2017-01-01
While the positive relationship between avian diversity and habitat heterogeneity is widely accepted, it is primarily based on observed species richness without accounting for imperfect detection. Other facets of diversity such as functional diversity are also rarely explored. We investigated the avian diversity-landscape heterogeneity relationship in agricultural landscapes by considering two aspects of diversity: taxonomic diversity (species richness) estimated from a multi-species dynamic occupancy model, and functional diversity (functional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also assessed how agricultural lands enrolled in a conservation program managed on behalf of declining early successional bird species (hereafter CP38 fields, an agri-environment scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields in Mississippi, USA, during 2010–2012, and two principal components of environmental variables: a gradient of heterogeneity (Shannon’s landscape diversity index) and of the amount of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant responses to environmental variables, whereas FDiv responded positively to heterogeneity and negatively to CP38. However, most FDiv values did not significantly differ from random expectations along an environmental gradient. When there was a significant difference, FDiv was lower than that expected. Unlike functional diversity, species richness showed a clear pattern. Species richness increased with increasing landscape heterogeneity but decreased with increasing amounts of CP38 fields. Only one species responded negatively to heterogeneity and positively to CP38. Our results suggest that the relationships between avian diversity and landscape heterogeneity may vary depending on the aspect of diversity considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly positive or non-significant effects on functional diversity. Our results also indicate that effectiveness of CP38 in conserving avian diversity, particularly, taxonomic diversity, could be limited without the consideration of landscape heterogeneity. PMID:28125653
Lee, Myung-Bok; Martin, James A
2017-01-01
While the positive relationship between avian diversity and habitat heterogeneity is widely accepted, it is primarily based on observed species richness without accounting for imperfect detection. Other facets of diversity such as functional diversity are also rarely explored. We investigated the avian diversity-landscape heterogeneity relationship in agricultural landscapes by considering two aspects of diversity: taxonomic diversity (species richness) estimated from a multi-species dynamic occupancy model, and functional diversity (functional evenness [FEve] and divergence [FDiv]) based on traits of occurring species. We also assessed how agricultural lands enrolled in a conservation program managed on behalf of declining early successional bird species (hereafter CP38 fields, an agri-environment scheme) influenced avian diversity. We analyzed breeding bird data collected at CP38 fields in Mississippi, USA, during 2010-2012, and two principal components of environmental variables: a gradient of heterogeneity (Shannon's landscape diversity index) and of the amount of CP38 fields (percent cover of CP38 fields; CP38). FEve did not show significant responses to environmental variables, whereas FDiv responded positively to heterogeneity and negatively to CP38. However, most FDiv values did not significantly differ from random expectations along an environmental gradient. When there was a significant difference, FDiv was lower than that expected. Unlike functional diversity, species richness showed a clear pattern. Species richness increased with increasing landscape heterogeneity but decreased with increasing amounts of CP38 fields. Only one species responded negatively to heterogeneity and positively to CP38. Our results suggest that the relationships between avian diversity and landscape heterogeneity may vary depending on the aspect of diversity considered: strong positive effects of heterogeneity on taxonomic diversity, but weakly positive or non-significant effects on functional diversity. Our results also indicate that effectiveness of CP38 in conserving avian diversity, particularly, taxonomic diversity, could be limited without the consideration of landscape heterogeneity.
Méndez, Verónica; Wood, Jamie R; Butler, Simon J
2018-05-01
Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater proportion of variance in native and exotic community characteristics than the number of habitat types present. Resource diversity and provenance should be explicitly accounted for when characterizing landscape structure and change as they offer additional mechanistic understanding of the links between environmental filtering and community structure. Manipulating resource diversity through the design and implementation of management actions could prove a powerful tool for the delivery of conservation objectives, be they to protect native species, control exotic species, or maintain ecosystem service provision.
Functional diversity response to hardwood forest management varies across taxa and spatial scales.
Murray, Bryan D; Holland, Jeffrey D; Summerville, Keith S; Dunning, John B; Saunders, Michael R; Jenkins, Michael A
2017-06-01
Contemporary forest management offers a trade-off between the potential positive effects of habitat heterogeneity on biodiversity, and the potential harm to mature forest communities caused by habitat loss and perforation of the forest canopy. While the response of taxonomic diversity to forest management has received a great deal of scrutiny, the response of functional diversity is largely unexplored. However, functional diversity may represent a more direct link between biodiversity and ecosystem function. To examine how forest management affects diversity at multiple spatial scales, we analyzed a long-term data set that captured changes in taxonomic and functional diversity of moths (Lepidoptera), longhorned beetles (Coleoptera: Cerambycidae), and breeding birds in response to contemporary silvicultural systems in oak-hickory hardwood forests. We used these data sets to address the following questions: how do even- and uneven-aged silvicultural systems affect taxonomic and functional diversity at the scale of managed landscapes compared to the individual harvested and unharvested forest patches that comprise the landscapes, and how do these silvicultural systems affect the functional similarity of assemblages at the scale of managed landscapes and patches? Due to increased heterogeneity within landscapes, we expected even-aged silviculture to increase and uneven-aged silviculture to decrease functional diversity at the landscape level regardless of impacts at the patch level. Functional diversity responses were taxon-specific with respect to the direction of change and time since harvest. Responses were also consistent across patch and landscape levels within each taxon. Moth assemblage species richness, functional richness, and functional divergence were negatively affected by harvesting, with stronger effects resulting from uneven-aged than even-aged management. Longhorned beetle assemblages exhibited a peak in species richness two years after harvesting, while functional diversity metrics did not differ between harvested and unharvested patches and managed landscapes. The species and functional richness of breeding bird assemblages increased in response to harvesting with more persistent effects in uneven- than in even-aged managed landscapes. For moth and bird assemblages, species turnover was driven by species with more extreme trait combinations. Our study highlights the variability of multi-taxon functional diversity in response to forest management across multiple spatial scales. © 2017 by the Ecological Society of America.
Carneiro, Magda Silva; Campos, Caroline Cambraia Furtado; Beijo, Luiz Alberto; Ramos, Flavio Nunes
2016-01-01
Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to manage fragmented landscapes.
2016-01-01
Species homogenization or floristic differentiation are two possible consequences of the fragmentation process in plant communities. Despite the few studies, it seems clear that fragments with low forest cover inserted in anthropogenic matrices are more likely to experience floristic homogenization. However, the homogenization process has two other components, genetic and functional, which have not been investigated. The purpose of this study was to verify whether there was homogenization of tree reproductive functions in a fragmented landscape and, if found, to determine how the process was influenced by landscape composition. The study was conducted in eight fragments in southwest Brazil. The study was conducted in eight fragments in southwestern Brazil. In each fragment, all individual trees were sampled that had a diameter at breast height ≥3 cm, in ten plots (0.2 ha) and, classified within 26 reproductive functional types (RFTs). The process of functional homogenization was evaluated using additive partitioning of diversity. Additionally, the effect of landscape composition on functional diversity and on the number of individuals within each RFT was evaluated using a generalized linear mixed model. appeared to be in a process of functional homogenization (dominance of RFTs, alpha diversity lower than expected by chance and and low beta diversity). More than 50% of the RFTs and the functional diversity were affected by the landscape parameters. In general, the percentage of forest cover has a positive effect on RFTs while the percentage of coffee matrix has a negative one. The process of functional homogenization has serious consequences for biodiversity conservation because some functions may disappear that, in the long term, would threaten the fragments. This study contributes to a better understanding of how landscape changes affect the functional diversity, abundance of individuals in RFTs and the process of functional homogenization, as well as how to manage fragmented landscapes. PMID:27760218
Ecosystem engineering affects ecosystem functioning in high-Andean landscapes.
Badano, Ernesto I; Marquet, Pablo A
2008-04-01
Ecosystem engineers are organisms that change the distribution of materials and energy in the abiotic environment, usually creating and maintaining new habitat patches in the landscape. Such changes in habitat conditions have been widely documented to affect the distributions and performances of other species but up to now no studies have addressed how such effects can impact the biotically driven physicochemical processes associated with these landscapes, or ecosystem functions. Based on the widely accepted positive relationship between species diversity and ecosystem functions, we propose that the effects of ecosystem engineers on other species could have an impact on ecosystem functions via two mutually inclusive mechanisms: (1) by adding new species into landscapes, hence increasing species diversity; and (2) by improving the performances of species already present in the landscape. To test these hypotheses, we focused on the effects of a high-Andean ecosystem engineer, the cushion plant Azorella monantha, by comparing the accumulation of plant biomass and nitrogen fixed in plant tissues as species richness increases in landscapes with and without the engineer species. Our results show that both ecosystem functions increased with species richness in both landscape types, but landscapes including A. monantha cushions reached higher outcomes of plant biomass and nitrogen fixed in plant tissues than landscapes without cushions. Moreover, our results indicate that such positive effects on ecosystem functions could be mediated by the two mechanisms proposed above. Then, given the conspicuousness of ecosystem engineering in nature and its strong influence on species diversity, and given the well-known relationship between species diversity and ecosystem function, we suggest that the application of the conceptual framework proposed herein to other ecosystems would help to advance our understanding of the forces driving ecosystem functioning.
Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes.
Basu, Parthiba; Parui, Arpan Kumar; Chatterjee, Soumik; Dutta, Aditi; Chakraborty, Pushan; Roberts, Stuart; Smith, Barbara
2016-10-01
Factors associated with agricultural intensification, for example, loss of seminatural vegetation and pesticide use has been shown to adversely affect the bee community. These factors may impact the bee community differently at different landscape scales. The scale dependency is expected to be more pronounced in heterogeneous landscapes. However, the scale-dependent response of the bee community to drivers of its decline is relatively understudied, especially in the tropics where the agricultural landscape is often heterogeneous. This study looked at effects of agricultural intensification on bee diversity at patch and landscape scales in a tropical agricultural landscape. Wild bees were sampled using 12 permanent pan trap stations. Patch and landscape characteristics were measured within a 100 m (patch scale) and a 500 m (landscape scale) radius of pan trap stations. Information on pesticide input was obtained from farmer surveys. Data on vegetation cover, productivity, and percentage of agricultural and fallow land (FL) were collected using satellite imagery. Intensive areas in a bee-site network were less specialized in terms of resources to attract rare bee species while the less intensive areas, which supported more rare species, were more vulnerable to disturbance. A combination of patch quality and diversity as well as pesticide use regulates species diversity at the landscape scale (500 m), whereas pesticide quantity drove diversity at the patch scale (100 m). At the landscape scale, specialization of each site in terms of resources for bees increased with increasing patch diversity and FL while at the patch scale specialization declined with increased pesticide use. Bee functional groups responded differentially to landscape characteristics as well as pesticide use. Wood nesting bees were negatively affected by the number of pesticides used but other bee functional groups were not sensitive to pesticides. Synthesis and Applications : Different factors affect wild bee diversity at the scale of landscape and patch in heterogeneous tropical agricultural systems. The differential response of bee functional groups to agricultural intensification underpins the need for guild-specific management strategies for wild bee conservation. Less intensively farmed areas support more rare species and are vulnerable to disturbance; consequently, these areas should be prioritized for conservation to maintain heterogeneity in the landscape. It is important to conserve and restore seminatural habitats to maintain complexity in the landscapes through participatory processes and to regulate synthetic chemical pesticides in farm operations to conserve the species and functional diversity of wild bees.
Biotic homogenization can decrease landscape-scale forest multifunctionality.
van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David Anthony; Coppi, Andrea; Bastias, Cristina C; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-03-29
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.
Biotic homogenization can decrease landscape-scale forest multifunctionality
van der Plas, Fons; Manning, Pete; Soliveres, Santiago; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coppi, Andrea; Bastias, Cristina C.; Dawud, Seid Muhie; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Mueller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Ratcliffe, Sophia; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus
2016-01-01
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (β-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between β-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality. PMID:26979952
Rocha-Santos, Larissa; Benchimol, Maíra; Mayfield, Margaret M; Faria, Deborah; Pessoa, Michaele S; Talora, Daniela C; Mariano-Neto, Eduardo; Cazetta, Eliana
2017-01-01
As tropical rainforests are cleared, forest remnants are increasingly isolated within agricultural landscapes. Understanding how forest loss impacts on species diversity can, therefore, contribute to identifying the minimum amount of habitat required for biodiversity maintenance in human-modified landscapes. Here, we evaluate how the amount of forest cover, at the landscape scale, affects patterns of species richness, abundance, key functional traits and common taxonomic families of adult trees in twenty Brazilian Atlantic rainforest landscapes. We found that as forest cover decreases, both tree community richness and abundance decline, without exhibiting a threshold. At the family-level, species richness and abundance of the Myrtaceae and Sapotaceae were also negatively impacted by the percent forest remaining at the landscape scale. For functional traits, we found a reduction in shade-tolerant, animal-dispersed and small-seeded species following a decrease in the amount of forest retained in landscapes. These results suggest that the amount of forest in a landscape is driving non-random losses in phylogenetic and functional tree diversity in Brazil's remaining Atlantic rainforests. Our study highlights potential restraints on the conservation value of Atlantic rainforest remnants in deforested landscapes in the future.
Benchimol, Maíra; Mayfield, Margaret M.; Faria, Deborah; Pessoa, Michaele S.; Talora, Daniela C.; Mariano-Neto, Eduardo; Cazetta, Eliana
2017-01-01
As tropical rainforests are cleared, forest remnants are increasingly isolated within agricultural landscapes. Understanding how forest loss impacts on species diversity can, therefore, contribute to identifying the minimum amount of habitat required for biodiversity maintenance in human-modified landscapes. Here, we evaluate how the amount of forest cover, at the landscape scale, affects patterns of species richness, abundance, key functional traits and common taxonomic families of adult trees in twenty Brazilian Atlantic rainforest landscapes. We found that as forest cover decreases, both tree community richness and abundance decline, without exhibiting a threshold. At the family-level, species richness and abundance of the Myrtaceae and Sapotaceae were also negatively impacted by the percent forest remaining at the landscape scale. For functional traits, we found a reduction in shade-tolerant, animal-dispersed and small-seeded species following a decrease in the amount of forest retained in landscapes. These results suggest that the amount of forest in a landscape is driving non-random losses in phylogenetic and functional tree diversity in Brazil’s remaining Atlantic rainforests. Our study highlights potential restraints on the conservation value of Atlantic rainforest remnants in deforested landscapes in the future. PMID:28403166
Landscape simplification filters species traits and drives biotic homogenization
Gámez-Virués, Sagrario; Perović, David J.; Gossner, Martin M.; Börschig, Carmen; Blüthgen, Nico; de Jong, Heike; Simons, Nadja K.; Klein, Alexandra-Maria; Krauss, Jochen; Maier, Gwen; Scherber, Christoph; Steckel, Juliane; Rothenwöhrer, Christoph; Steffan-Dewenter, Ingolf; Weiner, Christiane N.; Weisser, Wolfgang; Werner, Michael; Tscharntke, Teja; Westphal, Catrin
2015-01-01
Biodiversity loss can affect the viability of ecosystems by decreasing the ability of communities to respond to environmental change and disturbances. Agricultural intensification is a major driver of biodiversity loss and has multiple components operating at different spatial scales: from in-field management intensity to landscape-scale simplification. Here we show that landscape-level effects dominate functional community composition and can even buffer the effects of in-field management intensification on functional homogenization, and that animal communities in real-world managed landscapes show a unified response (across orders and guilds) to both landscape-scale simplification and in-field intensification. Adults and larvae with specialized feeding habits, species with shorter activity periods and relatively small body sizes are selected against in simplified landscapes with intense in-field management. Our results demonstrate that the diversity of land cover types at the landscape scale is critical for maintaining communities, which are functionally diverse, even in landscapes where in-field management intensity is high. PMID:26485325
Arbour, J H; López-Fernández, H
2014-11-01
Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
La Rosa, Daniele; Privitera, Riccardo; Martinico, Francesco; La Greca, Paolo
2013-09-01
Maintaining existing levels of landscape diversity is becoming more and more important for planning considering the increasing pressures on agricultural ecosystems due to soil sealing, sprawl processes and intensive agriculture. Norms for land-use regulation and measures for landscape Safeguard and Rehabilitation have to take into consideration these threats in landscape planning. Evaluating the diversity of agricultural ecosystems is a fundamental step for proposing sound approaches to planning and managing both soil and landscape, as well as maintaining the related ecosystem services. The paper proposes a method aimed at the qualitative evaluation of spatial diversity of agricultural landscapes using a reduced set of ecological indicators based on land-use vector data. Indicators are calculated for defined landscape units characterized by landscape homogeneity. GIS geoprocessing and spatial analysis functions are employed. The study area is the Province of Enna in Sicily (Italy), which is characterized by cultivation mosaics in its southern region, cereal cultivation in the central region and prevailing natural environments in the northern region. Results from the indicator calculations are used to define measures to be included in a Landscape Protection Plan. Safeguard and Rehabilitation measures are introduced, which link indicator scores to planning protection aims. The results highlight the relevance of some agricultural mosaics in proximity to streams and seasonal fluvial environments, where some undamaged natural environments are still present. For these areas, specific landscape safeguard measures are proposed to preserve their diversity features together with their original agricultural functions. The work shows that even with a reduced number of indicators, a differentiated set of measures can be proposed for a Landscape Protection Plan. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thompson, Grant L.; Kao-Kniffin, Jenny
2016-01-01
Urban grasslands, landscapes dominated by turfgrasses for aesthetic or recreational groundcovers, are rapidly expanding in the United States and globally. These managed ecosystems are often less diverse than the natural or agricultural lands they replace, leading to potential losses in ecosystem functioning. Research in non-urban systems has provided evidence for increases in multiple ecosystem functions associated with greater plant diversity. To test if biodiversity-ecosystem function findings are applicable to urban grasslands, we examined the effect of plant species and genotypic diversity on three ecosystem functions, using grassland assemblages of increasing diversity that were grown within a controlled environment facility. We found positive effects of plant diversity on reduced nitrate leaching and plant productivity. Soil microbial diversity (Mean Shannon Diversity, H’) of bacteria and fungi were also enhanced in multi-species plantings, suggesting that moderate increments in plant diversity influence the composition of soil biota. The results from this study indicate that plant diversity impacts multiple functions that are important in urban ecosystems; therefore, further tests of urban grassland biodiversity should be examined in situ to determine the feasibility of manipulating plant diversity as an explicit landscape design and function trait. PMID:27243768
EPA's ToxCast chemical library, currently exceeding 4000 unique chemicals, has successfully captured a broad diversity of chemical use-types, functionality, and structures and features potentially relevant to toxicity and environmental exposure landscapes. Chemical diversity in ...
Landscape moderation of biodiversity patterns and processes - eight hypotheses.
Tscharntke, Teja; Tylianakis, Jason M; Rand, Tatyana A; Didham, Raphael K; Fahrig, Lenore; Batáry, Péter; Bengtsson, Janne; Clough, Yann; Crist, Thomas O; Dormann, Carsten F; Ewers, Robert M; Fründ, Jochen; Holt, Robert D; Holzschuh, Andrea; Klein, Alexandra M; Kleijn, David; Kremen, Claire; Landis, Doug A; Laurance, William; Lindenmayer, David; Scherber, Christoph; Sodhi, Navjot; Steffan-Dewenter, Ingolf; Thies, Carsten; van der Putten, Wim H; Westphal, Catrin
2012-08-01
Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscape-moderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Diversity in Riparian Landscapes
Thomas R. Crow; Matthew E. Baker; Burton V. Barnes
2000-01-01
Therefore, in this chapter we focus on ecosystem diversity, defined as the number, kind, and pattern of landscape and waterscape ecosystems in a specified area and the ecological processes that are associated with these patterns (Lapin and Barnes 1995). One can then characterize eeosysterns as to their composition, structure, and function -- the attributes Of...
Sari C. Saunders; Jiquan Chen; Thomas D. Drummer; Thomas R. Crow; Kimberley D. Brosofske; Eric J. Gustafson
2002-01-01
Understanding landscape organization across scales is vital for determining the impacts of management and retaining structurally and functionally diverse ecosystems. We studied the relationships of a functional variable, decomposition, to microclimatic, vegetative and structural features at multiple scales in two distinct landscapes of northern Wisconsin, USA. We hoped...
Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes
García-Morales, Rodrigo; Badano, Ernesto I.; Zuria, Iriana; Galindo-González, Jorge; Rojas-Martínez, Alberto E.; Ávila-Gómez, Eva S.
2016-01-01
Functional diversity is the variability in the functional roles carried out by species within ecosystems. Changes in the environment can affect this component of biodiversity and can, in turn, affect different processes, including some ecosystem services. This study aimed to determine the effect of forest loss on species richness, abundance and functional diversity of Neotropical bats. To this end, we identified six landscapes with increasing loss of forest cover in the Huasteca region of the state of Hidalgo, Mexico. We captured bats in each landscape using mist nets, and calculated functional diversity indices (functional richness and functional evenness) along with species richness and abundance. We analyzed these measures in terms of percent forest cover. We captured 906 bats (Phyllostomidae and Mormoopidae), including 10 genera and 12 species. Species richness, abundance and functional richness per night are positively related with forest cover. Generalized linear models show that species richness, abundance and functional richness per night are significantly related with forest cover, while seasonality had an effect on abundance and functional richness. Neither forest cover nor season had a significant effect on functional evenness. All these findings were consistent across three spatial scales (1, 3 and 5 km radius around sampling sites). The decrease in species, abundance and functional richness of bats with forest loss may have implications for the ecological processes they carry out such as seed dispersal, pollination and insect predation, among others. PMID:27926923
Analysis of sea use landscape pattern based on GIS: a case study in Huludao, China.
Suo, Anning; Wang, Chen; Zhang, Minghui
2016-01-01
This study aims to analyse sea use landscape patterns on a regional scale based on methods of landscape ecology integrated with sea use spatial characteristics. Several landscape-level analysis indices, such as the dominance index, complex index, intensivity index, diversity index and sea congruency index, were established using Geographic Information System (GIS) and applied in Huludao, China. The results indicated that sea use landscape analysis indices, which were created based on the characteristics of sea use spatial patterns using GIS, are suitable to quantitatively describe the landscape patterns of sea use. They are operable tools for the landscape analysis of sea use. The sea use landscape in Huludao was dominated by fishing use with a landscape dominance index of 0.724. The sea use landscape is a complex mosaic with high diversity and plenty of fishing areas, as shown by the landscape complex index of 27.21 and the landscape diversity index of 1.25. Most sea use patches correspond to the marine functional zonation plan and the sea use congruency index is 0.89 in the fishing zone and 0.92 in the transportation zone.
A landscape character assessment of three terraced areas in Campania region, Italy
NASA Astrophysics Data System (ADS)
Gravagnuolo, Antonia; Ronza, Maria; Di Martino, Ferdinando; De Rosa, Fortuna
2017-04-01
Agricultural terraces represent the territorial structure of many cultural landscapes in the Campania region, Italy. Historic urban/rural settlements and hydraulic-agrarian systems have been developed on mountains and hills, producing diverse cultural landscapes depending on the specific geological, pedological and geomorphological characteristics, which influenced the character and functions of terraces. These unique landscapes are multi-functional and provide many ecosystem services: provisioning (food, water retention, building materials); regulating and maintenance (hydrogeological stability, soil fertility, protection from soil erosion, maintenance of genetic diversity, habitat); cultural services (heritage and traditional knowledge conservation, tourism and recreation, spiritual experience, education, aesthetic quality). Three terraced landscapes in Campania are analysed, which present a rich diversity in the geological structure and formal/functional characteristics: the Roccamonfina vulcanic area, a highly fertile and lapillous soil; the Monte di Bulgheria, a clay-rich area; and finally the well-known UNESCO World Heritage site of the Amalfi Coast, a calcareous, steep rock faced area. A landscape character assessment of the three sites is processed, identifying the biophysical structure of the sites, natural systems and land use, and cultural and anthropic elements. Terraced landscapes in Campania can be regenerated, taking again an active social and economic role for the society, enhancing their multifunctionality as a key source of wellbeing. Ecosystem services are mapped and evaluated to assess benefits and costs in a multidimensional framework. Spatial analysis in GIS environment supports this process, providing a decision-support tool for mapping and assessment of terraced landscapes, to convert their actual and potential value into a resource of economic sustainable development.
NASA Astrophysics Data System (ADS)
Asner, Gregory P.; Anderson, Christopher B.; Martin, Roberta E.; Tupayachi, Raul; Knapp, David E.; Sinca, Felipe
2015-07-01
Tropical forest functional diversity, which is a measure of the diversity of organismal interactions with the environment, is poorly understood despite its importance for linking evolutionary biology to ecosystem biogeochemistry. Functional diversity is reflected in functional traits such as the concentrations of different compounds in leaves or the density of leaf mass, which are related to plant activities such as plant defence, nutrient cycling, or growth. In the Amazonian lowlands, river movement and microtopography control nutrient mobility, which may influence functional trait distributions. Here we use airborne laser-guided imaging spectroscopy to develop maps of 16 forest canopy traits, throughout four large landscapes that harbour three common forest community types on the Madre de Dios and Tambopata rivers in southwestern Amazonia. Our maps, which are based on quantitative chemometric analysis of forest canopies with visible-to-near infrared (400-2,500 nm) spectroscopy, reveal substantial variation in canopy traits and their distributions within and among forested landscapes. Forest canopy trait distributions are arranged in a nested pattern, with location along rivers controlling trait variation between different landscapes, and microtopography controlling trait variation within landscapes. We suggest that processes of nutrient deposition and depletion drive increasing phosphorus limitation, and a corresponding increase in plant defence, in an eastward direction from the base of the Andes into the Amazon Basin.
Lohbeck, Madelon; Bongers, Frans; Martinez-Ramos, Miguel; Poorter, Lourens
2016-10-01
Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity systems. Here, we test whether different species contribute to different ecosystem functions that are important for carbon cycling in a high-diversity human-modified tropical forest landscape in Southern Mexico. We quantified aboveground standing biomass, primary productivity, litter production, and wood decomposition at the landscape level, and evaluated the extent to which tree species contribute to these ecosystem functions. We used simulations to tease apart the effects of species richness, species dominance and species functional traits on ecosystem functions. We found that dominance was more important than species traits in determining a species' contribution to ecosystem functions. As a consequence of the high dominance in human-modified landscapes, the same small subset of species mattered across different functions. In human-modified landscapes in the tropics, biodiversity may play a limited role for ecosystem multifunctionality due to the potentially large effect of species dominance on biogeochemical functions. However, given the spatial and temporal turnover in species dominance, biodiversity may be critically important for the maintenance and resilience of ecosystem functions. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian
2016-01-01
Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation diversity in wet forest, but positively correlated with vegetation diversity in dry forest. We therefore suggest that protection of older vegetation is important, but controlled application of low-severity fire in dry forest may sustain ecosystem function by enhancing different elements of FD.
York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian
2016-01-01
Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation diversity in wet forest, but positively correlated with vegetation diversity in dry forest. We therefore suggest that protection of older vegetation is important, but controlled application of low-severity fire in dry forest may sustain ecosystem function by enhancing different elements of FD. PMID:27741290
Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?
Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.
2015-01-01
The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032
Assessment of landscape diversity and determination of landscape hotspots - a case of Slovenia
NASA Astrophysics Data System (ADS)
Perko, Drago; Ciglič, Rok; Hrvatin, Mauro
2017-04-01
Areas with high landscape diversity can be regarded as landscape hotspots, and vice versa areas with low landscape diversity can be marked as landscape coldspots. The main purpose of this paper is to use quantitative geoinformatical approach and identify parts of our test area (the country of Slovenia) that can be described as very diverse according to natural landscapes and natural elements. We used different digital raster data of natural elements and landscape classifications and defined landscape diversity and landscape hotspots. We defined diversity for each raster pixel by counting the number of different unique types of landscape elements and types of landscapes in its neighborhood. Namely, the method was used separately to define diversity according to natural elements (types of relief forms, rocks, and vegetation) and diversity according to existing geographical landscape classifications of Slovenia (types of landscapes). In both cases one-tenth of Slovenia's surface with the highest landscape diversity was defined as landscape hotspots. The same applies to the coldspots. Additionally we tested the same method of counting different types of landscapes in certain radius also for the area of Europe in order to find areas that are more diverse at continental level. By doing so we were able to find areas that have similar level of diversity as Slovenia according to different European landscape classifications. Areas with landscape diversity may have an advantage in economic development, especially in tourism. Such areas are also important for biodiversity, habitat, and species diversity. On the other hand, localities where various natural influences mix can also be areas where it is hard to transfer best practices from one place to another because of the varying responses of the landscapes to human intervention. Thus it is important to know where areas with high landscape diversity are.
Girão, Luciana Coe; Lopes, Ariadna Valentina; Tabarelli, Marcelo; Bruna, Emilio M.
2007-01-01
Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits) and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems) in 10 fragments and 10 tracts of forest interior (control plots). As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated). The most conspicuous differences were the lack of three pollination systems in fragments-pollination by birds, flies and non-flying mammals-and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores) for pollination systems (−30.3%), floral types (−23.6%), and floral sizes (−20.8%) in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and greatly reduces the functional diversity of tree assemblages in fragmented landscapes. PMID:17878943
Duveneck, Matthew J; Scheller, Robert M
2015-09-01
Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have management implications for sites where diversity and productivity are expected to decline. Future efforts to restore a specific species or forest type may not be possible, but CSP may sustain a more general ecosystem service (e.g., aboveground biomass).
Landscape-scale processes influence riparian plant composition along a regulated river
Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.
2018-01-01
Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.
Mori, Akira S; Ota, Aino T; Fujii, Saori; Seino, Tatsuyuki; Kabeya, Daisuke; Okamoto, Toru; Ito, Masamichi T; Kaneko, Nobuhiro; Hasegawa, Motohiro
2015-10-01
The compositional characteristics of ecological assemblages are often simplified; this process is termed "biotic homogenization." This process of biological reorganization occurs not only taxonomically but also functionally. Testing both aspects of homogenization is essential if ecosystem functioning supported by a diverse mosaic of functional traits in the landscape is concerned. Here, we aimed to infer the underlying processes of taxonomic/functional homogenization at the local scale, which is a scale that is meaningful for this research question. We recorded species of litter-dwelling oribatid mites along a gradient of forest conversion from a natural forest to a monoculture larch plantation in Japan (in total 11 stands), and collected data on the functional traits of the recorded species to quantify functional diversity. We calculated the taxonomic and functional β-diversity, an index of biotic homogenization. We found that both the taxonomic and functional β-diversity decreased with larch dominance (stand homogenization). After further deconstructing β-diversity into the components of turnover and nestedness, which reflect different processes of community organization, a significant decrease in the response to larch dominance was observed only for the functional turnover. As a result, there was a steeper decline in the functional β-diversity than the taxonomic β-diversity. This discordance between the taxonomic and functional response suggests that species replacement occurs between species that are functionally redundant under environmental homogenization, ultimately leading to the stronger homogenization of functional diversity. The insights gained from community organization of oribatid mites suggest that the functional characteristics of local assemblages, which support the functionality of ecosystems, are of more concern in human-dominated forest landscapes.
Biodiversity and multiple ecosystem functions in an organic farmscape
USDA-ARS?s Scientific Manuscript database
The environmental impact of agricultural production dominated by monocultures may be improved through minor increases in landscape diversity. To increase farmscape diversity farmers in the United States are beginning to manage non-production areas of their farms to create a more diverse set of habi...
Conservation for the landscape ecological diversity in Wulingyuan scenic area of China.
Yan, Fu
2003-03-01
Wulingyuan is located at the mountainous area of the middle reach of the Yangtze River, it is one of the three nature heritages in China which ranks in the "List of World's Heritage" by UNESCO. It is characterized by quartz sandstone peaks landform with several landform components (pattern, corridor) and rich in landscape ecological diversity and biodiversity. The main patterns (ecosystem) include mid-height mountain peaks, rift-valley and streams among peaks, peaks and gullies on slopes, square mountain-platforms and peaks among blind valleys and so on. The corridor system consists of natural corridors and artificial corridors among which the stream corridors account for a major part. The fracturing of habitat is unfavorable for the biodiversity conservation, but meanwhile the habitat diversity leads to an increase in biodiversity. Therefore, it is still rich in landscape ecological diversity in Wulingyuan. The biodiversity at the level of landscape component (ecosystem) and the function of the Wulingyuan complex ecosystem, and the measures for the biodiversity conservation in Wulingyuan ecotourism area are discussed in this paper.
Threlfall, Caragh G; Law, Bradley; Banks, Peter B
2012-01-01
Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.
Threlfall, Caragh G.; Law, Bradley; Banks, Peter B.
2012-01-01
Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p = 0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats. PMID:22685608
Influence of landscape structure on reef fish assemblages
Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.
2008-01-01
Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.
Bakker, Elisabeth S.; Gill, Jacquelyn L.; Johnson, Christopher N.; Vera, Frans W. M.; Sandom, Christopher J.; Asner, Gregory P.; Svenning, Jens-Christian
2016-01-01
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World’s terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions. PMID:26504223
Bakker, Elisabeth S; Gill, Jacquelyn L; Johnson, Christopher N; Vera, Frans W M; Sandom, Christopher J; Asner, Gregory P; Svenning, Jens-Christian
2016-01-26
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World's terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions.
The structural and functional connectivity of the grassland plant Lychnis flos-cuculi
Aavik, T; Holderegger, R; Bolliger, J
2014-01-01
Understanding the relationship between structural and functional connectivity is essential for successful restoration and conservation management, particularly in intensely managed agricultural landscapes. We evaluated the relationship between structural and functional connectivity of the wetland plant Lychnis flos-cuculi in a fragmented agricultural landscape using landscape genetic and network approaches. First, we studied the effect of structural connectivity, such as geographic distance and various landscape elements (forest, agricultural land, settlements and ditch verges), on gene flow among populations as a measurement of functional connectivity. Second, we examined the effect of structural graph-theoretic connectivity measures on gene flow among populations and on genetic diversity within populations of L. flos-cuculi. Among landscape elements, forests hindered gene flow in L. flos-cuculi, whereas gene flow was independent of geographic distance. Among the structural graph-theoretic connectivity variables, only intrapopulation connectivity, which was based on population size, had a significant positive effect on gene flow, that is, more gene flow took place among larger populations. Unexpectedly, interpopulation connectivity of populations, which takes into account the spatial location and distance among populations, did not influence gene flow in L. flos-cuculi. However, higher observed heterozygosity and lower inbreeding was observed in populations characterised by higher structural interpopulation connectivity. This finding shows that a spatially coherent network of populations is significant for maintaining the genetic diversity of populations. Nevertheless, lack of significant relationships between gene flow and most of the structural connectivity measures suggests that structural connectivity does not necessarily correspond to functional connectivity. PMID:24253937
Local and Landscape Drivers of Parasitoid Abundance, Richness, and Composition in Urban Gardens.
Burks, Julia M; Philpott, Stacy M
2017-04-01
Urbanization negatively affects biodiversity, yet some urban habitat features can support diversity. Parasitoid wasps, an abundant and highly diverse group of arthropods, can inhabit urban areas and do well in areas with higher host abundance, floral resources, or local or landscape complexity. Parasitoids provide biological control services in many agricultural habitats, yet few studies have examined diversity and abundance of parasitoids in urban agroecosystems to understand how to promote conservation and function. We examined the local habitat and landscape drivers of parasitoid abundance, superfamily and family richness, and parasitoid composition in urban gardens in the California central coast. Local factors included garden size, ground cover type, herbaceous plant species, and number of trees and shrubs. Landscape characteristics included land cover and landscape diversity around gardens. We found that garden size, mulch cover, and urban cover within 500 m of gardens predicted increases in parasitoid abundance within gardens. The height of herbaceous vegetation and tree and shrub richness predicted increases in superfamily and family richness whereas increases in urban cover resulted in declines in parasitoid richness. Abundance of individual superfamilies and families responded to a wide array of local and landscape factors, sometimes in opposite ways. Composition of parasitoid communities responded to changes in garden size, herbaceous plant cover, and number of flowers. Thus, both local scale management and landscape planning may impact the abundance, diversity, and community composition of parasitoids in urban gardens, and may result in differences in the effectiveness of parasitoids in biological control. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Keller, Alexander; Härtel, Stephan; Steffan-Dewenter, Ingolf
2017-01-01
The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.). The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes. PMID:28854210
Danner, Nadja; Keller, Alexander; Härtel, Stephan; Steffan-Dewenter, Ingolf
2017-01-01
The availability of pollen in agricultural landscapes is essential for the successful growth and reproduction of honey bee colonies (Apis mellifera L.). The quantity and diversity of collected pollen can influence the growth and health of honey bee colonies, but little is known about the influence of landscape structure on pollen diet. In a field experiment, we rotated 16 honey bee colonies across 16 agricultural landscapes, used traps to collect samples of collected pollen and observed intra-colonial dance communication to gain information about foraging distances. DNA metabarcoding was applied to analyze mixed pollen samples. Neither the amount of collected pollen nor pollen diversity was related to landscape diversity. However, we found a strong seasonal variation in the amount and diversity of collected pollen in all sites independent of landscape diversity. The observed increase in foraging distances with decreasing landscape diversity suggests that honey bees compensated for lower landscape diversity by increasing their pollen foraging range in order to maintain pollen amount and diversity. Our results underscore the importance of a diverse pollen diet for honey bee colonies. Agri-environmental schemes aiming to support pollinators should focus on possible spatial and temporal gaps in pollen availability and diversity in agricultural landscapes.
Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.
2012-01-01
Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.
Landscape approach to the formation of the ecological frame of Moscow
NASA Astrophysics Data System (ADS)
Nizovtsev, Vyacheslav; Natalia, Erman
2015-04-01
The territory of Moscow, in particular in its former borders, is distinct for its strong transformation of the natural properties of virtually all types of landscape complexes. The modern landscape structure is characterized by fragmentation of natural land cover. Natural and quasinatural (natural and anthropogenic) landscape complexes with preserved natural structure are represented by isolated areas and occupy small areas. During recent years landscape diversity in general and biodiversity in particular have been rapidly declining, and many of the natural landscape complexes are under ever-increasing degradation. Ecological balance is broken, and preserved natural landscapes are not able to maintain it. Effective territorial organization of Moscow and the rational use of its territory are impossible without taking into account the natural component of the city as well as the properties and potential of the landscape complexes that integrate all natural features in specific areas. The formation of the ecological framework of the city is particularly important. It should be a single system of interrelated and complementary components that make up a single environmental space: habitat-forming cores (junctions), ecological corridors and elements of environmental infrastructure. Systemic unity of the environmental framework can support the territorial ecological compensation where a break of the ecological functions of one part of the system is compensated by maintaining or restoring them in another part and contribute to the polarization of incompatible types of land use. Habitat-forming cores should include as mandatory parts all the specifically protected natural areas (SPNAs), particularly valuable landscape complexes, as well as preserved adjacent forest areas. Their most important function should be to maintain resources and area reproducing abilities of landscapes, landscape diversity and biodiversity. Ecological corridors which perform environmental and operating transit functions should include unified landscape systems of river valleys, their hollow-beam upstreams and drained lows. The most important elements of environmental infrastructure include the most valuable forest and wetland complexes, springs and other landscape and aquatic complexes, cultural and historical landscape complexes, landscape complexes with high concentration of cultural heritage sites, sites of natural and green areas with great potential of natural and recreational resources, natural and recreational parks, natural monuments. They can serve as centers of landscape and biological diversity and perform partial transit (migration) and buffer functions. The territory of the ecological framework can be used for strictly regulated or limited recreation (tourism, short leisure). The adjacent natural and green spaces and natural parks may play a buffer role for the SPNAs and valuable landscape complexes. The spatial pattern of the landscape complexes of Moscow allows to create a single ecological framework based on the landscape, distinct for its interrelated and complementary components. Its basis may be consisted of uniform landscape complexes of valley outwash plains and river valleys, their hollow-beam upstreams and drained lows which perform system forming, environmental and transit functions. In the plan river valleys and small erosional forms are as if enclosed in the gullies and constitute single paradynamic systems unified by lateral flows. Therefore not only the edges of river valleys, but also the rear seams of the valley outwash plains should become important natural boundaries, limiting urban development of the area. Their most important functional feature is that they serve as local collectors and surface water runoff channels. These landscape complexes are distinct for most dynamic natural processes and thus negative exogenous processes. The authors have drawn indigenous (conditionally restored) and modern landscapes of Moscow on a scale of 1: 50,000 and on their basis an ecological framework map of Moscow. These maps are an important natural basis for the analysis of conditions and identification of limiting factors of the urban development of the big city.
Animal taxa contrast in their scale-dependent responses to land use change in rural Africa.
Foord, Stefan Hendrik; Swanepoel, Lourens Hendrik; Evans, Steven William; Schoeman, Colin Stefan; Erasmus, Barend Frederik N; Schoeman, M Corrie; Keith, Mark; Smith, Alain; Mauda, Evans Vusani; Maree, Naudene; Nembudani, Nkhumeleni; Dippenaar-Schoeman, Anna Sophia; Munyai, Thinandavha Caswell; Taylor, Peter John
2018-01-01
Human-dominated landscapes comprise the bulk of the world's terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that maintain diversity in these landscapes. Here we identify scales at which animal diversity responds by partitioning regional diversity in a rural African agro-ecosystem between one temporal and four spatial scales. Human land use practices are the main driver of diversity in all seven animal assemblages considered, with medium sized mammals and birds most affected. Even the least affected taxa, bats and non-volant small mammals (rodents), responded with increased abundance in settlements and agricultural sites respectively. Regional turnover was important to invertebrate taxa and their response to human land use was intermediate between that of the vertebrate extremes. Local scale (< 300 m) heterogeneity was the next most important level for all taxa, highlighting the importance of fine scale processes for the maintenance of biodiversity. Identifying the triggers of these changes within the context of functional landscapes would provide the context for the long-term sustainability of these rapidly changing landscapes.
Animal taxa contrast in their scale-dependent responses to land use change in rural Africa
Swanepoel, Lourens Hendrik; Evans, Steven William; Schoeman, Colin Stefan; Erasmus, Barend Frederik N.; Schoeman, M. Corrie; Keith, Mark; Smith, Alain; Mauda, Evans Vusani; Maree, Naudene; Nembudani, Nkhumeleni; Dippenaar-Schoeman, Anna Sophia; Munyai, Thinandavha Caswell; Taylor, Peter John
2018-01-01
Human-dominated landscapes comprise the bulk of the world’s terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that maintain diversity in these landscapes. Here we identify scales at which animal diversity responds by partitioning regional diversity in a rural African agro-ecosystem between one temporal and four spatial scales. Human land use practices are the main driver of diversity in all seven animal assemblages considered, with medium sized mammals and birds most affected. Even the least affected taxa, bats and non-volant small mammals (rodents), responded with increased abundance in settlements and agricultural sites respectively. Regional turnover was important to invertebrate taxa and their response to human land use was intermediate between that of the vertebrate extremes. Local scale (< 300 m) heterogeneity was the next most important level for all taxa, highlighting the importance of fine scale processes for the maintenance of biodiversity. Identifying the triggers of these changes within the context of functional landscapes would provide the context for the long-term sustainability of these rapidly changing landscapes. PMID:29738559
Wildlife tradeoffs based on landscape models of habitat preference
Loehle, C.; Mitchell, M.S.; White, M.
2000-01-01
Wildlife tradeoffs based on landscape models of habitat preference were presented. Multiscale logistic regression models were used and based on these models a spatial optimization technique was utilized to generate optimal maps. The tradeoffs were analyzed by gradually increasing the weighting on a single species in the objective function over a series of simulations. Results indicated that efficiency of habitat management for species diversity could be maximized for small landscapes by incorporating spatial context.
Liu, Xuelu; Ren, Jizhou; Zhang, Zihe
2002-08-01
Oasis landscape ecosystem is composed of 10 landscape elements, i.e., residence land, cultivated land, grassland, forestland, water area, water system, road, rocky desert, sandy desert, and gravel desert. Among the elements, cultivated land formed by human being production covers the most of the area, is most connected, and hence, is the matrix of the oasis landscape ecosystem. Residence land, grassland, forestland, water area, rocky desert, sandy desert, and gravel desert are patches. Residence land and forestland generate from human being production, while rocky desert, gravel desert and sandy desert are the remnant with the human being disturbance. Water region and grassland are the environmental resources remnant after natural disturbance. Water system and road are corridors. Cultivated land dominated in plant production should be utilized with more productive layers through developing animal production other than expanding used-area to maintain the landscape heterogeneity and diversity of the oasis landscape ecosystem. For remnant and environmental resource patches, it should be profitable in preserving and stabilizing landscape heterogeneity and diversity, exploiting the functions of water and soil conservation, tourism, windbreak and sand fixation. For landscape elements remnant only, it should be fruitful in avoiding degeneration of the landscape pattern to explore their preceding plant production with moderate plant production.
Bian, Zhen-Xing; Wang, Shuai; Wang, Qiu-Bing; Yu, Miao; Qian, Feng-Kui
2018-01-08
Peri-urban farmland provides a diversity of ecological services. However, it is experiencing increasing pressures from urban sprawl. While the effects of land use associated with farming on arthropod assemblages has received increasing attention, most of this research has been conducted by comparing conventional and organic cropping systems. The present study identifies the effects of urban sprawl and the role of non-cropped habitat in defining arthropod diversity in peri-urban farmed landscapes. Multi-scale arthropod data from 30 sampling plots were used with linear-mixed models to elucidate the effects of distance from urban areas (0-13 km; 13-25 km and >25 km, zones I, II, and III, respectively) on arthropods. Results showed that urban sprawl, disturbed farm landscapes, and disturbance in non-cropped habitats had negative effects on arthropods, the latter requiring arthropods to re-establish annually from surrounding landscapes via dispersal. While arthropod species richness showed no obvious changes, arthropod abundance was lowest in zone II. Generally, patch density (PD), Shannon diversity index (SHDI), and aggregate index (AI) of non-cropped habitat were major drivers of changes in arthropod populations. This study contributes to identifying the effects of urban sprawl on arthropod diversity and documenting the multiple functions of farm landscapes in peri-urban regions.
Tree species diversity mitigates disturbance impacts on the forest carbon cycle.
Silva Pedro, Mariana; Rammer, Werner; Seidl, Rupert
2015-03-01
Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.
Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah
2016-01-01
Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales and are strongly related to landscape composition. Bird assemblages are shaped by both environmental filtering and dispersal limitation, particularly in less forested landscapes. Conservation and management strategies should therefore prevent deforestation in this biodiversity hotspot. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Su, Shiliang; Xiao, Rui; Li, Delong; Hu, Yi'na
2014-03-01
A comparison of different transportation route types and their combined effects on landscape diversity was conducted within Tiaoxi watershed (China) between 1994 and 2005. Buffer analysis and Mann-Kendall's test were used to quantify the relationships between distance from transportation routes (railway, highway, national, and provincial road) and a family of landscape diversity parameters (Simpson's diversity index, Simpson's evenness index, Shannon's diversity index, and Shannon's evenness index). One-way ANOVA was further applied to compare influences from different route types and their combined effects. Five other landscape metrics (patch density, edge density, area-weighted mean shape index, connectance index, and Euclidean nearest neighbor distance) were also calculated to analyze the associations between landscape diversity and landscape pattern characteristics. Results showed that transportation routes exerted significant impacts on landscape diversity. Impact from railway was comparable to that from highway and national road but was more significant than that from provincial road. The spatial influential range of railway and national road was wider than that of highway and provincial road. Combined effects of routes were nonlinear, and impacts from different route types were more complex than those from the same type. The four landscape diversity metrics were comparably effective at the buffer zone scale. In addition, landscape diversity can be alternatively used to indicate fragmentation, connectivity, and isolation at route buffer scale. This study demonstrates an applicable approach to quantitatively characterize the impacts from transportation routes on landscape patterns and has potential to facilitate route network planning.
Ortego, Joaquín; Aguirre, María P; Noguerales, Víctor; Cordero, Pedro J
2015-01-01
Anthropogenic habitat fragmentation has altered the distribution and population sizes in many organisms worldwide. For this reason, understanding the demographic and genetic consequences of this process is necessary to predict the fate of populations and establish management practices aimed to ensure their viability. In this study, we analyse whether the spatial configuration of remnant semi-natural habitat patches within a chronically fragmented landscape has shaped the patterns of genetic diversity and structure in the habitat-specialist esparto grasshopper (Ramburiella hispanica). In particular, we predict that agricultural lands constitute barriers to gene flow and hypothesize that fragmentation has restricted interpopulation dispersal and reduced local levels of genetic diversity. Our results confirmed the expectation that isolation and habitat fragmentation have reduced the genetic diversity of local populations. Landscape genetic analyses based on circuit theory showed that agricultural land offers ∽1000 times more resistance to gene flow than semi-natural habitats, indicating that patterns of dispersal are constrained by the spatial configuration of remnant patches of suitable habitat. Overall, this study shows that semi-natural habitat patches act as corridors for interpopulation gene flow and should be preserved due to the disproportionately large ecological function that they provide considering their insignificant area within these human-modified landscapes. PMID:26136826
EPA’s ToxCast chemical library spans diverse chemical use-types, functionalities, structures and features potentially relevant to toxicity and environmental exposure. However, this structural diversity, along with assay noise and low average hit rates across the varied Tox...
EPA’s ToxCast chemical library spans diverse chemical use-types, functionalities, structures and features potentially relevant to toxicity and environmental exposure. However, this structural diversity, along with assay noise and low average hit rates across the varied ToxCast h...
NASA Astrophysics Data System (ADS)
Clough, Yann; Krishna, Vijesh V.; Corre, Marife D.; Darras, Kevin; Denmead, Lisa H.; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D.; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A. Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I. Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-10-01
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.
Clough, Yann; Krishna, Vijesh V.; Corre, Marife D.; Darras, Kevin; Denmead, Lisa H.; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D.; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A. Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I. Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M.; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-01-01
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation. PMID:27725673
Clough, Yann; Krishna, Vijesh V; Corre, Marife D; Darras, Kevin; Denmead, Lisa H; Meijide, Ana; Moser, Stefan; Musshoff, Oliver; Steinebach, Stefanie; Veldkamp, Edzo; Allen, Kara; Barnes, Andrew D; Breidenbach, Natalie; Brose, Ulrich; Buchori, Damayanti; Daniel, Rolf; Finkeldey, Reiner; Harahap, Idham; Hertel, Dietrich; Holtkamp, A Mareike; Hörandl, Elvira; Irawan, Bambang; Jaya, I Nengah Surati; Jochum, Malte; Klarner, Bernhard; Knohl, Alexander; Kotowska, Martyna M; Krashevska, Valentyna; Kreft, Holger; Kurniawan, Syahrul; Leuschner, Christoph; Maraun, Mark; Melati, Dian Nuraini; Opfermann, Nicole; Pérez-Cruzado, César; Prabowo, Walesa Edho; Rembold, Katja; Rizali, Akhmad; Rubiana, Ratna; Schneider, Dominik; Tjitrosoedirdjo, Sri Sudarmiyati; Tjoa, Aiyen; Tscharntke, Teja; Scheu, Stefan
2016-10-11
Smallholder-dominated agricultural mosaic landscapes are highlighted as model production systems that deliver both economic and ecological goods in tropical agricultural landscapes, but trade-offs underlying current land-use dynamics are poorly known. Here, using the most comprehensive quantification of land-use change and associated bundles of ecosystem functions, services and economic benefits to date, we show that Indonesian smallholders predominantly choose farm portfolios with high economic productivity but low ecological value. The more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. Between the monocultures, the higher economic performance of oil palm over rubber comes with the reliance on fertilizer inputs and with increased nutrient leaching losses. Strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation.
2013-06-01
setting, landscape position, watershed size), the structural components of the wetland ecosystem (e.g., plants , animals, soil , water, and the...Community Support Characteristic Invertebrate Community Support Landscape/Regional Biodiversity Diversity of native plant species (index, H’) Number of...Flagging GPS and Digital Camera / Spare Batteries Clipboard, Calculator, and Pencils County Soil Survey Plant Identification Keys Munsell
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality.
Hautier, Yann; Isbell, Forest; Borer, Elizabeth T; Seabloom, Eric W; Harpole, W Stanley; Lind, Eric M; MacDougall, Andrew S; Stevens, Carly J; Adler, Peter B; Alberti, Juan; Bakker, Jonathan D; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Caldeira, Maria C; Chaneton, Enrique J; Chu, Chengjin; Daleo, Pedro; Dickman, Christopher R; Dwyer, John M; Eskelinen, Anu; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Hillebrand, Helmut; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Morgan, John W; Pärtel, Meelis; Pascual, Jesus; Price, Jodi N; Prober, Suzanne M; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Standish, Rachel J; Virtanen, Risto; Wardle, Glenda M; Yahdjian, Laura; Hector, Andy
2018-01-01
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)-had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.
Continental-scale quantification of landscape values using social media data.
van Zanten, Boris T; Van Berkel, Derek B; Meentemeyer, Ross K; Smith, Jordan W; Tieskens, Koen F; Verburg, Peter H
2016-11-15
Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platforms-Panoramio, Flickr, and Instagram-and quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries.
Continental-scale quantification of landscape values using social media data
van Zanten, Boris T.; Van Berkel, Derek B.; Meentemeyer, Ross K.; Smith, Jordan W.; Tieskens, Koen F.
2016-01-01
Individuals, communities, and societies ascribe a diverse array of values to landscapes. These values are shaped by the aesthetic, cultural, and recreational benefits and services provided by those landscapes. However, across the globe, processes such as urbanization, agricultural intensification, and abandonment are threatening landscape integrity, altering the personally meaningful connections people have toward specific places. Existing methods used to study landscape values, such as social surveys, are poorly suited to capture dynamic landscape-scale processes across large geographic extents. Social media data, by comparison, can be used to indirectly measure and identify valuable features of landscapes at a regional, continental, and perhaps even worldwide scale. We evaluate the usefulness of different social media platforms—Panoramio, Flickr, and Instagram—and quantify landscape values at a continental scale. We find Panoramio, Flickr, and Instagram data can be used to quantify landscape values, with features of Instagram being especially suitable due to its relatively large population of users and its functional ability of allowing users to attach personally meaningful comments and hashtags to their uploaded images. Although Panoramio, Flickr, and Instagram have different user profiles, our analysis revealed similar patterns of landscape values across Europe across the three platforms. We also found variables describing accessibility, population density, income, mountainous terrain, or proximity to water explained a significant portion of observed variation across data from the different platforms. Social media data can be used to extend our understanding of how and where individuals ascribe value to landscapes across diverse social, political, and ecological boundaries. PMID:27799537
García-Martínez, Miguel Á; Valenzuela-González, Jorge E; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela
2017-01-01
Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to integrating riparian management strategies with broader environmental planning instruments.
Valenzuela-González, Jorge E.; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela
2017-01-01
Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to integrating riparian management strategies with broader environmental planning instruments. PMID:28234948
McCann, Thomas; Cooper, Alan; Rogers, David; McKenzie, Paul; McErlean, Thomas
2017-07-01
European hedged agricultural landscapes provide a range of ecosystem services and are an important component of cultural and biodiversity heritage. This paper investigates the extent of hedges, their woody species diversity (including the influence of historical versus recent hedge origin) and dynamics of change. The rationale is to contribute to an ecological basis for hedge habitat management. Sample sites were allocated based on a multivariate classification of landscape attributes. All field boundaries present in each site were mapped and surveyed in 1998 and 2007. To assess diversity, a list of all woody species was recorded in one standard 30 m linear plot within each hedge. There was a net decrease in hedge habitat extent, mainly as a result of removal, and changes between hedges and other field boundary types due to the development and loss of shrub growth-form. Agricultural intensification, increased rural building, and variation in hedge management practices were the main drivers of change. Hedges surveyed at baseline, which were lost at resurvey, were more species rich than new hedges gained. Hedges coinciding with historical land unit boundaries of likely Early Medieval origin were found to be more species rich. The most frequent woody species in hedges were native, including a high proportion with Fraxinus excelsior, a species under threat from current and emerging plant pests and pathogens. Introduced species were present in circa 30% of hedges. We conclude that since hedge habitat distribution and woody species diversity is a function of ecology and anthropogenic factors, the management of hedges in enclosed agricultural landscapes requires an integrated approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gonthier, David J.; Marín, Linda; Iverson, Aaron L.; Perfecto, Ivette
2014-01-01
Agricultural intensification is implicated as a major driver of global biodiversity loss. Local management and landscape scale factors both influence biodiversity in agricultural systems, but there are relatively few studies to date looking at how local and landscape scales influence biodiversity in tropical agroecosystems. Understanding what drives the diversity of groups of organisms such as spiders is important from a pragmatic point of view because of the important biocontrol services they offer to agriculture. Spiders in coffee are somewhat enigmatic because of their positive or lack of response to agricultural intensification. In this study, we provide the first analysis, to our knowledge, of the arboreal spiders in the shade trees of coffee plantations. In the Soconusco region of Chiapas, Mexico we sampled across 38 sites on 9 coffee plantations. Tree and canopy connectedness were found to positively influence overall arboreal spider richness and abundance. We found that different functional groups of spiders are responding to different local and landscape factors, but overall elevation was most important variable influencing arboreal spider diversity. Our study has practical management applications that suggest having shade grown coffee offers more suitable habitat for arboreal spiders due to a variety of the characteristics of the shade trees. Our results which show consistently more diverse arboreal spider communities in lower elevations are important in light of looming global climate change. As the range of suitable elevations for coffee cultivation shrinks promoting arboreal spider diversity will be important in sustaining the viability of coffee. PMID:25392751
Land-Sparing Agriculture Best Protects Avian Phylogenetic Diversity.
Edwards, David P; Gilroy, James J; Thomas, Gavin H; Uribe, Claudia A Medina; Haugaasen, Torbjørn
2015-09-21
The conversion of natural habitats to farmland is a major driver of the global extinction crisis. Two strategies are promoted to mitigate the impacts of agricultural expansion on biodiversity: land sharing integrates wildlife-friendly habitats within farmland landscapes, and land sparing intensifies farming to allow the offset of natural reserves. A key question is which strategy would protect the most phylogenetic diversity--the total evolutionary history shared across all species within a community. Conserving phylogenetic diversity decreases the chance of losing unique phenotypic and ecological traits and provides benefits for ecosystem function and stability. Focusing on birds in the threatened Chocó-Andes hotspot of endemism, we tested the relative benefits of each strategy for retaining phylogenetic diversity in tropical cloud forest landscapes threatened by cattle pastures. Using landscape simulations, we find that land sharing would protect lower community-level phylogenetic diversity than land sparing and that with increasing distance from forest (from 500 to >1,500 m), land sharing is increasingly inferior to land sparing. Isolation from forest also leads to the loss of more evolutionarily distinct species from communities within land-sharing landscapes, which can be avoided with effective land sparing. Land-sharing policies that promote the integration of small-scale wildlife-friendly habitats might be of limited benefit without the simultaneous protection of larger blocks of natural habitat, which is most likely to be achieved via land-sparing measures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Grundel, R.; Pavlovic, N.B.
2008-01-01
1. Managers considering restoration of landscapes often face a fundamental challenge - what should be the habitat composition of the restored landscape? We present a method for evaluating an important conservation trade-off inherent in making that decision. 2. Oak savannas and grasslands were historically widespread across central North America but are now rare. Today, in north-west Indiana, USA, habitats spanning a range of woody vegetation density, from nearly treeless open habitats to forests, occur across the conserved landscape where savannas probably once dominated. To understand the benefits of different potential landscape compositions, we evaluated how different proportions of five habitats - open, savanna, woodland, scrub and forest - might affect the conservation value of the north-west Indiana landscape for birds. Two variables of potential conservation importance were examined: species diversity, a measure of avian community richness, and conservation index, the percentage of a bird species' global population occurring on a hectare of landscape, summed across all bird species present. Higher values of conservation index were associated with higher local densities of globally more rare and more threatened species. 3. Conservation index and species diversity were correlated negatively across hypothetical landscapes composed of different proportions of the five habitats. Therefore, a management trade-off existed between conservation index and species diversity because landscapes that maximized species diversity differed from landscapes that maximized conservation index. 4. A landscape of 50% open, 22% savanna, 15% scrub and 13% forest was predicted to represent a compromise at which conservation index and species diversity reached the same percentage of their maxima. In contrast, the current landscape is dominated by forest. 5. Synthesis and applications. We quantified the trade-off between two potential aspects of a landscape's conservation value for birds - the landscape's ability to promote avian species diversity and the landscape's use by threatened avian species. This quantification allowed us to evaluate the ability of different landscape compositions to achieve preferable trade-off compromises, such as maximizing diversity for a given level of landscape use by threatened species. Managers can use these trade-off results to determine which landscape compositions are associated with particular conservation and management priorities.
Sasaki, Takehiro; Okubo, Satoru; Okayasu, Tomoo; Jamsran, Undarmaa; Ohkuro, Toshiya; Takeuchi, Kazuhiko
2009-03-01
The current growing body of evidence for diversity-disturbance relationships suggests that the peaked pattern predicted by the intermediate disturbance hypothesis (IDH) may not be the rule. Even if ecologists could quantify the diversity-disturbance relationship consistent with the IDH, the applicability of the IDH to land management has rarely been addressed. We examined two hypotheses related to the generality and management applicability of the IDH to Mongolian rangeland ecosystems: that the diversity-disturbance relationship varies as a function of landscape condition and that some intermediate scales of grazing can play an important role in terms of sustainable rangeland management through a grazing gradient approach. We quantified the landscape condition of each ecological site using an ordination technique and determined two types of landscape conditions: relatively benign and harsh environmental conditions. At the ecological sites characterized by relatively benign environmental conditions, diversity-disturbance relationships were generally consistent with the IDH, and maximum diversity was observed at some intermediate distance from the source of the grazing gradient. In contrast, the IDH was not supported at most (but not all) sites characterized by relatively harsh environmental conditions. The intermediate levels of grazing were generally located below the ecological threshold representing the points or zones at which disturbance should be limited to prevent drastic changes in ecological conditions, suggesting that there is little "conundrum" with regard to intermediate disturbance in the studied systems in terms of land management. We suggest that the landscape condition is one of the primary factors that cause inconsistencies in diversity-disturbance relationships. The ecological threshold can extend its utility in rangeland management because it also has the compatibility with the maintenance of species diversity. This study thus suggests that some intermediate scales of grazing and ecological thresholds are mutually supportive tools for sustainable management of Mongolian rangelands.
2016-01-01
Soil microbial communities are enormously diverse, with at least millions of species and trillions of genes unknown to science or poorly described. Soil microbial communities are key components of agriculture, for example, in provisioning nitrogen and protecting crops from pathogens, providing overall ecosystem services in excess of $1000bn per year. It is important to know how humans are affecting this hidden diversity. Much is known about the negative consequences of agricultural intensification on higher organisms, but almost nothing is known about how alterations to landscapes affect microbial diversity, distributions and processes. We review what is known about spatial flows of microbes and their response to land-use change, and outline nine hypotheses to advance research of microbiomes across landscapes. We hypothesize that intensified agriculture selects for certain taxa and genes, which then ‘spill over’ into adjacent unmodified areas and generate a halo of genetic differentiation around agricultural fields. Consequently, the spatial configuration and management intensity of different habitats combines with the dispersal ability of individual taxa to determine the extent of spillover, which can impact the functioning of adjacent unmodified habitats. When landscapes are heterogeneous and dispersal rates are high, this will select for large genomes that allow exploitation of multiple habitats, a process that may be accelerated through horizontal gene transfer. Continued expansion of agriculture will increase genotypic similarity, making microbial community functioning increasingly variable in human-dominated landscapes, potentially also impacting the consistent provisioning of ecosystem services. While the resulting economic costs have not been calculated, it is clear that dispersal dynamics of microbes should be taken into consideration to ensure that ecosystem functioning and services are maintained in agri-ecosystem mosaics. PMID:27928044
Bell, Thomas; Tylianakis, Jason M
2016-12-14
Soil microbial communities are enormously diverse, with at least millions of species and trillions of genes unknown to science or poorly described. Soil microbial communities are key components of agriculture, for example, in provisioning nitrogen and protecting crops from pathogens, providing overall ecosystem services in excess of $1000bn per year. It is important to know how humans are affecting this hidden diversity. Much is known about the negative consequences of agricultural intensification on higher organisms, but almost nothing is known about how alterations to landscapes affect microbial diversity, distributions and processes. We review what is known about spatial flows of microbes and their response to land-use change, and outline nine hypotheses to advance research of microbiomes across landscapes. We hypothesize that intensified agriculture selects for certain taxa and genes, which then 'spill over' into adjacent unmodified areas and generate a halo of genetic differentiation around agricultural fields. Consequently, the spatial configuration and management intensity of different habitats combines with the dispersal ability of individual taxa to determine the extent of spillover, which can impact the functioning of adjacent unmodified habitats. When landscapes are heterogeneous and dispersal rates are high, this will select for large genomes that allow exploitation of multiple habitats, a process that may be accelerated through horizontal gene transfer. Continued expansion of agriculture will increase genotypic similarity, making microbial community functioning increasingly variable in human-dominated landscapes, potentially also impacting the consistent provisioning of ecosystem services. While the resulting economic costs have not been calculated, it is clear that dispersal dynamics of microbes should be taken into consideration to ensure that ecosystem functioning and services are maintained in agri-ecosystem mosaics. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor
The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimalmore » frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism.« less
Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo
2007-09-01
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity.
Fourtune, Lisa; Prunier, Jérôme G; Paz-Vinas, Ivan; Loot, Géraldine; Veyssière, Charlotte; Blanchet, Simon
2018-04-01
Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.
Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.
Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.
2011-01-01
The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.
NASA Astrophysics Data System (ADS)
Beller, E.; Robinson, A.; Grossinger, R.; Grenier, L.; Davenport, A.
2015-12-01
Adaptation to climate change requires redesigning our landscapes and watersheds to maximize ecological resilience at large scales and integrated across urban areas, wildlands, and a diversity of ecosystem types. However, it can be difficult for environmental managers and designers to access, interpret, and apply resilience concepts at meaningful scales and across a range of settings. To address this gap, we produced a Landscape Resilience Framework that synthesizes the latest science on the qualitative mechanisms that drive resilience of ecological functions to climate change and other large-scale stressors. The framework is designed to help translate resilience science into actionable ecosystem conservation and restoration recommendations and adaptation strategies by providing a concise but comprehensive list of considerations that will help integrate resilience concepts into urban design, conservation planning, and natural resource management. The framework is composed of seven principles that represent core attributes which determine the resilience of ecological functions within a landscape. These principles are: setting, process, connectivity, redundancy, diversity/complexity, scale, and people. For each principle we identify several key operationalizable components that help illuminate specific recommendations and actions that are likely to contribute to landscape resilience for locally appropriate species, habitats, and biological processes. We are currently using the framework to develop landscape-scale recommendations for ecological resilience in the heavily urbanized Silicon Valley, California, in collaboration with local agencies, companies, and regional experts. The resilience framework is being applied across the valley, including urban, suburban, and wildland areas and terrestrial and aquatic ecosystems. Ultimately, the framework will underpin the development of strategies that can be implemented to bolster ecological resilience from a site to landscape scale.
Medical applications: a database and characterization of apps in Apple iOS and Android platforms.
Seabrook, Heather J; Stromer, Julie N; Shevkenek, Cole; Bharwani, Aleem; de Grood, Jill; Ghali, William A
2014-08-27
Medical applications (apps) for smart phones and tablet computers are growing in number and are commonly used in healthcare. In this context, there is a need for a diverse community of app users, medical researchers, and app developers to better understand the app landscape. In mid-2012, we undertook an environmental scan and classification of the medical app landscape in the two dominant platforms by searching the medical category of the Apple iTunes and Google Play app download sites. We identified target audiences, functions, costs and content themes using app descriptions and captured these data in a database. We only included apps released or updated between October 1, 2011 and May 31, 2012, with a primary "medical" app store categorization, in English, that contained health or medical content. Our sample of Android apps was limited to the most popular apps in the medical category. Our final sample of Apple iOS (n = 4561) and Android (n = 293) apps illustrate a diverse medical app landscape. The proportion of Apple iOS apps for the public (35%) and for physicians (36%) is similar. Few Apple iOS apps specifically target nurses (3%). Within the Android apps, those targeting the public dominated in our sample (51%). The distribution of app functions is similar in both platforms with reference being the most common function. Most app functions and content themes vary considerably by target audience. Social media apps are more common for patients and the public, while conference apps target physicians. We characterized existing medical apps and illustrated their diversity in terms of target audience, main functions, cost and healthcare topic. The resulting app database is a resource for app users, app developers and health informatics researchers.
Bernard R. Parresol
2011-01-01
Studies of spatial patterns of landscapes are useful to quantify human impact, predict wildlife effects, or describe variability of landscape features. A common approach to identify and quantify landscape structure is with a landscape scale model known as a contagion index. A contagion index quantifies two distinct components of landscape diversity: composition and...
Nodes, networks, and MUMs: Preserving diversity at all scales
NASA Astrophysics Data System (ADS)
Noss, Reed F.; Harris, Larry D.
1986-05-01
The present focus of practical conservation efforts is limited in scope. This narrowness results in an inability to evaluate and manage phenomena that operate at large spatiotemporal scales. Whereas real ecological phenomena function in a space-time mosaic across a full hierarchy of biological entities and processes, current conservation strategies address a limited spectrum of this complexity. Conservation typically is static (time-limited), concentrates on the habitat content rather than the landscape context of protected areas, evaluates relatively homogeneous communities instead of heterogeneous landscapes, and directs attention to particular species populations and/or the aggregate statistic of species diversity. Insufficient attention has been given to broad ecological patterns and processes and to the conservation of species in natural relative abundance patterns (native diversity). The authors present a conceptual scheme that evaluates not only habitat content within protected areas, but also the landscape context in which each preserve exists. Nodes of concentrated ecological value exist in each landscape at all levels in the biological hierarchy. Integration of these high-quality nodes into a functional network is possible through the establishment of a system of interconnected multiple-use modules (MUMs). The MUM network protects and buffers important ecological entities and phenomena, while encouraging movement of individuals, species, nutrients, energy, and even habitat patches across space and time. An example is presented for the southeastern USA (south Georgia-north Florida), that uses riparian and coastal corridors to interconnect existing protected areas. This scheme will facilitate reintroduction and preservation of wide-ranging species such as the Florida panther, and help reconcile species-level and ecosystem-level conservation approaches.
Cityscape genetics: structural vs. functional connectivity of an urban lizard population.
Beninde, Joscha; Feldmeier, Stephan; Werner, Maike; Peroverde, Daniel; Schulte, Ulrich; Hochkirch, Axel; Veith, Michael
2016-10-01
Functional connectivity is essential for the long-term persistence of populations. However, many studies assess connectivity with a focus on structural connectivity only. Cityscapes, namely urban landscapes, are particularly dynamic and include numerous potential anthropogenic barriers to animal movements, such as roads, traffic or buildings. To assess and compare structural connectivity of habitats and functional connectivity of gene flow of an urban lizard, we here combined species distribution models (SDMs) with an individual-based landscape genetic optimization procedure. The most important environmental factors of the SDMs are structural diversity and substrate type, with high and medium levels of structural diversity as well as open and rocky/gravel substrates contributing most to structural connectivity. By contrast, water cover was the best model of all environmental factors following landscape genetic optimization. The river is thus a major barrier to gene flow, while of the typical anthropogenic factors only buildings showed an effect. Nonetheless, using SDMs as a basis for landscape genetic optimization provided the highest ranked model for functional connectivity. Optimizing SDMs in this way can provide a sound basis for models of gene flow of the cityscape, and elsewhere, while presence-only and presence-absence modelling approaches showed differences in performance. Additionally, interpretation of results based on SDM factor importance can be misleading, dictating more thorough analyses following optimization of SDMs. Such approaches can be adopted for management strategies, for example aiming to connect native common wall lizard populations or disconnect them from non-native introduced populations, which are currently spreading in many cities in Central Europe. © 2016 John Wiley & Sons Ltd.
Use of Knowledge-informed Chemotypes to Explore the ToxCast/Tox21 Chemical-Data Landscape (OpenTox)
The ToxCast and Tox21 chemical libraries currently exceed 3000 and 9000 unique chemicals, respectively, and span a broad diversity of chemical use-types, functionality, and toxicity mechanism and endpoint space. These libraries function as mechanism probes across hundreds of hig...
