, the computer's appearance, its ability to make specific movements, its possession of particular internal structures (e.g., whether those structures are organic or inorganic), and the presence of any nonmaterial “self,” are all incidental to its humanity. PMID:22942530

  20. Making IBM's Computer, Watson, Human.

    PubMed

    Rachlin, Howard

    2012-01-01

    This essay uses the recent victory of an IBM computer (Watson) in the TV game, Jeopardy, to speculate on the abilities Watson would need, in addition to those it has, to be human. The essay's basic premise is that to be human is to behave as humans behave and to function in society as humans function. Alternatives to this premise are considered and rejected. The viewpoint of the essay is that of teleological behaviorism. Mental states are defined as temporally extended patterns of overt behavior. From this viewpoint (although Watson does not currently have them), essential human attributes such as consciousness, the ability to love, to feel pain, to sense, to perceive, and to imagine may all be possessed by a computer. Most crucially, a computer may possess self-control and may act altruistically. However, the computer's appearance, its ability to make specific movements, its possession of particular internal structures (e.g., whether those structures are organic or inorganic), and the presence of any nonmaterial "self," are all incidental to its humanity.

  1. Proteome-Scale Human Interactomics.

    PubMed

    Luck, Katja; Sheynkman, Gloria M; Zhang, Ivy; Vidal, Marc

    2017-05-01

    Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Application of ARAMIS capabilities to space project functional elements

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities and their related ground support functions are studied, so that informed decisions can be made on which aspects of ARAMIS to develop. The specific tasks which will be required by future space project tasks are identified and the relative merits of these options are evaluated. The ARAMIS options defined and researched span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  3. Defining Functional Areas in Individual Human Brains using Resting Functional Connectivity MRI

    PubMed Central

    Cohen, Alexander L.; Fair, Damien A.; Dosenbach, Nico U.F.; Miezin, Francis M.; Dierker, Donna; Van Essen, David C.; Schlaggar, Bradley L.; Petersen, Steven E.

    2009-01-01

    The cerebral cortex is anatomically organized at many physical scales starting at the level of single neurons and extending up to functional systems. Current functional magnetic resonance imaging (fMRI) studies often focus at the level of areas, networks, and systems. Except in restricted domains, (e.g. topographically-organized sensory regions), it is difficult to determine area boundaries in the human brain using fMRI. The ability to delineate functional areas non-invasively would enhance the quality of many experimental analyses allowing more accurate across-subject comparisons of independently identified functional areas. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity (rs-fcMRI), are especially promising as a way to accurately localize differences in patterns of correlated activity across large expanses of cortex. In the current report, we applied a novel set of image analysis tools to explore the utility of rs-fcMRI for defining wide-ranging functional area boundaries. We find that rs-fcMRI patterns show sharp transitions in correlation patterns and that these putative areal boundaries can be reliably detected in individual subjects as well as in group data. Additionally, combining surface-based analysis techniques with image processing algorithms allows automated mapping of putative areal boundaries across large expanses of cortex without the need for prior information about a region’s function or topography. Our approach reliably produces maps of bounded regions appropriate in size and number for putative functional areas. These findings will hopefully stimulate further methodological refinements and validations. PMID:18367410

  4. Protannotator: a semiautomated pipeline for chromosome-wise functional annotation of the "missing" human proteome.

    PubMed

    Islam, Mohammad T; Garg, Gagan; Hancock, William S; Risk, Brian A; Baker, Mark S; Ranganathan, Shoba

    2014-01-03

    The chromosome-centric human proteome project (C-HPP) aims to define the complete set of proteins encoded in each human chromosome. The neXtProt database (September 2013) lists 20,128 proteins for the human proteome, of which 3831 human proteins (∼19%) are considered "missing" according to the standard metrics table (released September 27, 2013). In support of the C-HPP initiative, we have extended the annotation strategy developed for human chromosome 7 "missing" proteins into a semiautomated pipeline to functionally annotate the "missing" human proteome. This pipeline integrates a suite of bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology, and biochemical pathways. From sequential BLAST searches, we have primarily identified homologues from reviewed nonhuman mammalian proteins with protein evidence for 1271 (33.2%) "missing" proteins, followed by 703 (18.4%) homologues from reviewed nonhuman mammalian proteins and subsequently 564 (14.7%) homologues from reviewed human proteins. Functional annotations for 1945 (50.8%) "missing" proteins were also determined. To accelerate the identification of "missing" proteins from proteomics studies, we generated proteotypic peptides in silico. Matching these proteotypic peptides to ENCODE proteogenomic data resulted in proteomic evidence for 107 (2.8%) of the 3831 "missing proteins, while evidence from a recent membrane proteomic study supported the existence for another 15 "missing" proteins. The chromosome-wise functional annotation of all "missing" proteins is freely available to the scientific community through our web server (http://biolinfo.org/protannotator).

  5. Human factors evaluation of level 2 and level 3 automated driving concepts : concepts of operation.

    DOT National Transportation Integrated Search

    2014-07-01

    The Concepts of Operation document evaluates the functional framework of operations for Level 2 and Level 3 automated vehicle systems. This is done by defining the varying levels of automation, the operator vehicle interactions, and system components...

  6. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    PubMed

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J

    2007-06-14

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

  7. Technical Advance: Live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung

    PubMed Central

    Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G.; Grandien, Alf; Coles, Mark; Svensson, Mattias

    2014-01-01

    This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. PMID:24899587

  8. Explanation of asymmetric dynamics of human water consumption in arid regions: prospect theory versus expected utility theory

    NASA Astrophysics Data System (ADS)

    Tian, F.; Lu, Y.

    2017-12-01

    Based on socioeconomic and hydrological data in three arid inland basins and error analysis, the dynamics of human water consumption (HWC) are analyzed to be asymmetric, i.e., HWC increase rapidly in wet periods while maintain or decrease slightly in dry periods. Besides the qualitative analysis that in wet periods great water availability inspires HWC to grow fast but the now expanded economy is managed to sustain by over-exploitation in dry periods, two quantitative models are established and tested, based on expected utility theory (EUT) and prospect theory (PT) respectively. EUT states that humans make decisions based on the total expected utility, namely the sum of utility function multiplied by probability of each result, while PT states that the utility function is defined over gains and losses separately, and probability should be replaced by probability weighting function.

  9. Perspectives on Episodic-Like and Episodic Memory

    PubMed Central

    Pause, Bettina M.; Zlomuzica, Armin; Kinugawa, Kiyoka; Mariani, Jean; Pietrowsky, Reinhard; Dere, Ekrem

    2013-01-01

    Episodic memory refers to the conscious recollection of a personal experience that contains information on what has happened and also where and when it happened. Recollection from episodic memory also implies a kind of first-person subjectivity that has been termed autonoetic consciousness. Episodic memory is extremely sensitive to cerebral aging and neurodegenerative diseases. In Alzheimer’s disease deficits in episodic memory function are among the first cognitive symptoms observed. Furthermore, impaired episodic memory function is also observed in a variety of other neuropsychiatric diseases including dissociative disorders, schizophrenia, and Parkinson disease. Unfortunately, it is quite difficult to induce and measure episodic memories in the laboratory and it is even more difficult to measure it in clinical populations. Presently, the tests used to assess episodic memory function do not comply with even down-sized definitions of episodic-like memory as a memory for what happened, where, and when. They also require sophisticated verbal competences and are difficult to apply to patient populations. In this review, we will summarize the progress made in defining behavioral criteria of episodic-like memory in animals (and humans) as well as the perspectives in developing novel tests of human episodic memory which can also account for phenomenological aspects of episodic memory such as autonoetic awareness. We will also define basic behavioral, procedural, and phenomenological criteria which might be helpful for the development of a valid and reliable clinical test of human episodic memory. PMID:23616754

  10. Acid sphingomyelinase mediates human CD4+ T-cell signaling: potential roles in T-cell responses and diseases

    PubMed Central

    Bai, Aiping; Guo, Yuan

    2017-01-01

    Acid sphingomyelinase (ASM) is a lipid hydrolase. By generating ceramide, ASM had been reported to have an important role in regulating immune cell functions inclusive of macrophages, NK cells, and CD8+ T cells, whereas the role of ASM bioactivity in regulation of human CD4+ T-cell functions remained uncertain. Recent studies have provided novel findings in this field. Upon stimulation of CD3 and/or CD28, ASM-dependent ceramide signaling mediates intracellular downstream signal cascades of CD3 and CD28, and regulates CD4+ T-cell activation and proliferation. Meanwhile, CD39 and CD161 have direct interactions with ASM, which mediates downstream signals inclusive of STAT3 and mTOR and thus defines human Th17 cells. Intriguingly, ASM mediates Th1 responses, but negatively regulates Treg functions. In this review, we summarized the pivotal roles of ASM in regulation of human CD4+ T-cell activation and responses. ASM/sphingolipid signaling may be a novel target for the therapy of human autoimmune diseases. PMID:28749465

  11. Analyzing the 3D Structure of Human Carbonic Anhydrase II and Its Mutants Using Deep View and the Protein Data Bank

    ERIC Educational Resources Information Center

    Ship, Noam J.; Zamble, Deborah B.

    2005-01-01

    The self directed study of a 3D image of a biomolecule stresses the complex nature of the intra- and intermolecular interactions that come together to define its structure. This is made up of a series of in vitro experiments with a wild-type and mutants forms of human carbonic anhydrase II (hCAII) that examine the structure function relationship…

  12. A new methodology for estimating nuclear casualties as a function of time.

    PubMed

    Zirkle, Robert A; Walsh, Terri J; Disraelly, Deena S; Curling, Carl A

    2011-09-01

    The Human Response Injury Profile (HRIP) nuclear methodology provides an estimate of casualties occurring as a consequence of nuclear attacks against military targets for planning purposes. The approach develops user-defined, time-based casualty and fatality estimates based on progressions of underlying symptoms and their severity changes over time. This paper provides a description of the HRIP nuclear methodology and its development, including inputs, human response and the casualty estimation process.

  13. Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles

    PubMed Central

    Aldrup-MacDonald, Megan E.; Kuo, Molly E.; Sullivan, Lori L.; Chew, Kimberline

    2016-01-01

    Alpha satellite is a tandemly organized type of repetitive DNA that comprises 5% of the genome and is found at all human centromeres. A defined number of 171-bp monomers are organized into chromosome-specific higher-order repeats (HORs) that are reiterated thousands of times. At least half of all human chromosomes have two or more distinct HOR alpha satellite arrays within their centromere regions. We previously showed that the two alpha satellite arrays of Homo sapiens Chromosome 17 (HSA17), D17Z1 and D17Z1-B, behave as centromeric epialleles, that is, the centromere, defined by chromatin containing the centromeric histone variant CENPA and recruitment of other centromere proteins, can form at either D17Z1 or D17Z1-B. Some individuals in the human population are functional heterozygotes in that D17Z1 is the active centromere on one homolog and D17Z1-B is active on the other. In this study, we aimed to understand the molecular basis for how centromere location is determined on HSA17. Specifically, we focused on D17Z1 genomic variation as a driver of epiallele formation. We found that D17Z1 arrays that are predominantly composed of HOR size and sequence variants were functionally less competent. They either recruited decreased amounts of the centromere-specific histone variant CENPA and the HSA17 was mitotically unstable, or alternatively, the centromere was assembled at D17Z1-B and the HSA17 was stable. Our study demonstrates that genomic variation within highly repetitive, noncoding DNA of human centromere regions has a pronounced impact on genome stability and basic chromosomal function. PMID:27510565

  14. Carboetomidate: A Pyrrole Analogue of Etomidate Designed Not To Suppress Adrenocortical Function

    PubMed Central

    Cotten, Joseph F.; Forman, Stuart A.; Laha, Joydev K.; Cuny, Gregory D.; Husain, S. Shaukat; Miller, Keith W.; Nguyen, Hieu H.; Kelly, Elizabeth W.; Stewart, Deirdre; Liu, Aiping; Raines, Douglas E.

    2010-01-01

    Background Etomidate is a sedative-hypnotic that is often used in critically ill patients because it provides superior hemodynamic stability. However it also binds with high affinity to 11β-hydroxylase, potently suppressing synthesis of steroids by the adrenal gland that are necessary for survival. We report the results of studies to define the pharmacology of (R)-ethyl 1-(1-phenylethyl)-1H-pyrrole-2-carboxylate (carboetomidate), a pyrrole analogue of etomidate specifically designed not to bind with high affinity to 11β-hydroxylase. Methods The hypnotic potency of carboetomidate was defined in tadpoles and rats using loss of righting reflex assays. Its ability to enhance wild-type α1β2γ2L and etomidate-insensitive mutant α1β2(M286W)γ2L human γ-aminobutyric acid type A receptor activities was assessed using electrophysiological techniques. Its potency for inhibiting in vitro cortisol synthesis was defined using a human adrenocortical cell assay. Its effects on in vivo hemodynamic and adrenocortical function were defined in rats. Results Carboetomidate was a potent hypnotic in tadpoles and rats. It increased currents mediated by wild-type, but not etomidate-insensitive mutant γ-aminobutyric acid type A receptors. Carboetomidate was three orders of magnitude less potent an inhibitor of in vitro cortisol synthesis by adrenocortical cells than was etomidate. In rats, carboetomidate caused minimal hemodynamic changes and did not suppress adrenocortical function at hypnotic doses. Conclusions Carboetomidate is an etomidate analogue that retains many of etomidate’s beneficial properties, but is dramatically less potent as an inhibitor of adrenocortical steroid synthesis. Carboetomidate is a promising new sedative-hypnotic for potential use in critically ill patients in whom adrenocortical suppression is undesirable. PMID:20179500

  15. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Supplement, Appendix 4.3: Candidate ARAMIS Capabilities

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  16. An Allelic Series of Trp63 Mutations Defines TAp63 as a Modifier of EEC Syndrome

    PubMed Central

    Lindahl, Emma Vernersson; Garcia, Elvin L.; Mills, Alea A.

    2014-01-01

    Human Ectrodactyly, Ectodermal dysplasia, Clefting (EEC) syndrome is an autosomal dominant developmental disorder defined by limb deformities, skin defects, and craniofacial clefting. Although associated with heterozygous missense mutations in TP63, the genetic basis underlying the variable expressivity and incomplete penetrance of EEC is unknown. Here we show that mice heterozygous for an allele encoding the Trp63 p.Arg318His mutation, which corresponds to the human TP63 p.Arg279His mutation found in patients with EEC, have features of human EEC. Using an allelic series, we discovered that whereas clefting and skin defects are caused by loss of Trp63 function, limb anomalies are due to gain- and/or dominant-negative effects of Trp63. Furthermore, we identify TAp63 as a strong modifier of EEC-associated phenotypes with regard to both penetrance and expressivity. PMID:23775923

  17. On the prevalence of population groups in the human-genetics research literature.

    PubMed

    Birenbaum-Carmeli, D

    2004-03-01

    Population-specific human-genetics research has become commonplace but remains controversial, as its results can affect public and personal perceptions of the ethnic, national, and racial groups studied. Choice of populations for study has generally seemed a function of scientific, logistical, or economic factors. Has the identity of populations studied in the human-genetics research literature varied systematically, and, if it has, in what ways? I searched the PubMed database for population-genetics reports, calculating for each a population score, a genetics score, and a mutation score. Some populations had been studied far more intensively than others. Many of the most frequently studied groups were ethnically defined and politically marginal in their home countries; some of these groups were involved in self-determination struggles. In the mutation-research literature, state-defined Muslim and Mediterranean populations prevailed. Study-population selection may in some cases be explained by, or may complicate, political predicament.

  18. A Protein Structure Initiative Approach to Expression, Purification, and In Situ Delivery of Human Cytochrome b5 to Membrane Vesicles†

    PubMed Central

    Sobrado, Pablo; Goren, Michael A.; James, Declan; Amundson, Carissa K.; Fox, Brian G.

    2008-01-01

    A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of ~18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3 mg per]of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed. PMID:18226920

  19. A Protein Structure Initiative approach to expression, purification, and in situ delivery of human cytochrome b5 to membrane vesicles.

    PubMed

    Sobrado, Pablo; Goren, Michael A; James, Declan; Amundson, Carissa K; Fox, Brian G

    2008-04-01

    A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of approximately 18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3mg per g of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed.

  20. Environmental Education and Geography of Complexity

    ERIC Educational Resources Information Center

    Cecioni, Ester

    2005-01-01

    Geography is defined as "a transition point between natural temporality and human temporality" (Maragliano, 1998). Presented like this, geography seems, at least at first sight, to assume an inexorable function as a linking discipline between nature and society. Unfortunately this pivotal role is not realised, given that geography is…

  1. Development of a publicly available, comprehensive database of fiber and health outcomes: rationale and methods

    USDA-ARS?s Scientific Manuscript database

    Background: Dietary fiber is a broad category of compounds historically defined as partially or completely indigestible plant-based carbohydrates and lignin with, more recently, the additional criteria that fibers incorporated into foods as additives should demonstrate functional human health outcom...

  2. Biometric Communication Research for Television.

    ERIC Educational Resources Information Center

    Malik, M. F.

    Biometric communication research is defined as research dealing with the information impact of a film or television show, photographic picture, painting, exhibition, display, or any literary or functional texts or verbal stimuli on human beings, both as individuals and in groups (mass audiences). Biometric communication research consists of a…

  3. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging

    PubMed Central

    2016-01-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313

  4. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  5. Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro

    PubMed Central

    Perez-Alcazar, Marta; Culley, Georgia; Lyckenvik, Tim; Mobarrez, Kristoffer; Bjorefeldt, Andreas; Wasling, Pontus; Seth, Henrik; Asztely, Frederik; Harrer, Andrea; Iglseder, Bernhard; Aigner, Ludwig; Hanse, Eric; Illes, Sebastian

    2016-01-01

    For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling. PMID:26973467

  6. Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex.

    PubMed

    Ojemann, George A; Ojemann, Jeffrey; Ramsey, Nick F

    2013-01-01

    The relation between changes in the blood oxygen dependent metabolic changes imaged by functional magnetic resonance imaging (fMRI) and neural events directly recorded from human cortex from single neurons, local field potentials (LFPs) and electrocorticogram (ECoG) is critically reviewed, based on the published literature including findings from the authors' laboratories. All these data are from special populations, usually patients with medically refractory epilepsy, as this provides the major opportunity for direct cortical neuronal recording in humans. For LFP and ECoG changes are often sought in different frequency bands, for single neurons in frequency of action potentials. Most fMRI studies address issues of functional localization. The relation of those findings to localized changes in neuronal recordings in humans has been established in several ways. Only a few studies have directly compared changes in activity from the same sites in the same individual, using the same behavioral measure. More often the comparison has been between fMRI and electrophysiologic changes in populations recorded from the same functional anatomic system as defined by lesion effects; in a few studies those systems have been defined by fMRI changes such as the "default" network. The fMRI-electrophysiologic relationships have been evaluated empirically by colocalization of significant changes, and by quantitative analyses, often multiple linear regression. There is some evidence that the fMRI-electrophysiology relationships differ in different cortical areas, particularly primary motor and sensory cortices compared to association cortex, but also within areas of association cortex. Although crucial for interpretation of fMRI changes as reflecting neural activity in human cortex, controversy remains as to these relationships. Supported by: Dutch Technology Foundation and University of Utrecht Grant UGT7685, ERC-Advanced grant 320708 (NR) and NIH grant NS065186 (JO).

  7. Mechanism of Polyubiquitination by Human Anaphase-Promoting Complex: RING Repurposing for Ubiquitin Chain Assembly

    DOE PAGES

    Brown, Nicholas G.; Watson, Edmond R.; Weissmann, Florian; ...

    2014-10-09

    Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here in this paper we show that human APC’s RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms.more » During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.« less

  8. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues.

    PubMed

    McCain, Megan L; Agarwal, Ashutosh; Nesmith, Haley W; Nesmith, Alexander P; Parker, Kevin Kit

    2014-07-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues

    PubMed Central

    McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit

    2014-01-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714

  10. Potassium Channels in Epilepsy

    PubMed Central

    Köhling, Rüdiger; Wolfart, Jakob

    2016-01-01

    This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. PMID:27141079

  11. Nursing care of patients during the dying process: a painful professional and human function.

    PubMed

    Lopera Betancur, Martha Adiela

    2015-01-01

    This work sought to describe the care functions of nurses with patients during the dying process. This was a qualitative study with ethnographic approach stemming from the analysis of the culture of nurses; it was conducted in the city of Medellín, Colombia. Theoretical saturation was obtained with 23 interviews. Nurses feel the duty to care for patients throughout the vital cycle through functions defined as: serving, helping, accompanying, offering support, advocating, educating, and representing, which they identify as indispensable. They also perceive as their own the social responsibility for some issues related to death and due to this they get involved at the personal level, appropriate care and are affected as persons. Patient care during dying processes transcends the limits of the nurse' professional functions to become a human obligation.

  12. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip

    PubMed Central

    Musah, Samira; Mammoto, Akiko; Ferrante, Thomas C.; Jeanty, Sauveur S. F.; Hirano-Kobayashi, Mariko; Mammoto, Tadanori; Roberts, Kristen; Chung, Seyoon; Novak, Richard; Ingram, Miles; Fatanat-Didar, Tohid; Koshy, Sandeep; Weaver, James C.; Church, George M.; Ingber, Donald E.

    2017-01-01

    An in vitro model of the human kidney glomerulus — the major site of blood filtration — could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes — the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (> 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers of the mature phenotype (nephrin+, WT1+, podocin+, Pax2−) and that exhibit primary and secondary foot processes. We also show that the hiPS-cell-derived podocytes produce glomerular basement-membrane collagen and recapitulate the natural tissue/tissue interface of the glomerulus, as well as the differential clearance of albumin and inulin, when co-cultured with human glomerular endothelial cells in an organ-on-a-chip microfluidic device. The glomerulus-on-a-chip also mimics adriamycin-induced albuminuria and podocyte injury. This in vitro model of human glomerular function with mature human podocytes may facilitate drug development and personalized-medicine applications. PMID:29038743

  13. Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer

    PubMed Central

    O'Hurley, Gillian; Busch, Christer; Fagerberg, Linn; Hallström, Björn M.; Stadler, Charlotte; Tolf, Anna; Lundberg, Emma; Schwenk, Jochen M.; Jirström, Karin; Bjartell, Anders; Gallagher, William M.; Uhlén, Mathias; Pontén, Fredrik

    2015-01-01

    To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL. PMID:26237329

  14. Approaches to defining deltaic sustainability in the 21st century

    NASA Astrophysics Data System (ADS)

    Day, John W.; Agboola, Julius; Chen, Zhongyuan; D'Elia, Christopher; Forbes, Donald L.; Giosan, Liviu; Kemp, Paul; Kuenzer, Claudia; Lane, Robert R.; Ramachandran, Ramesh; Syvitski, James; Yañez-Arancibia, Alejandro

    2016-12-01

    Deltas are among the most productive and economically important of global ecosystems but unfortunately they are also among the most threatened by human activities. Here we discuss deltas and human impact, several approaches to defining deltaic sustainability and present a ranking of sustainability. Delta sustainability must be considered within the context of global biophysical and socioeconomic constraints that include thermodynamic limitations, scale and embeddedness, and constraints at the level of the biosphere/geosphere. The development, functioning, and sustainability of deltas are the result of external and internal inputs of energy and materials, such as sediments and nutrients, that include delta lobe development, channel switching, crevasse formation, river floods, storms and associated waves and storm surges, and tides and other ocean currents. Modern deltas developed over the past several thousand years with relatively stable global mean sea level, predictable material inputs from drainage basins and the sea, and as extremely open systems. Human activity has changed these conditions to make deltas less sustainable, in that they are unable to persist through time structurally or functionally. Deltaic sustainability can be considered from geomorphic, ecological, and economic perspectives, with functional processes at these three levels being highly interactive. Changes in this functioning can lead to either enhanced or diminished sustainability, but most changes have been detrimental. There is a growing understanding that the trajectories of global environmental change and cost of energy will make achieving delta sustainability more challenging and limit options for management. Several delta types are identified in terms of sustainability including those in arid regions, those with high and low energy-intensive management systems, deltas below sea level, tropical deltas, and Arctic deltas. Representative deltas are ranked on a sustainability range. Success in sustainable delta management will depend on utilizing natural delta functioning and an ecological engineering approach.

  15. Your New Role in the Organizational Drama: Measuring Effectiveness.

    ERIC Educational Resources Information Center

    Chalofsky, Neal E.; Reinhart, Carlene

    1988-01-01

    Presents a research-based model for human resource development effectiveness. Model standards specify that the HRD function has (1) the ability to diagnose problems, (2) the support of the corporate mission and culture, (3) a commitment to strategic planning and support for organizational change, (4) clearly defined staff roles and…

  16. Sound, Noise, and Vibration Control.

    ERIC Educational Resources Information Center

    Yerges, Lyle F.

    This working guide on the principles and techniques of controlling acoustical environment is discussed in the light of human, environmental and building needs. The nature of sound and its variables are defined. The acoustical environment and its many materials, spaces and functional requirements are described, with specific methods for planning,…

  17. From the Cover: Cell-replacement therapy for diabetes: Generating functional insulin-producing tissue from adult human liver cells

    NASA Astrophysics Data System (ADS)

    Sapir, Tamar; Shternhall, Keren; Meivar-Levy, Irit; Blumenfeld, Tamar; Cohen, Hamutal; Skutelsky, Ehud; Eventov-Friedman, Smadar; Barshack, Iris; Goldberg, Iris; Pri-Chen, Sarah; Ben-Dor, Lya; Polak-Charcon, Sylvie; Karasik, Avraham; Shimon, Ilan; Mor, Eytan; Ferber, Sarah

    2005-05-01

    Shortage in tissue availability from cadaver donors and the need for life-long immunosuppression severely restrict the large-scale application of cell-replacement therapy for diabetic patients. This study suggests the potential use of adult human liver as alternate tissue for autologous beta-cell-replacement therapy. By using pancreatic and duodenal homeobox gene 1 (PDX-1) and soluble factors, we induced a comprehensive developmental shift of adult human liver cells into functional insulin-producing cells. PDX-1-treated human liver cells express insulin, store it in defined granules, and secrete the hormone in a glucose-regulated manner. When transplanted under the renal capsule of diabetic, immunodeficient mice, the cells ameliorated hyperglycemia for prolonged periods of time. Inducing developmental redirection of adult liver offers the potential of a cell-replacement therapy for diabetics by allowing the patient to be the donor of his own insulin-producing tissue. pancreas | transdifferentiation

  18. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro.

    PubMed

    Smith, A S T; Long, C J; Pirozzi, K; Najjar, S; McAleer, C; Vandenburgh, H H; Hickman, J J

    2014-09-20

    This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription.

    PubMed

    Lai, Fan; Orom, Ulf A; Cesaroni, Matteo; Beringer, Malte; Taatjes, Dylan J; Blobel, Gerd A; Shiekhattar, Ramin

    2013-02-28

    Recent advances in genomic research have revealed the existence of a large number of transcripts devoid of protein-coding potential in multiple organisms. Although the functional role for long non-coding RNAs (lncRNAs) has been best defined in epigenetic phenomena such as X-chromosome inactivation and imprinting, different classes of lncRNAs may have varied biological functions. We and others have identified a class of lncRNAs, termed ncRNA-activating (ncRNA-a), that function to activate their neighbouring genes using a cis-mediated mechanism. To define the precise mode by which such enhancer-like RNAs function, we depleted factors with known roles in transcriptional activation and assessed their role in RNA-dependent activation. Here we report that depletion of the components of the co-activator complex, Mediator, specifically and potently diminished the ncRNA-induced activation of transcription in a heterologous reporter assay using human HEK293 cells. In vivo, Mediator is recruited to ncRNA-a target genes and regulates their expression. We show that ncRNA-a interact with Mediator to regulate its chromatin localization and kinase activity towards histone H3 serine 10. The Mediator complex harbouring disease- displays diminished ability to associate with activating ncRNAs. Chromosome conformation capture confirmed the presence of DNA looping between the ncRNA-a loci and its targets. Importantly, depletion of Mediator subunits or ncRNA-a reduced the chromatin looping between the two loci. Our results identify the human Mediator complex as the transducer of activating ncRNAs and highlight the importance of Mediator and activating ncRNA association in human disease.

  20. Defining a Cancer Dependency Map | Office of Cancer Genomics

    Cancer.gov

    Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean.

  1. Functional structure and dynamics of the human nervous system

    NASA Technical Reports Server (NTRS)

    Lawrence, J. A.

    1981-01-01

    The status of an effort to define the directions needed to take in extending pilot models is reported. These models are needed to perform closed-loop (man-in-the-loop) feedback flight control system designs and to develop cockpit display requirements. The approach taken is to develop a hypothetical working model of the human nervous system by reviewing the current literature in neurology and psychology and to develop a computer model of this hypothetical working model.

  2. The human mirror neuron system and embodied representations.

    PubMed

    Aziz-Zadeh, Lisa; Ivry, Richard B

    2009-01-01

    Mirror neurons are defined as neurons in the monkey cortex which respond to goal oriented actions, whether the behavior is self-generated or produced by another. Here we briefly review this literature and consider evidence from behavioral, neuropsychological, and brain imaging studies for a similar mirror neuron system in humans. Furthermore, we review functions of this system related to action comprehension and motor imagery, as well as evidence for speculations on the system's ties with conceptual knowledge and language.

  3. Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations.

    PubMed

    Zebende, Gilney Figueira; Oliveira Filho, Florêncio Mendes; Leyva Cruz, Juan Alberto

    2017-01-01

    In this paper we analyzed, by the FDFA root mean square fluctuation (rms) function, the motor/imaginary human activity produced by a 64-channel electroencephalography (EEG). We utilized the Physionet on-line databank, a publicly available database of human EEG signals, as a standardized reference database for this study. Herein, we report the use of detrended fluctuation analysis (DFA) method for EEG analysis. We show that the complex time series of the EEG exhibits characteristic fluctuations depending on the analyzed channel in the scalp-recorded EEG. In order to demonstrate the effectiveness of the proposed technique, we analyzed four distinct channels represented here by F332, F637 (frontal region of the head) and P349, P654 (parietal region of the head). We verified that the amplitude of the FDFA rms function is greater for the frontal channels than for the parietal. To tabulate this information in a better way, we define and calculate the difference between FDFA (in log scale) for the channels, thus defining a new path for analysis of EEG signals. Finally, related to the studied EEG signals, we obtain the auto-correlation exponent, αDFA by DFA method, that reveals self-affinity at specific time scale. Our results shows that this strategy can be applied to study the human brain activity in EEG processing.

  4. Spatially invariant coding of numerical information in functionally defined subregions of human parietal cortex.

    PubMed

    Eger, E; Pinel, P; Dehaene, S; Kleinschmidt, A

    2015-05-01

    Macaque electrophysiology has revealed neurons responsive to number in lateral (LIP) and ventral (VIP) intraparietal areas. Recently, fMRI pattern recognition revealed information discriminative of individual numbers in human parietal cortex but without precisely localizing the relevant sites or testing for subregions with different response profiles. Here, we defined the human functional equivalents of LIP (feLIP) and VIP (feVIP) using neurophysiologically motivated localizers. We applied multivariate pattern recognition to investigate whether both regions represent numerical information and whether number codes are position specific or invariant. In a delayed number comparison paradigm with laterally presented numerosities, parietal cortex discriminated between numerosities better than early visual cortex, and discrimination generalized across hemifields in parietal, but not early visual cortex. Activation patterns in the 2 parietal regions of interest did not differ in the coding of position-specific or position-independent number information, but in the expression of a numerical distance effect which was more pronounced in feLIP. Thus, the representation of number in parietal cortex is at least partially position invariant. Both feLIP and feVIP contain information about individual numerosities in humans, but feLIP hosts a coarser representation of numerosity than feVIP, compatible with either broader tuning or a summation code. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Management of Service Projects in Support of Space Flight Research

    NASA Technical Reports Server (NTRS)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  6. An estimation of the number of cells in the human body.

    PubMed

    Bianconi, Eva; Piovesan, Allison; Facchin, Federica; Beraudi, Alina; Casadei, Raffaella; Frabetti, Flavia; Vitale, Lorenza; Pelleri, Maria Chiara; Tassani, Simone; Piva, Francesco; Perez-Amodio, Soledad; Strippoli, Pierluigi; Canaider, Silvia

    2013-01-01

    All living organisms are made of individual and identifiable cells, whose number, together with their size and type, ultimately defines the structure and functions of an organism. While the total cell number of lower organisms is often known, it has not yet been defined in higher organisms. In particular, the reported total cell number of a human being ranges between 10(12) and 10(16) and it is widely mentioned without a proper reference. To study and discuss the theoretical issue of the total number of cells that compose the standard human adult organism. A systematic calculation of the total cell number of the whole human body and of the single organs was carried out using bibliographical and/or mathematical approaches. A current estimation of human total cell number calculated for a variety of organs and cell types is presented. These partial data correspond to a total number of 3.72 × 10(13). Knowing the total cell number of the human body as well as of individual organs is important from a cultural, biological, medical and comparative modelling point of view. The presented cell count could be a starting point for a common effort to complete the total calculation.

  7. Utilization of functional near infrared spectroscopy for non-invasive evaluation

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Aziz, N. A.; Laili, A. R.; Salikin, M. S.; Rusop, M.

    2016-07-01

    The goal of this brief review is to report the techniques of functional near infrared spectroscopy for non-invasive evaluation in human study. The development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to define the light penetration into tissues multilayers. There are a lot of studies that demonstrate signal from fNIRS which can be used to evaluate the changes of oxygenation level and measure the limitation of muscle performance in human brain and muscle tissues. Comprehensive reviews of diffuse reflectance based on beer lambert law theory were presented in this paper. The principle and development of fNIRS instrumentation is reported in detail.

  8. [Right extremities pain caused by a malacia lesion in the left putamen:a resting functional magnetic resonance imaging of the marginal division of the human brain].

    PubMed

    Chen, Zhi-Ye; Ma, Lin

    2014-04-01

    To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.

  9. The Nutritional Phenotype in the Age of Metabolomics

    PubMed Central

    Zeisel, S. H.; Freake, H. C.; Bauman, D. E.; Bier, D. M.; Burrin, D. G.; German, J. B.; Klein, S.; Marquis, G. S.; Milner, J. A.; Pelto, G. H.; Rasmussen, K. M.

    2008-01-01

    The concept of the nutritional phenotype is proposed as a defined and integrated set of genetic, proteomic, metabolomic, functional, and behavioral factors that, when measured, form the basis for assessment of human nutritional status. The nutritional phenotype integrates the effects of diet on disease/wellness and is the quantitative indication of the paths by which genes and environment exert their effects on health. Advances in technology and in fundamental biological knowledge make it possible to define and measure the nutritional phenotype accurately in a cross section of individuals with various states of health and disease. This growing base of data and knowledge could serve as a resource for all scientific disciplines involved in human health. Nutritional sciences should be a prime mover in making key decisions that include: what environmental inputs (in addition to diet) are needed; what genes/proteins/metabolites should be measured; what end-point phenotypes should be included; and what informatics tools are available to ask nutritionally relevant questions. Nutrition should be the major discipline establishing how the elements of the nutritional phenotype vary as a function of diet. Nutritional sciences should also be instrumental in linking the elements that are responsive to diet with the functional outcomes in organisms that derive from them. As the first step in this initiative, a prioritized list of genomic, proteomic, and metabolomic as well as functional and behavioral measures that defines a practically useful subset of the nutritional phenotype for use in clinical and epidemiological investigations must be developed. From this list, analytic platforms must then be identified that are capable of delivering highly quantitative data on these endpoints. This conceptualization of a nutritional phenotype provides a concrete form and substance to the recognized future of nutritional sciences as a field addressing diet, integrated metabolism, and health. PMID:15987837

  10. A Functional Cartography of Cognitive Systems

    PubMed Central

    Mattar, Marcelo G.; Cole, Michael W.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2015-01-01

    One of the most remarkable features of the human brain is its ability to adapt rapidly and efficiently to external task demands. Novel and non-routine tasks, for example, are implemented faster than structural connections can be formed. The neural underpinnings of these dynamics are far from understood. Here we develop and apply novel methods in network science to quantify how patterns of functional connectivity between brain regions reconfigure as human subjects perform 64 different tasks. By applying dynamic community detection algorithms, we identify groups of brain regions that form putative functional communities, and we uncover changes in these groups across the 64-task battery. We summarize these reconfiguration patterns by quantifying the probability that two brain regions engage in the same network community (or putative functional module) across tasks. These tools enable us to demonstrate that classically defined cognitive systems—including visual, sensorimotor, auditory, default mode, fronto-parietal, cingulo-opercular and salience systems—engage dynamically in cohesive network communities across tasks. We define the network role that a cognitive system plays in these dynamics along the following two dimensions: (i) stability vs. flexibility and (ii) connected vs. isolated. The role of each system is therefore summarized by how stably that system is recruited over the 64 tasks, and how consistently that system interacts with other systems. Using this cartography, classically defined cognitive systems can be categorized as ephemeral integrators, stable loners, and anything in between. Our results provide a new conceptual framework for understanding the dynamic integration and recruitment of cognitive systems in enabling behavioral adaptability across both task and rest conditions. This work has important implications for understanding cognitive network reconfiguration during different task sets and its relationship to cognitive effort, individual variation in cognitive performance, and fatigue. PMID:26629847

  11. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress

    PubMed Central

    Judge, Luke M.; Perez-Bermejo, Juan A.; Truong, Annie; Ribeiro, Alexandre J.S.; Yoo, Jennie C.; Jensen, Christina L.; Mandegar, Mohammad A.; Huebsch, Nathaniel; Kaake, Robyn M.; So, Po-Lin; Srivastava, Deepak; Krogan, Nevan J.

    2017-01-01

    Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity. PMID:28724793

  12. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.

    PubMed

    Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R

    2017-07-20

    Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.

  13. Effects of Alcohol on Tumor Growth, Metastasis, Immune Response, and Host Survival

    PubMed Central

    Meadows, Gary G.; Zhang, Hui

    2015-01-01

    Most research involving alcohol and cancer concerns the relationship between alcohol consumption and cancer risk and the mechanisms of carcinogenesis. This review relates the amount and duration of alcohol intake in humans and in animal models of cancer to tumor growth, angiogenesis, invasion, metastasis, immune response, and host survival in specific types and subtypes of cancer. Research on the influence of alcohol drinking on human cancer patients is limited. Although there is more information in animal models of cancer, many aspects still are ill defined. More research is needed to define the mechanisms that underlie the role of alcohol on cancer progression in both animals and humans. Activation of the immune system can play a positive role in keeping cancer under control, but this also can facilitate cancer progression. Additionally, a functional immune system is required for cancer patients to achieve an optimal response to conventional chemotherapy. Insight into the underlying mechanisms of these interactions could lead to effective immunotherapeutic approaches to treat alcoholics with cancer. Defining the epigenetic mechanisms that modulate cancer progression also has great potential for the development of new treatment options not only for treating alcoholics with cancer but also for treating other alcohol-induced diseases. PMID:26695753

  14. Technical advance: live-imaging analysis of human dendritic cell migrating behavior under the influence of immune-stimulating reagents in an organotypic model of lung.

    PubMed

    Nguyen Hoang, Anh Thu; Chen, Puran; Björnfot, Sofia; Högstrand, Kari; Lock, John G; Grandien, Alf; Coles, Mark; Svensson, Mattias

    2014-09-01

    This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions. © 2014 Society for Leukocyte Biology.

  15. Technological integration and hyperconnectivity: Tools for promoting extreme human lifespans

    NASA Astrophysics Data System (ADS)

    Kyriazis, Marios

    2015-07-01

    Artificial, neurobiological, and social networks are three distinct complex adaptive systems (CAS), each containing discrete processing units (nodes, neurons, and humans respectively). Despite the apparent differences, these three networks are bound by common underlying principles which describe the behaviour of the system in terms of the connections of its components, and its emergent properties. The longevity (long-term retention and functionality) of the components of each of these systems is also defined by common principles. Here, I will examine some properties of the longevity and function of the components of artificial and neurobiological systems, and generalise these to the longevity and function of the components of social CAS. In other words, I will show that principles governing the long-term functionality of computer nodes and of neurons, may be extrapolated to the study of the long-term functionality of humans (or more precisely, of the noemes, an abstract combination of existence and digital fame). The study of these phenomena can provide useful insights regarding practical ways that can be used in order to maximize human longevity. The basic law governing these behaviours is the Law of Requisite Usefulness, which states that the length of retention of an agent within a CAS is proportional to the contribution of the agent to the overall adaptability of the system. Key Words: Complex Adaptive Systems, Hyper-connectivity, Human Longevity, Adaptability and Evolution, Noeme

  16. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest

    PubMed Central

    Mills, Richard J.; Titmarsh, Drew M.; Koenig, Xaver; Parker, Benjamin L.; Ryall, James G.; Quaife-Ryan, Gregory A.; Voges, Holly K.; Hodson, Mark P.; Ferguson, Charles; Drowley, Lauren; Plowright, Alleyn T.; Needham, Elise J.; Wang, Qing-Dong; Gregorevic, Paul; Xin, Mei; Thomas, Walter G.; Parton, Robert G.; Nielsen, Lars K.; Elliott, David A.; Porrello, Enzo R.

    2017-01-01

    The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including β-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both β-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies. PMID:28916735

  17. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection.

    PubMed

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A

    2016-01-15

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections.

