Sample records for functionally differentiated parts

  1. Differential processing of part-to-whole and part-to-part face priming: an ERP study.

    PubMed

    Jemel, B; George, N; Chaby, L; Fiori, N; Renault, B

    1999-04-06

    We provide electrophysiological evidence supporting the hypothesis that part and whole face processing involve distinct functional mechanisms. We used a congruency judgment task and studied part-to-whole and part-to-part priming effects. Neither part-to-whole nor part-to-part conditions elicited early congruency effects on face-specific ERP components, suggesting that activation of the internal representations should occur later on. However, these components showed differential responsiveness to whole faces and isolated eyes. In addition, although late ERP components were affected when the eye targets were not associated with the prime in both conditions, their temporal and topographical features depended on the latter. These differential effects suggest the existence of distributed neural networks in the inferior temporal cortex where part and whole facial representations may be stored.

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  3. Uncertainty in Measurement: Procedures for Determining Uncertainty With Application to Clinical Laboratory Calculations.

    PubMed

    Frenkel, Robert B; Farrance, Ian

    2018-01-01

    The "Guide to the Expression of Uncertainty in Measurement" (GUM) is the foundational document of metrology. Its recommendations apply to all areas of metrology including metrology associated with the biomedical sciences. When the output of a measurement process depends on the measurement of several inputs through a measurement equation or functional relationship, the propagation of uncertainties in the inputs to the uncertainty in the output demands a level of understanding of the differential calculus. This review is intended as an elementary guide to the differential calculus and its application to uncertainty in measurement. The review is in two parts. In Part I, Section 3, we consider the case of a single input and introduce the concepts of error and uncertainty. Next we discuss, in the following sections in Part I, such notions as derivatives and differentials, and the sensitivity of an output to errors in the input. The derivatives of functions are obtained using very elementary mathematics. The overall purpose of this review, here in Part I and subsequently in Part II, is to present the differential calculus for those in the medical sciences who wish to gain a quick but accurate understanding of the propagation of uncertainties. © 2018 Elsevier Inc. All rights reserved.

  4. Checking Equity: Why Differential Item Functioning Analysis Should Be a Routine Part of Developing Conceptual Assessments

    ERIC Educational Resources Information Center

    Martinková, Patricia; Drabinová, Adéla; Liaw, Yuan-Ling; Sanders, Elizabeth A.; McFarland, Jenny L.; Price, Rebecca M.

    2017-01-01

    We provide a tutorial on differential item functioning (DIF) analysis, an analytic method useful for identifying potentially biased items in assessments. After explaining a number of methodological approaches, we test for gender bias in two scenarios that demonstrate why DIF analysis is crucial for developing assessments, particularly because…

  5. Gender-, age-, and race/ethnicity-based differential item functioning analysis of the movement disorder society-sponsored revision of the Unified Parkinson's disease rating scale.

    PubMed

    Goetz, Christopher G; Liu, Yuanyuan; Stebbins, Glenn T; Wang, Lu; Tilley, Barbara C; Teresi, Jeanne A; Merkitch, Douglas; Luo, Sheng

    2016-12-01

    Assess MDS-UPDRS items for gender-, age-, and race/ethnicity-based differential item functioning. Assessing differential item functioning is a core rating scale validation step. For the MDS-UPDRS, differential item functioning occurs if item-score probability among people with similar levels of parkinsonism differ according to selected covariates (gender, age, race/ethnicity). If the magnitude of differential item functioning is clinically relevant, item-score interpretation must consider influences by these covariates. Differential item functioning can be nonuniform (covariate variably influences an item-score across different levels of parkinsonism) or uniform (covariate influences an item-score consistently over all levels of parkinsonism). Using the MDS-UPDRS translation database of more than 5,000 PD patients from 14 languages, we tested gender-, age-, and race/ethnicity-based differential item functioning. To designate an item as having clinically relevant differential item functioning, we required statistical confirmation by 2 independent methods, along with a McFadden pseudo-R 2 magnitude statistic greater than "negligible." Most items showed no gender-, age- or race/ethnicity-based differential item functioning. When differential item functioning was identified, the magnitude statistic was always in the "negligible" range, and the scale-level impact was minimal. The absence of clinically relevant differential item functioning across all items and all parts of the MDS-UPDRS is strong evidence that the scale can be used confidently. As studies of Parkinson's disease increasingly involve multinational efforts and the MDS-UPDRS has several validated non-English translations, the findings support the scale's broad applicability in populations with varying gender, age, and race/ethnicity distributions. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  6. On the role of second number-conserving functional derivatives

    NASA Astrophysics Data System (ADS)

    Gál, Tamás

    2006-06-01

    It is found that number-conserving second derivatives, of functional differentiation constrained to the domain of functional variables ρ(x) of a given norm ∫ρ(x)dx, are not obtained via two successive number-conserving differentiations, contrary to the case of unrestricted second derivatives. Investigating the role of second number-conserving derivatives, with the density-functional formulation of time-dependent quantum mechanics in focus, it is shown how number-conserving differentiation handles the dual nature of the Kohn Sham potential arising in the practical use of the theory. On the other hand, it is pointed out that number-conserving derivatives cannot resolve the causality paradox connected with the second derivative of the exchange-correlation part of the action density functional.

  7. A molecular imaging analysis of C×43 association with Cdo during skeletal myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Nosi, Daniele; Mercatelli, Raffaella; Chellini, Flaminia; Soria, Silvia; Pini, Alessandro; Formigli, Lucia; Quercioli, Franco

    2014-02-01

    Cell-to-cell contacts are crucial for cell differentiation. The promyogenic cell surface protein, Cdo, functions as a component of multiprotein clusters to mediate cell adhesion signaling. Connexin43, the main connexin forming gap junctions, also plays a key role in myogenesis. At least part of its effects are independent of the intercellular channel function, but the mechanisms underlying are unknown. Here, using multiple optical approaches, we provided the first evidence that Cx43 physically interacts with Cdo to form dynamic complexes during myoblast differentiation, offering clues for considering this interaction a structural basis of the channel-independent function of Cx43.

  8. Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1994-01-01

    Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  9. Differential Resting-State Connectivity Patterns of the Right Anterior and Posterior Dorsolateral Prefrontal Cortices (DLPFC) in Schizophrenia.

    PubMed

    Chechko, Natalia; Cieslik, Edna C; Müller, Veronika I; Nickl-Jockschat, Thomas; Derntl, Birgit; Kogler, Lydia; Aleman, André; Jardri, Renaud; Sommer, Iris E; Gruber, Oliver; Eickhoff, Simon B

    2018-01-01

    In schizophrenia (SCZ), dysfunction of the dorsolateral prefrontal cortex (DLPFC) has been linked to the deficits in executive functions and attention. It has been suggested that, instead of considering the right DLPFC as a cohesive functional entity, it can be divided into two parts (anterior and posterior) based on its whole-brain connectivity patterns. Given these two subregions' differential association with cognitive processes, we investigated the functional connectivity (FC) profile of both subregions through resting-state data to determine whether they are differentially affected in SCZ. Resting-state magnetic resonance imaging (MRI) scans were obtained from 120 patients and 172 healthy controls (HC) at 6 different MRI sites. The results showed differential FC patterns for the anterior and posterior parts of the right executive control-related DLPFC in SCZ with the parietal, the temporal and the cerebellar regions, along with a convergent reduction of connectivity with the striatum and the occipital cortex. An increased psychopathology level was linked to a higher difference in posterior vs. anterior FC for the left IFG/anterior insula, regions involved in higher-order cognitive processes. In sum, the current analysis demonstrated that even between two neighboring clusters connectivity could be differentially disrupted in SCZ. Lacking the necessary anatomical specificity, such notions may in fact be detrimental to a proper understanding of SCZ pathophysiology.

  10. Knowledge representation and qualitative simulation of salmon redd functioning. Part I: qualitative modeling and simulation.

    PubMed

    Guerrin, F; Dumas, J

    2001-02-01

    This work aims at representing empirical knowledge of freshwater ecologists on the functioning of salmon redds (spawning areas of salmon) and its impact on mortality of early stages. For this, we use Qsim, a qualitative simulator. In this first part, we provide unfamiliar readers with the underlying qualitative differential equation (QDE) ontology of Qsim: representing quantities, qualitative variables, qualitative constraints, QDE structure. Based on a very simple example taken of the salmon redd application, we show how informal biological knowledge may be represented and simulated using an approach that was first intended to analyze qualitatively ordinary differential equations systems. A companion paper (Part II) gives the full description and simulation of the salmon redd qualitative model. This work was part of a project aimed at assessing the impact of the environment on salmon populations dynamics by the use of models of processes acting at different levels: catchment, river, and redds. Only the latter level is dealt with in this paper.

  11. LIF inhibits osteoblast differentiation at least in part by regulation of HAS2 and its product hyaluronan.

    PubMed

    Falconi, Dominic; Aubin, Jane E

    2007-08-01

    LIF arrests osteogenesis in fetal rat calvaria cells in a differentiation stage-specific manner. Differential display identified HAS2 as a LIF-induced gene and its product, HA, modulated osteoblast differentiation similarly to LIF. Our data suggest that LIF arrests osteoblast differentiation by altering HA content of the extracellular matrix. Leukemia inhibitory factor (LIF) elicits both anabolic and catabolic effects on bone. We previously showed in the fetal rat calvaria (RC) cell system that LIF inhibits osteoblast differentiation at the late osteoprogenitor/early osteoblast stage. To uncover potential molecular mediators of this inhibitory activity, we used a positive-negative genome-wide differential display screen to identify LIF-induced changes in the developing osteoblast transcriptome. Although LIF signaling is active throughout the RC cell proliferation-differentiation sequence, only a relatively small number of genes, in several different functional clusters, are modulated by LIF specifically during the LIF-sensitive inhibitory time window. Based on their known and predicted functions, most of the LIF-regulated genes identified are plausible candidates to be involved in the LIF-induced arrest of osteoprogenitor differentiation. To test this hypothesis, we further analyzed the function of one of the genes identified, hyaluronan synthase 2 (HAS2), in the LIF-induced inhibition. Synthesis of hyaluronan (HA), the product of HAS enzymatic activity, was stimulated by LIF and mimicked the HAS2 expression profile, with highest expression in early/proliferative and late/maturing cultures and lowest levels in intermediate/late osteoprogenitor-early osteoblast cultures. Exogenously added high molecular weight HA, the product of HAS2, dose-dependently inhibited osteoblast differentiation, with pulse-treatment effective in the same differentiation stage-specific inhibitory window as seen with LIF. In addition, however, pulse treatment with HA in early cultures slightly increased bone nodule formation. Treatment with hyaluronidase, on the other hand, stimulated bone nodule formation in early cultures but caused a small dose-dependent inhibition of osteoblast differentiation in the LIF- and HA-sensitive late time window. Together the data suggest that osteoblast differentiation is acutely sensitive to HA levels and that LIF inhibits osteoblast development at least in part by stimulating high molecular weight HA synthesis through HAS2.

  12. Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method

    NASA Astrophysics Data System (ADS)

    Resita Arum, Sari; A, Suparmi; C, Cari

    2016-01-01

    The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).

  13. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation

    PubMed Central

    Teixeira, Felipe K.; Sanchez, Carlos G.; Hurd, Thomas R.; Seifert, Jessica R. K.; Czech, Benjamin; Preall, Jonathan B.; Hannon, Gregory J.; Lehmann, Ruth

    2015-01-01

    The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used1,2. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation. PMID:25915123

  14. Sall1 Maintains Nephron Progenitors and Nascent Nephrons by Acting as Both an Activator and a Repressor

    PubMed Central

    Kanda, Shoichiro; Tanigawa, Shunsuke; Ohmori, Tomoko; Taguchi, Atsuhiro; Kudo, Kuniko; Suzuki, Yutaka; Sato, Yuki; Hino, Shinjiro; Sander, Maike; Perantoni, Alan O.; Sugano, Sumio; Nakao, Mitsuyoshi

    2014-01-01

    The balanced self-renewal and differentiation of nephron progenitors are critical for kidney development and controlled, in part, by the transcription factor Six2, which antagonizes canonical Wnt signaling-mediated differentiation. A nuclear factor, Sall1, is expressed in Six2-positive progenitors as well as differentiating nascent nephrons, and it is essential for kidney formation. However, the molecular functions and targets of Sall1, especially the functions and targets in the nephron progenitors, remain unknown. Here, we report that Sall1 deletion in Six2-positive nephron progenitors results in severe progenitor depletion and apoptosis of the differentiating nephrons in mice. Analysis of mice with an inducible Sall1 deletion revealed that Sall1 activates genes expressed in progenitors while repressing genes expressed in differentiating nephrons. Sall1 and Six2 co-occupied many progenitor-related gene loci, and Sall1 bound to Six2 biochemically. In contrast, Sall1 did not bind to the Wnt4 locus suppressed by Six2. Sall1-mediated repression was also independent of its binding to DNA. Thus, Sall1 maintains nephron progenitors and their derivatives by a unique mechanism, which partly overlaps but is distinct from that of Six2: Sall1 activates progenitor-related genes in Six2-positive nephron progenitors and represses gene expression in Six2-negative differentiating nascent nephrons. PMID:24744442

  15. Methodological Measurement Fruitfulness of Exploratory Structural Equation Modeling (ESEM): New Approaches to Key Substantive Issues in Motivation and Engagement

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Liem, Gregory Arief D.; Martin, Andrew J.; Morin, Alexandre J. S.; Nagengast, Benjamin

    2011-01-01

    The most popular measures of multidimensional constructs typically fail to meet standards of good measurement: goodness of fit, measurement invariance, lack of differential item functioning, and well-differentiated factors that are not so highly correlated as to detract from their discriminant validity. Part of the problem, the authors argue, is…

  16. Calculus of Elementary Functions, Part IV. Teacher's Commentary. Preliminary Edition.

    ERIC Educational Resources Information Center

    Herriot, Sarah T.; And Others

    This teacher's guide is designed for use with the SMSG textbook "Calculus of Elementary Functions." It contains solutions to exercises found in Chapter 9, Integration Theory and Technique; Chapter 10, Simple Differential Equations; Appendix 5, Area and Integral; Appendix 6; Appendix 7, Continuity Theory; and Appendix 8, More About…

  17. Solving differential equations with unknown constitutive relations as recurrent neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.

    We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learningmore » literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.« less

  18. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    PubMed Central

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin. PMID:22768087

  19. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells.

    PubMed

    Rappolee, D A; Zhou, S; Puscheck, E E; Xie, Y

    2013-05-01

    Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.

  20. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Bo; Kowalski, Karol

    In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CCmore » self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.« less

  1. Revisiting the Impact of Part-Time Work on Adolescent Adjustment: Distinguishing between Selection and Socialization Using Propensity Score Matching

    ERIC Educational Resources Information Center

    Monahan, Kathryn C.; Lee, Joanna M.; Steinberg, Laurence

    2011-01-01

    The impact of part-time employment on adolescent functioning remains unclear because most studies fail to adequately control for differential selection into the workplace. The present study reanalyzes data from L. Steinberg, S. Fegley, and S. M. Dornbusch (1993) using multiple imputation, which minimizes bias in effect size estimation, and 2 types…

  2. A Correlation Between Changes in Solar Luminosity and Differential Radius Measurements

    NASA Technical Reports Server (NTRS)

    Kroll, R. J.; Hill, H. A.; Beardsley, B. J.

    1990-01-01

    Solar luminosity variations occurring during solar cycle 21 can be attributed in large part to the presence of sunspots and faculae. Nevertheless, there remains a residual portion of the luminosity variation distinctly unaccounted for by these phenomena of solar activity. At the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA), observations of the solar limb are capable of detecting changes in the solar limb darkening function by monitoring a quantity known as the differential radius. These observations are utilized in such a way that the effects of solar activity are minimized in order to reveal the more fundamental structure of the photosphere. The results of observations made during solar cycle 21 at various solar latitudes indicate that a measurable change did occur in the global photospheric limb darkening function. It is proposed that the residual luminosity change is associated in part with this change in limb darkening.

  3. Regulatory Peptides in Plants.

    PubMed

    Vanyushin, B F; Ashapkin, V V; Aleksandrushkina, N I

    2017-02-01

    Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.

  4. Use of Green's functions in the numerical solution of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  5. On the solving of one type of problems of mathematical physics

    NASA Astrophysics Data System (ADS)

    Chebakova, V. J.; Gerasimov, A. V.; Kirpichnikov, A. P.

    2016-11-01

    A relationship between generalized hypergeometric functions of a special type and modified Bessel functions has been established. Using this relationship the solution of inhomogeneous differential equations of Bessel type containing even degrees of an independent variable in the right-hand part can be expressed in a form convenient for engineering and technical applications.

  6. Legendre-Tau approximation for functional differential equations. Part 3: Eigenvalue approximations and uniform stability

    NASA Technical Reports Server (NTRS)

    Ito, K.

    1984-01-01

    The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A charactristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.

  7. Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects.

    PubMed

    Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J

    2016-08-01

    Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Matrix Property-Controlled Stem Cell Differentiation for Cardiac and Skeletal Tissue Regeneration

    NASA Astrophysics Data System (ADS)

    Xu, Yanyi

    When ischemia, caused by diseases such as myocardial infarction (MI) or atherosclerotic peripheral artery disease (PAD), happens in myocardium or skeletal muscles, the depletion of oxygen and nutrients can cause the immediate death of muscle cells, the formation of stiff scar tissues, followed by the mechanical and functional properties loss of heart/skeletal muscles. In order to treat these diseases, it's necessary to: 1). fast re-establish the blood flow of ischemic tissues; 2). fully regenerate the cardiac/skeletal muscles to restore the tissue functions. One of the widely used approaches to reach these treatment goals is stem cell transplantation. By using novel biomaterial-based scaffolds (gels, foams or fibrous networks), stem cells may be delivered into the injured area, differentiate into cardiomyocytes/myofibers and help the regeneration of local tissues. In the first part of this work, physical induction approaches for stem cell differentiation is presented. Using an electrospinning method, fibrous scaffolds based on hydrogel and polyurethane (PU) were fabricated and cardiac differentiation of cardio-sphere derived cells (CDCs) was successfully induced through the control of scaffold mechanical and morphological properties (fiber diameter, density, alignment, single fiber modulus and scaffold macro modulus). In a hydrogel system, the matrix modulus was successfully decoupled from the chemical structure, composition and water content properties, and a matrix tensile modulus of around 20kPa was found to better induce the myogenic differentiation of mesenchymal stem cells (MSCs) cultured under normal condition. In the other hand, due to the harsh local environment caused by ischemia, the transplanted cells usually have low survival and differentiation rates. To solve this problem, cells were delivered in hydrogels with angiogenesis factor basic fibroblast growth factor (bFGF) or oxygen release microspheres (ORM) to conquer the local low oxygen and low nutrient conditions. The second part of this work focuses on the application of this delivery system in vivo using a mice hindlimb ischemia model. Results showed that MSC survival and myogenic differentiation rates were significantly improved both in vitro and in vivo with the delivery of bFGF or ORM under ischemic condition. In addition, a dramatic increase of muscle fiber regeneration, blood flow recovery as well as the mechanical/functional (muscle contractility, fatigue resistance and mice running ability) properties was observed. These results indicate the great potential of this cell-gel-biomolecule system in the treatment of muscle regeneration. To better understand how the matrix modulus affects the stem cell differentiation, we developed a novel approach using digital image correlation (DIC) and finite element modeling (FEM) to calculate the cell-generated tractions. This is presented in the third part of this work, and our results demonstrated that MSCs with higher myogenic differentiation exerted larger tractions to their surrounding matrix.

  9. Dynamics and Control of Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Part I

    NASA Astrophysics Data System (ADS)

    Amengonu, Yawo H.; Kakad, Yogendra P.

    2014-07-01

    Quasivelocity techniques such as Maggi's and Boltzmann-Hamel's equations eliminate Lagrange multipliers from the beginning as opposed to the Euler-Lagrange method where one has to solve for the n configuration variables and the multipliers as functions of time when there are m nonholonomic constraints. Maggi's equation produces n second-order differential equations of which (n-m) are derived using (n-m) independent quasivelocities and the time derivative of the m kinematic constraints which add the remaining m second order differential equations. This technique is applied to derive the dynamics of a differential mobile robot and a controller which takes into account these dynamics is developed.

  10. Differential Functional Connectivity Alterations of Two Subdivisions within the Right dlPFC in Parkinson's Disease

    PubMed Central

    Caspers, Julian; Mathys, Christian; Hoffstaedter, Felix; Südmeyer, Martin; Cieslik, Edna C.; Rubbert, Christian; Hartmann, Christian J.; Eickhoff, Claudia R.; Reetz, Kathrin; Grefkes, Christian; Michely, Jochen; Turowski, Bernd; Schnitzler, Alfons; Eickhoff, Simon B.

    2017-01-01

    Patients suffering from Parkinson's disease (PD) often show impairments in executive function (EF) like decision-making and action control. The right dorsolateral prefrontal cortex (dlPFC) has been strongly implicated in EF in healthy subjects and has repeatedly been reported to show alterations related to EF impairment in PD. Recently, two key regions for cognitive action control have been identified within the right dlPFC by co-activation based parcellation. While the posterior region is engaged in rather basal EF like stimulus integration and working memory, the anterior region has a more abstract, supervisory function. To investigate whether these functionally distinct subdivisions of right dlPFC are differentially affected in PD, we analyzed resting-state functional connectivity (FC) in 39 PD patients and 44 age- and gender-matched healthy controls. Patients were examined both after at least 12 h withdrawal of dopaminergic drugs (OFF) and under their regular dopaminergic medication (ON). We found that only the posterior right dlPFC subdivision shows FC alterations in PD, while the anterior part remains unaffected. PD-related decreased FC with posterior right dlPFC was found in the bilateral medial posterior parietal cortex (mPPC) and left dorsal premotor region (PMd) in the OFF state. In the medical ON, FC with left PMd normalized, while decoupling with bilateral mPPC remained. Furthermore, we observed increased FC between posterior right dlPFC and the bilateral dorsomedial prefrontal cortex (dmPFC) in PD in the ON state. Our findings point to differential disturbances of right dlPFC connectivity in PD, which relate to its hierarchical organization of EF processing by stronger affecting the functionally basal posterior aspect than the hierarchically higher anterior part. PMID:28611616

  11. A Generalized Technique in Numerical Integration

    NASA Astrophysics Data System (ADS)

    Safouhi, Hassan

    2018-02-01

    Integration by parts is one of the most popular techniques in the analysis of integrals and is one of the simplest methods to generate asymptotic expansions of integral representations. The product of the technique is usually a divergent series formed from evaluating boundary terms; however, sometimes the remaining integral is also evaluated. Due to the successive differentiation and anti-differentiation required to form the series or the remaining integral, the technique is difficult to apply to problems more complicated than the simplest. In this contribution, we explore a generalized and formalized integration by parts to create equivalent representations to some challenging integrals. As a demonstrative archetype, we examine Bessel integrals, Fresnel integrals and Airy functions.

  12. Analysis of Hydrodynamic Stability of Solar Tachocline Latitudinal Differential Rotation using a Shallow-Water Model

    NASA Astrophysics Data System (ADS)

    Dikpati, Mausumi; Gilman, Peter A.

    2001-04-01

    We examine the global, hydrodynamic stability of solar latitudinal differential rotation in a ``shallow-water'' model of the tachocline. Charbonneau, Dikpati, & Gilman have recently shown that two-dimensional disturbances are stable in the tachocline (which contains a pole-to-equator differential rotation s<18%). In our model, the upper boundary of the thin shell is allowed to deform in latitude, longitude, and time, thus including simplified three-dimensional effects. We examine the stability of differential rotation as a function of the effective gravity of the stratification in the tachocline. High effective gravity corresponds to the radiative part of the tachocline; for this case, the instability is similar to the strictly two-dimensional case (appearing only for s>=18%), driven primarily by the kinetic energy of differential rotation extracted through the work of the Reynolds stress. For low effective gravity, which corresponds to the overshoot part of the tachocline, a second mode of instability occurs, fed again by the kinetic energy of differential rotation, which is primarily extracted by additional stresses and correlations of perturbations arising in the deformed shell. In this case, instability occurs for differential rotation as low as about 11% between equator and pole. If this mode occurs in the Sun, it should destabilize the latitudinal differential rotation in the overshoot part of the tachocline, even without a toroidal field. For the full range of effective gravity, the vorticity associated with the perturbations, coupled with radial motion due to horizontal divergence/convergence of the fluid, gives rise to a longitude-averaged, net kinetic helicity pattern, and hence a source of α-effect in the tachocline. Thus there could be a dynamo in the tachocline, driven by this α-effect and the latitudinal and radial gradients of rotation.

  13. Nonlinear Scaling Laws for Parametric Receiving Arrays. Part II. Numerical Analysis

    DTIC Science & Technology

    1976-06-30

    SECTION 3U SUBROUTINE WRITE -UP» JPL» MAY 1969. 2, F. T, KROGH» »ON TESTING A SUBROUTINE FOR THE NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL...WHICH IS ENTIRELY DOUBLE PRECISION. SEE THEIR WRITE -UPS FOR MINOR DIFFERENCES IN USAGE. 12.1.1.5. REMARKS THE ORDINARY DIFFERENTIAL EQUATIONS MAY BE...OF THE DEPENDENT VARIABLES» OR VALUES OF AUXILIARY FUNCTIONS. ONLY THE FIRST TWO OF THESE FEATURES ARE DESCRIBED IN THIS WRITE -UP. SEE REFERENCE 1

  14. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  15. The transcription factors Thpok and LRF are necessary and partly redundant for T helper cell differentiation

    PubMed Central

    Carpenter, Andrea C.; Grainger, John R.; Xiong, Yumei; Kanno, Yuka; Chu, H. Hamlet; Wang, Lie; Naik, Shruti; dos Santos, Liliane; Wei, Lai; Jenkins, Marc K.; O’Shea, John J.; Belkaid, Yasmine; Bosselut, Rémy

    2014-01-01

    Summary T helper (Th) cells are critical for defenses against infection and recognize peptides bound to Class II Major Histocompatibility Complex (MHC-II) molecules. Although transcription factors have been identified that direct helper cells into specific effector fates, whether a ‘master’ regulator controls the developmental program common to all Th cells remains unclear. Here we showed that the two transcription factors Thpok and LRF share this function. Although disruption of both factors did not prevent the generation of MHC II-specific T cells, these cells failed to express Th cell genes or undergo Th cell differentiation in vivo. In contrast, T cells lacking Thpok only displayed LRF-dependent functions and contributed to multiple effector responses, both in vitro and in vivo, with the notable exception of Th2 cell responses that control extra-cellular parasites. These findings identify the Thpok-LRF pair as a core node of Th cell differentiation and function. PMID:23041065

  16. Distinct Fcγ receptors mediate the effect of Serum Amyloid P on neutrophil adhesion and fibrocyte differentiation

    PubMed Central

    Cox, Nehemiah; Pilling, Darrell; Gomer, Richard H.

    2014-01-01

    The plasma protein Serum Amyloid P (SAP) reduces neutrophil adhesion, inhibits the differentiation of monocytes into fibroblast-like cells called fibrocytes, and promotes phagocytosis of cell debris by macrophages. Together, these effects of SAP reduce key aspects of inflammation and fibrosis, and SAP injections improve lung function in pulmonary fibrosis patients. SAP functions are mediated in part by Fcγ receptors, but the contribution of each Fcγ receptor is not fully understood. We found that amino acids Q55 and E126 in human SAP affect human fibrocyte differentiation and SAP binding to FcγRI. E126, K130 and Q128 affect neutrophil adhesion and SAP affinity for FcγRIIa. Q128 also affects phagocytosis by macrophages and SAP affinity for FcγRI. All the identified functionally significant amino acids in SAP form a binding site that is distinct from the previously described SAP-FcγRIIa binding site. Blocking FcγRI with an IgG blocking antibody reduces the SAP effect on fibrocyte differentiation, and ligating FcγRIIa with antibodies reduces neutrophil adhesion. Together, these results suggest that SAP binds to FcγRI on monocytes to inhibit fibrocyte differentiation, and binds to FcγRIIa on neutrophils to reduce neutrophil adhesion. PMID:25024390

  17. Hybrid cell adhesive material for instant dielectrophoretic cell trapping and long-term cell function assessment.

    PubMed

    Reyes, Darwin R; Hong, Jennifer S; Elliott, John T; Gaitan, Michael

    2011-08-16

    Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.

  18. Identification of key factors regulating self-renewal and differentiation in EML hematopoietic precursor cells by RNA-sequencing analysis.

    PubMed

    Zong, Shan; Deng, Shuyun; Chen, Kenian; Wu, Jia Qian

    2014-11-11

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.

  19. Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis

    PubMed Central

    Chen, Kenian; Wu, Jia Qian

    2014-01-01

    Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo. PMID:25407807

  20. Differentiation‐associated urothelial cytochrome P450 oxidoreductase predicates the xenobiotic‐metabolizing activity of “luminal” muscle‐invasive bladder cancers

    PubMed Central

    Arlt, Volker M.; Indra, Radek; Joel, Madeleine; Stiborová, Marie; Eardley, Ian; Ahmad, Niaz; Otto, Wolfgang; Burger, Maximilian; Rubenwolf, Peter; Phillips, David H.; Southgate, Jennifer

    2018-01-01

    Extra‐hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self‐defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro‐carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier‐forming differentiated states in vitro. However, ethoxyresorufin O‐deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP‐DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain‐of‐function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle‐invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into “luminal” and “basal” groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over‐expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1‐activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over‐expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP‐function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies. PMID:29323757

  1. Latent Class Analysis of Differential Item Functioning on the Peabody Picture Vocabulary Test-III

    ERIC Educational Resources Information Center

    Webb, Mi-young Lee; Cohen, Allan S.; Schwanenflugel, Paula J.

    2008-01-01

    This study investigated the use of latent class analysis for the detection of differences in item functioning on the Peabody Picture Vocabulary Test-Third Edition (PPVT-III). A two-class solution for a latent class model appeared to be defined in part by ability because Class 1 was lower in ability than Class 2 on both the PPVT-III and the…

  2. Existence and stability of periodic solutions of an impulsive differential equation and application to CD8 T-cell differentiation.

    PubMed

    Girel, Simon; Crauste, Fabien

    2018-06-01

    Unequal partitioning of the molecular content at cell division has been shown to be a source of heterogeneity in a cell population. We propose to model this phenomenon with the help of a scalar, nonlinear impulsive differential equation (IDE). To study the effect of molecular partitioning at cell division on the effector/memory cell-fate decision in a CD8 T-cell lineage, we study an IDE describing the concentration of the protein Tbet in a CD8 T-cell, where impulses are associated to cell division. We discuss how the degree of asymmetry of molecular partitioning can affect the process of cell differentiation and the phenotypical heterogeneity of a cell population. We show that a moderate degree of asymmetry is necessary and sufficient to observe irreversible differentiation. We consider, in a second part, a general autonomous IDE with fixed times of impulse and a specific form of impulse function. We establish properties of the solutions of that equation, most of them obtained under the hypothesis that impulses occur periodically. In particular, we show how to investigate the existence of periodic solutions and their stability by studying the flow of an autonomous differential equation. Then we apply those properties to prove the results presented in the first part.

  3. How B cells influence bone biology in health and disease.

    PubMed

    Horowitz, Mark C; Fretz, Jackie A; Lorenzo, Joseph A

    2010-09-01

    It is now well established that important regulatory interactions occur between the cells in the hematopoietic, immune and skeletal systems (osteoimmunology). B lymphocytes (B cells) are responsible for the generation and production of antibodies or immunoglobulins in the body. Together with T cells these lymphocytes comprise the adaptive immune system, which allows an individual to develop specific responses to an infection and retain memory of that infection, allowing for a faster and more robust response if that same infection occurs again. In addition to this immune function, B cells have a close and multifaceted relationship with bone cells. B cells differentiate from hematopoietic stem cells (HSCs) in supportive niches found on endosteal bone surfaces. Cells in the osteoblast lineage support HSC and B cell differentiation in these niches. B cell differentiation is regulated, at least in part, by a series of transcription factors that function in a temporal manner. While these transcription factors are required for B cell differentiation, their loss causes profound changes in the bone phenotype. This is due, in part, to the close relationship between macrophage/osteoclast and B cell differentiation. Cross talk between B cells and bone cells is reciprocal with defects in the RANKL-RANK, OPG signaling axis resulting in altered bone phenotypes. While the role of B cells during normal bone remodeling appears minimal, activated B cells play an important role in many inflammatory diseases with associated bony changes. This review examines the relationship between B cells and bone cells and how that relationship affects the skeleton and hematopoiesis during health and disease. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Sur les processus linéaires de naissance et de mort sous-critiques dans un environnement aléatoire.

    PubMed

    Bacaër, Nicolas

    2017-07-01

    An explicit formula is found for the rate of extinction of subcritical linear birth-and-death processes in a random environment. The formula is illustrated by numerical computations of the eigenvalue with largest real part of the truncated matrix for the master equation. The generating function of the corresponding eigenvector satisfies a Fuchsian system of singular differential equations. A particular attention is set on the case of two environments, which leads to Riemann's differential equation.

  5. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation.

    PubMed

    Abdallah, Basem M; Jafari, Abbas; Zaher, Walid; Qiu, Weimin; Kassem, Moustapha

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Transforming parts of a differential equations system to difference equations as a method for run-time savings in NONMEM.

    PubMed

    Petersson, K J F; Friberg, L E; Karlsson, M O

    2010-10-01

    Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.

  7. Quantitative proteome analysis reveals the correlation between endocytosis-associated proteins and hepatocellular carcinoma dedifferentiation.

    PubMed

    Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Reis, Henning; Ahrens, Maike; Turewicz, Michael; Eisenacher, Martin; Tautges, Stephanie; Canbay, Ali E; Meyer, Helmut E; Weber, Frank; Baba, Hideo A; Sitek, Barbara

    2016-11-01

    The majority of poorly differentiated hepatocellular carcinomas (HCCs) develop from well-differentiated tumors. Endocytosis is a cellular function which is likely to take part in this development due to its important role in regulating the abundances of vital signaling receptors. Here, we aimed to investigate the abundance of endocytosis-associated proteins in HCCs with various differentiation grades. Therefore, we analyzed 36 tissue specimens from HCC patients via LC-MS/MS-based label-free quantitative proteomics including 19 HCC tissue samples with different degrees of histological grades and corresponding non-tumorous tissue controls. As a result, 277 proteins were differentially regulated between well-differentiated tumors and controls. In moderately and poorly differentiated tumors, 278 and 1181 proteins, respectively, were significantly differentially regulated compared to non-tumorous tissue. We explored the regulated proteins based on their functions and identified thirty endocytosis-associated proteins, mostly overexpressed in poorly differentiated tumors. These included proteins that have been shown to be up-regulated in HCC like clathrin heavy chain-1 (CLTC) as well as unknown proteins, such as secretory carrier-associated membrane protein 3 (SCAMP3). The abundances of SCAMP3 and CLTC were immunohistochemically examined in tissue sections of 84 HCC patients. We demonstrate the novel association of several endocytosis-associated proteins, in particular, SCAMP3 with HCC progression. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Noncoding sequence classification based on wavelet transform analysis: part II

    NASA Astrophysics Data System (ADS)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez-Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. We hypothesize that the characteristic periodicities of the noncoding sequences are related to their function. We describe the procedure to identify these characteristic periodicities using the wavelet analysis. Our results show that three groups of noncoding sequences, each one with different biological function, may be differentiated by their wavelet coefficients within specific frequency range.

  9. A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells.

    PubMed

    Hesari, Zahra; Soleimani, Massoud; Atyabi, Fatemeh; Sharifdini, Meysam; Nadri, Samad; Warkiani, Majid Ebrahimi; Zare, Mehrak; Dinarvand, Rassoul

    2016-06-01

    Controlling cellular orientation, proliferation, and differentiation is valuable in designing organ replacements and directing tissue regeneration. In the present study, we developed a hybrid microfluidic system to produce a dynamic microenvironment by placing aligned PDMS microgrooves on surface of biodegradable polymers as physical guidance cues for controlling the neural differentiation of human induced pluripotent stem cells (hiPSCs). The neuronal differentiation capacity of cultured hiPSCs in the microfluidic system and other control groups was investigated using quantitative real time PCR (qPCR) and immunocytochemistry. The functionally of differentiated hiPSCs inside hybrid system's scaffolds was also evaluated on the rat hemisected spinal cord in acute phase. Implanted cell's fate was examined using tissue freeze section and the functional recovery was evaluated according to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. Our results confirmed the differentiation of hiPSCs to neuronal cells on the microfluidic device where the expression of neuronal-specific genes was significantly higher compared to those cultured on the other systems such as plain tissue culture dishes and scaffolds without fluidic channels. Although survival and integration of implanted hiPSCs did not lead to a significant functional recovery, we believe that combination of fluidic channels with nanofiber scaffolds provides a great microenvironment for neural tissue engineering, and can be used as a powerful tool for in situ monitoring of differentiation potential of various kinds of stem cells. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1534-1543, 2016. © 2016 Wiley Periodicals, Inc.

  10. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH.

    PubMed

    Gallo-Payet, Nicole

    2016-05-01

    The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH. © 2016 Society for Endocrinology.

  11. Dynamic equations for an isotropic spherical shell using the power series method and surface differential operators

    NASA Astrophysics Data System (ADS)

    Okhovat, Reza; Boström, Anders

    2017-04-01

    Dynamic equations for an isotropic spherical shell are derived by using a series expansion technique. The displacement field is split into a scalar (radial) part and a vector (tangential) part. Surface differential operators are introduced to decrease the length of all equations. The starting point is a power series expansion of the displacement components in the thickness coordinate relative to the mid-surface of the shell. By using the expansions of the displacement components, the three-dimensional elastodynamic equations yield a set of recursion relations among the expansion functions that can be used to eliminate all but the four of lowest order and to express higher order expansion functions in terms of those of lowest orders. Applying the boundary conditions on the surfaces of the spherical shell and eliminating all but the four lowest order expansion functions give the shell equations as a power series in the shell thickness. After lengthy manipulations, the final four shell equations are obtained in a relatively compact form which are given to second order in shell thickness explicitly. The eigenfrequencies are compared to exact three-dimensional theory with excellent agreement and to membrane theory.

  12. A Model of Differential Amygdala Activation in Psychopathy

    ERIC Educational Resources Information Center

    Moul, Caroline; Killcross, Simon; Dadds, Mark R.

    2012-01-01

    This article introduces a novel hypothesis regarding amygdala function in psychopathy. The first part of this article introduces the concept of psychopathy and describes the main cognitive and affective impairments demonstrated by this population; that is, a deficit in fear-recognition, lower conditioned fear responses and poor performance in…

  13. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  14. Quantization of wave equations and hermitian structures in partial differential varieties

    PubMed Central

    Paneitz, S. M.; Segal, I. E.

    1980-01-01

    Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation—e.g., of the form □ϕ + m2ϕ + gϕp = 0—admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923

  15. Differential regulation of oestrogen receptor β isoforms by 5′ untranslated regions in cancer

    PubMed Central

    Smith, Laura; Brannan, Rebecca A; Hanby, Andrew M; Shaaban, Abeer M; Verghese, Eldo T; Peter, Mark B; Pollock, Steven; Satheesha, Sampoorna; Szynkiewicz, Marcin; Speirs, Valerie; Hughes, Thomas A

    2010-01-01

    Abstract Oestrogen receptors (ERs) are critical regulators of the behaviour of many cancers. Despite this, the roles and regulation of one of the two known ERs – ERβ– are poorly understood. This is partly because analyses have been confused by discrepancies between ERβ expression at mRNA and proteins levels, and because ERβ is expressed as several functionally distinct isoforms. We investigated human ERβ 5′ untranslated regions (UTRs) and their influences on ERβ expression and function. We demonstrate that two alternative ERβ 5′UTRs have potent and differential influences on expression acting at the level of translation. We show that their influences are modulated by cellular context and in carcinogenesis, and demonstrate the contributions of both upstream open reading frames and RNA secondary structure. These regulatory mechanisms offer explanations for the non-concordance of ERβ mRNA and protein. Importantly, we also demonstrate that 5′UTRs allow the first reported mechanisms for differential regulation of the expression of the ERβ isoforms 1, 2 and 5, and thereby have critical influences on ERβ function. PMID:20920096

  16. New insights into redox regulation of stem cell self-renewal and differentiation.

    PubMed

    Ren, Fenglian; Wang, Kui; Zhang, Tao; Jiang, Jingwen; Nice, Edouard Collins; Huang, Canhua

    2015-08-01

    Reactive oxygen species (ROS), the natural byproducts of aerobic metabolism, are precisely orchestrated to evoke diverse signaling pathways. To date, studies have focused mainly on the detrimental effects of ROS in stem cells. Recently, accumulating evidence has suggested that ROS also function as second messengers that modulate stem cell self-renewal and differentiation by regulating intricate signaling networks. Although many efforts have been made to clarify the general effects of ROS on signal transduction in stem cells, less is known about the initial and direct executors of ROS signaling, which are known as 'redox sensors'. Modifications of cysteine residues in redox sensors are of significant importance in the modulation of protein function in response to different redox conditions. Intriguingly, most key molecules in ROS signaling and cell cycle regulation (including transcriptional factors and kinases) that are crucial in the regulation of stem cell self-renewal and differentiation have the potential to be redox sensors. We highlight herein the importance of redox regulation of these key regulators in stem cell self-renewal and differentiation. Understanding the mechanisms of redox regulation in stem cell self-renewal and differentiation will open exciting new perspectives for stem cell biology. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. LACTB is a tumour suppressor that modulates lipid metabolism and cell state.

    PubMed

    Keckesova, Zuzana; Donaher, Joana Liu; De Cock, Jasmine; Freinkman, Elizaveta; Lingrell, Susanne; Bachovchin, Daniel A; Bierie, Brian; Tischler, Verena; Noske, Aurelia; Okondo, Marian C; Reinhardt, Ferenc; Thiru, Prathapan; Golub, Todd R; Vance, Jean E; Weinberg, Robert A

    2017-03-30

    Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.

  18. The essential role of inorganic substrate in the migration and osteoblastic differentiation of mesenchymal stem cells.

    PubMed

    He, Jing; Meng, Guolong; Yao, Ruijuan; Jiang, Bo; Wu, Yao; Wu, Fang

    2016-06-01

    The physical environment, which is an integral part of the stem cell niche, is critical in regulating stem cell functions and differentiation into specific lineages. Previous studies have primarily focused on modulating the polymeric matrixes, including the extracellular matrix. Here, we report that the presence of the inorganic substrate (Ti and hydroxyapatite (HA)) in addition to the collagen overlayer plays an essential role in cytoskeletal organization, migration and differentiation of mesenchymal stem cells (MSCs). The osteogenic differentiation of MSCs was suppressed on pure collagen substrate alone, despite collagen greatly enhancing the MSC adhesion and proliferation. The results indicated a strong correlation between MSC motility and osteoblastic differentiation. In particular, the presence of the inorganic matrix promoted the activation of the canonical WNT-β-Catenin pathway and stimulated transcription, leading to osteoblastic differentiation, which was likely due to the internal forces generated "dynamically" during cell migration. Compared to the Ti substrate, hydroxyapatite promoted the collagen self-assembly and the formation of the collagen fibrous network, which is critical for MSC motility and osteogenic differentiation. The HA-collagen matrix exhibited the most favourable stress fibre formation, the longest migration distance (2.8-fold higher than that of the pure collagen sample and 1.9-fold higher than that of Ti-collagen), and the best osteogenic differentiation activities. These findings might have important implications for our understanding of the fundamental MSC functions and the optimal design of bone regeneration materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Icariin promotes expression of junctophilin 2 and Ca2+ related function during cardiomyocyte differentiation of murine embryonic stem cells.

    PubMed

    Liang, Xingguang; Hong, Dongsheng; Huang, Yujie; Rao, Yuefeng; Ma, Kuifen; Huang, Mingzhu; Zhang, Xingguo; Lou, Yijia; Zhao, Qingwei

    2015-12-01

    Junctophilin2 (JP2) is a critical protein associated with cardiogenesis. Icariin (ICA) facilitated the directional differentiation of murine embryonic stem (ES) cells into cardiomyocytes. However, little is known about the effects of ICA on JP2 during cardiac differentiation. Here, we explored whether ICA has effects on the expression and Ca2+ related function of JP2 during cardiomyocyte differentiation of ES cells in vitro. Embryonid bodies (EBs) formed by hanging drop were treated with 10(-7) mol/L ICA from day 5 to promote the cardiac differentiation. Percentage of beating EBs and number of beating area within EBs were monitored. Cardiomyocytes were purified by discontinuous percoll gradient centrifugation from EBs. The expression of JP2, α-actinin and troponin-T within EBs or isolated cardiomyocytes were analyzed by immunocytochemistry, western blot and flow cytometry. The transient Ca2+ release was characterized in cardiomyocytes treated with/without 10 mmol/L caffeine and 8 mmol/L Ca2+. Our results showed that ES cell-derived cardiomyocytes were well characterized with JP2 proteins. ICA promoted cardiomyocyte differentiation as indicated by an increased percentage of beating EBs and number of beating area within EBs. The expression of JP2, α-actinin and troponin-T were up-regulated both in EBs and isolated cardiomyocytes from EBs. Furthermore, ICA-induced JP2 expression was accompanied by a remarkable increase of the amplitude of Ca2+ transients in cardiomyocytes before/after caffeine and Ca2+ stimulating. In conclusion, ICA promotes in cardiac differentiation partly through regulating JP2 and improved the Ca2+ modulatory function of cardiomyocytes.

  20. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood

    PubMed Central

    Llobet, Laura; Toivonen, Janne M.; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Gallardo, Ester

    2015-01-01

    ABSTRACT Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. PMID:26398948

  1. Changes in Emotions Related to Medication Used to Treat ADHD. Part I: Literature Review

    ERIC Educational Resources Information Center

    Manos, Michael J.; Brams, Matthew; Childress, Ann C.; Findling, Robert L.; Lopez, Frank A.; Jensen, Peter S.

    2011-01-01

    Objective: To summarize the literature investigating changes in emotional expression (EE) as a function of pharmacotherapy in the treatment of ADHD and to differentiate emotional effects related to ADHD pharmacotherapy from emotional effects related to ADHD as a disorder. Method: English language articles published from January 1, 1988, through…

  2. The Shock and Vibration Bulletin. Part 2. Isolation and Damping, Impact, Blast

    DTIC Science & Technology

    1978-09-01

    Laboratory, WPAFB, Ohio; A.D. 13. L.C. Rogers, AFFDL/ FBG , WPAFB, CH, private , Nashif, Anatrol Corporation, Cincinnati, Ohio; communication. and J...to reconstruct the Differentiation with Application in ’ ’ function itself. A 6 dB/octave for the first Biomechanics ," Proc. Soc. Photo-optical V

  3. Litters of photosynthetically divergent grasses exhibit differential metabolic responses to warming and elevated CO2

    USDA-ARS?s Scientific Manuscript database

    Climatic stress induced by warming can alter plant metabolism, leading to changes in litter chemistry that can affect soil carbon cycling. Elevated CO2 could partly mitigate warming induced moisture stress, and the degree of this mitigation may vary with plant functional types. We hypothesized that,...

  4. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles

    PubMed Central

    2010-01-01

    Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets. PMID:21062462

  5. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibiting miR-21/Spry1 functional axis.

    PubMed

    Yang, Nan; Li, Yang; Wang, Guang; Ding, Yin; Jin, Yan; Xu, Yiquan

    Periodontitis is a chronic infectious disease that leads to progressive destruction of periodontal tissue. Human periodontal ligament stem cells (PDLSCs) are the most favorable candidate for the reconstruction of tissues destroyed by periodontal diseases. PDLSCs derived from inflammatory microenvironment show attenuated differentiation potential, however the mechanism is still unclear. MicroRNAs (miRNAs) are a newly discovered class of posttranscriptional regulators, and they play key roles in regulating cell differentiation. Recent studies have demonstrated that inflammatory cytokines could regulate miRNAs and contribute to some inflammatory diseases. Tumor necrosis factor (TNF-α) is a potent negative regulator of cell differentiation. Elevated levels of TNF-α were confirmed to be associated with the severity of periodontal disease. Here, we found TNF-α inhibited the adipogenic and osteogenic differentiation of PDLSCs. Based on this, we hypothesized that TNF-α could participate in PDLSC differentiation by regulating miRNA signal pathway. Moreover, we demonstrated that the expression of miR-21 was suppressed by TNF-α in impaired adipogenic and osteogenic differentiation of PDLSCs. Upregulating miR-21 can partly rescue TNF-α-impaired adipogenesis and osteogenesis by repressing its target gene Spry1, suggested that miR-21/Spry1 functional axis plays critical role in PDLSC differentiation under inflammatory microenvironment. During adipogenesis and osteogenesis, TNF-α significantly increased Spry1 levels and overexpression of miR-21 dramatically decreased Spry1 levels in the presence of TNF-α, indicated important roles of miR-21 in modulating link between TNF-α and Spry1. Our findings introduce a molecular mechanism in which TNF-α suppresses adipogenic and osteogenic differentiation of PDLSCs by inhibiting miR-21/Spry1 functional axis. This study may indicate a molecular basis for novel therapeutic strategies against periodontitis and other inflammatory diseases. Copyright © 2017. Published by Elsevier B.V.

  6. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    PubMed

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  7. EVI2B is a C/EBPα target gene required for granulocytic differentiation and functionality of hematopoietic progenitors.

    PubMed

    Zjablovskaja, Polina; Kardosova, Miroslava; Danek, Petr; Angelisova, Pavla; Benoukraf, Touati; Wurm, Alexander A; Kalina, Tomas; Sian, Stephanie; Balastik, Martin; Delwel, Ruud; Brdicka, Tomas; Tenen, Daniel G; Behre, Gerhard; Fiore, Fréderic; Malissen, Bernard; Horejsi, Vaclav; Alberich-Jorda, Meritxell

    2017-04-01

    Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.

  8. Improved human endometrial stem cells differentiation into functional hepatocyte-like cells on a glycosaminoglycan/collagen-grafted polyethersulfone nanofibrous scaffold.

    PubMed

    Khademi, Farzaneh; Ai, Jafar; Soleimani, Masoud; Verdi, Javad; Mohammad Tavangar, Seyed; Sadroddiny, Esmaeil; Massumi, Mohammad; Mahmoud Hashemi, Seyed

    2017-11-01

    Liver tissue engineering (TE) is rapidly emerging as an effective technique which combines engineering and biological processes to compensate for the shortage of damaged or destroyed liver tissues. We examined the viability, differentiation, and integration of hepatocyte-like cells on an electrospun polyethersulfone (PES) scaffold, derived from human endometrial stem cells (hEnSCs). Natural polymers were separately grafted on plasma-treated PES nanofibers, that is, collagen, heparan sulfate (HS) and collagen-HS. Galactosilated PES (PES-Gal) nanofibrous were created. The engineering and cell growth parameters were considered and compared with each sample. The cellular studies revealed increased cell survival, attachment, and normal morphology on the bioactive natural polymer-grafted scaffolds after 30 days of hepatic differentiation. The chemical and molecular assays displayed hepatocyte differentiation. These cells were also functional, showing glycogen storage, α-fetoprotein, and albumin secretion. The HS nanoparticle-grafted PES nanofibers demonstrated a high rate of cell proliferation, differentiation, and integration. Based on the observations mentioned above, engineered tissue is a good option in the future, for the commercial production of three-dimensional liver tissues for clinical purposes. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2516-2529, 2017. © 2016 Wiley Periodicals, Inc.

  9. Importance of symplasmic communication in cell differentiation

    PubMed Central

    Marzec, Marek; Kurczynska, Ewa

    2014-01-01

    Symplasmic communication via plasmodesmata (PD) is part of the system of information exchange between plant cells. Molecules that pass through the PD include ions, some hormones, minerals, amino acids, and sugars but also proteins, transcription factors, and different classes of RNA, and as such PD can participate in the coordination of plant growth and development. This review summarizes the current literature on this subject and the role of PD in signal exchange, the importance of symplasmic communication and symplasmic domains in plant cell differentiation, and highlights the future prospective in the exploration of PD functions in plants. Moreover, this review also describes the potential use of barley root epidermis and non-zygotic embryogenesis in study of symplasmic communication during cell differentiation. PMID:24476959

  10. Multidimensional Generalized Functions in Aeroacoustics and Fluid Mechanics. Part 1; Basic Concepts and Operations

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun; Myers, Michael K.

    2011-01-01

    This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.

  11. Improvements for Differential Functioning of Items and Tests (DFIT): Investigating the Addition of Reporting an Effect Size Measure and Power

    ERIC Educational Resources Information Center

    Wright, Keith D.

    2011-01-01

    Standardized testing has been part of the American educational system for decades. Controversy from the beginning has plagued standardized testing, is plaguing testing today, and will continue to be controversial. Given the current federal educational policies supporting increased standardized testing, psychometricians, educators and policy makers…

  12. An Anthropologist among the Psychometricians: Assessment Events, Ethnography, and Differential Item Functioning in the Mongolian Gobi

    ERIC Educational Resources Information Center

    Maddox, Bryan; Zumbo, Bruno D.; Tay-Lim, Brenda; Qu, Demin

    2015-01-01

    This article explores the potential for ethnographic observations to inform the analysis of test item performance. In 2010, a standardized, large-scale adult literacy assessment took place in Mongolia as part of the United Nations Educational, Scientific and Cultural Organization Literacy Assessment and Monitoring Programme (LAMP). In a novel form…

  13. Differential Amygdala Response to Lower Face in Patients with Autistic Spectrum Disorders: An fMRI Study

    ERIC Educational Resources Information Center

    Ishitobi, Makoto; Kosaka, Hirotaka; Omori, Masao; Matsumura, Yukiko; Munesue, Toshio; Mizukami, Kimiko; Shimoyama, Tomohiro; Murata, Tetsuhito; Sadato, Norihiro; Okazawa, Hidehiko; Wada, Yuji

    2011-01-01

    Much functional neuroimaging evidence indicates that autistic spectrum disorders (ASD) demonstrate marked brain abnormalities in face processing. Most of these findings were obtained from studies using tasks related to whole faces. However, individuals with ASD tend to rely more on individual parts of the face for identification than on the…

  14. Differential gene expression for Curvularia eragrostidis pathogenic incidence in crabgrass (Digitaria sanguinalis) revealed by cDNA-AFLP analysis.