A knowledge-informed chemotype approach to mining the ToxCast/Tox21 chemical-data landscape (WC9)
ToxCast and Tox21 chemical libraries currently exceed 2000 and 8000 unique chemicals, respectively, and span a broad diversity of chemical use-types, functionality, and toxicity mechanism and endpoint space. These libraries function as mechanism probes across hundreds of high-th...
Advances in pollination ecology from tropical plantation crops.
Klein, Alexandra-Maria; Cunningham, Saul A; Bos, Merijn; Steffan-Dewenter, Ingolf
2008-04-01
Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.
Jordan, Rebecca; Dillon, Shannon K; Prober, Suzanne M; Hoffmann, Ary A
2016-12-01
In order to contribute to evolutionary resilience and adaptive potential in highly modified landscapes, revegetated areas should ideally reflect levels of genetic diversity within and across natural stands. Landscape genomic analyses enable such diversity patterns to be characterized at genome and chromosomal levels. Landscape-wide patterns of genomic diversity were assessed in Eucalyptus microcarpa, a dominant tree species widely used in revegetation in Southeastern Australia. Trees from small and large patches within large remnants, small isolated remnants and revegetation sites were assessed across the now highly fragmented distribution of this species using the DArTseq genomic approach. Genomic diversity was similar within all three types of remnant patches analysed, although often significantly but only slightly lower in revegetation sites compared with natural remnants. Differences in diversity between stand types varied across chromosomes. Genomic differentiation was higher between small, isolated remnants, and among revegetated sites compared with natural stands. We conclude that small remnants and revegetated sites of our E. microcarpa samples largely but not completely capture patterns in genomic diversity across the landscape. Genomic approaches provide a powerful tool for assessing restoration efforts across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
de Frutos, Ángel; Navarro, Teresa; Pueyo, Yolanda; Alados, Concepción L.
2015-01-01
Predicting the capacity of ecosystems to absorb impacts from disturbance events (resilience), including land-use intensification and landscape fragmentation, is challenging in the face of global change. Little is known about the impacts of fragmentation on ecosystem functioning from a multi-dimensional perspective (multiple traits). This study used 58 500-m linear transects to quantify changes in the functional composition and resilience of vascular plant communities in response to an increase in landscape fragmentation in 18 natural scrubland fragments embedded within a matrix of abandoned crop fields in Cabo de Gata-Níjar Natural Park, Almería, Spain. Changes in functional community composition were measured using functional diversity indices (functional richness and functional dispersion) that were based on 12 plant traits. Resilience was evaluated using the functional redundancy and response diversity from the perspective of plant dispersal, which is important, particularly, in fragmented landscapes. Scrubland fragmentation was measured using the Integral Index of Connectivity (IIC). The functional richness of the plant communities was higher in the most fragmented scrubland. Conversely, the functional dispersion (i.e., spread) of trait values among species in the functional trait space was lower at the most fragmented sites; consequently, the ecological tolerance of the vegetation to scrubland fragmentation decreased. Classifying the plant species into four functional groups indicated that fragmentation favoured an increase in functional redundancy in the ‘short basal annual forbs and perennial forbs’ group, most of which are species adapted to degraded soils. An assessment based on the traits associated with plant dispersal indicated that the resilience of ‘woody plants’, an important component in the Mediterranean scrubland, and habitat fragmentation were negatively correlated; however, the correlation was positive in the ‘short basal annual forbs and perennial forbs’ and the ‘grasses’ groups. PMID:25790432
Loss of functional diversity of ant assemblages in secondary tropical forests.
Bihn, Jochen H; Gebauer, Gerhard; Brandl, Roland
2010-03-01
Secondary forests and plantations increasingly dominate the tropical wooded landscape in place of primary forests. The expected reduction of biodiversity and its impact on ecological functions provided by these secondary forests are of major concern to society and ecologists. The potential effect of biodiversity loss on ecosystem functioning depends largely on the associated loss in the functional diversity of animal and plant assemblages, i.e., the degree of functional redundancy among species. However, the relationship between species and functional diversity is still poorly documented for most ecosystems. Here, we analyze how changes in the species diversity of ground-foraging ant assemblages translate into changes of functional diversity along a successional gradient of secondary forests in the Atlantic Forest of Brazil. Our analysis uses continuous measures of functional diversity and is based on four functional traits related to resource use of ants: body size, relative eye size, relative leg length, and trophic position. We find a strong relationship between species and functional diversity, independent of the functional traits used, with no evidence for saturation in this relationship. Recovery of species richness and diversity of ant assemblages in tropical secondary forests was accompanied by a proportional increase of functional richness and diversity of assemblages. Moreover, our results indicate that the increase in functional diversity along the successional gradient of secondary forests is primarily driven by rare species, which are functionally unique. The observed loss of both species and functional diversity in secondary forests offers no reason to believe that the ecological functions provided by secondary forests are buffered against species loss through functional redundancy.
Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.
Okullo, Paul; Moe, Stein R
2012-09-01
Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.
USDA-ARS?s Scientific Manuscript database
Landscape simplification and natural habitat loss can negatively affect wild bees. Alternatively, anthropogenic land-use change can potentially diversify landscapes to create complementary habitats that increase overall resource continuity and diversity. We examined the effects of landscape composit...
Davis, Hayley; Ritchie, Euan G; Avitabile, Sarah; Doherty, Tim; Nimmo, Dale G
2018-04-01
Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis. Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis (i) that fire shapes vegetation structure over sufficient time frames to influence species' occurrence, (ii) that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire, (iii) that species' probability of occurrence or abundance peaks at varying times since fire and (iv) that providing a diversity of fire-ages increases species diversity at the landscape scale. Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire. Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity. Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary.
Davis, Hayley; Ritchie, Euan G.; Avitabile, Sarah; Doherty, Tim
2018-01-01
Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis. Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis (i) that fire shapes vegetation structure over sufficient time frames to influence species' occurrence, (ii) that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire, (iii) that species’ probability of occurrence or abundance peaks at varying times since fire and (iv) that providing a diversity of fire-ages increases species diversity at the landscape scale. Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire. Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity. Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary. PMID:29765661
Historical habitat connectivity affects current genetic structure in a grassland species.
Münzbergová, Z; Cousins, S A O; Herben, T; Plačková, I; Mildén, M; Ehrlén, J
2013-01-01
Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co-dominant markers to estimate genetic diversity and deviation from Hardy-Weinberg equilibrium in 31 populations distributed within a 5 km(2) agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds
Vincent, Warwick F.; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie
2017-01-01
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic. PMID:29182670
Halffter, Gonzalo; Pineda, Eduardo; Arellano, Lucrecia; Escobar, Federico
2007-12-01
We analyzed changes over time in species composition and functional guild structure (temporal beta diversity) for natural assemblages and those modified by humans in a fragmented, tropical mountain landscape. The assemblages belong to cloud forests (the original vegetation type), secondary forests, traditional shaded coffee plantations, commercial shaded coffee plantations, and a cattle pasture. Copronecrophagous beetles, subfamily Scarabaeinae (Insecta: Coleoptera: Scarabaeidae), were used as the indicator group. This group has been used in previous studies and other tropical forests and has been found to be a good indicator of the effects of anthropogenic change. For each assemblage, we compared samples that were collected several years apart. Changes were found in species composition, order of abundance, and in the proportion that a given species is present in the different functional groups. The changes that occurred between samplings affected the less abundant species in the cloud forest and in the pasture. In the other vegetation types, both abundant and less abundant species were affected. Their order of abundance and proportion in the different guilds also changed. This study shows that, although landscape richness remains relatively constant, richness at the local level (alpha diversity) changes notably even over short lapses of time. This could be a characteristic of landscapes with intermediate degrees of disturbance (such as those that have been partially modified for human use), where assemblage composition is very fluid.
Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds.
Crevecoeur, Sophie; Vincent, Warwick F; Comte, Jérôme; Matveev, Alex; Lovejoy, Connie
2017-01-01
Lakes and ponds derived from thawing permafrost are strong emitters of carbon dioxide and methane to the atmosphere, but little is known about the methane oxidation processes in these waters. Here we investigated the distribution and potential activity of aerobic methanotrophic bacteria in thaw ponds in two types of eroding permafrost landscapes in subarctic Québec: peatlands and mineral soils. We hypothesized that methanotrophic community composition and potential activity differ regionally as a function of the landscape type and permafrost degradation stage, and locally as a function of depth-dependent oxygen conditions. Our analysis of pmoA transcripts by Illumina amplicon sequencing and quantitative PCR showed that the communities were composed of diverse and potentially active lineages. Type I methanotrophs, particularly Methylobacter, dominated all communities, however there was a clear taxonomic separation between the two landscape types, consistent with environmental control of community structure. In contrast, methanotrophic potential activity, measured by pmoA transcript concentrations, did not vary with landscape type, but correlated with conductivity, phosphorus and total suspended solids. Methanotrophic potential activity was also detected in low-oxygen bottom waters, where it was inversely correlated with methane concentrations, suggesting methane depletion by methanotrophs. Methanotrophs were present and potentially active throughout the water column regardless of oxygen concentration, and may therefore be resilient to future mixing and oxygenation regimes in the warming subarctic.
Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern
2014-01-01
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales. PMID:25058307
Street trees reduce the negative effects of urbanization on birds.
Pena, João Carlos de Castro; Martello, Felipe; Ribeiro, Milton Cezar; Armitage, Richard A; Young, Robert J; Rodrigues, Marcos
2017-01-01
The effects of streets on biodiversity is an important aspect of urban ecology, but it has been neglected worldwide. Several vegetation attributes (e.g. street tree density and diversity) have important effects on biodiversity and ecological processes. In this study, we evaluated the influences of urban vegetation-represented by characteristics of street trees (canopy size, proportion of native tree species and tree species richness)-and characteristics of the landscape (distance to parks and vegetation quantity), and human impacts (human population size and exposure to noise) on taxonomic data and functional diversity indices of the bird community inhabiting streets. The study area was the southern region of Belo Horizonte (Minas Gerais, Brazil), a largely urbanized city in the understudied Neotropical region. Bird data were collected on 60 point count locations distributed across the streets of the landscape. We used a series of competing GLM models (using Akaike's information criterion for small sample sizes) to assess the relative contribution of the different sets of variables to explain the observed patterns. Seventy-three bird species were observed exploiting the streets: native species were the most abundant and frequent throughout this landscape. The bird community's functional richness and Rao's Quadratic Entropy presented values lower than 0.5. Therefore, this landscape was favoring few functional traits. Exposure to noise was the most limiting factor for this bird community. However, the average size of arboreal patches and, especially the characteristics of street trees, were able to reduce the negative effects of noise on the bird community. These results show the importance of adequately planning the urban afforestation process: increasing tree species richness, preserving large trees and planting more native trees species in the streets are management practices that will increase bird species richness, abundance and community functional aspects and consequently improve human wellbeing and quality of life.
Cleary, Katherine A; Waits, Lisette P; Finegan, Bryan
2017-09-01
Agricultural intensification in tropical landscapes poses a new threat to the ability of biological corridors to maintain functional connectivity for native species. We use a landscape genetics approach to evaluate impacts of expanding pineapple plantations on two widespread and abundant frugivorous bats in a biological corridor in Costa Rica. We hypothesize that the larger, more mobile Artibeus jamaicensis will be less impacted by pineapple than the smaller Carollia castanea. In 2012 and 2013, we sampled 735 bats in 26 remnant forest patches surrounded by different proportions of forest, pasture, crops and pineapple. We used 10 microsatellite loci for A. jamaicensis and 16 microsatellite loci for C. castanea to estimate genetic diversity and gene flow. Canonical correspondence analyses indicate that land cover type surrounding patches has no impact on genetic diversity of A. jamaicensis. However, for C. castanea, both percentage forest and pineapple surrounding patches explained a significant proportion of the variation in genetic diversity. Least-cost transect analyses (LCTA) and pairwise G″st suggest that for A. jamaicensis, pineapple is more permeable to gene flow than expected, while as expected, forest is the most permeable land cover for gene flow of C. castanea. For both species, LCTA indicate that development may play a role in inhibiting gene flow. The current study answers the call for landscape genetic research focused on tropical and agricultural landscapes, highlights the value of comparative landscape genetics in biological corridor design and management and is one of the few studies of biological corridors in any ecosystem to implement a genetic approach to test corridor efficacy. © 2017 John Wiley & Sons Ltd.
Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.
Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W
2013-01-01
Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.
Wang, Hongqing; Steyer, Gregory D.; Couvillion, Brady R.; John M. Rybczyk,; Beck, Holly J.; William J. Sleavin,; Ehab A. Meselhe,; Mead A. Allison,; Ronald G. Boustany,; Craig J. Fischenich,; Victor H. Rivera-Monroy,
2014-01-01
Large sediment diversions are proposed and expected to build new wetlands to alleviate the extensive wetland loss (5,000 km2) affecting coastal Louisiana during the last 78 years. Current assessment and prediction of the impacts of sediment diversions have focused on the capture and dispersal of both water and sediment on the adjacent river side and the immediate outfall marsh area. However, little is known about the effects of sediment diversions on existing wetland surface elevation and vertical accretion dynamics in the receiving basin at the landscape scale. In this study, we used a spatial wetland surface elevation model developed in support of Louisiana's 2012 Coastal Master Plan to examine such landscape-scale effects of sediment diversions. Multiple sediment diversion projects were incorporated in the model to simulate surface elevation and vertical accretion for the next 50 years (2010-2060) under two environmental (moderate and less optimistic) scenarios. Specifically, we examined landscape-scale surface elevation and vertical accretion trends under diversions with different geographical locations, diverted discharge rates, and geomorphic characteristics of the receiving basin. Model results indicate that small diversions (< 283 m3 s-1) tend to have limited effects of reducing landscape-scale elevation loss (< 3%) compared to a future without action (FWOA) condition. Large sediment diversions (> 1,500 m3 s-1) are required to achieve landscape-level benefits to promote surface elevation via vertical accretion to keep pace with rising sea level.
Integrating spatially explicit representations of landscape perceptions into land change research
Dorning, Monica; Van Berkel, Derek B.; Semmens, Darius J.
2017-01-01
Purpose of ReviewHuman perceptions of the landscape can influence land-use and land-management decisions. Recognizing the diversity of landscape perceptions across space and time is essential to understanding land change processes and emergent landscape patterns. We summarize the role of landscape perceptions in the land change process, demonstrate advances in quantifying and mapping landscape perceptions, and describe how these spatially explicit techniques have and may benefit land change research.Recent FindingsMapping landscape perceptions is becoming increasingly common, particularly in research focused on quantifying ecosystem services provision. Spatial representations of landscape perceptions, often measured in terms of landscape values and functions, provide an avenue for matching social and environmental data in land change studies. Integrating these data can provide new insights into land change processes, contribute to landscape planning strategies, and guide the design and implementation of land change models.SummaryChallenges remain in creating spatial representations of human perceptions. Maps must be accompanied by descriptions of whose perceptions are being represented and the validity and uncertainty of those representations across space. With these considerations, rapid advancements in mapping landscape perceptions hold great promise for improving representation of human dimensions in landscape ecology and land change research.
NASA Astrophysics Data System (ADS)
Hakkenberg, Christopher R.
Forest modification, from local stress to global change, has given rise to efforts to model, map, and monitor critical properties of forest communities like structure, composition, and diversity. Predictive models based on data from spatially-nested field plots and LiDAR-hyperspectral remote sensing systems are one particularly effective means towards the otherwise prohibitively resource-intensive task of consistently characterizing forest community dynamics at landscape scales. However, to date, most predictive models fail to account for actual (rather than idealized) species and community distributions, are unsuccessful in predicting understory components in structurally and taxonomically heterogeneous forests, and may suffer from diminished predictive accuracy due to incongruity in scale and precision between field plot samples, remotely-sensed data, and target biota of varying size and density. This three-part study addresses these and other concerns in the modeling and mapping of emergent properties of forest communities by shifting the scope of prediction from the individual or taxon to the whole stand or community. It is, after all, at the stand scale where emergent properties like functional processes, biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship between forest structure (a proxy for successional demographics and resource competition) and tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as well as turnover in community-continua at varying compositional resolutions in a North Carolina Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy structure, and foliar biochemistry. Recognizing that the distinction between correlation and causation mirrors that between knowledge and understanding, all three studies distinguish between prediction of pattern and inference of process. Thus, in addition to advancing mapping methodologies relevant to a range of forest ecosystem management and monitoring applications, all three studies are noteworthy for assessing the ecological relationship between environmental predictors and emergent landscape patterns in plant composition and diversity in North Carolina Piedmont forests.
NASA Astrophysics Data System (ADS)
Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff
2017-04-01
The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic shift in ecosystem function under future climatic scenarios.
Landscape metrics as functional traits in plants: perspectives from a glacier foreland
Dainese, Matteo; Krüsi, Bertil O.; McCollin, Duncan
2017-01-01
Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species’ patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data. PMID:28785514
Landscape metrics as functional traits in plants: perspectives from a glacier foreland.
Sitzia, Tommaso; Dainese, Matteo; Krüsi, Bertil O; McCollin, Duncan
2017-01-01
Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species' patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.
Lu, Chao; Qi, Wei; Li, Le; Sun, Yao; Qin, Tian-Tian; Wang, Na-Na
2012-05-01
Landscape pattern indices are the commonly used tools for the quantitative analysis of landscape pattern. However, the traditional 2D landscape pattern indices neglect the effects of terrain on landscape, existing definite limitations in quantitatively describing the landscape patterns in mountains areas. Taking the Qixia City, a typical mountainous and hilly region in Shandong Province of East China, as a case, this paper compared the differences between 2D and 3D landscape pattern indices in quantitatively describing the landscape patterns and their dynamic changes in mountainous areas. On the basis of terrain structure analysis, a set of landscape pattern indices were selected, including area and density (class area and mean patch size), edge and shape (edge density, landscape shape index, and fractal dimension of mean patch), diversity (Shannon's diversity index and evenness index) , and gathering and spread (contagion index). There existed obvious differences between the 3D class area, mean patch area, and edge density and the corresponding 2D indices, but no significant differences between the 3D landscape shape index, fractal dimension of mean patch, and Shannon' s diversity index and evenness index and the corresponding 2D indices. The 3D contagion index and 2D contagion index had no difference. Because the 3D landscape pattern indices were calculated by using patch surface area and surface perimeter whereas the 2D landscape pattern indices were calculated by adopting patch projective area and projective perimeter, the 3D landscape pattern indices could be relative accurate and efficient in describing the landscape area, density and borderline, in mountainous areas. However, there were no distinct differences in describing landscape shape, diversity, and gathering and spread between the 3D and 2D landscape pattern indices. Generally, by introducing 3D landscape pattern indices to topographic pattern, the description of landscape pattern and its dynamic change would be relatively accurate.
Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine
2016-01-01
Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee species assemblages in forested landscapes.
Constanze Buhk; Martin Alt; Manuel J. Steinbauer; Carl Beierkuhnlein; Steve Warren; Anke Jentsch
2017-01-01
The prevention of biodiversity loss in agricultural landscapes to protect ecosystem stability and functions is of major importance to stabilize overall diversity. Intense agriculture leads to a loss in species richness and homogenization of species pools, but the processes behind are poorly understood due to a lack of systematic case studies: The specific...
USDA-ARS?s Scientific Manuscript database
Soil is a fragile resource supplying many goods and services. Given the diversity of soil across the world and within a landscape, there are many different capacities among soils to provide the basic soil functions. Marginality of soils is a difficult process to define because the metrics to define ...
NASA Astrophysics Data System (ADS)
Hofmann, Anett
2015-04-01
"Bruno Braunerde und die Bodentypen" is a German-language learning material that fosters discovery of soil diversity and soil functions in kids, teens and adults who enjoy interactive learning activities. The learning material consists of (i) a large poster (dimensions 200 x 120 cm) showing an imaginative illustrated landscape that could be situated in Austria, Switzerland or southern Germany and (ii) a set of 15 magnetic cards that show different soil cartoon characters, e.g. Bruno Braunerde (Cambisol), Stauni Pseudogley (Stagnic Luvisol) or Heidi Podsol (Podzol) on the front and a fun profession and address (linked to the respective soil functions) on the back side. The task is to place the soil cartoon characters to their 'home' in the landscape. This learning material was developed as a contribution to the International Year of Soils 2015 and is supported by the German, Austrian and Swiss Soil Sciences Societies and the Swiss Federal Office for the Environment. The soil cartoon characters are an adaptation of the original concept by the James Hutton Institute, Aberdeen, Scotland (www.hutton.ac.uk/learning/dirt-doctor).
Spatiotemporal Features of the Three-Dimensional Architectural Landscape in Qingdao, China.
Zhang, Peifeng
2015-01-01
The evolution and development of the three-dimensional (3D) architectural landscape is the basis of proper urban planning, eco-environment construction and the improvement of environmental quality. This paper presents the spatiotemporal characteristics of the 3D architectural landscape of the Shinan and Shibei districts in Qingdao, China, based on buildings' 3D information extracted from Quickbird images from 2003 to 2012, supported by Barista, landscape metrics and GIS. The results demonstrated that: (1) Shinan and Shibei districts expanded vertically and urban land use intensity increased noticeably from year to year. (2) Significant differences in the 3D architectural landscape existed among the western, central and eastern regions, and among the 26 sub-districts over the study period. The differentiation was consistent with the diverse development history, function and planning of the two districts. Finally, we found that population correlates positively with the variation in the 3D architectural landscape. This research provides an important reference for related studies, urban planning and eco-city construction.
Spatiotemporal Features of the Three-Dimensional Architectural Landscape in Qingdao, China
Zhang, Peifeng
2015-01-01
The evolution and development of the three-dimensional (3D) architectural landscape is the basis of proper urban planning, eco-environment construction and the improvement of environmental quality. This paper presents the spatiotemporal characteristics of the 3D architectural landscape of the Shinan and Shibei districts in Qingdao, China, based on buildings’ 3D information extracted from Quickbird images from 2003 to 2012, supported by Barista, landscape metrics and GIS. The results demonstrated that: (1) Shinan and Shibei districts expanded vertically and urban land use intensity increased noticeably from year to year. (2) Significant differences in the 3D architectural landscape existed among the western, central and eastern regions, and among the 26 sub-districts over the study period. The differentiation was consistent with the diverse development history, function and planning of the two districts. Finally, we found that population correlates positively with the variation in the 3D architectural landscape. This research provides an important reference for related studies, urban planning and eco-city construction. PMID:26361016
Thapa, Kanchan; Manandhar, Sulochana; Bista, Manisha; Shakya, Jivan; Sah, Govind; Dhakal, Maheshwar; Sharma, Netra; Llewellyn, Bronwyn; Wultsch, Claudia; Waits, Lisette P; Kelly, Marcella J; Hero, Jean-Marc; Hughes, Jane; Karmacharya, Dibesh
2018-01-01
With fewer than 200 tigers (Panthera tigris tigris) left in Nepal, that are generally confined to five protected areas across the Terai Arc Landscape, genetic studies are needed to provide crucial information on diversity and connectivity for devising an effective country-wide tiger conservation strategy. As part of the Nepal Tiger Genome Project, we studied landscape change, genetic variation, population structure, and gene flow of tigers across the Terai Arc Landscape by conducting Nepal's first comprehensive and systematic scat-based, non-invasive genetic survey. Of the 770 scat samples collected opportunistically from five protected areas and six presumed corridors, 412 were tiger (57%). Out of ten microsatellite loci, we retain eight markers that were used in identifying 78 individual tigers. We used this dataset to examine population structure, genetic variation, contemporary gene flow, and potential population bottlenecks of tigers in Nepal. We detected three genetic clusters consistent with three demographic sub-populations and found moderate levels of genetic variation (He = 0.61, AR = 3.51) and genetic differentiation (FST = 0.14) across the landscape. We detected 3-7 migrants, confirming the potential for dispersal-mediated gene flow across the landscape. We found evidence of a bottleneck signature likely caused by large-scale land-use change documented in the last two centuries in the Terai forest. Securing tiger habitat including functional forest corridors is essential to enhance gene flow across the landscape and ensure long-term tiger survival. This requires cooperation among multiple stakeholders and careful conservation planning to prevent detrimental effects of anthropogenic activities on tigers.
Manandhar, Sulochana; Bista, Manisha; Shakya, Jivan; Sah, Govind; Dhakal, Maheshwar; Sharma, Netra; Llewellyn, Bronwyn; Wultsch, Claudia; Waits, Lisette P.; Kelly, Marcella J.; Hero, Jean-Marc; Hughes, Jane
2018-01-01
With fewer than 200 tigers (Panthera tigris tigris) left in Nepal, that are generally confined to five protected areas across the Terai Arc Landscape, genetic studies are needed to provide crucial information on diversity and connectivity for devising an effective country-wide tiger conservation strategy. As part of the Nepal Tiger Genome Project, we studied landscape change, genetic variation, population structure, and gene flow of tigers across the Terai Arc Landscape by conducting Nepal’s first comprehensive and systematic scat-based, non-invasive genetic survey. Of the 770 scat samples collected opportunistically from five protected areas and six presumed corridors, 412 were tiger (57%). Out of ten microsatellite loci, we retain eight markers that were used in identifying 78 individual tigers. We used this dataset to examine population structure, genetic variation, contemporary gene flow, and potential population bottlenecks of tigers in Nepal. We detected three genetic clusters consistent with three demographic sub-populations and found moderate levels of genetic variation (He = 0.61, AR = 3.51) and genetic differentiation (FST = 0.14) across the landscape. We detected 3–7 migrants, confirming the potential for dispersal-mediated gene flow across the landscape. We found evidence of a bottleneck signature likely caused by large-scale land-use change documented in the last two centuries in the Terai forest. Securing tiger habitat including functional forest corridors is essential to enhance gene flow across the landscape and ensure long-term tiger survival. This requires cooperation among multiple stakeholders and careful conservation planning to prevent detrimental effects of anthropogenic activities on tigers. PMID:29561865
Bird-community responses to habitat creation in a long-term, large-scale natural experiment.
Whytock, Robin C; Fuentes-Montemayor, Elisa; Watts, Kevin; Barbosa De Andrade, Patanjaly; Whytock, Rory T; French, Paul; Macgregor, Nicholas A; Park, Kirsty J
2018-04-01
Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.
Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe
2015-01-01
Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and the implications for landscape planning in agricultural areas.
Spatial Heterogeneity Regulates Plant-Pollinator Networks across Multiple Landscape Scales
Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe
2015-01-01
Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and the implications for landscape planning in agricultural areas. PMID:25856293
Understanding soft glassy materials using an energy landscape approach
NASA Astrophysics Data System (ADS)
Hwang, Hyun Joo; Riggleman, Robert A.; Crocker, John C.
2016-09-01
Many seemingly different soft materials--such as soap foams, mayonnaise, toothpaste and living cells--display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
Biodiversity promotes primary productivity and growing season lengthening at the landscape scale
Niklaus, Pascal A.
2017-01-01
Experiments have shown positive biodiversity-ecosystem functioning (BEF) relationships in small plots with model communities established from species pools typically comprising few dozen species. Whether patterns found can be extrapolated to complex, nonexperimental, real-world landscapes that provide ecosystem services to humans remains unclear. Here, we combine species inventories from a large-scale network of 447 1-km2 plots with remotely sensed indices of primary productivity (years 2000–2015). We show that landscape-scale productivity and its temporal stability increase with the diversity of plants and other taxa. Effects of biodiversity indicators on productivity were comparable in size to effects of other important drivers related to climate, topography, and land cover. These effects occurred in plots that integrated different ecosystem types (i.e., metaecosystems) and were consistent over vast environmental and altitudinal gradients. The BEF relations we report are as strong or even exceed the ones found in small-scale experiments, despite different community assembly processes and a species pool comprising nearly 2,000 vascular plant species. Growing season length increased progressively over the observation period, and this shift was accelerated in more diverse plots, suggesting that a large species pool is important for adaption to climate change. Our study further implies that abiotic global-change drivers may mediate ecosystem functioning through biodiversity changes. PMID:28874547
Foster, William A; Snaddon, Jake L; Turner, Edgar C; Fayle, Tom M; Cockerill, Timothy D; Ellwood, M D Farnon; Broad, Gavin R; Chung, Arthur Y C; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M
2011-11-27
The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
Foster, William A.; Snaddon, Jake L.; Turner, Edgar C.; Fayle, Tom M.; Cockerill, Timothy D.; Ellwood, M. D. Farnon; Broad, Gavin R.; Chung, Arthur Y. C.; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M.
2011-01-01
The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape. PMID:22006968
Integrating concepts of landscape ecology with the molecular biology of forest pathogens
John E. Lundquist; Ned B. Klopfenstein
2001-01-01
Increasingly more research has focused on characterizing diversity within forest pathogen populations using molecular markers but few studies have characterized features of the landscape that help create or maintain this diversity. Forest diseases commonly occur in patchy distributions across natural landscapes which can be reflected in the genetic composition of the...
Multi-scale Homogenization of Caddisfly Metacomminities in Human-modified Landscapes
NASA Astrophysics Data System (ADS)
Simião-Ferreira, Juliana; Nogueira, Denis Silva; Santos, Anna Claudia; De Marco, Paulo; Angelini, Ronaldo
2018-04-01
The multiple scale of stream networks spatial organization reflects the hierarchical arrangement of streams habitats with increasingly levels of complexity from sub-catchments until entire hydrographic basins. Through these multiple spatial scales, local stream habitats form nested subsets of increasingly landscape scale and habitat size with varying contributions of both alpha and beta diversity for the regional diversity. Here, we aimed to test the relative importance of multiple nested hierarchical levels of spatial scales while determining alpha and beta diversity of caddisflies in regions with different levels of landscape degradation in a core Cerrado area in Brazil. We used quantitative environmental variables to test the hypothesis that landscape homogenization affects the contribution of alpha and beta diversity of caddisflies to regional diversity. We found that the contribution of alpha and beta diversity for gamma diversity varied according to landscape degradation. Sub-catchments with more intense agriculture had lower diversity at multiple levels, markedly alpha and beta diversities. We have also found that environmental predictors mainly associated with water quality, channel size, and habitat integrity (lower scores indicate stream degradation) were related to community dissimilarity at the catchment scale. For an effective management of the headwater biodiversity of caddisfly, towards the conservation of these catchments, heterogeneous streams with more pristine riparian vegetation found within the river basin need to be preserved in protected areas. Additionally, in the most degraded areas the restoration of riparian vegetation and size increase of protected areas will be needed to accomplish such effort.
García del Barrio, J M; Ortega, M; Vázquez De la Cueva, A; Elena-Rosselló, R
2006-08-01
This paper mainly aims to study the linear element influence on the estimation of vascular plant species diversity in five Mediterranean landscapes modeled as land cover patch mosaics. These landscapes have several core habitats and a different set of linear elements--habitat edges or ecotones, roads or railways, rivers, streams and hedgerows on farm land--whose plant composition were examined. Secondly, it aims to check plant diversity estimation in Mediterranean landscapes using parametric and non-parametric procedures, with two indices: Species richness and Shannon index. Land cover types and landscape linear elements were identified from aerial photographs. Their spatial information was processed using GIS techniques. Field plots were selected using a stratified sampling design according to relieve and tree density of each habitat type. A 50x20 m2 multi-scale sampling plot was designed for the core habitats and across the main landscape linear elements. Richness and diversity of plant species were estimated by comparing the observed field data to ICE (Incidence-based Coverage Estimator) and ACE (Abundance-based Coverage Estimator) non-parametric estimators. The species density, percentage of unique species, and alpha diversity per plot were significantly higher (p < 0.05) in linear elements than in core habitats. ICE estimate of number of species was 32% higher than of ACE estimate, which did not differ significantly from the observed values. Accumulated species richness in core habitats together with linear elements, were significantly higher than those recorded only in the core habitats in all the landscapes. Conversely, Shannon diversity index did not show significant differences.
Influence of landscape context on the abundance and diversity of bees in Mediterranean olive groves.
Tscheulin, T; Neokosmidis, L; Petanidou, T; Settele, J
2011-10-01
The diversity and abundance of wild bees ensures the delivery of pollination services and the maintenance of ecosystem diversity. As previous studies carried out in Central Europe and the US have shown, bee diversity and abundance is influenced by the structure and the composition of the surrounding landscape. Comparable studies have so far not been carried out in the Mediterranean region. The present study examines the influence of Mediterranean landscape context on the diversity and abundance of wild bees. To do this, we sampled bees in 13 sites in olive groves on Lesvos Island, Greece. Bees were assigned to five categories consisting of three body size groups (small, medium and large bees), the single most abundant bee species (Lasioglossum marginatum) and all species combined. The influence of the landscape context on bee abundance and species richness was assessed at five radii (250, 500, 750, 1000 and 1250 m) from the centre of each site. We found that the abundance within bee groups was influenced differently by different landscape parameters and land covers, whereas species richness was unaffected. Generally, smaller bees' abundance was impacted by landscape parameters at smaller scales and larger bees at larger scales. The land cover that influenced bee abundance positively was olive grove, while phrygana, conifer forest, broad-leaved forest, cultivated land, rock, urban areas and sea had mostly negative or no impact. We stress the need for a holistic approach, including all land covers, when assessing the effects of landscape context on bee diversity and abundance in the Mediterranean.
Taxonomic and functional diversity increase the aesthetic value of coralligenous reefs
Tribot, Anne-Sophie; Mouquet, Nicolas; Villéger, Sébastien; Raymond, Michel; Hoff, Fabrice; Boissery, Pierre; Holon, Florian; Deter, Julie
2016-01-01
The aesthetic value of landscapes contributes to human well-being. However, studies which have investigated the link between biodiversity and ecosystem services have not taken aesthetic value into account. In this study we evaluated how the aesthetics of coralligenous reefs, a key marine ecosystem in the Mediterranean, is perceived by the general public and how aesthetic preferences are related to biodiversity facets (taxonomic, phylogenetic and functional diversities). We performed both biodiversity measures and online-surveys of aesthetic perception on photographic quadrats sampled along the French Mediterranean coast. Our results show that species richness and functional richness have a significant positive effect on aesthetic value. Most of the ecological literature, exploring the relationship between biodiversity and ecosystem functioning and service has focused so far on ‘economical’ aspects of biodiversity (provision or regulation). Our results illustrate that cultural facets, such as ‘beauty’, should also be central in our motivations to preserve ecological diversity. PMID:27677850
van Breugel, Michiel; Hall, Jefferson S.; Craven, Dylan; Bailon, Mario; Hernandez, Andres; Abbene, Michele; van Breugel, Paulo
2013-01-01
Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes. PMID:24349283
Hakkenberg, C R; Zhu, K; Peet, R K; Song, C
2018-02-01
The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly, bivariate tests provide evidence of scale-dependence among predictors, such that remotely-sensed variables significantly predict plant richness only at spatial scales that sufficiently subsume geolocational imprecision between remotely-sensed and field data, and best align with stand components including plant size and density, as well as canopy gaps and understory growth patterns. Beyond their insights into the scale-dependent patterns and drivers of plant diversity in Piedmont forests, these results highlight the potential of remotely-sensible essential biodiversity variables for mapping and monitoring landscape floristic diversity from air- and space-borne platforms. © 2017 by the Ecological Society of America.
Developing an ecosystem diversity framework for landscape assessment
Robert D. Pfister; Michael D. Sweet
2000-01-01
Ecological diversity is being addressed in various research and management efforts, but a common foundation is not explicitly defined or displayed. A formal Ecosystem Diversity Framework (EDF) would improve landscape analysis and communication across multiple scales. The EDF represents a multiple-component vegetation classification system with inherent flexibility for...
Prairie wetland complexes as landscape functional units in a changing climate
Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.; Voldseth, Richard A.; Millett, Bruce; Naugle, David E.; Tulbure, Mirela; Carroll, Rosemary W.H.; Tracy, John; Olawsky, Craig
2010-01-01
The wetland complex is the functional ecological unit of the prairie pothole region (PPR) of central North America. Diverse complexes of wetlands contribute high spatial and temporal environmental heterogeneity, productivity, and biodiversity to these glaciated prairie landscapes. Climatewarming simulations using the new model WETLANDSCAPE (WLS) project major reductions in water volume, shortening of hydroperiods, and less-dynamic vegetation for prairie wetland complexes. The WLS model portrays the future PPR as a much less resilient ecosystem: The western PPR will be too dry and the eastern PPR will have too few functional wetlands and nesting habitat to support historic levels of waterfowl and other wetland-dependent species. Maintaining ecosystem goods and services at current levels in a warmer climate will be a major challenge for the conservation community.