  18. Complete Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and Analyses Integration Sites Define a New Human Endogenous Virus with Potential to Reactivate as an Emerging Infection

    PubMed Central

    Tweedy, Joshua; Spyrou, Maria Alexandra; Pearson, Max; Lassner, Dirk; Kuhl, Uwe; Gompels, Ursula A.

    2016-01-01

    Human herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated “CiHHV-6A/B”. These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell. We previously showed that CiHHV-6A was more divergent than CiHHV-6B by examining four genes in 44 European CiHHV-6A/B cardiac/haematology patients. There was evidence for gene expression/reactivation, implying functional non-defective genomes. To further define the relationship between HHV-6A and CiHHV-6A we used next-generation sequencing to characterize genomes from three CiHHV-6A cardiac patients. Comparisons to known exogenous HHV-6A showed CiHHV-6A genomes formed a separate clade; including all 85 non-interrupted genes and necessary cis-acting signals for reactivation as infectious virus. Greater single nucleotide polymorphism (SNP) density was defined in 16 genes and the direct repeats (DR) terminal regions. Using these SNPs, deep sequencing analyses demonstrated superinfection with exogenous HHV-6A in two of the CiHHV-6A patients with recurrent cardiac disease. Characterisation of the integration sites in twelve patients identified the human chromosome 17p subtelomere as a prevalent site, which had specific repeat structures and phylogenetically related CiHHV-6A coding sequences indicating common ancestral origins. Overall CiHHV-6A genomes were similar, but distinct from known exogenous HHV-6A virus, and have the capacity to reactivate as emerging virus infections. PMID:26784220

  19. Contribution of transposable elements and distal enhancers to evolution of human-specific features of interphase chromatin architecture in embryonic stem cells.

    PubMed

    Glinsky, Gennadi V

    2018-03-01

    Transposable elements have made major evolutionary impacts on creation of primate-specific and human-specific genomic regulatory loci and species-specific genomic regulatory networks (GRNs). Molecular and genetic definitions of human-specific changes to GRNs contributing to development of unique to human phenotypes remain a highly significant challenge. Genome-wide proximity placement analysis of diverse families of human-specific genomic regulatory loci (HSGRL) identified topologically associating domains (TADs) that are significantly enriched for HSGRL and designated rapidly evolving in human TADs. Here, the analysis of HSGRL, hESC-enriched enhancers, super-enhancers (SEs), and specific sub-TAD structures termed super-enhancer domains (SEDs) has been performed. In the hESC genome, 331 of 504 (66%) of SED-harboring TADs contain HSGRL and 68% of SEDs co-localize with HSGRL, suggesting that emergence of HSGRL may have rewired SED-associated GRNs within specific TADs by inserting novel and/or erasing existing non-coding regulatory sequences. Consequently, markedly distinct features of the principal regulatory structures of interphase chromatin evolved in the hESC genome compared to mouse: the SED quantity is 3-fold higher and the median SED size is significantly larger. Concomitantly, the overall TAD quantity is increased by 42% while the median TAD size is significantly decreased (p = 9.11E-37) in the hESC genome. Present analyses illustrate a putative global role for transposable elements and HSGRL in shaping the human-specific features of the interphase chromatin organization and functions, which are facilitated by accelerated creation of novel transcription factor binding sites and new enhancers driven by targeted placement of HSGRL at defined genomic coordinates. A trend toward the convergence of TAD and SED architectures of interphase chromatin in the hESC genome may reflect changes of 3D-folding patterns of linear chromatin fibers designed to enhance both regulatory complexity and functional precision of GRNs by creating predominantly a single gene (or a set of functionally linked genes) per regulatory domain structures. Collectively, present analyses reveal critical evolutionary contributions of transposable elements and distal enhancers to creation of thousands primate- and human-specific elements of a chromatin folding code, which defines the 3D context of interphase chromatin both restricting and facilitating biological functions of GRNs.

  20. Defined Conditions for the Isolation and Expansion of Basal Prostate Progenitor Cells of Mouse and Human Origin

    PubMed Central

    Höfner, Thomas; Eisen, Christian; Klein, Corinna; Rigo-Watermeier, Teresa; Goeppinger, Stephan M.; Jauch, Anna; Schoell, Brigitte; Vogel, Vanessa; Noll, Elisa; Weichert, Wilko; Baccelli, Irène; Schillert, Anja; Wagner, Steve; Pahernik, Sascha; Sprick, Martin R.; Trumpp, Andreas

    2015-01-01

    Summary Methods to isolate and culture primary prostate epithelial stem/progenitor cells (PESCs) have proven difficult and ineffective. Here, we present a method to grow and expand both murine and human basal PESCs long term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin−SCA-1+CD49f+TROP2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin−CD49f+TROP2high PESCs. The gene-expression profiles of expanded basal PESCs show similarities to ESCs, and NF-kB function is critical for epithelial differentiation of sphere-cultured PESCs. When transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules, demonstrating their stem cell activity in vivo. This novel method will facilitate the molecular, genomic, and functional characterization of normal and pathologic prostate glands of mouse and human origin. PMID:25702639

  1. Functional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity.

    PubMed

    Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl

    2015-07-15

    Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Human factors evaluation of teletherapy: Function and task analysis. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, R.D.; Henriksen, K.; Jones, R.

    1995-07-01

    As a treatment methodology, teletherapy selectively destroys cancerous and other tissue by exposure to an external beam of ionizing radiation. Sources of radiation are either a radioactive isotope, typically Cobalt-60 (Co-60), or a linear accelerator. Records maintained by the NRC have identified instances of teletherapy misadministration where the delivered radiation dose has differed from the radiation prescription (e.g., instances where fractions were delivered to the wrong patient, to the wrong body part, or were too great or too little with respect to the defined treatment volume). Both human error and machine malfunction have led to misadministrations. Effective and safe treatmentmore » requires a concern for precision and consistency of human-human and human-machine interactions throughout the course of therapy. The present study is the first part of a series of human factors evaluations for identifying the root causes that lead to human error in the teletherapy environment. The human factors evaluations included: (1) a function and task analysis of teletherapy activities, (2) an evaluation of the human-system interfaces, (3) an evaluation of procedures used by teletherapy staff, (4) an evaluation of the training and qualifications of treatment staff (excluding the oncologists), (5) an evaluation of organizational practices and policies, and (6) an identification of problems and alternative approaches for NRC and industry attention. The present report addresses the function and task analysis of teletherapy activities and provides the foundation for the conduct of the subsequent evaluations. The report includes sections on background, methodology, a description of the function and task analysis, and use of the task analysis findings for the subsequent tasks. The function and task analysis data base also is included.« less

  3. Estimating the Integrated Information Measure Phi from High-Density Electroencephalography during States of Consciousness in Humans

    PubMed Central

    Kim, Hyoungkyu; Hudetz, Anthony G.; Lee, Joseph; Mashour, George A.; Lee, UnCheol; Avidan, Michael S.

    2018-01-01

    The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain. PMID:29503611

  4. Estimating the Integrated Information Measure Phi from High-Density Electroencephalography during States of Consciousness in Humans.

    PubMed

    Kim, Hyoungkyu; Hudetz, Anthony G; Lee, Joseph; Mashour, George A; Lee, UnCheol

    2018-01-01

    The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain.

  5. Functional specificity for high-level linguistic processing in the human brain.

    PubMed

    Fedorenko, Evelina; Behr, Michael K; Kanwisher, Nancy

    2011-09-27

    Neuroscientists have debated for centuries whether some regions of the human brain are selectively engaged in specific high-level mental functions or whether, instead, cognition is implemented in multifunctional brain regions. For the critical case of language, conflicting answers arise from the neuropsychological literature, which features striking dissociations between deficits in linguistic and nonlinguistic abilities, vs. the neuroimaging literature, which has argued for overlap between activations for linguistic and nonlinguistic processes, including arithmetic, domain general abilities like cognitive control, and music. Here, we use functional MRI to define classic language regions functionally in each subject individually and then examine the response of these regions to the nonlinguistic functions most commonly argued to engage these regions: arithmetic, working memory, cognitive control, and music. We find little or no response in language regions to these nonlinguistic functions. These data support a clear distinction between language and other cognitive processes, resolving the prior conflict between the neuropsychological and neuroimaging literatures.

  6. Body Topography Parcellates Human Sensory and Motor Cortex.

    PubMed

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  7. A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap.

    PubMed

    Snigdha, Shikha; Milgram, Norton W; Willis, Sherry L; Albert, Marylin; Weintraub, S; Fortin, Norbert J; Cotman, Carl W

    2013-07-01

    A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer's disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer's disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Adaptive automation of human-machine system information-processing functions.

    PubMed

    Kaber, David B; Wright, Melanie C; Prinzel, Lawrence J; Clamann, Michael P

    2005-01-01

    The goal of this research was to describe the ability of human operators to interact with adaptive automation (AA) applied to various stages of complex systems information processing, defined in a model of human-automation interaction. Forty participants operated a simulation of an air traffic control task. Automated assistance was adaptively applied to information acquisition, information analysis, decision making, and action implementation aspects of the task based on operator workload states, which were measured using a secondary task. The differential effects of the forms of automation were determined and compared with a manual control condition. Results of two 20-min trials of AA or manual control revealed a significant effect of the type of automation on performance, particularly during manual control periods as part of the adaptive conditions. Humans appear to better adapt to AA applied to sensory and psychomotor information-processing functions (action implementation) than to AA applied to cognitive functions (information analysis and decision making), and AA is superior to completely manual control. Potential applications of this research include the design of automation to support air traffic controller information processing.

  9. A preclinical cognitive test battery to parallel the National Institute of Health Toolbox in humans: bridging the translational gap

    PubMed Central

    Snigdha, Shikha; Milgram, Norton W.; Willis, Sherry L.; Albert, Marylin; Weintraub, S.; Fortin, Norbert J.; Cotman, Carl W.

    2013-01-01

    A major goal of animal research is to identify interventions that can promote successful aging and delay or reverse age-related cognitive decline in humans. Recent advances in standardizing cognitive assessment tools for humans have the potential to bring preclinical work closer to human research in aging and Alzheimer’s disease. The National Institute of Health (NIH) has led an initiative to develop a comprehensive Toolbox for Neurologic Behavioral Function (NIH Toolbox) to evaluate cognitive, motor, sensory and emotional function for use in epidemiologic and clinical studies spanning 3 to 85 years of age. This paper aims to analyze the strengths and limitations of animal behavioral tests that can be used to parallel those in the NIH Toolbox. We conclude that there are several paradigms available to define a preclinical battery that parallels the NIH Toolbox. We also suggest areas in which new tests may benefit the development of a comprehensive preclinical test battery for assessment of cognitive function in animal models of aging and Alzheimer’s disease. PMID:23434040

  10. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions

    NASA Astrophysics Data System (ADS)

    Kutikhin, Anton G.; Velikanova, Elena A.; Mukhamadiyarov, Rinat A.; Glushkova, Tatiana V.; Borisov, Vadim V.; Matveeva, Vera G.; Antonova, Larisa V.; Filip'Ev, Dmitriy E.; Golovkin, Alexey S.; Shishkova, Daria K.; Burago, Andrey Yu.; Frolov, Alexey V.; Dolgov, Viktor Yu.; Efimova, Olga S.; Popova, Anna N.; Malysheva, Valentina Yu.; Vladimirov, Alexandr A.; Sozinov, Sergey A.; Ismagilov, Zinfer R.; Russakov, Dmitriy M.; Lomzov, Alexander A.; Pyshnyi, Dmitriy V.; Gutakovsky, Anton K.; Zhivodkov, Yuriy A.; Demidov, Evgeniy A.; Peltek, Sergey E.; Dolganyuk, Viatcheslav F.; Babich, Olga O.; Grigoriev, Evgeniy V.; Brusina, Elena B.; Barbarash, Olga L.; Yuzhalin, Arseniy E.

    2016-06-01

    Calcium phosphate bions (CPB) are biomimetic mineralo-organic nanoparticles which represent a physiological mechanism regulating the function, transport and disposal of calcium and phosphorus in the human body. We hypothesised that CPB may be pathogenic entities and even a cause of cardiovascular calcification. Here we revealed that CPB isolated from calcified atherosclerotic plaques and artificially synthesised CPB are morphologically and chemically indistinguishable entities. Their formation is accelerated along with the increase in calcium salts-phosphates/serum concentration ratio. Experiments in vitro and in vivo showed that pathogenic effects of CPB are defined by apoptosis-mediated endothelial toxicity but not by direct tissue calcification or functional changes in anti-calcification proteins. Since the factors underlying the formation of CPB and their pathogenic mechanism closely resemble those responsible for atherosclerosis development, further research in this direction may help us to uncover triggers of this disease.

  11. Functional Cus1p Is Found with Hsh155p in a Multiprotein Splicing Factor Associated with U2 snRNA

    PubMed Central

    Pauling, Michelle Haynes; McPheeters, David S.; Ares, Manuel

    2000-01-01

    To explore the dynamics of snRNP structure and function, we have studied Cus1p, identified as a suppressor of U2 snRNA mutations in budding yeast. Cus1p is homologous to human SAP145, a protein present in the 17S form of the human U2 snRNP. Here, we define the Cus1p amino acids required for function in yeast. The segment of Cus1p required for binding to Hsh49p, a homolog of human SAP49, is contained within an essential region of Cus1p. Antibodies against Cus1p coimmunoprecipitate U2 snRNA, as well as Hsh155p, a protein homologous to human SAP155. Biochemical fractionation of splicing extracts and reconstitution of heat-inactivated splicing extracts from strains carrying a temperature-sensitive allele of CUS1 indicate that Cus1p and Hsh155p reside in a functional, high-salt-stable complex that is salt-dissociable from U2 snRNA. We propose that Cus1p, Hsh49p, and Hsh155p exist in a stable protein complex which can exchange with a core U2 snRNP and which is necessary for U2 snRNP function in prespliceosome assembly. The Cus1p complex shares functional as well as structural similarities with human SF3b. PMID:10688664

  12. Eukaryotic expression, purification and structure/function analysis of native, recombinant CRISP3 from human and mouse

    NASA Astrophysics Data System (ADS)

    Volpert, Marianna; Mangum, Jonathan E.; Jamsai, Duangporn; D'Sylva, Rebecca; O'Bryan, Moira K.; McIntyre, Peter

    2014-02-01

    While the Cysteine-Rich Secretory Proteins (CRISPs) have been broadly proposed as regulators of reproduction and immunity, physiological roles have yet to be established for individual members of this family. Past efforts to investigate their functions have been limited by the difficulty of purifying correctly folded CRISPs from bacterial expression systems, which yield low quantities of correctly folded protein containing the eight disulfide bonds that define the CRISP family. Here we report the expression and purification of native, glycosylated CRISP3 from human and mouse, expressed in HEK 293 cells and isolated using ion exchange and size exclusion chromatography. Functional authenticity was verified by substrate-affinity, native glycosylation characteristics and quaternary structure (monomer in solution). Validated protein was used in comparative structure/function studies to characterise sites and patterns of N-glycosylation in CRISP3, revealing interesting inter-species differences.

  13. Determining a human cardiac pacemaker using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Varnavsky, A. N.; Antonenco, A. V.

    2017-01-01

    The paper presents a possibility of estimating a human cardiac pacemaker using combined application of nonlinear integral transformation and fuzzy logic, which allows carrying out the analysis in the real-time mode. The system of fuzzy logical conclusion is proposed, membership functions and rules of fuzzy products are defined. It was shown that the ratio of the value of a truth degree of the winning rule condition to the value of a truth degree of any other rule condition is at least 3.

  14. Comfort Food: Nourishing Our Collective Stomachs and Our Collective Minds

    ERIC Educational Resources Information Center

    Troisi, Jordan D.; Wright, Julian W. C.

    2017-01-01

    Food is a powerful motivator in human functioning--it serves a biological need, as emotional support, and as a cultural symbol. Until recently, the term "comfort food" has been inadequately and unscientifically defined. In addition, the popular media have oversimplified the concept of comfort food as purely unhealthy food, often consumed…

  15. The Ethical Function of Research and Teaching

    ERIC Educational Resources Information Center

    Tabensky, Pedro Alexis

    2014-01-01

    It is the epistemic as well as the ethical responsibility of academics to aim to approach their research and teaching with a proper understanding of the ultimate ethical purpose or telos of their defining activities and products, which is the practical aim of promoting human flourishing. Minimally, academics should aim at understanding, and a key…

  16. Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine*

    PubMed Central

    Shields-Cutler, Robin R.; Crowley, Jan R.; Miller, Connelly D.; Stapleton, Ann E.; Cui, Weidong; Henderson, Jeffrey P.

    2016-01-01

    In human urinary tract infections, host cells release the antimicrobial protein siderocalin (SCN; also known as lipocalin-2, neutrophil gelatinase-associated lipocalin, or 24p3) into the urinary tract. By binding to ferric catechol complexes, SCN can sequester iron, a growth-limiting nutrient for most bacterial pathogens. Recent evidence links the antibacterial activity of SCN in human urine to iron sequestration and metabolomic variation between individuals. To determine whether these metabolomic associations correspond to functional Fe(III)-binding SCN ligands, we devised a biophysical protein binding screen to identify SCN ligands through direct analysis of human urine. This screen revealed a series of physiologic unconjugated urinary catechols that were able to function as SCN ligands of which pyrogallol in particular was positively associated with high urinary SCN activity. In a purified, defined culture system, these physiologic SCN ligands were sufficient to activate SCN antibacterial activity against Escherichia coli. In the presence of multiple SCN ligands, native mass spectrometry demonstrated that SCN may preferentially combine different ligands to coordinate iron, suggesting that availability of specific ligand combinations affects in vivo SCN antibacterial activity. These results support a mechanistic link between the human urinary metabolome and innate immune function. PMID:27780864

  17. Structural Basis for Flip-Flop Action of Thiamin-Dependent Enzymes Revealed by Crystal Structure of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The biologically active derivative of vitamin B1; thiamin pyrophosphate; is used as cofactor by many enzymes that perform a wide range of catalytic functions in the pathways of energy production. In alpha2beta2-heterotetrameric human pyruvate dehydrogenase, the first catalytic component enzyme of human pyruvate dehydrogenase complex, this cofactor is used to cleave the C(sup alpha)-C(=0) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase, the second catalytic component of the complex. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites have puzzled researchers from earlier functional studies of this enzyme. In order to gain insight into the mechanism of action of this enzyme, we determined the crystal structure of the holoform of human pyruvate dehydrogenase at 1.958, resolution. We propose a kinetic model for the flip-flop action of this enzyme through the concerted approx. 2A, shuttle-like motion of the heterodimers. The similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase and other functionally related enzymes suggests this newly defined mechanism of shuttle-like motion of domains to be common for the family of thiamin pyrophosphate-dependent enzymes.

  18. Regulatory T-cells in autoimmune diseases: challenges, controversies and--yet--unanswered questions.

    PubMed

    Grant, Charlotte R; Liberal, Rodrigo; Mieli-Vergani, Giorgina; Vergani, Diego; Longhi, Maria Serena

    2015-02-01

    Regulatory T cells (Tregs) are central to the maintenance of self-tolerance and tissue homeostasis. Markers commonly used to define human Tregs in the research setting include high expression of CD25, FOXP3 positivity and low expression/negativity for CD127. Many other markers have been proposed, but none unequivocally identifies bona fide Tregs. Tregs are equipped with an array of mechanisms of suppression, including the modulation of antigen presenting cell maturation and function, the killing of target cells, the disruption of metabolic pathways and the production of anti-inflammatory cytokines. Treg impairment has been reported in a number of human autoimmune conditions and includes Treg numerical and functional defects and conversion into effector cells in response to inflammation. In addition to intrinsic Treg impairment, resistance of effector T cells to Treg control has been described. Discrepancies in the literature are common, reflecting differences in the choice of study participants and the technical challenges associated with investigating this cell population. Studies differ in terms of the methodology used to define and isolate putative regulatory cells and to assess their suppressive function. In this review we outline studies describing Treg frequency and suppressive function in systemic and organ specific autoimmune diseases, with a specific focus on the challenges faced when investigating Tregs in these conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes.

    PubMed

    Cyganek, Lukas; Tiburcy, Malte; Sekeres, Karolina; Gerstenberg, Kathleen; Bohnenberger, Hanibal; Lenz, Christof; Henze, Sarah; Stauske, Michael; Salinas, Gabriela; Zimmermann, Wolfram-Hubertus; Hasenfuss, Gerd; Guan, Kaomei

    2018-06-21

    Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening.

  20. Mining functionally relevant gene sets for analyzing physiologically novel clinical expression data.

    PubMed

    Turcan, Sevin; Vetter, Douglas E; Maron, Jill L; Wei, Xintao; Slonim, Donna K

    2011-01-01

    Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant biological processes. We describe a successful attempt to mine novel functional gene sets for translational projects where the underlying physiology is not necessarily well characterized in existing annotation databases. We choose targeted training data from public expression data repositories and define new criteria for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no enrichment for informative Gene Ontology terms or other functional annotation. However, we observe that such gene sets show coherent differential expression in new clinical test data sets, even if derived from different species, tissues, and disease states. We demonstrate the efficacy of this method on a human metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on additional data sets related to neuronal processes and human development. Our results suggest that our approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for novel clinical applications where existing functional annotation is relatively incomplete.

  1. Collaborative real-time scheduling of multiple PTZ cameras for multiple object tracking in video surveillance

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Che; Huang, Chung-Lin

    2013-03-01

    This paper proposes a multi-PTZ-camera control mechanism to acquire close-up imagery of human objects in a surveillance system. The control algorithm is based on the output of multi-camera, multi-target tracking. Three main concerns of the algorithm are (1) the imagery of human object's face for biometric purposes, (2) the optimal video quality of the human objects, and (3) minimum hand-off time. Here, we define an objective function based on the expected capture conditions such as the camera-subject distance, pan tile angles of capture, face visibility and others. Such objective function serves to effectively balance the number of captures per subject and quality of captures. In the experiments, we demonstrate the performance of the system which operates in real-time under real world conditions on three PTZ cameras.

  2. Technological progress as a driver of innovation in infant foods.

    PubMed

    Ferruzzi, Mario G; Neilson, Andrew P

    2010-01-01

    Advances in nutrition and food sciences are interrelated components of the innovative framework for infant formula and foods. While nutrition science continues to define the composition and functionality of human milk as a reference, food ingredient, formulation and processing technologies facilitate the design and delivery of nutritional and functional concepts to infant products. Expanding knowledge of both nutritive and non-nutritive components of human milk and their functionality guides selection and development of novel ingredient, formulation and processing methods to generate enhanced infant products targeting benefits including healthy growth, development as well as protection of health through the life cycle. In this chapter, identification and application of select novel ingredients/technologies will be discussed in the context of how these technological advancements have stimulated innovation in infant foods. Special focus will be given to advancements in protein technologies, as well as bioactive long-chain polyunsaturated fatty acids, prebiotics, probiotics that have allowed infant formula composition, and more critically functionality, to more closely align with that of human milk. Copyright © 2010 S. Karger AG, Basel.

  3. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens

    PubMed Central

    Glinsky, Gennadi V.

    2016-01-01

    Abstract Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8–10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. PMID:27503290

  4. Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans.

    PubMed

    Caminiti, Roberto; Innocenti, Giorgio M; Battaglia-Mayer, Alexandra

    2015-09-01

    The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The functional biology of human milk oligosaccharides.

    PubMed

    Bode, Lars

    2015-11-01

    Human milk oligosaccharides (HMOs) are a group of complex sugars that are highly abundant in human milk, but currently not present in infant formula. More than a hundred different HMOs have been identified so far. The amount and composition of HMOs are highly variable between women, and each structurally defined HMO might have a distinct functionality. HMOs are not digested by the infant and serve as metabolic substrates for select microbes, contributing to shape the infant gut microbiome. HMOs act as soluble decoy receptors that block the attachment of viral, bacterial or protozoan parasite pathogens to epithelial cell surface sugars, which may help prevent infectious diseases in the gut and also the respiratory and urinary tracts. HMOs are also antimicrobials that act as bacteriostatic or bacteriocidal agents. In addition, HMOs alter host epithelial and immune cell responses with potential benefits for the neonate. The article reviews current knowledge as well as future challenges and opportunities related to the functional biology of HMOs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Dissociation and Convergence of the Dorsal and Ventral Visual Streams in the Human Prefrontal Cortex

    PubMed Central

    Takahashi, Emi; Ohki, Kenichi; Kim, Dae-Shik

    2012-01-01

    Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information. PMID:23063444

  7. Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease.

    PubMed

    Repanas, Kostas; Zingler, Nora; Layer, Liliana E; Schumann, Gerald G; Perrakis, Anastassis; Weichenrieder, Oliver

    2007-01-01

    The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for approximately 28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons.

  8. Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    PubMed Central

    Seko, Yuko; Azuma, Noriyuki; Kaneda, Makoto; Nakatani, Kei; Miyagawa, Yoshitaka; Noshiro, Yuuki; Kurokawa, Reiko; Okano, Hideyuki; Umezawa, Akihiro

    2012-01-01

    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases. PMID:22558175

  9. Lipidomics of human brain aging and Alzheimer's disease pathology.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  10. Recent studies on the developing human hepatocellular carcinoma.

    PubMed

    Gerber, M A

    1986-01-01

    From our knowledge of characteristic phenotypic changes of the preneoplastic lesions during the stepwise evolution of hepatocellular carcinoma (HCC) in experimental models, we are now beginning to define the structural, histochemical, biochemical, antigenic and molecular properties of early HCC and of the putative preneoplastic changes in human liver. Histological, ultrastructural, morphometric and immunohistochemical studies suggest that adenomatous nodules of regenerating and hyperplastic hepatocytes are more likely to represent direct precursors of HCC than dysplastic hepatocytes. Histochemical and immunomorphological investigations show appreciable functional and phenotypic heterogeneity of human HCC as previously recognized in experimental hepatocarcinogenesis. Studies of altered expression of oncogenes in the regenerating liver and HCC are beginning to define the molecular mechanisms in cell growth and malignant transformation. Although integration of Hepadna viral DNA sequences frequently occurs during persistent infection in man and animals, the exact mechanism of viral oncogenesis remains to be elucidated. It is likely that the development of monoclonal antibodies to surface antigens on transformed hepatocytes will be useful for exploring lineage relationships between the cell populations involved in hepatocarcinogenesis.

  11. Generation of Functional Human Hepatic Endoderm from Human iPS cells

    PubMed Central

    Sullivan, Gareth J.; Hay, David C.; Park, In-Hyun; Fletcher, Judy; Hannoun, Zara; Payne, Catherine M.; Dalgetty, Donna; Black, James R.; Ross, James A.; Samuel, Kay; Wang, Gang; Daley, George Q.; Lee, Je-Hyuk; Church, George M.; Forbes, Stuart J.; Iredale, John P.; Wilmut, Ian

    2009-01-01

    With the advent of induced pluripotent stem cell (iPSC) technology, it is now feasible to generate iPSCs with a defined genotype or disease state. When coupled with direct differentiation of defined lineage, such as hepatic endoderm (HE). iPSC would revolutionise the way we study human liver biology and generate efficient “off the shelf” models of human liver disease. Here we show the `proof of concept' that iPSC lines representing both male and female sexes and two ethnic origins can be differentiated to HE at efficiencies of between 70–90%, using a method mimicking a physiological condition. iPSC-derived HE exhibited hepatic morphology, and expressed the hepatic markers, Albumin and E-Cadherin as assessed by immuno-histochemistry. They also expressed alpha fetal protein (AFP), HNF4a, and a metabolic marker, Cyp7A1, demonstrating a definitive endodermal lineage differentiation. Furthermore, iPSC-derived hepatocytes produced and secreted the plasma proteins, fibrinogen, fibronectin, transthyretin (TTR) and AFP, an essential feature for functional HE. Additionally iPSC-derived HE supported both CYP1A2 and 3A4 metabolism, which is essential for drug and toxicology testing. Conclusion This work is first to demonstrate the efficient generation of hepatic endodermal lineage from human iPSC that exhibits key attributes of hepatocytes, and the potential application of iPSC-derived HE in studying human liver biology. In particular, iPSC from individuals representing highly polymorphic variants in metabolic genes and different ethnic groups will provide pharmaceutical development and toxicology studies a unique opportunity to revolutionise predictive drug toxicology assays and allow the creation of in vitro hepatic disease models. PMID:19877180

  12. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat.

    PubMed

    Cypess, Aaron M; White, Andrew P; Vernochet, Cecile; Schulz, Tim J; Xue, Ruidan; Sass, Christina A; Huang, Tian Liang; Roberts-Toler, Carla; Weiner, Lauren S; Sze, Cathy; Chacko, Aron T; Deschamps, Laura N; Herder, Lindsay M; Truchan, Nathan; Glasgow, Allison L; Holman, Ashley R; Gavrila, Alina; Hasselgren, Per-Olof; Mori, Marcelo A; Molla, Michael; Tseng, Yu-Hua

    2013-05-01

    The imbalance between energy intake and expenditure is the underlying cause of the current obesity and diabetes pandemics. Central to these pathologies is the fat depot: white adipose tissue (WAT) stores excess calories, and brown adipose tissue (BAT) consumes fuel for thermogenesis using tissue-specific uncoupling protein 1 (UCP1). BAT was once thought to have a functional role in rodents and human infants only, but it has been recently shown that in response to mild cold exposure, adult human BAT consumes more glucose per gram than any other tissue. In addition to this nonshivering thermogenesis, human BAT may also combat weight gain by becoming more active in the setting of increased whole-body energy intake. This phenomenon of BAT-mediated diet-induced thermogenesis has been observed in rodents and suggests that activation of human BAT could be used as a safe treatment for obesity and metabolic dysregulation. In this study, we isolated anatomically defined neck fat from adult human volunteers and compared its gene expression, differentiation capacity and basal oxygen consumption to different mouse adipose depots. Although the properties of human neck fat vary substantially between individuals, some human samples share many similarities with classical, also called constitutive, rodent BAT.

  13. Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus

    PubMed Central

    Choi, Hi-Jae; Zilles, Karl; Mohlberg, Hartmut; Schleicher, Axel; Fink, Gereon R.; Armstrong, Este; Amunts, Katrin

    2008-01-01

    Anatomical studies in the macaque cortex and functional imaging studies in humans have demonstrated the existence of different cortical areas within the IntraParietal Sulcus (IPS). Such functional segregation, however, does not correlate with presently available architectonic maps of the human brain. This is particularly true for the classical Brodmann map, which is still widely used as an anatomical reference in functional imaging studies. The aim of this cytoarchitectonic mapping study was to use previously defined algorithms to determine whether consistent regions and borders can be found within the cortex of the anterior IPS in a population of ten postmortem human brains. Two areas, the human IntraParietal area 1 (hIP1) and the human IntraParietal area 2 (hIP2), were delineated in serial histological sections of the anterior, lateral bank of the human IPS. The region hIP1 is located posterior and medial to hIP2, and the former is always within the depths of the IPS. The latter, on the other hand, sometimes reaches the free surface of the superior parietal lobule. The delineations were registered to standard reference space, and probabilistic maps were calculated, thereby quantifying the intersubject variability in location and extent of both areas. In the future, they can be a tool in analyzing structure – function relationships and a basis for determining degrees of homology in the IPS among anthropoid primates. We conclude that the human intraparietal sulcus has a finer grained parcellation than shown in Brodmann’s map. PMID:16432904

  14. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  15. Interpreting fMRI data: maps, modules and dimensions

    PubMed Central

    Op de Beeck, Hans P.; Haushofer, Johannes; Kanwisher, Nancy G.

    2009-01-01

    Neuroimaging research over the past decade has revealed a detailed picture of the functional organization of the human brain. Here we focus on two fundamental questions that are raised by the detailed mapping of sensory and cognitive functions and illustrate these questions with findings from the object-vision pathway. First, are functionally specific regions that are located close together best understood as distinct cortical modules or as parts of a larger-scale cortical map? Second, what functional properties define each cortical map or module? We propose a model in which overlapping continuous maps of simple features give rise to discrete modules that are selective for complex stimuli. PMID:18200027

  16. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells.

    PubMed

    Ramachandran, Sarada Devi; Schirmer, Katharina; Münst, Bernhard; Heinz, Stefan; Ghafoory, Shahrouz; Wölfl, Stefan; Simon-Keller, Katja; Marx, Alexander; Øie, Cristina Ionica; Ebert, Matthias P; Walles, Heike; Braspenning, Joris; Breitkopf-Heinlein, Katja

    2015-01-01

    In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process). Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs)) was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.

  17. Modelling of human-machine interaction in equipment design of manufacturing cells

    NASA Astrophysics Data System (ADS)

    Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming

    2017-08-01

    This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.

  18. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium.

    PubMed

    Turco, Margherita Y; Gardner, Lucy; Hughes, Jasmine; Cindrova-Davies, Tereza; Gomez, Maria J; Farrell, Lydia; Hollinshead, Michael; Marsh, Steven G E; Brosens, Jan J; Critchley, Hilary O; Simons, Benjamin D; Hemberger, Myriam; Koo, Bon-Kyoung; Moffett, Ashley; Burton, Graham J

    2017-05-01

    In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in vitro. We adapted conditions used to establish human adult stem-cell-derived organoid cultures to generate three-dimensional cultures of normal and decidualized human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early gestation.

  19. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity.

    PubMed

    Schirmer, Melanie; Smeekens, Sanne P; Vlamakis, Hera; Jaeger, Martin; Oosting, Marije; Franzosa, Eric A; Ter Horst, Rob; Jansen, Trees; Jacobs, Liesbeth; Bonder, Marc Jan; Kurilshikov, Alexander; Fu, Jingyuan; Joosten, Leo A B; Zhernakova, Alexandra; Huttenhower, Curtis; Wijmenga, Cisca; Netea, Mihai G; Xavier, Ramnik J

    2016-11-03

    Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may contribute to inter-individual variation in cytokine responses to microbial stimulations in healthy humans. We observe microbiome-cytokine interaction patterns that are stimulus specific, cytokine specific, and cytokine and stimulus specific. Validation of two predicted host-microbial interactions reveal that TNFα and IFNγ production are associated with specific microbial metabolic pathways: palmitoleic acid metabolism and tryptophan degradation to tryptophol. Besides providing a resource of predicted microbially derived mediators that influence immune phenotypes in response to common microorganisms, these data can help to define principles for understanding disease susceptibility. The three HFGP studies presented in this issue lay the groundwork for further studies aimed at understanding the interplay between microbial, genetic, and environmental factors in the regulation of the immune response in humans. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically-defined medium

    PubMed Central

    Turco, Margherita Y.; Gardner, Lucy; Hughes, Jasmine; Cindrova-Davies, Tereza; Gomez, Maria J.; Farrell, Lydia; Hollinshead, Michael; Marsh, Steven G.E.; Brosens, Jan J.; Critchley, Hilary O.; Simons, Benjamin D.; Hemberger, Myriam; Koo, Bon-Kyoung; Moffett, Ashley; Burton, Graham J.

    2017-01-01

    In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in vitro. We adapted conditions used to establish human adult stem cell-derived organoid cultures to generate 3D cultures of normal and decidualised human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early gestation. PMID:28394884

  1. Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152.

    PubMed

    Yao, Yilong; Ma, Jun; Xue, Yixue; Wang, Ping; Li, Zhen; Liu, Jing; Chen, Liangyu; Xi, Zhuo; Teng, Hao; Wang, Zhenhua; Li, Zhiqing; Liu, Yunhui

    2015-04-01

    Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Great interest persists in useful therapeutic targets in GBM. Aberrant expression of long non-coding RNAs (lncRNAs) has been functionally associated with many cancers. Here, we elucidated the function and the possible molecular mechanisms of lncRNA XIST in human glioblastoma stem cells (GSCs). Our results proved that XIST expression was up-regulated in glioma tissues and GSCs. Functionally, knockdown of XIST exerted tumor-suppressive functions by reducing cell proliferation, migration and invasion as well as inducing apoptosis. The in vivo studies also showed that knockdown of XIST suppressed tumor growth and produced high survival in nude mice. Further, there was reciprocal repression between XIST and miR-152. Mechanistic investigations defined the direct binding ability of the predicted miR-152 binding site on the XIST. In addition, XIST and miR-152 are probably in the same RNA induced silencing complex (RISC). Finally, miR-152 mediated the tumor-suppressive effects that knockdown of XIST exerted. Taken together, these results provided a comprehensive analysis of XIST in GSCs and important clues for understanding the key roles of lncRNA-miRNA functional network in human glioma. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. [Interactions between human sexual arousal and sexual desire: a challenge for social neuroscience].

    PubMed

    Ortigue, Stephanie; Bianchi-Demicheli, Francesco

    2007-03-28

    The frequent interaction and synergy between sexual arousal and sexual desire occuring during a sexual experience explains the difficulty in disentagling these two phenomena in the human sexual response. Sexual desire is defined as a goal-directed motivational state integrating the other in one's personal sphere on the basis of intentionality, rather than by instinct only. Sexual arousal includes physical manifestations and subjective perception of excitement. Interest in sexual arousal has engendered a growing body of research concerning its nature and function as well as the biological basis of the mechanisms sustaining it. Recent functional imaging has played a key role in seeking to isolate brain regions specific to sexual arousal. This field may represent a new challenge for social neuroscience.

  3. Bonobos maintain immune-system diversity with three functional types of MHC-B1

    PubMed Central

    Wroblewski, Emily E.; Guethlein, Lisbeth A.; Norman, Paul J.; Li, Yingying; Shaw, Christiana M.; Han, Alex S.; Ndjango, Jean-Bosco N.; Ahuka-Mundeke, Steve; Georgiev, Alexander V.; Peeters, Martine; Hahn, Beatrice H.; Parham, Peter

    2017-01-01

    Fast-evolving MHC class I polymorphism serves to diversify NK cell and CD8 T cell responses in individuals, families, and populations. As only chimpanzee and bonobo have strict orthologs of all HLA class I, their study gives unique perspective on the human condition. We defined polymorphism of Papa-B, the bonobo ortholog of HLA-B, for six wild bonobo populations. Sequences for Papa-B exon 2 and 3 were determined from the genomic DNA in 255 fecal samples, minimally representing 110 individuals. Twenty-two Papa-B alleles were defined, each encoding a different Papa-B protein. No Papa-B is identical to any chimpanzee Patr-B, human HLA-B, or gorilla Gogo-B. Phylogenetic analysis identified a clade of MHC-B, defined by residues 45–74 of the α1 domain, which is broadly conserved among bonobo, chimpanzee, and gorilla. Bonobo populations have 3–14 Papa-B allotypes. Three Papa-B are in all populations, and they are each of a different functional type: allotypes having the Bw4 epitope recognized by killer cell immunoglobulin-like receptors (KIR) of NK cells, allotypes having the C1 epitope also recognized by KIR, and allotypes having neither epitope. For population ML these three Papa-B are the only Papa-B allotypes. Although small in number, their sequence divergence is such that the nucleotide diversity (mean p-distance) of Papa-B in ML is greater than in the other populations, and also greater than expected for random combinations of three Papa-B. Overall, Papa-B has substantially less diversity than Patr-B in chimpanzee subspecies and HLA-B in indigenous human populations, consistent with bonobo having experienced narrower population bottlenecks. PMID:28348269

  4. Sustaining healthy freshwater ecosystems

    USGS Publications Warehouse

    Baron, Jill S.; Poff, N.L.

    2004-01-01

    Functionally intact and biologically complex freshwater ecosystems provide many economically valuable commodities and services to society. The services supplied by freshwater ecosystems include flood control, transportation, recreation, purification of human and industrial wastes, habitat for plants and animals, and production of fish and other foods and marketable goods. These human benefits are called ecological services, defined as “the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life” (Daily 1997). Over the long term, healthy freshwater ecosystems are likely to retain the adaptive capacity to sustain production of these ecological services in the face of future environmental disruptions such as climate change.

  5. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

    PubMed

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C

    2015-11-05

    The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Functional dynamics within the human ribosome regulate the rate of active protein synthesis

    PubMed Central

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B.; Terry, Daniel S.; Juette, Manuel F.; Burnett, Benjamin J.; Alejo, Jose L.; Dass, Randall A.; Parks, Matthew M.; Vincent, Theresa C.; Blanchard, Scott C.

    2015-01-01

    SUMMARY The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule FRET methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. PMID:26593721

  7. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    PubMed Central

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  8. The Paradox of Isochrony in the Evolution of Human Rhythm

    PubMed Central

    Ravignani, Andrea; Madison, Guy

    2017-01-01

    Isochrony is crucial to the rhythm of human music. Some neural, behavioral and anatomical traits underlying rhythm perception and production are shared with a broad range of species. These may either have a common evolutionary origin, or have evolved into similar traits under different evolutionary pressures. Other traits underlying rhythm are rare across species, only found in humans and few other animals. Isochrony, or stable periodicity, is common to most human music, but isochronous behaviors are also found in many species. It appears paradoxical that humans are particularly good at producing and perceiving isochronous patterns, although this ability does not conceivably confer any evolutionary advantage to modern humans. This article will attempt to solve this conundrum. To this end, we define the concept of isochrony from the present functional perspective of physiology, cognitive neuroscience, signal processing, and interactive behavior, and review available evidence on isochrony in the signals of humans and other animals. We then attempt to resolve the paradox of isochrony by expanding an evolutionary hypothesis about the function that isochronous behavior may have had in early hominids. Finally, we propose avenues for empirical research to examine this hypothesis and to understand the evolutionary origin of isochrony in general. PMID:29163252

  9. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro.