    PubMed

    Wang, Jianshu; Wang, Xuemin; Yuan, Bohua; Qiang, Sheng

    2013-01-01

    Gene expression profiles of Digitaria sanguinalis infected by Curvularia eragrostidis strain QZ-2000 at two concentrations of conidia and two dew durations were analyzed by cDNA amplified fragment length polymorphisms (cDNA-AFLP). Inoculum strength was more determinant of gene expression than dew duration. A total of 256 primer combinations were used for selective amplification and 1214 transcript-derived fragments (TDFs) were selected for their differential expression. Of these, 518 up-regulated differentially expressed TDFs were identified. Forty-six differential cDNA fragments were chosen to be cloned and 35 of them were successfully cloned and sequenced, of which 25 were homologous to genes of known function according to the GenBank database. Only 6 genes were up-regulated in Curvularia eragrostidis-inoculated D. sanguinalis, with functions involved in signal transduction, energy metabolism, cell growth and development, stress responses, abscisic acid biosynthesis and response. It appears that a few pathways may be important parts of the pathogenic strategy of C. eragrostidis strain QZ-2000 on D. sanguinalis. Our study provides the fundamentals to further study the pathogenic mechanism, screen for optimal C. eragrostidis strains as potential mycoherbicide and apply this product to control D. sanguinalis.

  15. Neoplasms of the Neuroendocrine Pancreas: An Update in the Classification, Definition, and Molecular Genetic Advances.

    PubMed

    Guilmette, Julie M; Nosé, Vania

    2018-06-14

    This review focuses on discussing the main modifications of the recently published 2017 WHO Classification of Neoplasms of the Neuroendocrine Pancreas (panNEN). Recent updates separate pancreatic neuroendocrine tumors into 2 broad categories: well-differentiated pancreatic neuroendocrine tumors (panNET) and poorly differentiated pancreatic neuroendocrine carcinoma (panNEC), and incorporates a new subcategory of "well-differentiated high-grade NET (G3)" to the well-differentiated NET category. This new classification algorithm aims to improve the prediction of clinical outcomes and survival and help clinicians select better therapeutic strategies for patient care and management. In addition, these neuroendocrine neoplasms are capable of producing large quantity of hormones leading to clinical hormone hypersecretion syndromes. These functioning tumors include, insulinomas, glucagonomas, somatostatinomas, gastrinomas, VIPomas, serotonin-producing tumors, and ACTH-producing tumors. Although most panNENs arise as sporadic diseases, a subset of these heterogeneous tumors present as parts on inherited genetic syndromes, such as multiple endocrine neoplasia type 1, von Hippel-Lindau, neurofibromatosis type 1, tuberous sclerosis, and glucagon cell hyperplasia and neoplasia syndromes. Characteristic clinical and morphologic findings for certain functioning and syndromic panNENs should alert both pathologists and clinicians as appropriate patient management and possible genetic counseling may be necessary.

  16. Entanglement entropy flow and the Ward identity.

    PubMed

    Rosenhaus, Vladimir; Smolkin, Michael

    2014-12-31

    We derive differential equations for the flow of entanglement entropy as a function of the metric and the couplings of the theory. The variation of the universal part of entanglement entropy under a local Weyl transformation is related to the variation under a local change in the couplings. We show that this relation is, in fact, equivalent to the trace Ward identity. As a concrete application of our formalism, we express the entanglement entropy for massive free fields as a two-point function of the energy-momentum tensor.

  17. Of pacemakers and statistics: the actuarial method extended.

    PubMed

    Dussel, J; Wolbarst, A B; Scott-Millar, R N; Obel, I W

    1980-01-01

    Pacemakers cease functioning because of either natural battery exhaustion (nbe) or component failure (cf). A study of four series of pacemakers shows that a simple extension of the actuarial method, so as to incorporate Normal statistics, makes possible a quantitative differentiation between the two modes of failure. This involves the separation of the overall failure probability density function PDF(t) into constituent parts pdfnbe(t) and pdfcf(t). The approach should allow a meaningful comparison of the characteristics of different pacemaker types.

  18. A brief survey of constrained mechanics and variational problems in terms of differential forms

    NASA Technical Reports Server (NTRS)

    Hermann, Robert

    1994-01-01

    There has been considerable interest recently in constrained mechanics and variational problems. This is in part due to applied interests (such as 'non-holonomic mechanics in robotics') and in other part due to the fact that several schools of 'pure' mathematics have found that this classical subject is of importance for what they are trying to do. I have made various attempts at developing these subjects since my Lincoln lab days of the late 1950's. In this Chapter, I will sketch a Unified point of view, using Cartan's approach with differential forms. This has the advantage from the C-O-R viewpoint being developed in this Volume that the extension from 'smooth' to 'generalized' data is very systematic and algebraic. (I will only deal with the 'smooth' point of view in this Chapter; I will develop the 'generalized function' material at a later point.) The material presented briefly here about Variational Calculus and Constrained Mechanics can be found in more detail in my books, 'Differential Geometry and the Calculus of Variations', 'Lie Algebras and Quantum Mechanics', and 'Geometry, Physics and Systems'.

  19. The Impact of Non-attempted and Dually-Attempted Items on Person Abilities Using Item Response Theory

    PubMed Central

    Sideridis, Georgios D.; Tsaousis, Ioannis; Al Harbi, Khaleel

    2016-01-01

    The purpose of the present study was to relate response strategy with person ability estimates. Two behavioral strategies were examined: (a) the strategy to skip items in order to save time on timed tests, and, (b) the strategy to select two responses on an item, with the hope that one of them may be considered correct. Participants were 4,422 individuals who were administered a standardized achievement measure related to math, biology, chemistry, and physics. In the present evaluation, only the physics subscale was employed. Two analyses were conducted: (a) a person-based one to identify differences between groups and potential correlates of those differences, and, (b) a measure-based analysis in order to identify the parts of the measure that were responsible for potential group differentiation. For (a) person abilities the 2-PL model was employed and later the 3-PL and 4-PL models in order to estimate upper and lower asymptotes of person abilities. For (b) differential item functioning, differential test functioning, and differential distractor functioning were investigated. Results indicated that there were significant differences between groups with completers having the highest ability compared to both non-attempters and dual responders. There were no significant differences between no-attempters and dual responders. The present findings have implications for response strategy efficacy and measure evaluation, revision, and construction. PMID:27790174

  20. Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc.

    PubMed

    Dahia, Chitra Lekha; Mahoney, Eric; Wylie, Christopher

    2012-01-01

    Intervertebral discs (IVD) are essential components of the vertebral column. They maintain separation, and provide shock absorbing buffers, between adjacent vertebrae, while also allowing movements between them. Each IVD consists of a central semi-liquid nucleus pulposus (NP) surrounded by a multi-layered fibrocartilagenous annulus fibrosus (AF). Although the IVDs grow and differentiate after birth along with the vertebral column, little is known about the mechanism of this. Understanding the signals that control normal IVD growth and differentiation would also provide potential therapies for degenerative disc disease, which is the major cause of lower back pain and affects a large proportion of the population. In this work, we show that during postnatal growth of the mouse, Sonic hedgehog (Shh) signaling from the NP cells controls many aspects of growth and differentiation of both the NP cells themselves and of the surrounding AF, and that it acts, at least partly, by regulating other signaling pathways in the NP and AF. Recent studies have shown that the NP cells arise from the embryonic notochord, which acts as a major signaling center in the embryo. This work shows that this notochord-derived tissue continues to carry out a major signaling function in the postnatal body and that the IVDs are signaling centers, in addition to their already known functions in the mechanics of vertebral column function.

  1. The Impact of Non-attempted and Dually-Attempted Items on Person Abilities Using Item Response Theory.

    PubMed

    Sideridis, Georgios D; Tsaousis, Ioannis; Al Harbi, Khaleel

    2016-01-01

    The purpose of the present study was to relate response strategy with person ability estimates. Two behavioral strategies were examined: (a) the strategy to skip items in order to save time on timed tests, and, (b) the strategy to select two responses on an item, with the hope that one of them may be considered correct. Participants were 4,422 individuals who were administered a standardized achievement measure related to math, biology, chemistry, and physics. In the present evaluation, only the physics subscale was employed. Two analyses were conducted: (a) a person-based one to identify differences between groups and potential correlates of those differences, and, (b) a measure-based analysis in order to identify the parts of the measure that were responsible for potential group differentiation. For (a) person abilities the 2-PL model was employed and later the 3-PL and 4-PL models in order to estimate upper and lower asymptotes of person abilities. For (b) differential item functioning, differential test functioning, and differential distractor functioning were investigated. Results indicated that there were significant differences between groups with completers having the highest ability compared to both non-attempters and dual responders. There were no significant differences between no-attempters and dual responders. The present findings have implications for response strategy efficacy and measure evaluation, revision, and construction.

  2. Analytical Solutions of the Gravitational Field Equations in de Sitter and Anti-de Sitter Spacetimes

    NASA Astrophysics Data System (ADS)

    Da Rocha, R.; Capelas Oliveira, E.

    2009-01-01

    The generalized Laplace partial differential equation, describing gravitational fields, is investigated in de Sitter spacetime from several metric approaches—such as the Riemann, Beltrami, Börner-Dürr, and Prasad metrics—and analytical solutions of the derived Riccati radial differential equations are explicitly obtained. All angular differential equations trivially have solutions given by the spherical harmonics and all radial differential equations can be written as Riccati ordinary differential equations, which analytical solutions involve hypergeometric and Bessel functions. In particular, the radial differential equations predict the behavior of the gravitational field in de Sitter and anti-de Sitter spacetimes, and can shed new light on the investigations of quasinormal modes of perturbations of electromagnetic and gravitational fields in black hole neighborhood. The discussion concerning the geometry of de Sitter and anti-de Sitter spacetimes is not complete without mentioning how the wave equation behaves on such a background. It will prove convenient to begin with a discussion of the Laplace equation on hyperbolic space, partly since this is of interest in itself and also because the wave equation can be investigated by means of an analytic continuation from the hyperbolic space. We also solve the Laplace equation associated to the Prasad metric. After introducing the so called internal and external spaces—corresponding to the symmetry groups SO(3,2) and SO(4,1) respectively—we show that both radial differential equations can be led to Riccati ordinary differential equations, which solutions are given in terms of associated Legendre functions. For the Prasad metric with the radius of the universe independent of the parametrization, the internal and external metrics are shown to be of AdS-Schwarzschild-like type, and also the radial field equations arising are shown to be equivalent to Riccati equations whose solutions can be written in terms of generalized Laguerre polynomials and hypergeometric confluent functions.

  3. Differential Item Functioning in Primary Healthcare Evaluation Instruments by French/English Version, Educational Level and Urban/Rural Location

    PubMed Central

    Haggerty, Jeannie L.; Bouharaoui, Fatima; Santor, Darcy A.

    2011-01-01

    Evaluating the extent to which groups or subgroups of individuals differ with respect to primary healthcare experience depends on first ruling out the possibility of bias. Objective: To determine whether item or subscale performance differs systematically between French/English, high/low education subgroups and urban/rural residency. Method: A sample of 645 adult users balanced by French/English language (in Quebec and Nova Scotia, respectively), high/low education and urban/rural residency responded to six validated instruments: the Primary Care Assessment Survey (PCAS); the Primary Care Assessment Tool – Short Form (PCAT-S); the Components of Primary Care Index (CPCI); the first version of the EUROPEP (EUROPEP-I); the Interpersonal Processes of Care Survey, version II (IPC-II); and part of the Veterans Affairs National Outpatient Customer Satisfaction Survey (VANOCSS). We normalized subscale scores to a 0-to-10 scale and tested for between-group differences using ANOVA tests. We used a parametric item response model to test for differences between subgroups in item discriminability and item difficulty. We re-examined group differences after removing items with differential item functioning. Results: Experience of care was assessed more positively in the English-speaking (Nova Scotia) than in the French-speaking (Quebec) respondents. We found differential English/French item functioning in 48% of the 153 items: discriminability in 20% and differential difficulty in 28%. English items were more discriminating generally than the French. Removing problematic items did not change the differences in French/English assessments. Differential item functioning by high/low education status affected 27% of items, with items being generally more discriminating in high-education groups. Between-group comparisons were unchanged. In contrast, only 9% of items showed differential item functioning by geography, affecting principally the accessibility attribute. Removing problematic items reversed a previously non-significant finding, revealing poorer first-contact access in rural than in urban areas. Conclusion: Differential item functioning does not bias or invalidate French/English comparisons on subscales, but additional development is required to make French and English items equivalent. These instruments are relatively robust by educational status and geography, but results suggest potential differences in the underlying construct in low-education and rural respondents. PMID:23205035

  4. An introduction to generalized functions with some applications in aerodynamics and aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1994-01-01

    In this paper, we start with the definition of generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support. The concept of generalization differentiation is introduced next. This is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some of the results of classical analysis, such as Leibniz rule of differentiation under the integral sign and the divergence theorem, are derived using the generalized function theory. It is shown that the divergence theorem remains valid for discontinuous vector fields provided that the derivatives are all viewed as generalized derivatives. This implies that all conservation laws of fluid mechanics are valid as they stand for discontinuous fields with all derivatives treated as generalized deriatives. Once these derivatives are written as ordinary derivatives and jumps in the field parameters across discontinuities, the jump conditions can be easily found. For example, the unsteady shock jump conditions can be derived from mass and momentum conservation laws. By using a generalized function theory, this derivative becomes trivial. Other applications of the generalized function theory in aerodynamics discussed in this paper are derivation of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of finite part of divergent integrals, derivation of Oswatiitsch integral equation of transonic flow, and analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics presented here include the derivation of the Kirchoff formula for moving surfaces,the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  5. Role of thrombopoietin in mast cell differentiation.

    PubMed

    Migliaccio, Anna Rita; Rana, Rosa Alba; Vannucchi, Alessandro M; Manzoli, Francesco A

    2007-06-01

    Mast cells are important elements of the body response to foreign antigens, being those represented either by small molecules (allergic response) or harbored by foreign microorganisms (response to parasite infection). These cells derive from hematopoietic stem/progenitor cells present in the marrow. However, in contrast with most of the other hematopoietic lineages, mast cells do not differentiate in the marrow but in highly vascularized extramedullary sites, such as the skin or the gut. Mast cell differentiation in the marrow is activated as part of the body response to parasites. We will review here the mast cell differentiation pathway and what is known of its major intrinsic and extrinsic control mechanisms. It will also be described that thrombopoietin, the ligand for the Mpl receptor, in addition to its pivotal rule in the control of thrombocytopoiesis and of hematopoietic stem/progenitor cell proliferation, exerts a regulatory function in mast cell differentiation. Some of the possible implications of this newly described biological activity of thrombopoietin will be discussed.

  6. Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation

    PubMed Central

    Wang, Xiaoqin; Omar, Omar; Vazirisani, Forugh; Thomsen, Peter

    2018-01-01

    Human mesenchymal stem cell (hMSC)-derived exosomes have shown regenerative effects, but their role in osteogenesis and the underlying mechanism are yet to be determined. In this study, we examined the time-course secretion of exosomes by hMSCs during the entire process of osteogenic differentiation. Exosomes derived from hMSCs in various stages of osteogenic differentiation committed homotypic cells to differentiate towards osteogenic lineage, but only exosomes from late stages of osteogenic differentiation induced extracellular matrix mineralisation. Exosomes from expansion and early and late stages of osteogenic differentiation were internalised by a subpopulation of hMSCs. MicroRNA profiling revealed a set of differentially expressed exosomal microRNAs from the late stage of osteogenic differentiation, which were osteogenesis related. Target prediction demonstrated that these microRNAs enriched pathways involved in regulation of osteogenic differentiation and general mechanisms how exosomes exert their functions, such as “Wnt signalling pathway” and “endocytosis”. Taken together, the results show that MSCs secrete exosomes with different biological properties depending on differentiation stage of their parent cells. The exosomal cargo transferred from MSCs in the late stage of differentiation induces osteogenic differentiation and mineralisation. Moreover, it is suggested that the regulatory effect on osteogenesis by exosomes is at least partly exerted by exosomal microRNA. PMID:29447276

  7. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.

    PubMed

    Rahm, Christoffer; Liberg, Benny; Wiberg-Kristoffersen, Maria; Aspelin, Peter; Msghina, Mussie

    2013-04-01

    Characterizing the anatomical substrates of major brain functions such as cognition and emotion is of utmost importance to the ongoing efforts of understanding the nature of psychiatric ailments and their potential treatment. The aim of our study was to investigate how the brain handles affective and cognitive interferences on cognitive processes. Functional magnetic resonance imaging investigation was performed on healthy individuals, comparing the brain oxygenation level dependent activation patterns during affective and cognitive counting Stroop tasks. The affective Stroop task activated rostral parts of medial prefrontal cortex (PFC) and rostral and ventral parts of lateral PFC, while cognitive Stroop activated caudal parts of medial PFC and caudal and dorsal parts of lateral PFC. Our findings suggest that the brain may handle affective and cognitive interference on cognitive processes differentially, with affective interference preferentially activating rostral and ventral PFC networks and cognitive interference activating caudal and dorsal PFC networks. © 2013 The Authors. Scandinavian Journal of Psychology © 2013 The Scandinavian Psychological Associations.

  8. Quantitative analysis of random ameboid motion

    NASA Astrophysics Data System (ADS)

    Bödeker, H. U.; Beta, C.; Frank, T. D.; Bodenschatz, E.

    2010-04-01

    We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.

  9. Evaluation of measurement equivalence of the Family Satisfaction with the End-of-Life Care in an ethnically diverse cohort: Tests of differential item functioning

    PubMed Central

    Teresi, Jeanne A; Ocepek-Welikson, Katja; Ramirez, Mildred; Kleinman, Marjorie; Ornstein, Katherine; Siu, Albert

    2016-01-01

    Background The Family Satisfaction with End-of-Life Care is an internationally used measure of satisfaction with cancer care. However, the Family Satisfaction with End-of-Life Care has not been studied for equivalence of item endorsement across different socio-demographic groups using differential item functioning. Aims The aims of this secondary data analysis were (1) to examine potential differential item functioning in the family satisfaction item set with respect to type of caregiver, race, and patient age, gender, and education and (2) to provide parameters and documentation of differential item functioning for an item bank. Design A mixed qualitative and quantitative analysis was conducted. A priori hypotheses regarding potential group differences in item response were established. Item response theory and Wald tests were used for the analyses of differential item functioning, accompanied by magnitude and impact measures. Results Very little significant differential item functioning was observed for patient's age and gender. For race, 13 items showed differential item functioning after multiple comparison adjustment, 10 with non-uniform differential item functioning. No items evidenced differential item functioning of high magnitude, and the impact was negligible. For education, 5 items evidenced uniform differential item functioning after adjustment, none of high magnitude. Differential item functioning impact was trivial. One item evidenced differential item functioning for the caregiver relationship variable. Conclusion Differential item functioning was observed primarily for race and education. No differential item functioning of high magnitude was observed for any item, and the overall impact of differential item functioning was negligible. One item, satisfaction with “the patient's pain relief,” might be singled out for further study, given that this item was both hypothesized and observed to show differential item functioning for race and education. PMID:25160692

  10. Thermodynamic and Differential Entropy under a Change of Variables

    PubMed Central

    Hnizdo, Vladimir; Gilson, Michael K.

    2013-01-01

    The differential Shannon entropy of information theory can change under a change of variables (coordinates), but the thermodynamic entropy of a physical system must be invariant under such a change. This difference is puzzling, because the Shannon and Gibbs entropies have the same functional form. We show that a canonical change of variables can, indeed, alter the spatial component of the thermodynamic entropy just as it alters the differential Shannon entropy. However, there is also a momentum part of the entropy, which turns out to undergo an equal and opposite change when the coordinates are transformed, so that the total thermodynamic entropy remains invariant. We furthermore show how one may correctly write the change in total entropy for an isothermal physical process in any set of spatial coordinates. PMID:24436633

  11. The design of mobile robot control system for the aged and the disabled

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Lei, Shi; Xiang, Gao; Jin, Zhang

    2017-01-01

    This paper designs a control system of mobile robot for the aged and the disabled, which consists of two main parts: human-computer interaction and drive control module. The data of the two parts is transferred via universal asynchronous receiver/transmitter. In the former part, the speed and direction information of the mobile robot is obtained by hall joystick. In the latter part, the electronic differential algorithm is developed to implement the robot mobile function by driving two-wheel motors. In order to improve the comfort of the robot when speed or direction is changed, the least squares algorithm is used to optimize the speed characteristic curves of the two motors. Experimental results have verified the effectiveness of the designed system.

  12. Differential protection among fractionated blueberry polyphenolic families against DA-, ABeta 42 and LPS-induced decrements in Ca2+ buffering in primary hippocampal cells

    USDA-ARS?s Scientific Manuscript database

    It has been postulated that at least part of the loss of cognitive function in aging may be the result of deficits in Ca2+ recovery (CAR) and increased oxidative/inflammatory (OX/INF) stress signaling. However, previous research showed that aged animals supplemented with blueberry (BB) extract, show...

  13. Thematization of Derivative Schema in University Students: Nuances in Constructing Relations between a Function's Successive Derivatives

    ERIC Educational Resources Information Center

    Fuentealba, Claudio; Sánchez-Matamoros, Gloria; Badillo, Edelmira; Trigueros, María

    2017-01-01

    This study is part of a more extensive research project that addresses the understanding of the derivative concept in university students with prior instruction in differential calculus. In particular, we focus on the analysis of students' responses to a sequence of tasks that require a high level of understanding of the concept, and complement…

  14. Weak and strong novice readers of English as a foreign language: effects of first language and socioeconomic status.

    PubMed

    Kahn-Horwitz, Janina; Shimron, Joseph; Sparks, Richard L

    2006-06-01

    This study examined individual differences among beginning readers of English as a foreign language (EFL). The study concentrated on the effects of underlying first language (L1) knowledge as well as EFL letter and vocabulary knowledge. Phonological and morphological awareness, spelling, vocabulary knowledge, and word reading in Hebrew L1, in addition to knowledge of EFL letters and EFL vocabulary, were measured. The study also investigated the effect of socioeconomic background (SES) on beginning EFL readers. Participants included 145 fourth graders from three schools representing two socioeconomic backgrounds in the north of Israel. The results indicate that knowledge of English letters played a more prominent role than knowledge of Hebrew L1 components in differentiating between strong and weak EFL readers. The Linguistic Coding Differences Hypothesis was supported by L1 phonological awareness, word reading, and vocabulary knowledge appearing as part of discriminating functions. The presence of English vocabulary knowledge as part of the discriminant functions provides support for English word reading being more than just a decoding task for EFL beginner readers. Socioeconomic status differentiated the groups for EFL word recognition but not for EFL reading comprehension.

  15. The Him gene reveals a balance of inputs controlling muscle differentiation in Drosophila.

    PubMed

    Liotta, David; Han, Jun; Elgar, Stuart; Garvey, Clare; Han, Zhe; Taylor, Michael V

    2007-08-21

    Tissue development requires the controlled regulation of cell-differentiation programs. In muscle, the Mef2 transcription factor binds to and activates the expression of many genes and has a major positive role in the orchestration of differentiation. However, little is known about how Mef2 activity is regulated in vivo during development. Here, we characterize a gene, Holes in muscle (Him), which our results indicate is part of this control in Drosophila. Him expression rapidly declines as embryonic muscle differentiates, and consistent with this, Him overexpression inhibits muscle differentiation. This inhibitory effect is suppressed by mef2, implicating Him in the mef2 pathway. We then found that Him downregulates the transcriptional activity of Mef2 in both cell culture and in vivo. Furthermore, Him protein binds Groucho, a conserved, transcriptional corepressor, through a WRPW motif and requires this motif and groucho function to inhibit both muscle differentiation and Mef2 activity during development. Together, our results identify a mechanism that can inhibit muscle differentiation in vivo. We conclude that a balance of positive and negative inputs, including Mef2, Him, and Groucho, controls muscle differentiation during Drosophila development and suggest that one outcome is to hold developing muscle cells in a state with differentiation genes poised to be expressed.

  16. The Him Gene Reveals a Balance of Inputs Controlling Muscle Differentiation in Drosophila

    PubMed Central

    Liotta, David; Han, Jun; Elgar, Stuart; Garvey, Clare; Han, Zhe; Taylor, Michael V.

    2007-01-01

    Summary Tissue development requires the controlled regulation of cell-differentiation programs. In muscle, the Mef2 transcription factor binds to and activates the expression of many genes and has a major positive role in the orchestration of differentiation [1–4]. However, little is known about how Mef2 activity is regulated in vivo during development. Here, we characterize a gene, Holes in muscle (Him), which our results indicate is part of this control in Drosophila. Him expression rapidly declines as embryonic muscle differentiates, and consistent with this, Him overexpression inhibits muscle differentiation. This inhibitory effect is suppressed by mef2, implicating Him in the mef2 pathway. We then found that Him downregulates the transcriptional activity of Mef2 in both cell culture and in vivo. Furthermore, Him protein binds Groucho, a conserved, transcriptional corepressor, through a WRPW motif and requires this motif and groucho function to inhibit both muscle differentiation and Mef2 activity during development. Together, our results identify a mechanism that can inhibit muscle differentiation in vivo. We conclude that a balance of positive and negative inputs, including Mef2, Him, and Groucho, controls muscle differentiation during Drosophila development and suggest that one outcome is to hold developing muscle cells in a state with differentiation genes poised to be expressed. PMID:17702578

  17. Effect of hyperglycemia on the number of CD117+ progenitor cells and their differentiation toward endothelial progenitor cells in young and old ages.

    PubMed

    Pierpaoli, Elisa; Moresi, Raffaella; Orlando, Fiorenza; Malavolta, Marco; Provinciali, Mauro

    2016-10-01

    Dysfunction of endothelial progenitor cells (EPCs) has been reported either in aging or diabetes, though the influence of an "old" environment on numerical and functional changes of diabetes associated EPCs is not known. We evaluated the effect of both aging and early stage of streptozotocin-induced diabetes on the number of bone marrow-derived CD117 + progenitor cells, and on their differentiation in vitro toward EPCs. The phenotype of progenitor cells and the uptake of acetylated-low density lipoprotein (Ac-LDL) were evaluated after cell culture in VEGF, FGF-1, and IGF-1 supplemented medium. Hyperglycemia similarly reduced the number of CD117 + cells both in young and old mice. CD117 + cells from young mice differentiated better than those from old animals "in vitro", with a greater reduction of CD117 + cells and an higher increase of CD184 + VEGFR-2 + cells. In diabetic mice, in vitro CD117 + cells differentiation was significantly reduced in young animals. Diabetes did not impact on the scarce differentiation of CD117 + cells from old mice. Hyperglycemia reduced the uptake of acLDL by EPCs greatly in young than in old mice. These findings indicate that part of the EPCs functional alterations induced by hyperglicemia in young mice are observed in normal aged mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    PubMed Central

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  19. Gas Jets

    NASA Technical Reports Server (NTRS)

    Chaplygin, S.

    1944-01-01

    A brief summary of the contents of this paper is presented here. In part I the differential equations of the problem of a gas flow in two dimensions is derived and the particular integrals by which the problem on jets is solved are given. Use is made of the same independent variables as Molenbroek used, but it is found to be more suitable to consider other functions. The stream function and velocity potential corresponding to the problem are given in the form of series. The investigation on the convergence of these series in connection with certain properties of the functions entering them forms the subject of part II. In part III the problem of the outflow of a gas from an infinite vessel with plane walls is solved. In part IV the impact of a gas jet on a plate is considered and the limiting case where the jet expands to infinity changing into a gas flow is taken up in more detail. This also solved the equivalent problem of the resistance of a gaseous medium to the motion of a plate. Finally, in part V, an approximate method is presented that permits a simpler solution of the problem of jet flows in the case where the velocities of the gas (velocities of the particles in the gas) are not very large.

  20. Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells.

    PubMed

    Shishido, Yurina; Baba, Takashi; Sato, Tetsuya; Shima, Yuichi; Miyabayashi, Kanako; Inoue, Miki; Akiyama, Haruhiko; Kimura, Hiroshi; Kanai, Yoshiakira; Ishihara, Yasuhiro; Haraguchi, Shogo; Miyazaki, Akira; Rozman, Damjana; Yamazaki, Takeshi; Choi, Man-Ho; Ohkawa, Yasuyuki; Suyama, Mikita; Morohashi, Ken-Ichirou

    2017-02-02

    SRY, a sex-determining gene, induces testis development in chromosomally female (XX) individuals. However, mouse XX Sertoli cells carrying Sry (XX/Sry Sertoli cells) are incapable of fully supporting germ cell development, even when the karyotype of the germ cells is XY. While it has therefore been assumed that XX/Sry Sertoli cells are not functionally equivalent to XY Sertoli cells, it has remained unclear which specific functions are affected. To elucidate the functional difference, we compared the gene expression of XY and XX/Sry Sertoli cells. Lactate and cholesterol metabolisms, essential for nursing the developing germ cells, were down-regulated in XX/Sry cells, which appears to be caused at least in part by the differential expression of histone modification enzymes SMCX/SMCY (H3K4me3 demethylase) and UTX/UTY (H3K27me3 demethylase) encoded by the sex chromosomes. We suggest that down-regulation of lactate and cholesterol metabolism that may be due to altered epigenetic modification affects the nursing functions of XX/Sry Sertoli cells.

  1. Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells

    PubMed Central

    Shishido, Yurina; Baba, Takashi; Sato, Tetsuya; Shima, Yuichi; Miyabayashi, Kanako; Inoue, Miki; Akiyama, Haruhiko; Kimura, Hiroshi; Kanai, Yoshiakira; Ishihara, Yasuhiro; Haraguchi, Shogo; Miyazaki, Akira; Rozman, Damjana; Yamazaki, Takeshi; Choi, Man-Ho; Ohkawa, Yasuyuki; Suyama, Mikita; Morohashi, Ken-ichirou

    2017-01-01

    SRY, a sex-determining gene, induces testis development in chromosomally female (XX) individuals. However, mouse XX Sertoli cells carrying Sry (XX/Sry Sertoli cells) are incapable of fully supporting germ cell development, even when the karyotype of the germ cells is XY. While it has therefore been assumed that XX/Sry Sertoli cells are not functionally equivalent to XY Sertoli cells, it has remained unclear which specific functions are affected. To elucidate the functional difference, we compared the gene expression of XY and XX/Sry Sertoli cells. Lactate and cholesterol metabolisms, essential for nursing the developing germ cells, were down-regulated in XX/Sry cells, which appears to be caused at least in part by the differential expression of histone modification enzymes SMCX/SMCY (H3K4me3 demethylase) and UTX/UTY (H3K27me3 demethylase) encoded by the sex chromosomes. We suggest that down-regulation of lactate and cholesterol metabolism that may be due to altered epigenetic modification affects the nursing functions of XX/Sry Sertoli cells. PMID:28150810

  2. The solids-flux theory--confirmation and extension by using partial differential equations.

    PubMed

    Diehl, Stefan

    2008-12-01

    The solids-flux theory has been used for half a century as a tool for estimating concentration and fluxes in the design and operation of secondary settling tanks during stationary conditions. The flux theory means that the conservation of mass is used in one dimension together with the batch-settling flux function according to the Kynch assumption. The flux theory results correspond to stationary solutions of a partial differential equation, a conservation law, with discontinuous coefficients modelling the continuous-sedimentation process in one dimension. The mathematical analysis of such an equation is intricate, partly since it cannot be interpreted in the classical sense. Recent results, however, make it possible to partly confirm and extend the previous flux theory statements, partly draw new conclusions also on the dynamic behaviour and the possibilities and limitations for control. We use here a single example of an ideal settling tank and a given batch-settling flux in a whole series of calculations. The mathematical results are adapted towards the application and many of them are conveniently presented in terms of operating charts.

  3. A new method for calculating differential distributions directly in Mellin space

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander

    2006-12-01

    We present a new method for the calculation of differential distributions directly in Mellin space without recourse to the usual momentum-fraction (or z-) space. The method is completely general and can be applied to any process. It is based on solving the integration-by-parts identities when one of the powers of the propagators is an abstract number. The method retains the full dependence on the Mellin variable and can be implemented in any program for solving the IBP identities based on algebraic elimination, like Laporta. General features of the method are: (1) faster reduction, (2) smaller number of master integrals compared to the usual z-space approach and (3) the master integrals satisfy difference instead of differential equations. This approach generalizes previous results related to fully inclusive observables like the recently calculated three-loop space-like anomalous dimensions and coefficient functions in inclusive DIS to more general processes requiring separate treatment of the various physical cuts. Many possible applications of this method exist, the most notable being the direct evaluation of the three-loop time-like splitting functions in QCD.

  4. Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta

    PubMed Central

    Ha, Chul-Won; Kim, Jin A; Heo, Jin-Chul; Han, Woo-Jung; Oh, Soo-Young; Choi, Suk-Joo

    2017-01-01

    Background The placenta is a very attractive source of mesenchymal stem cells (MSCs) for regenerative medicine due to readily availability, non-invasive acquisition, and avoidance of ethical issues. Isolating MSCs from parts of placenta tissue has obtained growing interest because they are assumed to exhibit different proliferation and differentiation potentials due to complex structures and functions of the placenta. The objective of this study was to isolate MSCs from different parts of the placenta and compare their characteristics. Methods Placenta was divided into amniotic epithelium (AE), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), chorionic trophoblast without villi (CT-V), decidua (DC), and whole placenta (Pla). Cells isolated from each layer were subjected to analyses for their morphology, proliferation ability, surface markers, and multi-lineage differentiation potential. MSCs were isolated from all placental layers and their characteristics were compared. Findings Surface antigen phenotype, morphology, and differentiation characteristics of cells from all layers indicated that they exhibited properties of MSCs. MSCs from different placental layers had different proliferation rates and differentiation potentials. MSCs from CM, CT-V, CV, and DC had better population doubling time and multi-lineage differentiation potentials compared to those from other layers. Conclusions Our results indicate that MSCs with different characteristics can be isolated from all layers of term placenta. These finding suggest that it is necessary to appropriately select MSCs from different placental layers for successful and consistent outcomes in clinical applications. PMID:28225815

  5. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus

    PubMed Central

    Haddad-Tóvolli, Roberta; Paul, Fabian A.; Zhang, Yuanfeng; Zhou, Xunlei; Theil, Thomas; Puelles, Luis; Blaess, Sandra; Alvarez-Bolado, Gonzalo

    2015-01-01

    Secreted protein Sonic hedgehog (Shh) ventralizes the neural tube by modulating the crucial balance between activating and repressing functions (GliA, GliR) of transcription factors Gli2 and Gli3. This balance—the Shh-Gli code—is species- and context-dependent and has been elucidated for the mouse spinal cord. The hypothalamus, a forebrain region regulating vital functions like homeostasis and hormone secretion, shows dynamic and intricate Shh expression as well as complex regional differentiation. Here we asked if particular combinations of Gli2 and Gli3 and of GliA and GliR functions contribute to the variety of hypothalamic regions, i.e., we wanted to approach the question of a possible hypothalamic version of the Shh-Gli code. Based on mouse mutant analysis, we show that: (1) hypothalamic regional heterogeneity is based in part on differentially stringent requirements for Gli2 or Gli3; (2) another source of diversity are differential requirements for Shh of neural vs. non-neural origin; (3) the medial progenitor domain known to depend on Gli2 for its development generates several essential hypothalamic nuclei plus the pituitary and median eminence; (4) the suppression of Gli3R by neural and non-neural Shh is essential for hypothalamic specification. Finally, we have mapped our results on a recent model which considers the hypothalamus as a transverse region with alar and basal portions. Our data confirm the model and are explained by it. PMID:25859185

  6. Theory of Tunneling Spectroscopy in a Mn12 Single-Electron Transistor by Density-Functional Theory Methods

    NASA Astrophysics Data System (ADS)

    Michalak, Ł.; Canali, C. M.; Pederson, M. R.; Paulsson, M.; Benza, V. G.

    2010-01-01

    We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.

  7. Theory of tunneling spectroscopy in a Mn12 single-electron transistor by density-functional theory methods.

    PubMed

    Michalak, Ł; Canali, C M; Pederson, M R; Paulsson, M; Benza, V G

    2010-01-08

    We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.

  8. Deletion of the Ttf1 gene in differentiated neurons disrupts female reproduction without impairing basal ganglia function.

    PubMed

    Mastronardi, Claudio; Smiley, Gregory G; Raber, Jacob; Kusakabe, Takashi; Kawaguchi, Akio; Matagne, Valerie; Dietzel, Anja; Heger, Sabine; Mungenast, Alison E; Cabrera, Ricardo; Kimura, Shioko; Ojeda, Sergio R

    2006-12-20

    Thyroid transcription factor 1 (TTF1) [also known as Nkx2.1 (related to the NK-2 class of homeobox genes) and T/ebp (thyroid-specific enhancer-binding protein)], a homeodomain gene required for basal forebrain morphogenesis, remains expressed in the hypothalamus after birth, suggesting a role in neuroendocrine function. Here, we show an involvement of TTF1 in the control of mammalian puberty and adult reproductive function. Gene expression profiling of the nonhuman primate hypothalamus revealed that TTF1 expression increases at puberty. Mice in which the Ttf1 gene was ablated from differentiated neurons grew normally and had normal basal ganglia/hypothalamic morphology but exhibited delayed puberty, reduced reproductive capacity, and a short reproductive span. These defects were associated with reduced hypothalamic expression of genes required for sexual development and deregulation of a gene involved in restraining puberty. No extrapyramidal impairments associated with basal ganglia dysfunction were apparent. Thus, although TTF1 appears to fulfill only a morphogenic function in the ventral telencephalon, once this function is satisfied in the hypothalamus, TTF1 remains active as part of the transcriptional machinery controlling female sexual development.

  9. Stress-strain state on non-thin plates and shells. Generalized theory (survey)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemish, Yu.N.; Khoma, I.Yu.

    1994-05-01

    In the first part of this survey, we examined exact and approximate analytic solutions of specific problems for thick shells and plates obtained on the basis of three-dimensional equations of the mathematical theory of elasticity. The second part of the survey, presented here, is devoted to systematization and analysis of studies made in regard to a generalized theory of plates and shells based on expansion of the sought functions into Fourier series in Legendre polynomials of the thickness coordinate. Methods are described for constructing systems of differential equations in the coefficients of the expansions (as functions of two independent variablesmore » and time), along with the corresponding boundary and initial conditions. Matters relating to substantiation of the given approach and its generalizations are also discussed.« less

  10. Differentiated muscles are mandatory for gas-filling of the Drosophila airway system.

    PubMed

    Wang, Yiwen; Cruz, Tina; Irion, Uwe; Moussian, Bernard

    2015-11-30

    At the end of development, organs acquire functionality, thereby ensuring autonomy of an organism when it separates from its mother or a protective egg. In insects, respiratory competence starts when the tracheal system fills with gas just before hatching of the juvenile animal. Cellular and molecular mechanisms of this process are not fully understood. Analyses of the phenotype of Drosophila embryos with malformed muscles revealed that they fail to gas-fill their tracheal system. Indeed, we show that major regulators of muscle formation like Lame duck and Blown fuse are important, while factors involved in the development of subsets of muscles including cardiac and visceral muscles are dispensable for this process, suggesting that somatic muscles (or parts of them) are essential to enable tracheal terminal differentiation. Based on our phenotypic data, we assume that somatic muscle defect severity correlates with the penetrance of the gas-filling phenotype. This argues that a limiting molecular or mechanical muscle-borne signal tunes tracheal differentiation. We think that in analogy to the function of smooth muscles in vertebrate lungs, a balance of physical forces between muscles and the elasticity of tracheal walls may be decisive for tracheal terminal differentiation in Drosophila. © 2015. Published by The Company of Biologists Ltd.

  11. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS.

    PubMed

    Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui

    2017-09-01

    Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.

  12. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  13. [The "athlete's heart": structure, function and differential diagnosis].

    PubMed

    Carro, Amelia; Carro, Fernando; del Valle, Miguel Enrique

    2011-10-22

    Long-term, intense sport activity induces morphologic and functional adaptations on cardiovascular system. The magnitude of these changes is determined by various factors, creating a specific condition: the "Athlete's Heart" (AH). It is important to distinguish this entity from other cardiomyopathies, taking into account that the differential diagnosis can be challenging. There has been an increase in the number of people practicing sports, which goes in parallel with the increase in the prevalence of AH. However, the proportion of asymptomatic subjects affected by cardiovascular diseases taking part on competitive sports, is also growing. We revise the main characteristics of AH, as well as the key points to distinguish AH from pathologic conditions. A delicate characterization as AH or cardiomyopathy would help to settle appropriate measures to lower the risk of sports-related sudden cardiac death. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  14. Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity

    PubMed Central

    Benedek, Mathias; Jauk, Emanuel; Sommer, Markus; Arendasy, Martin; Neubauer, Aljoscha C.

    2014-01-01

    Intelligence and creativity are known to be correlated constructs suggesting that they share a common cognitive basis. The present study assessed three specific executive abilities – updating, shifting, and inhibition – and examined their common and differential relations to fluid intelligence and creativity (i.e., divergent thinking ability) within a latent variable model approach. Additionally, it was tested whether the correlation of fluid intelligence and creativity can be explained by a common executive involvement. As expected, fluid intelligence was strongly predicted by updating, but not by shifting or inhibition. Creativity was predicted by updating and inhibition, but not by shifting. Moreover, updating (and the personality factor openness) was found to explain a relevant part of the shared variance between intelligence and creativity. The findings provide direct support for the executive involvement in creative thought and shed further light on the functional relationship between intelligence and creativity. PMID:25278640

  15. Cell differentiation modeled via a coupled two-switch regulatory network

    NASA Astrophysics Data System (ADS)

    Schittler, D.; Hasenauer, J.; Allgöwer, F.; Waldherr, S.

    2010-12-01

    Mesenchymal stem cells can give rise to bone and other tissue cells, but their differentiation still escapes full control. In this paper we address this issue by mathematical modeling. We present a model for a genetic switch determining the cell fate of progenitor cells which can differentiate into osteoblasts (bone cells) or chondrocytes (cartilage cells). The model consists of two switch mechanisms and reproduces the experimentally observed three stable equilibrium states: a progenitor, an osteogenic, and a chondrogenic state. Conventionally, the loss of an intermediate (progenitor) state and the entailed attraction to one of two opposite (differentiated) states is modeled as a result of changing parameters. In our model in contrast, we achieve this by distributing the differentiation process to two functional switch parts acting in concert: one triggering differentiation and the other determining cell fate. Via stability and bifurcation analysis, we investigate the effects of biochemical stimuli associated with different system inputs. We employ our model to generate differentiation scenarios on the single cell as well as on the cell population level. The single cell scenarios allow to reconstruct the switching upon extrinsic signals, whereas the cell population scenarios provide a framework to identify the impact of intrinsic properties and the limiting factors for successful differentiation.

  16. DIF Analysis across Genders for Reading Comprehension Part of English Language Achievement Exam as a Foreign Language

    ERIC Educational Resources Information Center

    Ögretmen, Tuncay

    2015-01-01

    The purpose of this study is to carry out differential item functioning (DIF) analysis for content areas of a reading comprehension subtest using four area indices within Item Response Theory (IRT) framework. The differences in the magnitudes of the area indices were compared based on the subject areas. The DIF analysis was carried out across…

  17. Study of Efficacy and Safety of PDR001 in Patients With Advanced or Metastatic, Well-differentiated, Non-functional Neuroendocrine Tumors of Pancreatic, Gastrointestinal (GI), or Thoracic Origin or Poorly-differentiated Gastroenteropancreatic Neuroendocrine Carcinoma (GEP-NEC)

    ClinicalTrials.gov

    2017-11-15

    Well-differentiated Non-functional NET of Thoracic Origin; Well-differentiated Non-functional NET of Gastrointestinal Origin; Well-differentiated Non-functional NET of Pancreatic Origin; Poorly-differentiated Gastroenteropancreatic Neuroendocrine Carcinoma

  18. Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations

    PubMed Central

    Somoza, Rodrigo A.; Welter, Jean F.; Correa, Diego

    2014-01-01

    Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regenerative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs) were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs; however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue engineering can become a front-line technology for successful articular cartilage regeneration are highlighted. PMID:24749845

  19. Habenula Circuit Development: Past, Present, and Future

    PubMed Central

    Beretta, Carlo A.; Dross, Nicolas; Guiterrez-Triana, Jose A.; Ryu, Soojin; Carl, Matthias

    2012-01-01

    The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left–right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development. PMID:22536170

  20. Habenula circuit development: past, present, and future.

    PubMed

    Beretta, Carlo A; Dross, Nicolas; Guiterrez-Triana, Jose A; Ryu, Soojin; Carl, Matthias

    2012-01-01

    The habenular neural circuit is attracting increasing attention from researchers in fields as diverse as neuroscience, medicine, behavior, development, and evolution. Recent studies have revealed that this part of the limbic system in the dorsal diencephalon is involved in reward, addiction, and other behaviors and its impairment is associated with various neurological conditions and diseases. Since the initial description of the dorsal diencephalic conduction system (DDC) with the habenulae in its center at the end of the nineteenth century, increasingly sophisticated techniques have resolved much of its anatomy and have shown that these pathways relay information from different parts of the forebrain to the tegmentum, midbrain, and hindbrain. The first part of this review gives a brief historical overview on how the improving experimental approaches have allowed the stepwise uncovering much of the architecture of the habenula circuit as we know it today. Our brain distributes tasks differentially between left and right and it has become a paradigm that this functional lateralization is a universal feature of vertebrates. Moreover, task dependent differential brain activities have been linked to anatomical differences across the left-right axis in humans. A good way to further explore this fundamental issue will be to study the functional consequences of subtle changes in neural network formation, which requires that we fully understand DDC system development. As the habenular circuit is evolutionarily highly conserved, researchers have the option to perform such difficult experiments in more experimentally amenable vertebrate systems. Indeed, research in the last decade has shown that the zebrafish is well suited for the study of DDC system development and the phenomenon of functional lateralization. We will critically discuss the advantages of the zebrafish model, available techniques, and others that are needed to fully understand habenular circuit development.

  1. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication.

    PubMed

    Qin, Yiwen; Peng, Yuanzhen; Zhao, Wei; Pan, Jianping; Ksiezak-Reding, Hanna; Cardozo, Christopher; Wu, Yingjie; Divieti Pajevic, Paola; Bonewald, Lynda F; Bauman, William A; Qin, Weiping

    2017-06-30

    Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. [Suspected Alzheimer's disease. Selection of outpatients for neuropsychological assessment].

    PubMed

    Wolf, S A; Henry, M; Deike, R; Ebert, A D; Wallesch, C-W

    2008-04-01

    Incipient Alzheimer's disease (AD) is frequently suspected by neurologists and psychiatrists, but diagnosis is difficult to establish. The aim of this report was to analyse to what extent suspicion is confirmed by a comprehensive neuropsychological examination intended to distinguish different types of dementia. Descriptive data analysis was used for investigating the differential diagnoses of 47 outpatients with suspected AD referred to a department of neuropsychology by physicians in private practice. Data analysis was based upon the NINCDS-ADRDA diagnostic criteria of AD. Only 38% of the outpatients examined with suspected AD met the NINCDS-ADRDA diagnostic criteria for AD or mixed dementia from a neuropsychological point of view, whereas 22% met criteria for other types of dementia. The remaining patients met criteria for distinct differential diagnoses (23%) or lacked pathological findings in neuropsychological functions (17%). Neuropsychology is an essential part in the differential diagnosis of mild to moderate dementias. It can aid in differential therapeutic considerations concerning the treatment of dementia, for example in selecting appropriate treatments or avoiding expensive but inappropriate ones.

  3. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study.

    PubMed

    Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A

    2009-09-01

    Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.

  4. Trithorax complex component Menin controls differentiation and maintenance of T helper 17 cells

    PubMed Central

    Watanabe, Yukiko; Onodera, Atsushi; Kanai, Urara; Ichikawa, Tomomi; Obata-Ninomiya, Kazushige; Wada, Tomoko; Kiuchi, Masahiro; Iwamura, Chiaki; Tumes, Damon J.; Shinoda, Kenta; Yagi, Ryoji; Motohashi, Shinichiro; Hirahara, Kiyoshi; Nakayama, Toshinori

    2014-01-01

    Epigenetic modifications, such as posttranslational modifications of histones, play an important role in gene expression and regulation. These modifications are in part mediated by the Trithorax group (TrxG) complex and the Polycomb group (PcG) complex, which activate and repress transcription, respectively. We herein investigate the role of Menin, a component of the TrxG complex in T helper (Th) cell differentiation and show a critical role for Menin in differentiation and maintenance of Th17 cells. Menin−/− T cells do not efficiently differentiate into Th17 cells, leaving Th1 and Th2 cell differentiation intact in in vitro cultures. Menin deficiency resulted in the attenuation of Th17-induced airway inflammation. In differentiating Th17 cells, Menin directly bound to the Il17a gene locus and was required for the deposition of permissive histone modifications and recruitment of the RNA polymerase II transcriptional complex. Interestingly, although Menin bound to the Rorc locus, Menin was dispensable for the induction of Rorc expression and permissive histone modifications in differentiating Th17 cells. In contrast, Menin was required to maintain expression of Rorc in differentiated Th17 cells, indicating that Menin is essential to stabilize expression of the Rorc gene. Thus, Menin orchestrates Th17 cell differentiation and function by regulating both the induction and maintenance of target gene expression. PMID:25136117

  5. Analysis of expression patterns of IGF-1, caspase-3 and HSP-70 in developing human tooth germs.

    PubMed

    Kero, Darko; Kalibovic Govorko, Danijela; Medvedec Mikic, Ivana; Vukojevic, Katarina; Cigic, Livia; Saraga-Babic, Mirna

    2015-10-01

    To analyze expression patterns of IGF-1, caspase-3 and HSP-70 in human incisor and canine tooth germs during the late bud, cap and bell stages of odontogenesis. Head areas or parts of jaw containing teeth from 10 human fetuses aged between 9th and 20th developmental weeks were immunohistochemically analyzed using IGF-1, active caspase-3 and HSP-70 markers. Semi-quantitative analysis of each marker's expression pattern was also performed. During the analyzed period, IGF-1 and HSP-70 were mostly expressed in enamel organ. As development progressed, expression of IGF-1 and HSP-70 became more confined to differentiating tissues in the future cusp tip area, as well as in highly proliferating cervical loops. Few apoptotic bodies highly positive to active caspase-3 were observed in enamel organ and dental papilla from the cap stage onward. However, both enamel epithelia moderately expressed active caspase-3 throughout the investigated period. Expression patterns of IGF-1, active caspase-3 and HSP-70 imply importance of these factors for early human tooth development. IGF-1 and HSP-70 have versatile functions in control of proliferation, differentiation and anti-apoptotic protection of epithelial parts of human enamel organ. Active caspase-3 is partially involved in formation and apoptotic removal of primary enamel knot, although present findings might reflect its ability to perform other non-death functions such as differentiation of hard dental tissues secreting cells and guidance of ingrowth of proliferating cervical loops. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Zebrafish numb and numblike are involved in primitive erythrocyte differentiation.

    PubMed

    Bresciani, Erica; Confalonieri, Stefano; Cermenati, Solei; Cimbro, Simona; Foglia, Efrem; Beltrame, Monica; Di Fiore, Pier Paolo; Cotelli, Franco

    2010-12-13

    Notch signaling is an evolutionarily conserved regulatory circuitry implicated in cell fate determination in various developmental processes including hematopoietic stem cell self-renewal and differentiation of blood lineages. Known endogenous inhibitors of Notch activity are Numb-Nb and Numblike-Nbl, which play partially redundant functions in specifying and maintaining neuronal differentiation. Nb and Nbl are expressed in most tissues including embryonic and adult hematopoietic tissues in mice and humans, suggesting possible roles for these proteins in hematopoiesis. We employed zebrafish to investigate the possible functional role of Numb and Numblike during hematopoiesis, as this system allows a detailed analysis even in embryos with severe defects that would be lethal in other organisms. Here we describe that nb/nbl knockdown results in severe reduction or absence of embryonic erythrocytes in zebrafish. Interestingly, nb/nbl knocked-down embryos present severe downregulation of the erythroid transcription factor gata1. This results in erythroblasts which fail to mature and undergo apoptosis. Our results indicate that Notch activity is increased in embryos injected with nb/nbl morpholino, and we show that inhibition of Notch activation can partially rescue the hematopoietic phenotype. Our results provide the first in vivo evidence of an involvement of Numb and Numblike in zebrafish erythroid differentiation during primitive hematopoiesis. Furthermore, we found that, at least in part, the nb/nbl morphant phenotype is due to enhanced Notch activation within hematopoietic districts, which in turn results in primitive erythroid differentiation defects.

  7. Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR.

    PubMed

    Alonso, Pablo; Cortizo, Millán; Cantón, Francisco R; Fernández, Belén; Rodríguez, Ana; Centeno, Maria L; Cánovas, Francisco M; Ordás, Ricardo J

    2007-12-01

    As part of a study aimed at understanding the physiological and molecular mechanisms involved in adventitious shoot bud formation in pine cotyledons, we conducted a transcriptome analysis to identify early-induced genes during the first phases of adventitious caulogenesis in Pinus pinea L. cotyledons cultured in the presence of benzyladenine. A subtractive cDNA library with more than 700 clones was constructed. Of these clones, 393 were sequenced, analyzed and grouped according to their putative function. Quantitative real-time PCR analysis was performed to confirm the differential expression of 30 candidate genes. Results are contrasted with available data for other species.