NASA Astrophysics Data System (ADS)
McKnight, Diane
2017-04-01
As Dr. George Aiken emphasized throughout his distinguished research career, the diversity of sources of dissolved organic material (DOM) is associated with a diversity of dissolved organic compounds with a range of chemistries and reactivities that are present in the natural environment. From a limnological perspective, dissolved organic matter (DOM) can originate from allochthonous sources on the landscape which drains into a lake, river, wetland, coastal region, or other aquatic ecosystem, or from autochthonous sources within the given aquatic ecosystem. In many landscapes, the precursor organic materials that contribute to the DOM of the associated aquatic ecosystem can be derived from diverse sources, e.g. terrestrial plants, plant litter, organic material in different soil horizons, and the products of microbial growth and decay. Yet, through his focus on the underlying chemical processes a clear, chemically robust foundation for understanding DOM reactivity has emerged from Aiken's research. These processes include the enhancement in solubility due to ionized carboxylic acid functional groups and the reactions of organic sulfur groups with mercury. This approach has advanced understand of carbon cycling in the lakes of the Mars-like barren landscapes of the McMurdo Dry Valleys in Antarctica and the rivers draining the warming tundra of the Arctic.
Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry.
Higgins, Sean A; Savage, David F
2018-01-09
A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.
Koskinen, Kaisa; Pausan, Manuela R.; Perras, Alexandra K.; Beck, Michael; Bang, Corinna; Mora, Maximilian; Schilhabel, Anke; Schmitz, Ruth
2017-01-01
ABSTRACT Human-associated archaea remain understudied in the field of microbiome research, although in particular methanogenic archaea were found to be regular commensals of the human gut, where they represent keystone species in metabolic processes. Knowledge on the abundance and diversity of human-associated archaea is extremely limited, and little is known about their function(s), their overall role in human health, or their association with parts of the human body other than the gastrointestinal tract and oral cavity. Currently, methodological issues impede the full assessment of the human archaeome, as bacteria-targeting protocols are unsuitable for characterization of the full spectrum of Archaea. The goal of this study was to establish conservative protocols based on specifically archaea-targeting, PCR-based methods to retrieve first insights into the archaeomes of the human gastrointestinal tract, lung, nose, and skin. Detection of Archaea was highly dependent on primer selection and the sequence processing pipeline used. Our results enabled us to retrieve a novel picture of the human archaeome, as we found for the first time Methanobacterium and Woesearchaeota (DPANN superphylum) to be associated with the human gastrointestinal tract and the human lung, respectively. Similar to bacteria, human-associated archaeal communities were found to group biogeographically, forming (i) the thaumarchaeal skin landscape, (ii) the (methano)euryarchaeal gastrointestinal tract, (iii) a mixed skin-gastrointestinal tract landscape for the nose, and (iv) a woesearchaeal lung landscape. On the basis of the protocols we used, we were able to detect unexpectedly high diversity of archaea associated with different body parts. PMID:29138298
Plant biodiversity in French Mediterranean vineyards
NASA Astrophysics Data System (ADS)
Cohen, Marianne; Bilodeau, Clelia; Alexandre, Frédéric; Godron, Michel; Gresillon, Etienne
2017-04-01
In a context of agricultural intensification and increasing urbanization, the biodiversity of farmed plots is a key to improve the sustainability of farmed landscapes. The medium life-duration of the vineyards as well as their location in Mediterranean region are favorable to plant biodiversity. We studied 35 vineyards and if present, their edges, located in three French Mediterranean terroirs: Bandol, Pic Saint Loup and Terrasses du Larzac. We collected botanical information (floral richness et diversity, biological traits), and analyzed their relationships with different factors: social (management, heritage or professional concern), environmental (slope, exposition, geology), spatial (edges, surrounding landscape in a 500 meters radius, distance to the nearest large city). Vineyards are generally heavily disturbed by intensive practices like tilling and application of herbicides, and for this reason their floral diversity is low. This is particularly true in Bandol terroir, in accordance with the standards of the Bandol PDO wine sector. Farmed landscapes and proximity to a large town impact on functional groups, generalist species being overrepresented. If vineyards are surrounded with natural edges, it doubles the floral richness at the plot and edges scale. Species present in vineyards edges are perennial herbaceous species with Euro- Asian and Mediterranean distribution ranges characteristic of prairie and wasteland stages, increasing the functional diversity of vineyards (generalist species). Environmental factors have a lower influence: vineyards are generally located on flat lands. These results suggest that some practices should be encouraged to avoid the biological degradation of vineyards: conservation of tree-lined edges and their extensive management, reduction of chemical weeding, grass-growing using non-cosmopolitan species. These recommendations should also contribute to soil conservation.
Luck, Gary W.; Carter, Andrew; Smallbone, Lisa
2013-01-01
Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse communities occur at intermediate levels of species richness. Interpretations of redundancy thus vary for different functional groups and related ecosystem functions (e.g. pollination), and can be substantially different to relationships involving entire ecological communities. PMID:23696844
Local and Landscape Constraints on Coffee Leafhopper (Hemiptera: Cicadellidae) Diversity.
Vaidya, Chatura; Cruz, Magdalena; Kuesel, Ryan; Gonthier, David J; Iverson, Aaron; Ennis, Katherine K; Perfecto, Ivette
2017-01-01
The intensification of agriculture drives many ecological and environmental consequences including impacts on crop pest populations and communities. These changes are manifested at multiple scales including small-scale management practices and changes to the composition of land-use types in the surrounding landscape. In this study, we sought to examine the influence of local and landscape-scale agricultural factors on a leafhopper herbivore community in Mexican coffee plantations. We sampled leafhopper (Hemiptera: Cicadellidae) diversity in 38 sites from 9 coffee plantations of the Soconusco region of Chiapas, Mexico. While local management factors such as coffee density, branches per coffee bush, tree species, and density were not important in explaining leafhopper abundance and richness, shade management at the landscape level and elevation significantly affected leafhoppers. Specifically, the percentage of low-shade coffee in the landscape (1,000-m radius surrounding sites) increased total leafhopper abundance. In addition, Shannon's diversity of leafhoppers was increased with coffee density. Our results show that abundance and diversity of leafhoppers are greater in simplified landscapes, thereby suggesting that these landscapes will have higher pest pressure and may be more at-risk for diseases vectored by these species in an economically important crop. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.
Arnaiz-Schmitz, Cecilia; Herrero-Jáuregui, Cristina; Schmitz, María F
2018-05-09
Traditional rural landscapes host a biocultural heritage acquired by rural societies, developed in a secular adaptation with nature. Hedgerows play a key role in preserving biocultural diversity and associated ecosystem services. Despite their benefits, in some European regions inappropriate hedge management has led to a drastic degradation of hedgerows, with significant effects on natural and biocultural diversity, landscape connectivity and sustainable flow of ecosystem services. In Central Spain, an ancient hedgerow landscape constitutes a valuable natural and cultural heritage recognized by the establishment of different protection categories. We quantify the main tendency of change of this landscape over time, detecting a process of rural social-ecological decoupling both inside and outside protected areas. The hedgerow network has progressively been degraded and destructured together with the decline and local extinction of woody species, all of them of traditional use and some recorded in red lists for species conservation. This reveals weaknesses in the design and management plans of protected areas that should be effective in conserving the heritage of cultural landscapes and their valuable biocultural diversity and provision of ecosystem services. There is a need to elaborate regulations for the protection of hedgerow landscapes in the Spanish legislation, based on social-ecological relationships. Copyright © 2018. Published by Elsevier B.V.
Ecosystem management and its role in linking science, policy, and management
Matthew Skroch
2005-01-01
The scientific community has recently emphasized the importance of ecological process, structure, and scale in the maintenance of biological diversity. Humans have affected most natural landscapes, and many naturally occurring processes, structures, and species may not rebound to naturally sustaining function without intervention. Ecosystem management relies on science...
Mapping aspen in the Interior West
Charles E. Werstak
2012-01-01
Quaking aspen (Populus tremuloides Michx.) is a critical species that supports wildlife and livestock, watershed function, the forest products industry, landscape diversity, and recreation opportunities in the Interior West (Bartos and Campbell 1998). Studies have indicated that changes in fire regimes, an increase in herbivore presence in young aspen stands, and...
Street trees reduce the negative effects of urbanization on birds
2017-01-01
The effects of streets on biodiversity is an important aspect of urban ecology, but it has been neglected worldwide. Several vegetation attributes (e.g. street tree density and diversity) have important effects on biodiversity and ecological processes. In this study, we evaluated the influences of urban vegetation—represented by characteristics of street trees (canopy size, proportion of native tree species and tree species richness)—and characteristics of the landscape (distance to parks and vegetation quantity), and human impacts (human population size and exposure to noise) on taxonomic data and functional diversity indices of the bird community inhabiting streets. The study area was the southern region of Belo Horizonte (Minas Gerais, Brazil), a largely urbanized city in the understudied Neotropical region. Bird data were collected on 60 point count locations distributed across the streets of the landscape. We used a series of competing GLM models (using Akaike's information criterion for small sample sizes) to assess the relative contribution of the different sets of variables to explain the observed patterns. Seventy-three bird species were observed exploiting the streets: native species were the most abundant and frequent throughout this landscape. The bird community's functional richness and Rao's Quadratic Entropy presented values lower than 0.5. Therefore, this landscape was favoring few functional traits. Exposure to noise was the most limiting factor for this bird community. However, the average size of arboreal patches and, especially the characteristics of street trees, were able to reduce the negative effects of noise on the bird community. These results show the importance of adequately planning the urban afforestation process: increasing tree species richness, preserving large trees and planting more native trees species in the streets are management practices that will increase bird species richness, abundance and community functional aspects and consequently improve human wellbeing and quality of life. PMID:28333989
The effect of prescribed burning on plant rarity in a temperate forest.
Patykowski, John; Holland, Greg J; Dell, Matt; Wevill, Tricia; Callister, Kate; Bennett, Andrew F; Gibson, Maria
2018-02-01
Rare species can play important functional roles, but human-induced changes to disturbance regimes, such as fire, can inadvertently affect these species. We examined the influence of prescribed burns on the recruitment and diversity of plant species within a temperate forest in southeastern Australia, with a focus on species that were rare prior to burning. Floristic composition was compared among plots in landscapes before and after treatment with prescribed burns differing in the extent of area burnt and season of burn (before-after, control-impact design). Floristic surveys were conducted before burns, at the end of a decade of drought, and 3 years postburn. We quantified the effect of prescribed burns on species grouped by their frequency within the landscape before burning (common, less common, and rare) and their life-form attributes (woody perennials, perennial herbs or geophytes, and annual herbs). Burn treatment influenced the response of rare species. In spring-burn plots, the recruitment of rare annual herbs was promoted, differentiating this treatment from both autumn-burn and unburnt plots. In autumn-burn plots, richness of rare species increased across all life-form groups, although composition remained statistically similar to control plots. Richness of rare woody perennials increased in control plots. For all other life-form and frequency groups, the floristic composition of landscapes changed between survey years, but there was no effect of burn treatment, suggesting a likely effect of rainfall on species recruitment. A prescribed burn can increase the occurrence of rare species in a landscape, but burn characteristics can affect the promotion of different life-form groups and thus affect functional diversity. Drought-breaking rain likely had an overarching effect on floristic composition during our study, highlighting that weather can play a greater role in influencing recruitment and diversity in plant communities than a prescribed burn.
Plant distribution and diversity across an Ozark landscape
Jiquan Chen; Cynthia D. Huebner; Sari C. Saunders; Bo Song
2002-01-01
The distribution, abundance, and diversity of plant species in a landscape are related to factors such as disturbance history, landform, and climate. In examining the potential effects of landscape structure on the distribution of plant species of the southeast Missouri Ozarks, we sampled a 10,000-m transect in a south-north direction. In September 1997, two 1 x 1 m...
Pena, Rodica; Lang, Christa; Lohaus, Gertrud; Boch, Steffen; Schall, Peter; Schöning, Ingo; Ammer, Christian; Fischer, Markus; Polle, Andrea
2017-04-01
Ectomycorrhizal (EM) fungal taxonomic, phylogenetic, and trait diversity (exploration types) were analyzed in beech and conifer forests along a north-to-south gradient in three biogeographic regions in Germany. The taxonomic community structures of the ectomycorrhizal assemblages in top soil were influenced by stand density and forest type, by biogeographic environmental factors (soil physical properties, temperature, and precipitation), and by nitrogen forms (amino acids, ammonium, and nitrate). While α-diversity did not differ between forest types, β-diversity increased, leading to higher γ-diversity on the landscape level when both forest types were present. The highest taxonomic diversity of EM was found in forests in cool, moist climate on clay and silty soils and the lowest in the forests in warm, dry climate on sandy soils. In the region with higher taxonomic diversity, phylogenetic clustering was found, but not trait clustering. In the warm region, trait clustering occurred despite neutral phylogenetic effects. These results suggest that different forest types and favorable environmental conditions in forests promote high EM species richness in top soil presumably with both high functional diversity and phylogenetic redundancy, while stressful environmental conditions lead to lower species richness and functional redundancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resasco, Julian; et al,
2014-04-01
Abstract. Landscape corridors are commonly used to mitigate negative effects of habitat fragmentation, but concerns persist that they may facilitate the spread of invasive species. In a replicated landscape experiment of open habitat, we measured effects of corridors on the invasive fire ant, Solenopsis invicta, and native ants. Fire ants have two social forms: polygyne, which tend to disperse poorly but establish at high densities, and monogyne, which disperse widely but establish at lower densities. In landscapes dominated by polygyne fire ants, fire ant abundance was higher and native ant diversity was lower in habitat patches connected by corridors thanmore » in unconnected patches. Conversely, in landscapes dominated by monogyne fire ants, connectivity had no influence on fire ant abundance and native ant diversity. Polygyne fire ants dominated recently created landscapes, suggesting that these corridor effects may be transient. Our results suggest that corridors can facilitate invasion and they highlight the importance of considering species’ traits when assessing corridor utility.« less
Knoke, Thomas; Paul, Carola; Hildebrandt, Patrick; Calvas, Baltazar; Castro, Luz Maria; Härtl, Fabian; Döllerer, Martin; Hamer, Ute; Windhorst, David; Wiersma, Yolanda F.; Curatola Fernández, Giulia F.; Obermeier, Wolfgang A.; Adams, Julia; Breuer, Lutz; Mosandl, Reinhard; Beck, Erwin; Weber, Michael; Stimm, Bernd; Haber, Wolfgang; Fürst, Christine; Bendix, Jörg
2016-01-01
High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services. PMID:27292766
Knoke, Thomas; Paul, Carola; Hildebrandt, Patrick; Calvas, Baltazar; Castro, Luz Maria; Härtl, Fabian; Döllerer, Martin; Hamer, Ute; Windhorst, David; Wiersma, Yolanda F; Curatola Fernández, Giulia F; Obermeier, Wolfgang A; Adams, Julia; Breuer, Lutz; Mosandl, Reinhard; Beck, Erwin; Weber, Michael; Stimm, Bernd; Haber, Wolfgang; Fürst, Christine; Bendix, Jörg
2016-06-13
High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services.
Defining the human deubiquitinating enzyme interaction landscape.
Sowa, Mathew E; Bennett, Eric J; Gygi, Steven P; Harper, J Wade
2009-07-23
Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel nonreciprocal proteomic data sets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, subcellular localization, and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway.
Defining the Human Deubiquitinating Enzyme Interaction Landscape
Sowa, Mathew E.; Bennett, Eric J.; Gygi, Steven P.; Harper, J. Wade
2009-01-01
Summary Deubiquitinating enzymes (Dubs) function to remove covalently attached ubiquitin from proteins, thereby controlling substrate activity and/or abundance. For most Dubs, their functions, targets, and regulation are poorly understood. To systematically investigate Dub function, we initiated a global proteomic analysis of Dubs and their associated protein complexes. This was accomplished through the development of a software platform, called CompPASS, which uses unbiased metrics to assign confidence measurements to interactions from parallel non-reciprocal proteomic datasets. We identified 774 candidate interacting proteins associated with 75 Dubs. Using Gene Ontology, interactome topology classification, sub-cellular localization and functional studies, we link Dubs to diverse processes, including protein turnover, transcription, RNA processing, DNA damage, and endoplasmic reticulum-associated degradation. This work provides the first glimpse into the Dub interaction landscape, places previously unstudied Dubs within putative biological pathways, and identifies previously unknown interactions and protein complexes involved in this increasingly important arm of the ubiquitin-proteasome pathway. PMID:19615732
Wood, Corlett W; Donald, Hannah M; Formica, Vincent A; Brodie, Edmund D
2013-01-01
In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B. cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B. cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure. PMID:23789061
Landscape Phage: Evolution from Phage Display to Nanobiotechnology.
Petrenko, Valery A
2018-06-07
The development of phage engineering technology has led to the construction of a novel type of phage display library-a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the "landscape phage", serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new "phage-programmed-nanomedicines" concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.
[Vegetation diversity, composition and structure in a cattle agro-landscape of Matiguás, Nicaragua].
Merlos, Dalia Sánchez; Harvey, Celia A; Grijalva, Alfredo; Medina, Arnulfo; Vílchez, Sergio; Hernández, Blas
2005-01-01
The diversity, composition and structure of vegetation in a cattle landscape in Matiguás, Nicaragua was characterized, and the floristic and structural differences of six types of habitats (secondary forests, riparian forests, charrales, live fences and pastures with high and low tree cover) were compared. A total of 3 949 trees of 180 species and 52 families were recorded. Forty six percent of the total trees reported for the landscape were represented by Guazuma ulmifolia (18.5%), Bursera simaruha (13.2%), Tabebuia rosea (6.3%), Enterolobium cyclocarpum (4.2%) and Albizia saman (3.4%). Many of the dominant species in the landscape were typical of open and disturbed areas. There were significant differences between the different habitats in the patterns of tree species richness, abundance, diversity, structure and floristic composition. The riparian forests had greater tree richness (p=0.0001) and diversity (p=0.0009) than other habitats. The floristic composition varied across habitats. with pairs of habitats sharing between 18.4 and 51.6% of the same tree species, and with clear differences in composition between the forested (riparian and secondary forests) and agricultural habitats. Of the habitats studied, the riparian forests and secondary forests seem to have greatest value for the conservation of the flora in the agropaisaje because they have the greatest species richness, and maintain small populations of endangered species. On the basis of the study, we recommend including agricultural landscapes in strategies to conserve tree diversity and suggest measures to ensure the maintenance of tree diversity in the Matiguas landscape.
Mitchell, M.S.; Rutzmoser, S.H.; Wigley, T.B.; Loehle, C.; Gerwin, J.A.; Keyser, P.D.; Lancia, R.A.; Perry, R.W.; Reynolds, C.J.; Thill, R.E.; Weih, R.; White, D.; Wood, P.B.
2006-01-01
Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand and landscape-levels. We used data on bird communities collected under comparable sampling protocols on four managed forests located across the Southeastern US to develop logistic regression models describing relationships between habitat factors and the distribution of overall richness and richness of selected guilds. Landscape models generated for eight of nine guilds showed a strong relationship between richness and both availability and configuration of landscape features. Diversity of topographic features and heterogeneity of forest structure were primary determinants of avian species richness. Forest heterogeneity, in both age and forest type, were strongly and positively associated with overall avian richness and richness for most guilds. Road density was associated positively but weakly with avian richness. Landscape variables dominated all models generated, but no consistent patterns in metrics or scale were evident. Model fit was strong for neotropical migrants and relatively weak for short-distance migrants and resident species. Our models provide a tool that will allow managers to evaluate and demonstrate quantitatively how management practices affect avian diversity on landscapes.
NASA Astrophysics Data System (ADS)
Plexida, Sofia G.; Sfougaris, Athanassios I.; Ispikoudis, Ioannis P.; Papanastasis, Vasilios P.
2014-02-01
This paper investigates the spatial heterogeneity of three landscapes along an altitudinal gradient and different human land use. The main aim was the identification of appropriate landscape indicators using different extents. ASTER image was used to create a land cover map consisting of three landscapes which differed in altitude and land use. A number of landscape metrics quantifying patch complexity, configuration, diversity and connectivity were derived from the thematic map at the landscape level. There were significant differences among the three landscapes regarding these four aspects of landscape heterogeneity. The analysis revealed a specific pattern of land use where lowlands are being increasingly utilized by humans (percentage of agricultural land = 65.84%) characterized by physical connectedness (high values of Patch Cohesion Index) and relatively simple geometries (low values of fractal dimension index). The landscape pattern of uplands was found to be highly diverse based upon the Shannon Diversity index. After selecting the scale (600 ha) where metrics values stabilized, it was shown that metrics were more correlated at the small scale of 60 ha. From the original 24 metrics, 14 individual metrics with high Spearman correlation coefficient and Variance Inflation Factor criterion were eliminated, leaving 10 representative metrics for subsequent analysis. Data reduction analysis showed that Patch Density, Area-Weighted Mean Fractal Dimension Index and Patch Cohesion Index are suitable to describe landscape patterns irrespective of the scale. A systematic screening of these metrics could enhance a deeper understanding of the results obtained by them and contribute to a sustainable landscape management of Mediterranean landscapes.
Stream temperature monitoring and modeling: Recent advances and new tools for managers
Daniel J. Isaak
2011-01-01
Stream thermal regimes are important within regulatory contexts, strongly affect the functioning of aquatic ecosystems, and are a primary determinant of habitat suitability for many sensitive species. The diverse landscapes and topographies inherent to National Forests and Grasslands create mosaics of stream thermal conditions that are intermingled with strong...
Hal O. Liechty; James M. Guldin
2009-01-01
Streamside management zones (SMZs) in the Ouachita Mountains of Arkansas and Oklahoma are frequently established along headwater ephemeral and intermittent streams to protect water quality, provide wildlife habitat, and increase landscape diversity. To better understand the function of these riparian forest corridors, we characterized the tree density and composition,...
Distributions of experimental protein structures on coarse-grained free energy landscapes
Liu, Jie; Jernigan, Robert L.
2015-01-01
Predicting conformational changes of proteins is needed in order to fully comprehend functional mechanisms. With the large number of available structures in sets of related proteins, it is now possible to directly visualize the clusters of conformations and their conformational transitions through the use of principal component analysis. The most striking observation about the distributions of the structures along the principal components is their highly non-uniform distributions. In this work, we use principal component analysis of experimental structures of 50 diverse proteins to extract the most important directions of their motions, sample structures along these directions, and estimate their free energy landscapes by combining knowledge-based potentials and entropy computed from elastic network models. When these resulting motions are visualized upon their coarse-grained free energy landscapes, the basis for conformational pathways becomes readily apparent. Using three well-studied proteins, T4 lysozyme, serum albumin, and sarco-endoplasmic reticular Ca2+ adenosine triphosphatase (SERCA), as examples, we show that such free energy landscapes of conformational changes provide meaningful insights into the functional dynamics and suggest transition pathways between different conformational states. As a further example, we also show that Monte Carlo simulations on the coarse-grained landscape of HIV-1 protease can directly yield pathways for force-driven conformational changes. PMID:26723638
Degradation in landscape matrix has diverse impacts on diversity in protected areas
Brotons, Lluís; Rajasärkkä, Ari; Tornberg, Risto
2017-01-01
Introduction A main goal of protected areas is to maintain species diversity and the integrity of biological assemblages. Intensifying land use in the matrix surrounding protected areas creates a challenge for biodiversity conservation. Earlier studies have mainly focused on taxonomic diversity within protected areas. However, functional and especially phylogenetic diversities are less studied phenomena, especially with respect to the impacts of the matrix that surrounds protected areas. Phylogenetic diversity refers to the range of evolutionary lineages, the maintenance of which ensures that future evolutionary potential is safeguarded. Functional diversity refers to the range of ecological roles that members of a community perform. For ecosystem functioning and long-term resilience, they are at least as important as taxonomic diversity. Aim We studied how the characteristics of protected areas and land use intensity in the surrounding matrix affect the diversity of bird communities in protected boreal forests. We used line-transect count and land-cover data from 91 forest reserves in Northern Finland, and land-cover data from buffer zones surrounding these reserves. We studied if habitat diversity and productivity inside protected areas, and intensity of forest management in the matrix have consistent effects on taxonomic, functional and phylogenetic diversities, and community specialization. Results We found that habitat diversity and productivity inside protected areas have strong effects on all diversity metrics, but matrix effects were inconsistent. The proportion of old forest in the matrix, reflecting low intensity forest management, had positive effects on community specialization. Interestingly, functional diversity increased with increasing logging intensity in the matrix. Conclusions Our results indicate that boreal forest reserves are not able to maintain their species composition and abundances if embedded in a severely degraded matrix. Our study also highlights the importance of focusing on different aspects of biodiversity. PMID:28950017
Drove roads: Keystone structures that promote ant diversity in Mediterranean forest landscapes
NASA Astrophysics Data System (ADS)
Azcárate, Francisco M.; Seoane, Javier; Castro, Sara; Peco, Begoña
2013-05-01
Drove roads are the traditional corridors used by pastoralists for seasonal movements of livestock (transhumance). They cover a considerable land area in Mediterranean countries and, although they are an obvious source of landscape diversity, their influence on the diversity and composition of animal assemblages has not been documented. Ant communities were studied on four active drove roads, two in forests (submediterranean and conifer) and two in open environments (croplands and rangelands). They were compared with the respective matrix communities and their contribution to local species richness was evaluated. The effects were heavily dependent on the open or closed nature of the matrix. In forest environments, drove roads increased ant species richness at the local scale, acting as clear keystone structures. Their species richness and functional diversity were highest on the fine scale, species composition was different, and a slight edge effect in the matrix was detected. In contrast, drove roads had little or even a negative effect in open environment locations. We conclude that drove roads have a high conservation value for ants in Mediterranean forest environments, in addition to their importance as reservoirs of plant biodiversity and generators of ecological goods and services.
Evolved Minimal Frustration in Multifunctional Biomolecules.
Röder, Konstantin; Wales, David J
2018-05-25
Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.
NASA Astrophysics Data System (ADS)
Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.
2012-12-01
This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients defining species turnover and changes in functional diversity. The study will provide novel approaches to use detailed spatial information from remote sensing data to study relations between functional and taxonomic dimensions of diversity.
Hernández-Ruedas, Manuel A.; Arroyo-Rodríguez, Víctor; Meave, Jorge A.; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P. L.; Santos, Bráulio A.
2014-01-01
Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services. PMID:24901954
Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Meave, Jorge A; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P L; Santos, Bráulio A
2014-01-01
Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services.
[Landscape pattern change and its driving forces in Xixi National Wetland Park since 1993].
Cheng, Qian; Wu, Xiuju
2006-09-01
Under the support of GIS technology and the TM images of Xixi National Wetland Park, this paper studied the past ten years' landscape pattern change and its driving forces of Xixi Wetland. The results showed that the landscape diversity index increased from 1.7854 in 1993 to 1.8438 in 2001 and 2.2096 in 2003, and the landscape fragmentation index increased from 0.0036 in 1993 to 0.0042 in 2001, and 0.0047 in 2003, suggesting that the landscape fragmentation was increased with time. Human activity was the main driving force, while the exploitation of real estate was the main internal factor of the landscape pattern change of Xixi wetland. In addition, social and economic development level had a strong effect on the overall diversity of the landscape.
Disturbance History,Spatial Variability, and Patterns of Biodiversity
NASA Astrophysics Data System (ADS)
Bendix, J.; Wiley, J. J.; Commons, M.
2012-12-01
The intermediate disturbance hypothesis predicts that species diversity will be maximized in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting combined impact of the magnitude of disturbance and the time since it occurred. We modeled the changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance. Model outputs show that individual landscape patches have highly variable species richness through time, with the details reflecting the timing, intensity and sequence of their disturbance history. When the results are mapped across the landscape, the resulting temporal and spatial complexity illustrates both the contingent nature of diversity and the danger of generalizing about the impacts of disturbance.
Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.
Rodríguez-Mendoza, Clara; Pineda, Eduardo
2010-12-23
Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.
Temporally variable environments maintain more beta-diversity in Mediterranean landscapes
NASA Astrophysics Data System (ADS)
Martin, Beatriz; Ferrer, Miguel
2015-10-01
We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.
Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.
Chakraborty, Debayan; Collepardo-Guevara, Rosana; Wales, David J
2014-12-31
RNA hairpins play a pivotal role in a diverse range of cellular functions, and are integral components of ribozymes, mRNA, and riboswitches. However, the mechanistic and kinetic details of RNA hairpin folding, which are key determinants of most of its biological functions, are poorly understood. In this work, we use the discrete path sampling (DPS) approach to explore the energy landscapes of two RNA tetraloop hairpins, and provide insights into their folding mechanisms and kinetics in atomistic detail. Our results show that the potential energy landscapes have a distinct funnel-like bias toward the folded hairpin state, consistent with efficient structure-seeking properties. Mechanistic and kinetic information is analyzed in terms of kinetic transition networks. We find microsecond folding times, consistent with temperature jump experiments, for hairpin folding initiated from relatively compact unfolded states. This process is essentially driven by an initial collapse, followed by rapid zippering of the helix stem in the final phase. Much lower folding rates are predicted when the folding is initiated from extended chains, which undergo longer excursions on the energy landscape before nucleation events can occur. Our work therefore explains recent experiments and coarse-grained simulations, where the folding kinetics exhibit precisely this dependency on the initial conditions.
Riparian landscapes: Linking geodiversity with habitat and biodiversity
NASA Astrophysics Data System (ADS)
Chmieleski, Jana; Danzeisen, Laura
2017-04-01
Keywords: Oder valley, biodiversity, geodiversity River landscapes of all scales originally showed a high diversity of structures and habitats at a small spatial entity, such as the stream beds, terrasses, sand and gravel banks. This variety, with a lot of different elements, patches and patterns, represents not only a variety of geoelements or geomorhological features but also a large biodiversity, both of habitats and species. Riparian landscapes are both, a natural as well as a geoheritage, often even a cultural heritage (sustainabe land use practices). Embankments, utilization for agriculture, constructions for navigation, management measures lead to a strong loss of these structures. This impacts the value of the landscape as well ecosystem functions, not only the biodiversity and the geodiversity but also the recreation function or the aesthetic values. A case study from the National Park Lower Oder Valley in the Northeastern part of Germany, wich is also part of a Geopark („Eiszeitland am Oderrand") presents the connections of the diversity of geomorphological features with biodiversity and shows the loss of features (loss of values) due to intensive utilisation by using GIS-analysis and landscape-metrics. The Northern part of the Oder valley (National Park, transnational protection area of Germany and Poland) have been modified by man since centuries but even so remained in near-natural state that allows semi-(natural) stream dynamics. While the Oder's reparian zone is marked by the stream itself, by its bayous, reed beds, periodically flooded wet meadows and by its natural riparian forest the mineral morainic plateaus are marked by semi-natural forests and dry grasslands. Two areas of different degradation states, a) near-natural and wilderness area and b) grassland area will be compared in order to identify: quantity and extent of features, relation of measure and coverage, connectivity with other features, quantity and types of habitats (with evaluation according to Natura2000 habitat types). First results of that survey will be presented.
Eiserhardt, Wolf L.; Svenning, Jens-Christian; Kissling, W. Daniel; Balslev, Henrik
2011-01-01
Background The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity. Scope This review summarizes empirical evidence for factors that determine palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts of these factors and the scale at which they function is discussed. Finally a hierarchical scale framework is developed to guide predictor selection for future studies. Conclusions Determinants of palm distributions, composition and richness vary with spatial scale. For species distributions, climate appears to be important at landscape and broader scales, soil, topography and vegetation at landscape and local scales, hydrology at local scales, and dispersal at all scales. For community composition, soil appears important at regional and finer scales, hydrology, topography and vegetation at landscape and local scales, and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e.g. climate on regional to finer scales, and hydrology and topography on landscape and broader scales. The importance of biotic interactions – apart from general vegetation structure effects – for the geographic ecology of palms is generally underexplored. Future studies should target scale–predictor combinations and geographic domains not studied yet. To avoid biased inference, one should ideally include at least all predictors previously found important at the spatial scale of investigation. PMID:21712297
Jonathan D. Coop; Robert T. Massatti; Anna W. Schoettle
2010-01-01
These subalpine wildfires generated considerable, persistent increases in plant species richness at local and landscape scales, and a diversity of plant communities. The findings suggest that fire suppression in such systems must lead to reduced diversity. Concerns about post-fire invasion by exotic plants appear unwarranted in high-elevation wilderness settings.
Biodiversity and Southern forests
Eric T. Linder
2004-01-01
Biological diversity encompasses all levels of natural variation and includes molecular, genetic, and species levels. All of these factors contribute to diversity accumulated at the landscape scale. However, biodiversity is not equally dispersed across the landscape, but rather clustered in pockets. The Southeastern United States supports several biodiversity hotspots...
Wang, Wendy Y; Foster, William A
2015-08-01
Beta diversity - the variation in species composition among spatially discrete communities - and sampling grain - the size of samples being compared - may alter our perspectives of diversity within and between landscapes before and after agricultural conversion. Such assumptions are usually based on point comparisons, which do not accurately capture actual differences in total diversity. Beta diversity is often not rigorously examined. We investigated the beta diversity of ground-foraging ant communities in fragmented oil palm and forest landscapes in Sabah, Malaysia, using diversity metrics transformed from Hill number equivalents to remove dependences on alpha diversity. We compared the beta diversities of oil palm and forest, across three hierarchically nested sampling grains. We found that oil palm and forest communities had a greater percentage of total shared species when larger samples were compared. Across all grains and disregarding relative abundances, there was higher beta diversity of all species among forest communities. However, there were higher beta diversities of common and very abundant (dominant) species in oil palm as compared to forests. Differences in beta diversities between oil palm and forest were greatest at the largest sampling grain. Larger sampling grains in oil palm may generate bigger species pools, increasing the probability of shared species with forest samples. Greater beta diversity of all species in forest may be attributed to rare species. Oil palm communities may be more heterogeneous in common and dominant species because of variable community assembly events. Rare and also common species are better captured at larger grains, boosting differences in beta diversity between larger samples of forest and oil palm communities. Although agricultural landscapes support a lower total diversity than natural forests, diversity especially of abundant species is still important for maintaining ecosystem stability. Diversity in agricultural landscapes may be greater than expected when beta diversity is accounted for at large spatial scales.
Landscape Context Mediates Avian Habitat Choice in Tropical Forest Restoration
Reid, J. Leighton; Mendenhall, Chase D.; Rosales, J. Abel; Zahawi, Rakan A.; Holl, Karen D.
2014-01-01
Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches), and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites. PMID:24595233
Hopfenmüller, Sebastian; Steffan-Dewenter, Ingolf; Holzschuh, Andrea
2014-01-01
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales.