    PubMed

    Pingitore, Attilio; Chambers, Edward S; Hill, Thomas; Maldonado, Inmaculada Ruz; Liu, Bo; Bewick, Gavin; Morrison, Douglas J; Preston, Tom; Wallis, Gareth A; Tedford, Catriona; Castañera González, Ramón; Huang, Guo C; Choudhary, Pratik; Frost, Gary; Persaud, Shanta J

    2017-02-01

    Diet-derived short chain fatty acids (SCFAs) improve glucose homeostasis in vivo, but the role of individual SCFAs and their mechanisms of action have not been defined. This study evaluated the effects of increasing colonic delivery of the SCFA propionate on β-cell function in humans and the direct effects of propionate on isolated human islets in vitro. For 24 weeks human subjects ingested an inulin-propionate ester that delivers propionate to the colon. Acute insulin, GLP-1 and non-esterified fatty acid (NEFA) levels were quantified pre- and post-supplementation in response to a mixed meal test. Expression of the SCFA receptor FFAR2 in human islets was determined by western blotting and immunohistochemistry. Dynamic insulin secretion from perifused human islets was quantified by radioimmunoassay and islet apoptosis was determined by quantification of caspase 3/7 activities. Colonic propionate delivery in vivo was associated with improved β-cell function with increased insulin secretion that was independent of changes in GLP-1 levels. Human islet β-cells expressed FFAR2 and propionate potentiated dynamic glucose-stimulated insulin secretion in vitro, an effect that was dependent on signalling via protein kinase C. Propionate also protected human islets from apoptosis induced by the NEFA sodium palmitate and inflammatory cytokines. Our results indicate that propionate has beneficial effects on β-cell function in vivo, and in vitro analyses demonstrated that it has direct effects to potentiate glucose-stimulated insulin release and maintain β-cell mass through inhibition of apoptosis. These observations support ingestion of propiogenic dietary fibres to maintain healthy glucose homeostasis. © 2016 John Wiley & Sons Ltd.

  10. The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans.

    PubMed

    Barks, Sarah K; Parr, Lisa A; Rilling, James K

    2015-02-01

    The human default mode network (DMN), comprising medial prefrontal cortex, precuneus, posterior cingulate cortex, lateral parietal cortex, and medial temporal cortex, is highly metabolically active at rest but deactivates during most focused cognitive tasks. The DMN and social cognitive networks overlap significantly in humans. We previously demonstrated that chimpanzees (Pan troglodytes) show highest resting metabolic brain activity in the cortical midline areas of the human DMN. Human DMN is defined by task-induced deactivations, not absolute resting metabolic levels; ergo, resting activity is insufficient to define a DMN in chimpanzees. Here, we assessed the chimpanzee DMN's deactivations relative to rest during cognitive tasks and the effect of social content on these areas' activity. Chimpanzees performed a match-to-sample task with conspecific behavioral stimuli of varying sociality. Using [(18)F]-FDG PET, brain activity during these tasks was compared with activity during a nonsocial task and at rest. Cortical midline areas in chimpanzees deactivated in these tasks relative to rest, suggesting a chimpanzee DMN anatomically and functionally similar to humans. Furthermore, when chimpanzees make social discriminations, these same areas (particularly precuneus) are highly active relative to nonsocial tasks, suggesting that, as in humans, the chimpanzee DMN may play a role in social cognition. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  12. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  13. Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey C. Joe; Johanna H. Oxstrand

    The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks.more » We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.« less

  14. Ancylostoma ceylanicum Excretory-Secretory Protein 2 Adopts a Netrin-Like Fold and Defines a Novel Family of Nematode Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K Kucera; L Harrison; M Cappello

    2011-12-31

    Hookworms are human parasites that have devastating effects on global health, particularly in underdeveloped countries. Ancylostoma ceylanicum infects humans and animals, making it a useful model organism to study disease pathogenesis. A. ceylanicum excretory-secretory protein 2 (AceES-2), a highly immunoreactive molecule secreted by adult worms at the site of intestinal attachment, is partially protective when administered as a mucosal vaccine against hookworm anemia. The crystal structure of AceES-2 determined at 1.75 {angstrom} resolution shows that it adopts a netrin-like fold similar to that found in tissue inhibitors of matrix metalloproteases (TIMPs) and in complement factors C3 and C5. However, recombinantmore » AceES-2 does not significantly inhibit the 10 most abundant human matrix metalloproteases or complement-mediated cell lysis. The presence of a highly acidic surface on AceES-2 suggests that it may function as a cytokine decoy receptor. Several small nematode proteins that have been annotated as TIMPs or netrin-domain-containing proteins display sequence homology in structurally important regions of AceES-2's netrin-likefold. Together, our results suggest that AceES-2 defines a novel family of nematode netrin-like proteins, which may function to modulate the host immune response to hookworm and other parasites.« less

  15. HAMLET: functional properties and therapeutic potential.

    PubMed

    Ho C S, James; Rydström, Anna; Trulsson, Maria; Bålfors, Johannes; Storm, Petter; Puthia, Manoj; Nadeem, Aftab; Svanborg, Catharina

    2012-10-01

    Human α-lactalbumin made lethal to tumor cells (HAMLET) is the first member in a new family of protein-lipid complexes that kills tumor cells with high selectivity. The protein component of HAMLET is α-lactalbumin, which in its native state acts as a substrate specifier in the lactose synthase complex, thereby defining a function essential for the survival of lactating mammals. In addition, α-lactalbumin acquires tumoricidal activity after partial unfolding and binding to oleic acid. The lipid cofactor serves the dual role as a stabilizer of the altered fold of the protein and a coactivator of specific steps in tumor cell death. HAMLET is broadly tumoricidal, suggesting that the complex identifies conserved death pathways suitable for targeting by novel therapies. Sensitivity to HAMLET is defined by oncogene expression including Ras and c-Myc and by glycolytic enzymes. Cellular targets are located in the cytoplasmic membrane, cytoskeleton, mitochondria, proteasomes, lysosomes and nuclei, and specific signaling pathways are rapidly activated, first by interactions of HAMLET with the cell membrane and subsequently after HAMLET internalization. Therapeutic effects of HAMLET have been demonstrated in human skin papillomas and bladder cancers, and HAMLET limits the progression of human glioblastomas, with no evidence of toxicity for normal brain or bladder tissue. These findings open up new avenues for cancer therapy and the understanding of conserved death responses in tumor cells.

  16. Protein expression profiles of human lymph and plasma mapped by 2D-DIGE and 1D SDS–PAGE coupled with nanoLC–ESI–MS/MS bottom-up proteomics

    PubMed Central

    Clement, Cristina C.; Aphkhazava, David; Nieves, Edward; Callaway, Myrasol; Olszewski, Waldemar; Rotzschke, Olaf; Santambrogio, Laura

    2013-01-01

    In this study a proteomic approach was used to define the protein content of matched samples of afferent prenodal lymph and plasma derived from healthy volunteers. The analysis was performed using two analytical methodologies coupled with nanoliquid chromatography-tandem mass spectrometry: one-dimensional gel electrophoresis (1DEF nanoLC Orbitrap–ESI–MS/MS), and two-dimensional fluorescence difference-in-gel electrophoresis (2D-DIGE nanoLC–ESI–MS/MS). The 253 significantly identified proteins (p<0.05), obtained from the tandem mass spectrometry data, were further analyzed with pathway analysis (IPA) to define the functional signature of prenodal lymph and matched plasma. The 1DEF coupled with nanoLC–MS–MS revealed that the common proteome between the two biological fluids (144 out of 253 proteins) was dominated by complement activation and blood coagulation components, transporters and protease inhibitors. The enriched proteome of human lymph (72 proteins) consisted of products derived from the extracellular matrix, apoptosis and cellular catabolism. In contrast, the enriched proteome of human plasma (37 proteins) consisted of soluble molecules of the coagulation system and cell–cell signaling factors. The functional networks associated with both common and source-distinctive proteomes highlight the principal biological activity of these immunologically relevant body fluids. PMID:23202415

  17. Nicotinic Acid Receptor Abnormalities in Human Skin Cancer: Implications for a Role in Epidermal Differentiation

    PubMed Central

    Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.

    2011-01-01

    Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214

  18. A Genome-Wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells

    PubMed Central

    Zhang, Eric E.; Liu, Andrew C.; Hirota, Tsuyoshi; Miraglia, Loren J.; Welch, Genevieve; Pongsawakul, Pagkapol Y.; Liu, Xianzhong; Atwood, Ann; Huss, Jon W.; Janes, Jeff; Su, Andrew I.; Hogenesch, John B.; Kay, Steve A.

    2009-01-01

    Summary Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide siRNA screen in a human cellular clock model. Knockdown of nearly a thousand genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock-regulated, we conclude the clock is interconnected with many aspects of cellular function. PMID:19765810

  19. Semiparametric Identification of Human Arm Dynamics for Flexible Control of a Functional Electrical Stimulation Neuroprosthesis

    PubMed Central

    Schearer, Eric M.; Liao, Yu-Wei; Perreault, Eric J.; Tresch, Matthew C.; Memberg, William D.; Kirsch, Robert F.; Lynch, Kevin M.

    2016-01-01

    We present a method to identify the dynamics of a human arm controlled by an implanted functional electrical stimulation neuroprosthesis. The method uses Gaussian process regression to predict shoulder and elbow torques given the shoulder and elbow joint positions and velocities and the electrical stimulation inputs to muscles. We compare the accuracy of torque predictions of nonparametric, semiparametric, and parametric model types. The most accurate of the three model types is a semiparametric Gaussian process model that combines the flexibility of a black box function approximator with the generalization power of a parameterized model. The semiparametric model predicted torques during stimulation of multiple muscles with errors less than 20% of the total muscle torque and passive torque needed to drive the arm. The identified model allows us to define an arbitrary reaching trajectory and approximately determine the muscle stimulations required to drive the arm along that trajectory. PMID:26955041

  20. Gene Function Analysis in the Ubiquitous Human Commensal and Pathogen Malassezia Genus.

    PubMed

    Ianiri, Giuseppe; Averette, Anna F; Kingsbury, Joanne M; Heitman, Joseph; Idnurm, Alexander

    2016-11-29

    The genus Malassezia includes 14 species that are found on the skin of humans and animals and are associated with a number of diseases. Recent genome sequencing projects have defined the gene content of all 14 species; however, to date, genetic manipulation has not been possible for any species within this genus. Here, we develop and then optimize molecular tools for the transformation of Malassezia furfur and Malassezia sympodialis using Agrobacterium tumefaciens delivery of transfer DNA (T-DNA) molecules. These T-DNAs can insert randomly into the genome. In the case of M. furfur, targeted gene replacements were also achieved via homologous recombination, enabling deletion of the ADE2 gene for purine biosynthesis and of the LAC2 gene predicted to be involved in melanin biosynthesis. Hence, the introduction of exogenous DNA and direct gene manipulation are feasible in Malassezia species. Species in the genus Malassezia are a defining component of the microbiome of the surface of mammals. They are also associated with a wide range of skin disease symptoms. Many species are difficult to culture in vitro, and although genome sequences are available for the species in this genus, it has not been possible to assess gene function to date. In this study, we pursued a series of possible transformation methods and identified one that allows the introduction of DNA into two species of Malassezia, including the ability to make targeted integrations into the genome such that genes can be deleted. This research opens a new direction in terms of now being able to analyze gene functions in this little understood genus. These tools will contribute to define the mechanisms that lead to the commensalism and pathogenicity in this group of obligate fungi that are predominant on the skin of mammals. Copyright © 2016 Ianiri et al.

  1. Cadherin Expression, Vectorial Active Transport, and Metallothionein Isoform 3 Mediated EMT/MET Responses in Cultured Primary and Immortalized Human Proximal Tubule Cells

    PubMed Central

    Slusser, Andrea; Bathula, Chandra S.; Sens, Donald A.; Somji, Seema; Sens, Mary Ann; Zhou, Xu Dong; Garrett, Scott H.

    2015-01-01

    Background Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. Methods Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. Results It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. Conclusions The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype. PMID:25803827

  2. Acquiring an understanding of design: evidence from children's insight problem solving.

    PubMed

    Defeyter, Margaret Anne; German, Tim P

    2003-09-01

    The human ability to make tools and use them to solve problems may not be zoologically unique, but it is certainly extraordinary. Yet little is known about the conceptual machinery that makes humans so competent at making and using tools. Do adults and children have concepts specialized for understanding human-made artifacts? If so, are these concepts deployed in attempts to solve novel problems? Here we present new data, derived from problem-solving experiments, which support the following. (i) The structure of the child's concept of artifact function changes profoundly between ages 5 and 7. At age 5, the child's conceptual machinery defines the function of an artifact as any goal a user might have; by age 7, its function is defined by the artifact's typical or intended use. (ii) This conceptual shift has a striking effect on problem-solving performance, i.e. the child's concept of artifact function appears to be deployed in problem solving. (iii) This effect on problem solving is not caused by differences in the amount of knowledge that children have about the typical use of a particular tool; it is mediated by the structure of the child's artifact concept (which organizes and deploys the child's knowledge). In two studies, children between 5 and 7 years of age were matched for their knowledge of what a particular artifact "is for", and then given a problem that can only be solved if that tool is used for an atypical purpose. All children performed well in a baseline condition. But when they were primed by a demonstration of the artifact's typical function, 5-year-old children solved the problem much faster than 6-7-year-old children. Because all children knew what the tools were for, differences in knowledge alone cannot explain the results. We argue that the older children were slower to solve the problem when the typical function was primed because (i) their artifact concept plays a role in problem solving, and (ii) intended purpose is central to their concept of artifact function, but not to that of the younger children.

  3. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  4. Human intellectual disability genes form conserved functional modules in Drosophila.

    PubMed

    Oortveld, Merel A W; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A; Schenck, Annette

    2013-10-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules.

  5. Reduction of Subjective and Objective System Complexity

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.

    2015-01-01

    Occam's razor is often used in science to define the minimum criteria to establish a physical or philosophical idea or relationship. Albert Einstein is attributed the saying "everything should be made as simple as possible, but not simpler". These heuristic ideas are based on a belief that there is a minimum state or set of states for a given system or phenomena. In looking at system complexity, these heuristics point us to an idea that complexity can be reduced to a minimum. How then, do we approach a reduction in complexity? Complexity has been described as a subjective concept and an objective measure of a system. Subjective complexity is based on human cognitive comprehension of the functions and inter relationships of a system. Subjective complexity is defined by the ability to fully comprehend the system. Simplifying complexity, in a subjective sense, is thus gaining a deeper understanding of the system. As Apple's Jonathon Ive has stated," It's not just minimalism or the absence of clutter. It involves digging through the depth of complexity. To be truly simple, you have to go really deep". Simplicity is not the absence of complexity but a deeper understanding of complexity. Subjective complexity, based on this human comprehension, cannot then be discerned from the sociological concept of ignorance. The inability to comprehend a system can be either a lack of knowledge, an inability to understand the intricacies of a system, or both. Reduction in this sense is based purely on a cognitive ability to understand the system and no system then may be truly complex. From this view, education and experience seem to be the keys to reduction or eliminating complexity. Objective complexity, is the measure of the systems functions and interrelationships which exist independent of human comprehension. Jonathon Ive's statement does not say that complexity is removed, only that the complexity is understood. From this standpoint, reduction of complexity can be approached in finding the optimal or 'best balance' of the system functions and interrelationships. This is achievable following von Bertalanffy's approach of describing systems as a set of equations representing both the system functions and the system interrelationships. Reduction is found based on an objective function defining the system output given variations in the system inputs and the system operating environment. By minimizing the objective function with respect to these inputs and environments, a reduced system can be found. Thus, a reduction of the system complexity is feasible.

  6. New insights into epididymal biology and function.

    PubMed

    Cornwall, Gail A

    2009-01-01

    The epididymis performs an important role in the maturation of spermatozoa including their acquisition of progressive motility and fertilizing ability. However, the molecular mechanisms that govern these maturational events are still poorly defined. This review focuses on recent progress in our understanding of epididymal function including its development, role of the luminal microenvironment in sperm maturation, regulation and novel mechanisms the epididymis utilizes to carry out some of its functions. A systematic search of Pubmed was carried out using the search term 'epididymis'. Articles that were published in the English language until the end of August 2008 and that focused on the specific topics described above were included. Additional papers cited in the primary reference were also included. While the majority of these findings were the result of studies in animal models, recent studies in the human epididymis are also presented including gene profiling studies to examine regionalized expression in normal epididymides as well as in those from vasectomized patients. Significant progress has been made in our understanding of epididymal function providing new insights that ultimately could improve human health. The data also indicate that the human epididymis plays an important role in sperm maturation but has unique properties compared with animal models.

  7. Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies

    PubMed Central

    Hugenholtz, Floor; Lahti, Leo; Smidt, Hauke; de Vos, Willem M.

    2017-01-01

    Abstract High individuality, large complexity and limited understanding of the mechanisms underlying human intestinal microbiome function remain the major challenges for designing beneficial modulation strategies. Exemplified by the analysis of intestinal bacteria in a thousand Western adults, we discuss key concepts of the human intestinal microbiome landscape, i.e. the compositional and functional ‘core’, the presence of community types and the existence of alternative stable states. Genomic investigation of core taxa revealed functional redundancy, which is expected to stabilize the ecosystem, as well as taxa with specialized functions that have the potential to shape the microbiome landscape. The contrast between Prevotella- and Bacteroides-dominated systems has been well described. However, less known is the effect of not so abundant bacteria, for example, Dialister spp. that have been proposed to exhibit distinct bistable dynamics. Studies employing time-series analysis have highlighted the dynamical variation in the microbiome landscape with and without the effect of defined perturbations, such as the use of antibiotics or dietary changes. We incorporate ecosystem-level observations of the human intestinal microbiota and its keystone species to suggest avenues for designing microbiome modulation strategies to improve host health. PMID:28364729

  8. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function.

    PubMed

    Perico, Luca; Morigi, Marina; Rota, Cinzia; Breno, Matteo; Mele, Caterina; Noris, Marina; Introna, Martino; Capelli, Chiara; Longaretti, Lorena; Rottoli, Daniela; Conti, Sara; Corna, Daniela; Remuzzi, Giuseppe; Benigni, Ariela

    2017-10-17

    Mesenchymal stromal cells (MSCs) are renoprotective and drive regeneration following injury, although cellular targets of such an effect are still ill-defined. Here, we show that human umbilical cord (UC)-MSCs transplanted into mice stimulate tubular cells to regain mitochondrial mass and function, associated with enhanced microtubule-rich projections that appear to mediate mitochondrial trafficking to create a reparative dialogue among adjacent tubular cells. Treatment with UC-MSCs in mice with cisplatin-induced acute kidney injury (AKI) regulates mitochondrial biogenesis in proximal tubuli by enhancing PGC1α expression, NAD + biosynthesis and Sirtuin 3 (SIRT3) activity, thus fostering antioxidant defenses and ATP production. The functional role of SIRT3 in tubular recovery is highlighted by data that in SIRT3-deficient mice with AKI, UC-MSC treatment fails to induce renoprotection. These data document a previously unrecognized mechanism through which UC-MSCs facilitate renal repair, so as to induce global metabolic reprogramming of damaged tubular cells to sustain energy supply.Mesenchymal stromal cells drive renal regeneration following injury. Here, the authors show that human mesenchymal stromal cells, when transplanted into mice with acute kidney injury, stimulate renal tubular cell growth and enhance mitochondrial function via SIRT3.

  9. The BioPlex Network: A Systematic Exploration of the Human Interactome.

    PubMed

    Huttlin, Edward L; Ting, Lily; Bruckner, Raphael J; Gebreab, Fana; Gygi, Melanie P; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E; De Camilli, Pietro; Paulo, Joao A; Harper, J Wade; Gygi, Steven P

    2015-07-16

    Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The BioPlex Network: A Systematic Exploration of the Human Interactome

    PubMed Central

    Huttlin, Edward L.; Ting, Lily; Bruckner, Raphael J.; Gebreab, Fana; Gygi, Melanie P.; Szpyt, John; Tam, Stanley; Zarraga, Gabriela; Colby, Greg; Baltier, Kurt; Dong, Rui; Guarani, Virginia; Vaites, Laura Pontano; Ordureau, Alban; Rad, Ramin; Erickson, Brian K.; Wühr, Martin; Chick, Joel; Zhai, Bo; Kolippakkam, Deepak; Mintseris, Julian; Obar, Robert A.; Harris, Tim; Artavanis-Tsakonas, Spyros; Sowa, Mathew E.; DeCamilli, Pietro; Paulo, Joao A.; Harper, J. Wade; Gygi, Steven P.

    2015-01-01

    SUMMARY Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally-related proteins. Finally, BioPlex, in combination with other approaches can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial Amyotrophic Lateral Sclerosis perturb a defined community of interactors. PMID:26186194

  11. Model of a Christian Academic Teacher in the Education of Tomorrow

    ERIC Educational Resources Information Center

    Krul', Roman

    2014-01-01

    Vocational training, functioning of an academic teacher in the profession and personal development are the selected areas of the author's scientific research inquiries, based on the Christian concept of Man as the image of God and the perception of the value of a person in being a Human. Christian academic teacher has been defined as an advocate…

  12. Evolutionary, structural and biochemical evidence for a new interaction site of the leptin obesity protein

    NASA Technical Reports Server (NTRS)

    Gaucher, Eric A.; Miyamoto, Michael M.; Benner, Steven A.

    2003-01-01

    The Leptin protein is central to the regulation of energy metabolism in mammals. By integrating evolutionary, structural, and biochemical information, a surface segment, outside of its known receptor contacts, is predicted as a second interaction site that may help to further define its roles in energy balance and its functional differences between humans and other mammals.

  13. Fcgamma chain deficiency on hematopoietic cells ameliorates atherosclerosis in apoe-knockout mice by promoting Th2 responses

    USDA-ARS?s Scientific Manuscript database

    We have previously shown that oxLDL-immune complexes (oxLDL-IC) binding to Fcgamma receptors (Fc gamma R) expressed on human monocytes leads to induction of pro-inflammatory cytokines. Four classes of mouse Fc gamma Rs have been defined: Fc gamma RI, II, III, and IV. Functionally, Fc gamma Rs can be...

  14. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions.

    PubMed

    Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K

    2017-03-15

    Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. IgA Fc receptors.

    PubMed

    Monteiro, Renato C; Van De Winkel, Jan G J

    2003-01-01

    The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.

  16. Inherited and acquired disorders of myelin: the underling myelin pathology

    PubMed Central

    Duncan, Ian D.; Radcliff, Abigail B.

    2016-01-01

    Remyelination is a major therapeutic goal in human myelin disorders, serving to restore function to demyelinated axons and providing neuroprotection. The target disorders that might be amenable to the promotion of this repair process are diverse and increasing in number. They range primarily from those of genetic, inflammatory to toxic origin. In order to apply remyelinating strategies to these disorders, it is essential to know whether the myelin damage results from a primary attack on myelin or the oligodendrocyte or both, and whether indeed these lead to myelin breakdown and demyelination. In some disorders, myelin sheath abnormalities are prominent but demyelination does not occur. This review explores the range of human and animal disorders where myelin pathology exists and focusses on defining the myelin changes in each and their cause, to help define whether they are targets for myelin repair therapy. PMID:27068622

  17. The landscape ecology and microbiota of the human nose, mouth and throat

    PubMed Central

    Proctor, Diana M.; Relman, David A.

    2017-01-01

    Landscape ecology examines the relationships between the spatial arrangement of different landforms and the processes that give rise to spatial and temporal patterns in local community structure. These relationships that underlie the patterns of the microbial communities that inhabit the human body, and in particular, those of the nose, mouth and throat, deserve greater attention. Important questions include what defines the size of a population (i.e., ‘patch’) in a given body site; what defines the boundaries of distinct patches within a single body site, and where and over what spatial scales within a body site are gradients detected. This review looks at the landscape ecology in the upper respiratory tract and mouth, and seeks greater clarity about the physiological factors, whether immunological, chemical or physical, that govern microbial community composition and function, and the ecological traits that underlie health and disease. PMID:28407480

  18. Embedded CLIPS for SDI BM/C3 simulation and analysis

    NASA Technical Reports Server (NTRS)

    Gossage, Brett; Nanney, Van

    1990-01-01

    Nichols Research Corporation is developing the BM/C3 Requirements Analysis Tool (BRAT) for the U.S. Army Strategic Defense Command. BRAT uses embedded CLIPS/Ada to model the decision making processes used by the human commander of a defense system. Embedding CLlPS/Ada in BRAT allows the user to explore the role of the human in Command and Control (C2) and the use of expert systems for automated C2. BRAT models assert facts about the current state of the system, the simulated scenario, and threat information into CLIPS/Ada. A user-defined rule set describes the decision criteria for the commander. We have extended CLIPS/Ada with user-defined functions that allow the firing of a rule to invoke a system action such as weapons release or a change in strategy. The use of embedded CLIPS/Ada will provide a powerful modeling tool for our customer at minimal cost.

  19. Human milk peptides differentiate between the preterm and term infant and across varying lactational stages.

    PubMed

    Dingess, Kelly A; de Waard, Marita; Boeren, Sjef; Vervoort, Jacques; Lambers, Tim T; van Goudoever, Johannes B; Hettinga, Kasper

    2017-10-18

    Variations in endogenous peptide profiles, functionality, and the enzymes responsible for the formation of these peptides in human milk are understudied. Additionally, there is a lack of knowledge regarding peptides in donor human milk, which is used to feed preterm infants when mother's own milk is not (sufficiently) available. To assess this, 29 human milk samples from the Dutch Human Milk Bank were analyzed as three groups, preterm late lactation stage (LS) (n = 12), term early (n = 8) and term late LS (n = 9). Gestational age (GA) groups were defined as preterm (24-36 weeks) and term (≥37 weeks). LS was determined as days postpartum as early (16-36 days) or late (55-88 days). Peptides, analyzed by LC-MS/MS, and parent proteins (proteins from matched peptide sequences) were identified and quantified, after which peptide functionality and the enzymes responsible for protein cleavage were determined. A total of 16 different parent proteins were identified from human milk, with no differences by GA or LS. We identified 1104 endogenous peptides, of which, the majority were from the parent proteins β-casein, polymeric immunoglobulin receptor, α s1 -casein, osteopontin, and κ-casein. The absolute number of peptides differed by GA and LS with 30 and 41 differing sequences respectively (p < 0.05) Odds likelihood tests determined that 32 peptides had a predicted bioactive functionality, with no significant differences between groups. Enzyme prediction analysis showed that plasmin/trypsin enzymes most likely cleaved the identified human milk peptides. These results explain some of the variation in endogenous peptides in human milk, leading to future targets that may be studied for functionality.

  20. Conservation of transcription factor binding events predicts gene expression across species

    PubMed Central

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  1. Cognition from life: the two modes of cognition that underlie moral behavior.

    PubMed

    Andringa, Tjeerd C; Bosch, Kirsten A Van Den; Wijermans, Nanda

    2015-01-01

    We argue that the capacity to live life to the benefit of self and others originates in the defining properties of life. These lead to two modes of cognition; the coping mode that is preoccupied with the satisfaction of pressing needs and the co-creation mode that aims at the realization of a world where pressing needs occur less frequently. We have used the Rule of Conservative Changes - stating that new functions can only scaffold on evolutionary older, yet highly stable functions - to predict that the interplay of these two modes define a number of core functions in psychology associated with moral behavior. We explore this prediction with five examples reflecting different theoretical approaches to human cognition and action selection. We conclude the paper with the observation that science is currently dominated by the coping mode and that the benefits of the co-creation mode may be necessary to generate realistic prospects for a modern synthesis in the sciences of the mind.

  2. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain

    PubMed Central

    Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J.; Polo, Simona

    2016-01-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VIshort and myosin VIlong, which differ in the C-terminal region. Their physiological and pathological role remains unknown. Here we identified an isoform-specific regulatory helix, named α2-linker that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a novel clathrin-binding domain that is unique to myosin VIlong and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, where alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VIshort for tumor cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VIshort. Thus the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VIlong) or migratory (myosin VIshort) functional roles. PMID:26950368

  3. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.

    PubMed

    Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona

    2016-04-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.

  4. Cognition from life: the two modes of cognition that underlie moral behavior

    PubMed Central

    Andringa, Tjeerd C.; Bosch, Kirsten A. Van Den; Wijermans, Nanda

    2015-01-01

    We argue that the capacity to live life to the benefit of self and others originates in the defining properties of life. These lead to two modes of cognition; the coping mode that is preoccupied with the satisfaction of pressing needs and the co-creation mode that aims at the realization of a world where pressing needs occur less frequently. We have used the Rule of Conservative Changes – stating that new functions can only scaffold on evolutionary older, yet highly stable functions – to predict that the interplay of these two modes define a number of core functions in psychology associated with moral behavior. We explore this prediction with five examples reflecting different theoretical approaches to human cognition and action selection. We conclude the paper with the observation that science is currently dominated by the coping mode and that the benefits of the co-creation mode may be necessary to generate realistic prospects for a modern synthesis in the sciences of the mind. PMID:25954212

  5. Generation of an approximately 2.4 Mb human X centromere-based minichromosome by targeted telomere-associated chromosome fragmentation in DT40.

    PubMed

    Mills, W; Critcher, R; Lee, C; Farr, C J

    1999-05-01

    A linear mammalian artificial chromosome (MAC) will require at least three types of functional element: a centromere, two telomeres and origins of replication. As yet, our understanding of these elements, as well as many other aspects of structure and organization which may be critical for a fully functional mammalian chromosome, remains poor. As a way of defining these various requirements, minichromosome reagents are being developed and analysed. Approaches for minichromosome generation fall into two broad categories: de novo assembly from candidate DNA sequences, or the fragmentation of an existing chromosome to reduce it to a minimal size. Here we describe the generation of a human minichromosome using the latter, top-down, approach. A human X chromosome, present in a DT40-human microcell hybrid, has been manipulated using homologous recombination and the targeted seeding of a de novo telomere. This strategy has generated a linear approximately 2.4 Mb human X centromere-based minichromosome capped by two artificially seeded telomeres: one immediately flanking the centromeric alpha-satellite DNA and the other targeted to the zinc finger gene ZXDA in Xp11.21. The chromosome retains an alpha-satellite domain of approximately 1. 8 Mb, a small array of gamma-satellite repeat ( approximately 40 kb) and approximately 400 kb of Xp proximal DNA sequence. The mitotic stability of this minichromosome has been examined, both in DT40 and following transfer into hamster and human cell lines. In all three backgrounds, the minichromosome is retained efficiently, but in the human and hamster microcell hybrids its copy number is poorly regulated. This approach of engineering well-defined chromosome reagents will allow key questions in MAC development (such as whether a lower size limit exists) to be addressed. In addition, the 2.4 Mb minichromosome described here has potential to be developed as a vector for gene delivery.

  6. Accurate Prediction of Drug-Induced Liver Injury Using Stem Cell-Derived Populations

    PubMed Central

    Szkolnicka, Dagmara; Farnworth, Sarah L.; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P.; Flint, Oliver

    2014-01-01

    Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies. PMID:24375539

  7. A Comparative Transcriptomic Analysis Reveals Conserved Features of Stem Cell Pluripotency in Planarians and Mammals

    PubMed Central

    Labbé, Roselyne M.; Irimia, Manuel; Currie, Ko W.; Lin, Alexander; Zhu, Shu Jun; Brown, David D.R.; Ross, Eric J.; Voisin, Veronique; Bader, Gary D.; Blencowe, Benjamin J.; Pearson, Bret J.

    2014-01-01

    Many long-lived species of animals require the function of adult stem cells throughout their lives. However, the transcriptomes of stem cells in invertebrates and vertebrates have not been compared, and consequently, ancestral regulatory circuits that control stem cell populations remain poorly defined. In this study, we have used data from high-throughput RNA sequencing to compare the transcriptomes of pluripotent adult stem cells from planarians with the transcriptomes of human and mouse pluripotent embryonic stem cells. From a stringently defined set of 4,432 orthologs shared between planarians, mice and humans, we identified 123 conserved genes that are ≥5-fold differentially expressed in stem cells from all three species. Guided by this gene set, we used RNAi screening in adult planarians to discover novel stem cell regulators, which we found to affect the stem cell-associated functions of tissue homeostasis, regeneration, and stem cell maintenance. Examples of genes that disrupted these processes included the orthologs of TBL3, PSD12, TTC27, and RACK1. From these analyses, we concluded that by comparing stem cell transcriptomes from diverse species, it is possible to uncover conserved factors that function in stem cell biology. These results provide insights into which genes comprised the ancestral circuitry underlying the control of stem cell self-renewal and pluripotency. PMID:22696458

  8. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    PubMed

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P < 0.0001 in all instances). Present analysis supports the idea that phenotypic divergence of Homo sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of divergent sequences of regulatory DNA: (i) recombination-associated exaptation of the highly conserved ancestral regulatory DNA segments; (ii) human-specific insertions of transposable elements. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids.

    PubMed

    Tian, Lipeng; Deshmukh, Abhijeet; Ye, Zhaohui; Jang, Yoon-Young

    2016-08-01

    While in vitro liver tissue engineering has been increasingly studied during the last several years, presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver, but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly, generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions, and has been inefficient so far. Towards generating a fully functional liver containing biliary system, we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver, EpCAM, is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can, not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes), in a 2D differentiation condition, but also form functional ductal structures in a 3D condition. Importantly, this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition, we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues, which may facilitate engineering of complete and functional liver tissue in the future.

  10. A rational model of function learning.

    PubMed

    Lucas, Christopher G; Griffiths, Thomas L; Williams, Joseph J; Kalish, Michael L

    2015-10-01

    Theories of how people learn relationships between continuous variables have tended to focus on two possibilities: one, that people are estimating explicit functions, or two that they are performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, which provide a probabilistic basis for similarity-based function learning, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a rational model of human function learning that combines the strengths of both approaches and accounts for a wide variety of experimental results.

  11. Astronaut activity

    NASA Technical Reports Server (NTRS)

    Loftus, J. P., Jr.; Bond, R. L.; Patton, R. M.

    1975-01-01

    Human factors pertinent to the design and operation of spacecraft are considered. The geometric characteristics of spacecraft that define the degree and type of confinement imposed on the crew and the character of equipment management and housekeeping necessary for hygiene, comfort and safety are discussed. The controls and displays of various spacecraft are described to indicate the degree to which crew functions become integral to functions of the total spacecraft. The contributions of the crew to system reliability and performance are summarized and the increasing significance of the crew's role in scientific observation and experimentation is noted.

  12. Artistic creativity and dementia.

    PubMed

    Miller, Zachary A; Miller, Bruce L

    2013-01-01

    Artistic ability and creativity are defining characteristics of human behavior. Behavioral neurology, as a specialty, believes that even the most complex behaviors can be modeled and understood as the summation of smaller cognitive functions. Literature from individuals with specific brain lesions has helped to map out these smaller regions of cognitive abilities. More recently, models based on neurodegenerative conditions, especially from the frontotemporal dementias, have allowed for greater nuanced investigations into the various functional anatomies necessary for artistic behavior and possibly the underlying networks that promote creativity. © 2013 Elsevier B.V. All rights reserved.

  13. Biochemistry of Mitochondrial Coenzyme Q Biosynthesis.

    PubMed

    Stefely, Jonathan A; Pagliarini, David J

    2017-10-01

    Coenzyme Q (CoQ, ubiquinone) is a redox-active lipid produced across all domains of life that functions in electron transport and oxidative phosphorylation and whose deficiency causes human diseases. Yet, CoQ biosynthesis has not been fully defined in any organism. Several proteins with unclear molecular functions facilitate CoQ biosynthesis through unknown means, and multiple steps in the pathway are catalyzed by currently unidentified enzymes. Here we highlight recent progress toward filling these knowledge gaps through both traditional biochemistry and cutting-edge 'omics' approaches. To help fill the remaining gaps, we present questions framed by the recently discovered CoQ biosynthetic complex and by putative biophysical barriers. Mapping CoQ biosynthesis, metabolism, and transport pathways has great potential to enhance treatment of numerous human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime.

    PubMed

    Greenhalgh, Kacy; Meyer, Kristen M; Aagaard, Kjersti M; Wilmes, Paul

    2016-07-01

    With technological advances in culture-independent molecular methods, we are uncovering a new facet of our natural history by accounting for the vast diversity of microbial life which colonizes the human body. The human microbiome contributes functional genes and metabolites which affect human physiology and are, therefore, considered an important factor for maintaining health. Much has been described in the past decade based primarily on 16S rRNA gene amplicon sequencing regarding the diversity, structure, stability and dynamics of human microbiota in their various body habitats, most notably within the gastrointestinal tract (GIT). Relatively high levels of variation have been described across different stages of life and geographical locations for the GIT microbiome. These observations may prove helpful for the future contextualization of patterns in other body habitats especially in relation to identifying generalizable trends over human lifetime. Given the large degree of complexity and variability, a key challenge will be how to define baseline healthy microbiomes and how to identify features which reflect deviations therefrom in the future. In this context, metagenomics and functional omics will likely play a central role as they will allow resolution of microbiome-conferred functionalities associated with health. Such information will be vital for formulating therapeutic interventions aimed at managing microbiota-mediated health particularly in the GIT over the course of a human lifetime. © 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Defining the molecular signatures of human right heart failure.

    PubMed

    Williams, Jordan L; Cavus, Omer; Loccoh, Emefah C; Adelman, Sara; Daugherty, John C; Smith, Sakima A; Canan, Benjamin; Janssen, Paul M L; Koenig, Sara; Kline, Crystal F; Mohler, Peter J; Bradley, Elisa A

    2018-03-01

    Right ventricular failure (RVF) varies significantly from the more common left ventricular failure (LVF). This study was undertaken to determine potential molecular pathways that are important in human right ventricular (RV) function and may mediate RVF. We analyzed mRNA of human non-failing LV and RV samples and RVF samples from patients with pulmonary arterial hypertension (PAH), and post-LVAD implantation. We then performed transcript analysis to determine differential expression of genes in the human heart samples. Immunoblot quantification was performed followed by analysis of non-failing and failing phenotypes. Inflammatory pathways were more commonly dysregulated in RV tissue (both non-failing and failing phenotypes). In non-failing human RV tissue we found important differences in expression of FIGF, TRAPPAC, and CTGF suggesting that regulation of normal RV and LV function are not the same. In failing RV tissue, FBN2, CTGF, SMOC2, and TRAPP6AC were differentially expressed, and are potential targets for further study. This work provides some of the first analyses of the molecular heterogeneity between human RV and LV tissue, as well as key differences in human disease (RVF secondary to pulmonary hypertension and LVAD mediated RVF). Our transcriptional data indicated that inflammatory pathways may be more important in RV tissue, and changes in FIGF and CTGF supported this hypothesis. In PAH RV failure samples, upregulation of FBN2 and CTGF further reinforced the potential significance that altered remodeling and inflammation play in normal RV function and failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Without it no music: cognition, biology and evolution of musicality.

    PubMed

    Honing, Henkjan; ten Cate, Carel; Peretz, Isabelle; Trehub, Sandra E

    2015-03-19

    Musicality can be defined as a natural, spontaneously developing trait based on and constrained by biology and cognition. Music, by contrast, can be defined as a social and cultural construct based on that very musicality. One critical challenge is to delineate the constituent elements of musicality. What biological and cognitive mechanisms are essential for perceiving, appreciating and making music? Progress in understanding the evolution of music cognition depends upon adequate characterization of the constituent mechanisms of musicality and the extent to which they are present in non-human species. We argue for the importance of identifying these mechanisms and delineating their functions and developmental course, as well as suggesting effective means of studying them in human and non-human animals. It is virtually impossible to underpin the evolutionary role of musicality as a whole, but a multicomponent perspective on musicality that emphasizes its constituent capacities, development and neural cognitive specificity is an excellent starting point for a research programme aimed at illuminating the origins and evolution of musical behaviour as an autonomous trait. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Without it no music: cognition, biology and evolution of musicality

    PubMed Central

    Honing, Henkjan; ten Cate, Carel; Peretz, Isabelle; Trehub, Sandra E.

    2015-01-01

    Musicality can be defined as a natural, spontaneously developing trait based on and constrained by biology and cognition. Music, by contrast, can be defined as a social and cultural construct based on that very musicality. One critical challenge is to delineate the constituent elements of musicality. What biological and cognitive mechanisms are essential for perceiving, appreciating and making music? Progress in understanding the evolution of music cognition depends upon adequate characterization of the constituent mechanisms of musicality and the extent to which they are present in non-human species. We argue for the importance of identifying these mechanisms and delineating their functions and developmental course, as well as suggesting effective means of studying them in human and non-human animals. It is virtually impossible to underpin the evolutionary role of musicality as a whole, but a multicomponent perspective on musicality that emphasizes its constituent capacities, development and neural cognitive specificity is an excellent starting point for a research programme aimed at illuminating the origins and evolution of musical behaviour as an autonomous trait. PMID:25646511

  18. A Rapid Method of Genomic Array Analysis of Scaffold/Matrix Attachment Regions (S/MARs) Identifies a 2.5-Mb Region of Enhanced Scaffold/Matrix Attachment at a Human Neocentromere

    PubMed Central

    Sumer, Huseyin; Craig, Jeffrey M.; Sibson, Mandy; Choo, K.H. Andy

    2003-01-01

    Human neocentromeres are fully functional centromeres that arise at previously noncentromeric regions of the genome. We have tested a rapid procedure of genomic array analysis of chromosome scaffold/matrix attachment regions (S/MARs), involving the isolation of S/MAR DNA and hybridization of this DNA to a genomic BAC/PAC array. Using this procedure, we have defined a 2.5-Mb domain of S/MAR-enriched chromatin that fully encompasses a previously mapped centromere protein-A (CENP-A)-associated domain at a human neocentromere. We have independently verified this procedure using a previously established fluorescence in situ hybridization method on salt-treated metaphase chromosomes. In silico sequence analysis of the S/MAR-enriched and surrounding regions has revealed no outstanding sequence-related predisposition. This study defines the S/MAR-enriched domain of a higher eukaryotic centromere and provides a method that has broad application for the mapping of S/MAR attachment sites over large genomic regions or throughout a genome. PMID:12840048

  19. Parahippocampal and retrosplenial contributions to human spatial navigation

    PubMed Central

    Epstein, Russell A.