  8. Recovering Aerodynamic Side Loads on Rocket Nozzles using Quasi-Static Strain-Gage Measurements

    NASA Technical Reports Server (NTRS)

    Brown, Andrew; Ruf, Joseph H.; McDaniels, David M.

    2009-01-01

    During over-expanded operation of rocket nozzles, which is defined to be when the exit pressure is greater than internal pressure over some part of the nozzle, the nozzle will experience a transverse forcing function due to the pressure differential across the nozzle wall. Over-expansion occurs during the nozzle start-up and shutdown transient, even in high-altitude engines, because most test facilities cannot completely reproduce the near-vacuum pressures at those altitudes. During this transient, the pressure differential moves axially down the nozzle as it becomes pressurized, but this differential is never perfectly symmetric circumferentially. The character of the forcing function is highly complex and defined by a series of restricted and free shock separations. The subject of this paper is the determination of the magnitude of this loading during sub-scale testing via measurement of the structural dynamic response of the nozzle and its support structure. An initial attempt at back-calculating this load using the inverse of the transfer function was performed, but this attempt was shown to be highly susceptible to numerical error. The final method chosen was to use statically calibrated strain data and to filter out the system fundamental frequency such that the measured response yields close to the correct dynamic loading function. This method was shown to capture 93% of the pressure spectral energy using controlled load shaker testing. This method is one of the only practical ways for the inverse determination of the forcing function for non-stationary excitations, and, to the authors' knowledge, has not been described in the literature to date.

  9. The effect of chemically modified electrospun silica nanofiber on the mRNA and miRNA expression profile of neural stem cell differentiation.

    PubMed

    Mercado, Augustus T; Yeh, Jui-Ming; Chin, Ting Yu; Chen, Wen Shuo; Chen-Yang, Yui Whei; Chen, Chung-Yung

    2016-11-01

    A detailed genomic and epigenomic analyses of neural stem cells (NSCs) differentiation in synthetic microenvironments is essential for the advancement of regenerative medicine and therapeutic treatment of diseases. This study identified the changes in mRNA and miRNA expression profile during NSC differentiation on an artificial matrix. NSCs were grown on a surface-modified, electrospun tetraethyl-orthosilicate nanofiber (designated as SNF-AP) by providing a 3D-environment for cell growth and differentiation. Differentially expressed mRNAs and miRNAs of NSC differentiated in this microenvironment were identified through microarray analysis. The genes and miRNA targets responsible for the differentiation fate of NSCs and neuron development process were determined using Ingenuity Pathway Analysis (IPA). SNF-AP enhanced the expression of genes that activates the proliferation, development, and outgrowth of neurons, differentiation and generation of cells, neuritogenesis, outgrowth of neurites, microtubule dynamics, formation of cellular protrusions, and long-term potentiation during NSC differentiation. On the other hand, PDL inhibited neuritogenesis, microtubule dynamics, and proliferation and differentiation of cells and activated the apoptosis function. Moreover, the nanomaterial promoted the expression of more let-7 miRNAs, which have vital roles in NSC differentiation. Overall, SNF-AP is biocompatible and applicable scaffold for NSC differentiation in the development of neural tissue engineering. These findings are useful in enhancing in vitro NSC differentiation potential for preclinical studies and future clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2730-2743, 2016. © 2016 Wiley Periodicals, Inc.

  10. Differentiating Cerebellar Impact on Thalamic Nuclei.

    PubMed

    Gornati, Simona V; Schäfer, Carmen B; Eelkman Rooda, Oscar H J; Nigg, Alex L; De Zeeuw, Chris I; Hoebeek, Freek E

    2018-05-29

    The cerebellum plays a role in coordination of movements and non-motor functions. Cerebellar nuclei (CN) axons connect to various parts of the thalamo-cortical network, but detailed information on the characteristics of cerebello-thalamic connections is lacking. Here, we assessed the cerebellar input to the ventrolateral (VL), ventromedial (VM), and centrolateral (CL) thalamus. Confocal and electron microscopy showed an increased density and size of CN axon terminals in VL compared to VM or CL. Electrophysiological recordings in vitro revealed that optogenetic CN stimulation resulted in enhanced charge transfer and action potential firing in VL neurons compared to VM or CL neurons, despite that the paired-pulse ratio was not significantly different. Together, these findings indicate that the impact of CN input onto neurons of different thalamic nuclei varies substantially, which highlights the possibility that cerebellar output differentially controls various parts of the thalamo-cortical network. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.

    PubMed

    Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F

    2016-03-01

    Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S < M and N surfaces. RhoA inhibition increased adhesion on S and M surfaces, but not N surfaces. Cell migration in a wound healing assay was greater on S versus M versus N surfaces and RhoA inhibitor increased S adherent cell migration, but not N adherent cell migration. RhoA inhibitor enhanced osteogenic differentiation in S adherent cells, but not M or N adherent cells. RhoA activity was surface topography roughness dependent (S < M, N). RhoA activity and -mediated functions are influenced by surface topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.

  12. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  13. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation.

    PubMed

    Vladar, Eszter K; Nayak, Jayakar V; Milla, Carlos E; Axelrod, Jeffrey D

    2016-08-18

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.

  14. A model of differential amygdala activation in psychopathy.

    PubMed

    Moul, Caroline; Killcross, Simon; Dadds, Mark R

    2012-10-01

    This article introduces a novel hypothesis regarding amygdala function in psychopathy. The first part of this article introduces the concept of psychopathy and describes the main cognitive and affective impairments demonstrated by this population; that is, a deficit in fear-recognition, lower conditioned fear responses and poor performance in passive avoidance, and response-reversal learning tasks. Evidence for amygdala dysfunction in psychopathy is considered with regard to these deficits; however, the idea of unified amygdala function is untenable. A model of differential amygdala activation in which the basolateral amygdala (BLA) is underactive while the activity of the central amygdala (CeA) is of average to above average levels is proposed to provide a more accurate and up-to-date account for the specific cognitive and emotional deficits found in psychopathy. In addition, the model provides a mechanism by which attentional-based models and emotion-based models of psychopathy can coexist. Data to support the differential amygdala activation model are provided from studies from both human and animal research. Supporting evidence concerning some of the neurochemicals implicated in psychopathy is then reviewed. Implications of the model and areas of future research are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  15. Batch Scheduling for Hybrid Assembly Differentiation Flow Shop to Minimize Total Actual Flow Time

    NASA Astrophysics Data System (ADS)

    Maulidya, R.; Suprayogi; Wangsaputra, R.; Halim, A. H.

    2018-03-01

    A hybrid assembly differentiation flow shop is a three-stage flow shop consisting of Machining, Assembly and Differentiation Stages and producing different types of products. In the machining stage, parts are processed in batches on different (unrelated) machines. In the assembly stage, each part of the different parts is assembled into an assembly product. Finally, the assembled products will further be processed into different types of final products in the differentiation stage. In this paper, we develop a batch scheduling model for a hybrid assembly differentiation flow shop to minimize the total actual flow time defined as the total times part spent in the shop floor from the arrival times until its due date. We also proposed a heuristic algorithm for solving the problems. The proposed algorithm is tested using a set of hypothetic data. The solution shows that the algorithm can solve the problems effectively.

  16. Enskog theory for polydisperse granular mixtures. I. Navier-Stokes order transport.

    PubMed

    Garzó, Vicente; Dufty, James W; Hrenya, Christine M

    2007-09-01

    A hydrodynamic description for an s -component mixture of inelastic, smooth hard disks (two dimensions) or spheres (three dimensions) is derived based on the revised Enskog theory for the single-particle velocity distribution functions. In this first part of the two-part series, the macroscopic balance equations for mass, momentum, and energy are derived. Constitutive equations are calculated from exact expressions for the fluxes by a Chapman-Enskog expansion carried out to first order in spatial gradients, thereby resulting in a Navier-Stokes order theory. Within this context of small gradients, the theory is applicable to a wide range of restitution coefficients and densities. The resulting integral-differential equations for the zeroth- and first-order approximations of the distribution functions are given in exact form. An approximate solution to these equations is required for practical purposes in order to cast the constitutive quantities as algebraic functions of the macroscopic variables; this task is described in the companion paper.

  17. Rapid prototyping of carbon-based chemiresistive gas sensors on paper

    PubMed Central

    Mirica, Katherine A.; Azzarelli, Joseph M.; Weis, Jonathan G.; Schnorr, Jan M.; Swager, Timothy M.

    2013-01-01

    Chemically functionalized carbon nanotubes (CNTs) are promising materials for sensing of gases and volatile organic compounds. However, the poor solubility of carbon nanotubes hinders their chemical functionalization and the subsequent integration of these materials into devices. This manuscript describes a solvent-free procedure for rapid prototyping of selective chemiresistors from CNTs and graphite on the surface of paper. This procedure enables fabrication of functional gas sensors from commercially available starting materials in less than 15 min. The first step of this procedure involves the generation of solid composites of CNTs or graphite with small molecule selectors—designed to interact with specific classes of gaseous analytes—by solvent-free mechanical mixing in a ball mill and subsequent compression. The second step involves deposition of chemiresistive sensors by mechanical abrasion of these solid composites onto the surface of paper. Parallel fabrication of multiple chemiresistors from diverse composites rapidly generates cross-reactive arrays capable of sensing and differentiating gases and volatile organic compounds at part-per-million and part-per-thousand concentrations. PMID:23942132

  18. Parts, cavities, and object representation in infancy.

    PubMed

    Hayden, Angela; Bhatt, Ramesh S; Kangas, Ashley; Zieber, Nicole

    2011-02-01

    Part representation is not only critical to object perception but also plays a key role in a number of basic visual cognition functions, such as figure-ground segregation, allocation of attention, and memory for shapes. Yet, virtually nothing is known about the development of part representation. If parts are fundamental components of object shape representation early in life, then the infant visual system should give priority to parts over other aspects of objects. We tested this hypothesis by examining whether part shapes are more salient than cavity shapes to infants. Five-month-olds were habituated to a stimulus that contained a part and a cavity. In a subsequent novelty preference test, 5-month-olds exhibited a preference for the cavity shape, indicating that part shapes were more salient than cavity shapes during habituation. The differential processing of part versus cavity contours in infancy is consistent with theory and empirical findings in the literature on adult figure-ground perception and indicates that basic aspects of part-based object processing are evident early in life. (c) 2010 APA, all rights reserved.

  19. The four-loop six-gluon NMHV ratio function

    DOE PAGES

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N=4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q¯ differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result againstmore » multi-Regge predictions at NNLL and N 3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. As a result, we also provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.« less

  20. The four-loop six-gluon NMHV ratio function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; von Hippel, Matt; McLeod, Andrew J.

    2016-01-11

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar N = 4 super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a Q - differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We testmore » the result against multi- Regge predictions at NNLL and N 3LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We also study the analytical and numerical behavior of the parity-even and parity-odd parts on various lines and surfaces traversing the three-dimensional space of cross ratios. As part of this program, we characterize all irreducible hexagon functions through weight eight in terms of their coproduct. Furthermore, we provide representations of the ratio function in particular kinematic regions in terms of multiple polylogarithms.« less

  1. Using Differentials to Differentiate Trigonometric and Exponential Functions

    ERIC Educational Resources Information Center

    Dray, Tevian

    2013-01-01

    Starting from geometric definitions, we show how differentials can be used to differentiate trigonometric and exponential functions without limits, numerical estimates, solutions of differential equations, or integration.

  2. Changes of vessel-cells complex in zones of adaptive remodeling of the bone tissue under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, N.; Oganov, V.; Nosova, L.

    The development and differentiation of osteogenic cells in organism happen in closely topographical and functional connection with blood capillaries. We formerly proofed, that small-differentiated cells, which are in the population of perivascular cells are osteogenic cells -precursors . At the present time it is actually to clear up, how these biostructures react on conditions of less of biomechanical load on skeleton bones. We researched peculiarities of blood-bed structure and perivascular cells in metaphises of thighbones and tibial bones in rats, which were onboard the American space station SLS-2 and in experiments of modeling hypokinesia. There were used methods of cytochemistry, histology and electron microscopy. We established, that under the support and functional load decreasing in zones of bones adaptive remodeling, comparatively to control, on histosections the own volume of sinusoid capillaries reduces. The small vessels prevail here. The spaces of sinusoid capillaries are limited by 1 2 cells of the endothelia. Endotheliocytes in- general have the typical ultrastructure. Basal membranes are expressed not-distinctly. Perivascular cells don't create the unbroken layer. The population of these cells is not-homogeneous. It includes enclosed to endothelia small-differentiated forms and separating cells with sings of fibroblastic differentiation (the own volume of rough endoplasmic reticulum in cytoplasm induces). The part of these cells reacts on the alkaline phosphatase (the marker of the osteogenic differentiation). Under the conditions of support load decreasing (especially under the microgravity) there is a tendency to reducing of separating osteogenic cells number. We noted the priority of differentiating fibroblasts. It leads to further development in zones of bone remodeling of hearths of fibrous tissue, that doesn't mineralize. The obtained data are seen as one of mechanisms of osteoporosis and osteopenia development under the deficite of support load.

  3. Gonad differential proteins revealed with proteomics in oyster (Saccostrea cucullata) using alga as food contaminated with cadmium.

    PubMed

    Zhu, Bo; Gao, Kun-Shan; Wang, Ke-Jian; Ke, Cai-Huan; Huang, He-Qing

    2012-04-01

    As mercury and lead, cadmium (Cd) is one of the highly toxic metals in both the ocean and land environments, but its toxicological mechanism in organisms including human is still unclear because of the complex toxicological pathways in vivo. Here, the alga Chlorella vulgaris were cultivated at room temperature under the stress of cadmium (1 mg L(-1)) to obtain a toxic food, and then the contaminated food were directly supplied to oyster (Saccostrea cucullata) in seawater. After feeding with C. vulgaris contaminated with Cd (C. vulgaris-Cd), the differential proteins in the oyster gonad (OG) were effectively separated and identified with proteomic approaches. Eleven protein spots were observed to be significantly changed in the OG feeding with C. vulgaris-Cd, which seven spots of these differential proteins were down-regulated while four spots were up-regulated. These altered spots were further excised in gels and identified by a combined technique of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and database searching. A portion of these differential proteins were further proofed by real-time PCR and Western blotting. The results indicate that the major functions of these differential proteins were described as follows: binding, protein translocation, catalysis, regulation of energy metabolism, reproductive function and skeleton structure. These differential proteins in part may effectively provide a few novel biomarkers for the evaluation of Cd pollution level via a food pathway for harming halobios, mammal and human health, and for understanding the complex mechanisms of Cd toxicity in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Subprograms for integrating the equations of motion of satellites. FORTRAN 4

    NASA Technical Reports Server (NTRS)

    Prokhorenko, V. I.

    1980-01-01

    The subprograms for the formation of the right members of the equations of motion of artificial Earth satellites (AES), integration of systems of differential equations by Adams' method, and the calculation of the values of various functions from the AES parameters of motion are described. These subprograms are written in the FORTRAN 4 language and constitute an essential part of the package of applied programs for the calculation of navigational parameters AES.

  5. The emerging role of Hippo signaling pathway in regulating osteoclast formation.

    PubMed

    Yang, Wanlei; Han, Weiqi; Qin, An; Wang, Ziyi; Xu, Jiake; Qian, Yu

    2018-06-01

    A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases. © 2017 Wiley Periodicals, Inc.

  6. Multivariate two-part statistics for analysis of correlated mass spectrometry data from multiple biological specimens.

    PubMed

    Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi

    2017-01-01

    High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. An Effect Size Measure for Raju's Differential Functioning for Items and Tests

    ERIC Educational Resources Information Center

    Wright, Keith D.; Oshima, T. C.

    2015-01-01

    This study established an effect size measure for differential functioning for items and tests' noncompensatory differential item functioning (NCDIF). The Mantel-Haenszel parameter served as the benchmark for developing NCDIF's effect size measure for reporting moderate and large differential item functioning in test items. The effect size of…

  8. Functional Integration

    NASA Astrophysics Data System (ADS)

    Cartier, Pierre; DeWitt-Morette, Cecile

    2006-11-01

    Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.

  9. Functional Integration

    NASA Astrophysics Data System (ADS)

    Cartier, Pierre; DeWitt-Morette, Cecile

    2010-06-01

    Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.

  10. Evaluation of Retinal Function and Morphology of the Pink-Eyed Royal College of Surgeons (RCS) Rat: A Comparative Study of in Vivo and in Vitro Methods.

    PubMed

    Rösch, Sarah; Aretzweiler, Christoph; Müller, Frank; Walter, Peter

    2017-02-01

    To characterize the course of retinal degeneration in the pink-eyed RCS rat in vivo and in vitro. Retinal function of RCS rats at the age of 2 to 100 weeks was determined in vivo using full-field electroretinography (ERG). Retinal morphology was evaluated in vivo using spectral domain Optical Coherence Tomography (sd-OCT) and Fluorescence angiography (FA) as well as postmortem using immunohistochemistry (IH). As a control, retinal function and morphology of non-dystrophic Wistar rats were analyzed. RCS rats showed an extinction of the ERG beginning with the age of 4 weeks. In the OCT, the outer part of the retina (OPR) could be clearly distinguished from the inner part of the retina (IPR) until the age of 8 weeks. However, at this age, it was impossible to determine from OCT images whether the OPR was formed by the outer nuclear layer (ONL) or by cellular debris built in the course of retinal degeneration. In contrast, immunohistochemistry always enabled to differentiate between ONL and debris (RCS 4 weeks of age: OPR mainly formed by ONL; RCS 8 weeks of age: OPR consisted mainly of cell debris, only 1-2 cell rows of photoreceptor somata were left). In general, data obtained in vivo were confirmed by data obtained post mortem. Apart from the problem to differentiate between debris and ONL at the age of 8 weeks in the RCS rat, ERG and OCT are useful methods to evaluate retinal function and structure in vivo and to complement immunohistochemical analysis of the degeneration process.

  11. Protein Phosphatase 2A Isoforms Utilizing Aβ Scaffolds Regulate Differentiation through Control of Akt Protein*

    PubMed Central

    Hwang, Justin H.; Jiang, Tao; Kulkarni, Shreya; Faure, Nathalie; Schaffhausen, Brian S.

    2013-01-01

    Protein phosphatase 2A (PP2A) regulates almost all cell signaling pathways. It consists of a scaffolding A subunit to which a catalytic C subunit and one of many regulatory B subunits bind. Of the more than 80 PP2A isoforms, 10% use Aβ as a scaffold. This study demonstrates the isoform-specific function of the A scaffold subunits. Polyomaviruses have shown the importance of phosphotyrosine, PI3K, and p53 in transformation. Comparisons of polyoma and SV40 small T antigens implicate Aβ in the control of differentiation. Knockdown of Aβ enhanced differentiation. Akt signaling regulated differentiation; its activation or inhibition promoted or blocked it, respectively. Aβ bound Akt. Enhancement of PP2A Aβ/Akt interaction by polyoma small T antigen increased turnover of Akt Ser-473 phosphorylation. Conversely, knockdown of Aβ promoted Akt activity and reduced turnover of phosphate at Ser-473 of Akt. These data provide new insight into the regulation of Akt, a protein of extreme importance in cancer. Furthermore, our results suggest that the role for Aβ in differentiation and perhaps tumor suppression may lie partly in its ability to negatively regulate Akt. PMID:24052256

  12. Higher-order automatic differentiation of mathematical functions

    NASA Astrophysics Data System (ADS)

    Charpentier, Isabelle; Dal Cappello, Claude

    2015-04-01

    Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.

  13. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation

    PubMed Central

    Price, Nathan L.; Holtrup, Brandon; Kwei, Stephanie L.; Wabitsch, Martin; Rodeheffer, Matthew; Bianchini, Laurence; Suárez, Yajaira

    2016-01-01

    White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease. PMID:26830228

  14. Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing.

    PubMed

    Garikipati, Dilip K; Rodgers, Buel D

    2012-10-01

    Myostatin is a potent negative regulator of muscle growth in mammals. Despite high structural conservation, functional conservation in nonmammalian species is only assumed. This is particularly true for fish due to the presence of several myostatin paralogs: two in most species and four in salmonids (MSTN-1a, -1b, -2a, and -2b). Rainbow trout are a rich source of primary myosatellite cells as hyperplastic muscle growth occurs even in adult fish. These cells were therefore used to determine myostatin's effects on proliferation whereas our earlier studies reported its effects on quiescent cells. As in mammals, recombinant myostatin suppressed proliferation with no changes in cell morphology. Expression of MSTN-1a was several fold higher than the other paralogs and was autoregulated by myostatin, which also upregulated the expression of key differentiation markers: Myf5, MyoD1, myogenin, and myosin light chain. Thus, myostatin-stimulated cellular growth inhibition activates rather than represses differentiation. IGF-1 stimulated proliferation but had minimal and delayed effects on differentiation and its actions were suppressed by myostatin. However, IGF-1 upregulated MSTN-2a expression and the processing of its transcript, which is normally unprocessed. Myostatin therefore appears to partly mediate IGF-stimulated myosatellite differentiation in rainbow trout. This also occurs in mammals, although the IGF-stimulated processing of MSTN-2a transcripts is highly unique and is indicative of subfunctionalization within the gene family. These studies also suggest that the myokine's actions, including its antagonistic relationship with IGF-1, are conserved and that the salmonid gene family is functionally diverging.

  15. [Evaluation of the factorial and metric equivalence of the Sexual Assertiveness Scale (SAS) by sex].

    PubMed

    Sierra, Juan Carlos; Santos-Iglesias, Pablo; Vallejo-Medina, Pablo

    2012-05-01

    Sexual assertiveness refers to the ability to initiate sexual activity, refuse unwanted sexual activity, and use contraceptive methods to avoid sexually transmitted diseases, developing healthy sexual behaviors. The Sexual Assertiveness Scale (SAS) assesses these three dimensions. The purpose of this study is to evaluate, using structural equation modeling and differential item functioning, the equivalence of the scale between men and women. Standard scores are also provided. A total of 4,034 participants from 21 Spanish provinces took part in the study. Quota sampling method was used. Results indicate a strict equivalent dimensionality of the Sexual Assertiveness Scale across sexes. One item was flagged by differential item functioning, although it does not affect the scale. Therefore, there is no significant bias in the scale when comparing across sexes. Standard scores show similar Initiation assertiveness scores for men and women, and higher scores on Refusal and Sexually Transmitted Disease Prevention for women. This scale can be used on men and women with sufficient psychometric guarantees.

  16. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure

    PubMed Central

    Schulman, Betsy R. Maller; Liang, Xianping; Stahlhut, Carlos; DelConte, Casey; Stefani, Giovanni; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) controls the timing of key developmental events and terminal differentiation in part by directly regulating lin-41. C. elegans lin-41 mutants display precocious cell cycle exit and terminal differentiation of epidermal skin cells. lin-41 orthologues are found in more complex organisms including both mice and humans, but their roles are not known. We generated Mlin41 mouse mutants to ascertain a functional role for Mlin41. Strong loss of function Mlin41 gene-trap mutants demonstrated a striking neural tube closure defect during development, and embryonic lethality. Like C. elegans lin-41, Mlin41 also appears to be regulated by the let-7 and mir-125 miRNAs. Since Mlin41 is required for neural tube closure and survival it points to human lin-41 (HLIN41/TRIM71) as a potential human development and disease gene. PMID:19098426

  17. Differential effects of two phospholipase D inhibitors, 1-butanol and N-acylethanolamine, on in vivo cytoskeletal organization and Arabidopsis seedling growth.

    PubMed

    Motes, Christy M; Pechter, Priit; Yoo, Cheol Min; Wang, Yuh-Shuh; Chapman, Kent D; Blancaflor, Elison B

    2005-12-01

    Plant development is regulated by numerous chemicals derived from a multitude of metabolic pathways. However, we know very little about the biological effects and functions of many of these metabolites in the cell. N-Acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammalian physiology. Despite the intriguing similarities between animals and plants in NAE metabolism and perception, not much is known about the precise function of these metabolites in plant physiology. In plants, NAEs have been shown to inhibit phospholipase Dalpha (PLDalpha) activity, interfere with abscisic acid-induced stomatal closure, and retard Arabidopsis seedling development. 1-Butanol, an antagonist of PLD-dependent phosphatidic acid production, was reported to induce defects in Arabidopsis seedling development that were somewhat similar to effects induced by elevated levels of NAE. This raised the possibility that the impact of NAE on seedling growth could be mediated in part via its influence on PLD activity. To begin to address this possibility, we conducted a detailed, comparative analysis of the effects of 1-butanol and N-lauroylethanolamine (NAE 12:0) on Arabidopsis root cell division, in vivo cytoskeletal organization, seed germination, and seedling growth. Although both NAE 12:0 and 1-butanol induced profound cytoskeletal and morphological alterations in seedlings, there were distinct differences in their overall effects. 1-Butanol induced more pronounced modifications in cytoskeletal organization, seedling growth, and cell division at concentrations severalfold higher than NAE 12:0. We propose that these compounds mediate their differential effects on cellular organization and seedling growth, in part through the differential modulation of specific PLD isoforms.

  18. Defining a Model for Mitochondrial Function in mESC Differentiation

    EPA Science Inventory

    Defining a Model for Mitochondrial Function in mESC DifferentiationDefining a Model for Mitochondrial Function in mESC Differentiation Differentiating embryonic stem cells (ESCs) undergo mitochondrial maturation leading to a switch from a system dependent upon glycolysis to a re...

  19. Vegetable parenting practices scale. Item response modeling analyses

    PubMed Central

    Chen, Tzu-An; O’Connor, Teresia; Hughes, Sheryl; Beltran, Alicia; Baranowski, Janice; Diep, Cassandra; Baranowski, Tom

    2015-01-01

    Objective To evaluate the psychometric properties of a vegetable parenting practices scale using multidimensional polytomous item response modeling which enables assessing item fit to latent variables and the distributional characteristics of the items in comparison to the respondents. We also tested for differences in the ways item function (called differential item functioning) across child’s gender, ethnicity, age, and household income groups. Method Parents of 3–5 year old children completed a self-reported vegetable parenting practices scale online. Vegetable parenting practices consisted of 14 effective vegetable parenting practices and 12 ineffective vegetable parenting practices items, each with three subscales (responsiveness, structure, and control). Multidimensional polytomous item response modeling was conducted separately on effective vegetable parenting practices and ineffective vegetable parenting practices. Results One effective vegetable parenting practice item did not fit the model well in the full sample or across demographic groups, and another was a misfit in differential item functioning analyses across child’s gender. Significant differential item functioning was detected across children’s age and ethnicity groups, and more among effective vegetable parenting practices than ineffective vegetable parenting practices items. Wright maps showed items only covered parts of the latent trait distribution. The harder- and easier-to-respond ends of the construct were not covered by items for effective vegetable parenting practices and ineffective vegetable parenting practices, respectively. Conclusions Several effective vegetable parenting practices and ineffective vegetable parenting practices scale items functioned differently on the basis of child’s demographic characteristics; therefore, researchers should use these vegetable parenting practices scales with caution. Item response modeling should be incorporated in analyses of parenting practice questionnaires to better assess differences across demographic characteristics. PMID:25895694

  20. RARα-PLZF oncogene inhibits C/EBPα function in myeloid cells

    PubMed Central

    Girard, Nathalie; Tremblay, Mathieu; Humbert, Magali; Grondin, Benoît; Haman, André; Labrecque, Jean; Chen, Bing; Chen, Zhu; Chen, Sai-Juan; Hoang, Trang

    2013-01-01

    In acute promyelocytic leukemia, granulocytic differentiation is arrested at the promyelocyte stage. The variant t(11;17) translocation produces two fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) and RARα-PLZF, both of which participate in leukemia development. Here we provide evidence that the activity of CCAAT/enhancer binding protein α (C/EBPα), a master regulator of granulocytic differentiation, is severely impaired in leukemic promyelocytes with the t(11;17) translocation compared with those associated with the t(15;17) translocation. We show that RARα-PLZF inhibits myeloid cell differentiation through interactions with C/EBPα tethered to DNA, using ChIP and DNA capture assays. Furthermore, RARα-PLZF recruits HDAC1 and causes histone H3 deacetylation at C/EBPα target loci, thereby decreasing the expression of C/EBPα target genes. In line with these results, HDAC inhibitors restore in part C/EBPα target gene expression. These findings provide molecular evidence for a mechanism through which RARα-PLZF acts as a modifier oncogene that subverts differentiation in the granulocytic lineage by associating with C/EBPα and inhibiting its activity. PMID:23898169

  1. Fibronectin is a survival factor for differentiated osteoblasts

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Doty, S. B.; Lull, J. C.; Holmuhamedov, E.; Humphries, M. J.; Damsky, C. H.

    1998-01-01

    The skeletal extracellular matrix produced by osteoblasts contains the glycoprotein fibronectin, which regulates the adhesion, differentiation and function of various adherent cells. Interactions with fibronectin are required for osteoblast differentiation in vitro, since fibronectin antagonists added to cultures of immature fetal calvarial osteoblasts inhibit their progressive differentiation. To determine if fibronectin plays a unique role in fully differentiated osteoblasts, cultures that had already formed mineralized nodules in vitro were treated with fibronectin antagonists. Fibronectin antibodies caused >95% of the cells in the mature cultures to display characteristic features of apoptosis (nuclear condensation, apoptotic body formation, DNA laddering) within 24 hours. Cells appeared to acquire sensitivity to fibronectin antibody-induced apoptosis as a consequence of differentiation, since antibodies failed to kill immature cells and the first cells killed were those associated with mature nodules. Intact plasma fibronectin, as well as fragments corresponding to the amino-terminal, cell-binding, and carboxy-terminal domains of fibronectin, independently induced apoptosis of mature (day-13), but not immature (day-4), osteoblasts. Finally, transforming growth factor-beta1 partially protected cells from the apoptotic effects of fibronectin antagonists. Thus, in the course of maturation cultured osteoblasts switch from depending on fibronectin for differentiation to depending on fibronectin for survival. These data suggest that fibronectin, together with transforming growth factor-beta1, may affect bone formation, in part by regulating the survival of osteoblasts.

  2. The convergence of the order sequence and the solution function sequence on fractional partial differential equation

    NASA Astrophysics Data System (ADS)

    Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.

    2018-03-01

    One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).

  3. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology.

    PubMed

    Sommer, Felix; Bäckhed, Fredrik

    2016-05-01

    Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology. © 2016 WILEY Periodicals, Inc.

  4. Gravity-regulated gene expression in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  5. Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs

    PubMed Central

    2014-01-01

    Background The genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using tiling arrays. Results We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed. Conclusions It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events. PMID:24594072

  6. Mathematics for Physics

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Goldbart, Paul

    2009-07-01

    Preface; 1. Calculus of variations; 2. Function spaces; 3. Linear ordinary differential equations; 4. Linear differential operators; 5. Green functions; 6. Partial differential equations; 7. The mathematics of real waves; 8. Special functions; 9. Integral equations; 10. Vectors and tensors; 11. Differential calculus on manifolds; 12. Integration on manifolds; 13. An introduction to differential topology; 14. Group and group representations; 15. Lie groups; 16. The geometry of fibre bundles; 17. Complex analysis I; 18. Applications of complex variables; 19. Special functions and complex variables; Appendixes; Reference; Index.

  7. Spin dynamics of qqq wave function on light front in high momentum limit of QCD: Role of qqq force

    NASA Astrophysics Data System (ADS)

    Mitra, A. N.

    2008-04-01

    The contribution of a spin-rich qqq force (in conjunction with pairwise qq forces) to the analytical structure of the qqq wave function is worked out in the high momentum regime of QCD where the confining interaction may be ignored, so that the dominant effect is Coulombic. A distinctive feature of this study is that the spin-rich qqq force is generated by a ggg vertex (a genuine part of the QCD Lagrangian) wherein the 3 radiating gluon lines end on as many quark lines, giving rise to a (Mercedes-Benz type) Y-shaped diagram. The dynamics is that of a Salpeter-like equation (3D support for the kernel) formulated covariantly on the light front, a la Markov-Yukawa Transversality Principle (MYTP) which warrants a 2-way interconnection between the 3D and 4D Bethe-Salpeter (BSE) forms for 2 as well as 3 fermion quarks. With these ingredients, the differential equation for the 3D wave function ϕ receives well-defined contributions from the qq and qqq forces. In particular a negative eigenvalue of the spin operator iσ1 · σ2 × σ3 which is an integral part of the qqq force, causes a characteristic singularity in the differential equation, signalling the dynamical effect of a spin-rich qqq force not yet considered in the literature. The potentially crucial role of this interesting effect vis-a-vis the so-called 'spin anomaly' of the proton, is a subject of considerable physical interest.

  8. Shuttle cryogenics supply system. Optimization study. Volume 5 B-2, part 1: Appendix programmers manual for math model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An appendix to the programmers manual for the mathematical model pertaining to the design of cryogenic supply systems for spacecraft is presented. The program listing was produced using the EXEC-8 LISTALL processor which lists a file in alphabetical order. Since the processor does not differentiate between subroutines, functions, and procedure definition processors, each subprogram has been relabeled to clearly identify the type of symbolic listing.

  9. Directed 3D Cell Alignment and Elongation in Microengineered Hydrogels

    DTIC Science & Technology

    2010-01-01

    Merok J, Vunjak- Novakovic G, Freed LE. Tissue engineering of functional cardiac muscle: molecular, structural, and electro- physiological studies. Am J...endothelial cells and smooth muscle cells. J Biomech 2004;37(4):531e9. [4] Vunjak- Novakovic G, Altman G, Horan R, Kaplan DL. Tissue engineering of...483e95. [9] Burdick JA, Vunjak- Novakovic G. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A 2009;15(2):205e19

  10. The macrodynamics of international migration as a sociocultural diffusion process. Part A: theory.

    PubMed

    Diamantides, N D

    1992-11-01

    "This study formulates a model of the macrodynamics of international migration using a differential equation to capture the push-pull forces that propel it. The model's architecture rests on the functioning of information feedback between settled friends and family at the destination and potential emigrants at the origin." The author tests the model using data on Greek emigration to the United States since 1820 and on total emigration from Cyprus since 1946. excerpt

  11. Noncoding sequence classification based on wavelet transform analysis: part I

    NASA Astrophysics Data System (ADS)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.

  12. Identification of differentially expressed genes and signalling pathways in bark of Hevea brasiliensis seedlings associated with secondary laticifer differentiation using gene expression microarray.

    PubMed

    Loh, Swee Cheng; Thottathil, Gincy P; Othman, Ahmad Sofiman

    2016-10-01

    The natural rubber of Para rubber tree, Hevea brasiliensis, is the main crop involved in industrial rubber production due to its superior quality. The Hevea bark is commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. The laticifer is well defined in the aspect of morphology; however, only some genes associated with its development have been reported. We successfully induced secondary laticifer in the jasmonic acid (JA)-treated and linolenic acid (LA)-treated Hevea bark but secondary laticifer is not observed in the ethephon (ET)-treated and untreated Hevea bark. In this study, we analysed 27,195 gene models using NimbleGen microarrays based on the Hevea draft genome. 491 filtered differentially expressed (FDE) transcripts that are common to both JA- and LA-treated bark samples but not ET-treated bark samples were identified. In the Eukaryotic Orthologous Group (KOG) analysis, 491 FDE transcripts belong to different functional categories that reflect the diverse processes and pathways involved in laticifer differentiation. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) and KOG analysis, the profile of the FDE transcripts suggest that JA- and LA-treated bark samples have a sufficient molecular basis for secondary laticifer differentiation, especially regarding secondary metabolites metabolism. FDE genes in this category are from the cytochrome (CYP) P450 family, ATP-binding cassette (ABC) transporter family, short-chain dehydrogenase/reductase (SDR) family, or cinnamyl alcohol dehydrogenase (CAD) family. The data includes many genes involved in cell division, cell wall synthesis, and cell differentiation. The most abundant transcript in FDE list was SDR65C, reflecting its importance in laticifer differentiation. Using the Basic Local Alignment Search Tool (BLAST) as part of annotation and functional prediction, several characterised as well as uncharacterized transcription factors and genes were found in the dataset. Hence, the further characterization of these genes is necessary to unveil their role in laticifer differentiation. This study provides a platform for the further characterization and identification of the key genes involved in secondary laticifer differentiation. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Be different--the diversity of peroxisomes in the animal kingdom.

    PubMed

    Islinger, M; Cardoso, M J R; Schrader, M

    2010-08-01

    Peroxisomes represent so-called "multipurpose organelles" as they contribute to various anabolic as well as catabolic pathways. Thus, with respect to the physiological specialization of an individual organ or animal species, peroxisomes exhibit a functional diversity, which is documented by significant variations in their proteome. These differences are usually regarded as an adaptational response to the nutritional and environmental life conditions of a specific organism. Thus, human peroxisomes can be regarded as an in part physiologically unique organellar entity fulfilling metabolic functions that differ from our animal model systems. In line with this, a profound understanding on how peroxisomes acquired functional heterogeneity in terms of an evolutionary and mechanistic background is required. This review summarizes our current knowledge on the heterogeneity of peroxisomal physiology, providing insights into the genetic and cell biological mechanisms, which lead to the differential localization or expression of peroxisomal proteins and further gives an overview on peroxisomal biochemical pathways, which are specialized in different animal species and organs. Moreover, it addresses the impact of proteome studies on our understanding of differential peroxisome function describing the utility of mass spectrometry and computer-assisted algorithms to identify peroxisomal target sequences for the detection of new organ- or species-specific peroxisomal proteins. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Transversal inducing differentiation of human amniotic epithelial cells into hepatocyte-like cells.

    PubMed

    Luo, Hongwu; Huang, Xiangjun; Huang, Feizhou; Liu, Xunyang

    2011-06-01

    To evaluate the in vitro differentiation of human amniotic epithelial cells (hAECs ) into hepatocyte-like cells. Combined approach of dexamethasone, HGF, IGF and other cytokines were used to induce the differentiation of hAECs into hepatocyte-like cells. The induction lasted 2 weeks. During the induction, the expression of albumin ALB, CYP1A1, CYP1A2, IGFR, c-met and key functional genes related to liver cells as well as transcription factors HNF3, HNF4 and C/EBPa were monitored by RT-PCR. Time dependent changes of the surface marker colony ALB, AFP and CK18 were analyzed by cell flow cytometry. After the 2 week induction, the expressions of liver hepatocyte-like cell functional genes such as albumin, CYP1A1, CYP1A2, c-met, and transcription factors such as HNF3, HNF4, C/EBPa and HNF1 were observed. Six days after the induction, hAECs mainly were stained AFP+, and the positive rate was (15.1 ± 2.1)%. While 10 days after the induction, part of the hAECs showed AFP+/ALB+ (6.5 ± 1.4)%; and on 14th day, hAECs only showed ALB+, and the rate was (13.9 ± 2.3)%. ALB+ cell increase indicated a gradual functional maturation from the hAECs to hepatocyte-like cells. Similaritly, the number of CK18+ cells in the whole population was also increased: On 10th day, the rate was (16.1 ± 1.2)%; on 14th day, that was (21.3 ± 4.6)%, which proved the above hypothesis of the trandifferentiation. By extending the induction time, the expression of functional genes increased gradually, and a maturing process of hAECs was detected by cell surface markers. The differentiation of hAECs induced in vitro has the characteristics of hepatocyte-like cells.

  15. ADP-ribosylation of proteins: Enzymology and biological significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Althaus, F.R.; Richter, C.

    1987-01-01

    This book presents an overview of the molecular and biological consequences of the posttranslational modification of proteins with ADP-ribose monomers and polymers. Part one focuses on chromatin-associated poly ADP-ribosylation reactions which have evolved in higher eukaryotes as modulators of chromatin functions. The significance of poly ADP-ribosylation in DNA repair, carcinogenesis, and gene expression during terminal differentiation is discussed. Part two reviews mono ADP-ribosylation reactions which are catalyzed by prokaryotic and eukaryotic enzymes. Consideration is given to the action of bacterial toxins, such as cholera toxin, pertussis toxin, and diphtheria toxin. These toxins have emerged as tools for the molecular probingmore » of proteins involved in signal transduction and protein biosynthesis.« less

  16. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells

    PubMed Central

    Saito, Masako; Nagasawa, Masayuki; Takada, Hidetoshi; Hara, Toshiro; Tsuchiya, Shigeru; Agematsu, Kazunaga; Yamada, Masafumi; Kawamura, Nobuaki; Ariga, Tadashi; Tsuge, Ikuya; Nonoyama, Shigeaki; Karasuyama, Hajime

    2011-01-01

    Hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by recurrent staphylococcal infections and atopic dermatitis associated with elevated serum IgE levels. Although defective differentiation of IL-17–producing CD4+ T cells (Th17) partly accounts for the susceptibility to staphylococcal skin abscesses and pneumonia, the pathogenesis of atopic manifestations in HIES still remains an enigma. In this study, we examined the differentiation and function of Th1, Th2, regulatory T cells (Treg cells), and dendritic cells (DCs) in HIES patients carrying either STAT3 or TYK2 mutations. Although the in vitro differentiation of Th1 and Th2 cells and the number and function of Treg cells in the peripheral blood were normal in HIES patients with STAT3 mutations, primary and monocyte-derived DCs showed defective responses to IL-10 and thus failed to become tolerogenic. When treated with IL-10, patient DCs showed impaired up-regulation of inhibitory molecules on their surface, including PD-L1 and ILT-4, compared with control DCs. Moreover, IL-10–treated DCs from patients displayed impaired ability to induce the differentiation of naive CD4+ T cells to FOXP3+ induced Treg cells (iTreg cells). These results suggest that the defective generation of IL-10–induced tolerogenic DCs and iTreg cells may contribute to inflammatory changes in HIES. PMID:21300911

  17. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential

    PubMed Central

    Han, Juhee; Mistriotis, Panagiotis; Lei, Pedro; Wang, Dan; Liu, Song; Andreadis, Stelios T.

    2012-01-01

    Although the therapeutic potential of mesenchymal stem cells (MSC) is widely accepted, loss of cell function due to donor aging or culture senescence are major limiting factors hampering their clinical application. Our laboratory recently showed that MSC originating from older donors suffer from limited proliferative capacity and significantly reduced myogenic differentiation potential. This is a major concern, as the patients most likely to suffer from cardiovascular disease are elderly. Here we tested the hypothesis that a single pluripotency associated transcription factor, namely Nanog, may reverse the proliferation and differentiation potential of BM-MSC from adult donors. Microarray analysis showed that adult (a)BM-MSC expressing Nanog clustered close to Nanog-expressing neonatal cells. Nanog markedly upregulated genes involved in cell cycle, DNA replication and DNA damage repair and enhanced the proliferation rate and clonogenic capacity of aBM-MSC. Notably, Nanog reversed the myogenic differentiation potential and restored the contractile function of aBM-MSC to a similar level as that of neonatal (n)BM-MSC. The effect of Nanog on contractility was mediated – at least in part - through activation of the TGF-β pathway by diffusible factors secreted in the conditioned medium of Nanog-expressing BM-MSC. Overall, our results suggest that Nanog may be used to overcome the effects of organismal aging on aBM-MSC, thereby increasing the potential of MSC from aged donors for cellular therapy and tissue regeneration. PMID:22949105

  18. The Drosophila bag of marbles Gene Interacts Genetically with Wolbachia and Shows Female-Specific Effects of Divergence

    PubMed Central

    Flores, Heather A.; Bubnell, Jaclyn E.; Aquadro, Charles F.; Barbash, Daniel A.

    2015-01-01

    Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes. PMID:26291077

  19. Serum miRNAs Signature Plays an Important Role in Keloid Disease.

    PubMed

    Luan, Y; Liu, Y; Liu, C; Lin, Q; He, F; Dong, X; Xiao, Z

    2016-01-01

    The molecular mechanism underlying the pathogenesis of keloid is largely unknown. MicroRNA (miRNA) is a class of small regulatory RNA that has emerged as a group of posttranscriptional gene repressors, participating in diverse pathophysiological processes of skin diseases. We investigated the expression profiles of miRNAs in the sera of patients to decipher the complicated factors involved in the development of keloid disease. MiRNA expression profiling in the sera from 9 keloid patients and 7 normal controls were characterized using a miRNA microarray containing established human mature and precursor miRNA sequences. Quantitative real-time PCR was performed to confirm the expression of miRNAs. The putative targets of differentially expressed miRNAs were functionally annotated by bioinformatics. MiRNA microarray analysis identified 37 differentially expressed miRNAs (17 upregulated and 20 downregulated) in keloid patients, compared to the healthy controls. Functional annotations revealed that the targets of those differentially expressed miRNAs were enriched in signaling pathways essential for scar formation and wound healing. The expression profiling of miRNAs is altered in the keloid, providing a clue for the molecular mechanisms underlying its initiation and progression. MiRNAs may partly contribute to the etiology of keloids by affecting the critical signaling pathways relevant to keloid pathogenesis.

  20. RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.

    PubMed

    Nalpas, Nicolas C; Magee, David A; Conlon, Kevin M; Browne, John A; Healy, Claire; McLoughlin, Kirsten E; Rue-Albrecht, Kévin; McGettigan, Paul A; Killick, Kate E; Gormley, Eamonn; Gordon, Stephen V; MacHugh, David E

    2015-09-08

    Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.

  1. Leptin regulation of bone resorption by the sympathetic nervous system and CART.

    PubMed

    Elefteriou, Florent; Ahn, Jong Deok; Takeda, Shu; Starbuck, Michael; Yang, Xiangli; Liu, Xiuyun; Kondo, Hisataka; Richards, William G; Bannon, Tony W; Noda, Masaki; Clement, Karine; Vaisse, Christian; Karsenty, Gerard

    2005-03-24

    Bone remodelling, the mechanism by which vertebrates regulate bone mass, comprises two phases, namely resorption by osteoclasts and formation by osteoblasts; osteoblasts are multifunctional cells also controlling osteoclast differentiation. Sympathetic signalling via beta2-adrenergic receptors (Adrb2) present on osteoblasts controls bone formation downstream of leptin. Here we show, by analysing Adrb2-deficient mice, that the sympathetic nervous system favours bone resorption by increasing expression in osteoblast progenitor cells of the osteoclast differentiation factor Rankl. This sympathetic function requires phosphorylation (by protein kinase A) of ATF4, a cell-specific CREB-related transcription factor essential for osteoblast differentiation and function. That bone resorption cannot increase in gonadectomized Adrb2-deficient mice highlights the biological importance of this regulation, but also contrasts sharply with the increase in bone resorption characterizing another hypogonadic mouse with low sympathetic tone, the ob/ob mouse. This discrepancy is explained, in part, by the fact that CART ('cocaine amphetamine regulated transcript'), a neuropeptide whose expression is controlled by leptin and nearly abolished in ob/ob mice, inhibits bone resorption by modulating Rankl expression. Our study establishes that leptin-regulated neural pathways control both aspects of bone remodelling, and demonstrates that integrity of sympathetic signalling is necessary for the increase in bone resorption caused by gonadal failure.

  2. Functional Differentiation of Bundle Sheath and Mesophyll Maize Chloroplasts Determined by Comparative ProteomicsW⃞

    PubMed Central

    Majeran, Wojciech; Cai, Yang; Sun, Qi; van Wijk, Klaas J.

    2005-01-01

    Chloroplasts of maize (Zea mays) leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C4 photosynthesis. Consequences for other plastid functions are not well understood but are addressed here through a quantitative comparative proteome analysis of purified M and BS chloroplast stroma. Three independent techniques were used, including cleavable stable isotope coded affinity tags. Enzymes involved in lipid biosynthesis, nitrogen import, and tetrapyrrole and isoprenoid biosynthesis are preferentially located in the M chloroplasts. By contrast, enzymes involved in starch synthesis and sulfur import preferentially accumulate in BS chloroplasts. The different soluble antioxidative systems, in particular peroxiredoxins, accumulate at higher levels in M chloroplasts. We also observed differential accumulation of proteins involved in expression of plastid-encoded proteins (e.g., EF-Tu, EF-G, and mRNA binding proteins) and thylakoid formation (VIPP1), whereas others were equally distributed. Enzymes related to the C4 shuttle, the carboxylation and regeneration phase of the Calvin cycle, and several regulators (e.g., CP12) distributed as expected. However, enzymes involved in triose phosphate reduction and triose phosphate isomerase are primarily located in the M chloroplasts, indicating that the M-localized triose phosphate shuttle should be viewed as part of the BS-localized Calvin cycle, rather than a parallel pathway. PMID:16243905

  3. Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation

    PubMed Central

    Vladar, Eszter K.; Nayak, Jayakar V.; Milla, Carlos E.; Axelrod, Jeffrey D.

    2016-01-01

    Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease. PMID:27570836

  4. Differential Selection or Differential Socialization? Examining the Effects of Part-Time Work on School Disengagement Behaviors among South Korean Adolescents

    ERIC Educational Resources Information Center

    Lee, Moosung; Ju, Eunsu

    2016-01-01

    Reflecting on the fast-growing number of adolescents involved in part-time work in South Korea, we pay special attention to the effects of part-time work on school disengagement in this age group. While research on this issue in Korea is still scarce, a handful of existing studies have documented the undesirable effects of part-time work on…

  5. Molecular analysis of neutrophil spontaneous apoptosis reveals a strong role for the pro-apoptotic BH3-only protein Noxa.

    PubMed

    Kirschnek, S; Vier, J; Gautam, S; Frankenberg, T; Rangelova, S; Eitz-Ferrer, P; Grespi, F; Ottina, E; Villunger, A; Häcker, H; Häcker, G

    2011-11-01

    Neutrophils enter the peripheral blood from the bone marrow and die after a short time. Molecular analysis of spontaneous neutrophil apoptosis is difficult as these cells die rapidly and cannot be easily manipulated. We use conditional Hoxb8 expression to generate mouse neutrophils and test the regulation of apoptosis by extensive manipulation of B-cell lymphoma protein 2 (Bcl-2)-family proteins. Spontaneous apoptosis was preceded by downregulation of anti-apoptotic Bcl-2 proteins. Loss of the pro-apoptotic Bcl-2 homology domain (BH3)-only protein Bcl-2-interacting mediator of cell death (Bim) gave some protection, but only neutrophils deficient in both BH3-only proteins, Bim and Noxa, were strongly protected against apoptosis. Function of Noxa was at least in part neutralization of induced myeloid leukemia cell differentiation protein (Mcl-1) in neutrophils and progenitors. Loss of Bim and Noxa preserved neutrophil function in culture, and apoptosis-resistant cells remained in circulation in mice. Apoptosis regulated by Bim- and Noxa-driven loss of Mcl-1 is thus the final step in neutrophil differentiation, required for the termination of neutrophil function and neutrophil-dependent inflammation.

  6. CD8 Follicular T Cells Promote B Cell Antibody Class Switch in Autoimmune Disease.

    PubMed

    Valentine, Kristen M; Davini, Dan; Lawrence, Travis J; Mullins, Genevieve N; Manansala, Miguel; Al-Kuhlani, Mufadhal; Pinney, James M; Davis, Jason K; Beaudin, Anna E; Sindi, Suzanne S; Gravano, David M; Hoyer, Katrina K

    2018-05-09

    CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer's disease and progressive supranuclear palsy brains.

    PubMed

    Huin, Vincent; Buée, Luc; Behal, Hélène; Labreuche, Julien; Sablonnière, Bernard; Dhaenens, Claire-Marie

    2017-10-03

    Alternative promoter usage is an important mechanism for transcriptome diversity and the regulation of gene expression. Indeed, this alternative usage may influence tissue/subcellular specificity, protein translation and function of the proteins. The existence of an alternative promoter for MAPT gene was considered for a long time to explain differential tissue specificity and differential response to transcription and growth factors between mRNA transcripts. The alternative promoter usage could explain partly the different tau proteins expression patterns observed in tauopathies. Here, we report on our discovery of a functional alternative promoter for MAPT, located upstream of the gene's second exon (exon 1). By analyzing genome databases and brain tissue from control individuals and patients with Alzheimer's disease or progressive supranuclear palsy, we identified novel shorter transcripts derived from this alternative promoter. These transcripts are increased in patients' brain tissue as assessed by 5'RACE-PCR and qPCR. We suggest that these new MAPT isoforms can be translated into normal or amino-terminal-truncated tau proteins. We further suggest that activation of MAPT's alternative promoter under pathological conditions leads to the production of truncated proteins, changes in protein localization and function, and thus neurodegeneration.

  8. Tumor Associated Mesenchymal Stromal Cells Show Higher Immunosuppressive and Angiogenic Properties Compared to Adipose Derived MSCs.

    PubMed

    Langroudi, Ladan; Hassan, Zuhair Muhammad; Soleimani, Masoud; Hashemi, Seyed Mahmoud

    2015-12-01

    Differentiation, migratory properties and availability of Mesenchymal Stromal Cells (MSC) have become an important part of biomedical research. However, the functional heterogeneity of cells derived from different tissues has hampered providing definitive phenotypic markers for these cells. To characterize and compare the phenotype and cytokines of adipose derived MSCs (AD-MSCs) and tumoral-MSCs (T-MSCs) isolated from mammary tumors of BALB/c mice. Immunophenotyping and in vitro differentiation tests were used for MSC characterization. Cytokine and enzyme profiles were assessed using ELISA and Real-time PCR, respectively. T-MSCs expressed significantly higher levels of HLA-DR (p=0.04). Higher levels of PGE2 and COX-2 enzyme were also observed in T-MSCs (p=0.07 and p=0.00, respectively). Additionally, T-MSCs expressed higher levels of iNOS and MMP9 (p=0.01 and p=0.01, respectively). T-MSCs were also able to induce higher levels of proliferation and migration of HUVEC endothelial cells in wound scratch assay compared to AD-MSCs (p=0.015). Functional differences showed by the surface markers of MSCs, cytokine and enzyme production indicate the effect of different microenvironments on MSCs phenotype and function.