Hopfenmüller, Sebastian; Steffan-Dewenter, Ingolf; Holzschuh, Andrea
2014-01-01
Land-use intensification and loss of semi-natural habitats have induced a severe decline of bee diversity in agricultural landscapes. Semi-natural habitats like calcareous grasslands are among the most important bee habitats in central Europe, but they are threatened by decreasing habitat area and quality, and by homogenization of the surrounding landscape affecting both landscape composition and configuration. In this study we tested the importance of habitat area, quality and connectivity as well as landscape composition and configuration on wild bees in calcareous grasslands. We made detailed trait-specific analyses as bees with different traits might differ in their response to the tested factors. Species richness and abundance of wild bees were surveyed on 23 calcareous grassland patches in Southern Germany with independent gradients in local and landscape factors. Total wild bee richness was positively affected by complex landscape configuration, large habitat area and high habitat quality (i.e. steep slopes). Cuckoo bee richness was positively affected by complex landscape configuration and large habitat area whereas habitat specialists were only affected by the local factors habitat area and habitat quality. Small social generalists were positively influenced by habitat area whereas large social generalists (bumblebees) were positively affected by landscape composition (high percentage of semi-natural habitats). Our results emphasize a strong dependence of habitat specialists on local habitat characteristics, whereas cuckoo bees and bumblebees are more likely affected by the surrounding landscape. We conclude that a combination of large high-quality patches and heterogeneous landscapes maintains high bee species richness and communities with diverse trait composition. Such diverse communities might stabilize pollination services provided to crops and wild plants on local and landscape scales. PMID:25137311
Yao, Meng Yuan; Yan, Shi Jiang; Wu, Yan Lan
2016-12-01
Huizhou-Styled Village is a typical representative of the traditional Chinese ancient villages. It preserves plentiful information of the regional culture and ecological connotation. The Huizhou-Style is the apotheosis of harmony between the Chinese ancient people and nature. The research and protection of Huizhou-Styled Village plays a very important role in fields of ecology, geography, architecture and esthetics. This paper took Chengkan Village of Anhui Province as an exa-mple, and proposed a new model of ideal ecosystem oriented in theories of Feng-shui and psychological field. The new method of characterizing 3D landscape index was introduced to explore the spatial patterns of Huizhou-Styled Village and the functionality of the composited landscape components in a quantitative way. The results indicated that, Chengkan Village showed a spatially composited pattern of "mountain-forest-village-river-forest". It formed an ideal settlement ring structure with human architecture in the center and natural landscape around in the horizontal and vertical horizons. The traditional method based on the projection distance caused the deviation of the landscape index, such as underestimating the area and distance of landscape patch. The 3D landscape index of average patch area was 6.7% higher than the 2D landscape index. The increasing rate ofarea proportion in 3D index was 1.0% higher than that of 2D index in forest lands. Area proportion of the other landscapes decreased, especially the artificial landscapes like construction and cropland landscapes. The area and perimeter metric were underestimated, whereas the shape metric and the diversity metric were overestimated. This caused the underestimation of the dominance of natural patches was underestimated and the overestimation of the dominance of artificial patches during the analysis of landscape pattern. The 3D landscape index showed that the natural elements and their combination in Chengkan Village ecosystem reflected better ecological function, the key elements and the composited landscape ecosystem preserved higher stability, connectivity and aggregation. The quantitative confirmation showed that the Huizhou-Styled Village represented by Chengkan Village is an ideal ecosystem.
Ronnenberg, Katrin; Strauß, Egbert; Siebert, Ursula
2016-09-09
The grey partridge (Perdix perdix) and the common pheasant (Phasianus colchicus) are galliform birds typical of arable lands in Central Europe and exhibit a partly dramatic negative population trend. In order to understand general habitat preferences we modelled grey partridge and common pheasant densities over the entire range of Lower Saxony. Spatially explicit developments in bird densities were modelled using spatially explicit trends of crop cultivation. Pheasant and grey partridge densities counted annually by over 8000 hunting district holders over 10 years in a range of 3.7 Mio ha constitute a unique dataset (wildlife survey of Lower Saxony). Data on main landscape groups, functional groups of agricultural crops (consisting of 9.5 million fields compiled by the Integrated Administration and Control System) and landscape features were aggregated to 420 municipalities. To model linear 8 or 10 year population trends (for common pheasant and grey partridge respectively) we use rho correlation coefficients of densities, but also rho coefficients of agricultural crops. All models confirm a dramatic decline in population densities. The habitat model for the grey partridge shows avoidance of municipalities with a high proportion of woodland and water areas, but a preference for areas with a high proportion of winter grains and high crop diversity. The trend model confirms these findings with a linear positive effect of diversity on grey partridge population development. Similarly, the pheasant avoids wooded areas but showed some preference for municipalities with open water. The effect of maize was found to be positive at medium densities, but negative at very high proportions. Winter grains, landscape features and high crop diversity are favorable. The positive effect of winter grains and higher crop diversity is also supported by the trend model. The results show the strong importance of diverse crop cultivation. Most incentives favor the cultivation of specific crops, which results in large areas of monocultures. The results confirm the importance of sustainable agricultural policies.
Measure Landscape Diversity with Logical Scout Agents
NASA Astrophysics Data System (ADS)
Wirth, E.; Szabó, G.; Czinkóczky, A.
2016-06-01
The Common Agricultural Policy reform of the EU focuses on three long-term objectives: viable food production, sustainable management of natural resources and climate action with balanced territorial development. To achieve these goals, the EU farming and subsidizing policies (EEA, 2014) support landscape heterogeneity and diversity. Current paper introduces an agent-based method to calculate the potential of landscape diversity. The method tries to catch the nature of heterogeneity using logic and modelling as opposed to the traditional statistical reasoning. The outlined Random Walk Scouting algorithm registers the land cover crossings of the scout agents to a Monte Carlo integral. The potential is proportional with the composition and the configuration (spatial character) of the landscape. Based on the measured points a potential map is derived to give an objective and quantitative basis to the stakeholders (policy makers, farmers).
Functional roles affect diversity-succession relationships for boreal beetles.
Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim
2013-01-01
Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.
Rapid Diversity Loss of Competing Animal Species in Well-Connected Landscapes
Schippers, Peter; Hemerik, Lia; Baveco, Johannes M.; Verboom, Jana
2015-01-01
Population viability of a single species, when evaluated with metapopulation based landscape evaluation tools, always increases when the connectivity of the landscape increases. However, when interactions between species are taken into account, results can differ. We explore this issue using a stochastic spatially explicit meta-community model with 21 competing species in five different competitive settings: (1) weak, coexisting competition, (2) neutral competition, (3) strong, excluding competition, (4) hierarchical competition and (5) random species competition. The species compete in randomly generated landscapes with various fragmentation levels. With this model we study species loss over time. Simulation results show that overall diversity, the species richness in the entire landscape, decreases slowly in fragmented landscapes whereas in well-connected landscapes rapid species losses occur. These results are robust with respect to changing competitive settings, species parameters and spatial configurations. They indicate that optimal landscape configuration for species conservation differs between metapopulation approaches, modelling species separately and meta-community approaches allowing species interactions. The mechanism behind this is that species in well-connected landscapes rapidly outcompete each other. Species that become abundant, by chance or by their completive strength, send out large amounts of dispersers that colonize and take over other patches that are occupied by species that are less abundant. This mechanism causes rapid species loss. In fragmented landscapes the colonization rate is lower, and it is difficult for a new species to establish in an already occupied patch. So, here dominant species cannot easily take over patches occupied by other species and higher diversity is maintained for a longer time. These results suggest that fragmented landscapes have benefits for species conservation previously unrecognized by the landscape ecology and policy community. When species interactions are important, landscapes with a low fragmentation level can be better for species conservation than well-connected landscapes. Moreover, our results indicate that metapopulation based landscape evaluation tools may overestimate the value of connectivity and should be replaced by more realistic meta-community based tools. PMID:26218682
Napolitano, Constanza; Díaz, Diego; Sanderson, Jim; Johnson, Warren E; Ritland, Kermit; Ritland, Carol E; Poulin, Elie
2015-01-01
Landscape fragmentation is often a major cause of species extinction as it can affect a wide variety of ecological processes. The impact of fragmentation varies among species depending on many factors, including their life-history traits and dispersal abilities. Felids are one of the groups most threatened by fragmented landscapes because of their large home ranges, territorial behavior, and low population densities. Here, we model the impacts of habitat fragmentation on patterns of genetic diversity in the guigna (Leopardus guigna), a small felid that is closely associated with the heavily human-impacted temperate rainforests of southern South America. We assessed genetic variation in 1798 base pairs of mitochondrial DNA sequences, 15 microsatellite loci, and 2 sex chromosome genes and estimated genetic diversity, kinship, inbreeding, and dispersal in 38 individuals from landscapes with differing degrees of fragmentation on Chiloé Island in southern Chile. Increased fragmentation was associated with reduced genetic diversity, but not with increased kinship or inbreeding. However, in fragmented landscapes, there was a weaker negative correlation between pairwise kinship and geographic distance, suggesting increased dispersal distances. These results highlight the importance of biological corridors to maximize connectivity in fragmented landscapes and contribute to our understanding of the broader genetic consequences of habitat fragmentation, especially for forest-specialist carnivores. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Run; Ding, Sheng Yan; Lu, Xun Ling; Song, Bo
2016-07-01
Eco-services provided by non-agricultural organisms are the basis of ecosystem to keep its stability in agricultural landscapes. With the strengthening of agricultural intensification, the ongoing loss of biodiversity is one of the most extrusive issues in the development of modern agriculture. In this paper, the study area was set up in Gongyi County, a typical agricultural region in the middle and lower reaches of the Yellow River. According to its typical topography (mountain-hilly-plain) type, we explored the effects of landscape heterogeneity on the diversity of pollinators at three different scales, which were geomorphic categories, landscape and habitat. Pan traps were used to obtain pollinators in this study. The effects of agricultural landscape heterogeneity at multi-scales on the diversity of pollinators were analyzed by using multivariable ANOVA. The results showed that a total of 67012 pollinator individuals that belonged to 86 classes and 7 subjects were classified. The dominant groups inclu-ded Syrphidae and Anthomyiidae. The common groups included Drosophilidae, Calliphoridae, Bombyliidae, Pipunculidae, Cantharidae, Cynipidae, Vespidae, Chalalcididae, Megachilidae and Apidae. Geomorphic categories showed the most significant impact on pollinators (P<0.001), suggesting that hilly and mountainous areas were the pollinators' ground of nectar. It was followed by habitat scale (P<0.05), with non-significant effect on the scales of landscape and the interaction between scales. The effect of landscape heterogeneity on the diversity of pollinators in hilly and mountainous areas provided a theoretical support for landscape planning and biodiversity conservation on the local area with different geomorphic categories.
Mapping and determinism of soil microbial community distribution across an agricultural landscape
Constancias, Florentin; Terrat, Sébastien; Saby, Nicolas P A; Horrigue, Walid; Villerd, Jean; Guillemin, Jean-Philippe; Biju-Duval, Luc; Nowak, Virginie; Dequiedt, Samuel; Ranjard, Lionel; Chemidlin Prévost-Bouré, Nicolas
2015-01-01
Despite the relevance of landscape, regarding the spatial patterning of microbial communities and the relative influence of environmental parameters versus human activities, few investigations have been conducted at this scale. Here, we used a systematic grid to characterize the distribution of soil microbial communities at 278 sites across a monitored agricultural landscape of 13 km². Molecular microbial biomass was estimated by soil DNA recovery and bacterial diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first maps of microbial community at this scale and revealed a heterogeneous but spatially structured distribution of microbial biomass and diversity with patches of several hundreds of meters. Variance partitioning revealed that both microbial abundance and bacterial diversity distribution were highly dependent of soil properties and land use (total variance explained ranged between 55% and 78%). Microbial biomass and bacterial richness distributions were mainly explained by soil pH and texture whereas bacterial evenness distribution was mainly related to land management. Bacterial diversity (richness, evenness, and Shannon index) was positively influenced by cropping intensity and especially by soil tillage, resulting in spots of low microbial diversity in soils under forest management. Spatial descriptors also explained a small but significant portion of the microbial distribution suggesting that landscape configuration also shapes microbial biomass and bacterial diversity. PMID:25833770
Northwest Boreal Landscape Conservation Cooperative strategic plan 2015 - 2025
Markon, Carl; Schroff, Eric
2016-01-01
The Northwest Boreal Landscape Conservation Cooperative (NWB LCC) is a voluntary, diverse, self-directed management-science partnership, informing and promoting integrated science, sustainable natural and cultural resource management, and conservation to address impacts of climate change and other stressors within and across ecosystems. The NWB LCC area includes parts of Alaska, Yukon, Northwest Territories, and British Columbia. Our partnership reflects both the broad geographic scope and an extensive array of active and engaged participants including resource management organizations, government representatives, policy makers, Tribes and First Nations, industry leaders, researchers, non-governmental organizations, and research/education institutions. Bringing together diverse partners will help assure the northwest boreal is a functioning, sustainable landscape. We live in an era of profound conservation challenges, including the loss and fragmentation of habitats, genetic isolation, invasive species, and unnatural wildfire. The effects of rapidly changing climate are already evident on the landscape. In these circumstances, it is imperative that natural resource management agencies, science providers, Tribes, First Nations, conservation organizations, and other stakeholders work together to understand the drivers and impacts of landscape change and to determine how best to address those challenges. Further, it is essential that the public and communities receive clear communication about the vision and activities of the NWB LCC. Open public access to NWB LCC activities and products will promote acceptance and support of the science that guides potential changes in management action and conservation strategy. This strategic plan provides a great opportunity for the NWB LCC to share our approach and intentions to the LCC members, collaborators, communities, and the public at large.
An Assessment of Institutional Capacity for Integrated Landscape Management in Eastern Cameroon.
Brown, H Carolyn Peach
2018-07-01
Landscape approaches have become prominent in efforts to address issues of conservation and development through bringing together different actors and sectors, to reconcile diverse land uses, and promote synergies. Some have suggested that integrated landscape management approaches are consistent with the goals of REDD+ and offer a strategy to address multiple goals of climate change mitigation, biodiversity conservation, maintenance of ecosystem services, and socio-economic development. Institutional or governance arrangements have been shown to be a critical component in influencing outcomes in landscapes. Using diverse methodologies, this study investigated the capacity of institutions to support the planning, implementation, and resource mobilization needed to integrate climate change mitigation, conservation, and livelihood goals in a forest mosaic landscape in East Cameroon. Results showed that diverse institutions are present in the landscape, including institutions of relevant government agencies, local government, local non-government, the private sector, and hybrid institutions of conservation, development and research institutions. However, the overall institutional capacity for integrated landscape planning and management in the study area is limited, although some institutions exhibit increased capacity in some areas over others. Multiple strategies can be employed to build the necessary human, financial, and leadership capacity, and facilitate the institutional planning and coordination that is foundational to multi-stakeholder landscape governance. Given the complexity of integrating climate change mitigation, conservation and livelihood goals in a landscape, building such institutional capacity is a long term endeavour that requires sustained effort and ongoing financial, technical and human resource support.
Envisioning, quantifying, and managing thermal regimes on river networks
E. Ashley Steel; Timothy J. Beechie; Christian E. Torgersen; Aimee H. Fullerton
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival....
Experimental Biodiversity Enrichment in Oil-Palm-Dominated Landscapes in Indonesia.
Teuscher, Miriam; Gérard, Anne; Brose, Ulrich; Buchori, Damayanti; Clough, Yann; Ehbrecht, Martin; Hölscher, Dirk; Irawan, Bambang; Sundawati, Leti; Wollni, Meike; Kreft, Holger
2016-01-01
Tropical biodiversity is threatened by the expansion of oil-palm plantations. Reduced-impact farming systems such as agroforests, have been proposed to increase biodiversity and ecosystem functioning. In regions where oil-palm plantations already dominate the landscape, this increase can only be achieved through systematic ecological restoration. However, our knowledge about the underlying ecological and socio-economic processes, constraints, and trade-offs of ecological restoration in oil-palm landscapes is very limited. To bridge this gap, we established a long-term biodiversity enrichment experiment. We established experimental tree islands in a conventional oil-palm plantation and systematically varied plot size, tree diversity, and tree species composition. Here, we describe the rationale and the design of the experiment, the ecosystem variables (soil, topography, canopy openness) and biotic characteristics (associated vegetation, invertebrates, birds) of the experimental site prior to the establishment of the experiment, and initial experimental effects on the fauna. Already one year after establishment of the experiment, tree plantings had an overall positive effect on the bird and invertebrate communities at the plantation scale. The diversity and abundance of invertebrates was positively affected by the size of the tree islands. Based on these results, we expect a further increase of biodiversity and associated ecological functions in the future. The long-term interdisciplinary monitoring of ecosystem variables, flora, fauna, and socio-economic aspects will allow us to evaluate the suitability of tree islands as a restoration measure. Thereof, guidelines for ecologically improved and socio-economically viable restoration and management concepts could be developed.
The Effects of Crop Intensification on the Diversity of Native Pollinator Communities.
Mogren, Christina L; Rand, Tatyana A; Fausti, Scott W; Lundgren, Jonathan G
2016-08-01
Increases in agricultural conversion are leading to declines in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these changes affect pollinator diversity. Land use types were categorized within 300 m and 3 km radii of pollinator sampling locations in Brookings County, SD. Pollinator abundance and species richness were regressed on the proportion of the landscape dedicated to row crops, grass and pasture, forage crops, small grains, and aquatic habitats using variance components modeling. Row crops had a negative effect on bee abundance at 300 m, after fixed effects modeling accounted for outliers skewing this relationship. At 3 km, corn positively affected bee abundance and richness, while soybean acreage decreased species richness. The landscape matrix of outlying sites consisted of large monocultured areas with few alternative habitat types available, leading to inflated populations of Melissodes and Halictidae. Syrphids had a positive parabolic relationship between diversity and row crops, indicating potential for competitive exclusion from intermediate landscapes. Unlike other studies, landscape diversity within 300 m was not found to significantly benefit pollinator diversity. Within especially agriculturally developed areas of the region, high abundances of pollinators suggest selection for a few dominant species. There was no effect of forage crops or aquatic habitats on pollinator diversity, indicating that less highly managed areas still represent degraded habitat within the landscape. Incorporating pollinator-friendly crops at the farm level throughout the region is likely to enhance pollinator diversity by lessening the negative effects of large monocultures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapid assessment of butterfly diversity in a montane landscape
Simonson, S.E.; Opler, P.A.; Stohlgren, T.J.; Chong, G.W.
2001-01-01
We present the results of a rapid assessment of butterfly diversity in the 754 ha Beaver Meadows study area in Rocky Mountain National Park, Larimer County, Colorado. We measured butterfly species richness and relative abundance as part of a landscape-scale investigation of diversity patterns involving several groups of organisms. A stratified random sampling design was used to include replication in both rare and common vegetation types. We recorded 49 butterfly species from the twenty-four 0.1 ha plots that were sampled four times during June, July, and August 1996. Butterfly species richness, diversity, and uniqueness were highest in quaking aspen (Populus tremuloides Michaux) groves and wet meadows, which occupy only a small proportion of the studied landscape. This result supports the suggestion that aspen areas represent ‘hotspots’ of biological diversity in this montane landscape. Patterns of butterfly species richness were positively correlated with total vascular plant species richness (r = 0.69; P < 0.001), and native plant species richness (r = 0.64; P < 0.001). However, exotic plant species richness (r = 0.70; P < 0.001) and the cover of exotic plant species (r = 0.70; P < 0.001) were the best predictors of butterfly species richness.
Wang, Shuixian; Wang, Shengli
2013-12-01
Human modification of land use and land cover change (LUCC) drives the change of landscape patterns and limits the availability of products and services for human and livestock. LUCC can undermine environmental health. Thus, this study aimed to develop an understanding of LUCC in the Yanqi Basin, Xinjiang, China, an arid area experiencing dramatic water and land resource use. A time series of satellite images (1964, 1973, 1989, 1999, and 2009) were used to calculate the index of landscape patterns to study the processes involved in changes to land uses and landscape patterns and the influence of this changes on landscape patterns. The results show that land uses in the Yanqi Basin have changed dramatically since 1964 with grassland being mainly converted to cropland. Landscape fragmentation and diversity have decreased in the study area, although landscape fragmentation increased from 1964 to 1999 and then decreased by 2009. The index of landscape diversity decreased from 1.64 in 1964 to 0.71 in 2009. The heterogeneity and complexity of the landscape increased during this period. In contrast, the index of dominance decreased from 0.85 in 1964 to 0.83 in 2009. Land use change drives landscape patterns of the development of the watershed toward diversity and a fragmented structure. Population growth, economic development, and industrial policies were the dominant driving forces behind LUCC in the Yanqi Basin. Sustainable use of land resources is a significant factor in maintaining economic development and environmental protection in this arid inland river basin.
Michael S. Mitchell; Scott H. Rutzmoser; T. Bently Wigley; Craig Loehle; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Roger W. Perry; Christopher L. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood
2006-01-01
Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand...
St. Laurent, Georges; Savva, Yiannis A.; Kapranov, Philipp
2012-01-01
Perhaps no other topic in contemporary genomics has inspired such diverse viewpoints as the 95+% of the genome, previously known as “junk DNA,” that does not code for proteins. Here, we present a theory in which dark matter RNA plays a role in the generation of a landscape of spatial micro-domains coupled to the information signaling matrix of the nuclear landscape. Within and between these micro-domains, dark matter RNAs additionally function to tether RNA interacting proteins and complexes of many different types, and by doing so, allow for a higher performance of the various processes requiring them at ultra-fast rates. This improves signal to noise characteristics of RNA processing, trafficking, and epigenetic signaling, where competition and differential RNA binding among proteins drives the computational decisions inherent in regulatory events. PMID:22539933
Space Strategies for the New Learning Landscape
ERIC Educational Resources Information Center
Dugdale, Shirley
2009-01-01
The Learning Landscape is the total context for students' learning experiences and the diverse landscape of learning settings available today--from specialized to multipurpose, from formal to informal, and from physical to virtual. The goal of the Learning Landscape approach is to acknowledge this richness and maximize encounters among people,…
NASA Astrophysics Data System (ADS)
Zhang, H.; Fan, J.
2015-12-01
The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 gC·m-2yr-1 in 2000, to 226.30 gC·m-2yr-1 in 2010, with a 3.70% increase; Soil and water conservation capacity has showed an obvious increment. (5) The grassland restoration program implementation evidently improved the structure and stability of the land use/ land cover. The climatic variations (temperature and precipitation) promoted vegetation growth.
Grass, Ingo; Brandl, Roland; Botzat, Alexandra; Neuschulz, Eike Lena; Farwig, Nina
2015-01-01
The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests. PMID:25719204
Assessing public response to freeway roadsides: urban forestry and context-sensitive solutions
Kathleen L. Wolf
2006-01-01
Social science methods can be used to assess how the public values contextsensitive solutions. The roadside landscape is a public lands resource that has many functions and provides many benefits. Diverse stakeholders may have varied expectations for roadside design. The urban forest is often a contested component of the urban roadside. Two research surveys based on...
ERIC Educational Resources Information Center
St. John, Maria Seymour
2016-01-01
This article weaves the stories of three practitioner-family relationships and describes how the Parent-Child Relationship Competencies (PCRCs; St. John, 2010) function as a map for assessment and treatment planning. The PCRCs are a set of culturally variable yet universal bi-directional (parent-to-child and child-to-parent) relational capacities…
Diane De Steven; Richard Lowrance
2011-01-01
In the eastern U.S. Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the agricultural landscape. We review the extent of regional knowledge regarding the...
Turvey, Samuel T; Pettorelli, Nathalie
2014-12-07
Languages share key evolutionary properties with biological species, and global-level spatial congruence in richness and threat is documented between languages and several taxonomic groups. However, there is little understanding of the functional connection between diversification or extinction in languages and species, or the relationship between linguistic and species richness across different spatial scales. New Guinea is the world's most linguistically rich region and contains extremely high biological diversity. We demonstrate significant positive relationships between language and mammal richness in New Guinea across multiple spatial scales, revealing a likely functional relationship over scales at which infra-island diversification may occur. However, correlations are driven by spatial congruence between low levels of language and species richness. Regional biocultural richness may have showed closer congruence before New Guinea's linguistic landscape was altered by Holocene demographic events. In contrast to global studies, we demonstrate a significant negative correlation across New Guinea between areas with high levels of threatened languages and threatened mammals, indicating that landscape-scale threats differ between these groups. Spatial resource prioritization to conserve biodiversity may not benefit threatened languages, and conservation policy must adopt a multi-faceted approach to protect biocultural diversity as a whole.
Elliott, Norman C; Brewer, Michael J; Giles, Kristopher L
2018-04-12
Winter wheat is Oklahoma's most widely grown crop, and is planted during September and October, grows from fall through spring, and is harvested in June. Winter wheat fields are typically interspersed in a mosaic of habitats in other uses, and we hypothesized that the spatial and temporal composition and configuration of landscape elements, which contribute to agroecosystem diversity also influence biological control of common aphid pests. The parasitoid Lysiphlebus testaceipes (Cresson; Hymenoptera: Aphidiinae) is highly effective at reducing aphid populations in wheat in Oklahoma, and though a great deal is known about the biology and ecology of L. testaceipes, there are gaps in knowledge that limit predicting when and where it will be effective at controlling aphid infestations in wheat. Our objective was to determine the influence of landscape structure on parasitism of cereal aphids by L. testaceipes in wheat fields early in the growing season when aphid and parasitoid colonization occurs and later in the growing season when aphid and parasitoid populations are established in wheat fields. Seventy fields were studied during the three growing seasons. Significant correlations between parasitism by L. testaceipes and landscape variables existed for patch density, fractal dimension, Shannon's patch diversity index, percent wheat, percent summer crops, and percent wooded land. Correlations between parasitism and landscape variables were generally greatest at a 3.2 km radius surrounding the wheat field. Correlations between parasitism and landscape variables that would be expected to increase with increasing landscape diversity were usually positive. Subsequent regression models for L. testaceipes parasitism in wheat fields in autumn and spring showed that landscape variables influenced parasitism and indicated that parasitism increased with increasing landscape diversity. Overall, results indicate that L. testaceipes utilizes multiple habitats throughout the year depending on their availability and acceptability, and frequently disperses among habitats. Colonization of wheat fields by L. testaceipes in autumn appears to be enhanced by proximity to fields of summer crops and semi-natural habitats other than grasslands.
Cui, Qiao-Yu; Gaillard, Marie-José; Lemdahl, Geoffrey; Stenberg, Li; Sugita, Shinya; Zernova, Ganna
2014-01-01
The two major aims of this study are (1) To test the performance of the Landscape Reconstruction Algorithm (LRA) to quantify past landscape changes using historical maps and related written sources, and (2) to use the LRA and map reconstructions for a better understanding of the origin of landscape diversity and the recent loss of species diversity. Southern Sweden, hemiboreal vegetation zone. The LRA was applied on pollen records from three small bogs for four time windows between AD 1700 and 2010. The LRA estimates of % cover for woodland/forest, grassland, wetland, and cultivated land were compared with those extracted from historical maps within 3-km radius around each bog. Map-extracted land-use categories and pollen-based LRA estimates (in % cover) of the same land-use categories show a reasonable agreement in several cases; when they do not agree, the assumptions used in the data (maps)-model (LRA) comparison are a better explanation of the discrepancies between the two than possible biases of the LRA modeling approach. Both the LRA reconstructions and the historical maps reveal between-site differences in landscape characteristics through time, but they demonstrate comparable, profound transformations of the regional and local landscapes over time and space due to the agrarian reforms in southern Sweden during the 18th and 19th centuries. The LRA was found to be the most reasonable approach so far to reconstruct quantitatively past landscape changes from fossil pollen data. The existing landscape diversity in the region at the beginning of the 18th century had its origin in the long-term regional and local vegetation and land-use history over millennia. Agrarian reforms since the 18th century resulted in a dramatic loss of landscape diversity and evenness in both time and space over the last two centuries leading to a similarly dramatic loss of species (e.g., beetles). PMID:25478148
NASA Astrophysics Data System (ADS)
Sanfiorenzo, A. R.; Waits, L.; Finegan, B.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Hormel, L.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Sibelet, N.
2016-12-01
Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non-traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we examine the coupled social and ecological implications of agricultural intensification Guided by frameworks from political economy, landscape ecology and landscape genetics we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology and genetics analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which increase the genetic structure and reduce the genetic diversity of Symphonia globulifera a forest understory tree species. To offset the effects of agricultural intensification on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of agricultural intensification in a tropical landscape, and offers recommendations for improvement relevant not only to our study region but to the many other tropical landscapes currently undergoing non-traditional agricultural export driven agricultural intensification.
Katrin Premke; Katrin Attermeyer; Jurgen Augustin; Alvaro Cabezas; Peter Casper; Detlef Deumlich; Jorg Gelbrecht; Horst H. Gerke; Arthur Gessler; Hans-Peter Grossart; Sabine Hilt; Michael Hupfer; Thomas Kalettka; Zachary Kayler; Gunnar Lischeid; Michael Sommer; Dominik Zak
2016-01-01
Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and...
Varela, Elsa; Verheyen, Kris; Valdés, Alicia; Soliño, Mario; Jacobsen, Jette B; De Smedt, Pallieter; Ehrmann, Steffen; Gärtner, Stefanie; Górriz, Elena; Decocq, Guillaume
2018-04-01
Small forest patches embedded in agricultural (and peri-urban) landscapes in Western Europe play a key role for biodiversity conservation with a recognized capacity of delivering a wide suite of ecosystem services. Measures aimed to preserve these patches should be both socially desirable and ecologically effective. This study presents a joint ecologic and economic assessment conducted on small forest patches in Flanders (Belgium) and Picardie (N France). In each study region, two contrasted types of agricultural landscapes were selected. Open field (OF) and Bocage (B) landscapes are distinguished by the intensity of their usage and higher connectivity in the B landscapes. The social demand for enhancing biodiversity and forest structure diversity as well as for increasing the forest area at the expenses of agricultural land is estimated through an economic valuation survey. These results are compared with the outcomes of an ecological survey where the influence of structural features of the forest patches on the associated herbaceous diversity is assessed. The ecological and economic surveys show contrasting results; increasing tree species richness is ecologically more important for herbaceous diversity in the patch, but both tree species richness and herbaceous diversity obtain insignificant willingness to pay estimates. Furthermore, although respondents prefer the proposed changes to take place in the region where they live, we find out that social preferences and ecological effectiveness do differ between landscapes that represent different intensities of land use. Dwellers where the landscape is perceived as more "degraded" attach more value to diversity enhancement, suggesting a prioritization of initiatives in these area. In contrast, the ecological analyses show that prioritizing the protection and enhancement of the relatively better-off areas is more ecologically effective. Our study calls for a balance between ecological effectiveness and welfare benefits, suggesting that cost effectiveness studies should consider these approaches jointly. Copyright © 2017 Elsevier B.V. All rights reserved.
Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J.
1998-01-01
We examined the relationships between anuran diversity and landscape features in the Upper Midwestern United States. Anuran relative abundance and species richness were measured using data collected by Wisconsin and Iowa state calling surveys conducted from 1990-1995. Landscape features surrounding survey points were determined using National Wetland Inventory and Wisconsin Wetland Inventory maps. We tested several hypotheses suggested by the literature. We hypothesized that the relative abundance and species richness of anurans that breed in ephemeral wetlands is positively correlated with the surrounding area of temporary wetlands and emergent wetlands. We hypothesized that the relative abundance and species richness of anurans is positively correlated with patch diversity and wetland edges, in the absence of local fragmentation effects. We hypothesized that the relative abundance and species richness of anurans is positively associated with forests but negatively associated with agriculture and urban areas. Our results show that the interspersion of different wetland types and the concomitant increase in wetland edge habitats were generally positive for frogs and toads and anuran abundance and diversity were generally higher in association with forests, especially forested wetlands. The presence of agriculture did not always depress frog and toad populations or diversity; some species were associated with agricultural landscapes. The two states differed in how anurans were associated with landscape features like lakes and permanent wetlands. We found that frog and toad relative abundance and diversity were lower when urban areas were present. Managers can use models like ours, generated from landscape analyses, along with range maps and population trend analyses to get a comprehensive picture of the health of individual species and groups of species. Our models could be applied to the landscape as a whole, and used to predict species relative abundance and richness at new locations. Our work provides a framework for future experimental and intensive research on specific factors affecting the health of amphibians in the Upper Midwest.
Complementary crops and landscape features sustain wild bee communities.
Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew
2018-06-01
Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Zaller, Johann; Buchholz, Jacob; Querner, Pascal; Paredes, Daniel; Kratschmer, Sophie; Schwantzer, Martina; Winter, Silvia; Strauss, Peter; Bauer, Thomas; Burel, Françoise; Guernion, Muriel; Scimia, Jennifer; Nicolai, Annegret; Cluzeau, Daniel
2017-04-01
Ecosystem services provided by viticultural landscapes result from interactions between management intensity, soil properties, organisms inhabiting these landscapes, and the diversity and structure of the surrounding landscape. However, there is actually very little known to what extent these different factors influence the abundance and diversity of various soil biota. In this study we examined (i) to what extent different soil management intensities of interrows affect the activity and diversity of soil biota (earthworms, Collembola, litter decomposition), (ii) the role of soil properties in influencing these effects and (iii) whether the surrounding landscape structure is altering these interactions. We collected data in 16 vineyards in Austria embedded in landscapes with varying structure (i.e. from structurally simple to complex) and assessed earthworms (hand sorting), Collembola (pitfall trapping and soil coring), litter decomposition (tea bag method). Additionally, soil physical (water infiltration, aggregate stability, porosity, bulk density, soil texture) and chemical (pH, soil carbon content, cation exchange capacity, potassium, phosphorus) parameters were assessed. The landscape surrounding our vineyards within a radius of 750 m was assessed by field mapping using a geographical information system. Results showed that different soil biota/processes are differently affected by soil cultivation intensity and soil properties. Parameters describing the surrounding landscape interacted more with the responses of Collembola to soil cultivation than with earthworms or litter decomposition. These investigations are part of the transdisciplinary BiodivERsA project VineDivers (www.vinedivers.eu) and will ultimately lead into management recommendations for various stakeholders.
Mapping and determinism of soil microbial community distribution across an agricultural landscape.
Constancias, Florentin; Terrat, Sébastien; Saby, Nicolas P A; Horrigue, Walid; Villerd, Jean; Guillemin, Jean-Philippe; Biju-Duval, Luc; Nowak, Virginie; Dequiedt, Samuel; Ranjard, Lionel; Chemidlin Prévost-Bouré, Nicolas
2015-06-01
Despite the relevance of landscape, regarding the spatial patterning of microbial communities and the relative influence of environmental parameters versus human activities, few investigations have been conducted at this scale. Here, we used a systematic grid to characterize the distribution of soil microbial communities at 278 sites across a monitored agricultural landscape of 13 km². Molecular microbial biomass was estimated by soil DNA recovery and bacterial diversity by 16S rRNA gene pyrosequencing. Geostatistics provided the first maps of microbial community at this scale and revealed a heterogeneous but spatially structured distribution of microbial biomass and diversity with patches of several hundreds of meters. Variance partitioning revealed that both microbial abundance and bacterial diversity distribution were highly dependent of soil properties and land use (total variance explained ranged between 55% and 78%). Microbial biomass and bacterial richness distributions were mainly explained by soil pH and texture whereas bacterial evenness distribution was mainly related to land management. Bacterial diversity (richness, evenness, and Shannon index) was positively influenced by cropping intensity and especially by soil tillage, resulting in spots of low microbial diversity in soils under forest management. Spatial descriptors also explained a small but significant portion of the microbial distribution suggesting that landscape configuration also shapes microbial biomass and bacterial diversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Strategies Influencing Spatial Heterogeneity of Microbial Life in a Soil Lysimeter
NASA Astrophysics Data System (ADS)
Sengupta, A.; Neilson, J. W.; Meira, A.; Wang, Y.; Meza, M.; Chorover, J.; Maier, R. M.; Troch, P. A. A.
2016-12-01
Soil microorganisms are critical drivers of biogeochemical processes. These microbes, in conjunction with their physical and chemical environment, contribute to ecosystem functioning and services of the landscape, have a profound impact on soil formation, and are of particular importance in oligotrophic environments; ecosystems that are characterized by low biotic diversity due to extremely low nutrient levels. Here, we present a study of microbial heterogeneity in a soil lysimeter under incipient conditions. The key questions asked were: 1) what is the spatial heterogeneity of microbes over a new and evolving landscape with inherent oligotrophic conditions, and 2) can patterns in diversity translate to patterns in microbe-mediated weathering processes and soil formation? We hypothesized that stratification of environmental conditions, brought about by varying water potential, flow paths, and redox conditions, will drive the heterogeneity of microbial life in a sub-meter scale. A suite of traditional and current microbiological tools were employed to study community characteristics. These included isolation on R2A media, quantitative polymerase chain reactions targeted at 16S rRNA bacterial and archaeal genes, and 18S fungal genes, and iTAG phylogenetic gene amplification. Illumina Mi-Seq platform generated sequences were analyzed using various bioinformatics pipelines to identify community patterns, classify microbial metabolic functions, and identify variables affecting the community dynamics. Numerous phyla (Verrucomicrobia, Actinobacteria, Planctomycetes, Proteobacteria, and Euryarchaeota) were identified. The surface layer had distinctly different distribution of communities compared to the other layers. Metabolically heterogeneous groups were found with respect to depth, with metabolic functions further confirmed by predictive functional profiling of the microbial communities. Therefore, despite being highly oligotrophic, the system was rich in species and functional diversity. Alongside physical and chemical data, the patterns observed in spatial and functional heterogeneity of microbes under incipient conditions is unique, and allows us to predict strategies undertaken by these microbes to survive in, and influence their oligotrophic environments.