    2010-01-01

    Spatial navigation is a core cognitive ability in humans and animals. Neuroimaging studies have identified two functionally-defined brain regions that activate during navigational tasks and also during passive viewing of navigationally-relevant stimuli such as environmental scenes: the parahippocampal place area (PPA) and the retrosplenial complex (RSC). Recent findings indicate that the PPA and RSC play distinct and complementary roles in spatial navigation, with the PPA more concerned with representation of the local visual scene and RSC more concerned with situating the scene within the broader spatial environment. These findings are a first step towards understanding the separate components of the cortical network that mediates spatial navigation in humans. PMID:18760955

  20. Determining electrically evoked compound action potential thresholds: a comparison of computer versus human analysis methods.

    PubMed

    Glassman, E Katelyn; Hughes, Michelle L

    2013-01-01

    Current cochlear implants (CIs) have telemetry capabilities for measuring the electrically evoked compound action potential (ECAP). Neural Response Telemetry (Cochlear) and Neural Response Imaging (Advanced Bionics [AB]) can measure ECAP responses across a range of stimulus levels to obtain an amplitude growth function. Software-specific algorithms automatically mark the leading negative peak, N1, and the following positive peak/plateau, P2, and apply linear regression to estimate ECAP threshold. Alternatively, clinicians may apply expert judgments to modify the peak markers placed by the software algorithms, or use visual detection to identify the lowest level yielding a measurable ECAP response. The goals of this study were to: (1) assess the variability between human and computer decisions for (a) marking N1 and P2 and (b) determining linear-regression threshold (LRT) and visual-detection threshold (VDT); and (2) compare LRT and VDT methods within and across human- and computer-decision methods. ECAP amplitude-growth functions were measured for three electrodes in each of 20 ears (10 Cochlear Nucleus® 24RE/CI512, and 10 AB CII/90K). LRT, defined as the current level yielding an ECAP with zero amplitude, was calculated for both computer- (C-LRT) and human-picked peaks (H-LRT). VDT, defined as the lowest level resulting in a measurable ECAP response, was also calculated for both computer- (C-VDT) and human-picked peaks (H-VDT). Because Neural Response Imaging assigns peak markers to all waveforms but does not include waveforms with amplitudes less than 20 μV in its regression calculation, C-VDT for AB subjects was defined as the lowest current level yielding an amplitude of 20 μV or more. Overall, there were significant correlations between human and computer decisions for peak-marker placement, LRT, and VDT for both manufacturers (r = 0.78-1.00, p < 0.001). For Cochlear devices, LRT and VDT correlated equally well for both computer- and human-picked peaks (r = 0.98-0.99, p < 0.001), which likely reflects the well-defined Neural Response Telemetry algorithm and the lower noise floor in the 24RE and CI512 devices. For AB devices, correlations between LRT and VDT for both peak-picker methods were weaker than for Cochlear devices (r = 0.69-0.85, p < 0.001), which likely reflect the higher noise floor of the system. Disagreement between computer and human decisions regarding the presence of an ECAP response occurred for 5 % of traces for Cochlear devices and 2.1 % of traces for AB devices. Results indicate that human and computer peak-picking methods can be used with similar accuracy for both Cochlear and AB devices. Either C-VDT or C-LRT can be used with equal confidence for Cochlear 24RE and CI512 recipients because both methods are strongly correlated with human decisions. However, for AB devices, greater variability exists between different threshold-determination methods. This finding should be considered in the context of using ECAP measures to assist with programming CIs.

  1. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    PubMed

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Activin-A as an intraovarian modulator: actions, localization, and regulation of the intact dimer in human ovarian cells.

    PubMed Central

    Rabinovici, J; Spencer, S J; Doldi, N; Goldsmith, P C; Schwall, R; Jaffe, R B

    1992-01-01

    The actions, localization, and regulation of activin in the human ovary are unknown. Therefore, the aims of this study were (a) to define the effects of recombinant activin-A and its structural homologue, inhibin-A, on mitogenesis and steroidogenesis (progesterone secretion and aromatase activity) in human preovulatory follicular cells; (b) to localize the activin-A dimer in the human ovary by immunohistochemistry; and (c) to examine regulation of intracellular activin-A production in cultured human follicular cells. In addition to stimulating mitogenic activity, activin-A causes a dose- and time-dependent inhibition of basal and gonadotropin-stimulated progesterone secretion and aromatase activity in human luteinizing follicular cells on day 2 and day 4 of culture. Inhibin-A exerts no effects on mitogenesis, basal or gonadotropin-stimulated progesterone secretion and aromatase activity, and does not alter effects observed with activin-A alone. Immunostaining for dimeric activin-A occurs in granulosa and cumulus cells of human ovarian follicles and in granulosa-lutein cells of the human corpus luteum. cAMP, and to a lesser degree human chorionic gonadotropin and follicle-stimulating hormone, but not inhibin-A, activin-A, or phorbol 12-myristate 13-acetate, increased the immunostaining for activin-A in cultured granulosa cells. These results indicate that activin-A may function as an autocrine or paracrine regulator of follicular function in the human ovary. Images PMID:1569191

  3. Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning

    PubMed Central

    Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka

    2012-01-01

    Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849

  4. Functional flexibility of infant vocalization and the emergence of language

    PubMed Central

    Oller, D. Kimbrough; Buder, Eugene H.; Ramsdell, Heather L.; Warlaumont, Anne S.; Chorna, Lesya; Bakeman, Roger

    2013-01-01

    We report on the emergence of functional flexibility in vocalizations of human infants. This vastly underappreciated capability becomes apparent when prelinguistic vocalizations express a full range of emotional content—positive, neutral, and negative. The data show that at least three types of infant vocalizations (squeals, vowel-like sounds, and growls) occur with this full range of expression by 3–4 mo of age. In contrast, infant cry and laughter, which are species-specific signals apparently homologous to vocal calls in other primates, show functional stability, with cry overwhelmingly expressing negative and laughter positive emotional states. Functional flexibility is a sine qua non in spoken language, because all words or sentences can be produced as expressions of varying emotional states and because learning conventional “meanings” requires the ability to produce sounds that are free of any predetermined function. Functional flexibility is a defining characteristic of language, and empirically it appears before syntax, word learning, and even earlier-developing features presumed to be critical to language (e.g., joint attention, syllable imitation, and canonical babbling). The appearance of functional flexibility early in the first year of human life is a critical step in the development of vocal language and may have been a critical step in the evolution of human language, preceding protosyntax and even primitive single words. Such flexible affect expression of vocalizations has not yet been reported for any nonhuman primate but if found to occur would suggest deep roots for functional flexibility of vocalization in our primate heritage. PMID:23550164

  5. Specialization and integration of functional thalamocortical connectivity in the human infant.

    PubMed

    Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David

    2015-05-19

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.

  6. Specialization and integration of functional thalamocortical connectivity in the human infant

    PubMed Central

    Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David

    2015-01-01

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391

  7. Definition of the Cattle Killer Cell Ig–like Receptor Gene Family: Comparison with Aurochs and Human Counterparts

    PubMed Central

    Sanderson, Nicholas D.; Norman, Paul J.; Guethlein, Lisbeth A.; Ellis, Shirley A.; Williams, Christina; Breen, Matthew; Park, Steven D. E.; Magee, David A.; Babrzadeh, Farbod; Warry, Andrew; Watson, Mick; Bradley, Daniel G.; MacHugh, David E.; Parham, Peter

    2014-01-01

    Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig–like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle. PMID:25398326

  8. Derivation of novel human ground state naive pluripotent stem cells.

    PubMed

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.

  9. How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability.

    PubMed

    Blair, Clancy

    2006-04-01

    This target article considers the relation of fluid cognitive functioning to general intelligence. A neurobiological model differentiating working memory/executive function cognitive processes of the prefrontal cortex from aspects of psychometrically defined general intelligence is presented. Work examining the rise in mean intelligence-test performance between normative cohorts, the neuropsychology and neuroscience of cognitive function in typically and atypically developing human populations, and stress, brain development, and corticolimbic connectivity in human and nonhuman animal models is reviewed and found to provide evidence of mechanisms through which early experience affects the development of an aspect of cognition closely related to, but distinct from, general intelligence. Particular emphasis is placed on the role of emotion in fluid cognition and on research indicating fluid cognitive deficits associated with early hippocampal pathology and with dysregulation of the hypothalamic-pituitary-adrenal axis stress-response system. Findings are seen to be consistent with the idea of an independent fluid cognitive construct and to assist with the interpretation of findings from the study of early compensatory education for children facing psychosocial adversity and from behavior genetic research on intelligence. It is concluded that ongoing development of neurobiologically grounded measures of fluid cognitive skills appropriate for young children will play a key role in understanding early mental development and the adaptive success to which it is related, particularly for young children facing social and economic disadvantage. Specifically, in the evaluation of the efficacy of compensatory education efforts such as Head Start and the readiness for school of children from diverse backgrounds, it is important to distinguish fluid cognition from psychometrically defined general intelligence.

  10. Cocrystal Structures of Antibody N60-i3 and Antibody JR4 in Complex with gp120 Define More Cluster A Epitopes Involved in Effective Antibody-Dependent Effector Function against HIV-1.

    PubMed

    Gohain, Neelakshi; Tolbert, William D; Acharya, Priyamvada; Yu, Lei; Liu, Tongyun; Zhao, Pingsen; Orlandi, Chiara; Visciano, Maria L; Kamin-Lewis, Roberta; Sajadi, Mohammad M; Martin, Loïc; Robinson, James E; Kwong, Peter D; DeVico, Anthony L; Ray, Krishanu; Lewis, George K; Pazgier, Marzena

    2015-09-01

    Accumulating evidence indicates a role for Fc receptor (FcR)-mediated effector functions of antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), in prevention of human immunodeficiency virus type 1 (HIV-1) acquisition and in postinfection control of viremia. Consequently, an understanding of the molecular basis for Env epitopes that constitute effective ADCC targets is of fundamental interest for humoral anti-HIV-1 immunity and for HIV-1 vaccine design. A substantial portion of FcR effector function of potentially protective anti-HIV-1 antibodies is directed toward nonneutralizing, transitional, CD4-inducible (CD4i) epitopes associated with the gp41-reactive region of gp120 (cluster A epitopes). Our previous studies defined the A32-like epitope within the cluster A region and mapped it to the highly conserved and mobile layers 1 and 2 of the gp120 inner domain within the C1-C2 regions of gp120. Here, we elucidate additional cluster A epitope structures, including an A32-like epitope, recognized by human monoclonal antibody (MAb) N60-i3, and a hybrid A32-C11-like epitope, recognized by rhesus macaque MAb JR4. These studies define for the first time a hybrid A32-C11-like epitope and map it to elements of both the A32-like subregion and the seven-layered β-sheet of the gp41-interactive region of gp120. These studies provide additional evidence that effective antibody-dependent effector function in the cluster A region depends on precise epitope targeting--a combination of epitope footprint and mode of antibody attachment. All together these findings help further an understanding of how cluster A epitopes are targeted by humoral responses. HIV/AIDS has claimed the lives of over 30 million people. Although antiretroviral drugs can control viral replication, no vaccine has yet been developed to prevent the spread of the disease. Studies of natural HIV-1 infection, simian immunodeficiency virus (SIV)- or simian-human immunodeficiency virus (SHIV)-infected nonhuman primates (NHPs), and HIV-1-infected humanized mouse models, passive transfer studies in infants born to HIV-infected mothers, and the RV144 clinical trial have linked FcR-mediated effector functions of anti-HIV-1 antibodies with postinfection control of viremia and/or blocking viral acquisition. With this report we provide additional definition of the molecular determinants for Env antigen engagement which lead to effective antibody-dependent effector function directed to the nonneutralizing CD4-dependent epitopes in the gp41-reactive region of gp120. These findings have important implications for the development of an effective HIV-1 vaccine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Toward a digital camera to rival the human eye

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2011-07-01

    All things considered, electronic imaging systems do not rival the human visual system despite notable progress over 40 years since the invention of the CCD. This work presents a method that allows design engineers to evaluate the performance gap between a digital camera and the human eye. The method identifies limiting factors of the electronic systems by benchmarking against the human system. It considers power consumption, visual field, spatial resolution, temporal resolution, and properties related to signal and noise power. A figure of merit is defined as the performance gap of the weakest parameter. Experimental work done with observers and cadavers is reviewed to assess the parameters of the human eye, and assessment techniques are also covered for digital cameras. The method is applied to 24 modern image sensors of various types, where an ideal lens is assumed to complete a digital camera. Results indicate that dynamic range and dark limit are the most limiting factors. The substantial functional gap, from 1.6 to 4.5 orders of magnitude, between the human eye and digital cameras may arise from architectural differences between the human retina, arranged in a multiple-layer structure, and image sensors, mostly fabricated in planar technologies. Functionality of image sensors may be significantly improved by exploiting technologies that allow vertical stacking of active tiers.

  12. Draft Genome Sequences of Human Pathogenic Fungus Geomyces pannorum Sensu Lato and Bat White Nose Syndrome Pathogen Geomyces (Pseudogymnoascus) destructans.

    PubMed

    Chibucos, Marcus C; Crabtree, Jonathan; Nagaraj, Sushma; Chaturvedi, Sudha; Chaturvedi, Vishnu

    2013-12-19

    We report the draft genome sequences of Geomyces pannorum sensu lato and Geomyces (Pseudogymnoascus) destructans. G. pannorum has a larger proteome than G. destructans, containing more proteins with ascribed enzymatic functions. This dichotomy in the genomes of related psychrophilic fungi is a valuable target for defining their distinct saprobic and pathogenic attributes.

  13. Tumour-cytolytic human monocyte-derived macrophages: a simple and efficient method for the generation and long-term cultivation as non-adherent cells in a serum-free medium.

    PubMed

    Streck, R J; Hurley, E L; Epstein, D A; Pauly, J L

    1992-01-01

    We report a simple and efficient culture procedure for the generation of tumour-cytolytic human monocyte-derived macrophages (MAC). In this method, normal human peripheral blood mononuclear cells, isolated using a conventional Ficoll-Hypaque density gradient procedure, are cultured as a heterogenous leukocyte population in Teflon or other hydrophobic cultureware, in a commercially available serum-free culture medium (M-SFM) that has been formulated specifically for the cultivation and ex vivo stimulation of human monocytes and MAC, and in the absence of exogenous mitogens, antigens, cytokines or other stimulants. This procedure features a negative-selection technique that takes advantage of the differential survival of blood leukocytes. Using the prescribed in vitro conditions, lymphocytes survived relatively poorly, whereas monocytes differentiated in the absence of exogenous stimulants into mature tumour-cytolytic MAC. The MAC were present as non-adherent, single cells that expressed good viability (greater than 95%) for a prolonged period (greater than 60 days). When compared to conventional procedures for generating MAC, the prescribed technique is thought to offer several important advantages in that it: (a) eliminates the tedious and cumbersome monocyte isolation procedures, thus providing a significant savings not only in time and money but also in eliminating repetitive cell manipulations that have often been associated with damage to monocyte morphology and/or function; (b) reduces the loss of monocyte subsets that are not recovered during specific isolation procedures; (c) facilitates harvesting a single cell, non-adherent suspension of immunocompetent MAC suitable for various examinations including analyses defining MAC morphology, cytochemistry, phenotype and function; and (d) eliminates variability and artifacts associated with different sera that are utilised frequently as medium supplements. The utility of the prescribed method is illustrated by the results of ongoing studies in which scanning electron microscopy and confocal laser scanning microscopy are being used to define MAC function in different immunological reactions, and examples of these observations are presented herein.

  14. Scenario for concurrent conceptual assembly line design: A case study

    NASA Astrophysics Data System (ADS)

    Mas, F.; Ríos, J.; Menéndez, J. L.

    2012-04-01

    The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.

  15. The thinking ape: the enigma of human consciousness.

    PubMed

    Paulson, Steve; Chalmers, David; Kahneman, Daniel; Santos, Laurie; Schiff, Nicholas

    2013-11-01

    What is the origin and nature of consciousness? If consciousness is common to humans and animals alike, what are the defining traits of human consciousness? Moderated by Steve Paulson, executive producer and host of To the Best of Our Knowledge, Nobel laureate psychologist Daniel Kahneman, philosopher David Chalmers, expert in primate cognition Laurie Santos, and physician-scientist Nicholas Schiff discuss what it means to be conscious and examine the human capacities displayed in cognitive, aesthetic, and ethical behaviors, with a focus on the place and function of the mind within nature. The following is an edited transcript of the discussion that occurred October 10, 2012, 7:00-8:15 PM, at the New York Academy of Sciences in New York City. © 2013 New York Academy of Sciences.

  16. Individualized Functional Parcellation of the Human Amygdala Using a Semi-supervised Clustering Method: A 7T Resting State fMRI Study.

    PubMed

    Zhang, Xianchang; Cheng, Hewei; Zuo, Zhentao; Zhou, Ke; Cong, Fei; Wang, Bo; Zhuo, Yan; Chen, Lin; Xue, Rong; Fan, Yong

    2018-01-01

    The amygdala plays an important role in emotional functions and its dysfunction is considered to be associated with multiple psychiatric disorders in humans. Cytoarchitectonic mapping has demonstrated that the human amygdala complex comprises several subregions. However, it's difficult to delineate boundaries of these subregions in vivo even if using state of the art high resolution structural MRI. Previous attempts to parcellate this small structure using unsupervised clustering methods based on resting state fMRI data suffered from the low spatial resolution of typical fMRI data, and it remains challenging for the unsupervised methods to define subregions of the amygdala in vivo . In this study, we developed a novel brain parcellation method to segment the human amygdala into spatially contiguous subregions based on 7T high resolution fMRI data. The parcellation was implemented using a semi-supervised spectral clustering (SSC) algorithm at an individual subject level. Under guidance of prior information derived from the Julich cytoarchitectonic atlas, our method clustered voxels of the amygdala into subregions according to similarity measures of their functional signals. As a result, three distinct amygdala subregions can be obtained in each hemisphere for every individual subject. Compared with the cytoarchitectonic atlas, our method achieved better performance in terms of subregional functional homogeneity. Validation experiments have also demonstrated that the amygdala subregions obtained by our method have distinctive, lateralized functional connectivity (FC) patterns. Our study has demonstrated that the semi-supervised brain parcellation method is a powerful tool for exploring amygdala subregional functions.

  17. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  18. Functional brain networks related to individual differences in human intelligence at rest.

    PubMed

    Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca

    2016-08-26

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.

  19. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells

    PubMed Central

    Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2. PMID:27413259

  20. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells.

    PubMed

    Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.

  1. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos

    PubMed Central

    Schrank, Bertold; Götz, Rudolf; Gunnersen, Jennifer M.; Ure, Janice M.; Toyka, Klaus V.; Smith, Austin G.; Sendtner, Michael

    1997-01-01

    Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function. PMID:9275227

  2. Patterns of fMRI activity dissociate overlapping functional brain areas that respond to biological motion.

    PubMed

    Peelen, Marius V; Wiggett, Alison J; Downing, Paul E

    2006-03-16

    Accurate perception of the actions and intentions of other people is essential for successful interactions in a social environment. Several cortical areas that support this process respond selectively in fMRI to static and dynamic displays of human bodies and faces. Here we apply pattern-analysis techniques to arrive at a new understanding of the neural response to biological motion. Functionally defined body-, face-, and motion-selective visual areas all responded significantly to "point-light" human motion. Strikingly, however, only body selectivity was correlated, on a voxel-by-voxel basis, with biological motion selectivity. We conclude that (1) biological motion, through the process of structure-from-motion, engages areas involved in the analysis of the static human form; (2) body-selective regions in posterior fusiform gyrus and posterior inferior temporal sulcus overlap with, but are distinct from, face- and motion-selective regions; (3) the interpretation of region-of-interest findings may be substantially altered when multiple patterns of selectivity are considered.

  3. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.

    PubMed

    Sidik, Saima M; Huet, Diego; Ganesan, Suresh M; Huynh, My-Hang; Wang, Tim; Nasamu, Armiyaw S; Thiru, Prathapan; Saeij, Jeroen P J; Carruthers, Vern B; Niles, Jacquin C; Lourido, Sebastian

    2016-09-08

    Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Emerging Structure–Function Relations in the Developing Face Processing System

    PubMed Central

    Suzanne Scherf, K.; Thomas, Cibu; Doyle, Jaime; Behrmann, Marlene

    2014-01-01

    To evaluate emerging structure–function relations in a neural circuit that mediates complex behavior, we investigated age-related differences among cortical regions that support face recognition behavior and the fiber tracts through which they transmit and receive signals using functional neuroimaging and diffusion tensor imaging. In a large sample of human participants (aged 6–23 years), we derived the microstructural and volumetric properties of the inferior longitudinal fasciculus (ILF), the inferior fronto-occipital fasciculus, and control tracts, using independently defined anatomical markers. We also determined the functional characteristics of core face- and place-selective regions that are distributed along the trajectory of the pathways of interest. We observed disproportionately large age-related differences in the volume, fractional anisotropy, and mean and radial, but not axial, diffusivities of the ILF. Critically, these differences in the structural properties of the ILF were tightly and specifically linked with an age-related increase in the size of a key face-selective functional region, the fusiform face area. This dynamic association between emerging structural and functional architecture in the developing brain may provide important clues about the mechanisms by which neural circuits become organized and optimized in the human cortex. PMID:23765156

  5. Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy.

    PubMed

    Wei, Feng; Yan, Li-Min; Su, Tao; He, Na; Lin, Zhi-Jian; Wang, Jie; Shi, Yi-Wu; Yi, Yong-Hong; Liao, Wei-Ping

    2017-08-01

    Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.

  6. Unravelling the Intrinsic Functional Organization of the Human Striatum: A Parcellation and Connectivity Study Based on Resting-State fMRI

    PubMed Central

    Jung, Wi Hoon; Jang, Joon Hwan; Park, Jin Woo; Kim, Euitae; Goo, Eun-Hoe; Im, Oh-Soo; Kwon, Jun Soo

    2014-01-01

    As the main input hub of the basal ganglia, the striatum receives projections from the cerebral cortex. Many studies have provided evidence for multiple parallel corticostriatal loops based on the structural and functional connectivity profiles of the human striatum. A recent resting-state fMRI study revealed the topography of striatum by assigning each voxel in the striatum to its most strongly correlated cortical network among the cognitive, affective, and motor networks. However, it remains unclear what patterns of striatal parcellation would result from performing the clustering without subsequent assignment to cortical networks. Thus, we applied unsupervised clustering algorithms to parcellate the human striatum based on its functional connectivity patterns to other brain regions without any anatomically or functionally defined cortical targets. Functional connectivity maps of striatal subdivisions, identified through clustering analyses, were also computed. Our findings were consistent with recent accounts of the functional distinctions of the striatum as well as with recent studies about its functional and anatomical connectivity. For example, we found functional connections between dorsal and ventral striatal clusters and the areas involved in cognitive and affective processes, respectively, and between rostral and caudal putamen clusters and the areas involved in cognitive and motor processes, respectively. This study confirms prior findings, showing similar striatal parcellation patterns between the present and prior studies. Given such striking similarity, it is suggested that striatal subregions are functionally linked to cortical networks involving specific functions rather than discrete portions of cortical regions. Our findings also demonstrate that the clustering of functional connectivity patterns is a reliable feature in parcellating the striatum into anatomically and functionally meaningful subdivisions. The striatal subdivisions identified here may have important implications for understanding the relationship between corticostriatal dysfunction and various neurodegenerative and psychiatric disorders. PMID:25203441

  7. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    PubMed

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that mucosal surfaces, particularly the gastrointestinal tract, have evolved to favor type III IFN-mediated response to pathogen infections as it allows for spatial segregation of signaling and moderate production of inflammatory signals which we propose are key to maintain gut homeostasis.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liphardt, Jan

    In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods showmore » how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.« less

  9. Social categories as markers of intrinsic interpersonal obligations.

    PubMed

    Rhodes, Marjorie; Chalik, Lisa

    2013-06-01

    Social categorization is an early-developing feature of human social cognition, yet the role that social categories play in children's understanding of and predictions about human behavior has been unclear. In the studies reported here, we tested whether a foundational functional role of social categories is to mark people as intrinsically obligated to one another (e.g., obligated to protect rather than harm). In three studies, children (aged 3-9, N = 124) viewed only within-category harm as violating intrinsic obligations; in contrast, they viewed between-category harm as violating extrinsic obligations defined by explicit rules. These data indicate that children view social categories as marking patterns of intrinsic interpersonal obligations, suggesting that a key function of social categories is to support inferences about how people will relate to members of their own and other groups.

  10. The Intersection of Physics and Biology

    ScienceCinema

    Liphardt, Jan

    2017-12-22

    In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods show how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.

  11. Human Milk Oligosaccharides (HMOS): Structure, Function, and Enzyme-Catalyzed Synthesis.

    PubMed

    Chen, Xi

    2015-01-01

    The important roles played by human milk oligosaccharides (HMOS), the third major component of human milk, in the health of breast-fed infants have been increasingly recognized, as the structures of more than 100 different HMOS have now been elucidated. Despite the recognition of the various functions of HMOS as prebiotics, antiadhesive antimicrobials, and immunomodulators, the roles and the applications of individual HMOS species are less clear. This is mainly due to the limited accessibility to large amounts of individual HMOS in their pure forms. Current advances in the development of enzymatic, chemoenzymatic, whole-cell, and living-cell systems allow for the production of a growing number of HMOS in increasing amounts. This effort will greatly facilitate the elucidation of the important roles of HMOS and allow exploration into the applications of HMOS both as individual compounds and as mixtures of defined structures with desired functions. The structures, functions, and enzyme-catalyzed synthesis of HMOS are briefly surveyed to provide a general picture about the current progress on these aspects. Future efforts should be devoted to elucidating the structures of more complex HMOS, synthesizing more complex HMOS including those with branched structures, and developing HMOS-based or HMOS-inspired prebiotics, additives, and therapeutics. © 2015 Elsevier Inc. All rights reserved.

  12. Distortion product otoacoustic emission suppression tuning and acoustic admittance in human infants: Birth through 6 months

    PubMed Central

    Abdala, Carolina; Keefe, Douglas H.; Oba, Sandra I.

    2009-01-01

    Previous work has reported non-adultlike distortion product otoacoustic emission (DPOAE) suppression in human newborns at f2 =6000 Hz, indicating an immaturity in peripheral auditory function. In this study, DPOAE suppression tuning curves (STCs) were recorded as a measure of cochlear function and acoustic admittance/reflectance (YR) in the ear canal recorded as a measure of middle-ear function, in the same 20 infants at birth and through 6 months of age. DPOAE STCs changed little from birth through 6 months, showing excessively narrow and sharp tuning throughout the test period. In contrast, several middle-ear indices at corresponding frequencies shifted systematically with increasing age, although they also remained non-adultlike at 6 months. Linear correlations were conducted between YR and DPOAE suppression features. Only two correlations out of 76 were significant, and all but three YR variables accounted for <10% of the variance in DPOAE suppression tuning. The strongest correlation was noted between admittance phase at 5700 Hz and STC tip-to-tail (R=0.49). The association between middle-ear variables and DPOAE suppression may be stronger during other developmental time periods. Study of older infants and children is needed to fully define postnatal immaturity of human peripheral auditory function. PMID:17552713

  13. Human fibroblast matrices bio-assembled under macromolecular crowding support stable propagation of human embryonic stem cells.

    PubMed

    Peng, Yanxian; Bocker, Michael Thomas; Holm, Jennifer; Toh, Wei Seong; Hughes, Christopher Stephen; Kidwai, Fahad; Lajoie, Gilles Andre; Cao, Tong; Lyko, Frank; Raghunath, Michael

    2012-11-01

    Stable pluripotent feeder-free propagation of human embryonic stem cells (hESCs) prior to their therapeutic applications remains a major challenge. Matrigel™ (BD Singapore) is a murine sarcoma-derived extracellular matrix (ECM) widely used as a cell-free support combined with conditioned or chemically defined media; however, inherent xenogenic and immunological threats invalidate it for clinical applications. Using human fibrogenic cells to generate ECM is promising but currently suffers from inefficient and time-consuming deposition in vitro. We recently showed that macromolecular crowding (MMC) accelerated ECM deposition substantially in vitro. In the current study, we used dextran sulfate 500 kDa as a macromolecular crowder to induce WI-38 fetal human lung fibroblasts at 0.5% serum condition to deposit human ECM in three days. After decellularization, the generated ECMs allowed stable propagation of H9 hESCs over 20 passages in chemically-defined medium (mTEsR1) with an overall improved outcome compared to Matrigel in terms of population doubling while retaining teratoma formation and differentiation capacity. Of significance, only ECMs generated by MMC allowed the successful propagation of hESCs. ECMs were highly complex and in contrast to Matrigel, contained no vitronectin but did contain collagen XII, ig-h3 and novel for hESC-supporting human matrices, substantial amounts of transglutaminase 2. Genome-wide analysis of promoter DNA methylation states revealed high overall similarity between human ECM- and Matrigel-cultured hESCs; however, distinct differences were observed with 49 genes associated with a variety of cellular functions. Thus, human ECMs deposited by MMC by selected fibroblast lines are a suitable human microenvironment for stable hESC propagation and clinically translational settings. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation

    PubMed Central

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the “electrical agonist-antagonist muscle ratio (EAA ratio)” and “electrical agonist-antagonist muscle activity (EAA activity)” in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model. PMID:24987326

  15. Equilibrium-point control of human elbow-joint movement under isometric environment by using multichannel functional electrical stimulation.

    PubMed

    Matsui, Kazuhiro; Hishii, Yasuo; Maegaki, Kazuya; Yamashita, Yuto; Uemura, Mitsunori; Hirai, Hiroaki; Miyazaki, Fumio

    2014-01-01

    Functional electrical stimulation (FES) is considered an effective technique for aiding quadriplegic persons. However, the human musculoskeletal system has highly non-linearity and redundancy. It is thus difficult to stably and accurately control limbs using FES. In this paper, we propose a simple FES method that is consistent with the motion-control mechanism observed in humans. We focus on joint motion by a pair of agonist-antagonist muscles of the musculoskeletal system, and define the "electrical agonist-antagonist muscle ratio (EAA ratio)" and "electrical agonist-antagonist muscle activity (EAA activity)" in light of the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, respectively, to extract the equilibrium point and joint stiffness from electromyography (EMG) signals. These notions, the agonist-antagonist muscle ratio and agonist-antagonist muscle activity, are based on the hypothesis that the equilibrium point and stiffness of the agonist-antagonist motion system are controlled by the central nervous system. We derived the transfer function between the input EAA ratio and force output of the end-point. We performed some experiments in an isometric environment using six subjects. This transfer-function model is expressed as a cascade-coupled dead time element and a second-order system. High-speed, high-precision, smooth control of the hand force were achieved through the agonist-antagonist muscle stimulation pattern determined by this transfer function model.

  16. Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship

    PubMed Central

    Acar, Evrim; Plopper, George E.; Yener, Bülent

    2012-01-01

    The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models. PMID:22479315

  17. Genetic adaptation of the antibacterial human innate immunity network.

    PubMed

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  18. Genetic adaptation of the antibacterial human innate immunity network

    PubMed Central

    2011-01-01

    Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response. PMID:21745391

  19. Vertebral numbers and human evolution.

    PubMed

    Williams, Scott A; Middleton, Emily R; Villamil, Catalina I; Shattuck, Milena R

    2016-01-01

    Ever since Tyson (1699), anatomists have noted and compared differences in the regional numbers of vertebrae among humans and other hominoids. Subsequent workers interpreted these differences in phylogenetic, functional, and behavioral frameworks and speculated on the history of vertebral numbers during human evolution. Even in a modern phylogenetic framework and with greatly expanded sample sizes of hominoid species, researchers' conclusions vary drastically, positing that hominins evolved from either a "long-backed" (numerically long lumbar column) or a "short-backed" (numerically short lumbar column) ancestor. We show that these disparate interpretations are due in part to the use of different criteria for what defines a lumbar vertebra, but argue that, regardless of which lumbar definition is used, hominins are similar to their great ape relatives in possessing a short trunk, a rare occurrence in mammals and one that defines the clade Hominoidea. Furthermore, we address the recent claim that the early hominin thoracolumbar configuration is not distinct from that of modern humans and conclude that early hominins show evidence of "cranial shifting," which might explain the anomalous morphology of several early hominin fossils. Finally, we evaluate the competing hypotheses on numbers of vertebrae and argue that the current data support a hominin ancestor with an African ape-like short trunk and lower back. © 2016 Wiley Periodicals, Inc.

  20. Navigating a Mobile Robot Across Terrain Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Howard, Ayanna; Bon, Bruce

    2003-01-01

    A strategy for autonomous navigation of a robotic vehicle across hazardous terrain involves the use of a measure of traversability of terrain within a fuzzy-logic conceptual framework. This navigation strategy requires no a priori information about the environment. Fuzzy logic was selected as a basic element of this strategy because it provides a formal methodology for representing and implementing a human driver s heuristic knowledge and operational experience. Within a fuzzy-logic framework, the attributes of human reasoning and decision- making can be formulated by simple IF (antecedent), THEN (consequent) rules coupled with easily understandable and natural linguistic representations. The linguistic values in the rule antecedents convey the imprecision associated with measurements taken by sensors onboard a mobile robot, while the linguistic values in the rule consequents represent the vagueness inherent in the reasoning processes to generate the control actions. The operational strategies of the human expert driver can be transferred, via fuzzy logic, to a robot-navigation strategy in the form of a set of simple conditional statements composed of linguistic variables. These linguistic variables are defined by fuzzy sets in accordance with user-defined membership functions. The main advantages of a fuzzy navigation strategy lie in the ability to extract heuristic rules from human experience and to obviate the need for an analytical model of the robot navigation process.

  1. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease.

    PubMed

    Hoh, Ramona A; Stowe, Timothy R; Turk, Erin; Stearns, Tim

    2012-01-01

    Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.

  2. Transcriptional Program of Ciliated Epithelial Cells Reveals New Cilium and Centrosome Components and Links to Human Disease

    PubMed Central

    Hoh, Ramona A.; Stowe, Timothy R.; Turk, Erin; Stearns, Tim

    2012-01-01

    Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease. PMID:23300604

  3. Human vs. Mouse Eosinophils: “That which we call an eosinophil, by any other name would stain as red”

    PubMed Central

    Lee, James J.; Jacobsen, Elizabeth A.; Ochkur, Sergei I; McGarry, Michael P.; Condjella, Rachel M.; Doyle, Alfred D.; Luo, Huijun; Zellner, Katie R.; Protheroe, Cheryl A.; Willetts, Lian; LeSuer, William E.; Colbert, Dana C.; Helmers, Richard A.; Lacy, Paige; Moqbel, Redwan; Lee, Nancy A.

    2012-01-01

    The respective life histories of humans and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiological pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils and/or their effector functions. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide the experimental details, comparing and contrasting eosinophils and eosinophil effector functions in humans vs. mice. In particular, our review will provide a summation and an easy to use reference guide to important studies demonstrating that while differences exist, more often than not their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function, but instead, species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients. PMID:22935586

  4. Individual differences in cortical face selectivity predict behavioral performance in face recognition

    PubMed Central

    Huang, Lijie; Song, Yiying; Li, Jingguang; Zhen, Zonglei; Yang, Zetian; Liu, Jia

    2014-01-01

    In functional magnetic resonance imaging studies, object selectivity is defined as a higher neural response to an object category than other object categories. Importantly, object selectivity is widely considered as a neural signature of a functionally-specialized area in processing its preferred object category in the human brain. However, the behavioral significance of the object selectivity remains unclear. In the present study, we used the individual differences approach to correlate participants' face selectivity in the face-selective regions with their behavioral performance in face recognition measured outside the scanner in a large sample of healthy adults. Face selectivity was defined as the z score of activation with the contrast of faces vs. non-face objects, and the face recognition ability was indexed as the normalized residual of the accuracy in recognizing previously-learned faces after regressing out that for non-face objects in an old/new memory task. We found that the participants with higher face selectivity in the fusiform face area (FFA) and the occipital face area (OFA), but not in the posterior part of the superior temporal sulcus (pSTS), possessed higher face recognition ability. Importantly, the association of face selectivity in the FFA and face recognition ability cannot be accounted for by FFA response to objects or behavioral performance in object recognition, suggesting that the association is domain-specific. Finally, the association is reliable, confirmed by the replication from another independent participant group. In sum, our finding provides empirical evidence on the validity of using object selectivity as a neural signature in defining object-selective regions in the human brain. PMID:25071513

  5. Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Douglas; Greitzer, Frank L.

    Abstract--The purpose of this paper is to re-address the vision of human-computer symbiosis as originally expressed by J.C.R. Licklider nearly a half-century ago. We describe this vision, place it in some historical context relating to the evolution of human factors research, and we observe that the field is now in the process of re-invigorating Licklider’s vision. We briefly assess the state of the technology within the context of contemporary theory and practice, and we describe what we regard as this emerging field of neo-symbiosis. We offer some initial thoughts on requirements to define functionality of neo-symbiotic systems and discuss researchmore » challenges associated with their development and evaluation.« less

  6. The origins of non-human primates' manual gestures

    PubMed Central

    Liebal, Katja; Call, Josep

    2012-01-01

    The increasing body of research into human and non-human primates' gestural communication reflects the interest in a comparative approach to human communication, particularly possible scenarios of language evolution. One of the central challenges of this field of research is to identify appropriate criteria to differentiate a gesture from other non-communicative actions. After an introduction to the criteria currently used to define non-human primates' gestures and an overview of ongoing research, we discuss different pathways of how manual actions are transformed into manual gestures in both phylogeny and ontogeny. Currently, the relationship between actions and gestures is not only investigated on a behavioural, but also on a neural level. Here, we focus on recent evidence concerning the differential laterality of manual actions and gestures in apes in the framework of a functional asymmetry of the brain for both hand use and language. PMID:22106431

  7. The epigenetic lorax: gene–environment interactions in human health

    PubMed Central

    Latham, Keith E; Sapienza, Carmen; Engel, Nora

    2012-01-01

    Over the last decade, we have witnessed an explosion of information on genetic factors underlying common human diseases and disorders. This ‘human genomics’ information revolution has occurred as a backdrop to a rapid increase in the rates of many human disorders and diseases. For example, obesity, Type 2 diabetes, asthma, autism spectrum disorder and attention deficit hyperactivity disorder have increased at rates that cannot be due to changes in the genetic structure of the population, and are difficult to ascribe to changes in diagnostic criteria or ascertainment. A likely cause of the increased incidence of these disorders is increased exposure to environmental factors that modify gene function. Many environmental factors that have epidemiological association with common human disorders are likely to exert their effects through epigenetic alterations. This general mechanism of gene–environment interaction poses special challenges for individuals, educators, scientists and public policy makers in defining, monitoring and mitigating exposures. PMID:22920179

  8. Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice

    PubMed Central

    Neumann, Susanne; Huang, Wenwei; Titus, Steve; Krause, Gerd; Kleinau, Gunnar; Alberobello, Anna Teresa; Zheng, Wei; Southall, Noel T.; Inglese, James; Austin, Christopher P.; Celi, Francesco S.; Gavrilova, Oksana; Thomas, Craig J.; Raaka, Bruce M.; Gershengorn, Marvin C.