  9. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling.

    PubMed

    Yang, Mei; Cong, Min; Peng, Xiuming; Wu, Junrui; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing

    2016-05-18

    Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.

  10. Histone H3K9 Trimethylase Eggless Controls Germline Stem Cell Maintenance and Differentiation

    PubMed Central

    Zhou, Jian; McDowell, William; Park, Jungeun; Haug, Jeff; Staehling, Karen; Tang, Hong; Xie, Ting

    2011-01-01

    Epigenetic regulation plays critical roles in the regulation of cell proliferation, fate determination, and survival. It has been shown to control self-renewal and lineage differentiation of embryonic stem cells. However, epigenetic regulation of adult stem cell function remains poorly defined. Drosophila ovarian germline stem cells (GSCs) are a productive adult stem cell system for revealing regulatory mechanisms controlling self-renewal and differentiation. In this study, we show that Eggless (Egg), a H3K9 methyltransferase in Drosophila, is required in GSCs for controlling self-renewal and in escort cells for regulating germ cell differentiation. egg mutant ovaries primarily exhibit germ cell differentiation defects in young females and gradually lose GSCs with time, indicating that Egg regulates both germ cell maintenance and differentiation. Marked mutant egg GSCs lack expression of trimethylated H3K9 (H3k9me3) and are rapidly lost from the niche, but their mutant progeny can still differentiate into 16-cell cysts, indicating that Egg is required intrinsically to control GSC self-renewal but not differentiation. Interestingly, BMP-mediated transcriptional repression of differentiation factor bam in marked egg mutant GSCs remains normal, indicating that Egg is dispensable for BMP signaling in GSCs. Normally, Bam and Bgcn interact with each other to promote GSC differentiation. Interestingly, marked double mutant egg bgcn GSCs are still lost, but their progeny are able to differentiate into 16-cell cysts though bgcn mutant GSCs normally do not differentiate, indicating that Egg intrinsically controls GSC self-renewal through repressing a Bam/Bgcn-independent pathway. Surprisingly, RNAi-mediated egg knockdown in escort cells leads to their gradual loss and a germ cell differentiation defect. The germ cell differentiation defect is at least in part attributed to an increase in BMP signaling in the germ cell differentiation niche. Therefore, this study has revealed the essential roles of histone H3K9 trimethylation in controlling stem cell maintenance and differentiation through distinct mechanisms. PMID:22216012

  11. Computation and visualization of geometric partial differential equations

    NASA Astrophysics Data System (ADS)

    Tiee, Christopher L.

    The chief goal of this work is to explore a modern framework for the study and approximation of partial differential equations, recast common partial differential equations into this framework, and prove theorems about such equations and their approximations. A central motivation is to recognize and respect the essential geometric nature of such problems, and take it into consideration when approximating. The hope is that this process will lead to the discovery of more refined algorithms and processes and apply them to new problems. In the first part, we introduce our quantities of interest and reformulate traditional boundary value problems in the modern framework. We see how Hilbert complexes capture and abstract the most important properties of such boundary value problems, leading to generalizations of important classical results such as the Hodge decomposition theorem. They also provide the proper setting for numerical approximations. We also provide an abstract framework for evolution problems in these spaces: Bochner spaces. We next turn to approximation. We build layers of abstraction, progressing from functions, to differential forms, and finally, to Hilbert complexes. We explore finite element exterior calculus (FEEC), which allows us to approximate solutions involving differential forms, and analyze the approximation error. In the second part, we prove our central results. We first prove an extension of current error estimates for the elliptic problem in Hilbert complexes. This extension handles solutions with nonzero harmonic part. Next, we consider evolution problems in Hilbert complexes and prove abstract error estimates. We apply these estimates to the problem for Riemannian hypersurfaces in R. {n+1},generalizing current results for open subsets of R. {n}. Finally, we applysome of the concepts to a nonlinear problem, the Ricci flow on surfaces, and use tools from nonlinear analysis to help develop and analyze the equations. In the appendices, we detail some additional motivation and a source for further examples: canonical geometries that are realized as steady-state solutions to parabolic equations similar to that of Ricci flow. An eventual goal is to compute such solutions using the methods of the previous chapters.

  12. Examining Differential Math Performance by Gender and Opportunity to Learn

    ERIC Educational Resources Information Center

    Albano, Anthony D.; Rodriguez, Michael C.

    2013-01-01

    Although a substantial amount of research has been conducted on differential item functioning in testing, studies have focused on detecting differential item functioning rather than on explaining how or why it may occur. Some recent work has explored sources of differential functioning using explanatory and multilevel item response models. This…

  13. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E.; Pertsemlidis, Alexander; Du, Liqin

    2014-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy. PMID:24811707

  14. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    NASA Astrophysics Data System (ADS)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  15. Construction of human induced pluripotent stem cell-derived oriented bone matrix microstructure by using in vitro engineered anisotropic culture model.

    PubMed

    Ozasa, Ryosuke; Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Yun, Hui-Suk; Nakano, Takayoshi

    2018-02-01

    Bone tissue has anisotropic microstructure based on collagen/biological apatite orientation, which plays essential roles in the mechanical and biological functions of bone. However, obtaining an appropriate anisotropic microstructure during the bone regeneration process remains a great challenging. A powerful strategy for the control of both differentiation and structural development of newly-formed bone is required in bone tissue engineering, in order to realize functional bone tissue regeneration. In this study, we developed a novel anisotropic culture model by combining human induced pluripotent stem cells (hiPSCs) and artificially-controlled oriented collagen scaffold. The oriented collagen scaffold allowed hiPSCs-derived osteoblast alignment and further construction of anisotropic bone matrix which mimics the bone tissue microstructure. To the best of our knowledge, this is the first report showing the construction of bone mimetic anisotropic bone matrix microstructure from hiPSCs. Moreover, we demonstrated for the first time that the hiPSCs-derived osteoblasts possess a high level of intact functionality to regulate cell alignment. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 360-369, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  16. Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases

    PubMed Central

    Surapisitchat, James

    2014-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641

  17. Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.

    PubMed

    Surapisitchat, James; Beavo, Joseph A

    2011-01-01

    The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.

  18. Statistics of intensity in adaptive-optics images and their usefulness for detection and photometry of exoplanets.

    PubMed

    Gladysz, Szymon; Yaitskova, Natalia; Christou, Julian C

    2010-11-01

    This paper is an introduction to the problem of modeling the probability density function of adaptive-optics speckle. We show that with the modified Rician distribution one cannot describe the statistics of light on axis. A dual solution is proposed: the modified Rician distribution for off-axis speckle and gamma-based distribution for the core of the point spread function. From these two distributions we derive optimal statistical discriminators between real sources and quasi-static speckles. In the second part of the paper the morphological difference between the two probability density functions is used to constrain a one-dimensional, "blind," iterative deconvolution at the position of an exoplanet. Separation of the probability density functions of signal and speckle yields accurate differential photometry in our simulations of the SPHERE planet finder instrument.

  19. Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Coy, Monique R; Scharf, Michael E

    2012-07-01

    Termites are eusocial insects that jointly utilize juvenile hormone (JH), pheromones, and other semiochemicals to regulate caste differentiation and achieve caste homeostasis. Prior EST sequencing from the symbiont-free gut transcriptome of Reticulitermes flavipes unexpectedly revealed a number of unique cytochrome P450 (Cyp) transcripts, including fragments of a Cyp15 family gene (Cyp15F1) with homology to other insect Cyp15s that participate in JH biosynthesis. The present study investigated the role of Cyp15F1 in termite caste polyphenism and specifically tested the hypothesis that it plays a role in JH-dependent caste differentiation. After assembling the full-length Cyp15F1 cDNA sequence, we (i) determined its mRNA tissue expression profile, (ii) investigated mRNA expression changes in response to JH and the caste-regulatory primer pheromones γ-cadinene (CAD) and γ-cadinenal (ALD), and (iii) used RNA interference (RNAi) in combination with caste differentiation bioassays to investigate gene function at the phenotype level. Cyp15F1 has ubiquitous whole-body expression (including gut tissue); is rapidly and sustainably induced from 3 h to 48 h by JH, CAD, and ALD; and functions at least in part by facilitating JH-dependent soldier caste differentiation. These findings provide the second example of a termite caste regulatory gene identified through the use of RNAi, and significantly build upon our understanding of termite caste homeostatic mechanisms. These results also reinforce the concept of environmental caste determination in termites by revealing how primer pheromones, as socioenvironmental factors, can directly influence Cyp15 expression and caste differentiation. © 2012 Wiley Periodicals, Inc.

  20. Geometric constrained variational calculus. II: The second variation (Part I)

    NASA Astrophysics Data System (ADS)

    Massa, Enrico; Bruno, Danilo; Luria, Gianvittorio; Pagani, Enrico

    2016-10-01

    Within the geometrical framework developed in [Geometric constrained variational calculus. I: Piecewise smooth extremals, Int. J. Geom. Methods Mod. Phys. 12 (2015) 1550061], the problem of minimality for constrained calculus of variations is analyzed among the class of differentiable curves. A fully covariant representation of the second variation of the action functional, based on a suitable gauge transformation of the Lagrangian, is explicitly worked out. Both necessary and sufficient conditions for minimality are proved, and reinterpreted in terms of Jacobi fields.

  1. Legendre-tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  2. Legendre-Tau approximations for functional differential equations

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1983-01-01

    The numerical approximation of solutions to linear functional differential equations are considered using the so called Legendre tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time differentiation. The approximate solution is then represented as a truncated Legendre series with time varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximations is made.

  3. TBR2 antagonizes retinoic acid dependent neuronal differentiation by repressing Zfp423 during corticogenesis.

    PubMed

    Massimino, Luca; Flores-Garcia, Lisbeth; Di Stefano, Bruno; Colasante, Gaia; Icoresi-Mazzeo, Cecilia; Zaghi, Mattia; Hamilton, Bruce A; Sessa, Alessandro

    2018-02-15

    During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. [Differential diagnosis of dental enamel focal demineralization and fluorosis by means of spectrophotometry].

    PubMed

    Makarova, N E; Vinnichenko, Yu A

    2018-01-01

    The article presents the results of spectrophotometric tooth enamel scanning for differential diagnosis of focal enamel demineralization and fluorosis. Research was conducted in vivo on teeth affected by these diseases. VITA EasyShade spectrophotometer measurements were made on the affected area and on the visually healthy part of enamel. The lightness appeared as the only one differential significant optical characteristics of tooth enamel. Lightness metrics were higher in the case of initial caries than on the healthy part of enamel when these metrics were lower in the case of fluorosis than on the healthy part of enamel.

  5. The histone H2A deubiquitinase Usp16 regulates hematopoiesis and hematopoietic stem cell function.

    PubMed

    Gu, Yue; Jones, Amanda E; Yang, Wei; Liu, Shanrun; Dai, Qian; Liu, Yudong; Swindle, C Scott; Zhou, Dewang; Zhang, Zhuo; Ryan, Thomas M; Townes, Tim M; Klug, Christopher A; Chen, Dongquan; Wang, Hengbin

    2016-01-05

    Epigenetic mechanisms play important regulatory roles in hematopoiesis and hematopoietic stem cell (HSC) function. Subunits of polycomb repressive complex 1 (PRC1), the major histone H2A ubiquitin ligase, are critical for both normal and pathological hematopoiesis; however, it is unclear which of the several counteracting H2A deubiquitinases functions along with PRC1 to control H2A ubiquitination (ubH2A) level and regulates hematopoiesis in vivo. Here we investigated the function of Usp16 in mouse hematopoiesis. Conditional deletion of Usp16 in bone marrow resulted in a significant increase of global ubH2A level and lethality. Usp16 deletion did not change HSC number but was associated with a dramatic reduction of mature and progenitor cell populations, revealing a role in governing HSC lineage commitment. ChIP- and RNA-sequencing studies in HSC and progenitor cells revealed that Usp16 bound to many important hematopoietic regulators and that Usp16 deletion altered the expression of genes in transcription/chromosome organization, immune response, hematopoietic/lymphoid organ development, and myeloid/leukocyte differentiation. The altered gene expression was partly rescued by knockdown of PRC1 subunits, suggesting that Usp16 and PRC1 counterbalance each other to regulate cellular ubH2A level and gene expression in the hematopoietic system. We further discovered that knocking down Cdkn1a (p21cip1), a Usp16 target and regulated gene, rescued the altered cell cycle profile and differentiation defect of Usp16-deleted HSCs. Collectively, these studies identified Usp16 as one of the histone H2A deubiquitinases, which coordinates with the H2A ubiquitin ligase PRC1 to regulate hematopoiesis, and revealed cell cycle regulation by Usp16 as key for HSC differentiation.

  6. Spectral factorization of wavefields and wave operators

    NASA Astrophysics Data System (ADS)

    Rickett, James Edward

    Spectral factorization is the problem of finding a minimum-phase function with a given power spectrum. Minimum phase functions have the property that they are causal with a causal (stable) inverse. In this thesis, I factor multidimensional systems into their minimum-phase components. Helical boundary conditions resolve any ambiguities over causality, allowing me to factor multi-dimensional systems with conventional one-dimensional spectral factorization algorithms. In the first part, I factor passive seismic wavefields recorded in two-dimensional spatial arrays. The result provides an estimate of the acoustic impulse response of the medium that has higher bandwidth than autocorrelation-derived estimates. Also, the function's minimum-phase nature mimics the physics of the system better than the zero-phase autocorrelation model. I demonstrate this on helioseismic data recorded by the satellite-based Michelson Doppler Imager (MDI) instrument, and shallow seismic data recorded at Long Beach, California. In the second part of this thesis, I take advantage of the stable-inverse property of minimum-phase functions to solve wave-equation partial differential equations. By factoring multi-dimensional finite-difference stencils into minimum-phase components, I can invert them efficiently, facilitating rapid implicit extrapolation without the azimuthal anisotropy that is observed with splitting approximations. The final part of this thesis describes how to calculate diagonal weighting functions that approximate the combined operation of seismic modeling and migration. These weighting functions capture the effects of irregular subsurface illumination, which can be the result of either the surface-recording geometry, or focusing and defocusing of the seismic wavefield as it propagates through the earth. Since they are diagonal, they can be easily both factored and inverted to compensate for uneven subsurface illumination in migrated images. Experimental results show that applying these weighting functions after migration leads to significantly improved estimates of seismic reflectivity.

  7. Transient global amnesia: current perspectives

    PubMed Central

    Spiegel, David R; Smith, Justin; Wade, Ryan R; Cherukuru, Nithya; Ursani, Aneel; Dobruskina, Yuliya; Crist, Taylor; Busch, Robert F; Dhanani, Rahim M; Dreyer, Nicholas

    2017-01-01

    Transient global amnesia (TGA) is a clinical syndrome characterized by the sudden onset of an extraordinarily large reduction of anterograde and a somewhat milder reduction of retrograde episodic long-term memory. Additionally, executive functions are described as diminished. Although it is suggested that various factors, such as migraine, focal ischemia, venous flow abnormalities, and epileptic phenomena, are involved in the pathophysiology and differential diagnosis of TGA, the factors triggering the emergence of these lesions are still elusive. Recent data suggest that the vulnerability of CA1 neurons to metabolic stress plays a pivotal part in the pathophysiological cascade, leading to an impairment of hippocampal function during TGA. In this review, we discuss clinical aspects, new imaging findings, and recent clinical–epidemiological data with regard to the phenotype, functional anatomy, and putative cellular mechanisms of TGA. PMID:29123402

  8. Differential 3D Mueller-matrix mapping of optically anisotropic depolarizing biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, O. G.; Grytsyuk, M.; Ushenko, V. O.; Bodnar, G. B.; Vanchulyak, O.; Meglinskiy, I.

    2018-01-01

    The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 2nd order of polycrystalline structure of the histological section of rectum wall tissue. It was defined the values of statistical moments of the1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of connecting component of vagina wall tissue (normal and with prolapse). It were defined the objective criteria of differential diagnostics of pathologies of vagina wall.

  9. Differential-Coil Eddy-Current Material Sorter

    NASA Technical Reports Server (NTRS)

    Nummelin, J.; Buckley, D.

    1985-01-01

    Small metal or other electrically conductive parts of same shape but different composition quickly sorted with differential-coil eddy-current sorter. Developed to distinguish between turbine blades of different alloys, hardnesses, and residual stress, sorter generally applicable to parts of simple and complex shape.

  10. ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma.

    PubMed

    Pieraccioli, Marco; Nicolai, Sara; Pitolli, Consuelo; Agostini, Massimiliano; Antonov, Alexey; Malewicz, Michal; Knight, Richard A; Raschellà, Giuseppe; Melino, Gerry

    2018-06-25

    Derangement of cellular differentiation because of mutation or inappropriate expression of specific genes is a common feature in tumors. Here, we show that the expression of ZNF281, a zinc finger factor involved in several cellular processes, decreases during terminal differentiation of murine cortical neurons and in retinoic acid-induced differentiation of neuroblastoma (NB) cells. The ectopic expression of ZNF281 inhibits the neuronal differentiation of murine cortical neurons and NB cells, whereas its silencing causes the opposite effect. Furthermore, TAp73 inhibits the expression of ZNF281 through miR34a. Conversely, MYCN promotes the expression of ZNF281 at least in part by inhibiting miR34a. These findings imply a functional network that includes p73, MYCN, and ZNF281 in NB cells, where ZNF281 acts by negatively affecting neuronal differentiation. Array analysis of NB cells silenced for ZNF281 expression identified GDNF and NRP2 as two transcriptional targets inhibited by ZNF281. Binding of ZNF281 to the promoters of these genes suggests a direct mechanism of repression. Bioinformatic analysis of NB datasets indicates that ZNF281 expression is higher in aggressive, undifferentiated stage 4 than in localized stage 1 tumors supporting a central role of ZNF281 in affecting the differentiation of NB. Furthermore, patients with NB with high expression of ZNF281 have a poor clinical outcome compared with low-expressors. These observations suggest that ZNF281 is a controller of neuronal differentiation that should be evaluated as a prognostic marker in NB. Copyright © 2018 the Author(s). Published by PNAS.

  11. Bioactive quinone derivatives from the marine brown alga Sargassum thunbergii induce anti-adipogenic and pro-osteoblastogenic activities.

    PubMed

    Kim, Jung-Ae; Karadeniz, Fatih; Ahn, Byul-Nim; Kwon, Myeong Sook; Mun, Ok-Ju; Bae, Min Joo; Seo, Youngwan; Kim, Mihyang; Lee, Sang-Hyeon; Kim, Yuck Yong; Mi-Soon, Jang; Kong, Chang-Suk

    2016-02-01

    Health problems related to the lack of bone formation are a major problem for ageing populations in the modern world. As a part of the ongoing trend to develop natural substances that attenuate bone loss in osteoporosis, the effects of the edible brown alga Sargassum thunbergii and its active contents on adipogenic differentiation in 3T3-L1 fibroblasts and osteoblast differentiation in MC3T3-E1 pre-osteoblasts were evaluated. Treatment with S. thunbergii significantly reduced lipid accumulation and expression of adipogenic differentiation markers such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α and sterol regulatory element binding protein 1c. In addition, S. thunbergii successfully enhanced osteoblast differentiation as indicated by increased alkaline phosphatase activity along raised levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin and collagen type I. Two compounds, sargaquinoic and sargahydroquinoic acid, were isolated from active extract and shown to be active by means of osteogenesis inducement. S. thunbergii could be a source for functional food ingredients for improved treatment of osteoporosis and obesity. © 2015 Society of Chemical Industry.

  12. Quasi-Newton methods for parameter estimation in functional differential equations

    NASA Technical Reports Server (NTRS)

    Brewer, Dennis W.

    1988-01-01

    A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.

  13. Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure

    NASA Astrophysics Data System (ADS)

    Wesołowska, Maria; Kaczmarek, Anna

    2017-10-01

    Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.

  14. Sex steroids: beyond conventional dimorphism.

    PubMed

    Lavranos, Giagkos; Angelopoulou, Roxani; Manolakou, Panagiota; Katsiki, Evangelia

    2013-09-01

    Sexual dimorphism is a characteristic of a large number of species, ranging from lower invertebrates to mammals and, last but not least, humans. Recognition of the various factors regulating sexual dimorphism initial establishment (i.e. sex determination and differentiation) and subsequent life-long adaptation to distinct functional and behavioural patterns has remained a hot topic for several decades. As our understanding of the various molecular pathways involved in this process increases, the significant role of sex steroids becomes more evident. At the same time, the recognition of new sites of steroid production (e.g. parts of the brain) and aromatization, as well as new target cells (owing to the proposed presence of additional receptors to those classically considered as primary steroid receptors) has lead to the need to revisit their spectrum of actions within a novel, multifactorial context. Thus, anthropology and medicine are presented with the challenge to unravel a major mystery, i.e. that of sexual orientation and differentiation and its potential contribution in human evolution and civilization development, taking advantage of the high-tech research tools provided by modern biotechnology. This short review summarizes the basic principles of sex determination and sex steroid function as they have been classically described in the literature and then proceeds to present examples of how modern research methods have started to offer a new insight on the more subtle details of this process, stressing that it is extending to virtually every single part and system of the body.

  15. RhoA orchestrates glycolysis for Th2 cell differentiation and allergic airway inflammation

    PubMed Central

    Yang, Jun-Qi; Kalim, Khalid W.; Li, Yuan; Zhang, Shuangmin; Hinge, Ashwini; Filippi, Marie-Dominique; Zheng, Yi; Guo, Fukun

    2015-01-01

    Background Mitochondrial metabolism is known to be important for T cell activation. However, its involvement in effector T cell differentiation has just begun to gain attention. Importantly, how metabolic pathways are integrated with T cell activation and effector cell differentiation and function remains largely unknown. Objective We sought to test our hypothesis that RhoA GTPase orchestrates glycolysis for Th2 cell differentiation and Th2-mediated allergic airway inflammation. Methods Conditional RhoA-deficient mice were generated by crossing RhoAflox/flox mice with CD2-Cre transgenic mice. Effects of RhoA on Th2 differentiation were evaluated by in vitro Th2-polarized culture conditions, and in vivo in ovalbumin (OVA)-induced allergic airway inflammation. Cytokines were measured by intracellular staining and ELISA. T cell metabolism was measured by Seahorse XF24 Analyzer and flow cytometry. Results Disruption of RhoA inhibited T cell activation and Th2 differentiation in vitro and prevented the development of allergic airway inflammation in vivo, with no effect on Th1 cells. RhoA deficiency in activated T cells led to multiple defects in metabolic pathways such as glycolysis and oxidative phosphorylation. Importantly, RhoA couples glycolysis to Th2 cell differentiation and allergic airway inflammation via regulating IL-4 receptor mRNA expression and Th2-specific signaling events. Finally, inhibition of Rho-associated protein kinase (ROCK), an immediate downstream effector of RhoA, blocked Th2 differentiation and allergic airway inflammation. Conclusion RhoA is a key component of the signaling cascades leading to Th2-differentiation and allergic airway inflammation, at least in part, through the control of T cell metabolism and via ROCK pathway. PMID:26100081

  16. Functional (Psychogenic) Cognitive Disorders: A Perspective from the Neurology Clinic.

    PubMed

    Stone, Jon; Pal, Suvankar; Blackburn, Daniel; Reuber, Markus; Thekkumpurath, Parvez; Carson, Alan

    2015-09-24

    Cognitive symptoms such as poor memory and concentration represent a common cause of morbidity among patients presenting to general practitioners and may result in referral for a neurological opinion. In many cases, these symptoms do not relate to an underlying neurological disease or dementia. In this article we present a personal perspective on the differential diagnosis of cognitive symptoms in the neurology clinic, especially as this applies to patients who seek advice about memory problems but have no neurological disease process. These overlapping categories include the following 'functional' categories: 1) cognitive symptoms as part of anxiety or depression; 2) "normal" cognitive symptoms that become the focus of attention; 3) isolated functional cognitive disorder in which symptoms are outwith 'normal' but not explained by anxiety; 4) health anxiety about dementia; 5) cognitive symptoms as part of another functional disorder; and 6) retrograde dissociative (psychogenic) amnesia. Other 'non-dementia' diagnoses to consider in addition are 1) cognitive symptoms secondary to prescribed medication or substance misuse; 2) diseases other than dementia causing cognitive disorders; 3) patients who appear to have functional cognitive symptoms but then go on to develop dementia/another neurological disease; and finally 4) exaggeration/malingering. We discuss previous attempts to classify the problem of functional cognitive symptoms, the importance of making a positive diagnosis for the patient, and the need for large cohort studies to better define and manage this large group of patients.

  17. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  18. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    PubMed

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what changes in mechanism of cell differentiation may lead to cancer development.

  19. Terasaki Ramps in the Endoplasmic Reticulum: Structure, Function and Formation

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Guven, Jemal; Valencia, Dulce-Maria

    2015-03-01

    The endoplasmic reticulum (ER) has long been considered an exceedingly important and complex cellular organelle in eukaryotes (like you). It is a membrane structure, part folded lamellae, part tubular network, that both envelopes the nucleus and threads its way outward, all the way to the cell's periphery. Despite the elegant mechanics of bilayer membranes offered by the work of Helfrich and Canham, as far as the ER is concerned, theory has mostly sat on the sidelines. However, refined imaging of the ER has recently revealed beautiful and subtle geometrical forms - simple geometries, from the mathematical point of view - which some have called a ``parking garage for ribosomes.'' I'll review the discovery and physics of Terasaki ramps and discuss their relation to cell-biological questions, such as ER and nuclear-membrane re-organization during mitosis. Rather than being a footnote in a textbook on differential geometry, these structures suggest answers to a number of the ER's structure-function problems.

  20. Emergence and subsequent functional specialization of kindlins during evolution of cell adhesiveness

    PubMed Central

    Meller, Julia; Rogozin, Igor B.; Poliakov, Eugenia; Meller, Nahum; Bedanov-Pack, Mark; Plow, Edward F.; Qin, Jun; Podrez, Eugene A.; Byzova, Tatiana V.

    2015-01-01

    Kindlins are integrin-interacting proteins essential for integrin-mediated cell adhesiveness. In this study, we focused on the evolutionary origin and functional specialization of kindlins as a part of the evolutionary adaptation of cell adhesive machinery. Database searches revealed that many members of the integrin machinery (including talin and integrins) existed before kindlin emergence in evolution. Among the analyzed species, all metazoan lineages—but none of the premetazoans—had at least one kindlin-encoding gene, whereas talin was present in several premetazoan lineages. Kindlin appears to originate from a duplication of the sequence encoding the N-terminal fragment of talin (the talin head domain) with a subsequent insertion of the PH domain of separate origin. Sequence analysis identified a member of the actin filament–associated protein 1 (AFAP1) superfamily as the most likely origin of the kindlin PH domain. The functional divergence between kindlin paralogues was assessed using the sequence swap (chimera) approach. Comparison of kindlin 2 (K2)/kindlin 3 (K3) chimeras revealed that the F2 subdomain, in particular its C-terminal part, is crucial for the differential functional properties of K2 and K3. The presence of this segment enables K2 but not K3 to localize to focal adhesions. Sequence analysis of the C-terminal part of the F2 subdomain of K3 suggests that insertion of a variable glycine-rich sequence in vertebrates contributed to the loss of constitutive K3 targeting to focal adhesions. Thus emergence and subsequent functional specialization of kindlins allowed multicellular organisms to develop additional tissue-specific adaptations of cell adhesiveness. PMID:25540429

  1. Thyroid hormones and cognitive functioning in healthy, euthyroid women: a correlational study.

    PubMed

    Grigorova, Miglena; Sherwin, Barbara B

    2012-04-01

    Thyroid hormones (THs) play a critical role in differentiation, growth, and metabolism of animal and human organ systems, including the brain. Although associations between normal levels of THs and cognitive functions in healthy elderly individuals have been reported, the findings are inconsistent, possibly due to differences in study designs. Because thyroid disease occurs more frequently in women, the goal of the present study was to examine the relationship between levels of THs and performance on neuropsychological tests in 122 healthy, euthyroid women whose mean age was 51 years. Higher levels of free T3 were positively associated with longer completion times (slower performance) on Trail Making Test - Part A (p = 0.006) and Part B (p = 0.032) and on the Tower of London test (p = 0.002). Higher levels of thyroglobulin antibodies (TgAb) were positively correlated with more errors on the Trail Making Test Part B (p = 0.000), on the Word Fluency test (p = 0.023), and on the Design Fluency test (p = 0.045). No significant correlations between TH levels and scores on mood, verbal memory, or working memory measures were observed. The findings point to a possible link between THs and cognitive processes that are mediated primarily by frontal cortex, areas associated with executive function tasks, and suggest that elevations in levels of free T3 and TgAB within the normal range may negatively influence executive functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Some Theoretical Aspects of Nonzero Sum Differential Games and Applications to Combat Problems

    DTIC Science & Technology

    1971-06-01

    the Equilibrium Solution . 7 Hamilton-Jacobi-Bellman Partial Differential Equations ............. .............. 9 Influence Function Differential...Linearly .......... ............ 18 Problem Statement .......... ............ 18 Formulation of LJB Equations, Influence Function Equations and the TPBVP...19 Control Lawe . . .. ...... ........... 21 Conditions for Influence Function Continuity along Singular Surfaces

  3. Extended Self-Renewal and Accelerated Reprogramming in the Absence of Kdm5b

    PubMed Central

    Hu, Gangqing; Yu, Zu-Xi; Liu, Chengyu

    2013-01-01

    Embryonic stem (ES) cell pluripotency is thought to be regulated in part by H3K4 methylation. However, it is unclear how H3K4 demethylation contributes to ES cell function and participates in induced pluripotent stem (iPS) cell reprogramming. Here, we show that KDM5B, which demethylates H3K4, is important for ES cell differentiation and presents a barrier to the reprogramming process. Depletion of Kdm5b leads to an extension in the self-renewal of ES cells in the absence of LIF. Transcriptome analysis revealed the persistent expression of pluripotency genes and underexpression of developmental genes during differentiation in the absence of Kdm5b, suggesting that KDM5B plays a key role in cellular fate changes. We also observed accelerated reprogramming of differentiated cells in the absence of Kdm5b, demonstrating that KDM5B is a barrier to the reprogramming process. Expression analysis revealed that mesenchymal master regulators associated with the epithelial-to-mesenchymal transition (EMT) are downregulated during reprogramming in the absence of Kdm5b. Moreover, global analysis of H3K4me3/2 revealed that enhancers of fibroblast genes are rapidly deactivated in the absence of Kdm5b, and genes associated with EMT lose H3K4me3/2 during the early reprogramming process. These findings provide functional insight into the role for KDM5B in regulating ES cell differentiation and as a barrier to the reprogramming process. PMID:24100015

  4. Entropy of finite random binary sequences with weak long-range correlations.

    PubMed

    Melnik, S S; Usatenko, O V

    2014-11-01

    We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  5. Entropy of finite random binary sequences with weak long-range correlations

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2014-11-01

    We study the N -step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  6. Estrogen receptor β (ERβ1) transactivation is differentially modulated by the transcriptional coregulator Tip60 in a cis-acting element-dependent manner.

    PubMed

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-08-30

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1.

  7. Estrogen Receptor β (ERβ1) Transactivation Is Differentially Modulated by the Transcriptional Coregulator Tip60 in a cis-Acting Element-dependent Manner*

    PubMed Central

    Lee, Ming-Tsung; Leung, Yuet-Kin; Chung, Irving; Tarapore, Pheruza; Ho, Shuk-Mei

    2013-01-01

    Estrogen receptor (ER) β1 and ERα have overlapping and distinct functions despite their common use of estradiol as the physiological ligand. These attributes are explained in part by their differential utilization of coregulators and ligands. Although Tip60 has been shown to interact with both receptors, its regulatory role in ERβ1 transactivation has not been defined. In this study, we found that Tip60 enhances transactivation of ERβ1 at the AP-1 site but suppresses its transcriptional activity at the estrogen-response element (ERE) site in an estradiol-independent manner. However, different estrogenic compounds can modify the Tip60 action. The corepressor activity of Tip60 at the ERE site is abolished by diarylpropionitrile, genistein, equol, and bisphenol A, whereas its coactivation at the AP-1 site is augmented by fulvestrant (ICI 182,780). GRIP1 is an important tethering mediator for ERs at the AP-1 site. We found that coexpression of GRIP1 synergizes the action of Tip60. Although Tip60 is a known acetyltransferase, it is unable to acetylate ERβ1, and its coregulatory functions are independent of its acetylation activity. In addition, we showed the co-occupancy of ERβ1 and Tip60 at ERE and AP-1 sites of ERβ1 target genes. Tip60 differentially regulates the endogenous expression of the target genes by modulating the binding of ERβ1 to the cis-regulatory regions. Thus, we have identified Tip60 as the first dual-function coregulator of ERβ1. PMID:23857583

  8. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors.

    PubMed Central

    Kliewer, S A; Forman, B M; Blumberg, B; Ong, E S; Borgmeyer, U; Mangelsdorf, D J; Umesono, K; Evans, R M

    1994-01-01

    To gain insight into the function of peroxisome proliferator-activated receptor (PPAR) isoforms in mammals, we have cloned and characterized two PPAR alpha-related cDNAs (designated PPAR gamma and -delta, respectively) from mouse. The three PPAR isoforms display widely divergent patterns of expression during embryogenesis and in the adult. Surprisingly, PPAR gamma and -delta are not activated by pirinixic acid (Wy 14,643), a potent peroxisome proliferator and activator of PPAR alpha. However, PPAR gamma and -delta are activated by the structurally distinct peroxisome proliferator LY-171883 and linoleic acid, respectively, indicating that each of the isoforms can act as a regulated activator of transcription. These data suggest that tissue-specific responsiveness to peroxisome proliferators, including certain fatty acids, is in part a consequence of differential expression of multiple, pharmacologically distinct PPAR isoforms. Images PMID:8041794

  9. DIF Trees: Using Classification Trees to Detect Differential Item Functioning

    ERIC Educational Resources Information Center

    Vaughn, Brandon K.; Wang, Qiu

    2010-01-01

    A nonparametric tree classification procedure is used to detect differential item functioning for items that are dichotomously scored. Classification trees are shown to be an alternative procedure to detect differential item functioning other than the use of traditional Mantel-Haenszel and logistic regression analysis. A nonparametric…

  10. The MIMIC Model as a Tool for Differential Bundle Functioning Detection

    ERIC Educational Resources Information Center

    Finch, W. Holmes

    2012-01-01

    Increasingly, researchers interested in identifying potentially biased test items are encouraged to use a confirmatory, rather than exploratory, approach. One such method for confirmatory testing is rooted in differential bundle functioning (DBF), where hypotheses regarding potential differential item functioning (DIF) for sets of items (bundles)…

  11. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks.

    PubMed

    Dixon, Matthew L; De La Vega, Alejandro; Mills, Caitlin; Andrews-Hanna, Jessica; Spreng, R Nathan; Cole, Michael W; Christoff, Kalina

    2018-02-13

    The frontoparietal control network (FPCN) plays a central role in executive control. It has been predominantly viewed as a unitary domain general system. Here, we examined patterns of FPCN functional connectivity (FC) across multiple conditions of varying cognitive demands, to test for FPCN heterogeneity. We identified two distinct subsystems within the FPCN based on hierarchical clustering and machine learning classification analyses of within-FPCN FC patterns. These two FPCN subsystems exhibited distinct patterns of FC with the default network (DN) and the dorsal attention network (DAN). FPCN A exhibited stronger connectivity with the DN than the DAN, whereas FPCN B exhibited the opposite pattern. This twofold FPCN differentiation was observed across four independent datasets, across nine different conditions (rest and eight tasks), at the level of individual-participant data, as well as in meta-analytic coactivation patterns. Notably, the extent of FPCN differentiation varied across conditions, suggesting flexible adaptation to task demands. Finally, we used meta-analytic tools to identify several functional domains associated with the DN and DAN that differentially predict activation in the FPCN subsystems. These findings reveal a flexible and heterogeneous FPCN organization that may in part emerge from separable DN and DAN processing streams. We propose that FPCN A may be preferentially involved in the regulation of introspective processes, whereas FPCN B may be preferentially involved in the regulation of visuospatial perceptual attention.

  12. In vivo regulation of Bcl6 and T follicular helper cell development1

    PubMed Central

    Poholek, Amanda C.; Hansen, Kyle; Hernandez, Sairy G.; Eto, Danelle; Chandele, Anmol; Weinstein, Jason S.; Dong, Xuemei; Odegard, Jared M.; Kaech, Susan M.; Dent, Alexander L.; Crotty, Shane; Craft, Joe

    2010-01-01

    Follicular helper T (TFH) cells, defined by expression of the surface markers CXCR5 and PD-1 and synthesis of IL-21, require upregulation of the transcriptional repressor Bcl6 for their development and function in B cell maturation in germinal centers. We have explored the role of B cells, and the cytokines IL-6 and IL-21, in the in vivo regulation of Bcl6 expression and TFH cell development. We found that TFH cells are characterized by a Bcl6-dependent downregulation of P-selectin glycoprotein ligand-1 (PSGL1, a CCL19- and CCL21-binding protein), indicating that, like CXCR5 and PD-1 upregulation, modulation of PSGL1 expression is part of the TFH cell program of differentiation. B cells were neither required for initial upregulation of Bcl6 nor PSGL1 downregulation, suggesting these events preceded T-B cell interactions, although they were required for full development of the TFH cell phenotype, including CXCR5 and PD-1 upregulation, and IL-21 synthesis. Bcl6 upregulation and TFH cell differentiation were independent of IL-6 and IL-21, revealing that either cytokine is not absolutely required for development of Bcl6+ TFH cells in vivo. These data increase our understanding of Bcl6 regulation in TFH cells and their differentiation in vivo, and identifies a new surface marker that may be functionally relevant in this subset. PMID:20519643

  13. Extremely Low-Frequency Electromagnetic Fields Affect Myogenic Processes in C2C12 Myoblasts: Role of Gap-Junction-Mediated Intercellular Communication

    PubMed Central

    Rovetta, Francesca; Boniotti, Jennifer; Mazzoleni, Giovanna

    2017-01-01

    Extremely low-frequency electromagnetic fields (ELF-EMFs) can interact with biological systems. Although they are successfully used as therapeutic agents in physiatrics and rehabilitative practice, they might represent environmental pollutants and pose a risk to human health. Due to the lack of evidence of their mechanism of action, the effects of ELF-EMFs on differentiation processes in skeletal muscle were investigated. C2C12 myoblasts were exposed to ELF-EMFs generated by a solenoid. The effects of ELF-EMFs on cell viability and on growth and differentiation rates were studied using colorimetric and vital dye assays, cytomorphology, and molecular analysis of MyoD and myogenin expression, respectively. The establishment of functional gap junctions was investigated analyzing connexin 43 expression levels and measuring cell permeability, using microinjection/dye-transfer assays. The ELF-EMFs did not affect C2C12 myoblast viability or proliferation rate. Conversely, at ELF-EMF intensity in the mT range, the myogenic process was accelerated, through increased expression of MyoD, myogenin, and connexin 43. The increase in gap-junction function suggests promoting cell fusion and myotube differentiation. These data provide the first evidence of the mechanism through which ELF-EMFs may provide therapeutic benefits and can resolve, at least in part, some conditions of muscle dysfunction. PMID:28607928

  14. Effectiveness of Part C Early Intervention Physical, Occupational, and Speech Therapy Services for Preterm or Low Birth Weight Infants in Wisconsin, United States

    PubMed Central

    McManus, Beth M.; Carle, Adam C.; Poehlmann, Julie

    2013-01-01

    Objective To determine the effectiveness of policy-driven therapy (ie, Part C early intervention [EI]) in the context of varying maternal supports among preterm infants in Wisconsin. Methods A longitudinal study of mother–infant dyads recruited from 3 newborn intensive care units in southeastern Wisconsin. Participation in EI-based therapy was collected at 36 months via parent-report. Cognitive function was measured at 16 months by use of the Bayley Scales of Infant Development (Mental Developmental Index), 2nd edition and at 24 and 36 months postterm via use of the Stanford-Binet Intelligence scale, 5th edition. Maternal support was measured at 4 months with the Maternal Support Scale. Propensity score matching was used to reduce selection bias. Latent growth models of matched pairs estimated the effect of EI therapy on cognitive function trajectories. Ordinary least squares regression estimated the differential effect of EI therapy on cognitive function at 16, 24, and 36 months postterm for mothers reporting more maternal supports. Results Of the 128 infants, 41 received EI therapy and, of those, 32 (78%) were successfully matched with controls. The results of the matched analysis (n = 64) reveal that 1) receipt of therapy is inversely associated with cognitive function baseline (P = .04) and positively associated with trajectories (P =.03), 2) the number of maternal supports is positively associated with cognitive function for families receiving Part C early intervention, at 16 months (P = .05), 24 months (P <.01), and 36 months (P = .05) postterm. Conclusions Participation in EI therapy may be associated with more optimal cognitive function trajectories. Among preterm children whose mothers have more supports, receiving therapy appears particularly beneficial. PMID:22230187

  15. The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression.

    PubMed

    Middelbeek, Jeroen; Vrenken, Kirsten; Visser, Daan; Lasonder, Edwin; Koster, Jan; Jalink, Kees; Clark, Kristopher; van Leeuwen, Frank N

    2016-11-01

    Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics and cell-matrix interactions. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Adam, Stefanie; Dubruel, Peter; Van Vlierberghe, Sandra; Peters, Kirsten

    2017-04-01

    Tissue regeneration often occurs only to a limited extent. By providing a three-dimensional matrix serving as a surrogate extracellular matrix that promotes adult stem cell adhesion, proliferation and differentiation, scaffold-guided tissue regeneration aims at overcoming this limitation. In this study, we applied hydrogels made from crosslinkable gelatin, the hydrolyzed form of collagen, and functionalized starch which were characterized in depth and optimized as described in Van Nieuwenhove et al., 2016. "Gelatin- and Starch-Based Hydrogels. Part A: Hydrogel Development, Characterization and Coating", Carbohydrate Polymers 152:129-39. Collagen is the main structural protein in animal connective tissue and the most abundant protein in mammals. Starch is a carbohydrate consisting of a mixture of amylose and amylopectin. Hydrogels were developed with varying chemical composition (ratio of starch to gelatin applied) and different degrees of methacrylation of the applied gelatin phase. The hydrogels used exhibited no adverse effect on viability of the stem cells cultured on them. Moreover, initial cell adhesion did not differ significantly between them, while the strongest proliferation was observed on the hydrogel with the highest degree of cross-linking. On the least crosslinked and thus most flexible hydrogels, the highest degree of adipogenic differentiation was found, while osteogenic differentiation was the strongest on the most rigid, starch-blended hydrogels. Hydrogel coating with extracellular matrix compounds aggrecan or fibronectin prior to cell seeding exhibited no significant effects. Thus, gelatin-based hydrogels can be optimized regarding maximum promotion of either adipogenic or osteogenic stem cell differentiation in vitro, which makes them promising candidates for in vivo evaluation in clinical studies aiming at either soft or hard tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Numerical Differentiation of Noisy, Nonsmooth Data

    DOE PAGES

    Chartrand, Rick

    2011-01-01

    We consider the problem of differentiating a function specified by noisy data. Regularizing the differentiation process avoids the noise amplification of finite-difference methods. We use total-variation regularization, which allows for discontinuous solutions. The resulting simple algorithm accurately differentiates noisy functions, including those which have a discontinuous derivative.

  18. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE PAGES

    Ku, S.; Hager, R.; Chang, C. S.; ...

    2016-04-01

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  19. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S.; Hager, R.; Chang, C. S.

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. In conclusion, the numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  20. A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, S., E-mail: sku@pppl.gov; Hager, R.; Chang, C.S.

    In order to enable kinetic simulation of non-thermal edge plasmas at a reduced computational cost, a new hybrid-Lagrangian δf scheme has been developed that utilizes the phase space grid in addition to the usual marker particles, taking advantage of the computational strengths from both sides. The new scheme splits the particle distribution function of a kinetic equation into two parts. Marker particles contain the fast space-time varying, δf, part of the distribution function and the coarse-grained phase-space grid contains the slow space-time varying part. The coarse-grained phase-space grid reduces the memory-requirement and the computing cost, while the marker particles providemore » scalable computing ability for the fine-grained physics. Weights of the marker particles are determined by a direct weight evolution equation instead of the differential form weight evolution equations that the conventional delta-f schemes use. The particle weight can be slowly transferred to the phase space grid, thereby reducing the growth of the particle weights. The non-Lagrangian part of the kinetic equation – e.g., collision operation, ionization, charge exchange, heat-source, radiative cooling, and others – can be operated directly on the phase space grid. Deviation of the particle distribution function on the velocity grid from a Maxwellian distribution function – driven by ionization, charge exchange and wall loss – is allowed to be arbitrarily large. The numerical scheme is implemented in the gyrokinetic particle code XGC1, which specializes in simulating the tokamak edge plasma that crosses the magnetic separatrix and is in contact with the material wall.« less

  1. Baker-Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials

    NASA Astrophysics Data System (ADS)

    Kalla, C.; Korotkin, D.

    2014-11-01

    In this paper we study the Baker-Akhiezer spinor kernel on moduli spaces of meromorphic differentials on Riemann surfaces. We introduce the Baker-Akhiezer tau-function which is related to both the Bergman tau-function (which was studied before in the context of Hurwitz spaces and spaces of holomorphic Abelian and quadratic differentials) and the KP tau-function on such spaces. In particular, we derive variational formulas of Rauch-Ahlfors type on moduli spaces of meromorphic differentials with prescribed singularities: we use the system of homological coordinates, consisting of absolute and relative periods of the meromorphic differential, and show how to vary the fundamental objects associated to a Riemann surface (the matrix of b-periods, normalized Abelian differentials, the Bergman bidifferential, the Szegö kernel and the Baker-Akhiezer spinor kernel) with respect to these coordinates. The variational formulas encode dependence both on the moduli of the Riemann surface and on the choice of meromorphic differential (variation of the meromorphic differential while keeping the Riemann surface fixed corresponds to flows of KP type). Analyzing the global properties of the Bergman and Baker-Akhiezer tau-functions, we establish relationships between various divisor classes on the moduli spaces.

  2. Identification and characterization of long noncoding RNAs and mRNAs expression profiles related to postnatal liver maturation of breeder roosters using Ribo-zero RNA sequencing.

    PubMed

    Wu, Shengru; Liu, Yanli; Guo, Wei; Cheng, Xi; Ren, Xiaochun; Chen, Si; Li, Xueyuan; Duan, Yongle; Sun, Qingzhu; Yang, Xiaojun

    2018-06-27

    The liver is mainly hematopoietic in the embryo, and converts into a major metabolic organ in the adult. Therefore, it is intensively remodeled after birth to adapt and perform adult functions. Long non-coding RNAs (lncRNAs) are involved in organ development and cell differentiation, likely they have potential roles in regulating postnatal liver development. Herein, in order to understand the roles of lncRNAs in postnatal liver maturation, we analyzed the lncRNAs and mRNAs expression profiles in immature and mature livers from one-day-old and adult (40 weeks of age) breeder roosters by Ribo-Zero RNA-Sequencing. Around 21,939 protein-coding genes and 2220 predicted lncRNAs were expressed in livers of breeder roosters. Compared to protein-coding genes, the identified chicken lncRNAs shared fewer exons, shorter transcript length, and significantly lower expression levels. Notably, in comparison between the livers of newborn and adult breeder roosters, a total of 1570 mRNAs and 214 lncRNAs were differentially expressed with the criteria of log 2 fold change > 1 or < - 1 and P values < 0.05, which were validated by qPCR using randomly selected five mRNAs and five lncRNAs. Further GO and KEGG analyses have revealed that the differentially expressed mRNAs were involved in the hepatic metabolic and immune functional changes, as well as some biological processes and pathways including cell proliferation, apoptotic and cell cycle that are implicated in the development of liver. We also investigated the cis- and trans- regulatory effects of differentially expressed lncRNAs on its target genes. GO and KEGG analyses indicated that these lncRNAs had their neighbor protein coding genes and trans-regulated genes associated with adapting of adult hepatic functions, as well as some pathways involved in liver development, such as cell cycle pathway, Notch signaling pathway, Hedgehog signaling pathway, and Wnt signaling pathway. This study provides a catalog of mRNAs and lncRNAs related to postnatal liver maturation of chicken, and will contribute to a fuller understanding of biological processes or signaling pathways involved in significant functional transition during postnatal liver development that differentially expressed genes and lncRNAs could take part in.

  3. Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential.

    PubMed

    Siegel, Georg; Krause, Petra; Wöhrle, Stefanie; Nowak, Patrick; Ayturan, Miriam; Kluba, Torsten; Brehm, Bernhard R; Neumeister, Birgid; Köhler, David; Rosenberger, Peter; Just, Lothar; Northoff, Hinnak; Schäfer, Richard

    2012-09-01

    Despite their paracrine activites, cardiomyogenic differentiation of bone marrow (BM)-derived mesenchymal stem cells (MSCs) is thought to contribute to cardiac regeneration. To systematically evaluate the role of differentiation in MSC-mediated cardiac regeneration, the cardiomyogenic differentiation potential of human MSCs (hMSCs) and murine MSCs (mMSCs) was investigated in vitro and in vivo by inducing cardiomyogenic and noncardiomyogenic differentiation. Untreated hMSCs showed upregulation of cardiac tropopin I, cardiac actin, and myosin light chain mRNA and protein, and treatment of hMSCs with various cardiomyogenic differentiation media led to an enhanced expression of cardiomyogenic genes and proteins; however, no functional cardiomyogenic differentiation of hMSCs was observed. Moreover, co-culturing of hMSCs with cardiomyocytes derived from murine pluripotent cells (mcP19) or with murine fetal cardiomyocytes (mfCMCs) did not result in functional cardiomyogenic differentiation of hMSCs. Despite direct contact to beating mfCMCs, hMSCs could be effectively differentiated into cells of only the adipogenic and osteogenic lineage. After intramyocardial transplantation into a mouse model of myocardial infarction, Sca-1(+) mMSCs migrated to the infarcted area and survived at least 14 days but showed inconsistent evidence of functional cardiomyogenic differentiation. Neither in vitro treatment nor intramyocardial transplantation of MSCs reliably generated MSC-derived cardiomyocytes, indicating that functional cardiomyogenic differentiation of BM-derived MSCs is a rare event and, therefore, may not be the main contributor to cardiac regeneration.

  4. Dynamic Network-Based Relevance Score Reveals Essential Proteins and Functional Modules in Directed Differentiation

    PubMed Central

    Wu, Chia-Chou; Lin, Che

    2015-01-01

    The induction of stem cells toward a desired differentiation direction is required for the advancement of stem cell-based therapies. Despite successful demonstrations of the control of differentiation direction, the effective use of stem cell-based therapies suffers from a lack of systematic knowledge regarding the mechanisms underlying directed differentiation. Using dynamic modeling and the temporal microarray data of three differentiation stages, three dynamic protein-protein interaction networks were constructed. The interaction difference networks derived from the constructed networks systematically delineated the evolution of interaction variations and the underlying mechanisms. A proposed relevance score identified the essential components in the directed differentiation. Inspection of well-known proteins and functional modules in the directed differentiation showed the plausibility of the proposed relevance score, with the higher scores of several proteins and function modules indicating their essential roles in the directed differentiation. During the differentiation process, the proteins and functional modules with higher relevance scores also became more specific to the neuronal identity. Ultimately, the essential components revealed by the relevance scores may play a role in controlling the direction of differentiation. In addition, these components may serve as a starting point for understanding the systematic mechanisms of directed differentiation and for increasing the efficiency of stem cell-based therapies. PMID:25977693

  5. TSH Receptor Function Is Required for Normal Thyroid Differentiation in Zebrafish

    PubMed Central

    Opitz, Robert; Maquet, Emilie; Zoenen, Maxime; Dadhich, Rajesh

    2011-01-01

    TSH is the primary physiological regulator of thyroid gland function. The effects of TSH on thyroid cells are mediated via activation of its membrane receptor [TSH receptor (TSHR)]. In this study, we examined functional thyroid differentiation in zebrafish and characterized the role of TSHR signaling during thyroid organogenesis. Cloning of a cDNA encoding zebrafish Tshr showed conservation of primary structure and functional properties between zebrafish and mammalian TSHR. In situ hybridization confirmed that the thyroid is the major site of tshr expression during zebrafish development. In addition, we identified tpo, iyd, duox, and duoxa as novel thyroid differentiation markers in zebrafish. Temporal analyses of differentiation marker expression demonstrated the induction of an early thyroid differentiation program along with thyroid budding, followed by a delayed onset of duox and duoxa expression coincident with thyroid hormone synthesis. Furthermore, comparative analyses in mouse and zebrafish revealed for the first time a thyroid-enriched expression of cell death regulators of the B-cell lymphoma 2 family during early thyroid morphogenesis. Knockdown of tshr function by morpholino microinjection into embryos did not affect early thyroid morphogenesis but caused defects in later functional differentiation. The thyroid phenotype observed in tshr morphants at later stages comprised a reduction in number and size of functional follicles, down-regulation of differentiation markers, as well as reduced thyroid transcription factor expression. A comparison of our results with phenotypes observed in mouse models of defective TSHR and cAMP signaling highlights the value of zebrafish as a model to enhance the understanding of functional differentiation in the vertebrate thyroid. PMID:21737742

  6. The role of echocardiography in the evaluation of cardiac re-modelling and differentiation between physiological and pathological hypertrophy in teenagers engaged in competitive amateur sports.