Inferring landscape effects on gene flow: A new model selection framework
A. J. Shirk; D. O. Wallin; S. A. Cushman; C. G. Rice; K. I. Warheit
2010-01-01
Populations in fragmented landscapes experience reduced gene flow, lose genetic diversity over time and ultimately face greater extinction risk. Improving connectivity in fragmented landscapes is now a major focus of conservation biology. Designing effective wildlife corridors for this purpose, however, requires an accurate understanding of how landscapes shape gene...
Human dimensions of early successional landscapes in the eastern United States
Paul H. Gobster
2001-01-01
People interactions wit early successional landscapes are varied and diverse. I review 3 key ways thta people perceive, use, and value forest landscapes, emphasizing selected types of early successional landscapes in the eastern United States(U.S.): production and comsumption of timber and nontimber forest products, visual and aesthetic perceptions , and recreational...
[Dynamic changes of landscape pattern during desertification in Duolun County of Inner Mongolia].
Aruhan; Yang, Chi
2007-11-01
By using landscape analyzing software Fragstats 3.3 and the interpretation results of remote-sensing images of 1960, 1975, 1987, 1995, 2000 and 2005, this paper analyzed the dynamic changes of landscape pattern during the desertification in Duolun County of Inner Mongolia in 1960-2005. The results showed that in 1960-1995, the desertification area appeared a tendency of increasing first and decreasing then, with a total increase of 212.7 km2. The numbers of desertification landscape patches decreased after an initial increase, landscape diversity and evenness increased, and the shapes of light-, moderate-, and heavy desertification patches tended to be simplex. From 1995 to 2005, the numbers of desertification patches increased greatly, landscape diversity and evenness decreased, and the shapes of light-, moderate-, and heavy desertification patches tended to be complex. Since 1960, the shapes of severe desertification patches had been inclined to complication. In the study period, the whole desertification landscape showed a trend of integrity-broken-integrity-broken, and the broken degree of the patch types of desertification landscape was gradually from light down to severe.
Geo-diversity as an indicator of natural resources for geopark in human society
NASA Astrophysics Data System (ADS)
Lin, Jiun-Chuan
2017-04-01
Geo-diversity is a concept of richness and number of different landscapes in a small area. The higher geo-diversity the potential attraction is higher. Many geoparks will make use of those landscapes for sustainable development. The purpose of this study is trying to evaluate the geomorphic resources for geoparks in Taiwan. For the sustainable development, the concept of geopark is one of the tool for the development of society. The evaluation of geo-diversity helps our understanding of local resources and for future management. Therefore, the geomorphic resources should be evaluated systematically and aim to help the sustainable development of the geopark. The indicators of geo-diversity can be classified into four characters to review: 1. number of landscapes within geopark; 2. accessibility to the sites of geopark, 3. dynamic processes of the landforms, 4. method of landform evolution. Taiwan geoparks should make use of these four characters for conservation, management and education purposes. Yehliu, Matsu and Penghu geoparks are three typical cases for demonstration in this paper.
Local and Landscape Correlates of Spider Activity Density and Species Richness in Urban Gardens.
Otoshi, Michelle D; Bichier, Peter; Philpott, Stacy M
2015-08-01
Urbanization is a major threat to arthropod biodiversity and abundance due to reduction and loss of suitable natural habitat. Green spaces and small-scale agricultural areas may provide habitat and resources for arthropods within densely developed cities. We studied spider activity density (a measure of both abundance and degree of movement) and diversity in urban gardens in Santa Cruz, Santa Clara, and Monterey counties in central California, USA. We sampled for spiders with pitfall traps and sampled 38 local site characteristics for 5 mo in 19 garden sites to determine the relative importance of individual local factors. We also analyzed 16 landscape variables at 500-m and 1-km buffers surrounding each garden to determine the significance of landscape factors. We identified individuals from the most common families to species and identified individuals from other families to morphospecies. Species from the families Lycosidae and Gnaphosidae composed 81% of total adult spider individuals. Most of the significant factors that correlated with spider activity density and richness were local rather than landscape factors. Spider activity density and richness increased with mulch cover and flowering plant species, and decreased with bare soil. Thus, changes in local garden management have the potential to promote diversity of functionally important spiders in urban environments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Guy, T.J.; Gresswell, R.E.; Banks, M.A.
2008-01-01
Relationships among landscape structure, stochastic disturbance, and genetic diversity were assessed by examining interactions between watershed-scale environmental factors and genetic diversity of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in 27 barrier-isolated watersheds from western Oregon, USA. Headwater populations of coastal cutthroat trout were genetically differentiated (mean FST = 0.33) using data from seven microsatellite loci (2232 individuals), but intrapopulation microsatellite genetic diversity (mean number of alleles per locus = 5, mean He = 0.60) was only moderate. Genetic diversity of coastal cutthroat trout was greater (P = 0.02) in the Coast Range ecoregion (mean alleles = 47) than in the Cascades ecoregion (mean alleles = 30), and differences coincided with indices of regional within-watershed complexity and connectivity. Furthermore, regional patterns of diversity evident from isolation-by-distance plots suggested that retention of within-population genetic diversity in the Coast Range ecoregion is higher than that in the Cascades, where genetic drift is the dominant factor influencing genetic patterns. Thus, it appears that physical landscape features have influenced genetic patterns in these populations isolated from short-term immigration. ?? 2008 NRC.
Yu, Long-Sheng; Fu, Yi-Fu; Yu, Huai-Yi; Li, Zhi-Qin
2011-01-01
In order to understand the landscape pattern gradient dynamics and desakota features in rapid urbanization area, this paper took the rapidly urbanizing Panyu District of Guangzhou City as a case, and analyzed its land use and land cover data, based on four Landsat TM images from 1990 to 2008. With the combination of gradient analysis and landscape pattern analysis, and by using the landscape indices in both class and landscape scales, the spatial dynamics and desakota feature of this rapidly urbanizing district were quantified. In the study district, there was a significant change in the landscape pattern, and a typical desakota feature presented along buffer gradient zones. Urban landscape increased and expanded annually, accompanied with serious fragmentation of agricultural landscape. The indices patch density, contagion, and landscape diversity, etc., changed regularly in the urbanization gradient, and the peak of landscape indices appeared in the gradient zone of 4-6 km away from the urban center. The landscape patterns at time series also reflected the differences among the dynamics in different gradient zones. The landscape pattern in desakota region was characterized by complex patch shape, high landscape diversity and fragmentation, and remarkable landscape dynamics. The peaks of landscape indices spread from the urban center to border areas, and desakota region was expanding gradually. The general trend of spatiotemporal dynamics in desakota region and its driving forces were discussed, which could be benefit to the regional land use policy-making and sustainable development planning.
D.G. Brockway
1998-01-01
Old-growth forests in the Pacific Northwest are known to support high levels of diversity across the varied landscapes they occupy. On 1200 plots distributed over the Cascade Mountains in southwestern Washington, climatic, physiographic, edaphic and floristic data were collected to evaluate the ecological characteristics of these coniferous forests and develop a...
USDA-ARS?s Scientific Manuscript database
The conversion of natural lands to agriculture affects the distribution of biological diversity across the landscape. In particular, cropland monocultures alter insect abundance and diversity compared to adjacent natural habitats, but nevertheless can provide large numbers of insect pests as prey i...
Sex-specific roost selection by adult red bats in a diverse forested landscape
Roger W. Perry; Ronald E. Thill; S. Andrew Carter
2007-01-01
The eastern red bat (Lasiurus borealis) is a common, widespread species that occurs throughout eastern North America; however, information on potential differences in roost selection between sexes is limited. We studied summer diurnal roosting of adult red bats in a diverse forested landscape to: (1) characterize roosts of adult males and females, (2...
Landscape-level patterns of avian diversity in the Oregon Coast Range
Samuel A. Cushman; Kevin McGarigal
2003-01-01
We used a comparative mensurative landscape-level experiment to quantify the relative importance of mature forest area and fragmentation and differences among watersheds in influencing avian community diversity in the Oregon Coast Range, USA. Our study design included three large hydrological basins, two levels of fragmentation, and six levels of mature forest area. We...
Sensitivity of landscape metrics to pixel size
J. D. Wickham; K. H. Riitters
1995-01-01
Analysis of diversity and evenness metrics using land cover data are becoming formalized in landscape ecology. Diversity and evenness metrics are dependent on the pixel size (scale) over which the data are collected. Aerial photography was interpreted for land cover and converted into four raster data sets with 4, 12, 28, and 80 m pixel sizes, representing pixel sizes...
Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George
2016-01-01
Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of understanding levels of genetic diversity and connectivity to making informed management and conservation decisions with the goal to maintain functional connectivity across the region. PMID:27783617
Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George
2016-01-01
Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of understanding levels of genetic diversity and connectivity to making informed management and conservation decisions with the goal to maintain functional connectivity across the region.
Sipos, J; Hodecek, J; Kuras, T; Dolny, A
2017-08-01
Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.
The dynamical landscape of marine phytoplankton diversity
Lévy, Marina; Jahn, Oliver; Dutkiewicz, Stephanie; Follows, Michael J.; d'Ovidio, Francesco
2015-01-01
Observations suggest that the landscape of marine phytoplankton assemblage might be strongly heterogeneous at the dynamical mesoscale and submesoscale (10–100 km, days to months), with potential consequences in terms of global diversity and carbon export. But these variations are not well documented as synoptic taxonomic data are difficult to acquire. Here, we examine how phytoplankton assemblage and diversity vary between mesoscale eddies and submesoscale fronts. We use a multi-phytoplankton numerical model embedded in a mesoscale flow representative of the North Atlantic. Our model results suggest that the mesoscale flow dynamically distorts the niches predefined by environmental contrasts at the basin scale and that the phytoplankton diversity landscape varies over temporal and spatial scales that are one order of magnitude smaller than those of the basin-scale environmental conditions. We find that any assemblage and any level of diversity can occur in eddies and fronts. However, on a statistical level, the results suggest a tendency for larger diversity and more fast-growing types at fronts, where nutrient supplies are larger and where populations of adjacent water masses are constantly brought into contact; and lower diversity in the core of eddies, where water masses are kept isolated long enough to enable competitive exclusion. PMID:26400196
Impact of native plants on bird and butterfly biodiversity in suburban landscapes.
Burghardt, Karin T; Tallamy, Douglas W; Gregory Shriver, W
2009-02-01
Managed landscapes in which non-native ornamental plants are favored over native vegetation now dominate the United States, particularly east of the Mississippi River. We measured how landscaping with native plants affects the avian and lepidopteran communities on 6 pairs of suburban properties in southeastern Pennsylvania. One property in each pair was landscaped entirely with native plants and the other exhibited a more conventional suburban mixture of plants--a native canopy with non-native groundcover and shrubs. Vegetation sampling confirmed that total plant cover and plant diversity did not differ between treatments, but non-native plant cover was greater on the conventional sites and native plant cover was greater on the native sites. Several avian (abundance, species richness, biomass, and breeding-bird abundance) and larval lepidopteran (abundance and species richness) community parameters were measured from June 2006 to August 2006. Native properties supported significantly more caterpillars and caterpillar species and significantly greater bird abundance, diversity, species richness, biomass, and breeding pairs of native species. Of particular importance is that bird species of regional conservation concern were 8 times more abundant and significantly more diverse on native properties. In our study area, native landscaping positively influenced the avian and lepidopteran carrying capacity of suburbia and provided a mechanism for reducing biodiversity losses in human-dominated landscapes.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2016-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2017-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
NASA Astrophysics Data System (ADS)
Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan
2016-04-01
Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.
Spasojevic, Marko J; Bahlai, Christie A; Bradley, Bethany A; Butterfield, Bradley J; Tuanmu, Mao-Ning; Sistla, Seeta; Wiederholt, Ruscena; Suding, Katharine N
2016-04-01
Understanding the mechanisms underlying ecosystem resilience - why some systems have an irreversible response to disturbances while others recover - is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large-scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small-scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four-corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local-scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues. © 2015 John Wiley & Sons Ltd.
Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin
2015-01-01
Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.
Loehman, Rachel A.; Keane, Robert E.; Holsinger, Lisa M.; Wu, Zhiwei
2016-01-01
ContextInteractions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.ObjectivesWe used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.MethodsWe assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.ResultsInteracting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.ConclusionsUnderstanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.
Experimental Biodiversity Enrichment in Oil-Palm-Dominated Landscapes in Indonesia
Teuscher, Miriam; Gérard, Anne; Brose, Ulrich; Buchori, Damayanti; Clough, Yann; Ehbrecht, Martin; Hölscher, Dirk; Irawan, Bambang; Sundawati, Leti; Wollni, Meike; Kreft, Holger
2016-01-01
Tropical biodiversity is threatened by the expansion of oil-palm plantations. Reduced-impact farming systems such as agroforests, have been proposed to increase biodiversity and ecosystem functioning. In regions where oil-palm plantations already dominate the landscape, this increase can only be achieved through systematic ecological restoration. However, our knowledge about the underlying ecological and socio-economic processes, constraints, and trade-offs of ecological restoration in oil-palm landscapes is very limited. To bridge this gap, we established a long-term biodiversity enrichment experiment. We established experimental tree islands in a conventional oil-palm plantation and systematically varied plot size, tree diversity, and tree species composition. Here, we describe the rationale and the design of the experiment, the ecosystem variables (soil, topography, canopy openness) and biotic characteristics (associated vegetation, invertebrates, birds) of the experimental site prior to the establishment of the experiment, and initial experimental effects on the fauna. Already one year after establishment of the experiment, tree plantings had an overall positive effect on the bird and invertebrate communities at the plantation scale. The diversity and abundance of invertebrates was positively affected by the size of the tree islands. Based on these results, we expect a further increase of biodiversity and associated ecological functions in the future. The long-term interdisciplinary monitoring of ecosystem variables, flora, fauna, and socio-economic aspects will allow us to evaluate the suitability of tree islands as a restoration measure. Thereof, guidelines for ecologically improved and socio-economically viable restoration and management concepts could be developed. PMID:27799935
Planning for the Maintenance of Floristic Diversity in the Face of Land Cover and Climate Change.
Jewitt, Debbie; Goodman, Peter S; Erasmus, Barend F N; O'Connor, Timothy G; Witkowski, Ed T F
2017-05-01
Habitat loss and climate change are primary drivers of global biodiversity loss. Species will need to track changing environmental conditions through fragmented and transformed landscapes such as KwaZulu-Natal, South Africa. Landscape connectivity is an important tool for maintaining resilience to global change. We develop a coarse-grained connectivity map between protected areas to aid decision-making for implementing corridors to maintain floristic diversity in the face of global change. The spatial location of corridors was prioritised using a biological underpinning of floristic composition that incorporated high beta diversity regions, important plant areas, climate refugia, and aligned to major climatic gradients driving floristic pattern. We used Linkage Mapper to develop the connectivity network. The resistance layer was based on land-cover categories with natural areas discounted according to their contribution towards meeting the biological objectives. Three corridor maps were developed; a conservative option for meeting minimum corridor requirements, an optimal option for meeting a target amount of 50% of the landscape and an option including linkages in highly transformed areas. The importance of various protected areas and critical linkages in maintaining landscape connectivity are discussed, disconnected protected areas and pinch points identified where the loss of small areas could compromise landscape connectivity. This framework is suggested as a way to conserve floristic diversity into the future and is recommended as an approach for other global connectivity initiatives. A lack of implementation of corridors will lead to further habitat loss and fragmentation, resulting in further risk to plant diversity.
Planning for the Maintenance of Floristic Diversity in the Face of Land Cover and Climate Change
NASA Astrophysics Data System (ADS)
Jewitt, Debbie; Goodman, Peter S.; Erasmus, Barend F. N.; O'Connor, Timothy G.; Witkowski, Ed T. F.
2017-05-01
Habitat loss and climate change are primary drivers of global biodiversity loss. Species will need to track changing environmental conditions through fragmented and transformed landscapes such as KwaZulu-Natal, South Africa. Landscape connectivity is an important tool for maintaining resilience to global change. We develop a coarse-grained connectivity map between protected areas to aid decision-making for implementing corridors to maintain floristic diversity in the face of global change. The spatial location of corridors was prioritised using a biological underpinning of floristic composition that incorporated high beta diversity regions, important plant areas, climate refugia, and aligned to major climatic gradients driving floristic pattern. We used Linkage Mapper to develop the connectivity network. The resistance layer was based on land-cover categories with natural areas discounted according to their contribution towards meeting the biological objectives. Three corridor maps were developed; a conservative option for meeting minimum corridor requirements, an optimal option for meeting a target amount of 50% of the landscape and an option including linkages in highly transformed areas. The importance of various protected areas and critical linkages in maintaining landscape connectivity are discussed, disconnected protected areas and pinch points identified where the loss of small areas could compromise landscape connectivity. This framework is suggested as a way to conserve floristic diversity into the future and is recommended as an approach for other global connectivity initiatives. A lack of implementation of corridors will lead to further habitat loss and fragmentation, resulting in further risk to plant diversity.
Is plant temporal beta diversity of field margins related to changes in management practices?
NASA Astrophysics Data System (ADS)
Alignier, Audrey; Baudry, Jacques
2016-08-01
Field margins have considerable ecological significance in agriculture-dominated landscapes by supporting biodiversity and associated services. However, agricultural changes during mid-20th century led to their drastic loss with a serious threat for biodiversity. Using time-series data, we aimed to get better insights into processes underlying plant patterns of field margins through time by i) quantifying plant temporal beta diversity components, ii) assessing whether the observed changes in plant communities can be related to changes in management practices applied to field margins. During the springs of 1994, 1998 and 2001, we surveyed plant communities and management practices of the same 116 field margins in three contrasted landscapes. We estimated temporal beta diversity in plant communities and partitioned it into its two dissimilarity resultant components, accounting for replacement of species (i.e. turnover) and for the nested gain or loss of species (i.e. nestedness). We then tested whether the observed changes in plant communities between 1994 and 1998 and, between 1998 and 2001 were related to changes in management practices using linear models. Plant communities of field margins exhibited strong temporal beta diversity dominated by turnover. Temporal turnover in plant communities was partly related to changes in management practices, i.e., a decrease of grazing concomitant to an increase of herbicide spraying. However, relationships were not consistent between all landscape contexts nor time period, suggesting that other unmeasured deterministic or stochastic processes could be driving the observed plant patterns. Taken together, our results suggest that maintaining a wide diversity of field margins with contrasted management contribute to maintaining plant diversity at a landscape scale. They underline the value of investigating plant temporal diversity patterns using time-series data and thus, the need to develop long-term studies making it possible to understand ecological processes shaping plant communities in agricultural landscapes.
Landscape topography structures the soil microbiome in arctic polygonal tundra
Taş, Neslihan; Prestat, Emmanuel; Wang, Shi; ...
2018-02-22
Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less
Landscape topography structures the soil microbiome in arctic polygonal tundra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taş, Neslihan; Prestat, Emmanuel; Wang, Shi
Global temperature increases are resulting in thaw of permafrost soil in the arctic with increased emission of greenhouse gases (GHGs). Soil microorganisms are responsible for degradation of the trapped organic carbon (C) in permafrost and emission of GHG as it thaws. However, environmental factors governing microbial degradation of soil C and GHG emissions are poorly understood. Here we determined the functional potential of soil microbiomes in arctic tundra across a cryoperturbed polygonal landscape in Barrow, Alaska. Using a combination of metagenome sequencing and gas flux measurements, we found that the soil microbiome composition, diversity and functional potential varied across themore » polygon transect and that specific microbes and functional genes were correlated to GHG measurements. Several draft genomes of novel species were obtained with genes encoding enzymes involved in cycling of complex organic compounds. These results have larger implications for prediction of the influence of the soil microbiome on soil C flux from arctic regions undergoing environmental change.« less
The biogeochemical heterogeneity of tropical forests.
Townsend, Alan R; Asner, Gregory P; Cleveland, Cory C
2008-08-01
Tropical forests are renowned for their biological diversity, but also harbor variable combinations of soil age, chemistry and susceptibility to erosion or tectonic uplift. Here we contend that the combined effects of this biotic and abiotic diversity promote exceptional biogeochemical heterogeneity at multiple scales. At local levels, high plant diversity creates variation in chemical and structural traits that affect plant production, decomposition and nutrient cycling. At regional levels, myriad combinations of soil age, soil chemistry and landscape dynamics create variation and uncertainty in limiting nutrients that do not exist at higher latitudes. The effects of such heterogeneity are not well captured in large-scale estimates of tropical ecosystem function, but we suggest new developments in remote sensing can help bridge the gap.
A. M. Pidgeon; V. C. Radeloff; C. H. Flather; C. A. Lepczyk; M. K. Clayton; T. J. Hawbaker; R. B. Hammer
2007-01-01
In the United States, housing density has substantially increased in and adjacent to forests. Our goal in this study was to identify how housing density and human populations are associated with avian diversity. We compared these associations to those between landscape pattern and avian diversity, and we examined how these associations vary across the conterminous...
Geological beauties and Landscape: new proposals to communicate the Geodiversity
NASA Astrophysics Data System (ADS)
Lugeri, Francesca; Farabollini, Piero; Amadio, Vittorio
2015-04-01
The European Landscape Convention proposes a concept of the landscape itself as an expression of the diversity of the natural, cultural and economic development of the population and identifies society as responsible of such a heritage. The landscape has a concrete value as natural resource and basis of functional processes that support life; it also has an important symbolic value: the consequences of the loss of landscape have been and still are devastating, even on a social level. The Landscape is object of human perceptions and, at the same time, can be considered the result of the interaction of many natural and cultural components: therefore it could become a "medium" to communicate the Earth Sciences to the whole society: the geo-morphological sciences are a powerful tool in order to explain and share a "sense of natural identity". The consciousness of being part of an ecosystem, is achieved through the knowledge and the experience of the environment. In order to create effective and efficient sensitivity in individuals and in communities, it is essential to explain the importance of geodiversity, which - integrated to bio diversity- contributes to the concept of "environmental diversity" essential balance of the planet and resource for the economy. The difficulty for the scientific communicators in reaching the wider public, requires new integrated solutions. A very positive experience is related to the project "GeoloGiro" geology at the Giro d'Italia, (realized thanks to a cooperation between ISPRA Geological Survey and the Italian Council of Geologists) which provides a TV time dedicated to make comprehensible the reasons of the geological and environmental beauties of the territory crossed by cyclists during each stage. A further project development, includes the transmission of a short cartoon in which a strange character - a pink dinosaur named GiROSAuro, cycling fan, pink as the jersey worn by the winners of the "Giro d 'Italia"- explains to the children the secrets of geology, telling them how everything is always changing. The individuation of a specific target as the youngest audience is, has a multiple purpose: to provide their information relating to the geosciences, directly connected to a major sporting event (which involves cycling initiatives for children), a further aim is to induce an involvement of the families, often distracted or indifferent to territorial issues.
Local and landscape drivers of predation services in urban gardens.
Philpott, Stacy M; Bichier, Peter
2017-04-01
In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.
Resource selection and its implications for wide-ranging mammals of the brazilian cerrado.
Vynne, Carly; Keim, Jonah L; Machado, Ricardo B; Marinho-Filho, Jader; Silveira, Leandro; Groom, Martha J; Wasser, Samuel K
2011-01-01
Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus), giant anteater (Myrmecophaga tridactyla), maned wolf (Chrysocyon brachyurus), jaguar (Panthera onca), and puma (Puma concolor). We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for conservation, arguing that a multi-faceted approach is required to protect these species.
Resource Selection and Its Implications for Wide-Ranging Mammals of the Brazilian Cerrado
Vynne, Carly; Keim, Jonah L.; Machado, Ricardo B.; Marinho-Filho, Jader; Silveira, Leandro; Groom, Martha J.; Wasser, Samuel K.
2011-01-01
Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus), giant anteater (Myrmecophaga tridactyla), maned wolf (Chrysocyon brachyurus), jaguar (Panthera onca), and puma (Puma concolor). We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for conservation, arguing that a multi-faceted approach is required to protect these species. PMID:22205984
Community dynamics and ecosystem simplification in a high-CO2 ocean.
Kroeker, Kristy J; Gambi, Maria Cristina; Micheli, Fiorenza
2013-07-30
Disturbances are natural features of ecosystems that promote variability in the community and ultimately maintain diversity. Although it is recognized that global change will affect environmental disturbance regimes, our understanding of the community dynamics governing ecosystem recovery and the maintenance of functional diversity in future scenarios is very limited. Here, we use one of the few ecosystems naturally exposed to future scenarios of environmental change to examine disturbance and recovery dynamics. We examine the recovery patterns of marine species from a physical disturbance across different acidification regimes caused by volcanic CO2 vents. Plots of shallow rocky reef were cleared of all species in areas of ambient, low, and extreme low pH that correspond to near-future and extreme scenarios for ocean acidification. Our results illustrate how acidification decreases the variability of communities, resulting in homogenization and reduced functional diversity at a landscape scale. Whereas the recovery trajectories in ambient pH were highly variable and resulted in a diverse range of assemblages, recovery was more predictable with acidification and consistently resulted in very similar algal-dominated assemblages. Furthermore, low pH zones had fewer signs of biological disturbance (primarily sea urchin grazing) and increased recovery rates of the dominant taxa (primarily fleshy algae). Together, our results highlight how environmental change can cause ecosystem simplification via environmentally mediated changes in community dynamics in the near future, with cascading impacts on functional diversity and ecosystem function.
Lichtenberg, Elinor M; Kennedy, Christina M; Kremen, Claire; Batáry, Péter; Berendse, Frank; Bommarco, Riccardo; Bosque-Pérez, Nilsa A; Carvalheiro, Luísa G; Snyder, William E; Williams, Neal M; Winfree, Rachael; Klatt, Björn K; Åström, Sandra; Benjamin, Faye; Brittain, Claire; Chaplin-Kramer, Rebecca; Clough, Yann; Danforth, Bryan; Diekötter, Tim; Eigenbrode, Sanford D; Ekroos, Johan; Elle, Elizabeth; Freitas, Breno M; Fukuda, Yuki; Gaines-Day, Hannah R; Grab, Heather; Gratton, Claudio; Holzschuh, Andrea; Isaacs, Rufus; Isaia, Marco; Jha, Shalene; Jonason, Dennis; Jones, Vincent P; Klein, Alexandra-Maria; Krauss, Jochen; Letourneau, Deborah K; Macfadyen, Sarina; Mallinger, Rachel E; Martin, Emily A; Martinez, Eliana; Memmott, Jane; Morandin, Lora; Neame, Lisa; Otieno, Mark; Park, Mia G; Pfiffner, Lukas; Pocock, Michael J O; Ponce, Carlos; Potts, Simon G; Poveda, Katja; Ramos, Mariangie; Rosenheim, Jay A; Rundlöf, Maj; Sardiñas, Hillary; Saunders, Manu E; Schon, Nicole L; Sciligo, Amber R; Sidhu, C Sheena; Steffan-Dewenter, Ingolf; Tscharntke, Teja; Veselý, Milan; Weisser, Wolfgang W; Wilson, Julianna K; Crowder, David W
2017-11-01
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes. © 2017 John Wiley & Sons Ltd.
Ecosystem service bundles for analyzing tradeoffs in diverse landscapes
Raudsepp-Hearne, C.; Peterson, G. D.; Bennett, E. M.
2010-01-01
A key challenge of ecosystem management is determining how to manage multiple ecosystem services across landscapes. Enhancing important provisioning ecosystem services, such as food and timber, often leads to tradeoffs between regulating and cultural ecosystem services, such as nutrient cycling, flood protection, and tourism. We developed a framework for analyzing the provision of multiple ecosystem services across landscapes and present an empirical demonstration of ecosystem service bundles, sets of services that appear together repeatedly. Ecosystem service bundles were identified by analyzing the spatial patterns of 12 ecosystem services in a mixed-use landscape consisting of 137 municipalities in Quebec, Canada. We identified six types of ecosystem service bundles and were able to link these bundles to areas on the landscape characterized by distinct social–ecological dynamics. Our results show landscape-scale tradeoffs between provisioning and almost all regulating and cultural ecosystem services, and they show that a greater diversity of ecosystem services is positively correlated with the provision of regulating ecosystem services. Ecosystem service-bundle analysis can identify areas on a landscape where ecosystem management has produced exceptionally desirable or undesirable sets of ecosystem services. PMID:20194739
[Dynamic evolution of wetland landscape spatial pattern in Nansi Lake, China].
Chen, Zhi Cong; Xie, Xiao Ping; Bai, Mao Wei
2016-10-01
Based on Landsat images in 1987, 2002 and 2014 from Nansi Lake located in Shandong Province, landscape pattern index, dynamic index, landscape gradient and gridding model were used for analysis of the wetland distribution in the lake. The results showed that the landscape contagion index and aggregation index gradually decreased from 1987 to 2014, while the landscape diversity index and evenness index gradually increased. The distribution of landscape area was more uniform while its patterns trended to be fragmented. Human activities impacted Nansi wetland distribution and the disturbance presented an increasing trend. The total area of Nansi wetland gradually increased during the study period. The area of lake first decreased then increased, and the area reached the maximum in 2014. The area of the ponds along the riparian zone had increased gradually, but the increasing speed slowed down. The area of the rivers remained stable, while the area of the swamps decreased continually during the period. The change of landscape pattern of Nansi Lake wetland mainly resulted from agricultural activities, establishment of Nansi Lake Natural Reserve, and the South-to-North Water Diversion Project.
Spatial Tourist and Functional Diversity on the Volcanic Island of Gran Canaria
NASA Astrophysics Data System (ADS)
Gonda-Soroczyńska, Eleonora; Olczyk, Hanna
2017-10-01
The conducted research is focused on spatial, functional and landscape diversity, the existing tourist potential and the possibilities for further development of a small, volcanic island of Gran Canaria. The discussed island was compared against other islands of the Canarian archipelago (Lanzarote, Fuerteventura, Tenerife, La Palma, El Hierro). Similarly to the remaining Canary Islands, the economy of Gran Canaria is predominantly based on tourism (approx. 4,5-5,0 million tourists visit the Canary Island annually and approx. 2,8 million come to Gran Canaria). Additionally, Puerto de la Luz transhipment centre in Las Palmas plays a very important role because of the goods imported from overseas. It is one of the largest ports in Spain (it reloads almost 2 million containers per year) also being an important Atlantic refuelling station. Apart from tourism, an important role is played here by agriculture, primarily the cultivation of bananas and tomatoes, which represent the most significant export good of the archipelago. The conducted spatial research showed an extensive diversity. This situation is, to a great extent, influenced by the climate. The northern part is cooler and dominated by agriculture, whereas the southern one is much warmer and characterized by a well-developed tourism infrastructure. Site inspections performed out along the outer contour of the island resembling a circle. Numerous architectural and urban sketches, urban analyses and photographic documentation were made. Community surveys were carried out. For a researcher, it was extremely interesting to answer the questions whether Gran Canaria is different from the other Canary Islands, especially in the functional and landscape context, and if so what exactly these differences consist of. What is Gran Canaria in particular characterized by and what kind of role it plays in the economic sector of Spain?
Envisioning, quantifying, and managing thermal regimes on river networks
Steel, E. Ashley; Beechie, Timothy J.; Torgersen, Christian E.; Fullerton, Aimee H.
2017-01-01
Water temperatures fluctuate in time and space, creating diverse thermal regimes on river networks. Temporal variability in these thermal landscapes has important biological and ecological consequences because of nonlinearities in physiological reactions; spatial diversity in thermal landscapes provides aquatic organisms with options to maximize growth and survival. However, human activities and climate change threaten to alter the dynamics of riverine thermal regimes. New data and tools can identify particular facets of the thermal landscape that describe ecological and management concerns and that are linked to human actions. The emerging complexity of thermal landscapes demands innovations in communication, opens the door to exciting research opportunities on the human impacts to and biological consequences of thermal variability, suggests improvements in monitoring programs to better capture empirical patterns, provides a framework for suites of actions to restore and protect the natural processes that drive thermal complexity, and indicates opportunities for better managing thermal landscapes.
Lins Neto, Ernani Machado de Freitas; Peroni, Nivaldo; Maranhão, Christine Maria Carneiro; Maciel, Maria Inês Sucupira; de Albuquerque, Ulysses Paulino
2012-07-01
Plant domestication is an evolutionary process guided by human groups who modify the landscape for their needs. The objective of this study was to evaluate the phenotypic variations between populations of Spondias tuberosa Arruda (umbuzeiro) when subjected to different local landscape management strategies. The influence of the landscape management system on these populations was evaluated in five identified regional units (mountains, base of mountains, pastures, cultivated areas and home gardens). Ten individuals were randomly selected from each region and subjected to morphological and chemical fruit analysis. The diversity index, based on Simpson's index, was determined for the different populations. We then evaluated the morphological differences between the individual fruits from the distinct landscape areas. We observed no significant differences in morphological diversity between the areas studied. Our data suggest that the umbuzeiro specimens in this region may be in the process of incipient domestication.
da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina
2015-01-01
Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution and functional organization of Scarabaeinae beetles. We conclude that functional diversity may be used as a complementary approach to traditional measures, and that community deconstruction allows sufficient disentangling of responses of different trait-based groups. PMID:25822150
USDA-ARS?s Scientific Manuscript database
There is growing interest in IPM programs and habitat management to combat the decline in diversity of beneficial arthropods in agricultural landscapes caused by habitat simplification and intensive management practices. Addition of floral resources to the landscape can help offset these effects. We...
Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily
2017-04-12
Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).
Variegated tropical landscapes conserve diverse dung beetle communities.
Costa, Cristiane; Oliveira, Victor Hugo F; Maciel, Rafaella; Beiroz, Wallace; Korasaki, Vanesca; Louzada, Julio
2017-01-01
Conserving biodiversity in tropical landscapes is a major challenge to scientists and conservationists. Current rates of deforestation, fragmentation, and land use intensification are producing variegated landscapes with undetermined values for the conservation of biological communities and ecosystem functioning. Here, we investigate the importance of tropical variegated landscapes to biodiversity conservation, using dung beetle as focal taxa. The study was carried out in 12 variegated landscapes where dung beetles were sampled using six pitfall traps, 30 m apart from each other, along a transect in each studied landscape use and cover classes-LUCC (forest fragment and corridor, coffee plantation, and pasture). We baited each pitfall trap with 30 g of human feces and left open for a 48 h period. We also measured three environmental variables reflecting structural differences among the studied classes: canopy cover, local vegetation heterogeneity and soil sand content. We collected 52 species and 2,695 individuals of dung beetles. We observed significant differences in the mean species richness, abundance and biomass among classes, with forest fragments presenting the highest values, forest corridors and coffee plantations presenting intermediate values, and pastures the lowest values. Regarding community structure, we also found significant differences among classes. Canopy cover was the only variable explaining variation in dung beetle species richness, abundance, biomass, and community structure. The relative importance of spatial turnover was greater than nestedness-resultant component in all studied landscapes. This study evaluated the ecological patterns of dung beetle communities in variegated tropical landscapes highlighting the importance of these landscapes for conservation of tropical biodiversity. However, we encourage variegation for the management of landscapes that have already been fragmented or as a complementary initiative of current conservation practices (e.g., protection of natural habitats and establishment of reserves).
77 FR 775 - Nez Perce-Clearwater National Forests; Idaho; Clear Creek Integrated Restoration Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... species distributions habitat complexity (diversity) and landscape pattern across the forested portions of..., improve long term resistance and resilience at the landscape level; restore natural fire regimes and... landscape that is more highly fragmented than what would be expected through natural disturbance. Ladder...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
..., vegetative species distributions, habitat complexity (diversity) and landscape patterns across the forested... resistance and resilience at the landscape level; reduce fuels; improve watershed conditions; improve elk... practices and fire suppression have created a landscape that is more highly fragmented than would be...
Exploring component-based approaches in forest landscape modeling
H. S. He; D. R. Larsen; D. J. Mladenoff
2002-01-01
Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...