    2009-01-01

    Seven-transmembrane-spanning receptors (7TMRs) are prominent drug targets. However, small-molecule ligands for 7-transmembrane-spanning receptors for which the natural ligands are large, heterodimeric glycoprotein hormones, like thyroid-stimulating hormone (TSH; thyrotropin), have only recently been reported, and none are approved for human use. We have used quantitative high-throughput screening to identify a small-molecule TSH receptor (TSHR) agonist that was modified to produce a second agonist with increased potency. We show that these agonists are highly selective for human TSHR versus other glycoprotein hormone receptors and interact with the receptor's serpentine domain. A binding pocket within the transmembrane domain was defined by docking into a TSHR homology model and was supported by site-directed mutagenesis. In primary cultures of human thyrocytes, both TSH and the agonists increase mRNA levels for thyroglobulin, thyroperoxidase, sodium iodide symporter, and deiodinase type 2, and deiodinase type 2 enzyme activity. Moreover, oral administration of the agonist stimulated thyroid function in mice, resulting in increased serum thyroxine and thyroidal radioiodide uptake. Thus, we discovered a small molecule that activates human TSHR in vitro, is orally active in mice, and could be a lead for development of drugs to use in place of recombinant human TSH in patients with thyroid cancer. PMID:19592511

  9. Draft Genome Sequences of Human Pathogenic Fungus Geomyces pannorum Sensu Lato and Bat White Nose Syndrome Pathogen Geomyces (Pseudogymnoascus) destructans

    PubMed Central

    Crabtree, Jonathan; Nagaraj, Sushma; Chaturvedi, Sudha

    2013-01-01

    We report the draft genome sequences of Geomyces pannorum sensu lato and Geomyces (Pseudogymnoascus) destructans. G. pannorum has a larger proteome than G. destructans, containing more proteins with ascribed enzymatic functions. This dichotomy in the genomes of related psychrophilic fungi is a valuable target for defining their distinct saprobic and pathogenic attributes. PMID:24356829

  10. Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA-Seq

    DTIC Science & Technology

    2017-09-01

    1) define functional roles for individual genes and cell types in development of obesity and insulin resistance and 2) examine novel targets against...which we can design therapies to target specific pathogenic or or health-promoting cell types. 15. SUBJECT TERMS Obesity , Type 2 Diabetes Mellitus...compromised with chronic overnutrition ( obesity ). 4 KEYWORDS: Obesity , Diabetes, Insulin Resistance, Adipose, Adipocytes, Stromal Vascular Fraction, Single

  11. Recursive Rational Choice.

    DTIC Science & Technology

    1981-11-01

    that a decision entity acted as though it were making rational choices among a set of alternatives, as a not unreason- able paradigm of human behavior...Gottinger l / , which, like Kramer’s approach, consider the item of rationality in decision making for social decision rules as representable by finite...1974] in the consideration of whether or not a decisive choice function that is regular rational in the sense of Richter [19711 when defined on subsets

  12. Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice

    PubMed Central

    Baibakov, Boris; Boggs, Nathan A.; Yauger, Belinda; Baibakov, Galina

    2012-01-01

    Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1–3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm–egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy. PMID:22734000

  13. Baseline Architecture of ITER Control System

    NASA Astrophysics Data System (ADS)

    Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.

    2011-08-01

    The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.

  14. Disease-associated mutations identify a novel region in human STING necessary for the control of type I interferon signaling.

    PubMed

    Melki, Isabelle; Rose, Yoann; Uggenti, Carolina; Van Eyck, Lien; Frémond, Marie-Louise; Kitabayashi, Naoki; Rice, Gillian I; Jenkinson, Emma M; Boulai, Anaïs; Jeremiah, Nadia; Gattorno, Marco; Volpi, Sefano; Sacco, Olivero; Terheggen-Lagro, Suzanne W J; Tiddens, Harm A W M; Meyts, Isabelle; Morren, Marie-Anne; De Haes, Petra; Wouters, Carine; Legius, Eric; Corveleyn, Anniek; Rieux-Laucat, Frederic; Bodemer, Christine; Callebaut, Isabelle; Rodero, Mathieu P; Crow, Yanick J

    2017-08-01

    Gain-of-function mutations in transmembrane protein 173 (TMEM173) encoding stimulator of interferon genes (STING) underlie a recently described type I interferonopathy called STING-associated vasculopathy with onset in infancy (SAVI). We sought to define the molecular and cellular pathology relating to 3 individuals variably exhibiting the core features of the SAVI phenotype including systemic inflammation, destructive skin lesions, and interstitial lung disease. Genetic analysis, conformational studies, in vitro assays and ex vivo flow-cytometry were performed. Molecular and in vitro data demonstrate that the pathology in these patients is due to amino acid substitutions at positions 206, 281, and 284 of the human STING protein. These mutations confer cGAMP-independent constitutive activation of type I interferon signaling through TBK1 (TANK-binding kinase), independent from the alternative STING pathway triggered by membrane fusion of enveloped RNA viruses. This constitutive activation was abrogated by ex vivo treatment with the janus kinase 1/2 inhibitor ruxolitinib. Structural analysis indicates that the 3 disease-associated mutations at positions 206, 281, and 284 of the STING protein define a novel cluster of amino acids with functional importance in the regulation of type I interferon signaling. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Serotonergic and dopaminergic modulation of attentional processes.

    PubMed

    Boulougouris, Vasileios; Tsaltas, Eleftheria

    2008-01-01

    Disturbances in attentional processes are a common feature of several psychiatric disorders such as schizophrenia, attention deficit/hyperactivity disorder and Huntington's disease. The use of animal models has been useful in defining various candidate neural systems thus enabling us to translate basic laboratory science to the clinic and vice-versa. In this chapter, a comparative and integrated account is provided on the neuroanatomical and neurochemical modulation of basic behavioural operations such as selective attention, vigilance, set-shifting and executive control focusing on the comparative functions of the serotonin and dopamine systems in the cognitive control exerted by the prefrontal cortex. Specifically, we have reviewed evidence emerging from several behavioural paradigms in experimental animals and humans each of which centres on a different aspect of the attentional function. These paradigms offering both human and animal variants include the five-choice serial reaction time task (5CSRTT), attentional set-shifting and stop-signal reaction time task. In each case, the types of operation that are measured by the given paradigm and their neural correlates are defined. Then, the role of the ascending dopaminergic and serotonergic systems in the neurochemical modulation of its behavioural output are examined, and reference is made to clinical implications for neurological and neuropsychiatric disorders which exhibit deficits in these cognitive tests.

  16. Tinbergen on mirror neurons.

    PubMed

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  17. A continuous function model for path prediction of entities

    NASA Astrophysics Data System (ADS)

    Nanda, S.; Pray, R.

    2007-04-01

    As militaries across the world continue to evolve, the roles of humans in various theatres of operation are being increasingly targeted by military planners for substitution with automation. Forward observation and direction of supporting arms to neutralize threats from dynamic adversaries is one such example. However, contemporary tracking and targeting systems are incapable of serving autonomously for they do not embody the sophisticated algorithms necessary to predict the future positions of adversaries with the accuracy offered by the cognitive and analytical abilities of human operators. The need for these systems to incorporate methods characterizing such intelligence is therefore compelling. In this paper, we present a novel technique to achieve this goal by modeling the path of an entity as a continuous polynomial function of multiple variables expressed as a Taylor series with a finite number of terms. We demonstrate the method for evaluating the coefficient of each term to define this function unambiguously for any given entity, and illustrate its use to determine the entity's position at any point in time in the future.

  18. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    PubMed

    Gumy, Christel; Chandsawangbhuwana, Charlie; Dzyakanchuk, Anna A; Kratschmar, Denise V; Baker, Michael E; Odermatt, Alex

    2008-01-01

    Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT) is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT) in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR) function. We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK) and tyrosine-aminotransferase (TAT) and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6) and TNF-alpha production in lipopolysaccharide (LPS)-stimulated native human macrophages and human THP-1 macrophages. DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  19. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity

    PubMed Central

    Henegar, Corneliu; Tordjman, Joan; Achard, Vincent; Lacasa, Danièle; Cremer, Isabelle; Guerre-Millo, Michèle; Poitou, Christine; Basdevant, Arnaud; Stich, Vladimir; Viguerie, Nathalie; Langin, Dominique; Bedossa, Pierre; Zucker, Jean-Daniel; Clement, Karine

    2008-01-01

    Background Investigations performed in mice and humans have acknowledged obesity as a low-grade inflammatory disease. Several molecular mechanisms have been convincingly shown to be involved in activating inflammatory processes and altering cell composition in white adipose tissue (WAT). However, the overall importance of these alterations, and their long-term impact on the metabolic functions of the WAT and on its morphology, remain unclear. Results Here, we analyzed the transcriptomic signature of the subcutaneous WAT in obese human subjects, in stable weight conditions and after weight loss following bariatric surgery. An original integrative functional genomics approach was applied to quantify relations between relevant structural and functional themes annotating differentially expressed genes in order to construct a comprehensive map of transcriptional interactions defining the obese WAT. These analyses highlighted a significant up-regulation of genes and biological themes related to extracellular matrix (ECM) constituents, including members of the integrin family, and suggested that these elements could play a major mediating role in a chain of interactions that connect local inflammatory phenomena to the alteration of WAT metabolic functions in obese subjects. Tissue and cellular investigations, driven by the analysis of transcriptional interactions, revealed an increased amount of interstitial fibrosis in obese WAT, associated with an infiltration of different types of inflammatory cells, and suggest that phenotypic alterations of human pre-adipocytes, induced by a pro-inflammatory environment, may lead to an excessive synthesis of ECM components. Conclusion This study opens new perspectives in understanding the biology of human WAT and its pathologic changes indicative of tissue deterioration associated with the development of obesity. PMID:18208606

  20. Histological findings in two renal transplants accomplishing operational tolerance criteria

    PubMed Central

    Azancot, M.A.; Cantarell, C.; Torres, I.B.; Serón, D.R.

    2011-01-01

    Operational tolerance is defined as stable renal function in transplants without immunosuppression for at least 1 year. We present histological assessments of two patients with operational tolerance. The first withdrew immunosuppression in 2005 and presents stable renal function (creatinine 1.5 mg/dL) without proteinuria. The biopsy showed mild chronic tubulointerstitial changes without inflammation. The second withdrew immunosuppression in 2009 and maintains stable renal function (creatinine 1.6 mg/dL) with mild proteinuria. Histology showed chronic humoural rejection and Class II anti-human leukocyte antigen antibodies were detected. These cases suggest that a renal biopsy may be useful to rule out subclinical pathology in patients with operational tolerance. PMID:25984157

  1. Histological findings in two renal transplants accomplishing operational tolerance criteria.

    PubMed

    Azancot, M A; Moreso, F; Cantarell, C; Torres, I B; Serón, D R

    2011-06-01

    Operational tolerance is defined as stable renal function in transplants without immunosuppression for at least 1 year. We present histological assessments of two patients with operational tolerance. The first withdrew immunosuppression in 2005 and presents stable renal function (creatinine 1.5 mg/dL) without proteinuria. The biopsy showed mild chronic tubulointerstitial changes without inflammation. The second withdrew immunosuppression in 2009 and maintains stable renal function (creatinine 1.6 mg/dL) with mild proteinuria. Histology showed chronic humoural rejection and Class II anti-human leukocyte antigen antibodies were detected. These cases suggest that a renal biopsy may be useful to rule out subclinical pathology in patients with operational tolerance.

  2. The rhesus (Macaca mulatta) and crab-eating (Macaca fascicularis) monkeys in cardiovascular and aerospace research

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Ritzman, J. R.

    1977-01-01

    Two nonhuman primate species were used to investigate the effects of gravitoinertial forces on pilot incapacitation and performance impairment, to define human physiologic tolerance and safe exposure limits to these environments, and to obtain data which can be used to evolve new methods to improve man's G tolerance to match the structural capability of new generation aircraft. The macaca fascicularis was used to study the effects of environmental stress and atheroscelerosis on cerebral blood flow and function agents on myocardial and cardiovascular function were studied in the macaca mulatta.

  3. Functional correlation approach to operational risk in banking organizations

    NASA Astrophysics Data System (ADS)

    Kühn, Reimer; Neu, Peter

    2003-05-01

    A Value-at-Risk-based model is proposed to compute the adequate equity capital necessary to cover potential losses due to operational risks, such as human and system process failures, in banking organizations. Exploring the analogy to a lattice gas model from physics, correlations between sequential failures are modeled by as functionally defined, heterogeneous couplings between mutually supportive processes. In contrast to traditional risk models for market and credit risk, where correlations are described as equal-time-correlations by a covariance matrix, the dynamics of the model shows collective phenomena such as bursts and avalanches of process failures.

  4. [Chronic inflammation and organismal aging].

    PubMed

    Naito, Atsuhiko T; Komuro, Issei

    2013-01-01

    Aging is defined as the progressive functional decline of tissue function accompanied by increasing mortality with advancing age. Many researchers proposed various theories of aging, however, precise molecular mechanism of organismal aging remains elusive. The presence of autoantibody and the concentration of various inflammatory cytokines are often correlated to age, even in healthy individuals who do not have autoimmune or infectious diseases. In addition, low grade chronic inflammation has been regarded as a background for many age-related human diseases. These findings suggest that chronic inflammation plays a causative role in organismal aging and that proper regulation of aged immune system may decelerate organismal aging.

  5. VeriClick: an efficient tool for table format verification

    NASA Astrophysics Data System (ADS)

    Nagy, George; Tamhankar, Mangesh

    2012-01-01

    The essential layout attributes of a visual table can be defined by the location of four critical grid cells. Although these critical cells can often be located by automated analysis, some means of human interaction is necessary for correcting residual errors. VeriClick is a macro-enabled spreadsheet interface that provides ground-truthing, confirmation, correction, and verification functions for CSV tables. All user actions are logged. Experimental results of seven subjects on one hundred tables suggest that VeriClick can provide a ten- to twenty-fold speedup over performing the same functions with standard spreadsheet editing commands.

  6. AES/GRG5: more than just a dominant-negative TLE/GRG family member.

    PubMed

    Beagle, Brandon; Johnson, Gail V W

    2010-11-01

    The human Transducin-like Enhancer of Split (TLE) and mouse homologue, Groucho gene-related protein (GRG), represent a family of conserved non-DNA binding transcriptional modulatory proteins divided into two subgroups based upon size. The long TLE/GRGs consist of four pentadomain proteins that are dedicated co-repressors for multiple transcription factors (TF). The second TLE/GRG subgroup is composed of the Amino-terminal Enhancer of Split (AES) in humans and its mouse homolog GRG5 (AES/GRG5). In contrast to the dedicated co-repressor function of long TLE/GRGs, AES/GRG5 can both positively or negatively modulate various TF as well as non-TF proteins in a long TLE/GRG-dependent or -independent manner. Therefore, AES/GRG5 is a functionally dynamic protein that is not exclusively defined by its role as a long TLE/GRG antagonist. AES/GRG5 may function in various developmental and pathological processes but the functional characteristics of endogenous AES/GRG5 in a physiologically relevant context remains to be determined. © 2010 Wiley-Liss, Inc.

  7. Nanotopography-guided tissue engineering and regenerative medicine☆

    PubMed Central

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S.; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2017-01-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. PMID:22921841

  8. A Putative Multiple-Demand System in the Macaque Brain.

    PubMed

    Mitchell, Daniel J; Bell, Andrew H; Buckley, Mark J; Mitchell, Anna S; Sallet, Jerome; Duncan, John

    2016-08-17

    In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex. Copyright © 2016 Mitchell et al.

  9. Adult Human Neurogenesis: From Microscopy to Magnetic Resonance Imaging

    PubMed Central

    Sierra, Amanda; Encinas, Juan M.; Maletic-Savatic, Mirjana

    2011-01-01

    Neural stem cells reside in well-defined areas of the adult human brain and are capable of generating new neurons throughout the life span. In rodents, it is well established that the new born neurons are involved in olfaction as well as in certain forms of memory and learning. In humans, the functional relevance of adult human neurogenesis is being investigated, in particular its implication in the etiopathology of a variety of brain disorders. Adult neurogenesis in the human brain was discovered by utilizing methodologies directly imported from the rodent research, such as immunohistological detection of proliferation and cell-type specific biomarkers in postmortem or biopsy tissue. However, in the vast majority of cases, these methods do not support longitudinal studies; thus, the capacity of the putative stem cells to form new neurons under different disease conditions cannot be tested. More recently, new technologies have been specifically developed for the detection and quantification of neural stem cells in the living human brain. These technologies rely on the use of magnetic resonance imaging, available in hospitals worldwide. Although they require further validation in rodents and primates, these new methods hold the potential to test the contribution of adult human neurogenesis to brain function in both health and disease. This review reports on the current knowledge on adult human neurogenesis. We first review the different methods available to assess human neurogenesis, both ex vivo and in vivo and then appraise the changes of adult neurogenesis in human diseases. PMID:21519376

  10. Erythro-megakaryocytic transcription factors associated with hereditary anemia

    PubMed Central

    Weiss, Mitchell J.

    2014-01-01

    Most heritable anemias are caused by mutations in genes encoding globins, red blood cell (RBC) membrane proteins, or enzymes in the glycolytic and hexose monophosphate shunt pathways. A less common class of genetic anemia is caused by mutations that alter the functions of erythroid transcription factors (TFs). Many TF mutations associated with heritable anemia cause truncations or amino acid substitutions, resulting in the production of functionally altered proteins. Characterization of these mutant proteins has provided insights into mechanisms of gene expression, hematopoietic development, and human disease. Mutations within promoter or enhancer regions that disrupt TF binding to essential erythroid genes also cause anemia and heritable variations in RBC traits, such as fetal hemoglobin content. Defining the latter may have important clinical implications for de-repressing fetal hemoglobin synthesis to treat sickle cell anemia and β thalassemia. Functionally important alterations in genes encoding TFs or their cognate cis elements are likely to occur more frequently than currently appreciated, a hypothesis that will soon be tested through ongoing genome-wide association studies and the rapidly expanding use of global genome sequencing for human diagnostics. Findings obtained through such studies of RBCs and associated diseases are likely generalizable to many human diseases and quantitative traits. PMID:24652993

  11. CRISPR: express delivery to any DNA address.

    PubMed

    Peterson, A

    2017-01-01

    The sudden emergence and worldwide adoption of CRISPR gene-editing technology confronts humanity with unprecedented opportunities and choices. CRISPR's transformative impact on our future understanding of biology, along with its potential to unleash control over the most fundamental of biological processes, is predictable by already achieved applications. Although its origin, composition, and function were revealed only recently, close to 3000 CRISPR-based publications have appeared including insightful and diversely focused reviews referenced here. Adding further to scientific and public awareness, a recent symposium addressed the ethical implications of interfacing CRISPR technology and human biology. However, the magnitude of CRISPR's rapidly emerging power mandates its broadest assessment. Only with the participation of a diverse and informed community can the most effective and humanity-positive CRISPR applications be defined. This brief review is aimed at those with little previous exposure to the CRISPR revolution. The molecules that constitute CRISPR's core components and their functional organization are described along with how the mechanism has been harnessed to edit genome structure and modulate gene function. Additionally, a glimpse into CRISPR's potential to unleash genetic changes with far-reaching consequences is presented. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  13. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method.

    PubMed

    Kim, Jae-Hun; Lee, Jong-Min; Jo, Hang Joon; Kim, Sook Hui; Lee, Jung Hee; Kim, Sung Tae; Seo, Sang Won; Cox, Robert W; Na, Duk L; Kim, Sun I; Saad, Ziad S

    2010-02-01

    Noninvasive parcellation of the human cerebral cortex is an important goal for understanding and examining brain functions. Recently, the patterns of anatomical connections using diffusion tensor imaging (DTI) have been used to parcellate brain regions. Here, we present a noninvasive parcellation approach that uses "functional fingerprints" obtained by correlation measures on resting state functional magnetic resonance imaging (fMRI) data to parcellate brain regions. In other terms, brain regions are parcellated based on the similarity of their connection--as reflected by correlation during resting state--to the whole brain. The proposed method was used to parcellate the medial frontal cortex (MFC) into supplementary motor areas (SMA) and pre-SMA subregions. In agreement with anatomical landmark-based parcellation, we find that functional fingerprint clustering of the MFC results in anterior and posterior clusters. The probabilistic maps from 12 subjects showed that the anterior cluster is mainly located rostral to the vertical commissure anterior (VCA) line, whereas the posterior cluster is mainly located caudal to VCA line, suggesting the homologues of pre-SMA and SMA. The functional connections from the putative pre-SMA cluster were connected to brain regions which are responsible for complex/cognitive motor control, whereas those from the putative SMA cluster were connected to brain regions which are related to the simple motor control. These findings demonstrate the feasibility of the functional connectivity-based parcellation of the human cerebral cortex using resting state fMRI. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  14. A User's Guide to the Encyclopedia of DNA Elements (ENCODE)

    PubMed Central

    2011-01-01

    The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome. PMID:21526222

  15. Lucky Rhythms in Orbitofrontal Cortex Bias Gambling Decisions in Humans

    PubMed Central

    Sacré, Pierre; Kerr, Matthew S. D.; Kahn, Kevin; Gonzalez-Martinez, Jorge; Bulacio, Juan; Park, Hyun-Joo; Johnson, Matthew A.; Thompson, Susan; Jones, Jaes; Chib, Vikram S.; Gale, John T.; Sarma, Sridevi V.

    2016-01-01

    It is well established that emotions influence our decisions, yet the neural basis of this biasing effect is not well understood. Here we directly recorded local field potentials from the OrbitoFrontal Cortex (OFC) in five human subjects performing a financial decision-making task. We observed a striking increase in gamma-band (36–50 Hz) oscillatory activity that reflected subjects’ decisions to make riskier choices. Additionally, these gamma rhythms were linked back to mismatched expectations or “luck” occurring in past trials. Specifically, when a subject expected to win but lost, the trial was defined as “unlucky” and when the subject expected to lose but won, the trial was defined as “lucky”. Finally, a fading memory model of luck correlated to an objective measure of emotion, heart rate variability. Our findings suggest OFC may play a pivotal role in processing a subject’s internal (emotional) state during financial decision-making, a particularly interesting result in light of the more recent “cognitive map” theory of OFC function. PMID:27830753

  16. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A.

    PubMed

    King, Cason R; Zhang, Ali; Tessier, Tanner M; Gameiro, Steven F; Mymryk, Joe S

    2018-05-01

    As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected "hub" proteins to "hack" the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. Copyright © 2018 King et al.

  17. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming

    PubMed Central

    Moreau, Thomas; Evans, Amanda L.; Vasquez, Louella; Tijssen, Marloes R.; Yan, Ying; Trotter, Matthew W.; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M.; Pask, Dean C.; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H.; Pedersen, Roger A.; Ghevaert, Cedric

    2016-01-01

    The production of megakaryocytes (MKs)—the precursors of blood platelets—from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 105 mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology. PMID:27052461

  18. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming.

    PubMed

    Moreau, Thomas; Evans, Amanda L; Vasquez, Louella; Tijssen, Marloes R; Yan, Ying; Trotter, Matthew W; Howard, Daniel; Colzani, Maria; Arumugam, Meera; Wu, Wing Han; Dalby, Amanda; Lampela, Riina; Bouet, Guenaelle; Hobbs, Catherine M; Pask, Dean C; Payne, Holly; Ponomaryov, Tatyana; Brill, Alexander; Soranzo, Nicole; Ouwehand, Willem H; Pedersen, Roger A; Ghevaert, Cedric

    2016-04-07

    The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.

  19. Hacking the Cell: Network Intrusion and Exploitation by Adenovirus E1A

    PubMed Central

    King, Cason R.; Zhang, Ali; Tessier, Tanner M.; Gameiro, Steven F.

    2018-01-01

    ABSTRACT As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function. PMID:29717008

  20. Defining the Role of Essential Genes in Human Disease

    PubMed Central

    Robertson, David L.; Hentges, Kathryn E.

    2011-01-01

    A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases. PMID:22096564

  1. Selection of optimal spectral sensitivity functions for color filter arrays.

    PubMed

    Parmar, Manu; Reeves, Stanley J

    2010-12-01

    A color image meant for human consumption can be appropriately displayed only if at least three distinct color channels are present. Typical digital cameras acquire three-color images with only one sensor. A color filter array (CFA) is placed on the sensor such that only one color is sampled at a particular spatial location. This sparsely sampled signal is then reconstructed to form a color image with information about all three colors at each location. In this paper, we show that the wavelength sensitivity functions of the CFA color filters affect both the color reproduction ability and the spatial reconstruction quality of recovered images. We present a method to select perceptually optimal color filter sensitivity functions based upon a unified spatial-chromatic sampling framework. A cost function independent of particular scenes is defined that expresses the error between a scene viewed by the human visual system and the reconstructed image that represents the scene. A constrained minimization of the cost function is used to obtain optimal values of color-filter sensitivity functions for several periodic CFAs. The sensitivity functions are shown to perform better than typical RGB and CMY color filters in terms of both the s-CIELAB ∆E error metric and a qualitative assessment.

  2. The crystal structure of a bacterial Sufu-like protein defines a novel group of bacterial proteins that are similar to the N-terminal domain of human Sufu

    PubMed Central

    Das, Debanu; Finn, Robert D; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Lam, Winnie W; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-01-01

    Sufu (Suppressor of Fused), a two-domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu-like proteins have previously been identified based on sequence similarity to the N-terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu-like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu-like protein. The structure revealed a striking similarity to the N-terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ∼15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu-like proteins that are present in ∼200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam. PMID:20836087

  3. Defining the bacteroides ribosomal binding site.

    PubMed

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  4. Integrative Understanding of Emergent Brain Properties, Quantum Brain Hypotheses, and Connectome Alterations in Dementia are Key Challenges to Conquer Alzheimer's Disease.

    PubMed

    Kuljiš, Rodrigo O

    2010-01-01

    The biological substrate for cognition remains a challenge as much as defining this function of living beings. Here, we examine some of the difficulties to understand normal and disordered cognition in humans. We use aspects of Alzheimer's disease and related disorders to illustrate how the wealth of information at many conceptually separate, even intellectually decoupled, physical scales - in particular at the Molecular Neuroscience versus Systems Neuroscience/Neuropsychology levels - presents a challenge in terms of true interdisciplinary integration towards a coherent understanding. These unresolved dilemmas include critically the as yet untested quantum brain hypothesis, and the embryonic attempts to develop and define the so-called connectome in humans and in non-human models of disease. To mitigate these challenges, we propose a scheme incorporating the vast array of scales of the space and time (space-time) manifold from at least the subatomic through cognitive-behavioral dimensions of inquiry, to achieve a new understanding of both normal and disordered cognition, that is essential for a new era of progress in the Generative Sciences and its application to translational efforts for disease prevention and treatment.

  5. [Insulin resistance as a mechanism of adaptation during human evolution].

    PubMed

    Ricart, W; Fernández-Real, J M

    2010-10-01

    The recent application of concepts of evolution to human disease is proving useful to understand certain pathophysiological mechanisms of different entities that span genomic alterations of immunity, respiratory and hormone function, and the circulatory and neural systems. However, effort has concentrated on explaining the keys to adaptation that define human metabolism and, since the early 1960s, several theories have been developed. This article reviews some of the hypotheses postulated in recent years on the potential benefit of insulin resistance and discusses the most recent knowledge. The concept of the thrifty gene seems to have been definitively refuted by current knowledge. The current paradigm describes an interaction between the metabolic and the immune systems resulting from their coevolution, promoted by evolutionary pressures triggered by fasting, infection and intake of different foods. The activation and regulation of these ancient mechanisms in integrated and interdependent areas defines insulin resistance as a survival strategy that is critical during fasting and in the fight against infection. The relationship with some components of the diet and, particularly, with the symbiotic intestinal microflora points to new paradigms in understanding the pathophysiology of obesity, metabolic syndrome and type 2 diabetes mellitus. Copyright © 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  6. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.

    PubMed

    Zhang-James, Yanli; Faraone, Stephen V

    2016-07-01

    Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells.

    PubMed

    DePorter, Sandra M; McNaughton, Brian R

    2014-09-17

    The size, well-defined structure, and relatively high folding energies of most proteins allow them to recognize disease-relevant receptors that present a challenge to small molecule reagents. While multiple challenges must be overcome in order to fully exploit the use of protein reagents in basic research and medicine, perhaps the greatest challenge is their intracellular delivery to a particular diseased cell. Here, we describe the genetic and enzymatic manipulation of prostate cancer cell-penetrating M13 bacteriophage to generate nanocarriers for the intracellular delivery of functional exogenous proteins to a human prostate cancer cell line.

  8. Gross anatomy of network security

    NASA Technical Reports Server (NTRS)

    Siu, Thomas J.

    2002-01-01

    Information security involves many branches of effort, including information assurance, host level security, physical security, and network security. Computer network security methods and implementations are given a top-down description to permit a medically focused audience to anchor this information to their daily practice. The depth of detail of network functionality and security measures, like that of the study of human anatomy, can be highly involved. Presented at the level of major gross anatomical systems, this paper will focus on network backbone implementation and perimeter defenses, then diagnostic tools, and finally the user practices (the human element). Physical security measures, though significant, have been defined as beyond the scope of this presentation.

  9. Capturing Human Naïve Pluripotency in the Embryo and in the Dish.

    PubMed

    Zimmerlin, Ludovic; Park, Tea Soon; Zambidis, Elias T

    2017-08-15

    Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.

  10. A safety-based decision making architecture for autonomous systems

    NASA Technical Reports Server (NTRS)

    Musto, Joseph C.; Lauderbaugh, L. K.

    1991-01-01

    Engineering systems designed specifically for space applications often exhibit a high level of autonomy in the control and decision-making architecture. As the level of autonomy increases, more emphasis must be placed on assimilating the safety functions normally executed at the hardware level or by human supervisors into the control architecture of the system. The development of a decision-making structure which utilizes information on system safety is detailed. A quantitative measure of system safety, called the safety self-information, is defined. This measure is analogous to the reliability self-information defined by McInroy and Saridis, but includes weighting of task constraints to provide a measure of both reliability and cost. An example is presented in which the safety self-information is used as a decision criterion in a mobile robot controller. The safety self-information is shown to be consistent with the entropy-based Theory of Intelligent Machines defined by Saridis.

  11. Human-robot skills transfer interfaces for a flexible surgical robot.

    PubMed

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Modelling of Biometric Identification System with Given Parameters Using Colored Petri Nets

    NASA Astrophysics Data System (ADS)

    Petrosyan, G.; Ter-Vardanyan, L.; Gaboutchian, A.

    2017-05-01

    Biometric identification systems use given parameters and function on the basis of Colored Petri Nets as a modelling language developed for systems in which communication, synchronization and distributed resources play an important role. Colored Petri Nets combine the strengths of Classical Petri Nets with the power of a high-level programming language. Coloured Petri Nets have both, formal intuitive and graphical presentations. Graphical CPN model consists of a set of interacting modules which include a network of places, transitions and arcs. Mathematical representation has a well-defined syntax and semantics, as well as defines system behavioural properties. One of the best known features used in biometric is the human finger print pattern. During the last decade other human features have become of interest, such as iris-based or face recognition. The objective of this paper is to introduce the fundamental concepts of Petri Nets in relation to tooth shape analysis. Biometric identification systems functioning has two phases: data enrollment phase and identification phase. During the data enrollment phase images of teeth are added to database. This record contains enrollment data as a noisy version of the biometrical data corresponding to the individual. During the identification phase an unknown individual is observed again and is compared to the enrollment data in the database and then system estimates the individual. The purpose of modeling biometric identification system by means of Petri Nets is to reveal the following aspects of the functioning model: the efficiency of the model, behavior of the model, mistakes and accidents in the model, feasibility of the model simplification or substitution of its separate components for more effective components without interfering system functioning. The results of biometric identification system modeling and evaluating are presented and discussed.

  13. Deep Surveying of the Transcriptional and Alternative Splicing Signatures for Decidual CD8+ T Cells at the First Trimester of Human Healthy Pregnancy.

    PubMed

    Zeng, Weihong; Liu, Xinmei; Liu, Zhicui; Zheng, Ying; Yu, Tiantian; Fu, Shaliu; Li, Xiao; Zhang, Jing; Zhang, Siming; Ma, Xiaoling; Liu, Xiao-Rui; Qin, Xiaoli; Khanniche, Asma; Zhang, Yan; Tian, Fuju; Lin, Yi

    2018-01-01

    Decidual CD8 + (dCD8) T cells have been proposed to play important roles in immune protection against the invading pathogens and in tolerance toward the growing semi-allogeneic fetus during early pregnancy. However, their phenotypic and functional characteristics remain poorly defined. Here, we performed the first analysis of the transcriptional and alternative splicing (AS) signatures for human first-trimester dCD8 T cells using high-throughput mRNA sequencing. Our data revealed that dCD8 T cells have distinct transcriptional and AS landscapes when compared with their autologous peripheral blood CD8 + (pCD8) T counterparts. Furthermore, human dCD8 T cells were observed to contain CD8-Treg and effector-memory T-cell subsets, and display enhanced functionality in terms of degranulation and cytokine production on a per-cell basis. Additionally, we have identified the novel splice junctions that use a high ratio of the non-canonical splicing motif GC-AG and found that AS is not a major contributor to the gene expression-level changes between paired pCD8 and dCD8 T cells. Together, our findings not only provide a comprehensive framework of the transcriptional and AS landscapes but also reveal the functional feature of human dCD8 T cells, which are of great importance in understanding the biology of these cells and the physiology of human healthy pregnancy.

  14. Renal denervation and hypertension - The need to investigate unintended effects and neural control of the human kidney.

    PubMed

    Grisk, Olaf

    2017-05-01

    Increased renal sympathetic nerve activity (RSNA) is present in human and experimental forms of arterial hypertension. Experimental denervation studies showed that renal nerves contribute to the development of hypertension. Clinical trials provided equivocal results on the antihypertensive efficacy of renal denervation in patients spurring discussions on technical aspects of renal denervation and further research on the role of renal nerves for the regulation of kidney function as well as the pathophysiology of hypertension. This review summarizes recent findings on adrenoceptor expression and function in the human kidney, adrenoceptor-dependent regulation of sodium chloride transport in the distal nephron, experimental data on chronic RSNA and the development of high arterial pressure and consequences of renal denervation that may limit its antihypertensive efficacy. Future research needs to reduce the gap between our knowledge on neural control of renal function in animals vs. humans to facilitate translation of experimental animal data to humans. More experimental studies on the temporal relationship between RSNA and arterial pressure in the chronic setting are needed to better define the pathogenetic role of heightened RSNA in different forms of arterial hypertension in order to improve the rational basis for renal denervation in antihypertensive therapy. Finally, research on unintended consequences of renal denervation including but not limited to reinnervation and denervation supersensitivity needs to be intensified to further assess the potential of renal denervation to slow the progression of renal disease and hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Default mode of brain function in monkeys.

    PubMed

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A; Buckner, Randy L; Vanduffel, Wim

    2011-09-07

    Human neuroimaging has revealed a specific network of brain regions-the default-mode network (DMN)-that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment.

  16. Default Mode of Brain Function in Monkeys

    PubMed Central

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A.; Buckner, Randy L.; Vanduffel, Wim

    2013-01-01

    Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment. PMID:21900574

  17. Multicellular Vascularized Engineered Tissues through User-Programmable Biomaterial Photodegradation.

    PubMed

    Arakawa, Christopher K; Badeau, Barry A; Zheng, Ying; DeForest, Cole A

    2017-10-01

    A photodegradable material-based approach to generate endothelialized 3D vascular networks within cell-laden hydrogel biomaterials is introduced. Exploiting multiphoton lithography, microchannel networks spanning nearly all size scales of native human vasculature are readily generated with unprecedented user-defined 4D control. Intraluminal channel architectures of synthetic vessels are fully customizable, providing new opportunities for next-generation microfluidics and directed cell function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Exosomal microRNA Signatures in the Diagnosis and Prognosis of Ovarian Cancer

    DTIC Science & Technology

    2012-04-01

    released exosomes modulate lymphocyte functions by mimicking “activation induced cell death” (AICD).27,28 Lymphoid cells appear to release exosomes... advantage of defining concentration. The disadvantage of SPA and DLS is that they are unable to determine the phenotype of the vesicles. Since biological...related apoptosis- inducing ligand-carrying microvesicles during activation- induced death of human T cells . J. Immunol. 167:6736-6744. 18. Raposo, G., D

  19. Annexin A2 in Proliferative Vitreoretinopathy

    DTIC Science & Technology

    2017-10-01

    cells , leading to formation of an epiretinal membrane, retinal detachment, and loss of vision. At present, there are no reliable means of...type versus annexin A2- deficient mice, [2] define the role of A2 in the function of activated macrophages and RPE cells in PVR, and [3] examine the...expression is needed in both macrophages and RPE cells , and that A2 is extensively expressed within cells of epiretinal membranes in human PVR. Our

  20. Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    PubMed Central

    Imanishi, Tadashi; Itoh, Takeshi; Suzuki, Yutaka; O'Donovan, Claire; Fukuchi, Satoshi; Koyanagi, Kanako O; Barrero, Roberto A; Tamura, Takuro; Yamaguchi-Kabata, Yumi; Tanino, Motohiko; Yura, Kei; Miyazaki, Satoru; Ikeo, Kazuho; Homma, Keiichi; Kasprzyk, Arek; Nishikawa, Tetsuo; Hirakawa, Mika; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Ashurst, Jennifer; Jia, Libin; Nakao, Mitsuteru; Thomas, Michael A; Mulder, Nicola; Karavidopoulou, Youla; Jin, Lihua; Kim, Sangsoo; Yasuda, Tomohiro; Lenhard, Boris; Eveno, Eric; Suzuki, Yoshiyuki; Yamasaki, Chisato; Takeda, Jun-ichi; Gough, Craig; Hilton, Phillip; Fujii, Yasuyuki; Sakai, Hiroaki; Tanaka, Susumu; Amid, Clara; Bellgard, Matthew; Bonaldo, Maria de Fatima; Bono, Hidemasa; Bromberg, Susan K; Brookes, Anthony J; Bruford, Elspeth; Carninci, Piero; Chelala, Claude; Couillault, Christine; de Souza, Sandro J.; Debily, Marie-Anne; Devignes, Marie-Dominique; Dubchak, Inna; Endo, Toshinori; Estreicher, Anne; Eyras, Eduardo; Fukami-Kobayashi, Kaoru; R. Gopinath, Gopal; Graudens, Esther; Hahn, Yoonsoo; Han, Michael; Han, Ze-Guang; Hanada, Kousuke; Hanaoka, Hideki; Harada, Erimi; Hashimoto, Katsuyuki; Hinz, Ursula; Hirai, Momoki; Hishiki, Teruyoshi; Hopkinson, Ian; Imbeaud, Sandrine; Inoko, Hidetoshi; Kanapin, Alexander; Kaneko, Yayoi; Kasukawa, Takeya; Kelso, Janet; Kersey, Paul; Kikuno, Reiko; Kimura, Kouichi; Korn, Bernhard; Kuryshev, Vladimir; Makalowska, Izabela; Makino, Takashi; Mano, Shuhei; Mariage-Samson, Regine; Mashima, Jun; Matsuda, Hideo; Mewes, Hans-Werner; Minoshima, Shinsei; Nagai, Keiichi; Nagasaki, Hideki; Nagata, Naoki; Nigam, Rajni; Ogasawara, Osamu; Ohara, Osamu; Ohtsubo, Masafumi; Okada, Norihiro; Okido, Toshihisa; Oota, Satoshi; Ota, Motonori; Ota, Toshio; Otsuki, Tetsuji; Piatier-Tonneau, Dominique; Poustka, Annemarie; Ren, Shuang-Xi; Saitou, Naruya; Sakai, Katsunaga; Sakamoto, Shigetaka; Sakate, Ryuichi; Schupp, Ingo; Servant, Florence; Sherry, Stephen; Shiba, Rie; Shimizu, Nobuyoshi; Shimoyama, Mary; Simpson, Andrew J; Soares, Bento; Steward, Charles; Suwa, Makiko; Suzuki, Mami; Takahashi, Aiko; Tamiya, Gen; Tanaka, Hiroshi; Taylor, Todd; Terwilliger, Joseph D; Unneberg, Per; Veeramachaneni, Vamsi; Watanabe, Shinya; Wilming, Laurens; Yasuda, Norikazu; Yoo, Hyang-Sook; Stodolsky, Marvin; Makalowski, Wojciech; Go, Mitiko; Nakai, Kenta; Takagi, Toshihisa; Kanehisa, Minoru; Sakaki, Yoshiyuki; Quackenbush, John; Okazaki, Yasushi; Hayashizaki, Yoshihide; Hide, Winston; Chakraborty, Ranajit; Nishikawa, Ken; Sugawara, Hideaki; Tateno, Yoshio; Chen, Zhu; Oishi, Michio; Tonellato, Peter; Apweiler, Rolf; Okubo, Kousaku; Wagner, Lukas; Wiemann, Stefan; Strausberg, Robert L; Isogai, Takao; Auffray, Charles; Nomura, Nobuo; Sugano, Sumio

    2004-01-01

    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology. PMID:15103394

  1. Primary structure, expression and chromosomal locus of a human homolog of rat ERK3.

    PubMed

    Meloche, S; Beatty, B G; Pellerin, J

    1996-10-03

    We report the cloning and characterization of a human cDNA encoding a novel homolog of rat extracellular signal-regulated kinase 3 (ERK3). The cDNA encodes a predicted protein of 721 amino acids which shares 92% amino acid identity with rat ERK3 over their shared length. Interestingly, the human protein contains a unique extension of 178 amino acids at its carboxy terminal extremity. The human ERK3 protein also displays various degrees of homology to other members of the MAP kinases family, but does not contain the typical TXY regulatory motif between subdomains VII and VIII. Northern blot analysis revealed that ERK3 mRNA is widely distributed in human tissues, with the highest expression detected in skeletal muscle. The human ERK3 gene was mapped by fluorescence in situ hybridization to chromosome 15q21, a region associated with chromosomal abnormalities in acute nonlymphoblastic leukemias. This information should prove valuable in designing studies to define the cellular function of the ERK3 protein kinase.

  2. Religion, spirituality, and genetics: mapping the terrain for research purposes.

    PubMed

    Churchill, Larry R

    2009-02-15

    Genetic diseases often raise issues of profound importance for human self-understanding, such as one's identity, the family or community to which one belongs, and one's future or destiny. These deeper questions have commonly been seen as the purview of religion and spirituality. This essay explores how religion and spirituality are understood in the current US context and defined in the scholarly literature over the past 100 years. It is argued that a pragmatic, functional approach to religion and spirituality is important to understanding how patients respond to genetic diagnoses and participate in genetic therapies. A pragmatic, functional approach requires broadening the inquiry to include anything that provides a framework of transcendent meaning for the fundamental existential questions of human life. This approach also entails suspending questions about the truth claims of any particular religious/spiritual belief or practice. Three implications of adopting this broad working definition will be presented. (c) 2009 Wiley-Liss, Inc.