    PubMed

    Sulovic, Ljiljana S; Mahmutovic, Meho; Lazic, Snezana; Sulovic, Nenad

    2017-05-01

    Aims "Athlete's heart" is a cardiac adaptation to long-term intensive training. The aims of this study were to show the prevalence of left ventricular hypertrophy in teenagers who participate in sports, to define the different types of cardiac re-modelling, and to differentiate between physiological and pathological hypertrophy. Echocardiographic measurements were obtained by M-mode, two dimensional, and Doppler techniques of participants from sports and control groups. The echocardiographic examinations included 100 healthy teenagers taking part in dynamic sports such as football and basketball and 100 healthy teenagers taking part in static sports such as karate and judo. The control group (n=100) included healthy, sedentary teenagers. Sports participants had significantly higher left ventricular mass when compared with the control group, (p0.05). Respondents from both groups had E/A ratios (transmitral flow velocity ratio)>1, preserved diastolic function, and statistically they did not differ from the control group. Echocardiographic parameters show that physiological hypertrophy and cardiac re-modelling are present in teenagers who play sports. Unexpectedly, the prevalence of concentric and eccentric types of re-modelling is equally possible in the group of static sports participants.

  7. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech.

    PubMed

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax.

  8. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech

    PubMed Central

    Yamazaki, Yumiko; Yokochi, Hiroko; Tanaka, Michio; Okanoya, Kazuo; Iriki, Atsushi

    2010-01-01

    The anterior portion of the inferior parietal cortex possesses comprehensive representations of actions embedded in behavioural contexts. Mirror neurons, which respond to both self-executed and observed actions, exist in this brain region in addition to those originally found in the premotor cortex. We found that parietal mirror neurons responded differentially to identical actions embedded in different contexts. Another type of parietal mirror neuron represents an inverse and complementary property of responding equally to dissimilar actions made by itself and others for an identical purpose. Here, we propose a hypothesis that these sets of inferior parietal neurons constitute a neural basis for encoding the semantic equivalence of various actions across different agents and contexts. The neurons have mirror neuron properties, and they encoded generalization of agents, differentiation of outcomes, and categorization of actions that led to common functions. By integrating the activities of these mirror neurons with various codings, we further suggest that in the ancestral primates' brains, these various representations of meaningful action led to the gradual establishment of equivalence relations among the different types of actions, by sharing common action semantics. Such differential codings of the components of actions might represent precursors to the parts of protolanguage, such as gestural communication, which are shared among various members of a society. Finally, we suggest that the inferior parietal cortex serves as an interface between this action semantics system and other higher semantic systems, through common structures of action representation that mimic language syntax. PMID:20119879

  9. TET1 and TET3 are essential in induction of Th2-type immunity partly through regulation of IL-4/13A expression in zebrafish model.

    PubMed

    Yang, Chao; Li, Zhuo; Kang, Wei; Tian, Yu; Yan, Yuzhu; Chen, Wei

    2016-10-10

    It has been considered that epigenetic modulation can affect a diverse array of cellular activities, in which ten eleven translocation (TET) methylcytosine dioxygenase family members refer to a group of fundamental components involved in catalyzation of 5-hydroxymethylcytosine and modification of gene expression. Even though the function of TET proteins has been gradually revealed, their roles in immune regulation are still largely unknown. Recent studies provided clues that TET2 could regulate several innate immune-related inflammatory mediators in mammals. This study sought to explore the function of TET family members in potential T-helper (Th) cell differentiation involved in adaptive immunity by utilizing a zebrafish model. As shown by results, soluble antigens could induce expression of zebrafish IL-4/13A (i.e. a pivotal Th2-type cytokine essential in Th2 cell differentiation and functions), and further trigger the expression of Th1- and Th2-related genes. It is noteworthy that this response was accompanied by the up-regulation of two TET family members (TET1 and TET3) both in immune organs (spleen and kidney) and cells (peripheral lymphocytes). Knocking-down of TET1 and TET3 will give rise to the decreased responses of IL-4/13A induction against exogenous soluble antigen stimulation, and further restrain the expression of Th2-related genes, which indicates a restrained Th2 cell differentiation. Nonetheless, TET2 did not exhibit effect on the modification of Th1/Th2 related gene expression. Hence, these data showed that TET1 and TET3 might be two significant epigenetic regulators involved in Th2 differentiation through regulation of IL-4/13A expression. This is the first report to show that TET family members play indispensable roles in Th2-type immunity, indicating an epigenetic modulation manner involved in adaptive immune regulations and responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration via Distinct and Overlapping Mechanisms

    PubMed Central

    Eleniste, Pierre P.; Patel, Vruti; Posritong, Sumana; Zero, Odette; Largura, Heather; Cheng, Ying-Hua; Himes, Evan R.; Hamilton, Matthew; Baughman, Jenna; Kacena, Melissa A.; Bruzzaniti, Angela

    2016-01-01

    Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2Y402F) and kinase-mutant (Pyk2K457A) in Pyk2-KO osteoblasts. Both Pyk2Y402F and Pyk2K457A reduced ALP activity, whereas only kinase-inactive Pyk2K457A inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although Pyk2-KO osteoblasts exhibited increased migration compared to WT osteoblasts, Pyk2 expression was not required for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases. PMID:26552846

  11. Control of DNA replication: a new facet of Hox proteins?

    PubMed

    Miotto, Benoit; Graba, Yacine

    2010-09-01

    Hox proteins are well-known as developmental transcription factors controlling cell and tissue identity, but recent findings suggest that they are also part of the cell replication machinery. Hox-mediated control of transcription and replication may ensure coordinated control of cell growth and differentiation, two processes that need to be tightly and precisely coordinated to allow proper organ formation and patterning. In this review we summarize the available data linking Hox proteins to the replication machinery and discuss the developmental and pathological implications of this new facet of Hox protein function.

  12. Gesellschaft fuer angewandte Mathematik und Mechanik, Annual Scientific Meeting, Technische Universitaet Berlin, Berlin, West Germany, April 8-11, 1980, Reports. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    1981-04-01

    The main topics discussed were related to nonparametric statistics, plane and antiplane states in finite elasticity, free-boundary-variational inequalities, the numerical solution of free boundary-value problems, discrete and combinatorial optimization, mathematical modelling in fluid mechanics, a survey and comparison regarding thermodynamic theories, invariant and almost invariant subspaces in linear systems with applications to disturbance isolation, nonlinear acoustics, and methods of function theory in the case of partial differential equations, giving particular attention to elliptic problems in the plane.

  13. The macrodynamics of international migration as a socio-cultural diffusion process. Part B: applications.

    PubMed

    Diamantides, N D

    1992-12-01

    "This study formulates a model of the macrodynamics of international migration using a differential equation to capture the push-pull forces that propel it. The model's architecture rests on the functioning of information feedback between settled friends and family at the destination and potential emigrants at the origin.... Two specific paradigms of diverse nature serve to demonstrate the model's tenets and pertinence, one being Greek emigration to the United States since 1820, and the other total out-migration from Cyprus since statehood (1946)." excerpt

  14. Mueller matrix mapping of biological polycrystalline layers using reference wave

    NASA Astrophysics Data System (ADS)

    Dubolazov, A.; Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Grytsyuk, M.; Prysyazhnyuk, P. V.

    2018-01-01

    The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 1st order of polycrystalline structure of the histological section of brain tissue. It was defined the statistical moments of the 1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of mice liver tissue (normal and with diabetes). It were defined the objective criteria of differential diagnostics of diabetes.

  15. T inflammatory memory CD8 T cells participate to antiviral response and generate secondary memory cells with an advantage in XCL1 production.

    PubMed

    Jubin, Virginie; Ventre, Erwan; Leverrier, Yann; Djebali, Sophia; Mayol, Katia; Tomkowiak, Martine; Mafille, Julien; Teixeira, Marie; Teoh, Denise Y-L; Lina, Bruno; Walzer, Thierry; Arpin, Christophe; Marvel, Jacqueline

    2012-06-01

    Besides the classically described subsets of memory CD8 T cells generated under infectious conditions, are T inflammatory memory cells generated under sterile priming conditions, such as sensitization to allergens. Although not fully differentiated as pathogen-induced memory cells, they display memory properties that distinguish them from naive CD8 T cells. Given these memory cells are generated in an antigen-specific context that is devoid of pathogen-derived danger signals and CD4 T cell help, we herein questioned whether they maintained their activation and differentiation potential, could be recruited in an immune response directed against a pathogen expressing their cognate antigen and further differentiate in fully competent secondary memory cells. We show that T inflammatory memory cells can indeed take part to the immune response triggered by a viral infection, differentiate into secondary effectors and further generate typical central memory CD8 T cells and effector memory CD8 T cells. Furthermore, the secondary memory cells they generate display a functional advantage over primary memory cells in their capacity to produce TNF-α and the XCL1 chemokine. These results suggest that cross-reactive stimulations and differentiation of cells directed against allergens or self into fully competent pathogen-induced memory cells might have incidences in inflammatory immuno-pathologies.

  16. Cell therapy from bench to bedside: Hepatocytes from fibroblasts - the truth and myth of transdifferentiation.

    PubMed

    Sanal, Madhusudana Girija

    2015-06-07

    Hepatocyte transplantation is an alternative to liver transplantation in certain disorders such as inherited liver diseases and liver failure. It is a relatively less complicated surgical procedure, and has the advantage that it can be repeated several times if unsuccessful. Another advantage is that hepatocytes can be isolated from partly damaged livers which are not suitable for liver transplantation. Despite these advantages hepatocyte transplantation is less popular. Important issues are poor engraftment of the transplanted cells and the scarcity of donor hepatocytes. Generation of "hepatocyte like cells"/iHeps from embryonic stem cells (ES) and induced pluripotent stem cells (iPSCs) by directed differentiation is an emerging solution to the latter issue. Direct conversation or trans-differentiation of fibroblasts to "hepatocyte like cells" is another way which is, being explored. However this method has several inherent and technical disadvantages compared to the directed differentiation from ES or iPSC. There are several methods claiming to be "highly efficient" for generating "highly functional" "hepatocyte like cells". Currently different groups are working independently and coming up with differentiation protocols and each group claiming an advantage for their protocol. Directed differentiation protocols need to be designed, compared, analyzed and tweaked systematically and logically than empirically. There is a need for a well-coordinated global initiative comparable to the Human Genome Project to achieve this goal in the near future.

  17. The C2H2 Transcription Factor REGULATOR OF SYMBIOSOME DIFFERENTIATION Represses Transcription of the Secretory Pathway Gene VAMP721a and Promotes Symbiosome Development in Medicago truncatula[W][OPEN

    PubMed Central

    Sinharoy, Senjuti; Torres-Jerez, Ivone; Bandyopadhyay, Kaustav; Kereszt, Attila; Pislariu, Catalina I.; Nakashima, Jin; Benedito, Vagner A.; Kondorosi, Eva; Udvardi, Michael K.

    2013-01-01

    Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe REGULATOR OF SYMBIOSOME DIFFERENTIATION (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants. PMID:24082011

  18. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula.

    PubMed

    Sinharoy, Senjuti; Torres-Jerez, Ivone; Bandyopadhyay, Kaustav; Kereszt, Attila; Pislariu, Catalina I; Nakashima, Jin; Benedito, Vagner A; Kondorosi, Eva; Udvardi, Michael K

    2013-09-01

    Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.

  19. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition.

    PubMed

    Tong, W; Kiyokawa, H; Soos, T J; Park, M S; Soares, V C; Manova, K; Pollard, J W; Koff, A

    1998-09-01

    The involvement of cyclin-dependent kinase inhibitors in differentiation remains unclear: are the roles of cyclin-dependent kinase inhibitors restricted to cell cycle arrest; or also required for completion of the differentiation program; or both? Here, we report that differentiation of luteal cells can be uncoupled from growth arrest in p27-deficient mice. In these mice, female-specific infertility correlates with a failure of embryos to implant at embryonic day 4.5. We show by ovarian transplant and hormone reconstitution experiments that failure to regulate luteal cell estradiol is one physiological mechanism for infertility in these mice. This failure is not due to a failure of p27-deficient granulosa cells to differentiate after hormonal stimulation; P450scc, a marker for luteal progesterone biosynthesis, is expressed and granulosa cell-specific cyclin D2 expression is reduced. However, unlike their wild-type counterparts, p27-deficient luteal cells continue to proliferate for up to 3.5 days after hormonal stimulation. By day 5.5, however, these cells withdraw from the cell cycle, suggesting that p27 plays a role in the early events regulating withdrawal of cells from the cell cycle. We have further shown that in the absence of this timely withdrawal, estradiol regulation is perturbed, explaining in part how fertility is compromised at the level of implantation. These data support the interpretation of our previous observations on oligodendrocyte differentiation about a role for p27 in establishing the nonproliferative state, which in some cases (oligodendrocytes) is required for differentiation, whereas in other cases it is required for the proper functioning of a differentiated cell (luteal cell).

  20. Phosphoproteomics profiling suggests a role for nuclear βΙPKC in transcription processes of undifferentiated murine embryonic stem cells.

    PubMed

    Costa-Junior, Helio Miranda; Garavello, Nicole Milaré; Duarte, Mariana Lemos; Berti, Denise Aparecida; Glaser, Talita; de Andrade, Alexander; Labate, Carlos A; Ferreira, André Teixeira da Silva; Perales, Jonas Enrique Aguilar; Xavier-Neto, José; Krieger, José Eduardo; Schechtman, Deborah

    2010-12-03

    Protein kinase C (PKC) plays a key role in embryonic stem cell (ESC) proliferation, self-renewal, and differentiation. However, the function of specific PKC isoenzymes have yet to be determined. Of the PKCs expressed in undifferentiated ESCs, βIPKC was the only isoenzyme abundantly expressed in the nuclei. To investigate the role of βΙPKC in these cells, we employed a phosphoproteomics strategy and used two classical (cPKC) peptide modulators and one βIPKC-specific inhibitor peptide. We identified 13 nuclear proteins that are direct or indirect βΙPKC substrates in undifferentiated ESCs. These proteins are known to be involved in regulating transcription, splicing, and chromatin remodeling during proliferation and differentiation. Inhibiting βΙPKC had no effect on DNA synthesis in undifferentiated ESCs. However, upon differentiation, many cells seized to express βΙPKC and βΙPKC was frequently found in the cytoplasm. Taken together, our results suggest that βIPKC takes part in the processes that maintain ESCs in their undifferentiated state.

  1. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues.

    PubMed

    Santosh, Arvind Babu Rajendra; Jones, Thaon Jon

    2014-03-17

    In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  2. Spacecraft compartment venting

    NASA Astrophysics Data System (ADS)

    Scialdone, John J.

    1998-10-01

    At various times, concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.

  3. Spacecraft Compartment Venting

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1998-01-01

    At various time concerns have been expressed that rapid decompressions of compartments of gas pockets and thermal blankets during spacecraft launches may have caused pressure differentials across their walls sufficient to cause minor structural failures, separations of adhesively-joined parts, ballooning, and flapping of blankets. This paper presents a close form equation expressing the expected pressure differentials across the walls of a compartment as a function of the external to the volume pressure drops, the pressure at which the rates occur and the vent capability of the compartment. The pressure profiles measured inside the shrouds of several spacecraft propelled by several vehicles and some profiles obtained from ground vacuum systems have been included. The equation can be used to design the appropriate vent, which will preclude excessive pressure differentials. Precautions and needed approaches for the evaluations of the expected pressures have been indicated. Methods to make a rapid assessment of the response of the compartment to rapid external pressure drops have been discussed. These are based on the evaluation of the compartment vent flow conductance, the volume and the length of time during which the rapid pressure drop occurs.

  4. Efficient Processing of Data for Locating Lightning Strikes

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Starr, Stan

    2003-01-01

    Two algorithms have been devised to increase the efficiency of processing of data in lightning detection and ranging (LDAR) systems so as to enable the accurate location of lightning strikes in real time. In LDAR, the location of a lightning strike is calculated by solving equations for the differences among the times of arrival (DTOAs) of the lightning signals at multiple antennas as functions of the locations of the antennas and the speed of light. The most difficult part of the problem is computing the DTOAs from digitized versions of the signals received by the various antennas. One way (a time-domain approach) to determine the DTOAs is to compute cross-correlations among variously differentially delayed replicas of the digitized signals and to select, as the DTOAs, those differential delays that yield the maximum correlations. Another way (a frequency-domain approach) to determine the DTOAs involves the computation of cross-correlations among Fourier transforms of variously differentially phased replicas of the digitized signals, along with utilization of the relationship among phase difference, time delay, and frequency.

  5. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery.

    PubMed

    Mei, Feng; Lehmann-Horn, Klaus; Shen, Yun-An A; Rankin, Kelsey A; Stebbins, Karin J; Lorrain, Daniel S; Pekarek, Kara; A Sagan, Sharon; Xiao, Lan; Teuscher, Cory; von Büdingen, H-Christian; Wess, Jürgen; Lawrence, J Josh; Green, Ari J; Fancy, Stephen Pj; Zamvil, Scott S; Chan, Jonah R

    2016-09-27

    Demyelination in MS disrupts nerve signals and contributes to axon degeneration. While remyelination promises to restore lost function, it remains unclear whether remyelination will prevent axonal loss. Inflammatory demyelination is accompanied by significant neuronal loss in the experimental autoimmune encephalomyelitis (EAE) mouse model and evidence for remyelination in this model is complicated by ongoing inflammation, degeneration and possible remyelination. Demonstrating the functional significance of remyelination necessitates selectively altering the timing of remyelination relative to inflammation and degeneration. We demonstrate accelerated remyelination after EAE induction by direct lineage analysis and hypothesize that newly formed myelin remains stable at the height of inflammation due in part to the absence of MOG expression in immature myelin. Oligodendroglial-specific genetic ablation of the M1 muscarinic receptor, a potent negative regulator of oligodendrocyte differentiation and myelination, results in accelerated remyelination, preventing axonal loss and improving functional recovery. Together our findings demonstrate that accelerated remyelination supports axonal integrity and neuronal function after inflammatory demyelination.

  6. Neurobehavioral Disorder Associated With Prenatal Alcohol Exposure

    PubMed Central

    Hagan, Joseph F.; Balachova, Tatiana; Bertrand, Jacquelyn; Chasnoff, Ira; Dang, Elizabeth; Fernandez-Baca, Daniel; Kable, Julie; Kosofsky, Barry; Senturias, Yasmin N.; Singh, Natasha; Sloane, Mark; Weitzman, Carol; Zubler, Jennifer

    2017-01-01

    Children and adolescents affected by prenatal exposure to alcohol who have brain damage that is manifested in functional impairments of neurocognition, self-regulation, and adaptive functioning may most appropriately be diagnosed with neurobehavioral disorder associated with prenatal exposure. This Special Article outlines clinical implications and guidelines for pediatric medical home clinicians to identify, diagnose, and refer children regarding neurobehavioral disorder associated with prenatal exposure. Emphasis is given to reported or observable behaviors that can be identified as part of care in pediatric medical homes, differential diagnosis, and potential comorbidities. In addition, brief guidance is provided on the management of affected children in the pediatric medical home. Finally, suggestions are given for obtaining prenatal history of in utero exposure to alcohol for the pediatric patient. PMID:27677572

  7. A complete analytical solution of the Fokker-Planck and balance equations for nucleation and growth of crystals

    NASA Astrophysics Data System (ADS)

    Makoveeva, Eugenya V.; Alexandrov, Dmitri V.

    2018-01-01

    This article is concerned with a new analytical description of nucleation and growth of crystals in a metastable mushy layer (supercooled liquid or supersaturated solution) at the intermediate stage of phase transition. The model under consideration consisting of the non-stationary integro-differential system of governing equations for the distribution function and metastability level is analytically solved by means of the saddle-point technique for the Laplace-type integral in the case of arbitrary nucleation kinetics and time-dependent heat or mass sources in the balance equation. We demonstrate that the time-dependent distribution function approaches the stationary profile in course of time. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  8. Detecting Differential Person Functioning in Emotional Intelligence

    ERIC Educational Resources Information Center

    Alsmadi, Yahia M.; Alsmadi, Abdalla A.

    2009-01-01

    Differential Item Functioning (DIF) is a widely used term in test development literature. It is very important to analyze test's data for DIF because It is a serious threat to validity. If the same data matrix was transposed, similar analysis can be carried for Differential Person Functioning (DPF). The purpose of this paper is to introduce and…

  9. A Generalized DIF Effect Variance Estimator for Measuring Unsigned Differential Test Functioning in Mixed Format Tests

    ERIC Educational Resources Information Center

    Penfield, Randall D.; Algina, James

    2006-01-01

    One approach to measuring unsigned differential test functioning is to estimate the variance of the differential item functioning (DIF) effect across the items of the test. This article proposes two estimators of the DIF effect variance for tests containing dichotomous and polytomous items. The proposed estimators are direct extensions of the…

  10. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche

    PubMed Central

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-01-01

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202

  11. Self-consistent adjoint analysis for topology optimization of electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Deng, Yongbo; Korvink, Jan G.

    2018-05-01

    In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.

  12. Experimental analysis of coding processes.

    PubMed

    Postman, L; Burns, S

    1973-12-01

    The first part of the paper reports an investigation of the effects of the concreteness-imagery (C-I) value of stimuli and responses on the long-term retention of paired-associate lists. With degree of learning equated, the measures of retention after a 1-week interval showed a significant interaction of Stimulus by Response C-I: When the responses had a high value, recall was substantially better with low than with high stimuli; when the responses were low, there was no reliable difference as a function of stimulus value. Recall was best when abstract stimuli were paired with concrete responses. The second part of the paper is addressed to some current issues in the analysis of coding processes. Major emphasis is placed on the experimental and theoretical differentiation of encoding and decoding processes.

  13. Ultrasonic Signal Processing for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Michaels, Thomas E.

    2004-02-01

    Permanently mounted ultrasonic sensors are a key component of systems under development for structural health monitoring. Signal processing plays a critical role in the viability of such systems due to the difficulty in interpreting signals received from structures of complex geometry. This paper describes a differential feature-based approach to classifying signal changes as either "environmental" or "structural". Data are presented from piezoelectric discs bonded to an aluminum specimen subjected to both environmental changes and introduction of artificial defects. The classifier developed as part of this study was able to correctly identify artificial defects that were not part of the initial training and evaluation data sets. Central to the success of the classifier was the use of the Short Time Cross Correlation to measure coherency between the signal and reference as a function of time.

  14. Performance of differential pair circuits designed with line tunnel FET devices at different temperatures

    NASA Astrophysics Data System (ADS)

    Martino, M. D. V.; Martino, J. A.; Agopian, P. G. D.; Rooyackers, R.; Simoen, E.; Collaert, N.; Claeys, C.

    2018-07-01

    This work studies differential pair circuits designed with Line tunnel field effect transistors (TFETs), comparing their suitability with conventional Point TFETs. Differential voltage gain (A d), compliance voltage and sensitivity to channel length mismatch are analyzed experimentally for different temperatures. The first part highlights individual characteristics of Line TFETs, focusing on behaviors that affect analog circuits. In comparison to Point TFETs, Line TFETs present higher drive current, better transconductance and worse output conductance. In the second part, differential pairs are studied at room temperature for different dimensions and bias conditions. Line TFETs present the highest A d, while Point TFET decrease the susceptibility to channel length mismatch. In the last part, the temperature impact is investigated. Based on the activation energy, the impact of band-to-band tunneling and trap-assisted tunneling is discussed for different bias conditions. A general equation is proposed, including the technology and the susceptibility to temperature and dimensions. It was observed that Line TFETs are a good option to design differential pairs with higher A d and ON-state current than Point TFETs.

  15. Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals

    NASA Astrophysics Data System (ADS)

    Schwalm, William A.

    2015-12-01

    This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first- and second-year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.

  16. Functional differentiability in time-dependent quantum mechanics.

    PubMed

    Penz, Markus; Ruggenthaler, Michael

    2015-03-28

    In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.

  17. Analog-to-digital conversion techniques for precision photometry

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.

    1988-01-01

    Three types of analog-to-digital converters are described: parallel, successive-approximation, and integrating. The functioning of comparators and sample-and-hold amplifiers is explained. Differential and integral linearity are defined, and good and bad examples are illustrated. The applicability and relative advantages of the three types of converters for precision astronomical photometric measurements are discussed. For most measurements, integral linearity is more important than differential linearity. Successive-approximation converters should be used with multielement solid state detectors because of their high speed, but dual slope integrating converters may be superior for use with single element solid state detectors where speed of digitization is not a factor. In all cases, the input signal should be tailored so that they occupy the upper part of the converter's dynamic range; this can be achieved by providing adjustable gain, or better by varying the integration time of the observation if possible.

  18. Genetic and epigenetic effects in sex determination.

    PubMed

    Gunes, Sezgin Ozgur; Metin Mahmutoglu, Asli; Agarwal, Ashok

    2016-12-01

    Sex determination is a complex and dynamic process with multiple genetic and environmental causes, in which germ and somatic cells receive various sex-specific features. During the fifth week of fetal life, the bipotential embryonic gonad starts to develop in humans. In the bipotential gonadal tissue, certain cell groups start to differentiate to form the ovaries or testes. Despite considerable efforts and advances in identifying the mechanisms playing a role in sex determination and differentiation, the underlying mechanisms of the exact functions of many genes, gene-gene interactions, and epigenetic modifications that are involved in different stages of this cascade are not completely understood. This review aims at discussing current data on the genetic effects via genes and epigenetic mechanisms that affect the regulation of sex determination. Birth Defects Research (Part C) 108:321-336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Shape from sound: toward new tools for quantum gravity.

    PubMed

    Aasen, David; Bhamre, Tejal; Kempf, Achim

    2013-03-22

    To unify general relativity and quantum theory is hard in part because they are formulated in two very different mathematical languages, differential geometry and functional analysis. A natural candidate for bridging this language gap, at least in the case of the Euclidean signature, is the discipline of spectral geometry. It aims at describing curved manifolds in terms of the spectra of their canonical differential operators. As an immediate benefit, this would offer a clean gauge-independent identification of the metric's degrees of freedom in terms of invariants that should be ready to quantize. However, spectral geometry is itself hard and has been plagued by ambiguities. Here, we regularize and break up spectral geometry into small, finite-dimensional and therefore manageable steps. We constructively demonstrate that this strategy works at least in two dimensions. We can now calculate the shapes of two-dimensional objects from their vibrational spectra.

  20. Surface characterization and testing II; Proceedings of the Meeting, San Diego, CA, Aug. 10, 11, 1989

    NASA Technical Reports Server (NTRS)

    Greivenkamp, John E. (Editor); Young, Matt (Editor)

    1989-01-01

    Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.

  1. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells

    PubMed Central

    Wagner, Jennifer L.; Shandas, Robin; Bjugstad, Kimberly B.

    2014-01-01

    Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA) and poly(ethylene glycol) (PEG). Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC) and adult-derived (aNPC) neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation. PMID:24141109

  2. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples.

    PubMed

    Kalb, Suzanne R; Schieltz, David M; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R

    2015-11-25

    Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin's activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices.

  3. MEF2 Transcription Factors Regulate Distinct Gene Programs in Mammalian Skeletal Muscle Differentiation*

    PubMed Central

    Estrella, Nelsa L.; Desjardins, Cody A.; Nocco, Sarah E.; Clark, Amanda L.; Maksimenko, Yevgeniy; Naya, Francisco J.

    2015-01-01

    Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease. PMID:25416778

  4. Inducible growth mode switches influence Valonia rhizoid differentiation.

    PubMed

    Elvira, Paul Rommel; Sekida, Satoko; Okuda, Kazuo

    2013-02-01

    Cell differentiation and cell type commitment are an integral part of plant growth and development. Investigations on how environmental conditions affect the formation of shoots, roots, and rhizoids can help illustrate how plants determine cell fate and overall morphology. In this study, we evaluated the role of substratum and light on rhizoid differentiation in the coenocytic green alga, Valonia aegagropila. Elongating rhizoids displayed varying growth modes and cell shape upon exposure to different substrata and light conditions. It was found that soft substrata and dark incubation promoted rhizoid elongation via tip growth while subsequent exposure to light prevented tip growth and instead induced swelling in the apical region of rhizoids. Swelling was accompanied by the accumulation of protoplasm in the rhizoid tip through expansion of the cell wall and uninhibited cytoplasmic streaming. Subsequent diffuse growth led to the transformation from slender, rod-shaped rhizoids into spherical thallus-like structures that required photosynthesis. Further manipulation of light regimes caused vacillating cell growth redirections. An elongating V. aegagropila rhizoid cell thus appears capable of growth mode switching that is regulated by immediate environmental conditions thereby influencing ultimate cell shape and function. This is the first description of inducible, multiple growth mode shifts in a single intact plant cell that directly impact its differentiation.

  5. N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation

    PubMed Central

    Iborra, Salvador; Ramos, Manuel; Arana, David M.; Lázaro, Silvia; Aguilar, Francisco; Santos, Eugenio; López, Daniel

    2013-01-01

    Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate. PMID:23776078

  6. Using a Taxonomy of Differential Step Functioning to Improve the Interpretation of DIF in Polytomous Items: An Illustration

    ERIC Educational Resources Information Center

    Penfield, Randall D.; Alvarez, Karina; Lee, Okhee

    2009-01-01

    The assessment of differential item functioning (DIF) in polytomous items addresses between-group differences in measurement properties at the item level, but typically does not inform which score levels may be involved in the DIF effect. The framework of differential step functioning (DSF) addresses this issue by examining between-group…

  7. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells

    PubMed Central

    Sheng, Lingling; Mao, Xiyuan; Yu, Qingxiong; Yu, Dong

    2017-01-01

    Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has been demonstrated to be an effective way of augmenting angiogenesis of ischemic tissue. The low oxygen conditions in ischemic tissue directly affect the biological behavior of engrafted cells. However, to date, the mechanism through which hypoxia regulates self-renewal, differentiation and paracrine function of BM-MSCs remains unclear. Clarification of this mechanism would be beneficial to the use of stem cell-based therapy. The PI3K/AKT pathway has been extensively investigated for its role in cell proliferation, cell transformation, paracrine function and angiogenesis. The present study aimed to analyze the role of PI3K/AKT pathway in hypoxia-induced proliferation of BM-MSCs and their differentiation into endothelial cells in vitro by the application of LY294002, a PI3K/AKT pathway inhibitor, with cells cultured in normoxia serving as a control. The results showed that rat BM-MSCs at passage 3 and 4 displayed only few phenotypical differences in the expression of surface antigens as detected by flow cytometry. When compared with the cells treated in normoxia, the proliferation of BM-MSCs in hypoxia was promoted, a greater number of cells expressed CD31 and a higher expression of vascular endothelial growth factor was observed after culture in hypoxic conditions. However, by inhibiting with LY294002, these changes induced by hypoxia were partly inhibited. In conclusion, the present study showed that the PI3K/AKT pathway served an important role in hypoxia-enhanced in vitro proliferation of BM-MSCs and their differentiation into endothelial cells and paracrine vascular endothelial growth factor. PMID:28123468

  8. Differential gene expression during conidiation in the grape powdery mildew pathogen, Erysiphe necator.

    PubMed

    Wakefield, Laura; Gadoury, David M; Seem, Robert C; Milgroom, Michael G; Sun, Qi; Cadle-Davidson, Lance

    2011-07-01

    Asexual sporulation (conidiation) is coordinately regulated in the grape powdery mildew pathogen Erysiphe necator but nothing is known about its genetic regulation. We hypothesized that genes required for conidiation in other fungi would be upregulated at conidiophore initiation or full conidiation (relative to preconidiation vegetative growth and development of mature ascocarps), and that the obligate biotrophic lifestyle of E. necator would necessitate some novel gene regulation. cDNA amplified fragment length polymorphism analysis with 45 selective primer combinations produced ≈1,600 transcript-derived fragments (TDFs), of which 620 (39%) showed differential expression. TDF sequences were annotated using BLAST analysis of GenBank and of a reference transcriptome for E. necator developed by 454-FLX pyrosequencing of a normalized cDNA library. One-fourth of the differentially expressed, annotated sequences had similarity to fungal genes of unknown function. The remaining genes had annotated function in metabolism, signaling, transcription, transport, and protein fate. As expected, a portion of orthologs known in other fungi to be involved in developmental regulation was upregulated immediately prior to or during conidiation; particularly noteworthy were several genes associated with the light-dependent VeA regulatory system, G-protein signaling (Pth11 and a kelch repeat), and nuclear transport (importin-β and Ran). This work represents the first investigation into differential gene expression during morphogenesis in E. necator and identifies candidate genes and hypotheses for characterization in powdery mildews. Our results indicate that, although control of conidiation in powdery mildews may share some basic elements with established systems, there are significant points of divergence as well, perhaps due, in part, to the obligate biotrophic lifestyle of powdery mildews.

  9. CLOCK regulates mammary epithelial cell growth and differentiation

    PubMed Central

    Crodian, Jennifer; Suárez-Trujillo, Aridany; Erickson, Emily; Weldon, Bethany; Crow, Kristi; Cummings, Shelby; Chen, Yulu; Shamay, Avi; Mabjeesh, Sameer J.; Plaut, Karen

    2016-01-01

    Circadian clocks influence virtually all physiological processes, including lactation. Here, we investigate the role of the CLOCK gene in regulation of mammary epithelial cell growth and differentiation. Comparison of mammary morphology in late-pregnant wild-type and ClockΔ19 mice, showed that gland development was negatively impacted by genetic loss of a functional timing system. To understand whether these effects were due, in part, to loss of CLOCK function in the gland, the mouse mammary epithelial cell line, HC11, was transfected with short hairpin RNA that targeted Clock (shClock). Cells transfected with shClock expressed 70% less Clock mRNA than wild-type (WT) HC11 cultures, which resulted in significantly depressed levels of CLOCK protein (P < 0.05). HC11 lines carrying shClock had four-fold higher growth rates (P < 0.05), and the percentage of cells in G1 phase was significantly higher (90.1 ± 1.1% of shClock vs. 71.3 ± 3.6% of WT-HC11) following serum starvation. Quantitative-PCR (qPCR) analysis showed shClock had significant effects (P < 0.0001) on relative expression levels of Ccnd1, Wee1, and Tp63. qPCR analysis of the effect of shClock on Fasn and Cdh1 expression in undifferentiated cultures and cultures treated 96 h with dexamethasone, insulin, and prolactin (differentiated) found levels were reduced by twofold and threefold, respectively (P < 0.05), in shClock line relative to WT cultures. Abundance of CDH1 and TP63 proteins were significantly reduced in cultures transfected with shClock. These data support how CLOCK plays a role in regulation of epithelial cell growth and differentiation in the mammary gland. PMID:27707717

  10. Primary Murine CD4+ T Cells Fail to Acquire the Ability to Produce Effector Cytokines When Active Ras Is Present during Th1/Th2 Differentiation

    PubMed Central

    Janardhan, Sujit V.; Marks, Reinhard; Gajewski, Thomas F.

    2014-01-01

    Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo. PMID:25397617

  11. Differential Expression of Ecdysone Receptor Leads to Variation in Phenotypic Plasticity across Serial Homologs

    PubMed Central

    Tong, Xiaoling; Bear, Ashley; Liew, Seng Fatt; Bhardwaj, Shivam; Wasik, Bethany R.; Dinwiddie, April; Bastianelli, Carole; Cheong, Wei Fun; Wenk, Markus R.; Cao, Hui

    2015-01-01

    Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs. PMID:26405828

  12. Sex on the brain: Are gender-dependent structural and functional differences associated with behavior?

    PubMed

    Grabowska, Anna

    2017-01-02

    A substantial number of studies provide evidence documenting a variety of sex differences in the brain. It remains unclear whether sexual differentiation at the neural level is related to that observed in daily behavior, cognitive function, and the risk of developing certain psychiatric and neurological disorders. Some investigators have questioned whether the brain is truly sexually differentiated and support this view with several arguments including the following: (1) brain structural or functional differences are not necessarily reflected in appropriate differences at the behavioral level, which might suggest that these two phenomena are not linked to each other; and (2) sex-related differences in the brain are rather small and concern features that significantly overlap between males and females. This review polemicizes with those opinions and presents examples of sex-related local neural differences underpinning a variety of sex differences in behaviors, skills, and cognitive/emotional abilities. Although male/female brain differentiation may vary in pattern and scale, nonetheless, in some respects (e.g., relative local gray matter volumes) it can be substantial, taking the form of sexual dimorphism and involving large areas of the brain (the cortex in particular). A significant part of this review is devoted to arguing that some sex differences in the brain may serve to prevent (in the case where they are maladaptive), rather than to produce, differences at the behavioral/skill level. Specifically, some differences might result from compensatory mechanisms aimed at maintaining similar intellectual capacities across the sexes, despite the smaller average volume of the brain in females compared with males. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Control of functional differential equations with function space boundary conditions

    NASA Technical Reports Server (NTRS)

    Banks, H. T.

    1972-01-01

    Problems involving functional differential equations with terminal conditions in function space are considered. Their application to mechanical and electrical systems is discussed. Investigations of controllability, existence of optimal controls, and necessary and sufficient conditions for optimality are reported.

  14. Application of the principal fractional meta-trigonometric functions for the solution of linear commensurate-order time-invariant fractional differential equations.

    PubMed

    Lorenzo, C F; Hartley, T T; Malti, R

    2013-05-13

    A new and simplified method for the solution of linear constant coefficient fractional differential equations of any commensurate order is presented. The solutions are based on the R-function and on specialized Laplace transform pairs derived from the principal fractional meta-trigonometric functions. The new method simplifies the solution of such fractional differential equations and presents the solutions in the form of real functions as opposed to fractional complex exponential functions, and thus is directly applicable to real-world physics.

  15. HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection.

    PubMed

    Li, Chunxiao; Wang, Yu; Li, Yan; Yu, Qing; Jin, Xi; Wang, Xiao; Jia, Anna; Hu, Ying; Han, Linian; Wang, Jian; Yang, Hui; Yan, Dapeng; Bi, Yujing; Liu, Guangwei

    2018-02-26

    Macrophages are important innate immune defense system cells in the fight against bacterial and fungal pathogenic infections. They exhibit significant plasticity, particularly with their ability to undergo functional differentiation. Additionally, HIF1α is critically involved in the functional differentiation of macrophages during inflammation. However, the role of macrophage HIF1α in protecting against different pathogenic infections remains unclear. In this study, we investigated and compared the roles of HIF1α in different macrophage functional effects of bacterial and fungal infections in vitro and in vivo. We found that bacterial and fungal infections produced similar effects on macrophage functional differentiation. HIF1α deficiency inhibited pro-inflammatory macrophage functional activities when cells were stimulated with LPS or curdlan in vitro or when mice were infected with L. monocytogenes or C. albicans in vivo, thus decreasing pro-inflammatory TNFα and IL-6 secretion associated with pathogenic microorganism survival. Alteration of glycolytic pathway activation was required for the functional differentiation of pro-inflammatory macrophages in protecting against bacterial and fungal infections. Thus, the HIF1α-dependent glycolytic pathway is essential for pro-inflammatory macrophage functional differentiation in protecting against bacterial and fungal infections.

  16. Heterocellular interaction enhances recruitment of {alpha} and {beta}-catenins and ZO-2 into functional gap-junction complexes and induces gap junction-dependant differentiation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talhouk, Rabih S.; Mroue, Rana; Mokalled, Mayssa

    2008-11-01

    Gap junctions (GJ) are required for mammary epithelial differentiation. Using epithelial (SCp2) and myoepithelial-like (SCg6) mouse-derived mammary cells, the role of heterocellular interaction in assembly of GJ complexes and functional differentiation ({beta}-casein expression) was evaluated. Heterocellular interaction is critical for {beta}-casein expression, independent of exogenous basement membrane or cell anchoring substrata. Functional differentiation of SCp2, co-cultured with SCg6, is more sensitive to GJ inhibition relative to homocellular SCp2 cultures differentiated by exogenous basement membrane. Connexin (Cx)32 and Cx43 levels were not regulated across culture conditions; however, GJ functionality was enhanced under differentiation-permissive conditions. Immunoprecipitation studies demonstrated association of junctional complexmore » components ({alpha}-catenin, {beta}-catenin and ZO-2) with Cx32 and Cx43, in differentiation conditions, and additionally with Cx30 in heterocellular cultures. Although {beta}-catenin did not shuttle between cadherin and GJ complexes, increased association between connexins and {beta}-catenin in heterocellular cultures was observed. This was concomitant with reduced nuclear {beta}-catenin, suggesting that differentiation in heterocellular cultures involves sequestration of {beta}-catenin in GJ complexes.« less

  17. Graphical construction of a local perspective on differentiation and integration

    NASA Astrophysics Data System (ADS)

    Hong, Ye Yoon; Thomas, Michael O. J.

    2015-06-01

    Recent studies of the transition from school to university mathematics have identified a number of epistemological gaps, including the need to change from an emphasis on equality to that of inequality. Another crucial epistemological change during this transition involves the movement from the pointwise and global perspectives of functions usually established through the school curriculum to a view of function that includes a local, or interval, perspective. This is necessary for study of concepts such as continuity and limit that underpin calculus and analysis at university. In this study, a first-year university calculus course in Korea was constructed that integrated use of digital technology and considered the epistemic value of the associated techniques. The aim was to encourage versatile thinking about functions, especially in relation to properties arising from a graphical investigation of differentiation and integration. In this paper, the results of this approach for the learning of derivative and antiderivative, based on integrated technology use, are presented. They show the persistence of what Tall ( Mathematics Education Research Journal, 20(2), 5-24, 2008) describes as symbolic world algebraic thinking on the part of a significant minority of students, who feel the need to introduce algebraic methods, in spite of its disadvantages, even when no explicit algebra is provided. However, the results also demonstrate the ability of many of the students to use technology mediation to build local or interval conceptual thinking about derivative and antiderivative functions.

  18. Homogeneous partial differential equations for superpositions of indeterminate functions of several variables

    NASA Astrophysics Data System (ADS)

    Asai, Kazuto

    2009-02-01

    We determine essentially all partial differential equations satisfied by superpositions of tree type and of a further special type. These equations represent necessary and sufficient conditions for an analytic function to be locally expressible as an analytic superposition of the type indicated. The representability of a real analytic function by a superposition of this type is independent of whether that superposition involves real-analytic functions or C^{\\rho}-functions, where the constant \\rho is determined by the structure of the superposition. We also prove that the function u defined by u^n=xu^a+yu^b+zu^c+1 is generally non-representable in any real (resp. complex) domain as f\\bigl(g(x,y),h(y,z)\\bigr) with twice differentiable f and differentiable g, h (resp. analytic f, g, h).

  19. Responding to Claims of Misrepresentation

    ERIC Educational Resources Information Center

    Santelices, Maria Veronica; Wilson, Mark

    2010-01-01

    In their paper "Unfair Treatment? The Case of Freedle, the SAT, and the Standardization Approach to Differential Item Functioning" (Santelices & Wilson, 2010), the authors studied claims of differential effects of the SAT on Latinos and African Americans through the methodology of differential item functioning (DIF). Previous…

  20. Computations involving differential operators and their actions on functions

    NASA Technical Reports Server (NTRS)

    Crouch, Peter E.; Grossman, Robert; Larson, Richard

    1991-01-01

    The algorithms derived by Grossmann and Larson (1989) are further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear dynamical systems. These algorithms are extended in two different directions: the algorithms are generalized so that they apply to differential operators on groups and the data structures and algorithms are developed to compute symbolically the action of differential operators on functions. Both of these generalizations are needed for applications.

  1. Comparative cardiopulmonary effects of size-fractionated airborne particulate matter.

    PubMed

    Amatullah, Hajera; North, Michelle L; Akhtar, Umme S; Rastogi, Neeraj; Urch, Bruce; Silverman, Frances S; Chow, Chung-Wai; Evans, Greg J; Scott, Jeremy A

    2012-02-01

    Strong epidemiological evidence exists linking particulate matter (PM) exposures with hospital admissions of individuals for cardiopulmonary symptoms. The PM size is important in influencing the extent of infiltration into the respiratory tract and systemic circulation and directs the differential physiological impacts. To investigate the differential effects of the quasi-ultrafine (PM(0.2)), fine (PM(0.15-2.5)), and coarse PM (PM(2.5-10)) size fractions on pulmonary and cardiac function. Female BALB/c mice were exposed to HEPA-filtered laboratory air or concentrated coarse, fine, or quasi-ultrafine PM using Harvard Ambient Particle Concentrators in conjunction with our nose-only exposure system. These exposures were conducted as part of the "Health Effects of Aerosols in Toronto (HEAT)" campaign. Following a 4 h exposure, mice underwent assessment of respiratory function and recording of electrocardiograms using the flexiVent® system. Exposure to coarse and fine PM resulted in a significant reduction in quasistatic compliance of the lung. Baseline total respiratory resistance and maximum responsiveness to methacholine were augmented after coarse PM exposures but were not affected by quasi-ultrafine PM exposures. In contrast, quasi-ultrafine PM alone had a significant effect on heart rate and in reducing heart rate variability. These findings indicate that coarse and fine PM influence lung function and airways responsiveness, while ultrafine PM can perturb cardiac function. This study supports the hypothesis that coarse and fine PM exerts its predominant physiologic effects at the site of deposition in the airways, whereas ultrafine PM likely crosses the alveolar epithelial barrier into the systemic circulation to affect cardiovascular function.

  2. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice

    PubMed Central

    2012-01-01

    Background WD40 proteins represent a large family in eukaryotes, which have been involved in a broad spectrum of crucial functions. Systematic characterization and co-expression analysis of OsWD40 genes enable us to understand the networks of the WD40 proteins and their biological processes and gene functions in rice. Results In this study, we identify and analyze 200 potential OsWD40 genes in rice, describing their gene structures, genome localizations, and evolutionary relationship of each member. Expression profiles covering the whole life cycle in rice has revealed that transcripts of OsWD40 were accumulated differentially during vegetative and reproductive development and preferentially up or down-regulated in different tissues. Under phytohormone treatments, 25 OsWD40 genes were differentially expressed with treatments of one or more of the phytohormone NAA, KT, or GA3 in rice seedlings. We also used a combined analysis of expression correlation and Gene Ontology annotation to infer the biological role of the OsWD40 genes in rice. The results suggested that OsWD40 genes may perform their diverse functions by complex network, thus were predictive for understanding their biological pathways. The analysis also revealed that OsWD40 genes might interact with each other to take part in metabolic pathways, suggesting a more complex feedback network. Conclusions All of these analyses suggest that the functions of OsWD40 genes are diversified, which provide useful references for selecting candidate genes for further functional studies. PMID:22429805

  3. Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Shafiei, Navvab; Alireza Mousavi, S.

    2016-09-01

    Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton's principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.

  4. Bidirectional regulation of neurite elaboration by alternatively spliced metabotropic glutamate receptor 5 (mGluR5) isoforms.

    PubMed

    Mion, S; Corti, C; Neki, A; Shigemoto, R; Corsi, M; Fumagalli, G; Ferraguti, F

    2001-06-01

    Alternative splicing in the mGluR5 gene generates two different receptor isoforms, of which expression is developmentally regulated. However, little is known about the functional significance of mGluR5 splice variants. We have examined the functional coupling, subcellular targeting, and effect on neuronal differentiation of epitope-tagged mGluR5 isoforms by expression in neuroblastoma NG108-15 cells. We found that both mGluR5 splice variants give rise to comparable [Ca2+]i transients and have similar pharmacological profile. Tagged receptors were shown by immunofluorescence to be inserted in the plasma membrane. In undifferentiated cells the subcellular localization of the two mGluR5 isoforms was partially segregated, whereas in differentiated cells the labeling largely redistributed to the newly formed neurites. Interestingly, we demonstrate that mGluR5 splice variants dramatically influence the formation and maturation of neurites; mGluR5a hinders the acquisition of mature neuronal traits and mGluR5b fosters the elaboration and extension of neurites. These effects are partly inhibited by MPEP. Copyright 2001 Academic Press.

  5. The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development.

    PubMed

    Cottee, Pauline A; Cole, Tim; Schultz, Jessica; Hoang, Hieu D; Vibbert, Jack; Han, Sung Min; Miller, Michael A

    2017-06-15

    VAMP/synaptobrevin-associated proteins (VAPs) contain an N-terminal major sperm protein domain (MSPd) that is associated with amyotrophic lateral sclerosis. VAPs have an intracellular housekeeping function, as well as an extracellular signaling function mediated by the secreted MSPd. Here we show that the C. elegans VAP homolog VPR-1 is essential for gonad development. vpr-1 null mutants are maternal effect sterile due to arrested gonadogenesis following embryo hatching. Somatic gonadal precursor cells and germ cells fail to proliferate fully and complete their respective differentiation programs. Maternal or zygotic vpr-1 expression is sufficient to induce gonadogenesis and fertility. Genetic mosaic and cell type-specific expression studies indicate that vpr-1 activity is important in the nervous system, germ line and intestine. VPR-1 acts in parallel to Notch signaling, a key regulator of germline stem cell proliferation and differentiation. Neuronal vpr-1 expression is sufficient for gonadogenesis induction during a limited time period shortly after hatching. These results support the model that the secreted VPR-1 MSPd acts at least in part on gonadal sheath cell precursors in L1 to early L2 stage hermaphrodites to permit gonadogenesis. © 2017. Published by The Company of Biologists Ltd.

  6. Checking Equity: Why Differential Item Functioning Analysis Should Be a Routine Part of Developing Conceptual Assessments

    PubMed Central

    Martinková, Patrícia; Drabinová, Adéla; Liaw, Yuan-Ling; Sanders, Elizabeth A.; McFarland, Jenny L.; Price, Rebecca M.

    2017-01-01

    We provide a tutorial on differential item functioning (DIF) analysis, an analytic method useful for identifying potentially biased items in assessments. After explaining a number of methodological approaches, we test for gender bias in two scenarios that demonstrate why DIF analysis is crucial for developing assessments, particularly because simply comparing two groups’ total scores can lead to incorrect conclusions about test fairness. First, a significant difference between groups on total scores can exist even when items are not biased, as we illustrate with data collected during the validation of the Homeostasis Concept Inventory. Second, item bias can exist even when the two groups have exactly the same distribution of total scores, as we illustrate with a simulated data set. We also present a brief overview of how DIF analysis has been used in the biology education literature to illustrate the way DIF items need to be reevaluated by content experts to determine whether they should be revised or removed from the assessment. Finally, we conclude by arguing that DIF analysis should be used routinely to evaluate items in developing conceptual assessments. These steps will ensure more equitable—and therefore more valid—scores from conceptual assessments. PMID:28572182

  7. The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development

    PubMed Central

    Cole, Tim; Hoang, Hieu D.; Han, Sung Min

    2017-01-01

    VAMP/synaptobrevin-associated proteins (VAPs) contain an N-terminal major sperm protein domain (MSPd) that is associated with amyotrophic lateral sclerosis. VAPs have an intracellular housekeeping function, as well as an extracellular signaling function mediated by the secreted MSPd. Here we show that the C. elegans VAP homolog VPR-1 is essential for gonad development. vpr-1 null mutants are maternal effect sterile due to arrested gonadogenesis following embryo hatching. Somatic gonadal precursor cells and germ cells fail to proliferate fully and complete their respective differentiation programs. Maternal or zygotic vpr-1 expression is sufficient to induce gonadogenesis and fertility. Genetic mosaic and cell type-specific expression studies indicate that vpr-1 activity is important in the nervous system, germ line and intestine. VPR-1 acts in parallel to Notch signaling, a key regulator of germline stem cell proliferation and differentiation. Neuronal vpr-1 expression is sufficient for gonadogenesis induction during a limited time period shortly after hatching. These results support the model that the secreted VPR-1 MSPd acts at least in part on gonadal sheath cell precursors in L1 to early L2 stage hermaphrodites to permit gonadogenesis. PMID:28634273

  8. Expression and regulation of long noncoding RNAs during the osteogenic differentiation of periodontal ligament stem cells in the inflammatory microenvironment.

    PubMed

    Zhang, Qingbin; Chen, Li; Cui, Shiman; Li, Yan; Zhao, Qi; Cao, Wei; Lai, Shixiang; Yin, Sanjun; Zuo, Zhixiang; Ren, Jian

    2017-10-25

    Although long noncoding RNAs (lncRNAs) have been emerging as critical regulators in various tissues and biological processes, little is known about their expression and regulation during the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in inflammatory microenvironment. In this study, we have identified 63 lncRNAs that are not annotated in previous database. These novel lncRNAs were not randomly located in the genome but preferentially located near protein-coding genes related to particular functions and diseases, such as stem cell maintenance and differentiation, development disorders and inflammatory diseases. Moreover, we have identified 650 differentially expressed lncRNAs among different subsets of PDLSCs. Pathway enrichment analysis for neighboring protein-coding genes of these differentially expressed lncRNAs revealed stem cell differentiation related functions. Many of these differentially expressed lncRNAs function as competing endogenous RNAs that regulate protein-coding transcripts through competing shared miRNAs.

  9. Gender Differential Item Functioning on a National Field-Specific Test: The Case of PhD Entrance Exam of TEFL in Iran

    ERIC Educational Resources Information Center

    Ahmadi, Alireza; Bazvand, Ali Darabi

    2016-01-01

    Differential Item Functioning (DIF) exists when examinees of equal ability from different groups have different probabilities of successful performance in a certain item. This study examined gender differential item functioning across the PhD Entrance Exam of TEFL (PEET) in Iran, using both logistic regression (LR) and one-parameter item response…

  10. It Might Not Make a Big DIF: Improved Differential Test Functioning Statistics That Account for Sampling Variability

    ERIC Educational Resources Information Center

    Chalmers, R. Philip; Counsell, Alyssa; Flora, David B.

    2016-01-01

    Differential test functioning, or DTF, occurs when one or more items in a test demonstrate differential item functioning (DIF) and the aggregate of these effects are witnessed at the test level. In many applications, DTF can be more important than DIF when the overall effects of DIF at the test level can be quantified. However, optimal statistical…

  11. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.

    PubMed

    Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana

    2016-01-01

    The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.