Landscape genetics: combining landscape ecology and population genetics
Stephanie Manel; Michael K. Schwartz; Gordon Luikart; Pierre Taberlet
2003-01-01
Understanding the processes and patterns of gene flow and local adaptation requires a detailed knowledge of how landscape characteristics structure populations. This understanding is crucial, not only for improving ecological knowledge, but also for managing properly the genetic diversity of threatened and endangered populations. For nearly 80 years, population...
Diversity Consciousness: Opening Our Minds to People, Cultures, and Opportunities.
ERIC Educational Resources Information Center
Bucher, Richard D.
This book examines the relationship between a person's success and his or her ability to understand, respect, and value diversity. It also explores how people can develop diversity consciousness. Chapter 1, "Diversity: An Overview," discusses the changing cultural landscape, dimensions of diversity, diversity between and within groups,…
2011-01-01
Background Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Results Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. Conclusions In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run. PMID:21859457
Vanden-Broeck, An; Gruwez, Robert; Cox, Karen; Adriaenssens, Sandy; Michalczyk, Inga M; Verheyen, Kris
2011-08-22
Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.
Santos, Bráulio A; Tabarelli, Marcelo; Melo, Felipe P L; Camargo, José L C; Andrade, Ana; Laurance, Susan G; Laurance, William F
2014-01-01
Amazonian rainforests sustain some of the richest tree communities on Earth, but their ecological and evolutionary responses to human threats remain poorly known. We used one of the largest experimental datasets currently available on tree dynamics in fragmented tropical forests and a recent phylogeny of angiosperms to test whether tree communities have lost phylogenetic diversity since their isolation about two decades previously. Our findings revealed an overall trend toward phylogenetic impoverishment across the experimentally fragmented landscape, irrespective of whether tree communities were in 1-ha, 10-ha, or 100-ha forest fragments, near forest edges, or in continuous forest. The magnitude of the phylogenetic diversity loss was low (<2% relative to before-fragmentation values) but widespread throughout the study landscape, occurring in 32 of 40 1-ha plots. Consistent with this loss in phylogenetic diversity, we observed a significant decrease of 50% in phylogenetic dispersion since forest isolation, irrespective of plot location. Analyses based on tree genera that have significantly increased (28 genera) or declined (31 genera) in abundance and basal area in the landscape revealed that increasing genera are more phylogenetically related than decreasing ones. Also, the loss of phylogenetic diversity was greater in tree communities where increasing genera proliferated and decreasing genera reduced their importance values, suggesting that this taxonomic replacement is partially underlying the phylogenetic impoverishment at the landscape scale. This finding has clear implications for the current debate about the role human-modified landscapes play in sustaining biodiversity persistence and key ecosystem services, such as carbon storage. Although the generalization of our findings to other fragmented tropical forests is uncertain, it could negatively affect ecosystem productivity and stability and have broader impacts on coevolved organisms.
Floral abundance, richness, and spatial distribution drive urban garden bee communities.
Plascencia, M; Philpott, S M
2017-10-01
In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.
Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.
Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo
2018-05-01
Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.
Strecker, A.L.; Olden, J.D.; Whittier, Joanna B.; Paukert, C.P.
2011-01-01
To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential tradeoffs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity;contemporary threats to biodiversity (including interactions with nonnative species);and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities;however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates multiple and complementary conservation values describing taxonomic, functional, and phylogenetic diversity. ??2011 by the Ecological Society of America.
Strecker, Angela L.; Olden, Julian D.; Whittier, Joanna B.; Paukert, Craig P.
2011-01-01
To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential trade-offs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity; contemporary threats to biodiversity (including interactions with nonnative species); and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities; however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates multiple and complementary conservation values describing taxonomic, functional, and phylogenetic diversity.
Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem
Calhoun, Aram J.K.; Mushet, David M.; Bell, Kathleen P.; Boix, Dani; Fitzsimons, James A.; Isselin-Nondedeu, Francis
2017-01-01
Frequent drying of ponded water, and support of unique, highly specialized assemblages of often rare species, characterize temporary wetlands, such as vernal pools, gilgais, and prairie potholes. As small aquatic features embedded in a terrestrial landscape, temporary wetlands enhance biodiversity and provide aesthetic, biogeochemical, and hydrologic functions. Challenges to conserving temporary wetlands include the need to: (1) integrate freshwater and terrestrial biodiversity priorities; (2) conserve entire ‘pondscapes’ defined by connections to other aquatic and terrestrial systems; (3) maintain natural heterogeneity in environmental gradients across and within wetlands, especially gradients in hydroperiod; (4) address economic impact on landowners and developers; (5) act without complete inventories of these wetlands; and (6) work within limited or non-existent regulatory protections. Because temporary wetlands function as integral landscape components, not singly as isolated entities, their cumulative loss is ecologically detrimental yet not currently part of the conservation calculus. We highlight approaches that use strategies for conserving temporary wetlands in increasingly human-dominated landscapes that integrate top-down management and bottom-up collaborative approaches. Diverse conservation activities (including education, inventory, protection, sustainable management, and restoration) that reduce landowner and manager costs while achieving desired ecological objectives will have the greatest probability of success in meeting conservation goals.
Landscape ecological security assessment based on projection pursuit in Pearl River Delta.
Gao, Yang; Wu, Zhifeng; Lou, Quansheng; Huang, Huamei; Cheng, Jiong; Chen, Zhangli
2012-04-01
Regional landscape ecological security is an important issue for ecological security, and has a great influence on national security and social sustainable development. The Pearl River Delta (PRD) in southern China has experienced rapid economic development and intensive human activities in recent years. This study, based on landscape analysis, provides a method to discover the alteration of character among different landscape types and to understand the landscape ecological security status. Based on remotely sensed products of the Landsat 5 TM images in 1990 and the Landsat 7 ETM+ images in 2005, landscape classification maps of nine cities in the PRD were compiled by implementing Remote Sensing and Geographic Information System technology. Several indices, including aggregation, crush index, landscape shape index, Shannon's diversity index, landscape fragile index, and landscape security adjacent index, were applied to analyze spatial-temporal characteristics of landscape patterns in the PRD. A landscape ecological security index based on these outcomes was calculated by projection pursuit using genetic algorithm. The landscape ecological security of nine cities in the PRD was thus evaluated. The main results of this research are listed as follows: (1) from 1990 to 2005, the aggregation index, crush index, landscape shape index, and Shannon's diversity index of nine cities changed little in the PRD, while the landscape fragile index and landscape security adjacent index changed obviously. The landscape fragile index of nine cities showed a decreasing trend; however, the landscape security adjacent index has been increasing; (2) from 1990 to 2005, landscape ecology of the cities of Zhuhai and Huizhou maintained a good security situation. However, there was a relatively low value of ecological security in the cities of Dongguan and Foshan. Except for Foshan and Guangzhou, whose landscape ecological security situation were slightly improved, the cities had reduced values in landscape ecological security, with the most decreased number 0.52 in Zhaoqing. Results of this study offer important information for regional eco-construction and natural resource exploitation.
Combined effects of landscape composition and heterogeneity on farmland avian diversity.
Santana, Joana; Reino, Luís; Stoate, Chris; Moreira, Francisco; Ribeiro, Paulo F; Santos, José L; Rotenberry, John T; Beja, Pedro
2017-02-01
Conserving biodiversity on farmland is an essential element of worldwide efforts for reversing the global biodiversity decline. Common approaches involve improving the natural component of the landscape by increasing the amount of natural and seminatural habitats (e.g., hedgerows, woodlots, and ponds) or improving the production component of the landscape by increasing the amount of biodiversity-friendly crops. Because these approaches may negatively impact on economic output, it was suggested that an alternative might be to enhance the diversity (compositional heterogeneity) or the spatial complexity (configurational heterogeneity) of land cover types, without necessarily changing composition. Here, we develop a case study to evaluate these ideas, examining whether managing landscape composition or heterogeneity, or both, would be required to achieve conservation benefits on avian diversity in open Mediterranean farmland. We surveyed birds in farmland landscapes of southern Portugal, before (1995-1997) and after (2010-2012) the European Union's Common Agricultural Policy (CAP) reform of 2003, and related spatial and temporal variation in bird species richness to variables describing the composition, and the compositional and configurational heterogeneity, of the natural and production components of the landscape. We found that the composition of the production component had the strongest effects on avian diversity, with a particularly marked effect on the richness of farmland and steppe bird species. Composition of the natural component was also influential, mainly affecting the richness of woodland/shrubland species. Although there were some effects of compositional and configurational heterogeneity, these were much weaker and inconsistent than those of landscape composition. Overall, we suggest that conservation efforts in our area should focus primarily on the composition of the production component, by striving to maximize the prevalence of biodiversity-friendly crops. This recommendation probably applies to other areas such as ours, where a range of species of conservation concern is strongly associated with crop habitats.
Villegas Vallejos, Marcelo Alejandro; Padial, André Andrian; Vitule, Jean Ricardo Simões
2016-01-01
The increasing number of quantitative assessments of homogenization using citizen science data is particularly important in the Neotropics, given its high biodiversity and ecological peculiarity, and whose communities may react differently to landscape changes. We looked for evidence of taxonomic homogenization in terrestrial birds by investigating patterns of beta diversity along a gradient of human-altered landscapes (HAL), trying to identify species associated with this process. We analyzed bird data from 87 sites sampled in a citizen science program in the south Brazilian Atlantic Forest. Regional-scale taxonomic homogenization was assessed by comparing beta diversity among sites in different HALs (natural, rural or urban landscapes) accounting for variation derived from geographical distance and zoogeographical affinities by georeferencing sites and determining their position in a phytogeographical domain. Beta diversity was calculated by multivariate dispersion and by testing compositional changes due to turnover and nestedness among HALs and phytogeographical domains. Finally, we assessed which species were typical for each group using indicator species analysis. Bird homogenization was indicated by decreases in beta diversity following landscape changes. Beta diversity of rural sites was roughly half that of natural habitats, while urban sites held less than 10% of the natural areas’ beta diversity. Species composition analysis revealed that the turnover component was important in differentiating sites depending on HAL and phytogeography; the nestedness component was important among HALs, where directional species loss is maintained even considering effects of sampling effort. A similar result was obtained among phytogeographical domains, indicating nested-pattern dissimilarity among compositions of overlapping communities. As expected, a few native generalists and non-native urban specialists were characteristic of rural and urban sites. We generated strong evidence that taxonomic homogenization occurs in the south Brazilian Atlantic Forest as a result of a directional and nested species loss, with the resultant assemblages composed of few disturbance-tolerant birds. PMID:26840957
Uematsu, Yuta; Ushimaru, Atushi
2013-09-01
Examining the causes of interspecific differences in susceptibility to bidirectional land-use changes (land abandonment and use-intensification) is important for understanding the mechanisms of global biodiversity loss in agricultural landscapes. We tested the hypothesis that rare (endangered) plant species prefer wet and oligotrophic areas within topography- and management-mediated resource (soil water content, nutrient, and aboveground biomass) gradients, making them more susceptible to both abandonment and use-intensification of agricultural lands. We demonstrated that topography and management practices generated resource gradients in seminatural grasslands around traditional paddy terraces. Terraced topography and management practices produced a soil moisture gradient within levees and a nutrient gradient within paddy terraces. Both total and rare species diversity increased with soil water content. Total species diversity increased in more eutrophied areas with low aboveground biomass, whereas rare species diversity was high under oligotrophic conditions. Rare and common species were differentially distributed along the human-induced nutrient gradient, with rare species preferring wet, nutrient-poor environments in the agricultural landscapes studied. We suggest that conservation efforts should concentrate on wet, nutrient-poor areas within such landscapes, which can be located easily using land-use and topography maps. This strategy would reduce the costs of finding and conserving rare grassland species in a given agricultural landscape.
Bird diversity along a gradient of fragmented habitats of the Cerrado.
Jesus, Shayana DE; Pedro, Wagner A; Bispo, Arthur A
2018-01-01
Understanding the factors that affect biodiversity is of central interest to ecology, and essential to species conservation and ecosystems management. We sampled bird communities in 17 forest fragments in the Cerrado biome, the Central-West region of Brazil. We aimed to know the communities structure pattern and the influence of geographical distance and environmental variables on them, along a gradient of fragmented habitats at both local and landscape scales. Eight structural variables of the fragments served as an environmental distance measurement at the local scale while five metrics served as an environmental distance measurement at the landscape scale. Species presence-absence data were used to calculate the dissimilarity index. Beta diversity was calculated using three indices (βsim, βnes and βsor), representing the spatial species turnover, nestedness and total beta diversity, respectively. Spatial species turnover was the predominant pattern in the structure of the communities. Variations in beta diversity were explained only by the environmental variables of the landscape with spatial configuration being more important than the composition. This fact indicates that, in Cerrado of Goiás avian communities structure, deterministic ecological processes associated to differences in species responses to landscape fragmentation are more important than stochastic processes driven by species dispersal.
Gradients, vegetation and climate: spatial and temporal dynamics in the Olympic Mountains, USA
Peterson, David L.; Schreiner, Edward G.; Buckingham, Nelsa M.
1997-01-01
The steep environmental gradients of mountains result in the juxtaposition of diverse vegetation associations with narrow ecotones because life zones are compressed. Variation in geologic substrate, landforms, and soils, in combination with steep environmental gradients, create habitat diversity across spatial scales from 106 ha to <10 m2. This leads to higher biodiversity in a smaller space than in landscapes with less topographic variation. Mountains are often considered to be refuges for biological diversity at the regional scale, although variation in landscape features creates refuges at a fine scale as well. Mountains should also be considered a source of biological diversity, because they provide the germplasm for migration into lowland areas following glacial recession. Many taxa are distributed over a broad range of elevations and habitats, which maximizes the potential to respond to environmental perturbations. Reorganization of species distribution and abundance as a result of climatic change may be impacted considerably by human-caused fragmentation of landscape features, especially at lower elevations. This paper uses palaeoecological and biogeographical data to investigate the spatial and temporal vegetation dynamics of a steep maritime range, the Olympic Mountains (USA). The role of resource management in protecting vegetation in a fragmented landscape is discussed, with emphasis on how to address uncertainties such as climatic change.
Urban Thermal Environment Dynamics: A Case Study in Hangzhou During 2005-2015
NASA Astrophysics Data System (ADS)
Sun, W.; Li, F.; Yang, G.
2017-12-01
Hangzhou, as the Capital of Zhejiang Province in East China, has experienced the rapid urbanization process and associated urban heat island effect in the past twenty decades. In this study, we implemented Landsat satellite remote sensing images to investigate the relationship between landscape changes and thermal environment dynamics during 2005-2015 in Hangzhou City. A total of 48 Landsat TM/ETM+/OLR/TIRS images spanning four different seasons were downloaded from the USGS website and utilized in the study. Preprocessing works, i.e., radiometric correction and removing cloud- and fog -contaminated pixels, were conducted, and the land surface temperature (LST) was derived using the radiative transfer equation. Meanwhile, the land use and land cover (LULC) classification was accomplished by using the Support Vector Machine (SVM) classifier, and four main landscape indexes (i.e., Shannon Diversity Index, Landscape Division Index, Shannon Evenness Index, and Aggregation Index) were estimated from the LULC map. Our preliminary results show that: 1) the magnitude of urban thermal environment has obviously increased from 2005 to 2015, and the summer season shows more significant heat island effect than other three seasons; 2) the general landscape pattern of Hangzhou becomes more diversified and fragmentized from 2005 to 2015, and different landscape patterns bring that four different function zones (i.e., urban core zone, tourism function zone, industrial development zone and ecological reservation zone) of Hangzhou have different characteristics in urban thermal environment; 3) significant hot spots of LST point to the construction land while cold spots of LST coincides with the vegetation land.
Cougar space use and movements in the wildland-urban landscape of western Washington
Kertson, B.N.; Spencer, R.D.; Marzluff, J.M.; Hepinstall-Cymerman, Jeffrey; Grue, C.E.
2011-01-01
The wildland-urban interface lies at the confluence of human-dominated and wild landscapes, creating a number of management and conservation challenges. Because wildlife ecology, behavior, and evolution at this interface are shaped by both natural and human phenomena, this requires greater understanding of how diverse factors affect ecosystem and population processes. We illustrate the challenge of understanding and managing a frequent and often undesired inhabitant of the wildland-urban landscape, the cougar (Puma concolor). In wildland and residential areas of western Washington State, USA, we captured and radiotracked 27 cougars to model space use and understand the role of landscape features in interactions (sightings, encounters, and depredations) between cougars and humans. Resource utilization functions (RUFs) identified cougar use of areas with features that were probably attractive to prey, influential on prey vulnerability, and associated with limited or no residential development. Early-successional forest (+), conifer forest (+), distance to road (-), residential density (-), and elevation (-) were significant positive and negative predictors of use for the population, whereas use of other landscape features was highly variable. Space use and movement rates in wildland and residential areas were similar because cougars used wildland-like forest patches, reserves, and corridors in residential portions of their home range. The population RUF was a good predictor of confirmed cougar interactions, with 72% of confirmed reports occurring in the 50% of the landscape predicted to be medium-high and high cougar use areas. We believe that there is a threshold residential density at which the level of development modifies the habitat but maintains enough wildland characteristics to encourage moderate levels of cougar use and maximize the probability of interaction. Wildlife managers trying to reduce interactions between cougars and people should incorporate information on spatial ecology and landscape characteristics to identify areas with the highest overlap of human and cougar use to focus management, education, and landscape planning. Resource utilization functions provide a proactive tool to guide these activities for improved coexistence with wildlife using both wildland and residential portions of the landscape. ??2011 by the Ecological Society of America.
Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists
Dawson, Scott C.; Paredez, Alexander R.
2016-01-01
Microbial eukaryotes encompass the majority of eukaryotic evolutionary and cytoskeletal diversity. The cytoskeletal complexity observed in multicellular organisms appears to be an expansion of components present in genomes of diverse microbial eukaryotes such as the basal lineage of flagellates, the Excavata. Excavate protists have complex and diverse cytoskeletal architectures and life cycles – essentially alternative cytoskeletal “landscapes” – yet still possess conserved microtubule- and actin-associated proteins. Comparative genomic analyses have revealed that a subset of excavates, however, lack many canonical actin-binding proteins central to actin cytoskeleton function in other eukaryotes. Overall, excavates possess numerous uncharacterized and “hypothetical” genes, and may represent an undiscovered reservoir of novel cytoskeletal genes and cytoskeletal mechanisms. The continued development of molecular genetic tools in these complex microbial eukaryotes will undoubtedly contribute to our overall understanding of cytoskeletal diversity and evolution. PMID:23312067
Ahumada, Jorge A; Silva, Carlos E F; Gajapersad, Krisna; Hallam, Chris; Hurtado, Johanna; Martin, Emanuel; McWilliam, Alex; Mugerwa, Badru; O'Brien, Tim; Rovero, Francesco; Sheil, Douglas; Spironello, Wilson R; Winarni, Nurul; Andelman, Sandy J
2011-09-27
Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites-located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica-are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find that mammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions.
Genetic diversity in natural populations of a soil bacterium across a landscape gradient
McArthur, J. Vaun; Kovacic, David A.; Smith, Michael H.
1988-01-01
Genetic diversity in natural populations of the bacterium Pseudomonas cepacia was surveyed in 10 enzymes from 70 clones isolated along a landscape gradient. Estimates of genetic diversity, ranging from 0.54 to 0.70, were higher than any previously reported values of which we are aware and were positively correlated with habitat variability. Patterns of bacterial genetic diversity were correlated with habitat variability. Findings indicate that the source of strains used in genetic engineering will greatly affect the outcome of planned releases in variable environments. Selection of generalist strains may confer a large advantage to engineered populations, while selection of laboratory strains may result in quick elimination of the engineered strains. PMID:16594009
Singer, Gabriel; Besemer, Katharina; Schmitt-Kopplin, Philippe; Hödl, Iris; Battin, Tom J.
2010-01-01
Background Evidence increasingly shows that stream ecosystems greatly contribute to global carbon fluxes. This involves a tight coupling between biofilms, the dominant form of microbial life in streams, and dissolved organic carbon (DOC), a very significant pool of organic carbon on Earth. Yet, the interactions between microbial biodiversity and the molecular diversity of resource use are poorly understood. Methodology/Principal Findings Using six 40-m-long streamside flumes, we created a gradient of streambed landscapes with increasing spatial flow heterogeneity to assess how physical heterogeneity, inherent to streams, affects biofilm diversity and DOC use. We determined bacterial biodiversity in all six landscapes using 16S-rRNA fingerprinting and measured carbon uptake from glucose and DOC experimentally injected to all six flumes. The diversity of DOC molecules removed from the water was determined from ultrahigh-resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS). Bacterial beta diversity, glucose and DOC uptake, and the molecular diversity of DOC use all increased with increasing flow heterogeneity. Causal modeling and path analyses of the experimental data revealed that the uptake of glucose was largely driven by physical processes related to flow heterogeneity, whereas biodiversity effects, such as complementarity, most likely contributed to the enhanced uptake of putatively recalcitrant DOC compounds in the streambeds with higher flow heterogeneity. Conclusions/Significance Our results suggest biophysical mechanisms, including hydrodynamics and microbial complementarity effects, through which physical heterogeneity induces changes of resource use and carbon fluxes in streams. These findings highlight the importance of fine-scale streambed heterogeneity for microbial biodiversity and ecosystem functioning in streams, where homogenization and loss of habitats increasingly reduce biodiversity. PMID:20376323
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions
Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin
2016-01-01
Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998
Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.
Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin
2016-01-01
Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection.
The city as a refuge for insect pollinators.
Hall, Damon M; Camilo, Gerardo R; Tonietto, Rebecca K; Ollerton, Jeff; Ahrné, Karin; Arduser, Mike; Ascher, John S; Baldock, Katherine C R; Fowler, Robert; Frankie, Gordon; Goulson, Dave; Gunnarsson, Bengt; Hanley, Mick E; Jackson, Janet I; Langellotto, Gail; Lowenstein, David; Minor, Emily S; Philpott, Stacy M; Potts, Simon G; Sirohi, Muzafar H; Spevak, Edward M; Stone, Graham N; Threlfall, Caragh G
2017-02-01
Research on urban insect pollinators is changing views on the biological value and ecological importance of cities. The abundance and diversity of native bee species in urban landscapes that are absent in nearby rural lands evidence the biological value and ecological importance of cities and have implications for biodiversity conservation. Lagging behind this revised image of the city are urban conservation programs that historically have invested in education and outreach rather than programs designed to achieve high-priority species conservation results. We synthesized research on urban bee species diversity and abundance to determine how urban conservation could be repositioned to better align with new views on the ecological importance of urban landscapes. Due to insect pollinators' relatively small functional requirements-habitat range, life cycle, and nesting behavior-relative to larger mammals, we argue that pollinators put high-priority and high-impact urban conservation within reach. In a rapidly urbanizing world, transforming how environmental managers view the city can improve citizen engagement and contribute to the development of more sustainable urbanization. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Patterning nonisometric origami in nematic elastomer sheets
NASA Astrophysics Data System (ADS)
Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik
Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.
Pedodiversity and Its Significance in the Context of Modern Soil Geography
NASA Astrophysics Data System (ADS)
Krasilnikov, P. V.; Gerasimova, M. I.; Golovanov, D. L.; Konyushkova, M. V.; Sidorova, V. A.; Sorokin, A. S.
2018-01-01
Methodological basics of the study and quantitative assessment of pedodiversity are discussed. It is shown that the application of various indices and models of pedodiversity can be feasible for solving three major issues in pedology: a comparative geographical analysis of different territories, a comparative historical analysis of soil development in the course of landscape evolution, and the analysis of relationships between biodiversity and pedodiversity. Analogous geographic concepts of geodiversity and landscape diversity are also discussed. Certain limitations in the use of quantitative estimates of pedodiversity related to their linkage to the particular soil classification systems and with the initial soil maps are considered. Problems of the interpretation of the results of pedodiversity assessments are emphasized. It is shown that scientific explanations of biodiversity cannot be adequately applied in soil studies. Promising directions of further studies of pedodiversity are outlined. They include the assessment of the functional diversity of soils on the basis of data on their properties, integration with geostatistical methods of evaluation of soil variability, and assessment of pedodiversity on different scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddad, Nick, M.; Browne, David, R.; Cunningham, Alan
2003-01-01
Haddad, N.M., D.R. Browne, A. Cunningham, B.J. Danielson, D.J. Levey, S. Sargent, and T. Spira. 2003. Corridor use by diverse taxa. Ecology, 84(3):609-615. One of the most popular approaches for maintaining populations and conserving biodiversity in fragmented landscapes is to retain or create corridors that connect otherwise isolated habitat patches. Working in large-scale, experimental landscapes in which open-habitat patches and corridors were created by harvesting pine forest, we showed that corridors direct movements of different types of species, including butterflies, small mammals, and bird dispersed plants, causing higher movement between connected than between unconnected patches. Corridors directed the movement ofmore » all 10 species studied, with all corridor effect sizes >68%. However, this corridor effect was significant for five species, not significant for one species, and inconclusive for four species because of small sample sizes. Although we found no evidence that corridors increase emigration from a patch, our results show that movements of disparate taxa with broadly different life histories and functional roles are directed by corridors.« less
Leslie C. Parks; David O. Wallin; Samuel A. Cushman; Brad H. McRae
2015-01-01
Habitat fragmentation and habitat loss diminish population connectivity, reducing genetic diversity and increasing extinction risk over time. Improving connectivity is widely recommended to preserve the long-term viability of populations, but this requires accurate knowledge of how landscapes influence connectivity. Detectability of landscape effects on gene...
Andrew J. Kroll; You Ren; Jay E. Jones; Jack Giovanini; Roger W. Perry; Ronald E. Thill; Don White; T. Bently Wigley
2014-01-01
As human demand for ecosystem products increases, managers of landscapes used for commodity production require information about effects of management regimes on biological diversity. Landscape attributes, however, may moderate ecological responses to local-scale conservation and management actions. As a result, uniform application of local management prescriptions may...
Kuniansky, Eve L.
2001-01-01
Karst and similar landscapes are found in a wide range of biogeographic classes. In the U.S. for example, Everglades, Mammoth Cave, and Hawaii Volcanoes National Parks have little in common - except karst or pseudokarst, and a cultural past (even though these are very different). This diversity of geologic settings makes karst difficult to categorize and work with when designing a national program such as the recent NPS-USGS Geo-Indicators effort. A GIS-based approach with multiple datalayers is the only sane way to understand and convey the many relationships, in X, Y, and Z axes, between component ecosystems and cultural resources within karst and pseudokarst landscapes. Obviously, karst and cultural landscapes cross modern political as well as biogeographic boundaries. Here again, three-dimensional data are the foundation for understanding similar to that in anatomy and physiology: structure and function. In understanding where the most vulnerable 'pressure points' exist within karst landscapes, we can target landscape-scale ecosystem management to greatest effect. USGS and the National Cave and Karst research Institute could play an extremely significant role in cave and karst management on a national scale beyond NPS or other agency boundaries via cooperative management of three-dimensional karst datasets analogous to programs in several states.
Fairy circle landscapes under the sea
Ruiz-Reynés, Daniel; Gomila, Damià; Sintes, Tomàs; Hernández-García, Emilio; Marbà, Núria; Duarte, Carlos M.
2017-01-01
Short-scale interactions yield large-scale vegetation patterns that, in turn, shape ecosystem function across landscapes. Fairy circles, which are circular patches bare of vegetation within otherwise continuous landscapes, are characteristic features of semiarid grasslands. We report the occurrence of submarine fairy circle seascapes in seagrass meadows and propose a simple model that reproduces the diversity of seascapes observed in these ecosystems as emerging from plant interactions within the meadow. These seascapes include two extreme cases, a continuous meadow and a bare landscape, along with intermediate states that range from the occurrence of persistent but isolated fairy circles, or solitons, to seascapes with multiple fairy circles, banded vegetation, and “leopard skin” patterns consisting of bare seascapes dotted with plant patches. The model predicts that these intermediate seascapes extending across kilometers emerge as a consequence of local demographic imbalances along with facilitative and competitive interactions among the plants with a characteristic spatial scale of 20 to 30 m, consistent with known drivers of seagrass performance. The model, which can be extended to clonal growth plants in other landscapes showing fairy rings, reveals that the different seascapes observed hold diagnostic power as to the proximity of seagrass meadows to extinction points that can be used to identify ecosystems at risks. PMID:28782035
Reisch, Christoph; Schmidkonz, Sonja; Meier, Katrin; Schöpplein, Quirin; Meyer, Carina; Hums, Christian; Putz, Christina; Schmid, Christoph
2017-04-24
Habitat fragmentation is considered to be a main reason for decreasing genetic diversity of plant species. However, the results of many fragmentation studies are inconsistent. This may be due to the influence of habitat conditions, having an indirect effect on genetic variation via reproduction. Consequently we took a comparative approach to analyse the impact of habitat fragmentation and habitat conditions on the genetic diversity of calcareous grassland species in this study. We selected five typical grassland species (Primula veris, Dianthus carthusianorum, Medicago falcata, Polygala comosa and Salvia pratensis) occurring in 18 fragments of calcareous grasslands in south eastern Germany. We sampled 1286 individuals in 87 populations and analysed genetic diversity using amplified fragment length polymorphisms. Additionally, we collected data concerning habitat fragmentation (historical and present landscape structure) and habitat conditions (vegetation structure, soil conditions) of the selected study sites. The whole data set was analysed using Bayesian multiple regressions. Our investigation indicated a habitat loss of nearly 80% and increasing isolation between grasslands since 1830. Bayesian analysis revealed a significant impact of the historical landscape structure, whereas habitat conditions played no important role for the present-day genetic variation of the studied plant species. Our study indicates that the historical landscape structure may be more important for genetic diversity than present habitat conditions. Populations persisting in abandoned grassland fragments may contribute significantly to the species' variability even under deteriorating habitat conditions. Therefore, these populations should be included in approaches to preserve the genetic variation of calcareous grassland species.
Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu
2012-12-01
With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.
Experimental rugged fitness landscape in protein sequence space.
Hayashi, Yuuki; Aita, Takuyo; Toyota, Hitoshi; Husimi, Yuzuru; Urabe, Itaru; Yomo, Tetsuya
2006-12-20
The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12-130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7x10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18-24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region.
Experimental Rugged Fitness Landscape in Protein Sequence Space
Hayashi, Yuuki; Aita, Takuyo; Toyota, Hitoshi; Husimi, Yuzuru; Urabe, Itaru; Yomo, Tetsuya
2006-01-01
The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12–130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7×104-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18–24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region. PMID:17183728
Huang, Sui
2012-02-01
The Neo-Darwinian concept of natural selection is plausible when one assumes a straightforward causation of phenotype by genotype. However, such simple 1:1 mapping must now give place to the modern concepts of gene regulatory networks and gene expression noise. Both can, in the absence of genetic mutations, jointly generate a diversity of inheritable randomly occupied phenotypic states that could also serve as a substrate for natural selection. This form of epigenetic dynamics challenges Neo-Darwinism. It needs to incorporate the non-linear, stochastic dynamics of gene networks. A first step is to consider the mathematical correspondence between gene regulatory networks and Waddington's metaphoric 'epigenetic landscape', which actually represents the quasi-potential function of global network dynamics. It explains the coexistence of multiple stable phenotypes within one genotype. The landscape's topography with its attractors is shaped by evolution through mutational re-wiring of regulatory interactions - offering a link between genetic mutation and sudden, broad evolutionary changes. Copyright © 2012 WILEY Periodicals, Inc.
Chakraborty, Debayan; Wales, David J
2018-01-04
The recent discovery that Hoogsteen (HG) base pairs are widespread in DNA across diverse sequences and positional contexts could have important implications for understanding DNA replication and DNA-protein recognition. While evidence is emerging that the Hoogsteen conformation could be a thermodynamically accessible conformation of the DNA duplex and provide a means to expand its functionality, relatively little is known about the molecular mechanism underlying the Watson-Crick (WC) to HG transition. In this Perspective, we describe pathways and kinetics for this transition at an atomic level of detail, using the energy landscape perspective. We show that competition between the duplex conformations results in a double funnel landscape, which explains some recent experimental observations. The interconversion pathways feature a number of intermediates, with a variable number of WC and HG base pairs. The relatively slow kinetics, with possible deviations from two-state behavior, suggest that this conformational switch is likely to be a challenging target for both simulation and experiment.
NASA Astrophysics Data System (ADS)
Shekhar, Karthik; Ruberman, Claire F.; Ferguson, Andrew L.; Barton, John P.; Kardar, Mehran; Chakraborty, Arup K.
2013-12-01
Mutational escape from vaccine-induced immune responses has thwarted the development of a successful vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus' fitness as a function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus vaccine-induced immune responses to target mutational vulnerabilities of the virus. Spin models have been proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein sequences. These sequences are the product of nonequilibrium viral evolution driven by patient-specific immune responses and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic fitness landscapes? We combined computer simulations and variational theory á la Feynman to show that, in most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of the fitness of mutant viral strains. Our findings are relevant for diverse viruses.
Kareksela, Santtu; Moilanen, Atte; Tuominen, Seppo; Kotiaho, Janne S
2013-12-01
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on-the-ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land-use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land-use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape-level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land-use zoning in the province of Central Finland. © 2013 Society for Conservation Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diane De Steven,Ph.D.; Maureen Tone,PhD.
1997-10-01
This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicatemore » floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.« less
NASA Astrophysics Data System (ADS)
Zaller, Johann G.; Winter, Silvia; Strauss, Peter; Querner, Pascal; Kriechbaum, Monika; Pachinger, Bärbel; Gómez, José A.; Campos, Mercedes; Landa, Blanca; Popescu, Daniela; Comsa, Maria; Iliescu, Maria; Tomoiaga, Liliana; Bunea, Claudiu-Ioan; Hoble, Adela; Marghitas, Liviu; Rusu, Teodor; Lora, Ángel; Guzmán, Gema; Bergmann, Holger
2015-04-01
Essential ecosystem services provided by viticultural landscapes result from diverse communities of above- and belowground organisms and their interactions. For centuries traditional viticulture was part of a multifunctional agricultural system including low-input grasslands and fruit trees resulting in a high functional biodiversity. However, in the last decades intensification and mechanisation of vineyard management caused a separation of production and conservation areas. As a result of management intensification including frequent tilling and/or use of pesticides several ecosystem services are affected leading to high rates of soil erosion, degradation of soil structure and fertility, contamination of groundwater and high levels of agricultural inputs. In this transdisciplinary BiodivERsA project we will examine to what extent differently intensive managed vineyards affect the activity and diversity of soil biota (e.g. earthworms, collembola, soil microorganisms) and how this feed back on aboveground biodiversity (e.g. weeds, pollinators). We will also investigate ecosystem services associated with soil faunal activity and biodiversity such as soil structure, the formation of stable soil aggregates, water infiltration, soil erosion as well as grape quality. These effects will become increasingly important as more extreme precipitation events are predicted with climate change. The socio-economic part of the project will investigate the role of diversely structured, species-rich viticultural landscapes as a cultural heritage providing aesthetic values for human well-being and recreation. The project objectives will be analysed at plot, field (vineyard) and landscape scales in vineyards located in Spain, France, Romania and Austria. A detailed engagement and dissemination plan for stakeholder at the different governance levels will accompany scientific research and will contribute to the implementation of best-practice recommendations for policy and farmers.
Bird diversity and distribution in relation to urban landscape types in northern Rwanda.
Gatesire, T; Nsabimana, D; Nyiramana, A; Seburanga, J L; Mirville, M O
2014-01-01
Using the point count method, linear mixed models, Shannon's diversity index, and Bray-Curtis cluster analysis, we conducted a study of the effect of urban fabric layout on bird diversity and distribution in northern Rwanda. The results showed a significant effect of city landscapes on bird richness and relative abundance; residential neighborhoods, institutional grounds, and informal settlements had the highest species diversity in comparison to other microlandscape types. Riversides were characterized by specialized bird species, commonly known to be restricted to wetland environments. Built-up areas and open field landscapes had comparable results. One Albertine Rift endemic bird species, the Ruwenzori Double-collared Sunbird (Cinnyris stuhlmanni), was recorded. Three migratory birds were found in Musanze city for the first time: the Common Sandpiper (Actitis hypoleucos), the Spotted Flycatcher (Muscicapa striata), and the Willow Warbler (Phylloscopus trochilus). Two bird species have not been previously reported in Rwanda: the Garden Warbler (Sylvia borin) and the Lesser Spotted Eagle (Aquila pomarina). The implications of this study are particularly relevant to urban decision makers who should consider the existence of a great diversity of avian fauna when developing and implementing master plans, especially when villages and cities are in proximity of protected areas or natural reserves.