  3. Properties of a center/surround retinex. Part 2: Surround design

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Woodell, Glenn A.

    1995-01-01

    The last version of Edwin Land's retinex model for human vision's lightness and color constancy has been implemented. Previous research has established the mathematical foundations of Land's retinex but has not examined specific design issues and their effects on the properties of the retinex operation. We have sought to define a practical implementation of the retinex without particular concern for its validity as a model for human lightness and color perception. Here we describe issues involved in designing the surround function. We find that there is a trade-off between rendition and dynamic range compression that is governed by the surround space constant. Various functional forms for the retinex surround are evaluated and a Gaussian form is found to perform better than the inverse square suggested by Land. Preliminary testing led to the design of a Gaussian surround with a space constant of 80 pixels as a reasonable compromise between dynamic range compression and rendition.

  4. Ciliary dysfunction and obesity.

    PubMed

    Mok, C A; Héon, E; Zhen, M

    2010-01-01

    Obesity associates with increased health risks such as heart disease, stroke and diabetes. The steady rise in the obese population worldwide poses an increasing burden on health systems. Genetic factors contribute to the development of obesity, and the elucidation of their physiological functions helps to understand the cause, and improve the prevention, diagnosis and treatment for this disorder. Primary cilia are evolutionarily conserved organelles whose dysfunctions lead to human disorders now defined as ciliopathies. Human ciliopathies present pleiotropic and overlapping phenotypes that often include retinal degeneration, cystic renal anomalies and obesity. Increasing evidence implicates an intriguing involvement of cilia in lipid/energy homeostasis. Here we discuss recent studies in support of the key roles of ciliary genes in the development and pathology of obesity in various animal models. Genes affecting ciliary development and function may pose promising candidate underlying genetic factors that contribute to the development of common obesity.

  5. Baby schema modulates the brain reward system in nulliparous women.

    PubMed

    Glocker, Melanie L; Langleben, Daniel D; Ruparel, Kosha; Loughead, James W; Valdez, Jeffrey N; Griffin, Mark D; Sachser, Norbert; Gur, Ruben C

    2009-06-02

    Ethologist Konrad Lorenz defined the baby schema ("Kindchenschema") as a set of infantile physical features, such as round face and big eyes, that is perceived as cute and motivates caretaking behavior in the human, with the evolutionary function of enhancing offspring survival. The neural basis of this fundamental altruistic instinct is not well understood. Prior studies reported a pattern of brain response to pictures of children, but did not dissociate the brain response to baby schema from the response to children. Using functional magnetic resonance imaging and controlled manipulation of the baby schema in infant faces, we found that baby schema activates the nucleus accumbens, a key structure of the mesocorticolimbic system mediating reward processing and appetitive motivation, in nulliparous women. Our findings suggest that engagement of the mesocorticolimbic system is the neurophysiologic mechanism by which baby schema promotes human caregiving, regardless of kinship.

  6. ABCB5 maintains melanoma-initiating cells through a pro-inflammatory cytokine signaling circuit

    PubMed Central

    Wilson, Brian J.; Saab, Karim R.; Ma, Jie; Schatton, Tobias; Pütz, Pablo; Zhan, Qian; Murphy, George F.; Gasser, Martin; Waaga-Gasser, Ana Maria; Frank, Natasha Y.; Frank, Markus H.

    2014-01-01

    The drug efflux transporter ABCB5 identifies cancer stem-like cells (CSC) in diverse human malignancies, where its expression is associated with clinical disease progression and tumor recurrence. ABCB5 confers therapeutic resistance but other functions in tumorigenesis independent of drug efflux have not been described that might help explain why it is so broadly overexpressed in human cancer. Here we show that in melanoma-initiating cells ABCB5 controls IL-1β secretion which serves to maintain slow-cycling, chemoresistant cells through an IL-1β/IL8/CXCR1 cytokine signaling circuit. This CSC maintenance circuit involved reciprocal paracrine interactions with ABCB5-negative cancer cell populations. ABCB5 blockade induced cellular differentiation, reversed resistance to multiple chemotherapeutic agents, and impaired tumor growth in vivo. Together, our results defined a novel function for ABCB5 in CSC maintenance and tumor growth. PMID:24934811

  7. A Compendium of Canine Normal Tissue Gene Expression

    PubMed Central

    Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand

    2011-01-01

    Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323

  8. Education for Survival: Helping Humans to Be More Human.

    ERIC Educational Resources Information Center

    Johnson, Kenneth G.

    1994-01-01

    Defines what it is to be human, according to engineer Alfred Korzybski, who defined humans by what they do as opposed to what they are. States that Korzybski's work led to the development of general semantics. Argues that human survival depends on the ability to organize communication and cooperation, the creation of language, and the…

  9. The Human Dimension -- Habitability AustroMars 2006

    NASA Astrophysics Data System (ADS)

    Haeuplik, S.; Imhof, B.

    2007-10-01

    Whether a cellular phone, a laptop computer or a spacecraft there are always two sides to an interface: a system side and a human side, and thus two sets of goals must be defined. In spaceflight, these two set of goals are defined for the technical system and the human system within its full scope. The human dimension is vital for a human mission if the mission should be successful. As the technical system is, compared with the human system less complex. The, and the focus up to now has hence been on the technical system; more understanding has been created and more knowledge has been developed. For future long duration human missions to which we are looking ahead when planning for outposts on the Moon and Mars, the human system has to play an equal role. The environment for which space architects are planning demands an extremely economical use of time, material and resources for the astronauts on mission, as well as attempts a maximum integration of environmental conditions and user requirements in design decisions, but also the mutual influence between humans and their environment, between active and passive systems. Human needs are always the same regardless of whether we are on the planet or in outer space. And they are a very architectural topic. Architecture is the three-dimensional creation of a shelter for humans supporting their needs and expanding their culture. Factors such as habitability (which include but are not limited to colour, smell, surface material tactility, food and the human -- machine interface), socio-psychological factors (which include crew selection and training, heterogeneity versus homogeneity of the crew, coping with stress, group dynamics, cognitive strategies, cultural background of the crew and its implications), culture and thus the resulting proportion of inhabitable space and it's functionality are a few topics of the complex theme 'Human Dimension'.

  10. Collective Intelligence. Chapter 17

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2003-01-01

    Many systems of self-interested agents have an associated performance criterion that rates the dynamic behavior of the overall system. This chapter presents an introduction to the science of such systems. Formally, collectives are defined as any system having the following two characteristics: First, the system must contain one or more agents each of which we view as trying to maximize an associated private utility; second, the system must have an associated world utility function that rates the possible behaviors of that overall system. In practice, collectives are often very large, distributed, and support little, if any, centralized communication and control, although those characteristics are not part of their formal definition. A naturally occurring example of a collective is a human economy. One can identify the agents and their private utilities as the human individuals in the economy and the associated personal rewards they are each trying to maximize. One could then identify the world utility as the time average of the gross domestic product. ("World utility" per se is not a construction internal to a human economy, but rather something defined from the outside.) To achieve high world utility it is necessary to avoid having the agents work at cross-purposes lest phenomena like liquidity traps or the Tragedy of the Commons (TOC) occur, in which agents' individually pursuing their private utilities lowers world utility. The obvious way to avoid such phenomena is by modifying the agents utility functions to be "aligned" with the world utility. This can be done via punitive legislation. A real-world example of an attempt to do this was the creation of antitrust regulations designed to prevent monopolistic practices.

  11. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates.

    PubMed

    Sparrey, Carolyn J; Salegio, Ernesto A; Camisa, William; Tam, Horace; Beattie, Michael S; Bresnahan, Jacqueline C

    2016-06-15

    Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5-1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries.

  12. Metabolic fate of polyphenols in the human superorganism

    PubMed Central

    van Duynhoven, John; Vaughan, Elaine E.; Jacobs, Doris M.; Kemperman, Robèr A.; van Velzen, Ewoud J. J.; Gross, Gabriele; Roger, Laure C.; Possemiers, Sam; Smilde, Age K.; Doré, Joël; Westerhuis, Johan A.; Van de Wiele, Tom

    2011-01-01

    Dietary polyphenols are components of many foods such as tea, fruit, and vegetables and are associated with several beneficial health effects although, so far, largely based on epidemiological studies. The intact forms of complex dietary polyphenols have limited bioavailability, with low circulating levels in plasma. A major part of the polyphenols persists in the colon, where the resident microbiota produce metabolites that can undergo further metabolism upon entering systemic circulation. Unraveling the complex metabolic fate of polyphenols in this human superorganism requires joint deployment of in vitro and humanized mouse models and human intervention trials. Within these systems, the variation in diversity and functionality of the colonic microbiota can increasingly be captured by rapidly developing microbiomics and metabolomics technologies. Furthermore, metabolomics is coming to grips with the large biological variation superimposed on relatively subtle effects of dietary interventions. In particular when metabolomics is deployed in conjunction with a longitudinal study design, quantitative nutrikinetic signatures can be obtained. These signatures can be used to define nutritional phenotypes with different kinetic characteristics for the bioconversion capacity for polyphenols. Bottom-up as well as top-down approaches need to be pursued to link gut microbial diversity to functionality in nutritional phenotypes and, ultimately, to bioactivity of polyphenols. This approach will pave the way for personalization of nutrition based on gut microbial functionality of individuals or populations. PMID:20615997

  13. Quality of human-computer interaction - results of a national usability survey of hospital-IT in Germany

    PubMed Central

    2011-01-01

    Background Due to the increasing functionality of medical information systems, it is hard to imagine day to day work in hospitals without IT support. Therefore, the design of dialogues between humans and information systems is one of the most important issues to be addressed in health care. This survey presents an analysis of the current quality level of human-computer interaction of healthcare-IT in German hospitals, focused on the users' point of view. Methods To evaluate the usability of clinical-IT according to the design principles of EN ISO 9241-10 the IsoMetrics Inventory, an assessment tool, was used. The focus of this paper has been put on suitability for task, training effort and conformity with user expectations, differentiated by information systems. Effectiveness has been evaluated with the focus on interoperability and functionality of different IT systems. Results 4521 persons from 371 hospitals visited the start page of the study, while 1003 persons from 158 hospitals completed the questionnaire. The results show relevant variations between different information systems. Conclusions Specialised information systems with defined functionality received better assessments than clinical information systems in general. This could be attributed to the improved customisation of these specialised systems for specific working environments. The results can be used as reference data for evaluation and benchmarking of human computer engineering in clinical health IT context for future studies. PMID:22070880

  14. The human phospholamban gene: structure and expression.

    PubMed

    McTiernan, C F; Frye, C S; Lemster, B H; Kinder, E A; Ogletree-Hughes, M L; Moravec, C S; Feldman, A M

    1999-03-01

    Phospholamban, through modulation of sarcoplasmic reticulum calcium-ATPase activity, is a key regulator of cardiac diastolic function. Alterations in phospholamban expression may define parameters of muscle relaxation. In experimental animals, phospholamban is differentially expressed in various striated and smooth muscles, and within the four chambers of the heart. Decreased phospholamban expression within the heart during heart failure has also been observed. Furthermore, regulatory elements of mammalian phospholamban genes remain poorly defined. To extend these studies to humans, we (1) characterized phospholamban expression in various human organs, (2) isolated genomic clones encoding the human phospholamban gene, and (3) prepared human phospholamban promoter/luciferase reporter constructs and performed transient transfection assays to begin identification of regulatory elements. We observed that human ventricle and quadriceps displayed high levels of phospholamban transcripts and proteins, with markedly lower expression observed in smooth muscles, while the right atria also expressed low levels of phospholamban. The human phospholamban gene structure closely resembles that reported for chicken, rabbit, rat, and mouse. Comparison of the human to other mammalian phospholamban genes indicates a marked conservation of sequence for at least 217 bp upstream of the transcription start site, which contains conserved motifs for GATA, CP1/NFY, M-CAT-like, and E-box elements. Transient transfection assays with a series of plasmids containing deleted 5' flanking regions (between -2530 and -66 through +85) showed that sequences between -169 and the CP1-box at -93 were required for maximal promoter activity in neonatal rat cardiomyocytes. Activity of these reporters in HeLa cells was markedly lower than that observed in rat cardiomyocytes, suggesting at least a partial tissue selectivity of these reporter constructs.

  15. Functional brain networks related to individual differences in human intelligence at rest

    PubMed Central

    Hearne, Luke J.; Mattingley, Jason B.; Cocchi, Luca

    2016-01-01

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics. PMID:27561736

  16. RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts

    PubMed Central

    Sanchez-Pulido, Luis; Haerty, Wilfried

    2015-01-01

    Ninety-four percent of mammalian protein-coding exons exceed 51 nucleotides (nt) in length. The paucity of micro-exons (≤ 51 nt) suggests that their recognition and correct processing by the splicing machinery present greater challenges than for longer exons. Yet, because thousands of human genes harbor processed micro-exons, specialized mechanisms may be in place to promote their splicing. Here, we survey deep genomic data sets to define 13,085 micro-exons and to study their splicing mechanisms and molecular functions. More than 60% of annotated human micro-exons exhibit a high level of sequence conservation, an indicator of functionality. While most human micro-exons require splicing-enhancing genomic features to be processed, the splicing of hundreds of micro-exons is enhanced by the adjacent binding of splice factors in the introns of pre-messenger RNAs. Notably, splicing of a significant number of micro-exons was found to be facilitated by the binding of RBFOX proteins, which promote their inclusion in the brain, muscle, and heart. Our analyses suggest that accurate regulation of micro-exon inclusion by RBFOX proteins and PTBP1 plays an important role in the maintenance of tissue-specific protein–protein interactions. PMID:25524026

  17. An investigation into the relationship between age and physiological function in highly active older adults

    PubMed Central

    Pollock, Ross D; Carter, Scott; Velloso, Cristiana P; Duggal, Niharika A; Lord, Janet M; Lazarus, Norman R; Harridge, Stephen D R

    2015-01-01

    Despite extensive research, the relationship between age and physiological function remains poorly characterised and there are currently no reliable markers of human ageing. This is probably due to a number of confounding factors, particularly in studies of a cross-sectional nature. These include inter-subject genetic variation, as well as inter-generational differences in nutrition, healthcare and insufficient levels of physical activity as well as other environmental factors. We have studied a cohort of highly and homogeneously active older male (n = 84) and female (n = 41) cyclists aged 55–79 years who it is proposed represent a model for the study of human ageing free from the majority of confounding factors, especially inactivity. The aim of the study was to identify physiological markers of ageing by assessing the relationship between function and age across a wide range of indices. Each participant underwent a detailed physiological profiling which included measures of cardiovascular, respiratory, neuromuscular, metabolic, endocrine and cognitive functions, bone strength, and health and well-being. Significant associations between age and function were observed for many functions. The maximal rate of oxygen consumption ( showed the closest association with age (r = −0.443 to −0.664; P < 0.001), but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The results of this cross-sectional study suggest that even when many confounding variables are removed the relationship between function and healthy ageing is complex and likely to be highly individualistic and that physical activity levels must be taken into account in ageing studies. Key Points The relationship between age and physiological function remains poorly defined and there are no physiological markers that can be used to reliably predict the age of an individual. This could be due to a variety of confounding genetic and lifestyle factors, and in particular to ill-defined and low levels of physical activity. This study assessed the relationship between age and a diverse range of physiological functions in a cohort of highly active older individuals (cyclists) aged 55–79 years in whom the effects of lifestyle factors would be ameliorated. Significant associations between age and function were observed for many functions. was most closely associated with age, but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The data suggest that the relationship between human ageing and physiological function is highly individualistic and modified by inactivity. PMID:25565071

  18. An investigation into the relationship between age and physiological function in highly active older adults.

    PubMed

    Pollock, Ross D; Carter, Scott; Velloso, Cristiana P; Duggal, Niharika A; Lord, Janet M; Lazarus, Norman R; Harridge, Stephen D R

    2015-02-01

    The relationship between age and physiological function remains poorly defined and there are no physiological markers that can be used to reliably predict the age of an individual. This could be due to a variety of confounding genetic and lifestyle factors, and in particular to ill-defined and low levels of physical activity. This study assessed the relationship between age and a diverse range of physiological functions in a cohort of highly active older individuals (cyclists) aged 55-79 years in whom the effects of lifestyle factors would be ameliorated. Significant associations between age and function were observed for many functions. V̇O2max was most closely associated with age, but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The data suggest that the relationship between human ageing and physiological function is highly individualistic and modified by inactivity. Despite extensive research, the relationship between age and physiological function remains poorly characterised and there are currently no reliable markers of human ageing. This is probably due to a number of confounding factors, particularly in studies of a cross-sectional nature. These include inter-subject genetic variation, as well as inter-generational differences in nutrition, healthcare and insufficient levels of physical activity as well as other environmental factors. We have studied a cohort of highly and homogeneously active older male (n = 84) and female (n = 41) cyclists aged 55-79 years who it is proposed represent a model for the study of human ageing free from the majority of confounding factors, especially inactivity. The aim of the study was to identify physiological markers of ageing by assessing the relationship between function and age across a wide range of indices. Each participant underwent a detailed physiological profiling which included measures of cardiovascular, respiratory, neuromuscular, metabolic, endocrine and cognitive functions, bone strength, and health and well-being. Significant associations between age and function were observed for many functions. The maximal rate of oxygen consumption (V̇O2max) showed the closest association with age (r = -0.443 to -0.664; P < 0.001), but even here the variance in age for any given level was high, precluding the clear identification of the age of any individual. The results of this cross-sectional study suggest that even when many confounding variables are removed the relationship between function and healthy ageing is complex and likely to be highly individualistic and that physical activity levels must be taken into account in ageing studies. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  19. Expression, purification and characterization of soluble red rooster laforin as a fusion protein in Escherichia coli.

    PubMed

    Brewer, M Kathryn; Husodo, Satrio; Dukhande, Vikas V; Johnson, Mary Beth; Gentry, Matthew S

    2014-04-02

    The gene that encodes laforin, a dual-specificity phosphatase with a carbohydrate-binding module, is mutated in Lafora disease (LD). LD is an autosomal recessive, fatal progressive myoclonus epilepsy characterized by the intracellular buildup of insoluble, hyperphosphorylated glycogen-like particles, called Lafora bodies. Laforin dephosphorylates glycogen and other glucans in vitro, but the structural basis of its activity remains unknown. Recombinant human laforin when expressed in and purified from E. coli is largely insoluble and prone to aggregation and precipitation. Identification of a laforin ortholog that is more soluble and stable in vitro would circumvent this issue. In this study, we cloned multiple laforin orthologs, established a purification scheme for each, and tested their solubility and stability. Gallus gallus (Gg) laforin is more stable in vitro than human laforin, Gg-laforin is largely monomeric, and it possesses carbohydrate binding and phosphatase activity similar to human laforin. Gg-laforin is more soluble and stable than human laforin in vitro, and possesses similar activity as a glucan phosphatase. Therefore, it can be used to model human laforin in structure-function studies. We have established a protocol for purifying recombinant Gg-laforin in sufficient quantity for crystallographic and other biophysical analyses, in order to better understand the function of laforin and define the molecular mechanisms of Lafora disease.

  20. Pleiotropic function of ezrin in human metastatic melanomas.

    PubMed

    Federici, Cristina; Brambilla, Daria; Lozupone, Francesco; Matarrese, Paola; de Milito, Angelo; Lugini, Luana; Iessi, Elisabetta; Cecchetti, Serena; Marino, Marialucia; Perdicchio, Maurizio; Logozzi, Mariantonia; Spada, Massimo; Malorni, Walter; Fais, Stefano

    2009-06-15

    The membrane cytoskeleton cross-linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N-terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp-1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp-1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors. Copyright 2008 UICC.

  1. Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities.

    PubMed

    Noël, A; Santavicca, M; Stoll, I; L'Hoir, C; Staub, A; Murphy, G; Rio, M C; Basset, P

    1995-09-29

    Matrix metalloproteinases (matrixins) constitute a group of extracellular proteinases belonging to the metzincin superfamily. They are involved in both physiological and pathological tissue remodeling processes, including those associated with cancer progression. Stromelysin-3, which is expressed in most invasive human carcinomas, is a matrix metalloproteinase with unusual functional properties. In particular, its mature form does not cleave any of the major extracellular matrix components. To define critical structural determinants involved in controlling stromelysin-3 proteolytic activity, we have used site-directed mutagenesis. We show that the deletion of at least 175 C-terminal amino-acids is sufficient to endow mouse stromelysin-3 with activities against casein, laminin, and type IV collagen. In the case of the human enzyme, however, a further and single Ala-235-->Pro substitution is necessary to observe similar activities. Ala-235, which characterizes human stromelysin-3 among matrixins, is located immediately after the C terminus of the "Met-turn," which forms a hydrophobic basis for the catalytic zinc atom in the metzincin family. We conclude that human stromelysin-3 has gained specific functional properties during evolution by amino acid substitution in the catalytic zinc environment, and that it represents an attractive target for specific inhibitors that may be used to prevent cancer progression.

  2. Structural and Functional Characterization of a Secreted Hookworm Macrophage Migration Inhibitory Factor (MIF) that Interacts with the Human MIF Receptor CD74

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho,Y.; Jones, B.; Vermeire, J.

    2007-01-01

    Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins.more » The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis.« less

  3. Functional Coupling of Human Microphysiology Systems: Intestine, Liver, Kidney Proximal Tubule, Blood-Brain Barrier and Skeletal Muscle

    PubMed Central

    Vernetti, Lawrence; Gough, Albert; Baetz, Nicholas; Blutt, Sarah; Broughman, James R.; Brown, Jacquelyn A.; Foulke-Abel, Jennifer; Hasan, Nesrin; In, Julie; Kelly, Edward; Kovbasnjuk, Olga; Repper, Jonathan; Senutovitch, Nina; Stabb, Janet; Yeung, Catherine; Zachos, Nick C.; Donowitz, Mark; Estes, Mary; Himmelfarb, Jonathan; Truskey, George; Wikswo, John P.; Taylor, D. Lansing

    2017-01-01

    Organ interactions resulting from drug, metabolite or xenobiotic transport between organs are key components of human metabolism that impact therapeutic action and toxic side effects. Preclinical animal testing often fails to predict adverse outcomes arising from sequential, multi-organ metabolism of drugs and xenobiotics. Human microphysiological systems (MPS) can model these interactions and are predicted to dramatically improve the efficiency of the drug development process. In this study, five human MPS models were evaluated for functional coupling, defined as the determination of organ interactions via an in vivo-like sequential, organ-to-organ transfer of media. MPS models representing the major absorption, metabolism and clearance organs (the jejunum, liver and kidney) were evaluated, along with skeletal muscle and neurovascular models. Three compounds were evaluated for organ-specific processing: terfenadine for pharmacokinetics (PK) and toxicity; trimethylamine (TMA) as a potentially toxic microbiome metabolite; and vitamin D3. We show that the organ-specific processing of these compounds was consistent with clinical data, and discovered that trimethylamine-N-oxide (TMAO) crosses the blood-brain barrier. These studies demonstrate the potential of human MPS for multi-organ toxicity and absorption, distribution, metabolism and excretion (ADME), provide guidance for physically coupling MPS, and offer an approach to coupling MPS with distinct media and perfusion requirements. PMID:28176881

  4. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review

    PubMed Central

    Basso, Julia C.; Suzuki, Wendy A.

    2017-01-01

    A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research. PMID:29765853

  5. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins.

    PubMed

    Nelson, David E; Randle, Suzanne J; Laman, Heike

    2013-10-09

    F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining 'orphans'. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.

  6. THE MITOCHONDRIAL PARADIGM FOR CARDIOVASCULAR DISEASE SUSCEPTIBILITY AND CELLULAR FUNCTION: A COMPLEMENTARY CONCEPT TO MENDELIAN GENETICS

    PubMed Central

    Kryzwanski, David M.; Moellering, Douglas; Fetterman, Jessica L.; Dunham-Snary, Kimberly J.; Sammy, Melissa J.; Ballinger, Scott W.

    2013-01-01

    While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial – nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success. PMID:21647091

  7. Human versus mouse eosinophils: "that which we call an eosinophil, by any other name would stain as red".

    PubMed

    Lee, James J; Jacobsen, Elizabeth A; Ochkur, Sergei I; McGarry, Michael P; Condjella, Rachel M; Doyle, Alfred D; Luo, Huijun; Zellner, Katie R; Protheroe, Cheryl A; Willetts, Lian; Lesuer, William E; Colbert, Dana C; Helmers, Richard A; Lacy, Paige; Moqbel, Redwan; Lee, Nancy A

    2012-09-01

    The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide experimental details comparing and contrasting eosinophils and eosinophil effector functions in human subjects versus mice. In particular, our review will provide a summation and an easy-to-use reference guide to important studies demonstrating that although differences exist, more often than not, their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function but instead species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. Choice of saccade endpoint under risk

    PubMed Central

    Ackermann, John F.; Landy, Michael S.

    2013-01-01

    Eye movements function to bring detailed information onto the high-resolution region of the retina. Previous research has shown that human observers select fixation points that maximize information acquisition and minimize target location uncertainty. In this study, we ask whether human observers choose the saccade endpoint that maximizes gain when there are explicit rewards associated with correctly detecting the target. Observers performed an 8-alternative forced-choice detection task for a contrast-defined target in noise. After a single saccade, observers indicated the target location. Each potential target location had an associated reward that was known to the observer. In some conditions, the reward at one location was higher than at the other locations. We compared human saccade endpoints to those of an ideal observer that maximizes expected gain given the respective human observer's visibility map, i.e., d′ for target detection as a function of retinal location. Varying the location of the highest reward had a significant effect on human observers' distribution of saccade endpoints. Both human and ideal observers show a high density of saccades made toward the highest rewarded and actual target locations. But humans' overall spatial distributions of saccade endpoints differed significantly from the ideal observer as they made a greater number of saccade to locations far from the highest rewarded and actual target locations. Suboptimal choice of saccade endpoint, possibly in combination with suboptimal integration of information across saccades, had a significant effect on human observers' ability to correctly detect the target and maximize gain. PMID:24023277

  9. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

    PubMed Central

    Oran, Amanda R.; Adams, Clare M.; Zhang, Xiao-yong; Gennaro, Victoria J.; Pfeiffer, Harla K.; Mellert, Hestia S.; Seidel, Hans E.; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R.; Shen, Chen; Rigoutsos, Isidore; King, Michael P.; Cotney, Justin L.; Arnold, Jamie J.; Sharma, Suresh D.; Martinez, Ubaldo E.; Vakoc, Christopher R.; Chodosh, Lewis A.; Thompson, James E.; Bradner, James E.; Cameron, Craig E.; Shadel, Gerald S.; Eischen, Christine M.; McMahon, Steven B.

    2016-01-01

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors. PMID:27590350

  10. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer.

    PubMed

    Oran, Amanda R; Adams, Clare M; Zhang, Xiao-Yong; Gennaro, Victoria J; Pfeiffer, Harla K; Mellert, Hestia S; Seidel, Hans E; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R; Shen, Chen; Rigoutsos, Isidore; King, Michael P; Cotney, Justin L; Arnold, Jamie J; Sharma, Suresh D; Martinez-Outschoorn, Ubaldo E; Vakoc, Christopher R; Chodosh, Lewis A; Thompson, James E; Bradner, James E; Cameron, Craig E; Shadel, Gerald S; Eischen, Christine M; McMahon, Steven B

    2016-11-08

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.

  11. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes.

    PubMed

    Botting, Rachel A; Bertram, Kirstie M; Baharlou, Heeva; Sandgren, Kerrie J; Fletcher, James; Rhodes, Jake W; Rana, Hafsa; Plasto, Toby M; Wang, Xin Maggie; Lim, Jake J K; Barnouti, Laith; Kohout, Mark P; Papadopoulos, Tim; Merten, Steve; Olbourne, Norman; Cunningham, Anthony L; Haniffa, Muzlifah; Harman, Andrew N

    2017-06-01

    Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue. © The Author(s).

  12. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes

    PubMed Central

    Botting, Rachel A.; Bertram, Kirstie M.; Baharlou, Heeva; Sandgren, Kerrie J.; Fletcher, James; Rhodes, Jake W.; Rana, Hafsa; Plasto, Toby M.; Wang, Xin Maggie; Lim, Jake J. K.; Barnouti, Laith; Kohout, Mark P.; Papadopoulos, Tim; Merten, Steve; Olbourne, Norman; Cunningham, Anthony L.; Haniffa, Muzlifah; Harman, Andrew N.

    2017-01-01

    Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue. PMID:28270408

  13. NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class

    PubMed Central

    Haubrock, Martin; Hartmann, Fabian; Wingender, Edgar

    2016-01-01

    ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions. PMID:27517874

  14. Dibutyltin Disrupts Glucocorticoid Receptor Function and Impairs Glucocorticoid-Induced Suppression of Cytokine Production

    PubMed Central

    Gumy, Christel; Chandsawangbhuwana, Charlie; Dzyakanchuk, Anna A.; Kratschmar, Denise V.; Baker, Michael E.; Odermatt, Alex

    2008-01-01

    Background Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT) is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT) in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR) function. Methodology We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. Principal Findings We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK) and tyrosine-aminotransferase (TAT) and abolished the glucocorticoid-mediated transrepression of TNF-α-induced NF-κB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6) and TNF-α production in lipopolysaccharide (LPS)-stimulated native human macrophages and human THP-1 macrophages. Conclusions DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin. PMID:18958157

  15. [Automation in surgery: a systematical approach].

    PubMed

    Strauss, G; Meixensberger, J; Dietz, A; Manzey, D

    2007-04-01

    Surgical assistance systems permit a misalignment from the purely manual to an assisted activity of the surgeon (automation). Automation defines a system, that partly or totally fulfils function, those was carried out before totally or partly by the user. The organization of surgical assistance systems following application (planning, simulation, intraoperative navigation and visualization) or technical configuration of the system (manipulator, robot) is not suitable for a description of the interaction between user (surgeon) and the system. The available work has the goal of providing a classification for the degree of the automation of surgical interventions and describing by examples. The presented classification orients itself at pre-working from the Human-Factors-Sciences. As a condition for an automation of a surgical intervention applies that an assumption of a task, which was alone assigned so far to the surgeon takes place via the system. For both reference objects (humans and machine) the condition passively or actively comes into consideration. Besides can be classified according to which functions are taken over during a selected function division by humans and/or the surgical assistance system. Three functional areas were differentiated: "information acquisition and -analysis", "decision making and action planning" as well as "execution of the surgical action". From this results a classification of pre- and intraoperative surgical assist systems in six categories, which represent different automation degrees. The classification pattern is described and illustrated on the basis of surgical of examples.

  16. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum

    PubMed Central

    Choi, Eunyoung; Roland, Joseph T.; Barlow, Brittney J.; O’Neal, Ryan; Rich, Amy E.; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R.

    2014-01-01

    Objective The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. Design We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. Results The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of stomach as well as in over 50% of antral glands. MIST1-expressing chief cells were predominantly observed in the body, although individual glands of the antrum also showed MIST1-expressing chief cells. While classically-described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed-type glands containing both parietal cells and G cells throughout the antrum. Conclusions Enteroendocrine cells show distinct patterns of localization in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. PMID:24488499

  17. Human motion tracking by temporal-spatial local gaussian process experts.

    PubMed

    Zhao, Xu; Fu, Yun; Liu, Yuncai

    2011-04-01

    Human pose estimation via motion tracking systems can be considered as a regression problem within a discriminative framework. It is always a challenging task to model the mapping from observation space to state space because of the high-dimensional characteristic in the multimodal conditional distribution. In order to build the mapping, existing techniques usually involve a large set of training samples in the learning process which are limited in their capability to deal with multimodality. We propose, in this work, a novel online sparse Gaussian Process (GP) regression model to recover 3-D human motion in monocular videos. Particularly, we investigate the fact that for a given test input, its output is mainly determined by the training samples potentially residing in its local neighborhood and defined in the unified input-output space. This leads to a local mixture GP experts system composed of different local GP experts, each of which dominates a mapping behavior with the specific covariance function adapting to a local region. To handle the multimodality, we combine both temporal and spatial information therefore to obtain two categories of local experts. The temporal and spatial experts are integrated into a seamless hybrid system, which is automatically self-initialized and robust for visual tracking of nonlinear human motion. Learning and inference are extremely efficient as all the local experts are defined online within very small neighborhoods. Extensive experiments on two real-world databases, HumanEva and PEAR, demonstrate the effectiveness of our proposed model, which significantly improve the performance of existing models.

  18. Music, cognition, culture, and evolution.

    PubMed

    Cross, I

    2001-06-01

    We seem able to define the biological foundations for our musicality within a clear and unitary framework, yet music itself does not appear so clearly definable. Music is different things and does different things in different cultures; the bundles of elements and functions that are music for any given culture may overlap minimally with those of another culture, even for those cultures where "music" constitutes a discrete and identifiable category of human activity in its own right. The dynamics of culture, of music as cultural praxis, are neither necessarily reducible, nor easily relatable, to the dynamics of our biologies. Yet music appears to be a universal human competence. Recent evolutionary theory, however, affords a means for exploring things biological and cultural within a framework in which they are at least commensurable. The adoption of this perspective shifts the focus of the search for the foundations of music away from the mature and particular expression of music within a specific culture or situation and on to the human capacity for musicality. This paper will survey recent research that examines that capacity and its evolutionary origins in the light of a definition of music that embraces music's multifariousness. It will be suggested that music, like speech, is a product of both our biologies and our social interactions; that music is a necessary and integral dimension of human development; and that music may have played a central role in the evolution of the modern human mind.

  19. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  20. Power flow in normal human voice production

    NASA Astrophysics Data System (ADS)

    Krane, Michael

    2016-11-01

    The principal mechanisms of energy utilization in voicing are quantified using a simplified model, in order to better define voice efficiency. A control volume analysis of energy utilization in phonation is presented to identify the energy transfer mechanisms in terms of their function. Conversion of subglottal airstream potential energy into useful work done (vocal fold vibration, flow work, sound radiation), and into heat (sound radiation absorbed by the lungs, glottal jet dissipation) are described. An approximate numerical model is used to compute the contributions of each of these mechanisms, as a function of subglottal pressure, for normal phonation. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  1. Identification of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and Language, in Developing Human Brain

    PubMed Central

    Spiteri, Elizabeth ; Konopka, Genevieve ; Coppola, Giovanni ; Bomar, Jamee ; Oldham, Michael ; Ou, Jing ; Vernes, Sonja C. ; Fisher, Simon E. ; Ren, Bing ; Geschwind, Daniel H. 

    2007-01-01

    Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes. PMID:17999357

  2. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair.

    PubMed

    Kim, Han-Seop; Lee, Jungwoon; Lee, Da Yong; Kim, Young-Dae; Kim, Jae Yun; Lim, Hyung Jin; Lim, Sungmin; Cho, Yee Sook

    2017-06-06

    Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Comprehensive Profiling of Radiosensitive Human Cell Lines with DNA Damage Response Assays Identifies the Neutral Comet Assay as a Potential Surrogate for Clonogenic Survival

    PubMed Central

    Nahas, Shareef A.; Davies, Robert; Fike, Francesca; Nakamura, Kotoka; Du, Liutao; Kayali, Refik; Martin, Nathan T.; Concannon, Patrick; Gatti, Richard A.

    2015-01-01

    In an effort to explore the possible causes of human radiosensitivity and identify more rapid assays for cellular radiosensitivity, we interrogated a set of assays that evaluate cellular functions involved in recognition and repair of DNA double-strand breaks: (1) neutral comet assay, (2) radiation-induced γ-H2AX focus formation, (3) the temporal kinetics of structural maintenance of chromosomes 1 phosphorylation, (4) intra-S-phase checkpoint integrity, and (5) mitochondrial respiration. We characterized a unique panel of 19 “radiosensitive” human lymphoblastoid cell lines from individuals with undiagnosed diseases suggestive of a DNA repair disorder. Radiosensitivity was defined by reduced cellular survival using a clonogenic survival assay. Each assay identified cell lines with defects in DNA damage response functions. The highest concordance rate observed, 89% (17/19), was between an abnormal neutral comet assay and reduced survival by the colony survival assay. Our data also suggested that the neutral comet assay would be a more rapid surrogate for analyzing DNA repair/processing disorders. PMID:21962002

  4. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  5. Induction of pluripotent stem cells transplantation therapy for ischemic stroke.

    PubMed

    Jiang, Mei; Lv, Lei; Ji, Haifeng; Yang, Xuelian; Zhu, Wei; Cai, Liying; Gu, Xiaju; Chai, Changfeng; Huang, Shu; Sun, Jian; Dong, Qiang

    2011-08-01

    Stroke can cause permanent neurological damage, complications, and even death. However, there is no treatment exists to restore its lost function. Human embryonic stems transplantation therapy was a novel and potential therapeutic approach for stroke. However, as we have seen, the ethical controversy pertains to embryonic stem cell research. Human induced pluripotent stem cells (iPSCs) are the latest generation of stem cells that may be a solution to the controversy of using embryonic cells. In our study, we generated iPSCs from adult human fibroblasts by introduction of four defined transcription factors (Oct4, Sox2, Nanog, and Lin-28). And then, we investigated the efficacy of iPSCs transplantation therapy for stroke on the animal models of middle cerebral artery occlusion. Surprisingly, we found that transplanted iPSCs migrated to injured brain areas, and differentiated into neuron-like cells successfully. After 4-16 days iPSCs grafting, sensorimotor function of rats has been improved significantly. In one word, we may prove that iPSCs therapy in stroke to be an effective form of treatment.

  6. A framework for studying emotions across species.

    PubMed

    Anderson, David J; Adolphs, Ralph

    2014-03-27

    Since the 19th century, there has been disagreement over the fundamental question of whether "emotions" are cause or consequence of their associated behaviors. This question of causation is most directly addressable in genetically tractable model organisms, including invertebrates such as Drosophila. Yet there is ongoing debate about whether such species even have "emotions," as emotions are typically defined with reference to human behavior and neuroanatomy. Here, we argue that emotional behaviors are a class of behaviors that express internal emotion states. These emotion states exhibit certain general functional and adaptive properties that apply across any specific human emotions like fear or anger, as well as across phylogeny. These general properties, which can be thought of as "emotion primitives," can be modeled and studied in evolutionarily distant model organisms, allowing functional dissection of their mechanistic bases and tests of their causal relationships to behavior. More generally, our approach not only aims at better integration of such studies in model organisms with studies of emotion in humans, but also suggests a revision of how emotion should be operationalized within psychology and psychiatry. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A Framework for Studying Emotions Across Phylogeny

    PubMed Central

    Anderson, David J.; Adolphs, Ralph

    2014-01-01

    Since the 19th century, there has been disagreement over the fundamental question of whether “emotions” are cause or consequence of their associated behaviors. This question of causation is most directly addressable in genetically tractable model organisms, including invertebrates such as Drosophila. Yet there is ongoing debate about whether such species even have “emotions,” since emotions are typically defined with reference to human behavior and neuroanatomy. Here we argue that emotional behaviors are a class of behaviors that express internal emotion states. These emotion states exhibit certain general functional and adaptive properties that apply across any specific human emotions like fear or anger, as well as across phylogeny. These general properties, which can be thought of as “emotion primitives”, can be modeled and studied in evolutionarily distant model organisms, allowing functional dissection of their mechanistic bases, and tests of their causal relationships to behavior. More generally, our approach aims not only at better integration of such studies in model organisms with studies of emotion in humans, but also suggests a revision of how emotion should be operationalized within psychology and psychiatry. PMID:24679535

  8. Automatic segmentation of pulmonary fissures in x-ray CT images using anatomic guidance

    NASA Astrophysics Data System (ADS)

    Ukil, Soumik; Sonka, Milan; Reinhardt, Joseph M.

    2006-03-01

    The pulmonary lobes are the five distinct anatomic divisions of the human lungs. The physical boundaries between the lobes are called the lobar fissures. Detection of lobar fissure positions in pulmonary X-ray CT images is of increasing interest for the early detection of pathologies, and also for the regional functional analysis of the lungs. We have developed a two-step automatic method for the accurate segmentation of the three pulmonary fissures. In the first step, an approximation of the actual fissure locations is made using a 3-D watershed transform on the distance map of the segmented vasculature. Information from the anatomically labeled human airway tree is used to guide the watershed segmentation. These approximate fissure boundaries are then used to define the region of interest (ROI) for a more exact 3-D graph search to locate the fissures. Within the ROI the fissures are enhanced by computing a ridgeness measure, and this is used as the cost function for the graph search. The fissures are detected as the optimal surface within the graph defined by the cost function, which is computed by transforming the problem to the problem of finding a minimum s-t cut on a derived graph. The accuracy of the lobar borders is assessed by comparing the automatic results to manually traced lobe segments. The mean distance error between manually traced and computer detected left oblique, right oblique and right horizontal fissures is 2.3 +/- 0.8 mm, 2.3 +/- 0.7 mm and 1.0 +/- 0.1 mm, respectively.