  12. TRP channels in the skin

    PubMed Central

    Tóth, Balázs I; Oláh, Attila; Szöllősi, Attila Gábor; Bíró, Tamás

    2014-01-01

    Emerging evidence suggests that transient receptor potential (TRP) ion channels not only act as ‘polymodal cellular sensors’ on sensory neurons but are also functionally expressed by a multitude of non-neuronal cell types. This is especially true in the skin, one of the largest organs of the body, where they appear to be critically involved in regulating various cutaneous functions both under physiological and pathophysiological conditions. In this review, we focus on introducing the roles of several cutaneous TRP channels in the regulation of the skin barrier, skin cell proliferation and differentiation, and immune functions. Moreover, we also describe the putative involvement of several TRP channels in the development of certain skin diseases and identify future TRP channel-targeted therapeutic opportunities. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24372189

  13. BDNF in fragile X syndrome.

    PubMed

    Castrén, Maija L; Castrén, Eero

    2014-01-01

    Fragile X syndrome (FXS) is a monogenic disorder that is caused by the absence of FMR1 protein (FMRP). FXS serves as an excellent model disorder for studies investigating disturbed molecular mechanisms and synapse function underlying cognitive impairment, autism, and behavioral disturbance. Abnormalities in dendritic spines and synaptic transmission in the brain of FXS individuals and mouse models for FXS indicate perturbations in the development, maintenance, and plasticity of neuronal network connectivity. However, numerous alterations are found during the early development in FXS, including abnormal differentiation of neural progenitors and impaired migration of newly born neurons. Several aspects of FMRP function are modulated by brain-derived neurotrophic factor (BDNF) signaling. Here, we review the evidence of the role for BDNF in the developing and adult FXS brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A non-planar two-loop three-point function beyond multiple polylogarithms

    NASA Astrophysics Data System (ADS)

    von Manteuffel, Andreas; Tancredi, Lorenzo

    2017-06-01

    We consider the analytic calculation of a two-loop non-planar three-point function which contributes to the two-loop amplitudes for t\\overline{t} production and γγ production in gluon fusion through a massive top-quark loop. All subtopology integrals can be written in terms of multiple polylogarithms over an irrational alphabet and we employ a new method for the integration of the differential equations which does not rely on the rationalization of the latter. The top topology integrals, instead, in spite of the absence of a massive three-particle cut, cannot be evaluated in terms of multiple polylogarithms and require the introduction of integrals over complete elliptic integrals and polylogarithms. We provide one-fold integral representations for the solutions and continue them analytically to all relevant regions of the phase space in terms of real functions, extracting all imaginary parts explicitly. The numerical evaluation of our expressions becomes straightforward in this way.

  15. Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing.

    PubMed

    Lohoff, F W; Hodge, R; Narasimhan, S; Nall, A; Ferraro, T N; Mickey, B J; Heitzeg, M M; Langenecker, S A; Zubieta, J-K; Bogdan, R; Nikolova, Y S; Drabant, E; Hariri, A R; Bevilacqua, L; Goldman, D; Doyle, G A

    2014-01-01

    Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits and risk for psychopathology.

  16. Some operational tools for solving fractional and higher integer order differential equations: A survey on their mutual relations

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia S.

    2012-11-01

    The Laplace Transform (LT) serves as a basis of the Operational Calculus (OC), widely explored by engineers and applied scientists in solving mathematical models for their practical needs. This transform is closely related to the exponential and trigonometric functions (exp, cos, sin) and to the classical differentiation and integration operators, reducing them to simple algebraic operations. Thus, the classical LT and the OC give useful tool to handle differential equations and systems with constant coefficients. Several generalizations of the LT have been introduced to allow solving, in a similar way, of differential equations with variable coefficients and of higher integer orders, as well as of fractional (arbitrary non-integer) orders. Note that fractional order mathematical models are recently widely used to describe better various systems and phenomena of the real world. This paper surveys briefly some of our results on classes of such integral transforms, that can be obtained from the LT by means of "transmutations" which are operators of the generalized fractional calculus (GFC). On the list of these Laplace-type integral transforms, we consider the Borel-Dzrbashjan, Meijer, Krätzel, Obrechkoff, generalized Obrechkoff (multi-index Borel-Dzrbashjan) transforms, etc. All of them are G- and H-integral transforms of convolutional type, having as kernels Meijer's G- or Fox's H-functions. Besides, some special functions (also being G- and H-functions), among them - the generalized Bessel-type and Mittag-Leffler (M-L) type functions, are generating Gel'fond-Leontiev (G-L) operators of generalized differentiation and integration, which happen to be also operators of GFC. Our integral transforms have operational properties analogous to those of the LT - they do algebrize the G-L generalized integrations and differentiations, and thus can serve for solving wide classes of differential equations with variable coefficients of arbitrary, including non-integer order. Throughout the survey, we illustrate the parallels in the relationships: Laplace type integral transforms - special functions as kernels - operators of generalized integration and differentiation generated by special functions - special functions as solutions of related differential equations. The role of the so-called Special Functions of Fractional Calculus is emphasized.

  17. Potential of human dental stem cells in repairing the complete transection of rat spinal cord

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Li, Xinghan; Sun, Liang; Guo, Weihua; Tian, Weidong

    2017-04-01

    Objective. The adult spinal cord of mammals contains a certain amount of neural precursor cells, but these endogenous cells have a limited capacity for replacement of lost cells after spinal cord injury. The exogenous stem cells transplantation has become a therapeutic strategy for spinal cord repairing because of their immunomodulatory and differentiation capacity. In addition, dental stem cells originating from the cranial neural crest might be candidate cell sources for neural engineering. Approach. Human dental follicle stem cells (DFSCs), stem cells from apical papilla (SCAPs) and dental pulp stem cells (DPSCs) were isolated and identified in vitro, then green GFP-labeled stem cells with pellets were transplanted into completely transected spinal cord. The functional recovery of rats and multiple neuro-regenerative mechanisms were explored. Main results. The dental stem cells, especially DFSCs, demonstrated the potential in repairing the completely transected spinal cord and promote functional recovery after injury. The major involved mechanisms were speculated below: First, dental stem cells inhibited the expression of interleukin-1β to reduce the inflammatory response; second, they inhibited the expression of ras homolog gene family member A (RhoA) to promote neurite regeneration; third, they inhibited the sulfonylurea receptor1 (SUR-1) expression to reduce progressive hemorrhagic necrosis; lastly, parts of the transplanted cells survived and differentiated into mature neurons and oligodendrocytes but not astrocyte, which is beneficial for promoting axons growth. Significance. Dental stem cells presented remarkable tissue regenerative capability after spinal cord injury through immunomodulatory, differentiation and protection capacity.

  18. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  19. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Schwandt, Alina Maria; Kluger, Petra Juliane

    In vitro composed vascularized adipose tissue is and will continue to be in great demand e.g. for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Up to date, the lack of adequate culture conditions, mainly a culture medium, decelerates further achievements. In our study, we evaluated the influence of epidermal growth factor (EGF) and hydrocortisone (HC), often supplemented in endothelial cell (EC) specific media, on the co-culture of adipogenic differentiated adipose-derived stem cells (ASCs) and microvascular endothelial cells (mvECs). In ASCs, EGF and HC are thought to inhibit adipogenic differentiation and have lipolytic activities. Our results showed that in indirect co-culture for 14 days, adipogenic differentiated ASCs further incorporated lipids and partly gained an univacuolar morphology when kept in media with low levels of EGF and HC. In media with high EGF and HC levels, cells did not incorporate further lipids, on the contrary, cells without lipid droplets appeared. Glycerol release, to measure lipolysis, also increased with elevated amounts of EGF and HC in the culture medium. Adipogenic differentiated ASCs were able to release leptin in all setups. MvECs were functional and expressed the cell specific markers, CD31 and von Willebrand factor (vWF), independent of the EGF and HC content as long as further EC specific factors were present. Taken together, our study demonstrates that adipogenic differentiated ASCs can be successfully co-cultured with mvECs in a culture medium containing low or no amounts of EGF and HC, as long as further endothelial cell and adipocyte specific factors are available. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  20. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

    PubMed Central

    Eskildsen, Tilde; Taipaleenmäki, Hanna; Stenvang, Jan; Abdallah, Basem M.; Ditzel, Nicholas; Nossent, Anne Yael; Bak, Mads; Kauppinen, Sakari; Kassem, Moustapha

    2011-01-01

    Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators of diverse biological processes by mediating translational repression or mRNA degradation of their target genes. Here, we show that miRNA-138 (miR-138) modulates osteogenic differentiation of hMSCs. miRNA array profiling and further validation by quantitative RT-PCR (qRT-PCR) revealed that miR-138 was down-regulated during osteoblast differentiation of hMSCs. Overexpression of miR-138 inhibited osteoblast differentiation of hMSCs in vitro, whereas inhibition of miR-138 function by antimiR-138 promoted expression of osteoblast-specific genes, alkaline phosphatase (ALP) activity, and matrix mineralization. Furthermore, overexpression of miR-138 reduced ectopic bone formation in vivo by 85%, and conversely, in vivo bone formation was enhanced by 60% when miR-138 was antagonized. Target prediction analysis and experimental validation by luciferase 3′ UTR reporter assay confirmed focal adhesion kinase, a kinase playing a central role in promoting osteoblast differentiation, as a bona fide target of miR-138. We show that miR-138 attenuates bone formation in vivo, at least in part by inhibiting the focal adhesion kinase signaling pathway. Our findings suggest that pharmacological inhibition of miR-138 by antimiR-138 could represent a therapeutic strategy for enhancing bone formation in vivo. PMID:21444814

  1. N-person differential games. Part 2: The penalty method

    NASA Technical Reports Server (NTRS)

    Chen, G.; Mills, W. H.; Zheng, Q.; Shaw, W. H.

    1983-01-01

    The equilibrium strategy for N-person differential games can be found by studying a min-max problem subject to differential systems constraints. The differential constraints are penalized and finite elements are used to compute numerical solutions. Convergence proof and error estimates are given. Numerical results are also included and compared with those obtained by the dual method.

  2. Transcriptome Profile at Different Physiological Stages Reveals Potential Mode for Curly Fleece in Chinese Tan Sheep

    PubMed Central

    Liu, Yufang; Xu, Qinqin; Zhang, Ming; Fang, Meiying

    2013-01-01

    Tan sheep (Ovis aries), a Chinese indigenous breed, has special curly fleece after birth, especially at one month old. However, this unique phenotype disappears gradually with age and the underlying reasons of trait evolvement are still unknown. In this study, skin transcriptome data was used to study this issue. In total 51,215 transcripts including described transcripts and transfrags were identified. Pathway analysis of the top 100 most highly expressed transcripts, which included TCHH and keratin gene family members, such as KRT25, KRT5, KRT71, KRT14 and others, showed pathways known to be relevant to hair/fleece development and function. Six hundred differentially expressed (DE) transcripts were detected at two different physiological ages (one-month-old with curly fleece and 48-month-old without curly fleece) and were categorized into three major functional groups: cellular component, molecular function, and biological process. The top six functional categories included cell, cell part, cellular process, binding, intracellular, metabolic process. The detected differentially expressed genes were particularly involved in signal, signal peptide, disulfide bond, glycoprotein and secreted terms, respectively. Further splicing isoform analysis showed that the metallothionein 3 isoform was up-regulated in Tan lamb skin, indicating that it may be related to the conformation of curly fleece in Chinese Tan lamb. The hair-related important differentially expressed genes (SPINK4, FGF21, ESRα, EphA3, NTNG1 and GPR110) were confirmed by qPCR analysis. We deduced that the differences existed in expressed transcripts, splice isoforms and GO categories between the two different physiological stages, which might constitute the major reasons for explaining the trait evolvement of curly fleece in Chinese Tan sheep. This study provides some clues for elucidating the molecular mechanism of fleece change with age in Chinese Tan sheep, as well as supplying some potential values for understanding human hair disorder and texture changes. PMID:23990983

  3. Determination of the temperature distribution in a minichannel using ANSYS CFX and a procedure based on the Trefftz functions

    NASA Astrophysics Data System (ADS)

    Maciejewska, Beata; Błasiak, Sławomir; Piasecka, Magdalena

    This work discusses the mathematical model for laminar-flow heat transfer in a minichannel. The boundary conditions in the form of temperature distributions on the outer sides of the channel walls were determined from experimental data. The data were collected from the experimental stand the essential part of which is a vertical minichannel 1.7 mm deep, 16 mm wide and 180 mm long, asymmetrically heated by a Haynes-230 alloy plate. Infrared thermography allowed determining temperature changes on the outer side of the minichannel walls. The problem was analysed numerically through either ANSYS CFX software or special calculation procedures based on the Finite Element Method and Trefftz functions in the thermal boundary layer. The Trefftz functions were used to construct the basis functions. Solutions to the governing differential equations were approximated with a linear combination of Trefftz-type basis functions. Unknown coefficients of the linear combination were calculated by minimising the functional. The results of the comparative analysis were represented in a graphical form and discussed.

  4. Computing the Evans function via solving a linear boundary value ODE

    NASA Astrophysics Data System (ADS)

    Wahl, Colin; Nguyen, Rose; Ventura, Nathaniel; Barker, Blake; Sandstede, Bjorn

    2015-11-01

    Determining the stability of traveling wave solutions to partial differential equations can oftentimes be computationally intensive but of great importance to understanding the effects of perturbations on the physical systems (chemical reactions, hydrodynamics, etc.) they model. For waves in one spatial dimension, one may linearize around the wave and form an Evans function - an analytic Wronskian-like function which has zeros that correspond in multiplicity to the eigenvalues of the linearized system. If eigenvalues with a positive real part do not exist, the traveling wave will be stable. Two methods exist for calculating the Evans function numerically: the exterior-product method and the method of continuous orthogonalization. The first is numerically expensive, and the second reformulates the originally linear system as a nonlinear system. We develop a new algorithm for computing the Evans function through appropriate linear boundary-value problems. This algorithm is cheaper than the previous methods, and we prove that it preserves analyticity of the Evans function. We also provide error estimates and implement it on some classical one- and two-dimensional systems, one being the Swift-Hohenberg equation in a channel, to show the advantages.

  5. Fractional calculus in bioengineering, part 3.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub-threshold nerve propagation. By expanding the range of mathematical operations to include fractional calculus, we can develop new and potentially useful functional relationships for modeling complex biological systems in a direct and rigorous manner. In Part 2 of this review (Crit Rev Biomed Eng 2004; 32(1):105-193), fractional calculus was applied to problems in nerve stimulation, dielectric relaxation, and viscoelastic materials by extending the governing differential equations to include fractional order terms. In this third and final installment, we consider distributed systems that represent shear stress in fluids, heat transfer in uniform one-dimensional media, and subthreshold nerve depolarization. Classic electrochemical analysis and impedance spectroscopy are also reviewed from the perspective of fractional calculus, and selected examples from recent studies in neuroscience, bioelectricity, and tissue biomechanics are analyzed to illustrate the vitality of the field.

  6. Differentiating between Alzheimer's Disease and Vascular Cognitive Impairment: Is the "Memory Versus Executive Function" Contrast Still Relevant?

    PubMed

    Andriuta, Daniela; Roussel, Martine; Barbay, Mélanie; Despretz-Wannepain, Sandrine; Godefroy, Olivier

    2018-01-01

    The contrast between memory versus executive function impairments is commonly used to differentiate between neurocognitive disorders (NCDs) due to Alzheimer's disease (AD) and vascular cognitive impairment (VCI). We reconsidered this question because of the current use of AD biomarkers and the recent revision of the criteria for AD, VCI, and dysexecutive syndrome. To establish and compare the neuropsychological profiles in AD (i.e., with positive CSF biomarkers) and in VCI. We included 62 patients with mild or major NCDs due to pure AD (with positive CSF biomarker assays), and 174 patients (from the GRECogVASC cohort) with pure VCI. The neuropsychological profiles were compared after stratification for disease severity (mild or major NCD). We defined a memory-executive function index (the mean z score for the third free recall and the delayed free recall in the Free and Cued Selective Reminding Test minus the mean z score for category fluency and the completion time in the Trail Making Test part B) and determined its diagnostic accuracy. Compared with VCI patients, patients with AD had significantly greater memory impairments (p = 0.001). Executive function was impaired to a similar extent in the two groups (p = 0.11). Behavioral executive disorders were more prominent in the AD group (p = 0.001). Although the two groups differed significant with regard to the memory-executive function index (p < 0.001), the latter's diagnostic accuracy was only moderate (sensitivity: 63%, specificity: 87%). Although the contrast between memory and executive function impairments was supported at the group level it does not reliably discriminate between AD and VCI at the individual level.

  7. [Comparative study of effects of cortical nucleus of amygdala and pyriform cortex on activity of bulbar respiratory neurons in cats].

    PubMed

    Nersesian, L B; Eganova, V S; Pogosian, N L; Avetisian, I N

    2011-01-01

    Comparative microelectrophysiological study of character and peculiarities of effects of the cortical nucleus of amygdala and of the periamygdalar area of pyriform cortex on impulse activity was performed on the same single functionally identified respiratory medullar neurons. A high reactivity of bulbar respiratory neurons on stimulation is established in both studied limbic structures. There is established the qualitatively different character of their response reactions at stimulation of the cortical amygdala nucleus and the periamygdalar cortex. The cortical amygdala nucleus has been shown to produce on the activity of medullar respiratory neurons both facilitating and inhibitory action with predominance of the activating one (without topographical orderliness). The effect of periamygdalar cortex at stimulation of various parts was characterized by topographic differentiation. The suppressing reactions of neurons in the majority of cases were recorded at stimulation of the rostral area of periamygdalar cortex, whereas the excitatory reactions--at stimulation of its caudal part. Functional organization of respiratory control of the studied limbic system structures is discussed.

  8. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L.

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found thatmore » TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and activity.« less

  9. Modular forms, Schwarzian conditions, and symmetries of differential equations in physics

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Y.; Maillard, J.-M.

    2017-05-01

    We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.

  10. T cell fates ‘zipped up’: how the Bach2 basic leucine zipper transcriptional repressor directs T cell differentiation and function1

    PubMed Central

    Richer, Martin J.; Lang, Mark L.; Butler, Noah S.

    2016-01-01

    Recent data illustrate a key role for the transcriptional regulator Bach2 in orchestrating T cell differentiation and function. Although Bach2 has a well-described role in B cell differentiation, emerging data show that Bach2 is a prototypical member of a novel class of transcription factors that regulates transcriptional activity in T cells at super enhancers, or regions of high transcriptional activity. Accumulating data demonstrate specific roles for Bach2 in favoring regulatory T cell generation, restraining effector T cell differentiation and potentiating memory T cell development. Evidence suggests that Bach2 regulates various facets of T cell function by repressing other key transcriptional regulator such as Blimp-1. This review examines our current understanding of the role of Bach2 in T cell function and highlights the growing evidence that this transcriptional repressor functions as a key regulator involved in maintenance of T cell quiescence, T cell subset differentiation and memory T cell generation. PMID:27496973

  11. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine

    PubMed Central

    Samsonraj, Rebekah M.; Raghunath, Michael; Nurcombe, Victor; Hui, James H.

    2017-01-01

    Abstract Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self‐renewal and differentiation into tissue‐specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age‐related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone‐forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical‐grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173–2185 PMID:29076267

  12. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling

    PubMed Central

    Cao, Fengdi; Zhan, Jialin; Chen, Xufeng; Zhang, Kai; Lai, Renfa; Feng, Zhiqiang

    2017-01-01

    The canonical Wnt/β-catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β-catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non-differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription-quantitative PCR (RT-qPCR) was used for validation. Since miR-214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT-qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR-214 were investigated using a dual-luciferase reporter assay, RT-qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR-214 on Wnt/β-catenin signaling. The present results demonstrated that miR-214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast-specific genes and ALP. In addition, miR-214 was demonstrated to directly interact with the 3′-untranslated region of the β-catenin gene CTNNB1, and suppressed Wnt/β-catenin signaling through the inhibition of β-catenin. The results of the present study suggested that miR-214 may participate in the regulation of the Wnt/β-catenin signaling pathway, and may have potential as a candidate target for the development of preventive or therapeutic agents for the treatment of patients with osteogenic disorders. PMID:29152645

  13. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β‑catenin signaling.

    PubMed

    Cao, Fengdi; Zhan, Jialin; Chen, Xufeng; Zhang, Kai; Lai, Renfa; Feng, Zhiqiang

    2017-12-01

    The canonical Wnt/β‑catenin signaling is important in the differentiation of human mesenchymal stem cells into osteoblasts. Accumulating evidence suggests that the expression of β‑catenin is, in part, regulated by specific microRNAs (miRNAs). The aim of the present study was to investigate the putative roles of miRNAs in osteoblast differentiation. Polymerase chain reaction (PCR) arrays were used to identify miRNAs that were differentially expressed between differentiated and non‑differentiated periodontal ligament stem cells (PDLSCs), and reverse transcription‑quantitative PCR (RT‑qPCR) was used for validation. Since miR‑214 was revealed to be significantly downregulated during PDLSC differentiation, its function was further investigated via silencing and overexpression. In addition, osteogenic differentiation of PDLSCs was evaluated at 10 and 21 days following induction, using Alizarin red staining and RT‑qPCR analysis for mRNA expression levels of the osteogenic differentiation markers alkaline phosphatase (ALP), osteocalcin and bone sialoprotein. Furthermore, the potential target genes of miR‑214 were investigated using a dual‑luciferase reporter assay, RT‑qPCR and western blot analysis, whereas a TOPflash/FOPflash reporter plasmid system followed by a luciferase assay was used to examine the effects of miR‑214 on Wnt/β‑catenin signaling. The present results demonstrated that miR‑214 was significantly downregulated during the osteoblastic differentiation of PDLSCs. Notably, its overexpression inhibited PDLSC differentiation, whereas its knockdown promoted PDLSC differentiation, as revealed by alterations in mRNA expression of osteoblast‑specific genes and ALP. In addition, miR‑214 was demonstrated to directly interact with the 3'‑untranslated region of the β‑catenin gene CTNNB1, and suppressed Wnt/β‑catenin signaling through the inhibition of β‑catenin. The results of the present study suggested that miR‑214 may participate in the regulation of the Wnt/β‑catenin signaling pathway, and may have potential as a candidate target for the development of preventive or therapeutic agents for the treatment of patients with osteogenic disorders.

  14. Gender and Ethnicity Differences on the Abridged Big Five Circumplex (AB5C) of Personality Traits: A Differential Item Functioning Analysis

    ERIC Educational Resources Information Center

    Mitchelson, Jacqueline K.; Wicher, Eliza W.; LeBreton, James M.; Craig, S. Bartholomew

    2009-01-01

    The current study evaluates the measurement precision of the Abridged Big Five Circumplex (AB5C) of personality traits by identifying those items that demonstrate differential item functioning by gender and ethnicity. Differential item functioning is found in 33 of 45 (73%) of the AB5C scales, across gender and ethnic groups (Caucasian vs. African…

  15. A Rasch Differential Item Functioning Analysis of the Massachusetts Youth Screening Instrument: Identifying Race and Gender Differential Item Functioning among Juvenile Offenders

    ERIC Educational Resources Information Center

    Cauffman, Elizabeth; MacIntosh, Randall

    2006-01-01

    The juvenile justice system needs a tool that can identify and assess mental health problems among youths quickly with validity and reliability. The goal of this article is to evaluate the racial/ethnic and gender differential item functioning (DIF) of the Massachusetts Youth Screening Instrument-Second Version (MAYSI-2) using the Rasch Model.…

  16. Wave equations in conformal gravity

    NASA Astrophysics Data System (ADS)

    Du, Juan-Juan; Wang, Xue-Jing; He, You-Biao; Yang, Si-Jiang; Li, Zhong-Heng

    2018-05-01

    We study the wave equation governing massless fields of all spins (s = 0, 1 2, 1, 3 2 and 2) in the most general spherical symmetric metric of conformal gravity. The equation is separable, the solution of the angular part is a spin-weighted spherical harmonic, and the radial wave function may be expressed in terms of solutions of the Heun equation which has four regular singular points. We also consider various special cases of the metric and find that the angular wave functions are the same for all cases, the actual shape of the metric functions affects only the radial wave function. It is interesting to note that each radial equation can be transformed into a known ordinary differential equation (i.e. Heun equation, or confluent Heun equation, or hypergeometric equation). The results show that there are analytic solutions for all the wave equations of massless spin fields in the spacetimes of conformal gravity. This is amazing because exact solutions are few and far between for other spacetimes.

  17. GDF10 Is a Signal for Axonal Sprouting and Functional Recovery after Stroke

    PubMed Central

    Li, S; Nie, EH; Yin, Y; Benowitz, LI; Tung, S; Vinters, HV; Bahjat, FR; Stenzel-Poore, MP; Kawaguchi, R; Coppola, G; Carmichael, ST

    2016-01-01

    Stroke produces a limited process of neural repair. Axonal sprouting in cortex adjacent to the infarct is part of this recovery process, but the signal that initiates axonal sprouting is not known. Growth and Differentiation Factor 10 (GDF10) is induced in peri-infarct neurons in mouse, non-human primate and human. GDF10 promotes axonal outgrowth in vitro in mouse, rat and human neurons through TGFβRI/II signaling. Using pharmacogenetic gain and loss of function studies, GDF10 produces axonal sprouting and enhanced functional recovery after stroke; knocking down GDF10 blocks axonal sprouting and reduces recovery. RNA-seq from peri-infarct cortical neurons indicates that GDF10 downregulates PTEN and upregulates PI3 kinase signaling and induces specific axonal guidance molecules. Unsupervised genome-wide association analysis of the GDF10 transcriptome shows that it is not related to neurodevelopment but may partially overlap with other CNS injury patterns. GDF10 is a stroke-induced signal for axonal sprouting and functional recovery. PMID:26502261

  18. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOEpatents

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  19. On new fractional Hermite-Hadamard type inequalities for n-time differentiable quasi-convex functions and P-functions

    NASA Astrophysics Data System (ADS)

    Set, Erhan; Özdemir, M. Emin; Alan, E. Aykan

    2017-04-01

    In this article, by using the Hölder's inequality and power mean inequality the authors establish several inequalities of Hermite-Hadamard type for n- time differentiable quasi-convex functions and P- functions involving Riemann-Liouville fractional integrals.

  20. Modeling of pathogen survival during simulated gastric digestion.

    PubMed

    Koseki, Shige; Mizuno, Yasuko; Sotome, Itaru

    2011-02-01

    The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens.

  1. Modeling of Pathogen Survival during Simulated Gastric Digestion ▿

    PubMed Central

    Koseki, Shige; Mizuno, Yasuko; Sotome, Itaru

    2011-01-01

    The objective of the present study was to develop a mathematical model of pathogenic bacterial inactivation kinetics in a gastric environment in order to further understand a part of the infectious dose-response mechanism. The major bacterial pathogens Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were examined by using simulated gastric fluid adjusted to various pH values. To correspond to the various pHs in a stomach during digestion, a modified logistic differential equation model and the Weibull differential equation model were examined. The specific inactivation rate for each pathogen was successfully described by a square-root model as a function of pH. The square-root models were combined with the modified logistic differential equation to obtain a complete inactivation curve. Both the modified logistic and Weibull models provided a highly accurate fitting of the static pH conditions for every pathogen. However, while the residuals plots of the modified logistic model indicated no systematic bias and/or regional prediction problems, the residuals plots of the Weibull model showed a systematic bias. The modified logistic model appropriately predicted the pathogen behavior in the simulated gastric digestion process with actual food, including cut lettuce, minced tuna, hamburger, and scrambled egg. Although the developed model enabled us to predict pathogen inactivation during gastric digestion, its results also suggested that the ingested bacteria in the stomach would barely be inactivated in the real digestion process. The results of this study will provide important information on a part of the dose-response mechanism of bacterial pathogens. PMID:21131530

  2. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease.

    PubMed

    Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An

    2014-09-01

    There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [Interpretation of ultrasound findings in otorhinolaryngology. Salivary glands, paraganglioma, angioma, esophagus, hypopharynx, extra cranial vessels and temporomandibular joint].

    PubMed

    Bozzato, A

    2015-06-01

    The second part of this continuing medical education article focuses on sonographic assessment of the salivary glands, cervical paraganglioma, angioma, esophagus, extra cranial blood vessels and the temporomandibular joint. The currently available minimally invasive therapeutic options (e. g. sialendoscopy, lithotripsy, therapeutic duct lavage and extracapsular dissection) for salivary gland disease presuppose a precise imaging modality. Modern ultrasound is able to meet this challenge, making additional imaging a rare necessity. Regions of the neck with a difficult topography (esophagus and hypopharynx) can often be successfully portrayed sonographically. Furthermore, ultrasound enables functional evaluation of swallowing in the cervical parts of the esophagus in dysphagia patients. In addition to the branchial cleft anomalies and lymph nodes discussed in part 1, paraganglioma, angiomatosis and neurogenic tumors are important differential diagnoses of solid lesions of the neck. Finally, venous and arterial alterations of the extracranial vessels of the neck relevant to clinical routine are depicted, as are pathological conditions of the temporomandibular joint relevant to the otorhinolaryngologist.

  4. 'Til Eph do us part': intercellular signaling via Eph receptors and ephrin ligands guides cerebral cortical development from birth through maturation.

    PubMed

    North, Hilary A; Clifford, Meredith A; Donoghue, Maria J

    2013-08-01

    Eph receptors, the largest family of surface-bound receptor tyrosine kinases and their ligands, the ephrins, mediate a wide variety of cellular interactions in most organ systems throughout both development and maturity. In the forming cerebral cortex, Eph family members are broadly and dynamically expressed in particular sets of cortical cells at discrete times. Here, we review the known functions of Eph-mediated intercellular signaling in the generation of progenitors, the migration of maturing cells, the differentiation of neurons, the formation of functional connections, and the choice between life and death during corticogenesis. In synthesizing these results, we posit a signaling paradigm in which cortical cells maintain a life history of Eph-mediated intercellular interactions that guides subsequent cellular decision-making.

  5. Peripheral blood film review. The demise of the eyecount leukocyte differential.

    PubMed

    Pierre, Robert V

    2002-03-01

    The automated hematology analyzer with CBC and differential results has replaced the traditional manual or individual assay methods for hematologic parameters and the eyecount leukocyte differential as the initial screening and detection system for hematologic abnormalities in modern hospitals and clinics. The traditional review of all automated hematology instrument results by preparation, staining, and microscopic examination of a blood film has disappeared in most institutions. The reasons are the more accurate detection of specimens with distributional or morphologic abnormalities by the instruments than by the traditional eyecount method. The opportunity for a clinician to request a microscopic examination of a blood film, whether or not it is flagged, must be preserved, because the clinician's knowledge of the patient's history, physical findings, and current or prior therapy may indicate review to discover an abnormality that may not have been apparent from the instrument results alone. There has also been a dramatic reduction of the numbers of medical technologists and technicians in medical laboratories. Automation of the CBC and differential counts has reduced the number of technologists needed for performance of these tests. But other factors have had a negative effect, such as the necessity to reduce costs. Consolidation of hematology and chemistry laboratories in core laboratories may produce savings in labor costs, but may also create problems of creating and maintaining areas of expertise, such as hematologic morphology, because of the cross-training required and the necessity of personnel to do all things. This article suggests and documents a number of measures that can be infinity stituted by the laboratory and by clinicians to reduce the number of eyecount differentials and blood film reviews that need to be performed. The first effort is to convince clinicians that valid data exist that confirm that a policy of allowing the laboratory to initiate blood film review based on findings of the CBC and automated differential is a more sensitive and accurate method of detecting patients with blood film abnormalities than routine blood film review of all specimens by technologists. Clinicians need to recognize that daily differential results or differentials at intervals of less than a week are not medically necessary in most patients. The laboratory, however, must provide opportunities for the clinician to request differentials at any time for specific medical reasons. The laboratory must establish the validity of screening criteria for detection of distribution and morphologic abnormalities of leukocytes by clinical correlation studies or adopt criteria established by laboratories with the same instrumentation and which have conducted clinical evaluations. A final observation on the eyecount differential is that it was the only way to identify cell types and their relative proportion for nearly 100 years. Cells were identified by their shape, intracellular structures, and staining characteristics. Many studies were able eventually to correlate some aspect of each cell type's function with their morphologic appearance. It has also been learned that the bone marrow is the source of production of most circulating cells and a great deal of the controls of cell production and release into the peripheral blood have been learned. But leukocytes have many functions, almost none of which are performed in the peripheral blood. The peripheral blood is mainly a conduit from the bone marrow to the tissues where the leukocytes perform their function in the case of the neutrophils and monocytes. It is mainly a recirculation and redistribution system for lymphocytes that usually receive their instructions from antigen processing cells in the tissues and allow these modified cells to home to sites where their functions occur. Cellular morphology and staining characteristics tell little about the maturation stage and functional capabilities of leukocytes. One cannot tell the difference between a band and a segmented neutrophil or whether a lymphocyte is a T or B cell on the conventional eyecount differential. One cannot tell the mature granulocyte of a patient with chronic myeloid leukemia from a normal mature neutrophil. Increasingly, techniques are being developed to identify better the maturation stages of cells and association with specific functional capabilities by flow cytometric techniques. The neoplastic nature of some normal-appearing leukocytes can be identified by techniques, such as fluorescent in situ hybridization. With the rapid advances in many approachs to understand the nature and functional capability of leukocytes, the eyecount differential with the traditional Romanowsky stain may be past the apogee of its ascent and beginning its trip into history along with the hemocytometer counting chamber and the Sahli pipet. The development and implementation of new laboratory cornerstone techniques for diagnosis of hematologic disease are eagerly awaited. On the other hand, the red cells and platelets exist to function in the peripheral blood. More emphasis is needed in the development of automated methods of determining the nature and functional capabilities of these true blood cells as part of the CBC.

  6. Pyrotechnic hazards classification and evaluation program. Phase 3, segments 1-4: Investigation of sensitivity test methods and procedures for pyrotechnic hazards evaluation and classification, part A

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The findings, conclusions, and recommendations relative to the investigations conducted to evaluate tests for classifying pyrotechnic materials and end items as to their hazard potential are presented. Information required to establish an applicable means of determining the potential hazards of pyrotechnics is described. Hazard evaluations are based on the peak overpressure or impulse resulting from the explosion as a function of distance from the source. Other hazard classification tests include dust ignition sensitivity, impact ignition sensitivity, spark ignition sensitivity, and differential thermal analysis.

  7. Differential NICMOS Spectrophotometry at High S/N

    NASA Technical Reports Server (NTRS)

    Gilliland, Ronald L.

    2006-01-01

    Transiting extrasolar planets present an opportunity for probing atmospheric conditions and constituents by taking advantage of different apparent radii, hence transit depth as a function of wavelength. Strong near-IR bands should support detection of water vapor via G141 spectroscopy of the bright star HD 209458 (H=6.13) by comparing in- and out-of-transit ratios of in- and out-of-band spectral intensity ratios. The reduction and analysis of science observations in which the goal is to support 1 part in 10,000, or better, development of spectral diagnostics using NICMOS grism-based spectroscopy is discussed.

  8. Differentially Private Synthesization of Multi-Dimensional Data using Copula Functions

    PubMed Central

    Li, Haoran; Xiong, Li; Jiang, Xiaoqian

    2014-01-01

    Differential privacy has recently emerged in private statistical data release as one of the strongest privacy guarantees. Most of the existing techniques that generate differentially private histograms or synthetic data only work well for single dimensional or low-dimensional histograms. They become problematic for high dimensional and large domain data due to increased perturbation error and computation complexity. In this paper, we propose DPCopula, a differentially private data synthesization technique using Copula functions for multi-dimensional data. The core of our method is to compute a differentially private copula function from which we can sample synthetic data. Copula functions are used to describe the dependence between multivariate random vectors and allow us to build the multivariate joint distribution using one-dimensional marginal distributions. We present two methods for estimating the parameters of the copula functions with differential privacy: maximum likelihood estimation and Kendall’s τ estimation. We present formal proofs for the privacy guarantee as well as the convergence property of our methods. Extensive experiments using both real datasets and synthetic datasets demonstrate that DPCopula generates highly accurate synthetic multi-dimensional data with significantly better utility than state-of-the-art techniques. PMID:25405241

  9. [Automation in surgery: a systematical approach].

    PubMed

    Strauss, G; Meixensberger, J; Dietz, A; Manzey, D

    2007-04-01

    Surgical assistance systems permit a misalignment from the purely manual to an assisted activity of the surgeon (automation). Automation defines a system, that partly or totally fulfils function, those was carried out before totally or partly by the user. The organization of surgical assistance systems following application (planning, simulation, intraoperative navigation and visualization) or technical configuration of the system (manipulator, robot) is not suitable for a description of the interaction between user (surgeon) and the system. The available work has the goal of providing a classification for the degree of the automation of surgical interventions and describing by examples. The presented classification orients itself at pre-working from the Human-Factors-Sciences. As a condition for an automation of a surgical intervention applies that an assumption of a task, which was alone assigned so far to the surgeon takes place via the system. For both reference objects (humans and machine) the condition passively or actively comes into consideration. Besides can be classified according to which functions are taken over during a selected function division by humans and/or the surgical assistance system. Three functional areas were differentiated: "information acquisition and -analysis", "decision making and action planning" as well as "execution of the surgical action". From this results a classification of pre- and intraoperative surgical assist systems in six categories, which represent different automation degrees. The classification pattern is described and illustrated on the basis of surgical of examples.

  10. Matrix differentiation formulas

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.; Tkhabisimov, D. K.

    1983-01-01

    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  11. HYPERDIRE-HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function FC of three variables

    NASA Astrophysics Data System (ADS)

    Bytev, Vladimir V.; Kniehl, Bernd A.

    2016-09-01

    We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function FC of three variables. Catalogue identifier: AEPP_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPP_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 243461 No. of bytes in distributed program, including test data, etc.: 61610782 Distribution format: tar.gz Programming language: Mathematica. Computer: All computers running Mathematica. Operating system: Operating systems running Mathematica. Classification: 4.4. Does the new version supersede the previous version?: No, it significantly extends the previous version. Nature of problem: Reduction of hypergeometric function FC of three variables to a set of basis functions. Solution method: Differential reduction. Reasons for new version: The extension package allows the user to handle the Lauricella function FC of three variables. Summary of revisions: The previous version goes unchanged. Running time: Depends on the complexity of the problem.

  12. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma Cell Differentiation PRINCIPAL INVESTIGATOR: Dr. Liqin Du...inducing miRNA, miR- 449a. We examined the differentiation-inducing function of miR-449a in multiple neuroblastoma cell lines. We have demonstrated that...miR-449a functions as an inducer of cell differentiation in neuroblastoma cell lines with distinct genetic backgrounds, including the MYCN

  13. Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells.

    PubMed

    Abdullah, Rafal H; Yaseen, Nahi Y; Salih, Shahlaa M; Al-Juboory, Ahmad Adnan; Hassan, Ayman; Al-Shammari, Ahmed Majeed

    2016-11-01

    The differentiation of mesenchymal stem cells (MSC) into acetylcholine secreted motor neuron-like cells, followed by elongation of the cell axon, is a promising treatment for spinal cord injury and motor neuron cell dysfunction in mammals. Differentiation is induced through a pre-induction step using Beta- mercaptoethanol (BME) followed by four days of induction with retinoic acid and sonic hedgehog. This process results in a very efficient differentiation of BM-MSCs into motor neuron-like cells. Immunocytochemistry showed that these treated cells had specific motor neural markers: microtubule associated protein-2 and acetylcholine transferase. The ability of these cells to function as motor neuron cells was assessed by measuring acetylcholine levels in a culture media during differentiation. High-performance liquid chromatography (HPLC) showed that the differentiated cells were functional. Motor neuron axon elongation was then induced by adding different concentrations of a nerve growth factor (NGF) to the differentiation media. Using a collagen matrix to mimic the natural condition of neural cells in a three-dimensional model showed that the MSCs were successfully differentiated into motor neuron-like cells. This process can efficiently differentiate MSCs into functional motor neurons that can be used for autologous nervous system therapy and especially for treating spinal cord injuries. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Differential Item Functioning Analysis Using Rasch Item Information Functions

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Mapuranga, Raymond

    2009-01-01

    Differential item functioning (DIF) analysis is a statistical technique used for ensuring the equity and fairness of educational assessments. This study formulates a new DIF analysis method using the information similarity index (ISI). ISI compares item information functions when data fits the Rasch model. Through simulations and an international…

  15. RIP140/PGC-1α axis involved in vitamin A-induced neural differentiation by increasing mitochondrial function.

    PubMed

    Mu, Qing; Yu, Weidong; Zheng, Shuying; Shi, Hongxia; Li, Mei; Sun, Jie; Wang, Di; Hou, Xiaoli; Liu, Ling; Wang, Xinjuan; Zhao, Zhuran; Liang, Rong; Zhang, Xue; Dong, Wei; Zeng, Chaomei; Guo, Jingzhu

    2018-03-07

    Vitamin A deficiency and mitochondrial dysfunction are both associated with neural differentiation-related disorders, such as Alzheimer's disease (AD) and Down syndrome (DS). The mechanism of vitamin A-induced neural differentiation and the notion that vitamin A can regulate the morphology and function of mitochondria in its induction of neural differentiation through the RIP140/PGC-1α axis are unclear. The aim of this study was to investigate the roles and underlying mechanisms of RIP140/PGC-1α axis in vitamin A-induced neural differentiation. Human neuroblastoma cells (SH-SY5Y) were used as a model of neural stem cells, which were incubated with DMSO, 9-cis-retinoic acid (9-cis-RA), 13-cis-retinoic acid (13-cis-RA) and all-trans-retinoic acid (at-RA). Neural differentiation of SH-SY5Y was evaluated by Sandquist calculation, combined with immunofluorescence and real-time polymerase chain reaction (PCR) of neural markers. Mitochondrial function was estimated by ultrastructure assay using transmission electron microscopy (TEM) combined with the expression of PGC-1α and NEMGs using real-time PCR. The participation of the RA signaling pathway was demonstrated by adding RA receptor antagonists. Vitamin A derivatives are able to regulate mitochondrial morphology and function, and furthermore to induce neural differentiation through the RA signaling pathway. The RIP140/PGC-1α axis is involved in the regulation of mitochondrial function in vitamin A derivative-induced neural differentiation.

  16. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Dunham, E. W.; Wei, M. Z.; Robinson, L. B.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 105. Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  17. Research progress on the proliferation and differentiation of

    NASA Astrophysics Data System (ADS)

    An, A.; Tan, B.

    Space environments such as microgravity magnetic field radiation and heavy metal ions affects the development and functions of human and mammalian cells To study these influences and the corresponding metabolisms is in favour of knowing about the development and differentiation process of organism cells In recent years researches on the differentiation of stem cells induced in vitro provide a new pathway for the repair of tissue lesion and therapy of human diseases Stem cells are potential in capable of differentiating into different functional cells But there has no reliable methods to induce the stem cells differentiating forward specific cells and to gain enough cells for transplantation which limited their application on clinical therapy It has been indicated that microgravity influenced embryonic development hematopoietic and mesenchymal stem cells and so on Hematopoietic stem cell migration and its differentiation were affected by microgravity The specific differentiation of hematopoietic stem cells was inhibited under microgravity The expression of proteins regulating cell cycle period also changed Mesenchymal stem cells provide a source of cells for the repair of musculoskeletal tissue in ground experiment While under microgravity the proliferation and differentiation of mesenchymal stem cells were influenced along with the differentiated cells function changed Furthermore in the differentiation process of stem cells under microgravity the mechanism of signal transport was also affected and the specific differentiation

  18. Evidence that specific executive functions predict symptom variance among schizophrenia patients with a predominantly negative symptom profile.

    PubMed

    Donohoe, Gary; Corvin, Aiden; Robertson, Ian H

    2006-01-01

    Although deficits in executive functioning in schizophrenia have been consistently reported, their precise relationship to symptomatology remains unclear. Recent approaches to executive functioning in nonschizophrenia studies have aimed to "fractionate" the individual cognitive processes involved. In this study, we hypothesised that if these processes are fractionable, then particular symptom syndromes may be selectively related to executive deficits. In particular, it was hoped that this approach could clarify whether negative and positive symptoms of schizophrenia are differentially related to particular aspects of executive/attentional functions. A total of 32 patients with schizophrenia and 16 matched controls were assessed on a series of tasks designed to tap the theoretically derived executive functions of Inhibition, Shifting set, Working memory, and Sustained attention. Negative symptoms were significantly predicted by performance on an "Inhibition" task (Stroop), and not by performance on any other task. Furthermore, for a subgroup of patients with predominantly negative symptoms variance in positive symptoms was only significantly predicted by performance on a set-shifting task (Visual Elevator), and not by performance on other tasks, including inhibition. Our results support the contention that negative symptoms can, at least partly, be conceived of as cognitive behaviours expressing specific executive deficits. Specifically, we discuss the possibility that negative symptoms may, in part, express a failure in response monitoring. We further suggest that the disordered metacognition resulting in positive symptoms may be mediated by cognitive flexibility in patients with a predominantly negative symptom profile.

  19. A Monte Carlo Study Investigating the Influence of Item Discrimination, Category Intersection Parameters, and Differential Item Functioning Patterns on the Detection of Differential Item Functioning in Polytomous Items

    ERIC Educational Resources Information Center

    Thurman, Carol

    2009-01-01

    The increased use of polytomous item formats has led assessment developers to pay greater attention to the detection of differential item functioning (DIF) in these items. DIF occurs when an item performs differently for two contrasting groups of respondents (e.g., males versus females) after controlling for differences in the abilities of the…

  20. Contracting in the National Health Service (NHS): recognizing the need for co-operation.

    PubMed

    Joslyn, E

    1997-05-01

    Within the reorganized National Health Service hierarchical relationships between Health Authorities and Trusts have been replaced by functional differentiation. However, differentiation of function cannot be seen as an end in itself and management of the relationship between purchasers and providers must include managing the differentiation as well as the function. This paper suggests that collaborative and administrative activities have a distinct role to play in health service management. The paper suggests that in health service management market strategies are likely to dominate in relation to resource allocation activities. The paper also argues that administrative strategies are likely to be necessary within the internal market system--to bridge the gap resulting from the differentiation of function.

  1. Segregation and Integration of Auditory Streams when Listening to Multi-Part Music

    PubMed Central

    Ragert, Marie; Fairhurst, Merle T.; Keller, Peter E.

    2014-01-01

    In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively. PMID:24475030

  2. Segregation and integration of auditory streams when listening to multi-part music.

    PubMed

    Ragert, Marie; Fairhurst, Merle T; Keller, Peter E

    2014-01-01

    In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively.

  3. Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids.

    PubMed

    Smet, Dajo; Žádníková, Petra; Vandenbussche, Filip; Benková, Eva; Van Der Straeten, Dominique

    2014-06-01

    Germination of Arabidopsis seeds in darkness induces apical hook development, based on a tightly regulated differential growth coordinated by a multiple hormone cross-talk. Here, we endeavoured to clarify the function of brassinosteroids (BRs) and cross-talk with ethylene in hook development. An automated infrared imaging system was developed to study the kinetics of hook development in etiolated Arabidopsis seedlings. To ascertain the photomorphogenic control of hook opening, the system was equipped with an automatic light dimmer. We demonstrate that ethylene and BRs are indispensable for hook formation and maintenance. Ethylene regulation of hook formation functions partly through BRs, with BR feedback inhibition of ethylene action. Conversely, BR-mediated extension of hook maintenance functions partly through ethylene. Furthermore, we revealed that a short light pulse is sufficient to induce rapid hook opening. Our dynamic infrared imaging system allows high-resolution, kinetic imaging of up to 112 seedlings in a single experimental run. At this high throughput, it is ideally suited to rapidly gain insight in pathway networks. We demonstrate that BRs and ethylene cooperatively regulate apical hook development in a phase-dependent manner. Furthermore, we show that light is a predominant regulator of hook opening, inhibiting ethylene- and BR-mediated postponement of hook opening. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions

    PubMed Central

    Tomasetti, Carmine; Iasevoli, Felice; Buonaguro, Elisabetta Filomena; De Berardis, Domenico; Fornaro, Michele; Fiengo, Annastasia Lucia Carmela; Martinotti, Giovanni; Orsolini, Laura; Valchera, Alessandro; Di Giannantonio, Massimo; de Bartolomeis, Andrea

    2017-01-01

    Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of “synapse-based” psychiatric therapeutic strategies. PMID:28085108

  5. Lipocalin 2 functions as a negative regulator of red blood cell production in an autocrine fashion.

    PubMed

    Miharada, Ken-ichi; Hiroyama, Takashi; Sudo, Kazuhiro; Nagasawa, Toshiro; Nakamura, Yukio

    2005-11-01

    Members of the lipocalin protein family are typically small, secreted proteins that possess a variety of functions. Although the physiological role of lipocalin 2 remains to be fully elucidated, a few pivotal functions have recently been reported, e.g., regulation of the apoptosis of leukocytes. Unexpectedly, lipocalin 2 is abundantly expressed in erythroid progenitor cells. An in vitro culture experiment demonstrated that lipocalin 2 induces apoptosis and inhibits differentiation of erythroid progenitor cells. During acute anemia the expression of lipocalin 2 was reduced in erythroid cells by a feedback system. Furthermore, injection of recombinant lipocalin 2 into mice suffering from acute anemia retarded the recovery of red blood cell (RBC) numbers, suggesting the importance of reduced expression of lipocalin 2 for the efficient recovery of RBC numbers. These results indicate that lipocalin 2 suppresses RBC production in an autocrine fashion. Hence, anemia arising from pathological conditions, such as chronic inflammation, might be partly due to increased levels of lipocalin 2 secreted from expanded leukocytes and/or macrophages. Also, anemia arising from malignancies might be partly due to the abundant secretion of lipocalin 2 from tumor cells. Thus, lipocalin 2 may represent an attractive therapeutic target for anemia under certain pathological conditions.

  6. Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells

    PubMed Central

    Váraljai, Renáta; Islam, Abul B.M.M.K.; Beshiri, Michael L.; Rehman, Jalees; Lopez-Bigas, Nuria; Benevolenskaya, Elizaveta V.

    2015-01-01

    The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype. PMID:26314709

  7. Midline thalamic neurons are differentially engaged during hippocampus network oscillations.

    PubMed

    Lara-Vásquez, Ariel; Espinosa, Nelson; Durán, Ernesto; Stockle, Marcelo; Fuentealba, Pablo

    2016-07-14

    The midline thalamus is reciprocally connected with the medial temporal lobe, where neural circuitry essential for spatial navigation and memory formation resides. Yet, little information is available on the dynamic relationship between activity patterns in the midline thalamus and medial temporal lobe. Here, we report on the functional heterogeneity of anatomically-identified thalamic neurons and the differential modulation of their activity with respect to dorsal hippocampal rhythms in the anesthetized mouse. Midline thalamic neurons expressing the calcium-binding protein calretinin, irrespective of their selective co-expression of calbindin, discharged at overall low levels, did not increase their activity during hippocampal theta oscillations, and their firing rates were inhibited during hippocampal sharp wave-ripples. Conversely, thalamic neurons lacking calretinin discharged at higher rates, increased their activity during hippocampal theta waves, but remained unaffected during sharp wave-ripples. Our results indicate that the midline thalamic system comprises at least two different classes of thalamic projection neuron, which can be partly defined by their differential engagement by hippocampal pathways during specific network oscillations that accompany distinct behavioral contexts. Thus, different midline thalamic neuronal populations might be selectively recruited to support distinct stages of memory processing, consistent with the thalamus being pivotal in the dialogue of cortical circuits.

  8. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.

    PubMed

    Makeyev, Eugene V; Zhang, Jiangwen; Carrasco, Monica A; Maniatis, Tom

    2007-08-03

    Both microRNAs and alternative pre-mRNA splicing have been implicated in the development of the nervous system (NS), but functional interactions between these two pathways are poorly understood. We demonstrate that the neuron-specific microRNA miR-124 directly targets PTBP1 (PTB/hnRNP I) mRNA, which encodes a global repressor of alternative pre-mRNA splicing in nonneuronal cells. Among the targets of PTBP1 is a critical cassette exon in the pre-mRNA of PTBP2 (nPTB/brPTB/PTBLP), an NS-enriched PTBP1 homolog. When this exon is skipped, PTBP2 mRNA is subject to nonsense-mediated decay (NMD). During neuronal differentiation, miR-124 reduces PTBP1 levels, leading to the accumulation of correctly spliced PTBP2 mRNA and a dramatic increase in PTBP2 protein. These events culminate in the transition from non-NS to NS-specific alternative splicing patterns. We also present evidence that miR-124 plays a key role in the differentiation of progenitor cells to mature neurons. Thus, miR-124 promotes NS development, at least in part by regulating an intricate network of NS-specific alternative splicing.

  9. State-to-state reaction dynamics of 18O+32O2 studied by a time-dependent quantum wavepacket method

    NASA Astrophysics Data System (ADS)

    Xie, Wenbo; Liu, Lan; Sun, Zhigang; Guo, Hua; Dawes, Richard

    2015-02-01

    The title isotope exchange reaction was studied by converged time-dependent wave packet calculations, where an efficient 4th order split operator was applied to propagate the initial wave packet. State-to-state differential and integral cross sections up to the collision energy of 0.35 eV were obtained with 32O2 in the hypothetical j0 = 0 state. It is discovered that the differential cross sections are largely forward biased in the studied collision energy range, due to the fact that there is a considerable part of the reaction occurring with large impact parameter and short lifetime relative to the rotational period of the intermediate complex. The oscillations of the forward scattering amplitude as a function of collision energy, which result from coherent contribution of adjacent resonances, may be a sensitive probe for examining the quality of the underlying potential energy surface. A good agreement between the theoretical and recent experimental integral and differential cross sections at collision energy of 7.3 kcal/mol is obtained. However, the theoretical results predict slightly too much forward scattering and colder rotational distributions than the experimental observations at collision energy of 5.7 kcal/mol.

  10. Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors.

    PubMed

    Pundhir, Sachin; Bratt Lauridsen, Felicia Kathrine; Schuster, Mikkel Bruhn; Jakobsen, Janus Schou; Ge, Ying; Schoof, Erwin Marten; Rapin, Nicolas; Waage, Johannes; Hasemann, Marie Sigurd; Porse, Bo Torben

    2018-05-29

    Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Jet shapes in dijet events at the LHC in SCET

    NASA Astrophysics Data System (ADS)

    Hornig, Andrew; Makris, Yiannis; Mehen, Thomas

    2016-04-01

    We consider the class of jet shapes known as angularities in dijet production at hadron colliders. These angularities are modified from the original definitions in e + e - collisions to be boost invariant along the beam axis. These shapes apply to the constituents of jets defined with respect to either k T -type (anti- k T , C/ A, and k T ) algorithms and cone-type algorithms. We present an SCET factorization formula and calculate the ingredients needed to achieve next-to-leading-log (NLL) accuracy in kinematic regions where non-global logarithms are not large. The factorization formula involves previously unstudied "unmeasured beam functions," which are present for finite rapidity cuts around the beams. We derive relations between the jet functions and the shape-dependent part of the soft function that appear in the factorized cross section and those previously calculated for e + e - collisions, and present the calculation of the non-trivial, color-connected part of the soft-function to O({α}_s) . This latter part of the soft function is universal in the sense that it applies to any experimental setup with an out-of-jet p T veto and rapidity cuts together with two identified jets and it is independent of the choice of jet (sub-)structure measurement. In addition, we implement the recently introduced soft-collinear refactorization to resum logarithms of the jet size, valid in the region of non-enhanced non-global logarithm effects. While our results are valid for all 2 → 2 channels, we compute explicitly for the qq' → qq' channel the color-flow matrices and plot the NLL resummed differential dijet cross section as an explicit example, which shows that the normalization and scale uncertainty is reduced when the soft function is refactorized. For this channel, we also plot the jet size R dependence, the p T cut dependence, and the dependence on the angularity parameter a.

  12. Jet shapes in dijet events at the LHC in SCET

    DOE PAGES

    Hornig, Andrew; Makris, Yiannis; Mehen, Thomas

    2016-04-15

    Here, we consider the class of jet shapes known as angularities in dijet production at hadron colliders. These angularities are modified from the original definitions in e + e- collisions to be boost invariant along the beam axis. These shapes apply to the constituents of jets defined with respect to either k T-type (anti-k T, C/A, and k T) algorithms and cone-type algorithms. We present an SCET factorization formula and calculate the ingredients needed to achieve next-to-leading-log (NLL) accuracy in kinematic regions where non-global logarithms are not large. The factorization formula involves previously unstudied “unmeasured beam functions,” which are present for finite rapidity cuts around the beams. We derive relations between the jet functions and the shape-dependent part of the soft function that appear in the factorized cross section and those previously calculated for e +e - collisions, and present the calculation of the non-trivial, color-connected part of the soft-function to O(αs) . This latter part of the soft function is universal in the sense that it applies to any experimental setup with an out-of-jet p T veto and rapidity cuts together with two identified jets and it is independent of the choice of jet (sub-)structure measurement. In addition, we implement the recently introduced soft-collinear refactorization to resum logarithms of the jet size, valid in the region of non-enhanced non-global logarithm effects. While our results are valid for all 2 → 2 channels, we compute explicitly for the qq' → qq' channel the color-flow matrices and plot the NLL resummed differential dijet cross section as an explicit example, which shows that the normalization and scale uncertainty is reduced when the soft function is refactorized. For this channel, we also plot the jet size R dependence, the pmore » $$cut\\atop{T}$$ dependence, and the dependence on the angularity parameter a.« less

  13. No specific role for the manual motor system in processing the meanings of words related to the hand

    PubMed Central

    Postle, Natasha; Ashton, Roderick; McFarland, Ken; de Zubicaray, Greig I.

    2013-01-01

    The present study explored whether semantic and motor systems are functionally interwoven via the use of a dual-task paradigm. According to embodied language accounts that propose an automatic and necessary involvement of the motor system in conceptual processing, concurrent processing of hand-related information should interfere more with hand movements than processing of unrelated body-part (i.e., foot, mouth) information. Across three experiments, 100 right-handed participants performed left- or right-hand tapping movements while repeatedly reading action words related to different body-parts, or different body-part names, in both aloud and silent conditions. Concurrent reading of single words related to specific body-parts, or the same words embedded in sentences differing in syntactic and phonological complexity (to manipulate context-relevant processing), and reading while viewing videos of the actions and body-parts described by the target words (to elicit visuomotor associations) all interfered with right-hand but not left-hand tapping rate. However, this motor interference was not affected differentially by hand-related stimuli. Thus, the results provide no support for proposals that body-part specific resources in cortical motor systems are shared between overt manual movements and meaning-related processing of words related to the hand. PMID:23378833

  14. Exploring Differential Bundle Functioning in Mathematics by Gender: The Effect of Hierarchical Modelling

    ERIC Educational Resources Information Center

    Ong, Yoke Mooi; Williams, Julian; Lamprianou, Iasonas

    2013-01-01

    Researchers interested in exploring substantive group differences are increasingly attending to bundles of items (or testlets): the aim is to understand how gender differences, for instance, are explained by differential performances on different types or bundles of items, hence differential bundle functioning (DBF). Some previous work has…

  15. Differentiable McCormick relaxations

    DOE PAGES

    Khan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.

    2016-05-27

    McCormick's classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick's relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiablemore » variant of McCormick's original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Furthermore, extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.« less

  16. Undergraduate Students' Mental Operations in Systems of Differential Equations

    ERIC Educational Resources Information Center

    Whitehead, Karen; Rasmussen, Chris

    2003-01-01

    This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…

  17. microRNA regulation of T-cell differentiation and function

    PubMed Central

    Jeker, Lukas T.; Bluestone, Jeffrey A.

    2013-01-01

    Summary microRNAs (miRNAs) are emerging as key controllers of T-cell differentiation and function. Their expression is dynamically regulated by extracellular signals such as costimulation and cytokine signals. miRNAs set thresholds for gene expression and optimize protein concentrations of genetic networks. Absence of individual miRNAs can lead to severe immune dysfunction. Here we review emerging principles and provide examples of important functions exerted by miRNAs. Although our understanding of miRNA function in T-cell differentiation is still rudimentary, the available evidence leaves no doubt that these small posttranscriptional regulators are indispensable for proper functioning of the immune system. PMID:23550639

  18. Screening Test Items for Differential Item Functioning

    ERIC Educational Resources Information Center

    Longford, Nicholas T.

    2014-01-01

    A method for medical screening is adapted to differential item functioning (DIF). Its essential elements are explicit declarations of the level of DIF that is acceptable and of the loss function that quantifies the consequences of the two kinds of inappropriate classification of an item. Instead of a single level and a single function, sets of…

  19. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Landé, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.

  20. Evaluating linguistic equivalence of patient-reported outcomes in a cancer clinical trial.

    PubMed

    Hahn, Elizabeth A; Bode, Rita K; Du, Hongyan; Cella, David

    2006-01-01

    In order to make meaningful cross-cultural or cross-linguistic comparisons of health-related quality of life (HRQL) or to pool international research data, it is essential to create unbiased measures that can detect clinically important differences. When HRQL scores differ between cultural/linguistic groups, it is important to determine whether this reflects real group differences, or is the result of systematic measurement variability. To investigate the linguistic measurement equivalence of a cancer-specific HRQL questionnaire, and to conduct a sensitivity analysis of treatment differences in HRQL in a clinical trial. Patients with newly diagnosed chronic myelogenous leukemia (n = 1049) completed serial HRQL assessments in an international Phase III trial. Two types of differential item functioning (uniform and non-uniform) were evaluated using item response theory and classical test theory approaches. A sensitivity analysis was conducted to compare HRQL between treatment arms using items without evidence of differential functioning. Among 27 items, nine (33%) did not exhibit any evidence of differential functioning in both linguistic comparisons (English versus French, English versus German). Although 18 items functioned differently, there was no evidence of systematic bias. In a sensitivity analysis, adjustment for differential functioning affected the magnitude, but not the direction or interpretation of clinical trial treatment arm differences. Sufficient sample sizes were available for only three of the eight language groups. Identification of differential functioning in two-thirds of the items suggests that current psychometric methods may be too sensitive. Enhanced methodologies are needed to differentiate trivial from substantive differential item functioning. Systematic variability in HRQL across different groups can be evaluated for its effect upon clinical trial results; a practice recommended when data are pooled across cultural or linguistic groups to make conclusions about treatment effects.

  1. Age-related functional changes in domain-specific medial temporal lobe pathways.

    PubMed

    Berron, David; Neumann, Katja; Maass, Anne; Schütze, Hartmut; Fliessbach, Klaus; Kiven, Verena; Jessen, Frank; Sauvage, Magdalena; Kumaran, Dharshan; Düzel, Emrah

    2018-05-01

    There is now converging evidence from studies in animals and humans that the medial temporal lobes (MTLs) harbor anatomically distinct processing pathways for object and scene information. Recent functional magnetic resonance imaging studies in humans suggest that this domain-specific organization may be associated with a functional preference of the anterior-lateral part of the entorhinal cortex (alErC) for objects and the posterior-medial entorhinal cortex (pmErC) for scenes. As MTL subregions are differentially affected by aging and neurodegenerative diseases, the question was raised whether aging may affect the 2 pathways differentially. To address this possibility, we developed a paradigm that allows the investigation of object memory and scene memory in a mnemonic discrimination task. A group of young (n = 43) and healthy older subjects (n = 44) underwent functional magnetic resonance imaging recordings during this novel task, while they were asked to discriminate exact repetitions of object and scene stimuli from novel stimuli that were similar but modified versions of the original stimuli ("lures"). We used structural magnetic resonance images to manually segment anatomical components of the MTL including alErC and pmErC and used these segmented regions to analyze domain specificity of functional activity. Across the entire sample, object processing was associated with activation of the perirhinal cortex (PrC) and alErC, whereas for scene processing, activation was more predominant in the parahippocampal cortex and pmErC. Functional activity related to mnemonic discrimination of object and scene lures from exact repetitions was found to overlap between processing pathways and suggests that while the PrC-alErC pathway was more involved in object discrimination, both pathways were involved in the discrimination of similar scenes. Older adults were behaviorally less accurate than young adults in discriminating similar lures from exact repetitions, but this reduction was equivalent in both domains. However, this was accompanied by significantly reduced domain-specific activity in PrC in older adults compared to what was observed in the young. Furthermore, this reduced domain-specific activity was associated to worse performance in object mnemonic discrimination in older adults. Taken together, we show the fine-grained functional organization of the MTL into domain-specific pathways for objects and scenes and their mnemonic discrimination and further provide evidence that aging might affect these pathways in a differential fashion. Future experiments will elucidate whether the 2 pathways are differentially affected in early stages of Alzheimer's disease in relation to amyloid or tau pathology. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2012-01-01

    Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.

  3. Crossover from attractive to repulsive Casimir forces and vice versa.

    PubMed

    Schmidt, Felix M; Diehl, H W

    2008-09-05

    Systems described by an O(n) symmetrical varphi;{4} Hamiltonian are considered in a d-dimensional film geometry at their bulk critical points. The critical Casimir forces between the film's boundary planes B_{j}, j=1,2, are investigated as functions of film thickness L for generic symmetry-preserving boundary conditions partial differential_{n}phi=c[over composite function]_{j}phi. The L-dependent part of the reduced excess free energy per cross-sectional area takes the scaling form f_{res} approximately D(c_{1}L;{Phi/nu},c_{2}L;{Phi/nu})/L;{d-1} when d<4, where c_{i} are scaling fields associated with the variables c[over composite function]_{i} and Phi is a surface crossover exponent. Explicit two-loop renormalization group results for the function D(c_{1},c_{2}) at d=4- dimensions are presented. These show that (i) the Casimir force can have either sign, depending on c_{1} and c_{2}, and (ii) for appropriate choices of the enhancements c[over composite function]_{j}, crossovers from attraction to repulsion and vice versa occur as L increases.

  4. Silencing of Stress-Regulated miRNAs in Plants by Short Tandem Target Mimic (STTM) Approach.

    PubMed

    Teotia, Sachin; Tang, Guiliang

    2017-01-01

    In plants, microRNAs (miRNAs) regulate more than hundred target genes comprising largely transcription factors that control growth and development as well as stress responses. However, the exact functions of miRNA families could not be deciphered because each miRNA family has multiple loci in the genome, thus are functionally redundant. Therefore, an ideal approach to study the function of a miRNA family is to silence the expression of all members simultaneously, which is a daunting task. However, this can be partly overcome by Target Mimic (TM) approach that can knockdown an entire miRNA family. STTM is a modification of TM approach and complements it. STTMs have been successfully used in monocots and dicots to block miRNA functions. miR159 has been shown to be differentially regulated by various abiotic stresses including ABA in various plant species. Here, we describe in detail the protocol for designing STTM construct to block miR159 functions in Arabidopsis, with the potential to apply this technique on a number of other stress-regulated miRNAs in plants.

  5. Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures.

    PubMed

    Twumasi, Peter; Iakimova, Elena T; Qian, Tian; van Ieperen, Wim; Schel, Jan H N; Emons, Anne Mie C; van Kooten, Olaf; Woltering, Ernst J

    2010-08-06

    The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented. Confocal microscopic images revealed the consecutive stages of TE formation in Zinnia cells during trans-differentiation. Application of the caspase inhibitors Z-Asp-CH2-DCB, Ac-YVAD-CMK and Ac-DEVD-CHO affected the kinetics of formation and the dimensions of the TEs resulting in a significant delay of TE formation, production of larger TEs and in elimination of the 'two-wave' pattern of TE production. DNA breakdown and appearance of TUNEL-positive nuclei was observed in xylogenic cultures and this was suppressed in the presence of caspase inhibitors. To the best of our knowledge this is the first report showing that caspase inhibitors can modulate the process of trans-differentiation in Zinnia xylogenic cell cultures. As caspase inhibitors are closely associated with cell death inhibition in a variety of plant systems, this suggests that the altered TE formation results from suppression of PCD. The findings presented here are a first step towards the use of appropriate PCD signalling modulators or related molecular genetic strategies to improve the hydraulic properties of xylem vessels in favour of the quality and shelf life of plants or plant parts.

  6. Test of CCD Precision Limits for Differential Photometry

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Wei, M. Z.; Borucki, W. J.; Dunham, E. W.; Ford, C. H.; Granados, A. F.

    1995-01-01

    Results of tests to demonstrate the very high differential-photometric stability of CCD light sensors are presented. The measurements reported here demonstrate that in a controlled laboratory environment, a front-illuminated CCD can provide differential-photometric measurements with reproducible precision approaching one part in 10(exp 5). Practical limitations to the precision of differential-photometric measurements with CCDs and implications for spaceborne applications are discussed.

  7. Correlation between differential renal function estimation using CT-based functional renal parenchymal volume and (99m)Tc - DTPA renal scan.

    PubMed

    Sarma, Debanga; Barua, Sasanka K; Rajeev, T P; Baruah, Saumar J

    2012-10-01

    Nuclear renal scan is currently the gold standard imaging study to determine differential renal function. We propose helical CT as single modality for both the anatomical and functional evaluation of kidney with impaired function. In the present study renal parenchymal volume is measured and percent total renal volume is used as a surrogate marker for differential renal function. The objective of this study is to correlate between differential renal function estimation using CT-based renal parenchymal volume measurement with differential renal function estimation using (99m)TC - DTPA renal scan. Twenty-one patients with unilateral obstructive uropathy were enrolled in this prospective comparative study. They were subjected to (99m)Tc - DTPA renal scan and 64 slice helical CT scan which estimates the renal volume depending on the reconstruction of arterial phase images followed by volume rendering and percent renal volume was calculated. Percent renal volume was correlated with percent renal function, as determined by nuclear renal scan using Pearson coefficient. RESULTS AND OBSERVATION: A strong correlation is observed between percent renal volume and percent renal function in obstructed units (r = 0.828, P < 0.001) as well as in nonobstructed units (r = 0.827, P < 0.001). There is a strong correlation between percent renal volume determined by CT scan and percent renal function determined by (99m)TC - DTPA renal scan both in obstructed and in normal units. CT-based percent renal volume can be used as a single radiological tests for both functional and anatomical assessment of impaired renal units.

  8. ROS is Required for Alternatively Activated Macrophage Differentiation | Center for Cancer Research

    Cancer.gov

    Macrophages are key regulators in host inflammatory responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) are responsible for inducing macrophage differentiation from monocytes. GM-CSF or M-CSF-differentiated macrophages can be further differentiated, or polarized, to more specialized cells. Classically activated, or M1, macrophages have immune-stimulatory properties and cytotoxic function against tumor cells. Alternatively activated, or M2, macrophages have low cytotoxic function but high tissue-remodeling activity. There are also M2-like cells called tumor-associated macrophages (TAMs) that are responsible for many tumor-promoting activities. Blocking the function of TAMs inhibits tumorigenesis.

  9. Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation.

    PubMed

    Ghita, Adrian; Pascut, Flavius C; Sottile, Virginie; Denning, Chris; Notingher, Ioan

    Stem cell therapy is widely acknowledged as a key medical technology of the 21st century which may provide treatments for many currently incurable diseases. These cells have an enormous potential for cell replacement therapies to cure diseases such as Parkinson's disease, diabetes and cardiovascular disorders, as well as in tissue engineering as a reliable cell source for providing grafts to replace and repair diseased tissues. Nevertheless, the progress in this field has been difficult in part because of lack of techniques that can measure non-invasively the molecular properties of cells. Such repeated measurements can be used to evaluate the culture conditions during differentiation, cell quality and phenotype heterogeneity of stem cell progeny. Raman spectroscopy is an optical technique based on inelastic scattering of laser photons by molecular vibrations of cellular molecules and can be used to provide chemical fingerprints of cells or organelles without fixation, lysis or use of labels and other contrast enhancing chemicals. Because differentiated cells are specialized to perform specific functions, these cells produce specific biochemicals that can be detected by Raman micro-spectroscopy. This mini-review paper describes applications of Raman micro-scpectroscopy to measure moleculare properties of stem cells during differentiation in-vitro. The paper focuses on time- and spatially-resolved Raman spectral measurements that allow repeated investigation of live stem cells in-vitro.

  10. Induction of dopaminergic neurons from human Wharton's jelly mesenchymal stem cell by forskolin.

    PubMed

    Paldino, Emanuela; Cenciarelli, Carlo; Giampaolo, Adele; Milazzo, Luisa; Pescatori, Mario; Hassan, Hamisa Jane; Casalbore, Patrizia

    2014-02-01

    The purpose of this study was to investigate the Wharton's jelly mesenchymal stem cells differentiation ability toward neuronal fate. Human Wharton's jelly mesenchymal stem cells (hWJMSC) have been isolated from human umbilical cord of full-term births and characterized by flow cytometry analysis for their stem mesenchymal properties through specific surface markers expression (CD73, CD90, and CD105). hWJMSC mesodermal lineage differentiation ability and karyotype analysis were assessed. The trans-differentiation of hWJMSC into neural lineage was investigated in presence of forskolin, an agent known to increase the intracellular levels of cAMP. A molecular profile of differentiated hWJMSC was performed by microarray technology which revealed 1,532 statistically significant modulated genes respect to control cells. Most of these genes are mainly involved in functional neuronal signaling pathways and part of them are specifically required for the neuronal dopaminergic induction. The acquisition of the dopaminergic phenotype was evaluated via immunocytochemistry and Western blot analysis revealed the significant induction of Nurr1, NeuroD1, and TH proteins expression in forskolin-induced hWJMSC. Moreover, the treatment with forskolin promoted, in hWJMSC, a strong upregulation of the neurotrophin Trk receptors related to the high release of brain-derived neurotrophic factor. Taken together these findings show that hWJMSC may be represent an optimal therapeutic strategy for neurological diseases. © 2013 Wiley Periodicals, Inc.

  11. Recommended Mass Spectrometry-Based Strategies to Identify Ricin-Containing Samples

    PubMed Central

    Kalb, Suzanne R.; Schieltz, David M.; Becher, François; Astot, Crister; Fredriksson, Sten-Åke; Barr, John R.

    2015-01-01

    Ricin is a protein toxin produced by the castor bean plant (Ricinus communis) together with a related protein known as R. communis agglutinin (RCA120). Mass spectrometric (MS) assays have the capacity to unambiguously identify ricin and to detect ricin’s activity in samples with complex matrices. These qualitative and quantitative assays enable detection and differentiation of ricin from the less toxic RCA120 through determination of the amino acid sequence of the protein in question, and active ricin can be monitored by MS as the release of adenine from the depurination of a nucleic acid substrate. In this work, we describe the application of MS-based methods to detect, differentiate and quantify ricin and RCA120 in nine blinded samples supplied as part of the EQuATox proficiency test. Overall, MS-based assays successfully identified all samples containing ricin or RCA120 with the exception of the sample spiked with the lowest concentration (0.414 ng/mL). In fact, mass spectrometry was the most successful method for differentiation of ricin and RCA120 based on amino acid determination. Mass spectrometric methods were also successful at ranking the functional activities of the samples, successfully yielding semi-quantitative results. These results indicate that MS-based assays are excellent techniques to detect, differentiate, and quantify ricin and RCA120 in complex matrices. PMID:26610568

  12. Threshold-dependent cooperativity of Pdx1 and Oc1 in pancreatic progenitors establishes competency for endocrine differentiation and β-cell function

    PubMed Central

    Wright, Christopher V.E.; Won, Kyoung-Jae

    2016-01-01

    Summary Pdx1 and Oc1 are co-expressed in multipotent pancreatic progenitors and regulate the pro-endocrine gene Neurog3. Their expression diverges in later organogenesis, with Oc1 absent from hormone+ cells and Pdx1 maintained in mature β cells. In a classical genetic test for cooperative functional interactions, we derived mice with combined Pdx1 and Oc1 heterozygosity. Endocrine development in double-heterozygous pancreata was normal at embryonic day (e)13.5, but defects in specification and differentiation were apparent at e15.5, the height of the second wave of differentiation. Pancreata from double heterozygotes showed alterations in the expression of genes crucial for β-cell development and function, decreased numbers and altered allocation of Neurog3-expressing endocrine progenitors, and defective endocrine differentiation. Defects in islet gene expression and β-cell function persisted in double heterozygous neonates. These results suggest that Oc1 and Pdx1 cooperate prior to their divergence, in pancreatic progenitors, to allow for proper differentiation and functional maturation of β cells. PMID:27292642

  13. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive.

    PubMed

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J R; Santos, Romana

    2016-06-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

  14. Dynamic stability and bifurcation analysis in fractional thermodynamics

    NASA Astrophysics Data System (ADS)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.

  15. Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat.

    PubMed

    Rey, Elodie; Abrouk, Michael; Keeble-Gagnère, Gabriel; Karafiátová, Miroslava; Vrána, Jan; Balzergue, Sandrine; Soubigou-Taconnat, Ludivine; Brunaud, Véronique; Martin-Magniette, Marie-Laure; Endo, Takashi R; Bartoš, Jan; Appels, Rudi; Doležel, Jaroslav

    2018-03-06

    Despite a long history, the production of useful alien introgression lines in wheat remains difficult mainly due to linkage drag and incomplete genetic compensation. In addition, little is known about the molecular mechanisms underlying the impact of foreign chromatin on plant phenotype. Here, a comparison of the transcriptomes of barley, wheat and a wheat-barley 7HL addition line allowed the transcriptional impact both on 7HL genes of a non-native genetic background and on the wheat gene complement as a result of the presence of 7HL to be assessed. Some 42% (389/923) of the 7HL genes assayed were differentially transcribed, which was the case for only 3% (960/35 301) of the wheat gene complement. The absence of any transcript in the addition line of a suite of chromosome 7A genes implied the presence of a 36 Mbp deletion at the distal end of the 7AL arm; this deletion was found to be in common across the full set of Chinese Spring/Betzes barley addition lines. The remaining differentially transcribed wheat genes were distributed across the whole genome. The up-regulated barley genes were mostly located in the proximal part of the 7HL arm, while the down-regulated ones were concentrated in the distal part; as a result, genes encoding basal cellular functions tended to be transcribed, while those encoding specific functions were suppressed. An insight has been gained into gene transcription in an alien introgression line, thereby providing a basis for understanding the interactions between wheat and exotic genes in introgression materials. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Proteomic dataset of the sea urchin Paracentrotus lividus adhesive organs and secreted adhesive

    PubMed Central

    Lebesgue, Nicolas; da Costa, Gonçalo; Ribeiro, Raquel Mesquita; Ribeiro-Silva, Cristina; Martins, Gabriel G.; Matranga, Valeria; Scholten, Arjen; Cordeiro, Carlos; Heck, Albert J.R.; Santos, Romana

    2016-01-01

    Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article “Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach” (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives. PMID:27182547

  17. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    PubMed

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Novel mechanisms for the vitamin D receptor (VDR) in the skin and in skin cancer.

    PubMed

    Bikle, Daniel D; Oda, Yuko; Tu, Chia-Ling; Jiang, Yan

    2015-04-01

    The VDR acting with or without its principal ligand 1,25(OH)2D regulates two central processes in the skin, interfollicular epidermal (IFE) differentiation and hair follicle cycling (HFC). Calcium is an important co-regulator with 1,25(OH)2D at least of epidermal differentiation. Knockout of the calcium sensing receptor (CaSR) in addition to VDR accelerates the development of skin cancer in mice on a low calcium diet. Coactivators such as mediator 1 (aka DRIP205) and steroid receptor coactivator 3 (SRC3) regulate VDR function at different stages of the differentiation process, with Med 1 essential for hair follicle differentiation and early stages of epidermal differentiation and proliferation and SRC3 essential for the latter stages of differentiation including formation of the permeability barrier and innate immunity. The corepressor of VDR, hairless (HR), is essential for hair follicle cycling, although its effect on epidermal differentiation in vivo is minimal. In its regulation of HFC and IFE VDR controls two pathways-wnt/β-catenin and sonic hedgehog (SHH). In the absence of VDR these pathways are overexpressed leading to tumor formation. Whereas, VDR binding to β-catenin may block its activation of TCF/LEF1 sites, β-catenin binding to VDR may enhance its activation of VDREs. 1,25(OH)2D promotes but may not be required for these interactions. Suppression of SHH expression by VDR, on the other hand, requires 1,25(OH)2D. The major point of emphasis is that the role of VDR in the skin involves a number of novel mechanisms, both 1,25(OH)2D dependent and independent, that when disrupted interfere with IFE differentiation and HFC, predisposing to cancer formation. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. End-stage renal disease, dialysis, kidney transplantation and their impact on CD4+ -T-cell differentiation.

    PubMed

    Schaier, Matthias; Leick, Angele; Uhlmann, Lorenz; Kälble, Florian; Morath, Christian; Eckstein, Volker; Ho, Anthony; Mueller-Tidow, Carsten; Meuer, Stefan; Mahnke, Karsten; Sommerer, Claudia; Zeier, Martin; Steinborn, Andrea

    2018-05-02

    Premature aging of both CD4 + -regulatory- (Tregs) and CD4 + -responder-T-cells (Tresps) in end-stage renal disease (ESRD) patients is expected to affect the success of later kidney transplantation. Both T-cell populations are released from the thymus as inducible co-stimulatory (ICOS + -) and ICOS - -recent thymic emigrant (RTE)-Tregs/Tresps, which differ primarily in their proliferative capacities. In this study, we analysed the effect of ESRD and subsequent renal replacement therapies on the differentiation of ICOS + - and ICOS - -RTE-Tregs/Tresps into ICOS + - or ICOS - -CD31 - -Memory-Tregs/Tresps and examined whether diverging pathways affected the suppressive activity of ICOS + - and ICOS - -Tregs in co-culture with autologous Tresps. Compared to healthy controls, we found an increased differentiation of ICOS + -RTE-Tregs/Tresps and ICOS - -RTE-Tregs via CD31 + -memory-Tregs/Tresps into CD31 - -memory-Tregs/Tresps in ESRD and dialysis patients. In contrast, ICOS - -RTE-Tresps showed an increased differentiation via ICOS - -mature naïve (MN)-Tresps into CD31 - -memory-Tresps. Thereby, the ratio of ICOS + -Tregs/ICOS + -Tresps was not changed, while that of ICOS - -Tregs/ICOS - -Tresps was significantly increased. This differentiation preserved the suppressive activity of both Treg populations in ESRD and partly in dialysis patients. After transplantation, the increased differentiation of ICOS + - and ICOS - -RTE-Tresps proceeded, while that of ICOS + -RTE-Tregs ceased and that of ICOS - -RTE-Tregs switched to an increased differentiation via ICOS - -MN-Tregs. Consequently, the ratios of ICOS + -Tregs/ICOS + -Tresps and of ICOS - -Tregs/ICOS - -Tresps decreased significantly, reducing the suppressive activity of Tregs markedly. Our data reveal that an increased tolerance-inducing differentiation of ICOS + - and ICOS - -Tregs preserves the functional activity of Tregs in ESRD patients, but this cannot be maintained during long-term renal replacement therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Mathematical Methods for Physics and Engineering Third Edition Paperback Set

    NASA Astrophysics Data System (ADS)

    Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.

    2006-06-01

    Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.

  1. Biological functionality and mechanistic contribution of extracellular matrix-ornamented three dimensional Ti-6Al-4V mesh scaffolds.

    PubMed

    Kumar, A; Nune, K C; Misra, R D K

    2016-11-01

    The 3D printed metallic implants are considered bioinert in nature because of the absence of bioactive molecules. Thus, surface modification of bioinert materials is expected to favorably promote osteoblast functions and differentiation. In this context, the objective of this study is to fundamentally elucidate the effect of cell-derived decellularized extracellular matrix (dECM) ornamented 3D printed Ti-6Al-4V scaffolds on biological functions, involving cell adhesion, proliferation, and synthesis of vinculin and actin proteins. To mimic the natural ECM environment, the mineralized ECM of osteoblasts was deposited on the Ti-6Al-4V porous scaffolds, fabricated by electron beam melting (EBM) method. The process comprised of osteoblast proliferation, differentiation, and freeze-thaw cycles to obtain decellularized extra cellular matrix (dECM), in vitro. The dECM provided a natural environment to restore the natural cell functionality of osteoblasts that were cultured on dECM ornamented Ti-6Al-4V scaffolds. In comparison to the bare Ti-6Al-4V scaffolds, a higher cell functionality such as cell adhesion, proliferation, and growth including cell-cell and cell-material interaction were observed on dECM ornamented Ti-6Al-4V scaffolds, which were characterized by using markers for focal adhesion and cytoskeleton such as vinculin and actin. Moreover, electron microscopy also indicated higher cell-material interaction and enhanced proliferation of cells on dECM ornamented Ti-6Al-4V scaffolds, supported by MTT assay. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2751-2763, 2016. © 2016 Wiley Periodicals, Inc.

  2. Optimization of complex slater-type functions with analytic derivative methods for describing photoionization differential cross sections.

    PubMed

    Matsuzaki, Rei; Yabushita, Satoshi

    2017-05-05

    The complex basis function (CBF) method applied to various atomic and molecular photoionization problems can be interpreted as an L2 method to solve the driven-type (inhomogeneous) Schrödinger equation, whose driven term being dipole operator times the initial state wave function. However, efficient basis functions for representing the solution have not fully been studied. Moreover, the relation between their solution and that of the ordinary Schrödinger equation has been unclear. For these reasons, most previous applications have been limited to total cross sections. To examine the applicability of the CBF method to differential cross sections and asymmetry parameters, we show that the complex valued solution to the driven-type Schrödinger equation can be variationally obtained by optimizing the complex trial functions for the frequency dependent polarizability. In the test calculations made for the hydrogen photoionization problem with five or six complex Slater-type orbitals (cSTOs), their complex valued expansion coefficients and the orbital exponents have been optimized with the analytic derivative method. Both the real and imaginary parts of the solution have been obtained accurately in a wide region covering typical molecular regions. Their phase shifts and asymmetry parameters are successfully obtained by extrapolating the CBF solution from the inner matching region to the asymptotic region using WKB method. The distribution of the optimized orbital exponents in the complex plane is explained based on the close connection between the CBF method and the driven-type equation method. The obtained information is essential to constructing the appropriate basis sets in future molecular applications. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Ras and relatives--job sharing and networking keep an old family together.

    PubMed

    Ehrhardt, Annette; Ehrhardt, Götz R A; Guo, Xuecui; Schrader, John W

    2002-10-01

    Many members of the Ras superfamily of GTPases have been implicated in the regulation of hematopoietic cells, with roles in growth, survival, differentiation, cytokine production, chemotaxis, vesicle-trafficking, and phagocytosis. The well-known p21 Ras proteins H-Ras, N-Ras, K-Ras 4A, and K-Ras 4B are also frequently mutated in human cancer and leukemia. Besides the four p21 Ras proteins, the Ras subfamily of the Ras superfamily includes R-Ras, TC21 (R-Ras2), M-Ras (R-Ras3), Rap1A, Rap1B, Rap2A, Rap2B, RalA, and RalB. They exhibit remarkable overall amino acid identities, especially in the regions interacting with the guanine nucleotide exchange factors that catalyze their activation. In addition, there is considerable sharing of various downstream effectors through which they transmit signals and of GTPase activating proteins that downregulate their activity, resulting in overlap in their regulation and effector function. Relatively little is known about the physiological functions of individual Ras family members, although the presence of well-conserved orthologs in Caenorhabditis elegans suggests that their individual roles are both specific and vital. The structural and functional similarities have meant that commonly used research tools fail to discriminate between the different family members, and functions previously attributed to one family member may be shared with other members of the Ras family. Here we discuss similarities and differences in activation, effector usage, and functions of different members of the Ras subfamily. We also review the possibility that the differential localization of Ras proteins in different parts of the cell membrane may govern their responses to activation of cell surface receptors.

  4. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  5. Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes.

    PubMed

    Fleckenstein-Elsen, Manuela; Dinnies, Daniela; Jelenik, Tomas; Roden, Michael; Romacho, Tania; Eckel, Jürgen

    2016-09-01

    n-3 and n-6 PUFAs have several opposing biological effects and influence white adipose tissue (WAT) function. The recent discovery of thermogenic UCP1-expressing brite adipocytes within WAT raised the question whether n-3 and n-6 PUFAs exert differential effects on brite adipocyte formation and mitochondrial function. Primary human preadipocytes were treated with n-3 PUFAs (eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA) or n-6 PUFA (arachidonic acid, ARA) during differentiation, and adipogenesis, white and brite gene expression markers, mitochondrial content and function were analyzed at day 12 of differentiation. Adipogenesis was equally increased by n-3 and n-6 PUFAs. The n-6 PUFA ARA increased lipid droplet size and expression of the white-specific marker TCF21 while decreased mitochondrial protein expression and respiratory function. In contrast, EPA increased expression of the brown adipocyte-related genes UCP1 and CPT1B, and improved mitochondrial function of adipocytes. The opposing effects of EPA and ARA on gene expression and mitochondrial function were also observed in cells treated from day 8 to 12 of adipocyte differentiation. EPA promotes brite adipogenesis and improves parameters of mitochondrial function, such as increased expression of CPTB1, citrate synthase activity and higher maximal respiratory capacity, while ARA reduced mitochondrial spare respiratory capacity in vitro. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. miR-200 family promotes podocyte differentiation through repression of RSAD2

    PubMed Central

    Li, Zhigui; Yin, Hongqiang; Hao, Shuang; Wang, Lifeng; Gao, Jing; Tan, Xiaoyue; Yang, Zhuo

    2016-01-01

    Mature podocytes are highly differentiated cells with several characteristic phenotypic features that are involved in the glomerular filtration function. During kidney development, a series of changes of the morphological characteristics and cellular functions may happen in podocytes. The miR-200 family functions in various biological and pathological processes. But the underlying molecular mechanisms of miR-200 family that functions in podocyte differentiation remain poorly understood. Herein is shown that miR-200a, miR-200b and miR-429 are significantly upregulated during the differentiation of podocytes, with highest upregulation of miR-200a. In these cells, restraint of miR-200 family by RNA interference assay revealed a prominent inhibition of cell differentiation. More intriguingly, miR-200 family directly inhibited the radical S-adenosyl methionine domain-containing protein 2 (RASD2) expression. Moreover, further upregulation of RSAD2 combining with restraint of miR-200 family revealed a promotion of podocyte dedifferentiation and proliferation. In addition, the expression of RSAD2 is consistent with that of in vitro podocyte differentiation in prenatal and postnatal mouse kidney, and significantly down-regulated during the kidney development. Together, these findings indicate that miR-200 family may potentially promote podocyte differentiation through repression of RSAD2 expression. Our data also demonstrate a novel role of the antiviral protein RSAD2 as a regulator in cell differentiation. PMID:27251424

  7. DiffNet: automatic differential functional summarization of dE-MAP networks.

    PubMed

    Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes

    2014-10-01

    The study of genetic interaction networks that respond to changing conditions is an emerging research problem. Recently, Bandyopadhyay et al. (2010) proposed a technique to construct a differential network (dE-MAPnetwork) from two static gene interaction networks in order to map the interaction differences between them under environment or condition change (e.g., DNA-damaging agent). This differential network is then manually analyzed to conclude that DNA repair is differentially effected by the condition change. Unfortunately, manual construction of differential functional summary from a dE-MAP network that summarizes all pertinent functional responses is time-consuming, laborious and error-prone, impeding large-scale analysis on it. To this end, we propose DiffNet, a novel data-driven algorithm that leverages Gene Ontology (go) annotations to automatically summarize a dE-MAP network to obtain a high-level map of functional responses due to condition change. We tested DiffNet on the dynamic interaction networks following MMS treatment and demonstrated the superiority of our approach in generating differential functional summaries compared to state-of-the-art graph clustering methods. We studied the effects of parameters in DiffNet in controlling the quality of the summary. We also performed a case study that illustrates its utility. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A.

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to completemore » lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.« less

  9. Evidence of correlated evolution and adaptive differentiation of stem and leaf functional traits in the herbaceous genus, Helianthus.

    PubMed

    Pilote, Alex J; Donovan, Lisa A

    2016-12-01

    Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.

  10. Role of Nitric Oxide Signaling in Endothelial Differentiation of Embryonic Stem Cells

    PubMed Central

    Huang, Ngan F.; Fleissner, Felix; Sun, John

    2010-01-01

    Signaling pathways that govern embryonic stem cell (ESCs) differentiation are not well characterized. Nitric oxide (NO) is a potent vasodilator that modulates other signaling pathways in part by activating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP). Because of its importance in endothelial cell (EC) growth in the adult, we hypothesized that NO may play a critical role in EC development. Accordingly, we assessed the role of NO in ESC differentiation into ECs. Murine ESCs differentiated in the presence of NO synthase (NOS) inhibitor NG-nitroarginine methyl ester (l-NAME) for up to 11 days were not significantly different from vehicle-treated cells in EC markers. However, by 14 days, l-NAME-treated cells manifested modest reduction in EC markers CD144, FLK1, and endothelial NOS. ESC-derived ECs generated in the presence of l-NAME exhibited reduced tube-like formation in Matrigel. To understand the discrepancy between early and late effects of l-NAME, we assessed the NOS machinery and observed low mRNA expression of NOS and sGC subunits in ESCs, compared to differentiating cells after 14 days. In response to NO donors or activation of NOS or sGC, cellular cGMP levels were undetectable in undifferentiated ESCs, at low levels on day 7, and robustly increased in day 14 cells. Production of cGMP upon NOS activation at day 14 was inhibited by l-NAME, confirming endogenous NO dependence. Our data suggest that NOS elements are present in ESCs but inactive until later stages of differentiation, during which period NOS inhibition reduces expression of EC markers and impairs angiogenic function. PMID:20064011

  11. An Introduction to Differentials Based on Hyperreal Numbers and Infinite Microscopes

    ERIC Educational Resources Information Center

    Henry, Valerie

    2010-01-01

    In this article, we propose to introduce the differential of a function through a non-classical way, lying on hyperreals and infinite microscopes. This approach is based on the developments of nonstandard analysis, wants to be more intuitive than the classical one and tries to emphasize the functional and geometric aspects of the differential. In…

  12. Control of functional differential equations to target sets in function space

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Kent, G. A.

    1971-01-01

    Optimal control of systems governed by functional differential equations of retarded and neutral type is considered. Problems with function space initial and terminal manifolds are investigated. Existence of optimal controls, regularity, and bang-bang properties are discussed. Necessary and sufficient conditions are derived, and several solved examples which illustrate the theory are presented.

  13. A Differential Evolution Algorithm Based on Nikaido-Isoda Function for Solving Nash Equilibrium in Nonlinear Continuous Games

    PubMed Central

    He, Feng; Zhang, Wei; Zhang, Guoqiang

    2016-01-01

    A differential evolution algorithm for solving Nash equilibrium in nonlinear continuous games is presented in this paper, called NIDE (Nikaido-Isoda differential evolution). At each generation, parent and child strategy profiles are compared one by one pairwisely, adapting Nikaido-Isoda function as fitness function. In practice, the NE of nonlinear game model with cubic cost function and quadratic demand function is solved, and this method could also be applied to non-concave payoff functions. Moreover, the NIDE is compared with the existing Nash Domination Evolutionary Multiplayer Optimization (NDEMO), the result showed that NIDE was significantly better than NDEMO with less iterations and shorter running time. These numerical examples suggested that the NIDE method is potentially useful. PMID:27589229

  14. A Decision Analysis Perspective on Multiple Response Robust Optimization

    DTIC Science & Technology

    2012-03-01

    the utility function in question is monotonically increasing and is twice differentiable . If γ(y) = 0, the utility function is describing risk neutral...twice differentiable , the risk aversion function with respect to a single attribute, yi, i = 1, . . . , n, is given in Equation 2.9, γUyi = − U ′′yi U...UV (V (y1, y2)) and fol- lowing the chain rule of differentiation , Matheson and Abbas [31] show that the risk aversion with respect to a single

  15. Morphological and Functional Differentiation in BE (2)-M17 Neuroblastoma Cells by Treatment with Trans-Retinoic Acid

    DTIC Science & Technology

    2013-04-18

    this report we demonstrated that a representative neuro - transmitter function is enhanced in differentiated M17 cells compared to immature cells. For...neurotoxins (e.g. botulinum neuro - toxins and tetanus toxin) has been shown to be a sensitive indicator of toxicity in neuronal models such as cultured... neuro - blastoma BE(2)-M17 cells need to be treated with RA to become differentiated into mature neurons and to ex- hibit functional neuroexocytosis

  16. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI

    PubMed Central

    Tomassy, Giulio Srubek; De Leonibus, Elvira; Jabaudon, Denis; Lodato, Simona; Alfano, Christian; Mele, Andrea; Macklis, Jeffrey D.; Studer, Michèle

    2010-01-01

    Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise. PMID:20133588

  17. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis

    PubMed Central

    Collins, Carl; Maruthi, N. M.; Jahn, Courtney E.

    2015-01-01

    A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants. PMID:26022252

  18. Characterization of immortalized human brown and white pre-adipocyte cell models from a single donor

    PubMed Central

    Andersen, Elise S.; Rasmussen, Nanna E.; Petersen, Louise I.; Pedersen, Steen B.; Richelsen, Bjørn

    2017-01-01

    Brown adipose tissue with its constituent brown adipocytes is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. The molecular control of brown adipocyte differentiation and function has been extensively studied in mice, but relatively little is known about such regulatory mechanisms in humans, which in part is due to lack of human brown adipose tissue derived cell models. Here, we used retrovirus-mediated overexpression to stably integrate human telomerase reverse transcriptase (TERT) into stromal-vascular cell fractions from deep and superficial human neck adipose tissue biopsies from the same donor. The brown and white pre-adipocyte cell models (TERT-hBA and TERT-hWA, respectively) displayed a stable proliferation rate and differentiation until at least passage 20. Mature TERT-hBA adipocytes expressed higher levels of thermogenic marker genes and displayed a higher maximal respiratory capacity than mature TERT-hWA adipocytes. TERT-hBA adipocytes were UCP1-positive and responded to β-adrenergic stimulation by activating the PKA-MKK3/6-p38 MAPK signaling module and increasing thermogenic gene expression and oxygen consumption. Mature TERT-hWA adipocytes underwent efficient rosiglitazone-induced ‘browning’, as demonstrated by strongly increased expression of UCP1 and other brown adipocyte-enriched genes. In summary, the TERT-hBA and TERT-hWA cell models represent useful tools to obtain a better understanding of the molecular control of human brown and white adipocyte differentiation and function as well as of browning of human white adipocytes. PMID:28957413

  19. SU-F-J-91: Sparing Lung Function in Treatment Planning Using Dual Energy Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapointe, A; Bahig, H; Zerouali, K

    2016-06-15

    Purpose: To propose an alternate treatment plan that minimizes the dose to the functional lung tissues. In clinical situation, the evaluation of the lung functionality is typically derived from perfusion scintigraphy. However, such technique has spatial and temporal resolutions generally inferior to those of a CT scan. Alternatively, it is possible to evaluate pulmonary function by analysing the iodine concentration determined via contrast-enhanced dual energy CT (DECT) scan. Methods: Five lung cancer patients underwent a scintigraphy and a contrast-enhanced DECT scan (SOMATOM Definition Flash, Siemens). The iodine concentration was evaluated using the two-material decomposition method to produce a functional mapmore » of the lung. The validation of the approach is realized by comparison between the differential function computed by DECT and scintigraphy. The functional map is then used to redefine the V5 (volume of the organ that received more than 5 Gy during a radiotherapy treatment) to a novel functional parameter, the V5f. The V5f, that uses a volume weighted by its function level, can assist in evaluating optimal beam entry points for a specific treatment plan. Results: The results show that the differential functions obtained by scintigraphy and DECT are in good agreement with a mean difference of 6%. In specific cases, we are able to visually correlate low iodine concentration with abnormal pulmonary lung or cancerous tumors. The comparison between V5f and V5 has shown that some entry points can be better exploited and that new ones are now accessible, 2.34 times more in average, without increasing the V5f - thus allowing easier optimization of other planning objectives. Conclusion: In addition to the high-resolution DECT images, the iodine map provides local information used to detect potential functional heterogeneities in the 3D space. We propose that this information be used to calculate new functional dose parameters such as the V5f. The presenting author, Andreanne Lapointe, received a canadian scholarship from MITACS. Part of the funding is from the compagny Siemens.« less

  20. Neocortical Temporal Lobe Epilepsy

    PubMed Central

    Bercovici, Eduard; Kumar, Balagobal Santosh; Mirsattari, Seyed M.

    2012-01-01

    Complex partial seizures (CPSs) can present with various semiologies, while mesial temporal lobe epilepsy (mTLE) is a well-recognized cause of CPS, neocortical temporal lobe epilepsy (nTLE) albeit being less common is increasingly recognized as separate disease entity. Differentiating the two remains a challenge for epileptologists as many symptoms overlap due to reciprocal connections between the neocortical and the mesial temporal regions. Various studies have attempted to correctly localize the seizure focus in nTLE as patients with this disorder may benefit from surgery. While earlier work predicted poor outcomes in this population, recent work challenges those ideas yielding good outcomes in part due to better localization using improved anatomical and functional techniques. This paper provides a comprehensive review of the diagnostic workup, particularly the application of recent advances in electroencephalography and functional brain imaging, in neocortical temporal lobe epilepsy. PMID:22953057

  1. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  2. Neurofibromatoses: part 1 - diagnosis and differential diagnosis.

    PubMed

    Rodrigues, Luiz Oswaldo Carneiro; Batista, Pollyanna Barros; Goloni-Bertollo, Eny Maria; de Souza-Costa, Danielle; Eliam, Lucas; Eliam, Miguel; Cunha, Karin Soares Gonçalves; Darrigo-Junior, Luiz Guilherme; Ferraz-Filho, José Roberto Lopes; Geller, Mauro; Gianordoli-Nascimento, Ingrid F; Madeira, Luciana Gonçalves; Malloy-Diniz, Leandro Fernandes; Mendes, Hérika Martins; de Miranda, Débora Marques; Pavarino, Erika Cristina; Baptista-Pereira, Luciana; Rezende, Nilton A; Rodrigues, Luíza de Oliveira; da Silva, Carla Menezes; de Souza, Juliana Ferreira; de Souza, Márcio Leandro Ribeiro; Stangherlin, Aline; Valadares, Eugênia Ribeiro; Vidigal, Paula Vieira Teixeira

    2014-03-01

    Neurofibromatoses (NF) are a group of genetic multiple tumor growing predisposition diseases: neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2) and schwannomatosis (SCH), which have in common the neural origin of tumors and cutaneous signs. They affect nearly 80 thousand of Brazilians. In recent years, the increased scientific knowledge on NF has allowed better clinical management and reduced complication morbidity, resulting in higher quality of life for NF patients. In most cases, neurology, psychiatry, dermatology, clinical geneticists, oncology and internal medicine specialists are able to make the differential diagnosis between NF and other diseases and to identify major NF complications. Nevertheless, due to its great variability in phenotype expression, progressive course, multiple organs involvement and unpredictable natural evolution, NF often requires the support of neurofibromatoses specialists for proper treatment and genetic counseling. This Part 1 offers step-by-step guidelines for NF differential diagnosis. Part 2 will present the NF clinical management.

  3. New bioactive motifs and their use in functionalized self-assembling peptides for NSC differentiation and neural tissue engineering

    NASA Astrophysics Data System (ADS)

    Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.

    2012-04-01

    Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications. Electronic supplementary information (ESI) available: Supporting methods and data about CD spectral analysis of SAPeptide solutions (Fig. S1), neural differentiation of murine and human NSCs (Fig. S2) on SAPeptide scaffolds, and their statistical analysis (Table S1). See DOI: 10.1039/c2nr30220a

  4. Differential expression of pancreatic protein and chemosensing receptor mRNAs in NKCC1-null intestine.

    PubMed

    Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E

    2016-02-15

    To investigate the intestinal functions of the NKCC1 Na(+)-K(+)-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors.

  5. Differential memory in the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Chen, J.

    1991-01-01

    The process of 'differential memory' in the earth's magnetotail is studied in the framework of the modified Harris magnetotail geometry. It is verified that differential memory can generate non-Maxwellian features in the modified Harris field model. The time scales and the potentially observable distribution functions associated with the process of differential memory are investigated, and it is shown that non-Maxwelllian distributions can evolve as a test particle response to distribution function boundary conditions in a Harris field magnetotail model. The non-Maxwellian features which arise from distribution function mapping have definite time scales associated with them, which are generally shorter than the earthward convection time scale but longer than the typical Alfven crossing time.

  6. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population.

    PubMed

    Zhang, Bin; Liu, Rui; Shi, Dan; Liu, Xingxia; Chen, Yuan; Dou, Xiaowei; Zhu, Xishan; Lu, Chunhua; Liang, Wei; Liao, Lianming; Zenke, Martin; Zhao, Robert C H

    2009-01-01

    Mesenchymal stem cells (MSCs), in addition to their multilineage differentiation, exert immunomodulatory effects on immune cells, even dendritic cells (DCs). However, whether they influence the destiny of full mature DCs (maDCs) remains controversial. Here we report that MSCs vigorously promote proliferation of maDCs, significantly reduce their expression of Ia, CD11c, CD80, CD86, and CD40 while increasing CD11b expression. Interestingly, though these phenotypes clearly suggest their skew to immature status, bacterial lipopolysaccharide (LPS) stimulation could not reverse this trend. Moreover, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-treated maDCs (MSC-DCs) were also observed. Furthermore we found that MSCs, partly via cell-cell contact, drive maDCs to differentiate into a novel Jagged-2-dependent regulatory DC population and escape their apoptotic fate. These results further support the role of MSCs in preventing rejection in organ transplantation and treatment of autoimmune disease.

  7. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    PubMed

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  8. Home-care workers: work conditions and occupational exclusion: a comparison between carers on early-retirement and regular pensions.

    PubMed

    Aronsson, G; Astvik, W; Thulin, A B

    1998-01-01

    The aim of the study was to identify conditions associated with occupational exclusion from home-caring. In a group of 346 home-care workers who responded to a questionnaire, there were 18 newly-retired carers on early-retirement/disability pensions, and 28 carers who had just taken regular retirement. A discriminant analysis was conducted to identify work conditions that differentiated the two groups. The results show that a combination of variables--functional impairment (pain when doing physical work), psychosomatic complaints, and nature of relationship with/attitude to clients--significantly differentiated the two groups. When the discriminant coefficients were applied to other groups--older full-time and part-time employees (n = 224), carers who had undergone job transfers, and carers on long-term sick leave--the order of groups by discriminant-point score was largely as expected. The results are discussed in relation to dilemmas, psychological demands and organizational circumstances prevailing in home-care work.

  9. Experimental characterization of novel microdiffuser elements

    NASA Astrophysics Data System (ADS)

    Ehrlich, L.; Punch, J.; Jeffers, N.; Stafford, J.

    2014-07-01

    Micropumps can play a significant role in thermal management applications, as a component of microfluidic cooling systems. For next-generation high density optical communication systems, in particular, heat flux levels are sufficiently high to require a microfluidic circuit for cooling. Valveless piezoelectrically-actuated micropumps are a particularly promising technology to be deployed for this application. These pumps exploit the asymmetric flow behaviour of microdiffusers to achieve net flow. They feature no rotating or contacting parts, which make them intrinsically reliable in comparison to micropumps with active valves. In this paper, two novel microdiffuser elements are reported and characterized. The micropumps were fabricated using a 3D Printer. Each single diffuser had a length of 1800 pm and a depth of 400 pm. An experimental characterization was conducted in which the flow rate and differential pressure were measured as a function of operating frequency. In comparison with standard diffuser, both elements showed an increase in differential pressure in the range of 40 - 280 %, but only one of the elements exhibited an improved flow rate, of about 85 %.

  10. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    PubMed

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  11. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.

    PubMed

    Koehler, Christopher L; Perkins, Guy A; Ellisman, Mark H; Jones, D Leanne

    2017-08-07

    Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles. © 2017 Koehler et al.