  9. Lung-resident eosinophils represent a distinct regulatory eosinophil subset

    PubMed Central

    Mesnil, Claire; Raulier, Stéfanie; Paulissen, Geneviève; Xiao, Xue; Birrell, Mark A.; Pirottin, Dimitri; Janss, Thibaut; Henket, Monique; Schleich, Florence N.; Radermecker, Marc; Thielemans, Kris; Gillet, Laurent; Thiry, Marc; Belvisi, Maria G.; Louis, Renaud; Desmet, Christophe; Bureau, Fabrice

    2016-01-01

    Increases in eosinophil numbers are associated with infection and allergic diseases, including asthma, but there is also evidence that eosinophils contribute to homeostatic immune processes. In mice, the normal lung contains resident eosinophils (rEos), but their function has not been characterized. Here, we have reported that steady-state pulmonary rEos are IL-5–independent parenchymal Siglec-FintCD62L+CD101lo cells with a ring-shaped nucleus. During house dust mite–induced airway allergy, rEos features remained unchanged, and rEos were accompanied by recruited inflammatory eosinophils (iEos), which were defined as IL-5–dependent peribronchial Siglec-FhiCD62L–CD101hi cells with a segmented nucleus. Gene expression analyses revealed a more regulatory profile for rEos than for iEos, and correspondingly, mice lacking lung rEos showed an increase in Th2 cell responses to inhaled allergens. Such elevation of Th2 responses was linked to the ability of rEos, but not iEos, to inhibit the maturation, and therefore the pro-Th2 function, of allergen-loaded DCs. Finally, we determined that the parenchymal rEos found in nonasthmatic human lungs (Siglec-8+CD62L+IL-3Rlo cells) were phenotypically distinct from the iEos isolated from the sputa of eosinophilic asthmatic patients (Siglec-8+CD62LloIL-3Rhi cells), suggesting that our findings in mice are relevant to humans. In conclusion, our data define lung rEos as a distinct eosinophil subset with key homeostatic functions. PMID:27548519

  10. Not one extrastriate body area: Using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex

    PubMed Central

    Weiner, Kevin S.; Grill-Spector, Kalanit

    2011-01-01

    The prevailing view of human lateral occipitotemporal cortex (LOTC) organization suggests a single area selective for images of the human body (extrastriate body area, EBA) that highly overlaps with the human motion-selective complex (hMT+). Using functional magnetic resonance imaging with higher resolution (1.5mm voxels) than past studies (3–4mm voxels), we examined the fine-scale spatial organization of these activations relative to each other, as well as to visual field maps in LOTC. Rather than one contiguous EBA highly overlapping hMT+, results indicate three limb-selective activations organized in a crescent surrounding hMT+: (1) an activation posterior to hMT+ on the lateral occipital sulcus/middle occipital gyrus (LOS/MOG) overlapping the lower vertical meridian shared between visual field maps LO-2 and TO-1, (2) an activation anterior to hMT+ on the middle temporal gyrus (MTG) consistently overlapping the lower vertical meridian of TO-2 and extending outside presently defined visual field maps, and (3) an activation inferior to hMT+ on the inferotemporal gyrus (ITG) overlapping the parafoveal representation of the TO cluster. This crescent organization of limb-selective activations surrounding hMT+ is reproducible over a span of three years and is consistent across different image types used for localization. Further, these regions exhibit differential position properties: preference for contralateral image presentation decreases and preference for foveal presentation increases from the limb-selective LOS to the MTG. Finally, the relationship between limb-selective activations and visual field maps extends to the dorsal stream where a posterior IPS activation overlaps V7. Overall, our measurements demonstrate a series of LOTC limb-selective activations that 1) have separate anatomical and functional boundaries, 2) overlap distinct visual field maps, and 3) illustrate differential position properties. These findings indicate that category selectivity alone is an insufficient organization principle for defining brain areas. Instead, multiple properties are necessary in order to parcellate and understand the functional organization of high-level visual cortex. PMID:21439386

  11. Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine-Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2.

    PubMed

    McCune, Broc T; Tang, Wei; Lu, Jia; Eaglesham, James B; Thorne, Lucy; Mayer, Anne E; Condiff, Emily; Nice, Timothy J; Goodfellow, Ian; Krezel, Andrzej M; Virgin, Herbert W

    2017-07-11

    The Norovirus genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored. Here we report decreased murine norovirus replication in VAPA- and VAPB-deficient cells. We characterized the role of VAPA in detail. VAPA was required for the efficiency of a step(s) in the viral replication cycle after entry of viral RNA into the cytoplasm but before the synthesis of viral minus-sense RNA. The interaction of VAPA with viral NS1/2 proteins is conserved between murine and human noroviruses. Murine norovirus NS1/2 directly bound the major sperm protein (MSP) domain of VAPA through its NS1 domain. Mutations within NS1 that disrupted interaction with VAPA inhibited viral replication. Structural analysis revealed that the viral NS1 domain contains a mimic of the phenylalanine-phenylalanine-acidic-tract (FFAT) motif that enables host proteins to bind to the VAPA MSP domain. The NS1/2-FFAT mimic region interacted with the VAPA-MSP domain in a manner similar to that seen with bona fide host FFAT motifs. Amino acids in the FFAT mimic region of the NS1 domain that are important for viral replication are highly conserved across murine norovirus strains. Thus, VAPA interaction with a norovirus protein that functionally mimics host FFAT motifs is important for murine norovirus replication. IMPORTANCE Human noroviruses are a leading cause of gastroenteritis worldwide, but host factors involved in norovirus replication are incompletely understood. Murine noroviruses have been studied to define mechanisms of norovirus replication. Here we defined the importance of the interaction between the hitherto poorly studied NS1/2 norovirus protein and the VAPA host protein. The NS1/2-VAPA interaction is conserved between murine and human noroviruses and was important for early steps in murine norovirus replication. Using structure-function analysis, we found that NS1/2 contains a short sequence that molecularly mimics the FFAT motif that is found in multiple host proteins that bind VAPA. This represents to our knowledge the first example of functionally important mimicry of a host FFAT motif by a microbial protein. Copyright © 2017 McCune et al.

  12. Development of a Systems Engineering Competency Model Tool for the Aviation and Missile Research, Development, And Engineering Center (AMRDEC)

    DTIC Science & Technology

    2017-06-01

    The Naval Postgraduate School has developed a competency model for the systems engineering profession and is implementing a tool to support high...stakes human resource functions for the U.S. Army. A systems engineering career competency model (SECCM), recently developed by the Navy and verified by...the Office of Personnel Management (OPM), defines the critical competencies for successful performance as a systems engineer at each general schedule

  13. Clinical neurocardiology defining the value of neuroscience‐based cardiovascular therapeutics

    PubMed Central

    Ajijola, Olujimi A.; Anand, Inder; Armour, J. Andrew; Chen, Peng‐Sheng; Esler, Murray; De Ferrari, Gaetano M.; Fishbein, Michael C.; Goldberger, Jeffrey J.; Harper, Ronald M.; Joyner, Michael J.; Khalsa, Sahib S.; Kumar, Rajesh; Lane, Richard; Mahajan, Aman; Po, Sunny; Schwartz, Peter J.; Somers, Virend K.; Valderrabano, Miguel; Vaseghi, Marmar; Zipes, Douglas P.

    2016-01-01

    Abstract The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience‐based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases. PMID:27114333

  14. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior.

    PubMed

    Baslow, Morris H

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.

  15. A correlative and quantitative imaging approach enabling characterization of primary cell-cell communication: Case of human CD4+ T cell-macrophage immunological synapses.

    PubMed

    Kasprowicz, Richard; Rand, Emma; O'Toole, Peter J; Signoret, Nathalie

    2018-05-22

    Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4 + T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4 + T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.

  16. Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population.

    PubMed

    Andrew, Angeline S; Jewell, David A; Mason, Rebecca A; Whitfield, Michael L; Moore, Jason H; Karagas, Margaret R

    2008-04-01

    Arsenic exposure impairs development and can lead to cancer, cardiovascular disease, and diabetes. The mechanism underlying these effects remains unknown. Primarily because of geologic sources of contamination, drinking-water arsenic levels are above the current recommended maximum contaminant level of 10 microg/L in the northeastern, western, and north central regions of the United States. We investigated the effects of arsenic exposure, defined by internal biomarkers at levels relevant to the United States and similarly exposed populations, on gene expression. We conducted separate Affymetrix microarray-based genomewide analyses of expression patterns. Peripheral blood lymphocyte samples from 21 controls interviewed (1999-2002) as part of a case-control study in New Hampshire were selected based on high- versus low-level arsenic exposure levels. The biologic functions of the transcripts that showed statistically significant abundance differences between high- and low-arsenic exposure groups included an overrepresentation of genes involved in defense response, immune function, cell growth, apoptosis, regulation of cell cycle, T-cell receptor signaling pathway, and diabetes. Notably, the high-arsenic exposure group exhibited higher levels of several killer cell immunoglobulin-like receptors that inhibit natural killer cell activity. These findings define biologic changes that occur with chronic arsenic exposure in humans and provide leads and potential targets for understanding and monitoring the pathogenesis of arsenic-induced diseases.

  17. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks.

    PubMed

    Gallos, Lazaros K; Makse, Hernán A; Sigman, Mariano

    2012-02-21

    The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.

  18. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks

    PubMed Central

    Gallos, Lazaros K.; Makse, Hernán A.; Sigman, Mariano

    2012-01-01

    The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are “large-world” self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the “strength of weak ties” crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain. PMID:22308319

  19. The human oxytocin gene promoter is regulated by estrogens.

    PubMed

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be restricted to a subpopulation of OT neurons.

  20. The Human Subsystem - Definition and Integration

    NASA Technical Reports Server (NTRS)

    vonBengston, Kristian; Twyford, Evan

    2007-01-01

    This paper will discuss the use of the human subsystem in development phases of human space flight. Any space mission has clearly defined subsystems, managed by experts attached to these. Clearly defined subsystems and correct use provide easier and more efficient development for each independent subsystem and for the relation between these subsystems. Furthermore, this paper will argue that a defined subsystem related to humans in space has not always been clearly present, and that correct implementation is perhaps missing, based on experience and survey data. Finally, the authors will discuss why the human subsystem has not been fully integrated, why it must be a mandatory part of the programming, a re-definition of the human subsystem, and suggestions of methods to improve the integration of human factors in the development.

  1. The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity

    PubMed Central

    Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.

    2012-01-01

    The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406

  2. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes

    PubMed Central

    Ho Sui, Shannan J.; Mortimer, James R.; Arenillas, David J.; Brumm, Jochen; Walsh, Christopher J.; Kennedy, Brian P.; Wasserman, Wyeth W.

    2005-01-01

    Targeted transcript profiling studies can identify sets of co-expressed genes; however, identification of the underlying functional mechanism(s) is a significant challenge. Established methods for the analysis of gene annotations, particularly those based on the Gene Ontology, can identify functional linkages between genes. Similar methods for the identification of over-represented transcription factor binding sites (TFBSs) have been successful in yeast, but extension to human genomics has largely proved ineffective. Creation of a system for the efficient identification of common regulatory mechanisms in a subset of co-expressed human genes promises to break a roadblock in functional genomics research. We have developed an integrated system that searches for evidence of co-regulation by one or more transcription factors (TFs). oPOSSUM combines a pre-computed database of conserved TFBSs in human and mouse promoters with statistical methods for identification of sites over-represented in a set of co-expressed genes. The algorithm successfully identified mediating TFs in control sets of tissue-specific genes and in sets of co-expressed genes from three transcript profiling studies. Simulation studies indicate that oPOSSUM produces few false positives using empirically defined thresholds and can tolerate up to 50% noise in a set of co-expressed genes. PMID:15933209

  3. Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features

    PubMed Central

    Tucci, Valter; Kleefstra, Tjitske; Hardy, Andrea; Heise, Ines; Maggi, Silvia; Willemsen, Marjolein H.; Hilton, Helen; Esapa, Chris; Simon, Michelle; Buenavista, Maria-Teresa; McGuffin, Liam J.; Vizor, Lucie; Dodero, Luca; Tsaftaris, Sotirios; Romero, Rosario; Nillesen, Willy N.; Vissers, Lisenka E.L.M.; Kempers, Marlies J.; Vulto-van Silfhout, Anneke T.; Iqbal, Zafar; Orlando, Marta; Maccione, Alessandro; Lassi, Glenda; Farisello, Pasqualina; Contestabile, Andrea; Tinarelli, Federico; Nieus, Thierry; Raimondi, Andrea; Greco, Barbara; Cantatore, Daniela; Gasparini, Laura; Berdondini, Luca; Bifone, Angelo; Gozzi, Alessandro; Wells, Sara; Nolan, Patrick M.

    2014-01-01

    The recent identification of multiple dominant mutations in the gene encoding β-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of β-catenin function in cognitive impairment. In humans, β-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo β-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with β-catenin mutations enabled us to investigate the consequences of β-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of β-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in β-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults. PMID:24614104

  4. The Structural and Functional Organization of Cognition

    PubMed Central

    Snow, Peter J.

    2016-01-01

    This article proposes that what have been historically and contemporarily defined as different domains of human cognition are served by one of four functionally- and structurally-distinct areas of the prefrontal cortex (PFC). Their contributions to human intelligence are as follows: (a) BA9, enables our emotional intelligence, engaging the psychosocial domain; (b) BA47, enables our practical intelligence, engaging the material domain; (c) BA46 (or BA46-9/46), enables our abstract intelligence, engaging the hypothetical domain; and (d) BA10, enables our temporal intelligence, engaging in planning within any of the other three domains. Given their unique contribution to human cognition, it is proposed that these areas be called the, social (BA9), material (BA47), abstract (BA46-9/46) and temporal (BA10) mind. The evidence that BA47 participates strongly in verbal and gestural communication suggests that language evolved primarily as a consequence of the extreme selective pressure for practicality; an observation supported by the functional connectivity between BA47 and orbital areas that negatively reinforce lying. It is further proposed that the abstract mind (BA46-9/46) is the primary seat of metacognition charged with creating adaptive behavioral strategies by generating higher-order concepts (hypotheses) from lower-order concepts originating from the other three domains of cognition. PMID:27799901

  5. Nanotopography-guided tissue engineering and regenerative medicine.

    PubMed

    Kim, Hong Nam; Jiao, Alex; Hwang, Nathaniel S; Kim, Min Sung; Kang, Do Hyun; Kim, Deok-Ho; Suh, Kahp-Yang

    2013-04-01

    Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  6. DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks

    PubMed Central

    Zhu, Dajiang; Guo, Lei; Jiang, Xi; Zhang, Tuo; Zhang, Degang; Chen, Hanbo; Deng, Fan; Faraco, Carlos; Jin, Changfeng; Wee, Chong-Yaw; Yuan, Yixuan; Lv, Peili; Yin, Yan; Hu, Xiaolei; Duan, Lian; Hu, Xintao; Han, Junwei; Wang, Lihong; Shen, Dinggang; Miller, L Stephen

    2013-01-01

    Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity–based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work. PMID:22490548

  7. Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking.

    PubMed

    Budayeva, Hanna G; Cristea, Ileana M

    2016-10-01

    Human sirtuin 2 (SIRT2) is an NAD + -dependent deacetylase that primarily functions in the cytoplasm, where it can regulate α-tubulin acetylation levels. SIRT2 is linked to cancer progression, neurodegeneration, and infection with bacteria or viruses. However, the current knowledge about its interactions and the means through which it exerts its functions has remained limited. Here, we aimed to gain a better understanding of its cellular functions by characterizing SIRT2 subcellular localization, the identity and relative stability of its protein interactions, and its impact on the proteome of primary human fibroblasts. To assess the relative stability of SIRT2 interactions, we used immunoaffinity purification in conjunction with both label-free and metabolic labeling quantitative mass spectrometry. In addition to the expected associations with cytoskeleton proteins, including its known substrate TUBA1A, our results reveal that SIRT2 specifically interacts with proteins functioning in membrane trafficking, secretory processes, and transcriptional regulation. By quantifying their relative stability, we found most interactions to be transient, indicating a dynamic SIRT2 environment. We discover that SIRT2 localizes to the ER-Golgi intermediate compartment (ERGIC), and that this recruitment requires an intact ER-Golgi trafficking pathway. Further expanding these findings, we used microscopy and interaction assays to establish the interaction and coregulation of SIRT2 with liprin-β1 scaffolding protein (PPFiBP1), a protein with roles in focal adhesions disassembly. As SIRT2 functions may be accomplished via interactions, enzymatic activity, and transcriptional regulation, we next assessed the impact of SIRT2 levels on the cellular proteome. SIRT2 knockdown led to changes in the levels of proteins functioning in membrane trafficking, including some of its interaction partners. Altogether, our study expands the knowledge of SIRT2 cytoplasmic functions to define a previously unrecognized involvement in intracellular trafficking pathways, which may contribute to its roles in cellular homeostasis and human diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Human Sirtuin 2 Localization, Transient Interactions, and Impact on the Proteome Point to Its Role in Intracellular Trafficking*

    PubMed Central

    Budayeva, Hanna G.; Cristea, Ileana M.

    2016-01-01

    Human sirtuin 2 (SIRT2) is an NAD+-dependent deacetylase that primarily functions in the cytoplasm, where it can regulate α-tubulin acetylation levels. SIRT2 is linked to cancer progression, neurodegeneration, and infection with bacteria or viruses. However, the current knowledge about its interactions and the means through which it exerts its functions has remained limited. Here, we aimed to gain a better understanding of its cellular functions by characterizing SIRT2 subcellular localization, the identity and relative stability of its protein interactions, and its impact on the proteome of primary human fibroblasts. To assess the relative stability of SIRT2 interactions, we used immunoaffinity purification in conjunction with both label-free and metabolic labeling quantitative mass spectrometry. In addition to the expected associations with cytoskeleton proteins, including its known substrate TUBA1A, our results reveal that SIRT2 specifically interacts with proteins functioning in membrane trafficking, secretory processes, and transcriptional regulation. By quantifying their relative stability, we found most interactions to be transient, indicating a dynamic SIRT2 environment. We discover that SIRT2 localizes to the ER-Golgi intermediate compartment (ERGIC), and that this recruitment requires an intact ER-Golgi trafficking pathway. Further expanding these findings, we used microscopy and interaction assays to establish the interaction and coregulation of SIRT2 with liprin-β1 scaffolding protein (PPFiBP1), a protein with roles in focal adhesions disassembly. As SIRT2 functions may be accomplished via interactions, enzymatic activity, and transcriptional regulation, we next assessed the impact of SIRT2 levels on the cellular proteome. SIRT2 knockdown led to changes in the levels of proteins functioning in membrane trafficking, including some of its interaction partners. Altogether, our study expands the knowledge of SIRT2 cytoplasmic functions to define a previously unrecognized involvement in intracellular trafficking pathways, which may contribute to its roles in cellular homeostasis and human diseases. PMID:27503897

  9. Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity

    PubMed Central

    Milanesi, Luciano; Petrillo, Mauro; Sepe, Leandra; Boccia, Angelo; D'Agostino, Nunzio; Passamano, Myriam; Di Nardo, Salvatore; Tasco, Gianluca; Casadio, Rita; Paolella, Giovanni

    2005-01-01

    Background Protein kinases are a well defined family of proteins, characterized by the presence of a common kinase catalytic domain and playing a significant role in many important cellular processes, such as proliferation, maintenance of cell shape, apoptosys. In many members of the family, additional non-kinase domains contribute further specialization, resulting in subcellular localization, protein binding and regulation of activity, among others. About 500 genes encode members of the kinase family in the human genome, and although many of them represent well known genes, a larger number of genes code for proteins of more recent identification, or for unknown proteins identified as kinase only after computational studies. Results A systematic in silico study performed on the human genome, led to the identification of 5 genes, on chromosome 1, 11, 13, 15 and 16 respectively, and 1 pseudogene on chromosome X; some of these genes are reported as kinases from NCBI but are absent in other databases, such as KinBase. Comparative analysis of 483 gene regions and subsequent computational analysis, aimed at identifying unannotated exons, indicates that a large number of kinase may code for alternately spliced forms or be incorrectly annotated. An InterProScan automated analysis was perfomed to study domain distribution and combination in the various families. At the same time, other structural features were also added to the annotation process, including the putative presence of transmembrane alpha helices, and the cystein propensity to participate into a disulfide bridge. Conclusion The predicted human kinome was extended by identifiying both additional genes and potential splice variants, resulting in a varied panorama where functionality may be searched at the gene and protein level. Structural analysis of kinase proteins domains as defined in multiple sources together with transmembrane alpha helices and signal peptide prediction provides hints to function assignment. The results of the human kinome analysis are collected in the KinWeb database, available for browsing and searching over the internet, where all results from the comparative analysis and the gene structure annotation are made available, alongside the domain information. Kinases may be searched by domain combinations and the relative genes may be viewed in a graphic browser at various level of magnification up to gene organization on the full chromosome set. PMID:16351747

  10. Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots

    PubMed Central

    Chusyd, Daniella E.; Wang, Donghai; Huffman, Derek M.; Nagy, Tim R.

    2016-01-01

    The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of WAT. Thus, further research is warranted to more carefully define the strengths and limitations of rodent WAT as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat. PMID:27148535

  11. Resting-state test-retest reliability of a priori defined canonical networks over different preprocessing steps.

    PubMed

    Varikuti, Deepthi P; Hoffstaedter, Felix; Genon, Sarah; Schwender, Holger; Reid, Andrew T; Eickhoff, Simon B

    2017-04-01

    Resting-state functional connectivity analysis has become a widely used method for the investigation of human brain connectivity and pathology. The measurement of neuronal activity by functional MRI, however, is impeded by various nuisance signals that reduce the stability of functional connectivity. Several methods exist to address this predicament, but little consensus has yet been reached on the most appropriate approach. Given the crucial importance of reliability for the development of clinical applications, we here investigated the effect of various confound removal approaches on the test-retest reliability of functional-connectivity estimates in two previously defined functional brain networks. Our results showed that gray matter masking improved the reliability of connectivity estimates, whereas denoising based on principal components analysis reduced it. We additionally observed that refraining from using any correction for global signals provided the best test-retest reliability, but failed to reproduce anti-correlations between what have been previously described as antagonistic networks. This suggests that improved reliability can come at the expense of potentially poorer biological validity. Consistent with this, we observed that reliability was proportional to the retained variance, which presumably included structured noise, such as reliable nuisance signals (for instance, noise induced by cardiac processes). We conclude that compromises are necessary between maximizing test-retest reliability and removing variance that may be attributable to non-neuronal sources.

  12. Resting-state test-retest reliability of a priori defined canonical networks over different preprocessing steps

    PubMed Central

    Varikuti, Deepthi P.; Hoffstaedter, Felix; Genon, Sarah; Schwender, Holger; Reid, Andrew T.; Eickhoff, Simon B.

    2016-01-01

    Resting-state functional connectivity analysis has become a widely used method for the investigation of human brain connectivity and pathology. The measurement of neuronal activity by functional MRI, however, is impeded by various nuisance signals that reduce the stability of functional connectivity. Several methods exist to address this predicament, but little consensus has yet been reached on the most appropriate approach. Given the crucial importance of reliability for the development of clinical applications, we here investigated the effect of various confound removal approaches on the test-retest reliability of functional-connectivity estimates in two previously defined functional brain networks. Our results showed that grey matter masking improved the reliability of connectivity estimates, whereas de-noising based on principal components analysis reduced it. We additionally observed that refraining from using any correction for global signals provided the best test-retest reliability, but failed to reproduce anti-correlations between what have been previously described as antagonistic networks. This suggests that improved reliability can come at the expense of potentially poorer biological validity. Consistent with this, we observed that reliability was proportional to the retained variance, which presumably included structured noise, such as reliable nuisance signals (for instance, noise induced by cardiac processes). We conclude that compromises are necessary between maximizing test-retest reliability and removing variance that may be attributable to non-neuronal sources. PMID:27550015

  13. Variation of BMP3 Contributes to Dog Breed Skull Diversity

    PubMed Central

    Schoenebeck, Jeffrey J.; Hutchinson, Sarah A.; Byers, Alexandra; Beale, Holly C.; Carrington, Blake; Faden, Daniel L.; Rimbault, Maud; Decker, Brennan; Kidd, Jeffrey M.; Sood, Raman; Boyko, Adam R.; Fondon, John W.; Wayne, Robert K.; Bustamante, Carlos D.; Ciruna, Brian; Ostrander, Elaine A.

    2012-01-01

    Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait. PMID:22876193

  14. GRAPES-Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain.

    PubMed

    Martin, Alex

    2016-08-01

    In this article, I discuss some of the latest functional neuroimaging findings on the organization of object concepts in the human brain. I argue that these data provide strong support for viewing concepts as the products of highly interactive neural circuits grounded in the action, perception, and emotion systems. The nodes of these circuits are defined by regions representing specific object properties (e.g., form, color, and motion) and thus are property-specific, rather than strictly modality-specific. How these circuits are modified by external and internal environmental demands, the distinction between representational content and format, and the grounding of abstract social concepts are also discussed.

  15. Stable functional networks exhibit consistent timing in the human brain.

    PubMed

    Chapeton, Julio I; Inati, Sara K; Zaghloul, Kareem A

    2017-03-01

    Despite many advances in the study of large-scale human functional networks, the question of timing, stability, and direction of communication between cortical regions has not been fully addressed. At the cellular level, neuronal communication occurs through axons and dendrites, and the time required for such communication is well defined and preserved. At larger spatial scales, however, the relationship between timing, direction, and communication between brain regions is less clear. Here, we use a measure of effective connectivity to identify connections between brain regions that exhibit communication with consistent timing. We hypothesized that if two brain regions are communicating, then knowledge of the activity in one region should allow an external observer to better predict activity in the other region, and that such communication involves a consistent time delay. We examine this question using intracranial electroencephalography captured from nine human participants with medically refractory epilepsy. We use a coupling measure based on time-lagged mutual information to identify effective connections between brain regions that exhibit a statistically significant increase in average mutual information at a consistent time delay. These identified connections result in sparse, directed functional networks that are stable over minutes, hours, and days. Notably, the time delays associated with these connections are also highly preserved over multiple time scales. We characterize the anatomic locations of these connections, and find that the propagation of activity exhibits a preferred posterior to anterior temporal lobe direction, consistent across participants. Moreover, networks constructed from connections that reliably exhibit consistent timing between anatomic regions demonstrate features of a small-world architecture, with many reliable connections between anatomically neighbouring regions and few long range connections. Together, our results demonstrate that cortical regions exhibit functional relationships with well-defined and consistent timing, and the stability of these relationships over multiple time scales suggests that these stable pathways may be reliably and repeatedly used for large-scale cortical communication. Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the United States.

  16. Development of microgravity, full body functional reach envelope using 3-D computer graphic models and virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1994-01-01

    In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.

  17. A genetic algorithms approach for altering the membership functions in fuzzy logic controllers

    NASA Technical Reports Server (NTRS)

    Shehadeh, Hana; Lea, Robert N.

    1992-01-01

    Through previous work, a fuzzy control system was developed to perform translational and rotational control of a space vehicle. This problem was then re-examined to determine the effectiveness of genetic algorithms on fine tuning the controller. This paper explains the problems associated with the design of this fuzzy controller and offers a technique for tuning fuzzy logic controllers. A fuzzy logic controller is a rule-based system that uses fuzzy linguistic variables to model human rule-of-thumb approaches to control actions within a given system. This 'fuzzy expert system' features rules that direct the decision process and membership functions that convert the linguistic variables into the precise numeric values used for system control. Defining the fuzzy membership functions is the most time consuming aspect of the controller design. One single change in the membership functions could significantly alter the performance of the controller. This membership function definition can be accomplished by using a trial and error technique to alter the membership functions creating a highly tuned controller. This approach can be time consuming and requires a great deal of knowledge from human experts. In order to shorten development time, an iterative procedure for altering the membership functions to create a tuned set that used a minimal amount of fuel for velocity vector approach and station-keep maneuvers was developed. Genetic algorithms, search techniques used for optimization, were utilized to solve this problem.

  18. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells

    PubMed Central

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-01-01

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001 PMID:24252877

  19. Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.

    PubMed

    Lee, Jonghyeob; Sugiyama, Takuya; Liu, Yinghua; Wang, Jing; Gu, Xueying; Lei, Ji; Markmann, James F; Miyazaki, Satsuki; Miyazaki, Jun-Ichi; Szot, Gregory L; Bottino, Rita; Kim, Seung K

    2013-11-19

    Pancreatic islet β-cell insufficiency underlies pathogenesis of diabetes mellitus; thus, functional β-cell replacement from renewable sources is the focus of intensive worldwide effort. However, in vitro production of progeny that secrete insulin in response to physiological cues from primary human cells has proven elusive. Here we describe fractionation, expansion and conversion of primary adult human pancreatic ductal cells into progeny resembling native β-cells. FACS-sorted adult human ductal cells clonally expanded as spheres in culture, while retaining ductal characteristics. Expression of the cardinal islet developmental regulators Neurog3, MafA, Pdx1 and Pax6 converted exocrine duct cells into endocrine progeny with hallmark β-cell properties, including the ability to synthesize, process and store insulin, and secrete it in response to glucose or other depolarizing stimuli. These studies provide evidence that genetic reprogramming of expandable human pancreatic cells with defined factors may serve as a general strategy for islet replacement in diabetes. DOI: http://dx.doi.org/10.7554/eLife.00940.001.

  20. Stress and human spirituality 2000: at the cross roads of physics and metaphysics.

    PubMed

    Seaward, B L

    2000-12-01

    Although stress is defined as a perceived threat, the implications of stress go well beyond physical well-being. In the words of Carl Jung, "Every crisis is a spiritual crisis." Western science, so strongly influenced by the Cartesian Principle of Reductionism, has ignored the essence and significance of human spirituality in the health and healing process. Holistic healing honors the integration, balance, and harmony of mind, body, spirit, and emotions, where the whole is greater than the sum of the parts. Stress (unresolved issues of anger and fear) chokes the human spirit, the life force of human energy, which ultimately affects the physical body. From the perspectives of both physics and metaphysics, stress is a disruption in the state of coherence between the layers of consciousness in the human energy field. The emerging paradigm of health reunites mind, body, and spirit, and considers health as a function of coherence among the energy levels of these components.

  1. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice.

    PubMed

    Schmouth, Jean-François; Castellarin, Mauro; Laprise, Stéphanie; Banks, Kathleen G; Bonaguro, Russell J; McInerny, Simone C; Borretta, Lisa; Amirabbasi, Mahsa; Korecki, Andrea J; Portales-Casamar, Elodie; Wilson, Gary; Dreolini, Lisa; Jones, Steven J M; Wasserman, Wyeth W; Goldowitz, Daniel; Holt, Robert A; Simpson, Elizabeth M

    2013-10-14

    The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.

  2. Technology--The Extension of Human Potential

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2018-01-01

    Technology is defined differently depending on one's point of view, but in "Standards for Technological Literacy," technology is defined as "Human innovation…the generation of knowledge and processes…that solve problems and extend human capabilities" (ITEA/ITEEA 2000/2002/2007). The processes associated with the development of…

  3. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  4. Interferon-λ: immune functions at barrier surfaces and beyond

    PubMed Central

    Lazear, Helen M.; Nice, Timothy J.; Diamond, Michael S.

    2015-01-01

    SUMMARY When type III interferon (IFN-λ; also known as interleukin-28 (IL-28) and IL-29) was discovered in 2003, its antiviral function was expected to be analogous to the type I IFNs (IFN-α and IFN-β), via the induction of IFN-stimulated genes (ISGs). While IFN-λ stimulates expression of antiviral ISGs preferentially in cells of epithelial origin, recent studies have defined additional antiviral mechanisms in other cell types and tissues. Models of viral infection using mice lacking IFN-λ signaling and single nucleotide polymorphism (SNP) associations with human disease have expanded our understanding of the contribution of IFN-λ to the antiviral response at anatomic barriers and the immune response beyond these barriers. In this review, we highlight recent insights into the functions of IFN-λ, including its ability to restrict virus spread into the brain and to clear chronic viral infections in the gastrointestinal tract. We also discuss how IFN-λ modulates innate and adaptive immunity, autoimmunity, and tumor progression and its possible therapeutic applications in human disease. PMID:26200010

  5. Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling

    PubMed Central

    Hu, Patrick J; Xu, Jinling; Ruvkun, Gary

    2006-01-01

    Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. PMID:16839187

  6. Allocation of Functions in a Far-Term Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Homola, Jeffrey; Martin, Lynne; Mercer, Joey; Cabrall, Christopher; Prevot, Thomas

    2011-01-01

    A human-in-the-loop exploration of a ground-based automated separation assurance concept was conducted that involved the allocation of certain functions between humans and automation. This exploration included operations that were sustained for prolonged periods of time with high levels of traffic in the presence of convective weather and scheduling constraints. An investigation into the acceptability of the defined roles and performance of tasks was conducted where it was found that the participants rated the concept and allocation of functions with a high level of acceptability. However, issues were encountered with the automation related to the detection of and response to tactical conflicts. Lower ratings were given on account of these concerns, and it was found that a key contributor to the underlying problems was transitioning aircraft and the uncertainty of their trajectories. Stemming from those results, participants responded that they would rather have direct control over aircraft transitions as well as more control over the tactical conflict resolution automation. In contrast, participants responded that they would rather have the automation place aircraft back on trajectory, and perform weather avoidance and scheduling tasks.

  7. Health, vital goals, and central human capabilities.

    PubMed

    Venkatapuram, Sridhar

    2013-06-01

    I argue for a conception of health as a person's ability to achieve or exercise a cluster of basic human activities. These basic activities are in turn specified through free-standing ethical reasoning about what constitutes a minimal conception of a human life with equal human dignity in the modern world. I arrive at this conception of health by closely following and modifying Lennart Nordenfelt's theory of health which presents health as the ability to achieve vital goals. Despite its strengths I transform Nordenfelt's argument in order to overcome three significant drawbacks. Nordenfelt makes vital goals relative to each community or context and significantly reflective of personal preferences. By doing so, Nordenfelt's conception of health faces problems with both socially relative concepts of health and subjectively defined wellbeing. Moreover, Nordenfelt does not ever explicitly specify a set of vital goals. The theory of health advanced here replaces Nordenfelt's (seemingly) empty set of preferences and society-relative vital goals with a human species-wide conception of basic vital goals, or 'central human capabilities and functionings'. These central human capabilities come out of the capabilities approach (CA) now familiar in political philosophy and economics, and particularly reflect the work of Martha Nussbaum. As a result, the health of an individual should be understood as the ability to achieve a basic cluster of beings and doings-or having the overarching capability, a meta-capability, to achieve a set of central or vital inter-related capabilities and functionings. © 2012 John Wiley & Sons Ltd.

  8. Minireview: Toward the Establishment of a Link between Melatonin and Glucose Homeostasis: Association of Melatonin MT2 Receptor Variants with Type 2 Diabetes

    PubMed Central

    Karamitri, Angeliki; Renault, Nicolas; Clement, Nathalie; Guillaume, Jean-Luc

    2013-01-01

    The existence of interindividual variations in G protein-coupled receptor sequences has been recognized early on. Recent advances in large-scale exon sequencing techniques are expected to dramatically increase the number of variants identified in G protein-coupled receptors, giving rise to new challenges regarding their functional characterization. The current minireview will illustrate these challenges based on the MTNR1B gene, which encodes the melatonin MT2 receptor, for which exon sequencing revealed 40 rare nonsynonymous variants in the general population and in type 2 diabetes (T2D) cohorts. Functional characterization of these MT2 mutants revealed 14 mutants with loss of Gi protein activation that associate with increased risk of T2D development. This repertoire of disease-associated mutants is a rich source for structure-activity studies and will help to define the still poorly understood role of melatonin in glucose homeostasis and T2D development in humans. Defining the functional defects in carriers of rare MT2 mutations will help to provide personalized therapies to these patients in the future. PMID:23798576

  9. Are plants sentient?

    PubMed

    Calvo, Paco; Sahi, Vaidurya Pratap; Trewavas, Anthony

    2017-11-01

    Feelings in humans are mental states representing groups of physiological functions that usually have defined behavioural purposes. Feelings, being evolutionarily ancient, are thought to be coordinated in the brain stem of animals. One function of the brain is to prioritise between competing mental states and, thus, groups of physiological functions and in turn behaviour. Plants use groups of coordinated physiological activities to deal with defined environmental situations but currently have no known mental state to prioritise any order of response. Plants do have a nervous system based on action potentials transmitted along phloem conduits but which in addition, through anastomoses and other cross-links, forms a complex network. The emergent potential for this excitable network to form a mental state is unknown, but it might be used to distinguish between different and even contradictory signals to the individual plant and thus determine a priority of response. This plant nervous system stretches throughout the whole plant providing the potential for assessment in all parts and commensurate with its self-organising, phenotypically plastic behaviour. Plasticity may, in turn, depend heavily on the instructive capabilities of local bioelectric fields enabling both a degree of behavioural independence but influenced by the condition of the whole plant. © 2017 John Wiley & Sons Ltd.

  10. New method for automatic optimization of glass combination in optical systems working in the visible range

    NASA Astrophysics Data System (ADS)

    Ralea, Daniel; Marginean, Raluca-Maria; Marzu, Marinica

    1998-07-01

    The algorithm presented in this paper proposes a way to find the optimum glasses that assure a better correction for optical apparatus with the human eye as a final receiver. The model (Ne, v1, v2), based on the Buchdahl formula, gives an approximation error for the refraction index less than 5(DOT)10-5 for visible domain. We introduced in the merit function used for optimizing the optical system an operand that describes the existence of an optical glass. This operand was defined so that the obtained value for Ne, v1 and v2 can be closed to some values for a real glass. A definition for this operand is obtained using the PNe, Pv1, Pv2, probabilities of existence for a glass with a certain parameter Ne, v1 or v2. Another possibility to define this operand is to describe the volume occupied by the optical glass in (Ne, v1, v2) space with some elliptical functions. The probabilities and the elliptical functions were found after an analysis for all optical glasses listed in the Schott catalogues was made.

  11. Mapping the functional connectome traits of levels of consciousness.

    PubMed

    Amico, Enrico; Marinazzo, Daniele; Di Perri, Carol; Heine, Lizette; Annen, Jitka; Martial, Charlotte; Dzemidzic, Mario; Kirsch, Murielle; Bonhomme, Vincent; Laureys, Steven; Goñi, Joaquín

    2017-03-01

    Examining task-free functional connectivity (FC) in the human brain offers insights on how spontaneous integration and segregation of information relate to human cognition, and how this organization may be altered in different conditions, and neurological disorders. This is particularly relevant for patients in disorders of consciousness (DOC) following severe acquired brain damage and coma, one of the most devastating conditions in modern medical care. We present a novel data-driven methodology, connICA, which implements Independent Component Analysis (ICA) for the extraction of robust independent FC patterns (FC-traits) from a set of individual functional connectomes, without imposing any a priori data stratification into groups. We here apply connICA to investigate associations between network traits derived from task-free FC and cognitive/clinical features that define levels of consciousness. Three main independent FC-traits were identified and linked to consciousness-related clinical features. The first one represents the functional configuration of a "resting" human brain, and it is associated to a sedative (sevoflurane), the overall effect of the pathology and the level of arousal. The second FC-trait reflects the disconnection of the visual and sensory-motor connectivity patterns. It also relates to the time since the insult and to the ability of communicating with the external environment. The third FC-trait isolates the connectivity pattern encompassing the fronto-parietal and the default-mode network areas as well as the interaction between left and right hemispheres, which are also associated to the awareness of the self and its surroundings. Each FC-trait represents a distinct functional process with a role in the degradation of conscious states of functional brain networks, shedding further light on the functional sub-circuits that get disrupted in severe brain-damage. Copyright © 2017. Published by Elsevier Inc.

  12. Methods for Determining the Level of Autonomy to Design into a Human Spaceflight Vehicle: A Function Specific Approach

    NASA Technical Reports Server (NTRS)

    Proud, Ryan W.; Hart, Jeremy J.; Mrozinski, Richard B.

    2003-01-01

    The next-generation human spaceflight vehicle is in a unique position to realize the benefits of more than thirty years of technological advancements since the Space Shuttle was designed. Computer enhancements, the emergence of highly reliable decision-making algorithms, and an emphasis on efficiency make an increased use of autonomous systems highly likely. NASA is in a position to take advantage of these advances and apply them to the human spaceflight environment. One of the key paradigm shifts will be the shift, where appropriate, of monitoring, option development, decision-making, and execution responsibility from humans to an Autonomous Flight Management (AFM) system. As an effort to reduce risk for development of an AFM system, NASA engineers are developing a prototype to prove the utility of previously untested autonomy concepts. This prototype, called SMART (Spacecraft Mission Assessment and Replanning Tool), is a functionally decomposed flight management system with an appropriate level of autonomy for each of its functions. As the development of SMART began, the most important and most often asked question was, How autonomous should an AFM system be? A thorough study of the literature through 2002 surrounding autonomous systems has not yielded a standard method for designing a level of autonomy into either a crewed vehicle or an uncrewed vehicle. The current focus in the literature on defining autonomy is centered on developing IQ tests for built systems. The literature that was analyzed assumes that the goal of all systems is to strive for complete autonomy from human intervention, rather than identifying how autonomous each function within the system should have been. In contrast, the SMART team developed a method for determining the appropriate level of autonomy to be designed into each function within a system. This paper summarizes the development of the Level of Autonomy Assessment Tool and its application to the SMART project.