  12. The cell biology of lignification in higher plants

    PubMed Central

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-01-01

    Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140

  13. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila.

    PubMed

    Zmojdzian, Monika; de Joussineau, Svetlana; Da Ponte, Jean Philippe; Jagla, Krzysztof

    2018-01-17

    The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA - negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis. © 2018. Published by The Company of Biologists Ltd.

  14. Obesity-driven disruption of haematopoiesis and the bone marrow niche.

    PubMed

    Adler, Benjamin J; Kaushansky, Kenneth; Rubin, Clinton T

    2014-12-01

    Obesity markedly increases susceptibility to a range of diseases and simultaneously undermines the viability and fate selection of haematopoietic stem cells (HSCs), and thus the kinetics of leukocyte production that is critical to innate and adaptive immunity. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from the bone marrow microenvironment, it is not surprising that conditions that disturb bone marrow structure inevitably disrupt both the numbers and lineage-fates of these key blood cell progenitors. In addition to the increased adipose burden in visceral and subcutaneous compartments, obesity causes a marked increase in the size and number of adipocytes encroaching into the bone marrow space, almost certainly disturbing HSC interactions with neighbouring cells, which include osteoblasts, osteoclasts, mesenchymal cells and endothelial cells. As the global obesity pandemic grows, the short-term and long-term consequences of increased bone marrow adiposity on HSC lineage selection and immune function remain uncertain. This Review discusses the differentiation and function of haematopoietic cell populations, the principal physicochemical components of the bone marrow niche, and how this environment influences HSCs and haematopoiesis in general. The effect of adipocytes and adiposity on HSC and progenitor cell populations is also discussed, with the goal of understanding how obesity might compromise the core haematopoietic system.

  15. Rational Modular RNA Engineering Based on In Vivo Profiling of Structural Accessibility.

    PubMed

    Leistra, Abigail N; Amador, Paul; Buvanendiran, Aishwarya; Moon-Walker, Alex; Contreras, Lydia M

    2017-12-15

    Bacterial small RNAs (sRNAs) have been established as powerful parts for controlling gene expression. However, development and application of engineered sRNAs has primarily focused on regulating novel synthetic targets. In this work, we demonstrate a rational modular RNA engineering approach that uses in vivo structural accessibility measurements to tune the regulatory activity of a multisubstrate sRNA for differential control of its native target network. Employing the CsrB global sRNA regulator as a model system, we use published in vivo structural accessibility data to infer the contribution of its local structures (substructures) to function and select a subset for engineering. We then modularly recombine the selected substructures, differentially representing those of presumed high or low functional contribution, to build a library of 21 CsrB variants. Using fluorescent translational reporter assays, we demonstrate that the CsrB variants achieve a 5-fold gradient of control of well-characterized Csr network targets. Interestingly, results suggest that less conserved local structures within long, multisubstrate sRNAs may represent better targets for rational engineering than their well-conserved counterparts. Lastly, mapping the impact of sRNA variants on a signature Csr network phenotype indicates the potential of this approach for tuning the activity of global sRNA regulators in the context of metabolic engineering applications.

  16. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

    NASA Astrophysics Data System (ADS)

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-02-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development.

  17. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform.

    PubMed

    Denning, Chris; Borgdorff, Viola; Crutchley, James; Firth, Karl S A; George, Vinoj; Kalra, Spandan; Kondrashov, Alexander; Hoang, Minh Duc; Mosqueira, Diogo; Patel, Asha; Prodanov, Ljupcho; Rajamohan, Divya; Skarnes, William C; Smith, James G W; Young, Lorraine E

    2016-07-01

    Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. Nevertheless, predictive cardiotoxicity using hPSC-CMs contrasts from failure to almost total success. Since this likely relates to cell immaturity, efforts are underway to use biochemical and biophysical cues to improve many of the ~30 structural and functional properties of hPSC-CMs towards those seen in adult CMs. Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. minepath.org: a free interactive pathway analysis web server.

    PubMed

    Koumakis, Lefteris; Roussos, Panos; Potamias, George

    2017-07-03

    ( www.minepath.org ) is a web-based platform that elaborates on, and radically extends the identification of differentially expressed sub-paths in molecular pathways. Besides the network topology, the underlying MinePath algorithmic processes exploit exact gene-gene molecular relationships (e.g. activation, inhibition) and are able to identify differentially expressed pathway parts. Each pathway is decomposed into all its constituent sub-paths, which in turn are matched with corresponding gene expression profiles. The highly ranked, and phenotype inclined sub-paths are kept. Apart from the pathway analysis algorithm, the fundamental innovation of the MinePath web-server concerns its advanced visualization and interactive capabilities. To our knowledge, this is the first pathway analysis server that introduces and offers visualization of the underlying and active pathway regulatory mechanisms instead of genes. Other features include live interaction, immediate visualization of functional sub-paths per phenotype and dynamic linked annotations for the engaged genes and molecular relations. The user can download not only the results but also the corresponding web viewer framework of the performed analysis. This feature provides the flexibility to immediately publish results without publishing source/expression data, and get all the functionality of a web based pathway analysis viewer. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Integrated Microfluidic Lectin Barcode Platform for High-Performance Focused Glycomic Profiling

    PubMed Central

    Shang, Yuqin; Zeng, Yun; Zeng, Yong

    2016-01-01

    Protein glycosylation is one of the key processes that play essential roles in biological functions and dysfunctions. However, progress in glycomics has considerably lagged behind genomics and proteomics, due in part to the enormous challenges in analysis of glycans. Here we present a new integrated and automated microfluidic lectin barcode platform to substantially improve the performance of lectin array for focused glycomic profiling. The chip design and flow control were optimized to promote the lectin-glycan binding kinetics and speed of lectin microarray. Moreover, we established an on-chip lectin assay which employs a very simple blocking method to effectively suppress the undesired background due to lectin binding of antibodies. Using this technology, we demonstrated focused differential profiling of tissue-specific glycosylation changes of a biomarker, CA125 protein purified from ovarian cancer cell line and different tissues from ovarian cancer patients in a fast, reproducible, and high-throughput fashion. Highly sensitive CA125 detection was also demonstrated with a detection limit much lower than the clinical cutoff value for cancer diagnosis. This microfluidic platform holds the potential to integrate with sample preparation functions to construct a fully integrated “sample-to-answer” microsystem for focused differential glycomic analysis. Thus, our technology should present a powerful tool in support of rapid advance in glycobiology and glyco-biomarker development. PMID:26831207

  20. The Differential Diagnosis of Functional Symptoms in Adolescence.

    ERIC Educational Resources Information Center

    Silber, Thomas J.

    1982-01-01

    Functional complaints constitute the major reason why adolescents visit the physician's office. These complaints may coexist with organic illness of minor or major significance. Proposes a definition of functional disorders, sets forth a classification of the differential diagnosis of these disorders and suggests techniques for their management.…

  1. Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise

    NASA Astrophysics Data System (ADS)

    Aigrain, S.; Llama, J.; Ceillier, T.; Chagas, M. L. das; Davenport, J. R. A.; García, R. A.; Hay, K. L.; Lanza, A. F.; McQuillan, A.; Mazeh, T.; de Medeiros, J. R.; Nielsen, M. B.; Reinhold, T.

    2015-07-01

    We present the results of a blind exercise to test the recoverability of stellar rotation and differential rotation in Kepler light curves. The simulated light curves lasted 1000 d and included activity cycles, Sun-like butterfly patterns, differential rotation and spot evolution. The range of rotation periods, activity levels and spot lifetime were chosen to be representative of the Kepler data of solar-like stars. Of the 1000 simulated light curves, 770 were injected into actual quiescent Kepler light curves to simulate Kepler noise. The test also included five 1000-d segments of the Sun's total irradiance variations at different points in the Sun's activity cycle. Five teams took part in the blind exercise, plus two teams who participated after the content of the light curves had been released. The methods used included Lomb-Scargle periodograms and variants thereof, autocorrelation function and wavelet-based analyses, plus spot modelling to search for differential rotation. The results show that the `overall' period is well recovered for stars exhibiting low and moderate activity levels. Most teams reported values within 10 per cent of the true value in 70 per cent of the cases. There was, however, little correlation between the reported and simulated values of the differential rotation shear, suggesting that differential rotation studies based on full-disc light curves alone need to be treated with caution, at least for solar-type stars. The simulated light curves and associated parameters are available online for the community to test their own methods.

  2. A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues.

    PubMed

    Lyons, Shawn M; Cunningham, Clark H; Welch, Joshua D; Groh, Beezly; Guo, Andrew Y; Wei, Bruce; Whitfield, Michael L; Xiong, Yue; Marzluff, William F

    2016-11-02

    Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

    NASA Astrophysics Data System (ADS)

    Riley, K. F.; Hobson, M. P.

    2006-03-01

    Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.

  4. Differential Distractor Functioning as a Method for Explaining DIF: The Case of a National Admissions Test in Saudi Arabia

    ERIC Educational Resources Information Center

    Tsaousis, Ioannis; Sideridis, Georgios; Al-Saawi, Fahad

    2018-01-01

    The aim of the present study was to examine Differential Distractor Functioning (DDF) as a means of improving the quality of a measure through understanding biased responses across groups. A DDF analysis could shed light on the potential sources of construct-irrelevant variance by examining whether the differential selection of incorrect choices…

  5. MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts

    PubMed Central

    Zeng, Huan-Chang; Bae, Yangjin; Dawson, Brian C.; Chen, Yuqing; Bertin, Terry; Munivez, Elda; Campeau, Philippe M.; Tao, Jianning; Chen, Rui; Lee, Brendan H.

    2017-01-01

    Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promotes osteocyte differentiation. Osteoblast-specific miR-23a cluster gain-of-function mice have low bone mass associated with decreased osteoblast but increased osteocyte numbers. By contrast, loss-of-function transgenic mice overexpressing microRNA decoys for either miR-23a or miR-27a, but not miR24-2, show decreased osteocyte numbers. Moreover, RNA-sequencing analysis shows altered transforming growth factor-β (TGF-β) signalling. Prdm16, a negative regulator of the TGF-β pathway, is directly repressed by miR-27a with concomitant alteration of sclerostin expression, and pharmacological inhibition of TGF-β rescues the phenotypes observed in the gain-of-function transgenic mice. Taken together, the miR-23a cluster regulates osteocyte differentiation by modulating the TGF-β signalling pathway through targeting of Prdm16. PMID:28397831

  6. Control of functional differential equations with function space boundary conditions.

    NASA Technical Reports Server (NTRS)

    Banks, H. T.

    1972-01-01

    The results of various authors dealing with problems involving functional differential equations with terminal conditions in function space are reviewed. The review includes not only very recent results, but also some little known results of Soviet mathematicians prior to 1970. Particular attention is given to results concerning controllability, existence of optimal controls, and necessary and sufficient conditions for optimality.

  7. Planning and problem-solving training for patients with schizophrenia: a randomized controlled trial

    PubMed Central

    2011-01-01

    Background The purpose of this study was to assess whether planning and problem-solving training is more effective in improving functional capacity in patients with schizophrenia than a training program addressing basic cognitive functions. Methods Eighty-nine patients with schizophrenia were randomly assigned either to a computer assisted training of planning and problem-solving or a training of basic cognition. Outcome variables included planning and problem-solving ability as well as functional capacity, which represents a proxy measure for functional outcome. Results Planning and problem-solving training improved one measure of planning and problem-solving more strongly than basic cognition training, while two other measures of planning did not show a differential effect. Participants in both groups improved over time in functional capacity. There was no differential effect of the interventions on functional capacity. Conclusion A differential effect of targeting specific cognitive functions on functional capacity could not be established. Small differences on cognitive outcome variables indicate a potential for differential effects. This will have to be addressed in further research including longer treatment programs and other settings. Trial registration ClinicalTrials.gov NCT00507988 PMID:21527028

  8. Do people with and without medical conditions respond similarly to the short health anxiety inventory? An assessment of differential item functioning using item response theory.

    PubMed

    LeBouthillier, Daniel M; Thibodeau, Michel A; Alberts, Nicole M; Hadjistavropoulos, Heather D; Asmundson, Gordon J G

    2015-04-01

    Individuals with medical conditions are likely to have elevated health anxiety; however, research has not demonstrated how medical status impacts response patterns on health anxiety measures. Measurement bias can undermine the validity of a questionnaire by overestimating or underestimating scores in groups of individuals. We investigated whether the Short Health Anxiety Inventory (SHAI), a widely-used measure of health anxiety, exhibits medical condition-based bias on item and subscale levels, and whether the SHAI subscales adequately assess the health anxiety continuum. Data were from 963 individuals with diabetes, breast cancer, or multiple sclerosis, and 372 healthy individuals. Mantel-Haenszel tests and item characteristic curves were used to classify the severity of item-level differential item functioning in all three medical groups compared to the healthy group. Test characteristic curves were used to assess scale-level differential item functioning and whether the SHAI subscales adequately assess the health anxiety continuum. Nine out of 14 items exhibited differential item functioning. Two items exhibited differential item functioning in all medical groups compared to the healthy group. In both Thought Intrusion and Fear of Illness subscales, differential item functioning was associated with mildly deflated scores in medical groups with very high levels of the latent traits. Fear of Illness items poorly discriminated between individuals with low and very low levels of the latent trait. While individuals with medical conditions may respond differentially to some items, clinicians and researchers can confidently use the SHAI with a variety of medical populations without concern of significant bias. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging.

    PubMed

    Bouts, Mark J R J; Möller, Christiane; Hafkemeijer, Anne; van Swieten, John C; Dopper, Elise; van der Flier, Wiesje M; Vrenken, Hugo; Wink, Alle Meije; Pijnenburg, Yolande A L; Scheltens, Philip; Barkhof, Frederik; Schouten, Tijn M; de Vos, Frank; Feis, Rogier A; van der Grond, Jeroen; de Rooij, Mark; Rombouts, Serge A R B

    2018-01-01

    Overlapping clinical symptoms often complicate differential diagnosis between patients with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific structural and functional differences that aid in differentiating AD from bvFTD patients. However, the benefit of combining structural and functional connectivity measures to-on a subject-basis-differentiate these dementia-types is not yet known. Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected and used to calculate measures of structural and functional tissue status. All measures were used separately or selectively combined as predictors for training an elastic net regression classifier. Each classifier's ability to accurately distinguish dementia-types was quantified by calculating the area under the receiver operating characteristic curves (AUC). Highest AUC values for AD and bvFTD discrimination were obtained when mean diffusivity, full correlations between rs-fMRI-derived independent components, and fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for control and bvFTD classifications. This, however, was not observed for control and AD differentiations. Classifications with GMD (0.940) and a GMD and DTI combination (0.941) resulted in similar AUC values (p = 0.41). Combining functional and structural connectivity measures improve dementia-type differentiations and may contribute to more accurate and substantiated differential diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis may benefit from also including DTI and rs-fMRI.

  10. The LIM protein LIMD1 influences osteoblast differentiation and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luderer, Hilary F.; Bai Shuting; Longmore, Gregory D.

    2008-09-10

    The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1{sup -/-} calvarial osteoblasts display increased mineralization and accelerated differentiation. Whilemore » no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1{sup -/-} mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear {beta}-catenin staining in differentiating Limd1{sup -/-} calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.« less

  11. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications.

    PubMed

    Coverdale, Benjamin D M; Gough, Julie E; Sampson, William W; Hoyland, Judith A

    2017-10-01

    We elucidate the effects of incorporating surfactants into electrospun poly (ɛ-caprolactone) (PCL) scaffolds on network homogeneity, cellular adherence and osteogenic differentiation. Lecithin was added with a range of concentrations to PCL solutions, which were electrospun to yield functionalized scaffolds. Addition of lecithin yielded a dose-dependent reduction in scaffold hydrophobicity, whilst reducing fiber width and hence increasing specific surface area. These changes in scaffold morphology were associated with increased cellular attachment of Saos-2 osteoblasts 3-h postseeding. Furthermore, cells on scaffolds showed comparable proliferation over 14 days of incubation to TCP controls. Through model-based interpretation of image analysis combined with gravimetric estimates of porosity, lecithin is shown to reduce scaffold porosity and mean pore size. Additionally, lecithin incorporation is found to reduce fiber curvature, resulting in increased scaffold specific elastic modulus. Low concentrations of lecithin were found to induce upregulation of several genes associated with osteogenesis in primary mesenchymal stem cells. The results demonstrate that functionalization of electrospun PCL scaffolds with lecithin can increase the biocompatibility and regenerative potential of these networks for bone tissue engineering applications. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2865-2874, 2017. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.

  12. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed Central

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-01-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver. PMID:9343392

  13. Liver-enriched transcription factors uncoupled from expression of hepatic functions in hepatoma cell lines.

    PubMed

    Chaya, D; Fougère-Deschatrette, C; Weiss, M C

    1997-11-01

    Among the liver-enriched transcription factors identified to date, only expression of hepatocyte nuclear factor 4 (HNF4) and hepatocyte nuclear factor 1 (HNF1) is in strict correlation with hepatic differentiation in cultured rat hepatoma cells. Indeed, differentiated hepatoma cells that stably express an extensive set of adult hepatic functions express liver-enriched transcription factors, while dedifferentiated cells that have lost expression of all these hepatic functions no longer express HNF4 and HNF1. We describe a new heritable phenotype, designated as uncoupled, in which there is a spontaneous dissociation between the expression of these transcription factors and that of the hepatic functions. Cells presenting this phenotype, isolated from differentiated hepatoma cells, cease to accumulate all transcripts coding for hepatic functions but nevertheless maintain expression of HNF4 and HNF1. Transitory transfection experiments indicate that these two factors present in these cells have transcriptional activity similar to that of differentiated hepatoma cells. Characterization of the appropriate intertypic cell hybrids demonstrates that this new phenotype is recessive to the dedifferentiated state and fails to be complemented by differentiated cells. These results indicate the existence of mechanisms that inhibit transcription of genes coding for hepatocyte functions in spite of the presence of functional HNF4 and HNF1. Cells of the uncoupled phenotype present certain properties of oval cells described for pathological states of the liver.

  14. Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 1: constitutive equations

    NASA Astrophysics Data System (ADS)

    Kari, Leif

    2017-09-01

    The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.

  15. Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis1

    PubMed Central

    Zhang, Qunzhou; Shi, Shihong; Liu, Yi; Uyanne, Jettie; Shi, Yufang; Shi, Songtao; Le, Anh D.

    2010-01-01

    Aside from the well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells exhibit both immunomodulatory and anti-inflammatory roles in several experimental autoimmune and inflammatory diseases. In this study, we isolated a new population of stem cells from human gingiva, a tissue source easily accessible from the oral cavity, namely, gingiva-derived mesenchymal stem cells (GMSCs), which exhibited clonogenicity, self-renewal, and multipotent differentiation capacities. Most importantly, GMSCs were capable of immunomodulatory functions, specifically suppressed peripheral blood lymphocyte proliferation, induced expression of a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory cytokine, IFN-γ. Cell-based therapy using systemic infusion of GMSCs in experimental colitis significantly ameliorated both clinical and histopathological severity of the colonic inflammation, restored the injured gastrointestinal mucosal tissues, reversed diarrhea and weight loss, and suppressed the overall disease activity in mice. The therapeutic effect of GMSCs was mediated, in part, by the suppression of inflammatory infiltrates and inflammatory cytokines/mediators and the increased infiltration of regulatory T cells and the expression of anti-inflammatory cytokine IL-10 at the colonic sites. Taken together, GMSCs can function as an immunomodulatory and anti-inflammatory component of the immune system in vivo and is a promising cell source for cell-based treatment in experimental inflammatory diseases. PMID:19923445

  16. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine.

    PubMed

    Samsonraj, Rebekah M; Raghunath, Michael; Nurcombe, Victor; Hui, James H; van Wijnen, Andre J; Cool, Simon M

    2017-12-01

    Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  17. Modelling neural correlates of working memory: A coordinate-based meta-analysis

    PubMed Central

    Rottschy, C.; Langner, R.; Dogan, I.; Reetz, K.; Laird, A.R.; Schulz, J.B.; Fox, P.T.; Eickhoff, S.B.

    2011-01-01

    Working memory subsumes the capability to memorize, retrieve and utilize information for a limited period of time which is essential to many human behaviours. Moreover, impairments of working memory functions may be found in nearly all neurological and psychiatric diseases. To examine what brain regions are commonly and differently active during various working memory tasks, we performed a coordinate-based meta-analysis over 189 fMRI experiments on healthy subjects. The main effect yielded a widespread bilateral fronto-parietal network. Further meta-analyses revealed that several regions were sensitive to specific task components, e.g. Broca’s region was selectively active during verbal tasks or ventral and dorsal premotor cortex were preferentially involved in memory for object identity and location, respectively. Moreover, the lateral prefrontal cortex showed a division in a rostral and a caudal part based on differential involvement in task-set and load effects. Nevertheless, a consistent but more restricted “core” network emerged from conjunctions across analyses of specific task designs and contrasts. This “core” network appears to comprise the quintessence of regions, which are necessary during working memory tasks. It may be argued that the core regions form a distributed executive network with potentially generalized functions for focusing on competing representations in the brain. The present study demonstrates that meta-analyses are a powerful tool to integrate the data of functional imaging studies on a (broader) psychological construct, probing the consistency across various paradigms as well as the differential effects of different experimental implementations. PMID:22178808

  18. Invariant functionals in higher-spin theory

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. A.

    2017-03-01

    A new construction for gauge invariant functionals in the nonlinear higher-spin theory is proposed. Being supported by differential forms closed by virtue of the higher-spin equations, invariant functionals are associated with central elements of the higher-spin algebra. In the on-shell AdS4 higher-spin theory we identify a four-form conjectured to represent the generating functional for 3d boundary correlators and a two-form argued to support charges for black hole solutions. Two actions for 3d boundary conformal higher-spin theory are associated with the two parity-invariant higher-spin models in AdS4. The peculiarity of the spinorial formulation of the on-shell AdS3 higher-spin theory, where the invariant functional is supported by a two-form, is conjectured to be related to the holomorphic factorization at the boundary. The nonlinear part of the star-product function F* (B (x)) in the higher-spin equations is argued to lead to divergencies in the boundary limit representing singularities at coinciding boundary space-time points of the factors of B (x), which can be regularized by the point splitting. An interpretation of the RG flow in terms of proposed construction is briefly discussed.

  19. Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; He, Fei; Ma, Chris Y. T.

    In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resiliencemore » problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.« less

  20. The plasma membrane: Penultimate regulator of ADAM sheddase function.

    PubMed

    Reiss, Karina; Bhakdi, Sucharit

    2017-11-01

    ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. Membrane events that could contribute to regulation of ADAM-function are summarized. Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017. Published by Elsevier B.V.

  1. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    NASA Technical Reports Server (NTRS)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  2. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment.

    PubMed

    Phi, Lan Thi Hanh; Sari, Ita Novita; Yang, Ying-Gui; Lee, Sang-Hyun; Jun, Nayoung; Kim, Kwang Seock; Lee, Yun Kyung; Kwon, Hyog Young

    2018-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.

  3. Dynamic niches in the origination and differentiation of haematopoietic stem cells

    PubMed Central

    Wang, Leo D.; Wagers, Amy J.

    2014-01-01

    Haematopoietic stem cells (HSCs) are multipotent, self-renewing progenitors that generate all mature blood cells. HSC function is tightly controlled to maintain haematopoietic homeostasis, and this regulation relies on specialized cells and factors that constitute the haematopoietic ‘niche’, or microenvironment. Recent discoveries, aided in part by technological advances in in vivo imaging, have engendered a new appreciation for the dynamic nature of the niche, identifying novel cellular and acellular niche components and uncovering fluctuations in the relative importance of these components over time. These new insights significantly improve our understanding of haematopoiesis and raise fundamental questions about what truly constitutes a stem cell niche. PMID:21886187

  4. Cryogenic expansion joint for large superconducting magnet structures

    DOEpatents

    Brown, Robert L.

    1978-01-01

    An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

  5. Performance of DPSK with convolutional encoding on time-varying fading channels

    NASA Technical Reports Server (NTRS)

    Mui, S. Y.; Modestino, J. W.

    1977-01-01

    The bit error probability performance of a differentially-coherent phase-shift keyed (DPSK) modem with convolutional encoding and Viterbi decoding on time-varying fading channels is examined. Both the Rician and the lognormal channels are considered. Bit error probability upper bounds on fully-interleaved (zero-memory) fading channels are derived and substantiated by computer simulation. It is shown that the resulting coded system performance is a relatively insensitive function of the choice of channel model provided that the channel parameters are related according to the correspondence developed as part of this paper. Finally, a comparison of DPSK with a number of other modulation strategies is provided.

  6. Lump solutions to nonlinear partial differential equations via Hirota bilinear forms

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Xiu; Zhou, Yuan

    2018-02-01

    Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u = 2(ln ⁡ f) x and u = 2(ln ⁡ f) xx, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.

  7. Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    1992-10-01

    The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.

  8. On the local fractional derivative of everywhere non-differentiable continuous functions on intervals

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-shi

    2017-01-01

    We first prove that for a continuous function f(x) defined on an open interval, the Kolvankar-Gangal's (or equivalently Chen-Yan-Zhang's) local fractional derivative f(α)(x) is not continuous, and then prove that it is impossible that the KG derivative f(α)(x) exists everywhere on the interval and satisfies f(α)(x) ≠ 0 in the same time. In addition, we give a criterion of the nonexistence of the local fractional derivative of everywhere non-differentiable continuous functions. Furthermore, we construct two simple nowhere differentiable continuous functions on (0, 1) and prove that they have no the local fractional derivatives everywhere.

  9. Closed-channel culture system for efficient and reproducible differentiation of human pluripotent stem cells into islet cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Kunio; Konagaya, Shuhei; Turner, Alexander

    Human pluripotent stem cells (hPSCs) are thought to be a promising cell-source solution for regenerative medicine due to their indefinite proliferative potential and ability to differentiate to functional somatic cells. However, issues remain with regard to achieving reproducible differentiation of cells with the required functionality for realizing human transplantation therapies and with regard to reducing the potential for bacterial or fungal contamination. To meet these needs, we have developed a closed-channel culture device and corresponding control system. Uniformly-sized spheroidal hPSCs aggregates were formed inside wells within a closed-channel and maintained continuously throughout the culture process. Functional islet-like endocrine cell aggregatesmore » were reproducibly induced following a 30-day differentiation protocol. Our system shows an easily scalable, novel method for inducing PSC differentiation with both purity and functionality. - Highlights: • A simple, closed-channel-based, semi-automatic culture system is proposed. • Uniform cell aggregate formation and culture is realized in microwell structure. • Functional islet cells are successfully induced following 30-plus-day protocol. • System requires no daily medium replacement and reduces contamination risk.« less

  10. High Efficient Differentiation of Functional Hepatocytes from Porcine Induced Pluripotent Stem Cells

    PubMed Central

    Ao, Ying; Mich-Basso, Jocelyn Danielle; Lin, Bo; Yang, Lei

    2014-01-01

    Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs) by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM), and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP) 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications. PMID:24949734

  11. Identification of CD147 (basigin) as a mediator of trophoblast functions.

    PubMed

    Lee, Cheuk-Lun; Lam, Maggie P Y; Lam, Kevin K W; Leung, Carmen O N; Pang, Ronald T K; Chu, Ivan K; Wan, Tiffany H L; Chai, Joyce; Yeung, William S B; Chiu, Philip C N

    2013-11-01

    Does CD147 regulate trophoblast functions in vitro? CD147 exists as a receptor complex on human trophoblast and regulates the implantation, invasion and differentiation of trophoblast. CD147 is a membrane protein implicated in a variety of physiological and pathological conditions due to its regulation of cell-cell recognition, cell differentiation and tissue remodeling. Reduced placental CD147 expression is associated with pre-eclampsia, but the mechanism of actions remains unclear. A loss of function approach or functional blocking antibody was used to study the function of CD147 in primary human cytotrophoblasts isolated from first trimester termination of pregnancy and/or in the BeWo cell line, which possesses characteristics of human cytotrophoblasts. CD147 expression was analyzed by immunofluorescence staining and western blotting. CD147-associated protein complex on plasma membrane were separated by blue native gel electrophoresis and identified by reversed-phase liquid chromatography coupled with quadrupole time-of-flight hybrid mass spectrometer. Cell proliferation and invasion were determined by fluorometric cell proliferation assays and transwell invasion assays, respectively. Matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) activities were measured by gelatin gel zymography and uPA assay kits, respectively. Cell migration was determined by wound-healing assays. Cell fusion was analyzed by immunocytochemistry staining of E-cadherin and 4',6-diamidino-2-phenylindole. The transcripts of matrix proteinases and trophoblast lineage markers were measured by quantitative PCR. Extracellular signal-regulated kinase (ERK) activation was analyzed by western blot using antibodies against ERKs. CD147 exists as protein complexes on the plasma membrane of primary human cytotrophoblasts and BeWo cells. Several known CD147-interacting partners, including integrin β1 and monocarboxylate transporter-1, were identified. Suppression of CD147 by siRNA significantly (P < 0.05) reduced trophoblast-endometrial cell interaction, cell invasion, syncytialization, differentiation and ERK activation of BeWo cells. Consistently, anti-CD147 functional blocking antibody suppressed the invasiveness of primary human cytotrophoblasts. The reduced invasiveness was probably due to the restrained (P < 0.05) enzyme activities of MMP-2, MMP-9 and uPA. Most of the above findings are based on BeWo cell lines. These results need to be confirmed with human first trimester primary cytotrophoblast. This is the first study on the role of CD147 in trophoblast function. Further investigation on the function of CD147 and its associated protein complexes will enhance our understanding on human placentation. This work was supported in part by the University of Hong Kong Grant 201011159200. The authors have no competing interests to declare.

  12. Human Neural Stem Cell Transplantation Ameliorates Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Acharya, Munjal M.; Christie, Lori-Ann; Lan, Mary L.; Giedzinski, Erich; Fike, John R.; Rosi, Susanna; Limoli, Charles L.

    2012-01-01

    Cranial radiotherapy induces progressive and debilitating declines in cognition that may, in part, be caused by the depletion of neural stem cells. The potential of using stem cell replacement as a strategy to combat radiation-induced cognitive decline was addressed by irradiating athymic nude rats followed 2 days later by intrahippocampal transplantation with human neural stem cells (hNSC). Measures of cognitive performance, hNSC survival, and phenotypic fate were assessed at 1 and 4 months after irradiation. Irradiated animals engrafted with hNSCs showed significantly less decline in cognitive function than irradiated, sham-engrafted animals and acted indistinguishably from unirradiated controls. Unbiased stereology revealed that 23% and 12% of the engrafted cells survived 1 and 4 months after transplantation, respectively. Engrafted cells migrated extensively, differentiated along glial and neuronal lineages, and expressed the activity-regulated cytoskeleton-associated protein (Arc), suggesting their capability to functionally integrate into the hippocampus. These data show that hNSCs afford a promising strategy for functionally restoring cognition in irradiated animals. PMID:21757460

  13. Excitations in a spin-polarized two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Kreil, Dominik; Hobbiger, Raphael; Drachta, Jürgen T.; Böhm, Helga M.

    2015-11-01

    A remarkably long-lived spin plasmon may exist in two-dimensional electron liquids with imbalanced spin-up and spin-down population. The predictions for this interesting mode by Agarwal et al. [Phys. Rev. B 90, 155409 (2014), 10.1103/PhysRevB.90.155409] are based on the random phase approximation. Here, we show how to account for spin-dependent correlations from known ground-state pair correlation functions and study the consequences on the various spin-dependent longitudinal response functions. The spin-plasmon dispersion relation and its critical wave vector for Landau damping by minority spins turn out to be significantly lower. We further demonstrate that spin-dependent effective interactions imply a rich structure in the excitation spectrum of the partially spin-polarized system. Most notably, we find a "magnetic antiresonance," where the imaginary part of both, the spin-spin as well as the density-spin response function vanish. The resulting minimum in the double-differential cross section is awaiting experimental confirmation.

  14. The evolution of floral biology in basal angiosperms

    PubMed Central

    Endress, Peter K.

    2010-01-01

    In basal angiosperms (including ANITA grade, magnoliids, Choranthaceae, Ceratophyllaceae) almost all bisexual flowers are dichogamous (with male and female functions more or less separated in time), and nearly 100 per cent of those are protogynous (with female function before male function). Movements of floral parts and differential early abscission of stamens in the male phase are variously associated with protogyny. Evolution of synchronous dichogamy based on the day/night rhythm and anthesis lasting 2 days is common. In a few clades in Magnoliales and Laurales heterodichogamy has also evolved. Beetles, flies and thrips are the major pollinators, with various degrees of specialization up to large beetles and special flies in some large-flowered Nymphaeaceae, Magnoliaceae, Annonaceae and Aristolochiaceae. Unusual structural specializations are involved in floral biological adaptations (calyptras, inner staminodes, synandria and food bodies, and secretory structures on tepals, stamens and staminodes). Numerous specializations that are common in monocots and eudicots are absent in basal angiosperms. Several families are poorly known in their floral biology. PMID:20047868

  15. A defect stream function, law of the wall/wake method for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Barnwell, Richard W.; Dejarnette, Fred R.; Wahls, Richard A.

    1989-01-01

    The application of the defect stream function to the solution of the two-dimensional, compressible boundary layer is examined. A law of the wall/law of the wake formulation for the inner part of the boundary layer is presented which greatly simplifies the computational task near the wall and eliminates the need for an eddy viscosity model in this region. The eddy viscosity model in the outer region is arbitrary. The modified Crocco temperature-velocity relationship is used as a simplification of the differential energy equation. Formulations for both equilibrium and nonequilibrium boundary layers are presented including a constrained zero-order form which significantly reduces the computational workload while retaining the significant physics of the flow. A formulation for primitive variables is also presented. Results are given for the constrained zero-order and second-order equilibrium formulations and are compared with experimental data. A compressible wake function valid near the wall has been developed from the present results.

  16. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  17. Nash equilibrium in differential games and the construction of the programmed iteration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Averboukh, Yurii V

    This work is devoted to the study of nonzero-sum differential games. The set of payoffs in a situation of Nash equilibrium is examined. It is shown that the set of payoffs in a situation of Nash equilibrium coincides with the set of values of consistent functions which are fixed points of the program absorption operator. A condition for functions to be consistent is given in terms of the weak invariance of the graph of the functions under a certain differential inclusion. Bibliography: 18 titles.

  18. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations.

    PubMed

    Banks, H Thomas; Robbins, Danielle; Sutton, Karyn L

    2013-01-01

    In this paper we present new results for differentiability of delay systems with respect to initial conditions and delays. After motivating our results with a wide range of delay examples arising in biology applications, we further note the need for sensitivity functions (both traditional and generalized sensitivity functions), especially in control and estimation problems. We summarize general existence and uniqueness results before turning to our main results on differentiation with respect to delays, etc. Finally we discuss use of our results in the context of estimation problems.

  19. Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: Synthesis, characterization, and myoblast proliferation and differentiation.

    PubMed

    Baheiraei, Nafiseh; Gharibi, Reza; Yeganeh, Hamid; Miragoli, Michele; Salvarani, Nicolò; Di Pasquale, Elisa; Condorelli, Gianluigi

    2016-03-01

    Tissue-engineered cardiac patch aims at regenerating an infarcted heart by improving cardiac function and providing mechanical support to the diseased myocardium. In order to take advantages of electroactivity, a new synthetic method was developed for the introduction of an electroactive oligoaniline into the backbone of prepared patches. For this purpose, a series of electroactive polyurethane/siloxane films containing aniline tetramer (AT) was prepared through sol-gel reaction of trimethoxysilane functional intermediate polyurethane prepolymers made from castor oil and poly(ethylene glycol). Physicochemical, mechanical, and electrical conductivity of samples were evaluated and the recorded results were correlated to their structural characteristics. The optimized films were proved to be biodegradable and have tensile properties suitable for cardiac patch application. The embedded AT moieties in the backbone of the prepared samples preserved their electroactivity with the electrical conductivity in the range of 10 -4 S/cm. The prepared films were compatible with proliferation of C2C12 and had potential for enhancing myotube formation even without external electrical stimulation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 775-787, 2016. © 2015 Wiley Periodicals, Inc.

  20. Decisions that Make a Difference in Detecting Differential Item Functioning

    ERIC Educational Resources Information Center

    Sireci, Stephen G.; Rios, Joseph A.

    2013-01-01

    There are numerous statistical procedures for detecting items that function differently across subgroups of examinees that take a test or survey. However, in endeavouring to detect items that may function differentially, selection of the statistical method is only one of many important decisions. In this article, we discuss the important decisions…

  1. Parental Divorce and Family Functioning: Effects on Differentiation Levels of Young Adults.

    ERIC Educational Resources Information Center

    Johnson, Patrick; Throngren, Jill M.; Smith, Adina J.

    2001-01-01

    Study examines the effect of parental divorce and various dimensions of functioning in the family of origin on young adult development. Results indicate that parental divorce and family functioning significantly affect differentiation levels of young adults. Implications of the results for counselors and future researchers are provided. (Contains…

  2. A Cell Model to Evaluate Chemical Effects on Adult Human Cardiac Progenitor Cell Differentiation and Function

    EPA Science Inventory

    Adult cardiac stem cells (CSC) and progenitor cells (CPC) represent a population of cells in the heart critical for its regeneration and function over a lifetime. The impact of chemicals on adult human CSC/CPC differentiation and function is unknown. Research was conducted to dev...

  3. Detection of Gender-Based Differential Item Functioning in a Mathematics Performance Assessment.

    ERIC Educational Resources Information Center

    Wang, Ning; Lane, Suzanne

    This study used three different differential item functioning (DIF) procedures to examine the extent to which items in a mathematics performance assessment functioned differently for matched gender groups. In addition to examining the appropriateness of individual items in terms of DIF with respect to gender, an attempt was made to identify…

  4. Temperament and arousal systems: A new synthesis of differential psychology and functional neurochemistry.

    PubMed

    Trofimova, Irina; Robbins, Trevor W

    2016-05-01

    This paper critically reviews the unidimensional construct of General Arousal as utilised by models of temperament in differential psychology for example, to underlie 'Extraversion'. Evidence suggests that specialization within monoamine neurotransmitter systems contrasts with the attribution of a "general arousal" of the Ascending Reticular Activating System. Experimental findings show specialized roles of noradrenaline, dopamine, and serotonin systems in hypothetically mediating three complementary forms of arousal that are similar to three functional blocks described in classical models of behaviour within kinesiology, clinical neuropsychology, psychophysiology and temperament research. In spite of functional diversity of monoamine receptors, we suggest that their functionality can be classified using three universal aspects of actions related to expansion, to selection-integration and to maintenance of chosen behavioural alternatives. Monoamine systems also differentially regulate analytic vs. routine aspects of activities at cortical and striatal neural levels. A convergence between main temperament models in terms of traits related to described functional aspects of behavioural arousal also supports the idea of differentiation between these aspects analysed here in a functional perspective. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  6. Distinctive features and differential regulation of the DRTS genes of Arabidopsis thaliana

    PubMed Central

    Maniga, Antonio; Ghisaura, Stefania; Perrotta, Lara; Marche, Maria Giovanna; Cella, Rino

    2017-01-01

    In plants and protists, dihydrofolate reductase (DHFR) and thymidylate synthase (TS) are part of a bifunctional enzyme (DRTS) that allows efficient recycling of the dihydrofolate resulting from TS activity. Arabidopsis thaliana possesses three DRTS genes, called AtDRTS1, AtDRTS2 and AtDRTS3, that are located downstream of three members of the sec14-like SFH gene family. In this study, a characterization of the AtDRTS genes identified alternatively spliced transcripts coding for AtDRTS isoforms which may account for monofunctional DHFR enzymes supporting pathways unrelated to DNA synthesis. Moreover, we discovered a complex differential regulation of the AtDRTS genes that confirms the expected involvement of the AtDRTS genes in cell proliferation and endoreduplication, but indicates also functions related to other cellular activities. AtDRTS1 is widely expressed in both meristematic and differentiated tissues, whereas AtDRTS2 expression is almost exclusively limited to the apical meristems and AtDRTS3 is preferentially expressed in the shoot apex, in stipules and in root cap cells. The differential regulation of the AtDRTS genes is associated to distinctive promoter architectures and the expression of AtDRTS1 in the apical meristems is strictly dependent on the presence of an intragenic region that includes the second intron of the gene. Upon activation of cell proliferation in germinating seeds, the activity of the AtDRTS1 and AtDRTS2 promoters in meristematic cells appears to be maximal at the G1/S phase of the cell cycle. In addition, the promoters of AtDRTS2 and AtDRTS3 are negatively regulated through E2F cis-acting elements and both genes, but not AtDRTS1, are downregulated in plants overexpressing the AtE2Fa factor. Our study provides new information concerning the function and the regulation of plant DRTS genes and opens the way to further investigations addressing the importance of folate synthesis with respect to specific cellular activities. PMID:28594957

  7. HPV16 variants distribution in invasive cancers of the cervix, vulva, vagina, penis, and anus.

    PubMed

    Nicolás-Párraga, Sara; Gandini, Carolina; Pimenoff, Ville N; Alemany, Laia; de Sanjosé, Silvia; Xavier Bosch, F; Bravo, Ignacio G

    2016-10-01

    Human papillomavirus (HPV)16 is the most oncogenic human papillomavirus, responsible for most papillomavirus-induced anogenital cancers. We have explored by sequencing and phylogenetic analysis the viral variant lineages present in 692 HPV16-monoinfected invasive anogenital cancers from Europe, Asia, and Central/South America. We have assessed the contribution of geography and anatomy to the differential prevalence of HPV16 variants and to the nonsynonymous E6 T350G polymorphism. Most (68%) of the variance in the distribution of HPV16 variants was accounted for by the differential abundance of the different viral lineages. The most prevalent variant (above 70% prevalence) in all regions and in all locations was HPV16_A1-3, except in Asia, where HPV16_A4 predominated in anal cancers. The differential prevalence of variants as a function of geographical origin explained 9% of the variance, and the differential prevalence of variants as a function of anatomical location accounted for less than 3% of the variance. Despite containing similar repertoires of HPV16 variants, we confirm the worldwide trend of cervical cancers being diagnosed significantly earlier than other anogenital cancers (early fifties vs. early sixties). Frequencies for alleles in the HPV16 E6 T350G polymorphism were similar across anogenital cancers from the same geographical origin. Interestingly, anogenital cancers from Central/South America displayed higher 350G allele frequencies also within HPV16_A1-3 lineage compared with Europe. Our results demonstrate ample variation in HPV16 variants prevalence in anogenital cancers, which is partly explained by the geographical origin of the sample and only marginally explained by the anatomical location of the lesion, suggesting that tissue specialization is not essential evolutionary forces shaping HPV16 diversity in anogenital cancers. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. On equivalent characterizations of convexity of functions

    NASA Astrophysics Data System (ADS)

    Gkioulekas, Eleftherios

    2013-04-01

    A detailed development of the theory of convex functions, not often found in complete form in most textbooks, is given. We adopt the strict secant line definition as the definitive definition of convexity. We then show that for differentiable functions, this definition becomes logically equivalent with the first derivative monotonicity definition and the tangent line definition. Consequently, for differentiable functions, all three characterizations are logically equivalent.

  9. Functional Comparison of Neuronal Cells Differentiated from Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells under Different Oxygen and Medium Conditions.

    PubMed

    Yamazaki, Kazuto; Fukushima, Kazuyuki; Sugawara, Michiko; Tabata, Yoshikuni; Imaizumi, Yoichi; Ishihara, Yasuharu; Ito, Masashi; Tsukahara, Kappei; Kohyama, Jun; Okano, Hideyuki

    2016-12-01

    Because neurons are difficult to obtain from humans, generating functional neurons from human induced pluripotent stem cells (hiPSCs) is important for establishing physiological or disease-relevant screening systems for drug discovery. To examine the culture conditions leading to efficient differentiation of functional neural cells, we investigated the effects of oxygen stress (2% or 20% O 2 ) and differentiation medium (DMEM/F12:Neurobasal-based [DN] or commercial [PhoenixSongs Biologicals; PS]) on the expression of genes related to neural differentiation, glutamate receptor function, and the formation of networks of neurons differentiated from hiPSCs (201B7) via long-term self-renewing neuroepithelial-like stem (lt-NES) cells. Expression of genes related to neural differentiation occurred more quickly in PS and/or 2% O 2 than in DN and/or 20% O 2 , resulting in high responsiveness of neural cells to glutamate, N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ( S)-3,5-dihydroxyphenylglycine (an agonist for mGluR 1/5 ), as revealed by calcium imaging assays. NMDA receptors, AMPA receptors, mGluR 1 , and mGluR 5 were functionally validated by using the specific antagonists MK-801, NBQX, JNJ16259685, and 2-methyl-6-(phenylethynyl)-pyridine, respectively. Multielectrode array analysis showed that spontaneous firing occurred earlier in cells cultured in 2% O 2 than in 20% O 2 . Optimization of O 2 tension and culture medium for neural differentiation of hiPSCs can efficiently generate physiologically relevant cells for screening systems.

  10. Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Elson, Elliot L.

    Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.

  11. Relations of emotion-related temperamental characteristics to attentional biases and social functioning.

    PubMed

    Nozadi, Sara S; Spinrad, Tracy L; Johnson, Scott P; Eisenberg, Nancy

    2018-06-01

    The current study examined whether an important temperamental characteristic, effortful control (EC), moderates the associations between dispositional anger and sadness, attention biases, and social functioning in a group of preschool-aged children (N = 77). Preschoolers' attentional biases toward angry and sad facial expressions were assessed using eye-tracking, and we obtained teachers' reports of children's temperament and social functioning. Associations of dispositional anger and sadness with time looking at relevant negative emotional stimuli were moderated by children's EC, but relations between time looking at emotional faces and indicators of social functioning, for the most part, were direct and not moderated by EC. In particular, time looking at angry faces (and low EC) predicted high levels of aggressive behaviors, whereas longer time looking at sad faces (and high EC) predicted higher social competence. Finally, latency to detect angry faces predicted aggressive behavior under conditions of average and low levels of EC. Findings are discussed in terms of the importance of differentiating between components of attention biases toward distinct negative emotions, and implications for attention training. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Functional localization in the nucleus rotundus.

    DOT National Transportation Integrated Search

    1977-10-01

    Work has suggested that the effects of psychoactive drugs on visual performance may best be understood, and/or predicted, by studying differential effects of the drugs on functionally differentiated sets of neurones in visual projection systems in th...

  13. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  14. Bifurcation theory for finitely smooth planar autonomous differential systems

    NASA Astrophysics Data System (ADS)

    Han, Maoan; Sheng, Lijuan; Zhang, Xiang

    2018-03-01

    In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.

  15. Anisotropy of the Earth's inner inner core from autocorrelations of earthquake coda in China Regional Seismic Networks

    NASA Astrophysics Data System (ADS)

    Xia, H.; Song, X.; Wang, T.

    2014-12-01

    The Earth's inner core possesses strong cylindrical anisotropy with the fast symmetry axis parallel to the rotation axis. However, recent study has suggested that the inner part of the inner core has a fast symmetry axis near the equator with a different form of anisotropy from the outer part (Wang et al., this session). To confirm the observation, we use data from dense seismic arrays of the China Regional Seismic Networks. We perform autocorrelation (ACC) of the coda after major earthquakes (Mw>=7.0) at each station and then stack the ACCs at each cluster of stations. The PKIKP2 and PKIIKP2 phases (round-trip phase from the Earth's surface reflections) can be clearly extracted from the stacked empirical Green's functions. We observe systematic variation of the differential times between PKIKP2 and PKIIKP2 phases, which are sensitive to the bulk anisotropy of the inner core. The differential times show large variations with both latitudes and longitudes, even though our ray paths are not polar (with our stations at mid-range latitudes of about 20 to 45 degrees). The observations cannot be explained by an averaged anisotropy model with the fast axis along the rotation axis. The pattern appears consistent with an inner inner core that has a fast axis near the equator.

  16. Structure-function relationships in the stem cell's mechanical world A: seeding protocols as a means to control shape and fate of live stem cells.

    PubMed

    Zimmermann, Joshua A; Knothe Tate, Melissa L

    2011-12-01

    Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell volume was shown to be dependent on initial seeding density whereas nucleus shape was shown to depend on developmental context but not seeding density. Both smaller cell volumes and flatter nuclei were found to correlate with increased expression of markers for mesenchymal condensation as well as chondrogenic and osteogenic differentiation but a decreased expression of pre-condensation and adipogenic markers. Considering the data presented here, both seeding density and protocol significantly alter the morphology of mesenchymal stem cells even at very early stages of cell culture. Thus, these design parameters may play a critical role in the success of tissue engineering strategies seeking to recreate condensation events. However, a better understanding of how these changes in cell volume and nucleus shape relate to the differentiation of MSCs is important for prescribing precise seeding conditions necessary for the development of the desired tissue type. In a companion study (Part B, following), we address the effect of concomitant volume and shape changing stresses on spatiotemporal distribution of the cytoskeletal proteins actin and tubulin. Taken together, these studies bring us one step closer to our ultimate goal of elucidating the dynamics of nucleus and cell shape change as tissue templates grow (cell proliferation) and specialize (cell differentiation).

  17. Differential sensitivity to cadmium of immunomarkers measured in hemocyte subpopulations of zebra mussel Dreissena polymorpha.

    PubMed

    Evariste, Lauris; Rioult, Damien; Brousseau, Pauline; Geffard, Alain; David, Elise; Auffret, Michel; Fournier, Michel; Betoulle, Stéphane

    2017-03-01

    Increasing discharge of industrial wastes into the environment results in pollution transfer towards hydrosystems. These activities release heavy metals such as cadmium, known as persistent pollutant that is accumulated by molluscs and exercise immunotoxicological effects. Among molluscs, the zebra mussel, Dreissena polymorpha constitutes a suitable support for freshwater ecotoxicological studies. In molluscs, homeostasis maintain is ensured in part by hemocytes that are composed of several cell populations involved in multiple physiological processes such as cell-mediated immune response or metal metabolism. Thus, hemocytes constitute a target of concern to study adverse effects of heavy metals. The objectives of this work were to determine whether immune-related endpoints assessed were of different sensitivity to cadmium and whether hemocyte functionalities were differentially affected depending on hemocyte subpopulation considered. Hemocytes were exposed ex vivo to concentrations of cadmium ranging from 10 -6 M to 10 -3 M for 21h prior flow cytometric analysis of cellular markers. Measured parameters (viability, phagocytosis, oxidative activity, lysosomal content) decreased in a dose-dependent manner with sensitivity differences depending on endpoint and cell type considered. Our results indicated that phagocytosis related endpoints were the most sensitive studied mechanisms to cadmium compared to other markers with EC 50 of 3.71±0.53×10 -4 M for phagocytic activity and 2.79±0.19×10 -4 M considering mean number of beads per phagocytic cell. Lysosomal content of granulocytes was less affected compared to other cell types, indicating lower sensitivity to cadmium. This suggests that granulocyte population is greatly involved in metal metabolism. Mitochondrial activity was reduced only in blast-like hemocytes that are considered to be cell precursors. Impairment of these cell functionalities may potentially compromise functions ensured by differentiated cells. We concluded that analysis of hemocyte activities should be performed at sub-population scale for more accurate results in ecotoxicological studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Differential expression of pancreatic protein and chemosensing receptor mRNAs in NKCC1-null intestine

    PubMed Central

    Bradford, Emily M; Vairamani, Kanimozhi; Shull, Gary E

    2016-01-01

    AIM: To investigate the intestinal functions of the NKCC1 Na+-K+-2Cl cotransporter (SLC12a2 gene), differential mRNA expression changes in NKCC1-null intestine were analyzed. METHODS: Microarray analysis of mRNA from intestines of adult wild-type mice and gene-targeted NKCC1-null mice (n = 6 of each genotype) was performed to identify patterns of differential gene expression changes. Differential expression patterns were further examined by Gene Ontology analysis using the online Gorilla program, and expression changes of selected genes were verified using northern blot analysis and quantitative real time-polymerase chain reaction. Histological staining and immunofluorescence were performed to identify cell types in which upregulated pancreatic digestive enzymes were expressed. RESULTS: Genes typically associated with pancreatic function were upregulated. These included lipase, amylase, elastase, and serine proteases indicative of pancreatic exocrine function, as well as insulin and regenerating islet genes, representative of endocrine function. Northern blot analysis and immunohistochemistry showed that differential expression of exocrine pancreas mRNAs was specific to the duodenum and localized to a subset of goblet cells. In addition, a major pattern of changes involving differential expression of olfactory receptors that function in chemical sensing, as well as other chemosensing G-protein coupled receptors, was observed. These changes in chemosensory receptor expression may be related to the failure of intestinal function and dependency on parenteral nutrition observed in humans with SLC12a2 mutations. CONCLUSION: The results suggest that loss of NKCC1 affects not only secretion, but also goblet cell function and chemosensing of intestinal contents via G-protein coupled chemosensory receptors. PMID:26909237

  19. Gene selection for the reconstruction of stem cell differentiation trees: a linear programming approach.

    PubMed

    Ghadie, Mohamed A; Japkowicz, Nathalie; Perkins, Theodore J

    2015-08-15

    Stem cell differentiation is largely guided by master transcriptional regulators, but it also depends on the expression of other types of genes, such as cell cycle genes, signaling genes, metabolic genes, trafficking genes, etc. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering can organize cell types into a tree, but in general this tree is different from the differentiation hierarchy itself. Given the differentiation hierarchy and gene expression data at each node, we construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming approach to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a weighted Euclidean metric that uses just 175 genes. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. We then report on the selected genes and their biological functions. Our approach offers a new way to identify genes that may have important roles in stem cell differentiation. tperkins@ohri.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    PubMed Central

    2010-01-01

    Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate. Conclusions These results suggest that microarray analysis of chemical-induced spore formation is an excellent system to specifically identify genes necessary for the core sporulation process of a Gram negative model organism for differentiation. PMID:20420673

Top