  13. A Cognitive Systems Engineering Approach to Developing Human Machine Interface Requirements for New Technologies

    NASA Astrophysics Data System (ADS)

    Fern, Lisa Carolynn

    This dissertation examines the challenges inherent in designing and regulating to support human-automation interaction for new technologies that will be deployed into complex systems. A key question for new technologies with increasingly capable automation, is how work will be accomplished by human and machine agents. This question has traditionally been framed as how functions should be allocated between humans and machines. Such framing misses the coordination and synchronization that is needed for the different human and machine roles in the system to accomplish their goals. Coordination and synchronization demands are driven by the underlying human-automation architecture of the new technology, which are typically not specified explicitly by designers. The human machine interface (HMI), which is intended to facilitate human-machine interaction and cooperation, typically is defined explicitly and therefore serves as a proxy for human-automation cooperation requirements with respect to technical standards for technologies. Unfortunately, mismatches between the HMI and the coordination and synchronization demands of the underlying human-automation architecture can lead to system breakdowns. A methodology is needed that both designers and regulators can utilize to evaluate the predicted performance of a new technology given potential human-automation architectures. Three experiments were conducted to inform the minimum HMI requirements for a detect and avoid (DAA) system for unmanned aircraft systems (UAS). The results of the experiments provided empirical input to specific minimum operational performance standards that UAS manufacturers will have to meet in order to operate UAS in the National Airspace System (NAS). These studies represent a success story for how to objectively and systematically evaluate prototype technologies as part of the process for developing regulatory requirements. They also provide an opportunity to reflect on the lessons learned in order to improve the methodology for defining technology requirements for regulators in the future. The biggest shortcoming of the presented research program was the absence of the explicit definition, generation and analysis of potential human-automation architectures. Failure to execute this step in the research process resulted in less efficient evaluation of the candidate prototypes technologies in addition to a lack of exploration of different approaches to human-automation cooperation. Defining potential human-automation architectures a priori also allows regulators to develop scenarios that will stress the performance boundaries of the technology during the evaluation phase. The importance of adding this step of generating and evaluating candidate human-automation architectures prior to formal empirical evaluation is discussed. This document concludes with a look at both the importance of, and the challenges facing, the inclusion of examining human-automation coordination issues as part of the safety assurance activities of new technologies.

  14. Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease.

    PubMed

    Li, Jennifer; Butcher, James; Mack, David; Stintzi, Alain

    2015-01-01

    : The human intestinal microbiome plays a critical role in human health and disease, including the pathogenesis of inflammatory bowel disease (IBD). Numerous studies have identified altered bacterial diversity and abundance at varying taxonomic levels through biopsies and fecal samples of patients with IBD and diseased model animals. However, inconsistent observations regarding the microbial compositions of such patients have hindered the efforts in assessing the etiological role of specific bacterial species in the pathophysiology of IBD. These observations highlight the importance of minimizing the confounding factors associated with IBD and the need for a standardized methodology to analyze well-defined microbial sampling sources in early IBD diagnosis. Furthermore, establishing the linkage between microbiota compositions with their function within the host system can provide new insights on the pathogenesis of IBD. Such research has been greatly facilitated by technological advances that include functional metagenomics coupled with proteomic and metabolomic profiling. This review provides updates on the composition of the microbiome in IBD and emphasizes microbiota dysbiosis-involved mechanisms. We highlight functional roles of specific bacterial groups in the development and management of IBD. Functional analyses of the microbiome may be the key to understanding the role of microbiota in the development and chronicity of IBD and reveal new strategies for therapeutic intervention.

  15. Lobular homology in cerebellar hemispheres of humans, non-human primates and rodents: a structural, axonal tracing and molecular expression analysis.

    PubMed

    Luo, Yuanjun; Fujita, Hirofumi; Nedelescu, Hermina; Biswas, Mohammad Shahangir; Sato, Chika; Ying, Sarah; Takahashi, Mayu; Akita, Keiichi; Higashi, Tatsuya; Aoki, Ichio; Sugihara, Izumi

    2017-08-01

    Comparative neuroanatomy provides insights into the evolutionary functional adaptation of specific mammalian cerebellar lobules, in which the lobulation pattern and functional localization are conserved. However, accurate identification of homologous lobules among mammalian species is challenging. In this review, we discuss the inter-species homology of crus I and II lobules which occupy a large volume in the posterior cerebellar hemisphere, particularly in humans. Both crus I/II in humans are homologous to crus I/II in non-human primates, according to Paxinos and colleagues; however, this area has been defined as crus I alone in non-human primates, according to Larsell and Brodal. Our neuroanatomical analyses in humans, macaques, marmosets, rats, and mice demonstrate that both crus I/II in humans are homologous to crus I/II or crus I alone in non-human primates, depending on previous definitions, and to crus I alone in rodents. Here, we refer to the region homologous to human crus I/II lobules as "ansiform area (AA)" across animals. Our results show that the AA's olivocerebellar climbing fiber and Purkinje cell projections as well as aldolase C gene expression patterns are both distinct and conserved in marmosets and rodents. The relative size of the AA, as represented by the AA volume fraction in the whole cerebellum was 0.34 in human, 0.19 in macaque, and approximately 0.1 in marmoset and rodents. These results indicate that the AA reflects an evolutionarily conserved structure in the mammalian cerebellum, which is characterized by distinct connectivity from neighboring lobules and a massive expansion in skillful primates.

  16. A critical assessment of Mus musculus gene function prediction using integrated genomic evidence

    PubMed Central

    Peña-Castillo, Lourdes; Tasan, Murat; Myers, Chad L; Lee, Hyunju; Joshi, Trupti; Zhang, Chao; Guan, Yuanfang; Leone, Michele; Pagnani, Andrea; Kim, Wan Kyu; Krumpelman, Chase; Tian, Weidong; Obozinski, Guillaume; Qi, Yanjun; Mostafavi, Sara; Lin, Guan Ning; Berriz, Gabriel F; Gibbons, Francis D; Lanckriet, Gert; Qiu, Jian; Grant, Charles; Barutcuoglu, Zafer; Hill, David P; Warde-Farley, David; Grouios, Chris; Ray, Debajyoti; Blake, Judith A; Deng, Minghua; Jordan, Michael I; Noble, William S; Morris, Quaid; Klein-Seetharaman, Judith; Bar-Joseph, Ziv; Chen, Ting; Sun, Fengzhu; Troyanskaya, Olga G; Marcotte, Edward M; Xu, Dong; Hughes, Timothy R; Roth, Frederick P

    2008-01-01

    Background: Several years after sequencing the human genome and the mouse genome, much remains to be discovered about the functions of most human and mouse genes. Computational prediction of gene function promises to help focus limited experimental resources on the most likely hypotheses. Several algorithms using diverse genomic data have been applied to this task in model organisms; however, the performance of such approaches in mammals has not yet been evaluated. Results: In this study, a standardized collection of mouse functional genomic data was assembled; nine bioinformatics teams used this data set to independently train classifiers and generate predictions of function, as defined by Gene Ontology (GO) terms, for 21,603 mouse genes; and the best performing submissions were combined in a single set of predictions. We identified strengths and weaknesses of current functional genomic data sets and compared the performance of function prediction algorithms. This analysis inferred functions for 76% of mouse genes, including 5,000 currently uncharacterized genes. At a recall rate of 20%, a unified set of predictions averaged 41% precision, with 26% of GO terms achieving a precision better than 90%. Conclusion: We performed a systematic evaluation of diverse, independently developed computational approaches for predicting gene function from heterogeneous data sources in mammals. The results show that currently available data for mammals allows predictions with both breadth and accuracy. Importantly, many highly novel predictions emerge for the 38% of mouse genes that remain uncharacterized. PMID:18613946

  17. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature

    NASA Astrophysics Data System (ADS)

    Dai, Guohao; Kaazempur-Mofrad, Mohammad R.; Natarajan, Sripriya; Zhang, Yuzhi; Vaughn, Saran; Blackman, Brett R.; Kamm, Roger D.; García-Cardeña, Guillermo; Gimbrone, Michael A., Jr.

    2004-10-01

    Atherosclerotic lesion localization to regions of disturbed flow within certain arterial geometries, in humans and experimental animals, suggests an important role for local hemodynamic forces in atherogenesis. To explore how endothelial cells (EC) acquire functional/dysfunctional phenotypes in response to vascular region-specific flow patterns, we have used an in vitro dynamic flow system to accurately reproduce arterial shear stress waveforms on cultured human EC and have examined the effects on EC gene expression by using a high-throughput transcriptional profiling approach. The flow patterns in the carotid artery bifurcations of several normal human subjects were characterized by using 3D flow analysis based on actual vascular geometries and blood flow profiles. Two prototypic arterial waveforms, "athero-prone" and "athero-protective," were defined as representative of the wall shear stresses in two distinct regions of the carotid artery (carotid sinus and distal internal carotid artery) that are typically "susceptible" or "resistant," respectively, to atherosclerotic lesion development. These two waveforms were applied to cultured EC, and cDNA microarrays were used to analyze the differential patterns of EC gene expression. In addition, the differential effects of athero-prone vs. athero-protective waveforms were further characterized on several parameters of EC structure and function, including actin cytoskeletal organization, expression and localization of junctional proteins, activation of the NF-B transcriptional pathway, and expression of proinflammatory cytokines and adhesion molecules. These global gene expression patterns and functional data reveal a distinct phenotypic modulation in response to the wall shear stresses present in atherosclerosis-susceptible vs. atherosclerosis-resistant human arterial geometries.

  18. Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System

    NASA Technical Reports Server (NTRS)

    White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.

    2007-01-01

    The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a rigorous baseline for the functional architecture.

  19. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited.

    PubMed

    Eickhoff, Simon B; Paus, Tomas; Caspers, Svenja; Grosbras, Marie-Helene; Evans, Alan C; Zilles, Karl; Amunts, Katrin

    2007-07-01

    Probabilistic cytoarchitectonic maps in standard reference space provide a powerful tool for the analysis of structure-function relationships in the human brain. While these microstructurally defined maps have already been successfully used in the analysis of somatosensory, motor or language functions, several conceptual issues in the analysis of structure-function relationships still demand further clarification. In this paper, we demonstrate the principle approaches for anatomical localisation of functional activations based on probabilistic cytoarchitectonic maps by exemplary analysis of an anterior parietal activation evoked by visual presentation of hand gestures. After consideration of the conceptual basis and implementation of volume or local maxima labelling, we comment on some potential interpretational difficulties, limitations and caveats that could be encountered. Extending and supplementing these methods, we then propose a supplementary approach for quantification of structure-function correspondences based on distribution analysis. This approach relates the cytoarchitectonic probabilities observed at a particular functionally defined location to the areal specific null distribution of probabilities across the whole brain (i.e., the full probability map). Importantly, this method avoids the need for a unique classification of voxels to a single cortical area and may increase the comparability between results obtained for different areas. Moreover, as distribution-based labelling quantifies the "central tendency" of an activation with respect to anatomical areas, it will, in combination with the established methods, allow an advanced characterisation of the anatomical substrates of functional activations. Finally, the advantages and disadvantages of the various methods are discussed, focussing on the question of which approach is most appropriate for a particular situation.

  20. Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex

    PubMed Central

    Stevens, W. Dale; Tessler, Michael Henry; Peng, Cynthia S.; Martin, Alex

    2015-01-01

    One of the most robust and oft-replicated findings in cognitive neuroscience is that several spatially distinct, functionally dissociable ventral occipitotemporal cortex (VOTC) regions respond preferentially to different categories of concrete entities. However, the determinants of this category-related organization remain to be fully determined. One recent proposal is that privileged connectivity of these VOTC regions with other regions that store and/or process category-relevant properties may be a major contributing factor. To test this hypothesis, we used a multi-category functional MRI localizer to individually define category-related brain regions of interest (ROIs) in a large group of subjects (n=33). We then used these ROIs in resting-state functional connectivity MRI analyses to explore spontaneous functional connectivity among these regions. We demonstrate that during rest, distinct category-preferential VOTC regions show differentially stronger functional connectivity with other regions that have congruent category-preference, as defined by the functional localizer. Importantly, a ‘tool’-preferential region in the left medial fusiform gyrus showed differentially stronger functional connectivity with other left lateralized cortical regions associated with perceiving and knowing about common tools – posterior middle temporal gyrus (involved in perception of non-biological motion), lateral parietal cortex (critical for reaching, grasping, manipulating), and ventral premotor cortex (involved in storing/executing motor programs) – relative to other category-related regions in VOTC of both the right and left hemisphere. Our findings support the claim that privileged connectivity with other cortical regions that store and/or process category-relevant properties constrains the category-related organization of VOTC. PMID:25704493

  1. Studying Kidney Disease Using Tissue and Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Garreta, Elena; González, Federico; Montserrat, Núria

    2018-01-01

    Kidney morphogenesis and patterning have been extensively studied in animal models such as the mouse and zebrafish. These seminal studies have been key to define the molecular mechanisms underlying this complex multistep process. Based on this knowledge, the last 3 years have witnessed the development of a cohort of protocols allowing efficient differentiation of human pluripotent stem cells (hPSCs) towards defined kidney progenitor populations using two-dimensional (2D) culture systems or through generating organoids. Kidney organoids are three-dimensional (3D) kidney-like tissues, which are able to partially recapitulate kidney structure and function in vitro. The current possibility to combine state-of-the art tissue engineering with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems 9 (Cas9)-mediated genome engineering provides an unprecedented opportunity for studying kidney disease with hPSCs. Recently, hPSCs with genetic mutations introduced through CRISPR/Cas9-mediated genome engineering have shown to produce kidney organoids able to recapitulate phenotypes of polycystic kidney disease and glomerulopathies. This mini review provides an overview of the most recent advances in differentiation of hPSCs into kidney lineages, and the latest implementation of the CRISPR/Cas9 technology in the organoid setting, as promising platforms to study human kidney development and disease. © 2017 S. Karger AG, Basel.

  2. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGES

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  3. Emulation as an Integrating Principle for Cognition

    PubMed Central

    Colder, Brian

    2011-01-01

    Emulations, defined as ongoing internal representations of potential actions and the futures those actions are expected to produce, play a critical role in directing human bodily activities. Studies of gross motor behavior, perception, allocation of attention, response to errors, interoception, and homeostatic activities, and higher cognitive reasoning suggest that the proper execution of all these functions relies on emulations. Further evidence supports the notion that reinforcement learning in humans is aimed at updating emulations, and that action selection occurs via the advancement of preferred emulations toward realization of their action and environmental prediction. Emulations are hypothesized to exist as distributed active networks of neurons in cortical and sub-cortical structures. This manuscript ties together previously unrelated theories of the role of prediction in different aspects of human information processing to create an integrated framework for cognition. PMID:21660288

  4. The concept of collaborative health.

    PubMed

    Sandberg, Håkan

    2010-11-01

    Based on empirical research about teamwork in human service organizations in Sweden, the concept of collaborative health (CH) encapsulates the physical, psychological and social health resources the individual uses in teamwork; resources which at the same time are influenced by the teamwork. My argument built on empirical research leading up to identifying and defining the core concept in this article, is that teamwork affects team members' health and this in turn affects the teamwork and its outcome. In this paper collaborative health is viewed from a social constructionism perspective and discussed in relation to earlier concepts developed in social psychology and working life research, including psychosocial stress and burnout. The paper also introduces the concept of functional synergy, which in this context is defined as the simultaneous presence of sharp goal-orientation and synergy in teamwork. The need for a holistic team theory is emphasized as a tool in research on teamwork. Such a theory relies on identifying sound and illuminating constituent concepts. I suggest that collaborative health could be a useful concept for better understanding the complex collaborative and co-operative teamwork of human service organizations of today.

  5. Humanized Mouse Models of Epstein-Barr Virus Infection and Associated Diseases

    PubMed Central

    Fujiwara, Shigeyoshi; Matsuda, Go; Imadome, Ken-Ichi

    2013-01-01

    Epstein-Barr virus (EBV) is a ubiquitous herpesvirus infecting more than 90% of the adult population of the world. EBV is associated with a variety of diseases including infectious mononucleosis, lymphoproliferative diseases, malignancies such as Burkitt lymphoma and nasopharyngeal carcinoma, and autoimmune diseases including rheumatoid arthritis (RA). EBV in nature infects only humans, but in an experimental setting, a limited species of new-world monkeys can be infected with the virus. Small animal models, suitable for evaluation of novel therapeutics and vaccines, have not been available. Humanized mice, defined here as mice harboring functioning human immune system components, are easily infected with EBV that targets cells of the hematoimmune system. Furthermore, humanized mice can mount both cellular and humoral immune responses to EBV. Thus, many aspects of human EBV infection, including associated diseases (e.g., lymphoproliferative disease, hemophagocytic lymphohistiocytosis and erosive arthritis resembling RA), latent infection, and T-cell-mediated and humoral immune responses have been successfully reproduced in humanized mice. Here we summarize recent achievements in the field of humanized mouse models of EBV infection and show how they have been utilized to analyze EBV pathogenesis and normal and aberrant human immune responses to the virus. PMID:25436886

  6. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates

    PubMed Central

    Salegio, Ernesto A.; Camisa, William; Tam, Horace; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2016-01-01

    Abstract Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5–1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries. PMID:26670940

  7. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations.

    PubMed

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas; Isa, Adiba; Kassem, Moustapha

    2016-01-11

    Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC population. Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone marrow elements enriched in implants containing hMSC-CD146(+) cells (0.5 % versus 0.05 %). hMSC-CD146(+) cells exhibited greater chemotactic attraction in a transwell migration assay and, when injected intravenously into immune-deficient mice following closed femoral fracture, exhibited wider tissue distribution and significantly increased migration ability as demonstrated by bioluminescence imaging. Our studies demonstrate that CD146 defines a subpopulation of hMSCs capable of bone formation and in vivo trans-endothelial migration and thus represents a population of hMSCs suitable for use in clinical protocols of bone tissue regeneration.

  8. Spaceflight of HUVEC: An Integrated eXperiment- SPHINX Onboard the ISS

    NASA Astrophysics Data System (ADS)

    Versari, S.; Maier, J. A. M.; Norfini, A.; Zolesi, V.; Bradamante, S.

    2013-02-01

    The spaceflight orthostatic challenge can promote in astronauts inadequate cardiovascular responses defined as cardiovascular deconditioning. In particular, disturbance of endothelial functions are known to lead to altered vascular performances, being the endothelial cells crucial in the maintenance of the functional integrity of the vascular wall. In order to evaluate whether weightlessness affects endothelial functions, we designed, developed, and performed the experiment SPHINX - SPaceflight of HUVEC: an INtegrated eXperiment - where HUVEC (Human Umbilical Vein Endothelial Cells) were selected as a macrovascular cell model system. SPHINX arrived at the International Space Station (ISS) onboard Progress 40P, and was processed inside Kubik 6 incubator for 7 days. At the end, all of the samples were suitably fixed and preserved at 6°C until return on Earth on Soyuz 23S.

  9. Bone-conduction circuit model for chinchilla part I: Defining parameters by fitting to air-conduction data

    NASA Astrophysics Data System (ADS)

    Bowers, Peter; Rosowski, John J.

    2018-05-01

    An air-conduction circuit model that will serve as the basis for a model of bone-conduction hearing is developed for chinchilla. The lumped-element model is based on the classic Zwislocki model of the human middle ear. Model parameters are fit to various measurements of chinchilla middle-ear transfer functions and impedances. The model is in agreement with studies of the effects of middle-ear cavity holes in experiments that require access to the middle-ear air space.

  10. Personnel Recovery in Space: A New Venture for Human Space Flight Support

    DTIC Science & Technology

    2016-05-01

    research paper are those of the author and do not reflect the official policy or position of the US government or the Department of Defense . In...iii Abstract This paper will define Personnel Recovery (PR) and the construct in which the Department of Defense (DoD) currently operates...Service Core Function." Air and Space Power Journal, 2011.p8. 3 3-50, Department of Defense (DOD) Joint Publication. "Personnel Recovery." Oct 2, 2015

  11. A Validation of the Proposed Royal Australian Navy Standard Work Week and Naval Management Diary Using a Simulated Crew of an Armidale Class Patrol Boat

    DTIC Science & Technology

    2015-12-01

    Reduced mental capacity, poor decision making, emotional outbursts or withdrawals, and reduced alertness are among the side effects that have been...Guide.” The guide defined fatigue as “the product of intense and prolonged emotional strain, poor and inadequate diet, strenuous physical exertion...scheduling bodily functions and periods of sleepiness and wakefulness. Circadian rhythms control numerous factors in the human body including body

  12. Interluekin-12 enhances the function and anti-tumor activity in murine and human CD8+ T cells

    PubMed Central

    Rubinstein, Mark P.; Su, Ee Wern; Suriano, Samantha; Cloud, Colleen A.; Andrijauskaite, Kristina; Kesarwani, Pravin; Schwartz, Kristina M.; Williams, Katelyn; Johnson, C. Bryce; Li, Mingli; Scurti, Gina M.; Salem, Mohamed L.; Paulos, Chrystal M.; Garrett-Mayer, Elizabeth; Mehrotra, Shikhar; Cole, David J.

    2016-01-01

    Mouse CD8+ T cells conditioned with Interleukin (IL)-12 ex vivo mediate the potent regression of established melanoma when transferred into lymphodepleted mice. However, the quantitative and qualitative changes induced by IL-12 in the responding mouse CD8+ T cells have not been well defined. Moreover, the mechanisms by which IL-12-conditioning impacts human CD8+ T cells, and how such cells might be expanded prior to infusion into patients is not known. We found that ex vivo IL-12-conditioning of mouse CD8+ T cells led to a 10- to 100-fold increase in persistence and anti-tumor efficacy upon adoptive transfer into lymphodepleted mice. The enhancing effect of IL-12 was associated with maintenance of functional avidity. Importantly, in the context of ongoing ACT clinical trials, human CD8+ T cells genetically modified with a tyrosinase-specific T-cell receptor exhibited significantly enhanced functional activity when conditioned with IL-12 as indicated by heightened granzyme B expression and elevated peptide-specific CD107a degranulation. This effect was sustainable despite the 20 days of in vitro cellular expansion required to expand cells over 1,000-fold allowing adequate cell numbers for administration to cancer patients. Overall, these findings support the efficacy and feasibility of ex vivo IL-12-conditioning of TCR-modified human CD8+ T cells for adoptive transfer and cancer therapy. PMID:25676709

  13. Control of the seven-degree-of-freedom upper limb exoskeleton for an improved human-robot interface

    NASA Astrophysics Data System (ADS)

    Kim, Hyunchul; Kim, Jungsuk

    2017-04-01

    This study analyzes a practical scheme for controlling an exoskeleton robot with seven degrees of freedom (DOFs) that supports natural movements of the human arm. A redundant upper limb exoskeleton robot with seven DOFs is mechanically coupled to the human body such that it becomes a natural extension of the body. If the exoskeleton robot follows the movement of the human body synchronously, the energy exchange between the human and the robot will be reduced significantly. In order to achieve this, the redundancy of the human arm, which is represented by the swivel angle, should be resolved using appropriate constraints and applied to the robot. In a redundant 7-DOF upper limb exoskeleton, the pseudoinverse of the Jacobian with secondary objective functions is widely used to resolve the redundancy that defines the desired joint angles. A secondary objective function requires the desired joint angles for the movement of the human arm, and the angles are estimated by maximizing the projection of the longest principle axis of the manipulability ellipsoid for the human arm onto the virtual destination toward the head region. Then, they are fed into the muscle model with a relative damping to achieve more realistic robot-arm movements. Various natural arm movements are recorded using a motion capture system, and the actual swivel-angle is compared to that estimated using the proposed swivel angle estimation algorithm. The results indicate that the proposed algorithm provides a precise reference for estimating the desired joint angle with an error less than 5°.

  14. Restoration of the intrinsic properties of human dermal papilla in vitro.

    PubMed

    Ohyama, Manabu; Kobayashi, Tetsuro; Sasaki, Takashi; Shimizu, Atsushi; Amagai, Masayuki

    2012-09-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, characterization and/or propagation of human DPs have been unsatisfactory because of the lack of efficient isolation methods and the loss of innate characteristics in vitro. We hypothesized that culture conditions sustaining the intrinsic molecular signature of the human DP could facilitate expansion of functional DP cells. To test this, we first characterized the global gene expression profile of microdissected, non-cultured human DPs. We performed a 'two-step' microarray analysis to exclude the influence of unwanted contaminants in isolated DPs and successfully identified 118 human DP signature genes, including 38 genes listed in the mouse DP signature. The bioinformatics analysis of the DP gene list revealed that WNT, BMP and FGF signaling pathways were upregulated in intact DPs and addition of 6-bromoindirubin-3'-oxime, recombinant BMP2 and basic FGF to stimulate these respective signaling pathways resulted in maintained expression of in situ DP signature genes in primarily cultured human DP cells. More importantly, the exposure to these stimulants restored normally reduced DP biomarker expression in conventionally cultured DP cells. Cell growth was moderate in the newly developed culture medium. However, rapid DP cell expansion by conventional culture followed by the restoration by defined activators provided a sufficient number of DP cells that demonstrated characteristic DP activities in functional assays. The study reported here revealed previously unreported molecular mechanisms contributing to human DP properties and describes a useful technique for the investigation of human DP biology and hair follicle bioengineering.

  15. Expansion on Stromal Cells Preserves the Undifferentiated State of Human Hematopoietic Stem Cells Despite Compromised Reconstitution Ability

    PubMed Central

    Magnusson, Mattias; Sierra, Maria I.; Sasidharan, Rajkumar; Prashad, Sacha L.; Romero, Melissa; Saarikoski, Pamela; Van Handel, Ben; Huang, Andy; Li, Xinmin; Mikkola, Hanna K. A.

    2013-01-01

    Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38−CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38−CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC. PMID:23342037

  16. Functional analysis of guinea pig β1-adrenoceptor.

    PubMed

    Tanaka, Yoshio; Takahashi, Hiromi; Shibata, Sayuri; Namiki, Kana; Kimura, Sadao; Koike, Katsuo; Kasuya, Yoshitoshi

    2011-12-01

    Although similarity of pharmacological responses to certain stimuli between guinea pigs and humans has been reported, this has been poorly defined by a molecular biological approach. In this study, we cloned the gene of guinea pig ?1-adrenoceptor (ADRB1). The deduced amino acid sequence of guinea pig ADRB1 (467-aa) showed 91% and 92% identity with the human and rat ADRB1 sequences, respectively. Using HEK293T cells expressing guinea pig, human and rat ADRB1s independently, we elucidated the functional characteristics of each ADRB1. The ligand-binding profiles and the concentration-response relationships for isoprenaline-induced cyclic adenosine monophosphate (cAMP) production were similar among the three ADRB1s. Isoprenaline also induced phosphorylation of extracellular-signal related kinases (ERK) through ADRB1s in a concentration-dependent manner. The minimum effective concentration of isoprenaline for phosphorylation of ERK, through guinea pig ADRB1 was the same as through human ADRB1, but markedly lower than that of through rat ADRB1. ERK phosphorylation through guinea pig ADRB1 was sensitive to pertussis toxin, a dominant-negative ras and PD98059, indicating that a G(i)-mediated pathway is involved in the ADRB1/ERK signaling loop. These results suggest that the G(i)-coupling efficacy of guinea pig and human ADRB1s may be higher than that of rat ADRB1.

  17. [Microbiota and representations of the human body].

    PubMed

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body. © 2016 médecine/sciences – Inserm.

  18. The non-coding RNA landscape of human hematopoiesis and leukemia.

    PubMed

    Schwarzer, Adrian; Emmrich, Stephan; Schmidt, Franziska; Beck, Dominik; Ng, Michelle; Reimer, Christina; Adams, Felix Ferdinand; Grasedieck, Sarah; Witte, Damian; Käbler, Sebastian; Wong, Jason W H; Shah, Anushi; Huang, Yizhou; Jammal, Razan; Maroz, Aliaksandra; Jongen-Lavrencic, Mojca; Schambach, Axel; Kuchenbauer, Florian; Pimanda, John E; Reinhardt, Dirk; Heckl, Dirk; Klusmann, Jan-Henning

    2017-08-09

    Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.

  19. Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering.

    PubMed

    Yang, Kisuk; Lee, Jung Seung; Kim, Jin; Lee, Yu Bin; Shin, Heungsoo; Um, Soong Ho; Kim, Jeong Beom; Park, Kook In; Lee, Haeshin; Cho, Seung-Woo

    2012-10-01

    Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Synthetic alleles at position 121 define a functional domain of human interleukin-1 beta.

    PubMed

    Ambrosetti, D C; Palla, E; Mirtella, A; Galeotti, C; Solito, E; Navarra, P; Parente, L; Melli, M

    1996-06-01

    The non-conservative substitution of the tyrosine residue at position 121 of human interleukin-1 beta (IL-1 beta) generates protein mutants showing strong reduction of the capacity to induce (a) prostaglandin E2 (PGE2) release from fibroblasts and smooth muscle cells, (b) murine T-cells proliferation and (c) activation of interleukin-6 (IL-6) gene expression. It is generally accepted that these functions are mediated by the type-I interleukin-1 receptor (IL-1RI). However, the mutant proteins maintain the binding affinity to the types-I and II IL-1 receptors, which is the same as the control IL-1 beta, suggesting that this amino acid substitution does not alter the structure of the molecule, except locally. Thus we have identified a new functional site of IL-1 beta different from the known receptor binding region, responsible for fundamental IL-1 beta functions. Moreover, we show that the same mutants maintain at least two hypothalamic functions, that is, the in vitro short-term PGE2 release from rat hypothalamus and the induction of fever in rabbits. This result suggests that there is yet another site of the molecule responsible for the hypothalamic functions, implying that multiple active sites on the IL-1 beta molecule, possibly binding to more than one receptor chain, trigger different signals.

  1. Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity.

    PubMed

    Uddin, Lucina Q; Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A; Greicius, Michael D; Menon, Vinod

    2010-11-01

    The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus-regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition.

  2. Dissociable Connectivity within Human Angular Gyrus and Intraparietal Sulcus: Evidence from Functional and Structural Connectivity

    PubMed Central

    Supekar, Kaustubh; Amin, Hitha; Rykhlevskaia, Elena; Nguyen, Daniel A.; Greicius, Michael D.; Menon, Vinod

    2010-01-01

    The inferior parietal lobule (IPL) of the human brain is a heterogeneous region involved in visuospatial attention, memory, and mathematical cognition. Detailed description of connectivity profiles of subdivisions within the IPL is critical for accurate interpretation of functional neuroimaging studies involving this region. We separately examined functional and structural connectivity of the angular gyrus (AG) and the intraparietal sulcus (IPS) using probabilistic cytoarchitectonic maps. Regions-of-interest (ROIs) included anterior and posterior AG subregions (PGa, PGp) and 3 IPS subregions (hIP2, hIP1, and hIP3). Resting-state functional connectivity analyses showed that PGa was more strongly linked to basal ganglia, ventral premotor areas, and ventrolateral prefrontal cortex, while PGp was more strongly connected with ventromedial prefrontal cortex, posterior cingulate, and hippocampus—regions comprising the default mode network. The anterior-most IPS ROIs, hIP2 and hIP1, were linked with ventral premotor and middle frontal gyrus, while the posterior-most IPS ROI, hIP3, showed connectivity with extrastriate visual areas. In addition, hIP1 was connected with the insula. Tractography using diffusion tensor imaging revealed structural connectivity between most of these functionally connected regions. Our findings provide evidence for functional heterogeneity of cytoarchitectonically defined subdivisions within IPL and offer a novel framework for synthesis and interpretation of the task-related activations and deactivations involving the IPL during cognition. PMID:20154013

  3. Epitope mapping of the domains of human angiotensin converting enzyme.

    PubMed

    Kugaevskaya, Elena V; Kolesanova, Ekaterina F; Kozin, Sergey A; Veselovsky, Alexander V; Dedinsky, Ilya R; Elisseeva, Yulia E

    2006-06-01

    Somatic angiotensin converting enzyme (sACE), contains in its single chain two homologous domains (called N- and C-domains), each bearing a functional zinc-dependent active site. The present study aims to define the differences between two sACE domains and to localize experimentally revealed antigenic determinants (B-epitopes) in the recently determined three-dimensional structure of testicular tACE. The predicted linear antigenic determinants of human sACE were determined by peptide scanning ("PEPSCAN") approach. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. Comparison of arrangement of epitopes in the human domains with the corresponding sequences of some mammalian sACEs enabled to classify the revealed antigenic determinants as variable or conserved areas. The location of antigenic determinants with respect to various structural elements and to functionally important sites of the human sACE C-domain was estimated. The majority of antigenic sites of the C-domain were located at the irregular elements and at the boundaries of secondary structure elements. The data show structural differences between the sACE domains. The experimentally revealed antigenic determinants were in agreement with the recently determined crystal tACE structure. New potential applications are open to successfully produce mono-specific and group-specific antipeptide antibodies.

  4. Hemispherical map for the human brain cortex

    NASA Astrophysics Data System (ADS)

    Tosun, Duygu; Prince, Jerry L.

    2001-07-01

    Understanding the function of the human brain cortex is a primary goal in human brain mapping. Methods to unfold and flatten the cortical surface for visualization and measurement have been described in previous literature; but comparison across multiple subjects is still difficult because of the lack of a standard mapping technique. We describe a new approach that maps each hemisphere of the cortex to a portion of a sphere in a standard way, making comparison of anatomy and function across different subjects possible. Starting with a three-dimensional magnetic resonance image of the brain, the cortex is segmented and represented as a triangle mesh. Defining a cut around the corpus collosum identifies the left and right hemispheres. Together, the two hemispheres are mapped to the complex plane using a conformal mapping technique. A Mobius transformation, which is conformal, is used to transform the points on the complex plane so that a projective transformation maps each brain hemisphere onto a spherical segment comprising a sphere with a cap removed. We determined the best size of the spherical cap by minimizing the relative area distortion between hemispherical maps and original cortical surfaces. The relative area distortion between the hemispherical maps and the original cortical surfaces for fifteen human brains is analyzed.

  5. RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts.

    PubMed

    Li, Yang I; Sanchez-Pulido, Luis; Haerty, Wilfried; Ponting, Chris P

    2015-01-01

    Ninety-four percent of mammalian protein-coding exons exceed 51 nucleotides (nt) in length. The paucity of micro-exons (≤ 51 nt) suggests that their recognition and correct processing by the splicing machinery present greater challenges than for longer exons. Yet, because thousands of human genes harbor processed micro-exons, specialized mechanisms may be in place to promote their splicing. Here, we survey deep genomic data sets to define 13,085 micro-exons and to study their splicing mechanisms and molecular functions. More than 60% of annotated human micro-exons exhibit a high level of sequence conservation, an indicator of functionality. While most human micro-exons require splicing-enhancing genomic features to be processed, the splicing of hundreds of micro-exons is enhanced by the adjacent binding of splice factors in the introns of pre-messenger RNAs. Notably, splicing of a significant number of micro-exons was found to be facilitated by the binding of RBFOX proteins, which promote their inclusion in the brain, muscle, and heart. Our analyses suggest that accurate regulation of micro-exon inclusion by RBFOX proteins and PTBP1 plays an important role in the maintenance of tissue-specific protein-protein interactions. © 2015 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Stem Cell-Associated Marker Expression in Canine Hair Follicles

    PubMed Central

    Gerhards, Nora M.; Sayar, Beyza S.; Origgi, Francesco C.; Galichet, Arnaud; Müller, Eliane J.; Welle, Monika M.; Wiener, Dominique J.

    2016-01-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  7. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  8. A microfluidically perfused three dimensional human liver model.

    PubMed

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Primate amygdala neurons evaluate the progress of self-defined economic choice sequences

    PubMed Central

    Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram

    2016-01-01

    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit. DOI: http://dx.doi.org/10.7554/eLife.18731.001 PMID:27731795

  10. Primate amygdala neurons evaluate the progress of self-defined economic choice sequences.

    PubMed

    Grabenhorst, Fabian; Hernadi, Istvan; Schultz, Wolfram

    2016-10-12

    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit.

  11. Management of unmanned moving sensors through human decision layers: a bi-level optimization process with calls to costly sub-processes

    NASA Astrophysics Data System (ADS)

    Dambreville, Frédéric

    2013-10-01

    While there is a variety of approaches and algorithms for optimizing the mission of an unmanned moving sensor, there are much less works which deal with the implementation of several sensors within a human organization. In this case, the management of the sensors is done through at least one human decision layer, and the sensors management as a whole arises as a bi-level optimization process. In this work, the following hypotheses are considered as realistic: Sensor handlers of first level plans their sensors by means of elaborated algorithmic tools based on accurate modelling of the environment; Higher level plans the handled sensors according to a global observation mission and on the basis of an approximated model of the environment and of the first level sub-processes. This problem is formalized very generally as the maximization of an unknown function, defined a priori by sampling a known random function (law of model error). In such case, each actual evaluation of the function increases the knowledge about the function, and subsequently the efficiency of the maximization. The issue is to optimize the sequence of value to be evaluated, in regards to the evaluation costs. There is here a fundamental link with the domain of experiment design. Jones, Schonlau and Welch proposed a general method, the Efficient Global Optimization (EGO), for solving this problem in the case of additive functional Gaussian law. In our work, a generalization of the EGO is proposed, based on a rare event simulation approach. It is applied to the aforementioned bi-level sensor planning.

  12. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum.

    PubMed

    Choi, Eunyoung; Roland, Joseph T; Barlow, Brittney J; O'Neal, Ryan; Rich, Amy E; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R

    2014-11-01

    The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of the stomach as well as in over 50% of antral glands. MIST1 expressing chief cells were predominantly observed in the body although individual glands of the antrum also showed MIST1 expressing chief cells. While classically described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed type glands containing both parietal cells and G cells throughout the antrum. Enteroendocrine cells show distinct patterns of localisation in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. tDNA insulators and the emerging role of TFIIIC in genome organization

    PubMed Central

    Van Bortle, Kevin; Corces, Victor G.

    2012-01-01

    Recent findings provide evidence that tDNAs function as chromatin insulators from yeast to humans. TFIIIC, a transcription factor that interacts with the B-box in tDNAs as well as thousands of ETC sites in the genome, is responsible for insulator function. Though tDNAs are capable of enhancer-blocking and barrier activities for which insulators are defined, new insights into the relationship between insulators and chromatin structure suggest that TFIIIC serves a complex role in genome organization. We review the role of tRNA genes and TFIIIC as chromatin insulators, and highlight recent findings that have broadened our understanding of insulators in genome biology. PMID:22889843

  14. Topographic Organization for Delayed Saccades in Human Posterior Parietal Cortex

    PubMed Central

    Schluppeck, Denis; Glimcher, Paul; Heeger, David J.

    2008-01-01

    Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contralateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC. PMID:15817644

  15. Foxp2 Regulates Gene Networks Implicated in Neurite Outgrowth in the Developing Brain

    PubMed Central

    Vernes, Sonja C.; Oliver, Peter L.; Spiteri, Elizabeth; Lockstone, Helen E.; Puliyadi, Rathi; Taylor, Jennifer M.; Ho, Joses; Mombereau, Cedric; Brewer, Ariel; Lowy, Ernesto; Nicod, Jérôme; Groszer, Matthias; Baban, Dilair; Sahgal, Natasha; Cazier, Jean-Baptiste; Ragoussis, Jiannis; Davies, Kay E.; Geschwind, Daniel H.; Fisher, Simon E.

    2011-01-01

    Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP–chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections. PMID:21765815

  16. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain.

    PubMed

    Vernes, Sonja C; Oliver, Peter L; Spiteri, Elizabeth; Lockstone, Helen E; Puliyadi, Rathi; Taylor, Jennifer M; Ho, Joses; Mombereau, Cedric; Brewer, Ariel; Lowy, Ernesto; Nicod, Jérôme; Groszer, Matthias; Baban, Dilair; Sahgal, Natasha; Cazier, Jean-Baptiste; Ragoussis, Jiannis; Davies, Kay E; Geschwind, Daniel H; Fisher, Simon E

    2011-07-01

    Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.

  17. Cardiac Alpha1-Adrenergic Receptors: Novel Aspects of Expression, Signaling Mechanisms, Physiologic Function, and Clinical Importance

    PubMed Central

    O’Connell, Timothy D.; Jensen, Brian C.; Baker, Anthony J.

    2014-01-01

    Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate “inside-out” signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure. PMID:24368739

  18. Reflex epileptic mechanisms in humans: Lessons about natural ictogenesis.

    PubMed

    Wolf, Peter

    2017-06-01

    The definition of reflex epileptic seizures is that specific seizure types can be triggered by certain sensory or cognitive stimuli. Simple triggers are sensory (most often visual, more rarely tactile or proprioceptive; simple audiogenic triggers in humans are practically nonexistent) and act within seconds, whereas complex triggers like praxis, reading and talking, and music are mostly cognitive and work within minutes. The constant relation between a qualitatively, often even quantitatively, well-defined stimulus and a specific epileptic response provides unique possibilities to investigate seizure generation in natural human epilepsies. For several reflex epileptic mechanisms (REMs), this has been done. Reflex epileptic mechanisms have been reported less often in focal lesional epilepsies than in idiopathic "generalized" epilepsies (IGEs) which are primarily genetically determined. The key syndrome of IGE is juvenile myoclonic epilepsy (JME), where more than half of the patients present reflex epileptic traits (photosensitivity, eye closure sensitivity, praxis induction, and language-induced orofacial reflex myocloni). Findings with multimodal investigations of cerebral function concur to indicate that ictogenic mechanisms in IGEs largely (ab)use preexisting functional anatomic networks (CNS subsystems) normally serving highly complex physiological functions (e.g., deliberate complex actions and linguistic communication) which supports the concept of system epilepsy. Whereas REMs in IGEs, thus, are primarily function-related, in focal epilepsies, they are primarily localization-related. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic". Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia.

    PubMed

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn; Munir, Jared; Chandler-Militello, Devin; Wang, Su; Goldman, Steven A

    2014-11-26

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo. Copyright © 2014 the authors 0270-6474/14/3416153-09$15.00/0.

  20. Functional Basis of Microorganism Classification.

    PubMed

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with phylogenetic descent.

Top