Summer Flowering Cover Crops Support Wild Bees in Vineyards.
Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A
2018-02-08
Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ryan C. Atwell; Lisa A. Schulte; Lynne M. Westphal
2009-01-01
Understanding the interplay between ecological and social factors across multiple scales is integral to landscape change initiatives in productive agricultural regions such as the rural US Corn Belt. We investigated the cultural context surrounding the use of perennial cover types--such as stream buffers, wetlands, cellulosic bioenergy stocks, and diverse cropping...
R Patrick Bixler; Shawn Johnson; Kirk Emerson; Tina Nabatchi; Melly Reuling; Charles Curtin; Michele Romolini; Morgan Grove
2016-01-01
The objective of large landscape conser vation is to mitigate complex ecological problems through interventions at multiple and overlapping scales. Implementation requires coordination among a diverse network of individuals and organizations to integrate local-scale conservation activities with broad-scale goals. This requires an understanding of the governance options...
David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode
2014-01-01
Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...
Forest species diversity reduces disease risk in a generalist plant pathogen invasion
Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.
2011-01-01
Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.
Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes
Werling, Ben P.; Dickson, Timothy L.; Isaacs, Rufus; Gaines, Hannah; Gratton, Claudio; Gross, Katherine L.; Liere, Heidi; Malmstrom, Carolyn M.; Meehan, Timothy D.; Ruan, Leilei; Robertson, Bruce A.; Robertson, G. Philip; Schmidt, Thomas M.; Schrotenboer, Abbie C.; Teal, Tracy K.; Wilson, Julianna K.; Landis, Douglas A.
2014-01-01
Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands—farmland suboptimal for food crops—could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks—primarily annual grain crops—on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services. PMID:24474791
García-García, José Luis; Santos-Moreno, Antonio
2014-03-01
The tropical forest fragmentation is known to affect the spatial structure of the landscape and habitat. These alterations can modify the attributes of bat assemblages, however, this phenomenon has been little studied and understood. In this work we evaluated the structure of landscape (i.e. composition and configuration) and vegetation, and its relationship with assemblage- and population-level characteristics of phyllostomid bats in a tropical rainforest of Southeastern Mexico. For this, we previously selected 12 sites located in continuous and fragmented forests, where bats were captured using mist nets during a two years sampling effort (144 nights). Bats relative abundance, species richness (diversity of order 0, 0D), Shannon diversity index (1D) and Simpson index (2D) were evaluated in all sites, and their relationship with seven measures of landscape structure and seven measures of vegetation structure was described using a Hierarchical Partitioning Analysis. A total of 1 840 individuals of 29 species of phyllostomid bats were captured in this period. Differences in the assemblages were manifested only in the relative abundance and not in the richness of the species. The assemblages of fragmented forest exhibited greater variation in species composition and a greater abundance of frugivorous and nectarivorous bats in comparison with the assemblages of continuous forest. The landscape configuration was related to the assemblage- and population-level attributes, contrasting with previous studies where the composition was a key element. At habitat level, tree density and canopy cover determined the abundance of bats. Nectarivorous and frugivorous bats were mostly found in disturbed vegetation landscapes, primarily due to landscape configuration (e.g. edge density). This phenomenon could be a response to the availability of food in primary and intermediate successional stages, which are characterized by an abundance of food value.
Adaptation of Bird Communities to Farmland Abandonment in a Mountain Landscape
Guilherme, João Lopes; Miguel Pereira, Henrique
2013-01-01
Widespread farmland abandonment has led to significant landscape transformations of many European mountain areas. These semi-natural multi-habitat landscapes are important reservoirs of biodiversity and their abandonment has important conservation implications. In multi-habitat landscapes the adaptation of communities depends on the differential affinity of the species to the available habitats. We use nested species-area relationships (SAR) to model species richness patterns of bird communities across scales in a mountain landscape, in NW Portugal. We compare the performance of the classic-SAR and the countryside-SAR (i.e. multi-habitat) models at the landscape scale, and compare species similarity decay (SSD) at the regional scale. We find a considerable overlap of bird communities in the different land-uses (farmland, shrubland and oak forest) at the landscape scale. Analysis of the classic and countryside SAR show that specialist species are strongly related to their favourite habitat. Farmland and shrubland have higher regional SSD compared to oak forests. However, this is due to the opportunistic use of farmlands by generalist birds. Forest specialists display significant regional turnover in oak forest. Overall, the countryside-SAR model had a better fit to the data showing that habitat composition determines species richness across scales. Finally, we use the countryside-SAR model to forecast bird diversity under four scenarios of land-use change. Farmland abandonment scenarios show little impact on bird diversity as the model predicts that the complete loss of farmland is less dramatic, in terms of species diversity loss, than the disappearance of native Galicio-Portuguese oak forest. The affinities of species to non-preferred habitats suggest that bird communities can adapt to land-use changes derived from farmland abandonment. Based on model predictions we argue that rewilding may be a suitable management option for many European mountain areas. PMID:24023892
NASA Astrophysics Data System (ADS)
Shanskiy, , Merrit; Vollmer, Elis; Penu, Priit
2015-04-01
The utilization of organic soils for forestry or agriculture requires the land amelioration that could result on the peat losses from 15 to 20 t ha-1 in a year on following five years. After five years, the peat losses will be 5 - 15 t ha-1 in a year. The agricultural land resource on different types of organic soils (including ameliorated bogs) in Estonia is 360 000 ha that comprises 41% of total agricultural land area. The landscape iself is a valuable resource that considered to be a set of characteristics that satisfy needs of people using the landscape: economical or non-economical value; ecological, social, recreational, aesthetical, educational, scientific or even protective value. More diverse landscapes have higher biodiversity and yield more services to public, they are also seen as more sustainable and resilient to short-term changes. In order to maintain landscape diversity, sustainable maintenance is important. The purpose of current study was to estimate the land use potential on three different ameliorated peat areas and to develop the methodology for the futher sustainable utilization in order to secure the best ecological functioning of soil while taking into account maintaining and increasing landscape value. Therefore, site specific soil sampling (n=77) was carried out on predetermined eight study sites. Soil samples were analyzed for main agrochemical parameters (n=17; pHKCl, P, K, C%, N%, S%, ash, main anions and cations). This enables determing site-specific best suitable crops and land use scenarios. For the land resource description (soils type, topology) the digital soil map (1: 10,000) and field sudy based database were used for describing the model areas. For more specific identification of the field layers the Agricultural Registers and Information Board (ARIB) and databases of the Common Agricultural Policy (CAP) payments were used for subsidy schemes chekout. Estonian Nature Information System map tool was used to specify the restrictions on study sites by nature conversation on the maps data about nature protected objects and buffer zones or forming restricted areas around those objects. The results will indicate the utilization possibility and most sustainable scenarios for different land use cases. Moreover, the possible changes in soil functioning accordingly to site specific soil conditions will be discussed and presented.
3 CFR 9024 - Proclamation 9024 of September 26, 2013. National Public Lands Day, 2013
Code of Federal Regulations, 2014 CFR
2014-01-01
... diverse and rugged landscapes reflect our national character, the way we care for these open spaces.... Since I established this initiative, we have expanded access to recreation, restored critical landscapes...
Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns
NASA Astrophysics Data System (ADS)
Acharya, Subodh; Kaplan, David A.; Jawitz, James W.; Cohen, Matthew J.
2017-07-01
Human alterations to hydrology have globally impacted wetland ecosystems. Preventing or reversing these impacts is a principal focus of restoration efforts. However, restoration effectiveness is often hampered by limited information on historical landscape properties and hydrologic regime. To help address this gap, we developed a novel statistical approach for inferring flows and inundation frequency (i.e., hydroperiod, HP) in wetlands where changes in spatial vegetation and geomorphic patterns have occurred due to hydrologic alteration. We developed an analytical expression for HP as a transformation of the landscape-scale stage-discharge relationship. We applied this model to the Everglades "ridge-slough" (RS) landscape, a patterned, lotic peatland in southern Florida that has been drastically degraded by compartmentalization, drainage, and flow diversions. The new method reliably estimated flow and HP for a range of RS landscape patterns. Crucially, ridge-patch anisotropy and elevation above sloughs were strong drivers of flow-HP relationships. Increasing ridge heights markedly increased flow required to achieve sufficient HP to support peat accretion. Indeed, ridge heights inferred from historical accounts would require boundary flows 3-4 times greater than today, which agrees with restoration flow estimates from more complex, spatially distributed models. While observed loss of patch anisotropy allows HP targets to be met with lower flows, such landscapes likely fail to support other ecological functions. This work helps inform restoration flows required to restore stable ridge-slough patterning and positive peat accretion in this degraded ecosystem, and, more broadly, provides tools for exploring interactions between landscape and hydrology in lotic wetlands and floodplains.
Monitoring shifts in plant diversity in response to climate change: A method for landscapes
Stohlgren, T.J.; Owen, A.J.; Lee, M.
2000-01-01
Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.
Effects of climate change on ecological disturbance in the Northern Rockies Region [Chapter 8
Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.
2018-01-01
This chapter describes the ecology of important disturbance regimes in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area, hereafter called the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term disturbance regime describes the general temporal and spatial characteristics of a disturbance agent - insect, disease, fire, weather, even human activity - and the effects of that agent on the landscape (table 8.1). More specifically, a disturbance regime is the cumulative effect of multiple disturbance events over space and time (Keane 2013). Disturbances disrupt an ecosystem, community, or population structure and change elements of the biological environment, physical environment, or both (White and Pickett 1985). The resulting shifting mosaic of diverse ecological patterns and structures in turn affects future patterns of disturbance, in a reciprocal, linked relationship that shapes the fundamental character of landscapes and ecosystems. Disturbance creates and maintains biological diversity in the form of shifting, heterogeneous mosaics of diverse communities and habitats across a landscape (McKinney and Drake 1998), and biodiversity is generally highest when disturbance is neither too rare nor too frequent on the landscape (Grime 1973).
Melliger, Ramona Laila; Rusterholz, Hans-Peter; Baur, Bruno
2018-01-01
Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species’ response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important. PMID:29920553
Melliger, Ramona Laila; Braschler, Brigitte; Rusterholz, Hans-Peter; Baur, Bruno
2018-01-01
Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species' response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important.
Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo
2015-01-01
The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity. PMID:26197473
Characterizing and Comparing Landscape Diversity Using GIS and a Contagion Index
Bernard R. Parresol; Joseph McCollum
1997-01-01
The purpose of this study was to examine the pattern land changes in forestcover types over the last two decades on three landscape level physiographic provinces of the state of Alabama, USA: (i) The Great Appalachian Valley Province, (ii) The Blue Ridge Talladega Mountain Province, and (iii) The Piedmont Province. Studies of spatial patterns of landscapes are useful...
A. Paige Fischer; Ken Vance-Borland; Lorien Jasny; Kerry E. Grimm; Susan Charnley
2016-01-01
tManagement of ecological conditions and processes in multiownership landscapes requires cooperationby diverse stakeholder groups. The structure of organizational networks â the extent to which networksallow for interaction among organizations within and across ideological and geographic boundaries âcan indicate potential opportunities for cooperation on landscape-...
Matthew G. Olson; Benjamin O. Knapp; John M. Kabrick
2017-01-01
Landscape forest management is an approach to meeting diverse objectives that collectively span multiple spatial scales. It is critical that we understand the long-term effects of landscape management on the structure and composition of forest tree communities to ensure that these practices are sustainable. Furthermore, it is increasingly important to also consider...
Miles A. Hemstrom; James Merzenich; Theresa Burcsu; Janet Ohmann; Ryan Singleton
2010-01-01
We used state and transition models to integrate natural disturbances and management activities for a 275 000-ha landscape in the central Oregon Cascades. The landscape consists of a diverse mix of land ownerships, land use allocations, and environments. Three different management scenarios were developed from public input: (1) no management except wildfire suppression...
Favre-Bac, L; Mony, C; Ernoult, A; Burel, F; Arnaud, J-F
2016-01-01
In intensive agricultural landscapes, plant species previously relying on semi-natural habitats may persist as metapopulations within landscape linear elements. Maintenance of populations' connectivity through pollen and seed dispersal is a key factor in species persistence in the face of substantial habitat loss. The goals of this study were to investigate the potential corridor role of ditches and to identify the landscape components that significantly impact patterns of gene flow among remnant populations. Using microsatellite loci, we explored the spatial genetic structure of two hydrochorous wetland plants exhibiting contrasting local abundance and different habitat requirements: the rare and regionally protected Oenanthe aquatica and the more commonly distributed Lycopus europaeus, in an 83 km2 agricultural lowland located in northern France. Both species exhibited a significant spatial genetic structure, along with substantial levels of genetic differentiation, especially for L. europaeus, which also expressed high levels of inbreeding. Isolation-by-distance analysis revealed enhanced gene flow along ditches, indicating their key role in effective seed and pollen dispersal. Our data also suggested that the configuration of the ditch network and the landscape elements significantly affected population genetic structure, with (i) species-specific scale effects on the genetic neighborhood and (ii) detrimental impact of human ditch management on genetic diversity, especially for O. aquatica. Altogether, these findings highlighted the key role of ditches in the maintenance of plant biodiversity in intensive agricultural landscapes with few remnant wetland habitats. PMID:26486611
Systems biology: A tool for charting the antiviral landscape.
Bowen, James R; Ferris, Martin T; Suthar, Mehul S
2016-06-15
The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as "the antiviral landscape". Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape. Copyright © 2016 Elsevier B.V. All rights reserved.
Does Fire Influence the Landscape-Scale Distribution of an Invasive Mesopredator?
Payne, Catherine J.; Ritchie, Euan G.; Kelly, Luke T.; Nimmo, Dale G.
2014-01-01
Predation and fire shape the structure and function of ecosystems globally. However, studies exploring interactions between these two processes are rare, especially at large spatial scales. This knowledge gap is significant not only for ecological theory, but also in an applied context, because it limits the ability of landscape managers to predict the outcomes of manipulating fire and predators. We examined the influence of fire on the occurrence of an introduced and widespread mesopredator, the red fox (Vulpes vulpes), in semi-arid Australia. We used two extensive and complimentary datasets collected at two spatial scales. At the landscape-scale, we surveyed red foxes using sand-plots within 28 study landscapes – which incorporated variation in the diversity and proportional extent of fire-age classes – located across a 104 000 km2 study area. At the site-scale, we surveyed red foxes using camera traps at 108 sites stratified along a century-long post-fire chronosequence (0–105 years) within a 6630 km2 study area. Red foxes were widespread both at the landscape and site-scale. Fire did not influence fox distribution at either spatial scale, nor did other environmental variables that we measured. Our results show that red foxes exploit a broad range of environmental conditions within semi-arid Australia. The presence of red foxes throughout much of the landscape is likely to have significant implications for native fauna, particularly in recently burnt habitats where reduced cover may increase prey species’ predation risk. PMID:25291186
spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.
Dellicour, Simon; Mardulyn, Patrick
2014-05-01
SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.
The Epigenomic Landscape of Prokaryotes
Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.; ...
2016-02-12
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less
The Epigenomic Landscape of Prokaryotes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less
Balzan, Mario V.
2012-01-01
Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the use of Odonata as biological indicators, and for current trends with respect to odonate diversity conservation within the Maltese Islands. PMID:23427906
Balzan, Mario V
2012-01-01
Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the use of Odonata as biological indicators, and for current trends with respect to odonate diversity conservation within the Maltese Islands.
Characterizing fish community diversity across Virginia landscapes: Prerequisite for conservation
Angermeier, P.L.; Winston, M.R.
1999-01-01
The number of community types occurring within landscapes is an important, but often unprotected, component of biological diversity. Generally applicable protocols for characterizing community diversity need to be developed to facilitate conservation. We used several multivariate techniques to analyze geographic variation in the composition of fish communities in Virginia streams. We examined relationships between community composition and six landscape variables: drainage basin, physiography, stream order, elevation, channel slope, and map coordinates. We compared patterns at two scales (statewide and subdrainage-specific) to assess sensitivity of community classification to spatial scale. We also compared patterns based on characterizing communities by species composition vs. ecological composition. All landscape variables explained significant proportions of the variance in community composition. Statewide, they explained 32% of the variance in species composition and 48% of the variance in ecological composition. Typical communities in each drainage or physiography were statistically distinctive. Communities in different combinations of drainage, physiography, and stream size were even more distinctive, but composition was strongly spatially autocorrelated. Ecological similarity and species similarity of community pairs were strongly related, but replacement by ecologically similar species was common among drainage-physiography combinations. Landscape variables explained significant proportions of variance in community composition within selected subdrainages, but proportions were less than at the statewide scale, and the explanatory power of individual variables varied considerably among subdrainages. Community variation within subdrainages appeared to be much more closely related to environmental variation than to replacement among ecologically similar species. Our results suggest that taxonomic and ecological characterizations of community composition are complementary; both are useful in a conservation context. Landscape features such as drainage, physiography, and water body size generally may provide a basis for assessing aquatic community diversity, especially in regions where the biota is poorly known. Systematic conservation of community types would be a major advance relative to most current conservation programs, which typically focus narrowly on populations of imperiled species. More effective conservation of aquatic biodiversity will require new approaches that recognize the value of both species and assemblages, and that emphasize protection of key landscape-scale processes.
Assessment of carbon in woody plants and soil across a vineyard-woodland landscape
2011-01-01
Background Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression. Results Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively. Conclusions This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation. PMID:22070870
NASA Astrophysics Data System (ADS)
Sanfiorenzo, A. R.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Finegan, B.; Hormel, L.; Sibelet, N.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Waits, L.
2016-12-01
Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non- traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we conduct a case study to examine the coupled social and ecological implications of LUCC and agricultural intensification in this region, with larger application to regions experiencing similar patterns. Guided by frameworks from both political and landscape ecology, we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which is likely to have a negative effect on biodiversity. To offset the effects of pineapple expansion on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of agricultural intensification in a tropical landscape, and offers recommendations for improvement relevant not only to our study region but to the many other tropical landscapes currently undergoing non-traditional agricultural export driven agricultural intensification.
NASA Astrophysics Data System (ADS)
Sanfiorenzo, A. R.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Finegan, B.; Hormel, L.; Sibelet, N.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Waits, L.
2017-12-01
Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non- traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we conduct a case study to examine the coupled social and ecological implications of LUCC and agricultural intensification in this region, with larger application to regions experiencing similar patterns. Guided by frameworks from both political and landscape ecology, we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which is likely to have a negative effect on biodiversity. To offset the effects of pineapple expansion on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of agricultural intensification in a tropical landscape, and offers recommendations for improvement relevant not only to our study region but to the many other tropical landscapes currently undergoing non-traditional agricultural export driven agricultural intensification.
Dikou, Angela; Papapanagiotou, Evangelos; Troumbis, Andreas
2011-09-01
We used remote sensing and GIS in conjunction with multivariate statistical methods to: (i) quantify landscape composition (land cover types) and configuration (patch density, diversity, fractal dimension, contagion) for five coastal watersheds of Kalloni gulf, Lesvos Island, Greece, in 1945, 1960, 1971, 1990 and 2002/2003, (ii) evaluate the relative importance of physical (slope, geologic substrate, stream order) and human (road network, population density) variables on landscape composition and configuration, and (iii) characterize processes that led to land cover changes through land cover transitions between these five successive periods in time. Distributions of land cover types did not differ among the five time periods at the five watersheds studied because the largest cumulative changes between 1945 and 2002/2003 did not take place at dominant land cover types. Landscape composition related primarily to the physical attributes of the landscape. Nevertheless, increase in population density and the road network were found to increase heterogeneity of the landscape mosaic (patchiness), complexity of patch shape (fractal dimension), and patch disaggregation (contagion). Increase in road network was also found to increase landscape diversity due to the creation of new patches. The main processes involved in land cover changes were plough-land abandonment and ecological succession. Landscape dynamics during the last 50 years corroborate the ecotouristic-agrotouristic model for regional development to reverse trends in agricultural land abandonment and human population decline and when combined with hypothetical regulatory approaches could predict how this landscape could develop in the future, thus, providing a valuable tool to regional planning.
Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes
Landis, Douglas A.; Gardiner, Mary M.; van der Werf, Wopke; Swinton, Scott M.
2008-01-01
Increased demand for corn grain as an ethanol feedstock is altering U.S. agricultural landscapes and the ecosystem services they provide. From 2006 to 2007, corn acreage increased 19% nationally, resulting in reduced crop diversity in many areas. Biological control of insects is an ecosystem service that is strongly influenced by local landscape structure. Here, we estimate the value of natural biological control of the soybean aphid, a major pest in agricultural landscapes, and the economic impacts of reduced biocontrol caused by increased corn production in 4 U.S. states (Iowa, Michigan, Minnesota, and Wisconsin). For producers who use an integrated pest management strategy including insecticides as needed, natural suppression of soybean aphid in soybean is worth an average of $33 ha−1. At 2007–2008 prices these services are worth at least $239 million y−1 in these 4 states. Recent biofuel-driven growth in corn planting results in lower landscape diversity, altering the supply of aphid natural enemies to soybean fields and reducing biocontrol services by 24%. This loss of biocontrol services cost soybean producers in these states an estimated $58 million y−1 in reduced yield and increased pesticide use. For producers who rely solely on biological control, the value of lost services is much greater. These findings from a single pest in 1 crop suggest that the value of biocontrol services to the U.S. economy may be underestimated. Furthermore, we suggest that development of cellulosic ethanol production processes that use a variety of feedstocks could foster increased diversity in agricultural landscapes and enhance arthropod-mediated ecosystem services. PMID:19075234
Ramezani, Habib; Holm, Sören; Allard, Anna; Ståhl, Göran
2010-05-01
Environmental monitoring of landscapes is of increasing interest. To quantify landscape patterns, a number of metrics are used, of which Shannon's diversity, edge length, and density are studied here. As an alternative to complete mapping, point sampling was applied to estimate the metrics for already mapped landscapes selected from the National Inventory of Landscapes in Sweden (NILS). Monte-Carlo simulation was applied to study the performance of different designs. Random and systematic samplings were applied for four sample sizes and five buffer widths. The latter feature was relevant for edge length, since length was estimated through the number of points falling in buffer areas around edges. In addition, two landscape complexities were tested by applying two classification schemes with seven or 20 land cover classes to the NILS data. As expected, the root mean square error (RMSE) of the estimators decreased with increasing sample size. The estimators of both metrics were slightly biased, but the bias of Shannon's diversity estimator was shown to decrease when sample size increased. In the edge length case, an increasing buffer width resulted in larger bias due to the increased impact of boundary conditions; this effect was shown to be independent of sample size. However, we also developed adjusted estimators that eliminate the bias of the edge length estimator. The rates of decrease of RMSE with increasing sample size and buffer width were quantified by a regression model. Finally, indicative cost-accuracy relationships were derived showing that point sampling could be a competitive alternative to complete wall-to-wall mapping.
Meng, Ling-Zeng; Martin, Konrad; Weigel, Andreas; Yang, Xiao-Dong
2013-01-01
Longhorn beetles (Coleoptera : Cerambycidae) have been used to identify sites of high biological diversity and conservation value in cultivated landscapes, but were rarely studied in changing landscapes of humid tropics. This study was conducted in a region of southern Yunnan, China, which was dominated by natural rainforest until 30 years ago, but is successively transformed into commercial rubber monoculture plantations since that time. The objectives were to investigate longhorn beetle species diversity and distribution in the major land use types of this landscape and to estimate the effects of an expected expansion of rubber plantations on the longhorn beetle assemblages. The results showed that tree species diversity (181 species in total) and longhorn beetle diversity (220 species in total) were closely related with no significant differences between the tree and longhorn beetles assemblages shown by similarity distance analysis. There was a highly positive relationship between the estimated species richness of longhorn beetles and the number of tree species. Individual numbers of longhorn beetles and trees were also highly positive related at the sampling sites. Non-metric multidimensional scaling revealed that the degree of canopy coverage, succession age and tree diversity explained 78.5% of the total variation in longhorn beetle assemblage composition. Natural forest sites had significantly higher numbers of species and individuals than any other type of habitat. Although young rubber plantations bear the highest longhorn beetle diversity outside forests (half of the total number of longhorn beetle species recorded in total), they can not provide permanent habitats for most of these species, because they develop into closed canopy plantations with less suitable habitat conditions. Therefore, along with an expected expansion of rubber cultivation which largely proceeds at the expense of forest areas, the habitat conditions for longhorn beetles in this region might decrease dramatically in future. PMID:24069421
Meng, Ling-Zeng; Martin, Konrad; Weigel, Andreas; Yang, Xiao-Dong
2013-01-01
Cerambycidae) have been used to identify sites of high biological diversity and conservation value in cultivated landscapes, but were rarely studied in changing landscapes of humid tropics. This study was conducted in a region of southern Yunnan, China, which was dominated by natural rainforest until 30 years ago, but is successively transformed into commercial rubber monoculture plantations since that time. The objectives were to investigate longhorn beetle species diversity and distribution in the major land use types of this landscape and to estimate the effects of an expected expansion of rubber plantations on the longhorn beetle assemblages. The results showed that tree species diversity (181 species in total) and longhorn beetle diversity (220 species in total) were closely related with no significant differences between the tree and longhorn beetles assemblages shown by similarity distance analysis. There was a highly positive relationship between the estimated species richness of longhorn beetles and the number of tree species. Individual numbers of longhorn beetles and trees were also highly positive related at the sampling sites. Non-metric multidimensional scaling revealed that the degree of canopy coverage, succession age and tree diversity explained 78.5% of the total variation in longhorn beetle assemblage composition. Natural forest sites had significantly higher numbers of species and individuals than any other type of habitat. Although young rubber plantations bear the highest longhorn beetle diversity outside forests (half of the total number of longhorn beetle species recorded in total), they can not provide permanent habitats for most of these species, because they develop into closed canopy plantations with less suitable habitat conditions. Therefore, along with an expected expansion of rubber cultivation which largely proceeds at the expense of forest areas, the habitat conditions for longhorn beetles in this region might decrease dramatically in future.
Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A
2016-02-01
Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Habitat management utilizing native wildflowers to foster pollinator abundance
USDA-ARS?s Scientific Manuscript database
Pollinators provide essential ecosystem services to agricultural crops, however their population has come under threat globally as a result of intensive agricultural practices and landscape simplification. Designing diverse heterogeneous agricultural landscapes to provide optimal resources serves as...
EXTINCTION DEBT OF PROTECTED AREAS IN DEVELOPING LANDSCAPES
To conserve biological diversity, protected-area networks must be based not only upon current species distributions but also the landscape's long-term capacity to support populations. We used spatially-explicit population models requiring detailed habitat and demographic data to ...
Predation and landscape characteristics independently affect reef fish community organization.
Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J
2014-05-01
Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.
Recent advances in plant-herbivore interactions
Burkepile, Deron E.; Parker, John D.
2017-01-01
Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies) from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity and ecosystem function, (3) predation risk aversion and herbivory, and (4) how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally, we conclude by noting that although the field is advancing rapidly, the world is changing even more rapidly, challenging our ability to manage these pivotal links in the food chain. PMID:28232868
Neave, Matthew J.; Michell, Craig T.; Apprill, Amy; Voolstra, Christian R.
2017-01-01
Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts. PMID:28094347
Thom, Dominik; Rammer, Werner; Dirnböck, Thomas; Müller, Jörg; Kobler, Johannes; Katzensteiner, Klaus; Helm, Norbert; Seidl, Rupert
2017-02-01
1. The ongoing changes to climate challenge the conservation of forest biodiversity. Yet, in thermally limited systems, such as temperate forests, not all species groups might be affected negatively. Furthermore, simultaneous changes in the disturbance regime have the potential to mitigate climate-related impacts on forest species. Here, we (i) investigated the potential long-term effect of climate change on biodiversity in a mountain forest landscape, (ii) assessed the effects of different disturbance frequencies, severities and sizes and (iii) identified biodiversity hotspots at the landscape scale to facilitate conservation management. 2. We employed the model iLand to dynamically simulate the tree vegetation on 13 865 ha of the Kalkalpen National Park in Austria over 1000 years, and investigated 36 unique combinations of different disturbance and climate scenarios. We used simulated changes in tree cover and composition as well as projected temperature and precipitation to predict changes in the diversity of Araneae, Carabidae, ground vegetation, Hemiptera, Hymenoptera, Mollusca, saproxylic beetles, Symphyta and Syrphidae, using empirical response functions. 3. Our findings revealed widely varying responses of biodiversity indicators to climate change. Five indicators showed overall negative effects, with Carabidae, saproxylic beetles and tree species diversity projected to decrease by more than 33%. Six indicators responded positively to climate change, with Hymenoptera, Mollusca and Syrphidae diversity projected to increase more than twofold. 4. Disturbances were generally beneficial for the studied indicators of biodiversity. Our results indicated that increasing disturbance frequency and severity have a positive effect on biodiversity, while increasing disturbance size has a moderately negative effect. Spatial hotspots of biodiversity were currently found in low- to mid-elevation areas of the mountainous study landscape, but shifted to higher-elevation zones under changing climate conditions. 5. Synthesis and applications . Our results highlight that intensifying disturbance regimes may alleviate some of the impacts of climate change on forest biodiversity. However, the projected shift in biodiversity hotspots is a challenge for static conservation areas. In this regard, overlapping hotspots under current and expected future conditions highlight priority areas for robust conservation management.
Bird Diversity and Distribution in relation to Urban Landscape Types in Northern Rwanda
Gatesire, T.; Nsabimana, D.; Nyiramana, A.; Seburanga, J. L.; Mirville, M. O.
2014-01-01
Using the point count method, linear mixed models, Shannon's diversity index, and Bray-Curtis cluster analysis, we conducted a study of the effect of urban fabric layout on bird diversity and distribution in northern Rwanda. The results showed a significant effect of city landscapes on bird richness and relative abundance; residential neighborhoods, institutional grounds, and informal settlements had the highest species diversity in comparison to other microlandscape types. Riversides were characterized by specialized bird species, commonly known to be restricted to wetland environments. Built-up areas and open field landscapes had comparable results. One Albertine Rift endemic bird species, the Ruwenzori Double-collared Sunbird (Cinnyris stuhlmanni), was recorded. Three migratory birds were found in Musanze city for the first time: the Common Sandpiper (Actitis hypoleucos), the Spotted Flycatcher (Muscicapa striata), and the Willow Warbler (Phylloscopus trochilus). Two bird species have not been previously reported in Rwanda: the Garden Warbler (Sylvia borin) and the Lesser Spotted Eagle (Aquila pomarina). The implications of this study are particularly relevant to urban decision makers who should consider the existence of a great diversity of avian fauna when developing and implementing master plans, especially when villages and cities are in proximity of protected areas or natural reserves. PMID:25133203
Implications of invasion by Juniperus virginiana on small mammals in the southern Great Plains
Horncastle, V.J.; Hellgren, E.C.; Mayer, P.M.; Ganguli, A.C.; Engle, David M.; Leslie, David M.
2005-01-01
Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examined effects of invasion by eastern red cedar on small mammals in 3 plant communities (tallgrass prairie, old field, and cross-timbers forest) in the cross-timbers ecoregion in Oklahoma. We sampled small mammals seasonally from May 2001 to August 2002 by using Sherman live traps and mark-recapture techniques on 3.24-ha, 450-trap grids in each plant community. We sampled vegetation in two hundred twenty-five 12 x 12-m cells within each grid. The structure of the small-mammal community differed among the 3 habitat types, with higher species diversity and richness in the tallgrass-prairie and old-field sites. Overall, the small-mammal community shifted along a gradient of increasing eastern red cedar. In the old-field and tallgrass-prairie plots, occurrence of grassland mammals decreased with increasing red cedar, whereas only 1 woodland mammal species increased. In the cross-timbers forest site, percent woody cover (<1 m in height), rather than cover of red cedar, was the most important factor affecting woodland mammal species. Examination of our data suggests that an increase in overstory cover from 0% to 30% red cedar can change a species-rich prairie community to a depauperate community dominated by 1 species, Peromyscus leucopus. Losses in species diversity and changes in mammal distribution paralleled those seen in avian communities invaded by eastern red cedar. Our results highlight ecological effects of invasion by eastern red cedar on diversity and function at multiple trophic levels. ?? 2005 American Society of Mammalogists.
Faunal Communities Are Invariant to Fragmentation in Experimental Seagrass Landscapes
Marion, Scott R.; Lombana, Alfonso V.; Orth, Robert J.
2016-01-01
Human-driven habitat fragmentation is cited as one of the most pressing threats facing many coastal ecosystems today. Many experiments have explored the consequences of fragmentation on fauna in one foundational habitat, seagrass beds, but have either surveyed along a gradient of existing patchiness, used artificial materials to mimic a natural bed, or sampled over short timescales. Here, we describe faunal responses to constructed fragmented landscapes varying from 4–400 m2 in two transplant garden experiments incorporating live eelgrass (Zostera marina L.). In experiments replicated within two subestuaries of the Chesapeake Bay, USA across multiple seasons and non-consecutive years, we comprehensively censused mesopredators and epifaunal communities using complementary quantitative methods. We found that community properties, including abundance, species richness, Simpson and functional diversity, and composition were generally unaffected by the number of patches and the size of the landscape, or the intensity of sampling. Additionally, an index of competition based on species co-occurrences revealed no trends with increasing patch size, contrary to theoretical predictions. We extend conclusions concerning the invariance of animal communities to habitat fragmentation from small-scale observational surveys and artificial experiments to experiments conducted with actual living plants and at more realistic scales. Our findings are likely a consequence of the rapid life histories and high mobility of the organisms common to eelgrass beds, and have implications for both conservation and restoration, suggesting that even small patches can rapidly promote abundant and diverse faunal communities. PMID:27244652
Faunal Communities Are Invariant to Fragmentation in Experimental Seagrass Landscapes.
Lefcheck, Jonathan S; Marion, Scott R; Lombana, Alfonso V; Orth, Robert J
2016-01-01
Human-driven habitat fragmentation is cited as one of the most pressing threats facing many coastal ecosystems today. Many experiments have explored the consequences of fragmentation on fauna in one foundational habitat, seagrass beds, but have either surveyed along a gradient of existing patchiness, used artificial materials to mimic a natural bed, or sampled over short timescales. Here, we describe faunal responses to constructed fragmented landscapes varying from 4-400 m2 in two transplant garden experiments incorporating live eelgrass (Zostera marina L.). In experiments replicated within two subestuaries of the Chesapeake Bay, USA across multiple seasons and non-consecutive years, we comprehensively censused mesopredators and epifaunal communities using complementary quantitative methods. We found that community properties, including abundance, species richness, Simpson and functional diversity, and composition were generally unaffected by the number of patches and the size of the landscape, or the intensity of sampling. Additionally, an index of competition based on species co-occurrences revealed no trends with increasing patch size, contrary to theoretical predictions. We extend conclusions concerning the invariance of animal communities to habitat fragmentation from small-scale observational surveys and artificial experiments to experiments conducted with actual living plants and at more realistic scales. Our findings are likely a consequence of the rapid life histories and high mobility of the organisms common to eelgrass beds, and have implications for both conservation and restoration, suggesting that even small patches can rapidly promote abundant and diverse faunal communities.
The effect of organic farming systems on species diversity
NASA Astrophysics Data System (ADS)
Leksono, Amin Setyo
2017-11-01
Organic farming systems have been well known to support the diversity of a wide range of taxa, including microorganisms, arable flora, invertebrates, birds, and mammals, which benefit from organic management leading to increases in abundance and/or species richness. The objective of this paper is to review the effect of organic farming on species diversity reported in several articles and compare this with the current study in Gondanglegi, Malang. A review of several studies showed that organic farming systems have been reported to increase species diversity, including that of mammals, birds, arthropods, vascular plants and arbuscular mycorrhizal fungi. The researchers about arthropod groups consisted of carabid beetles, butterflies, wasps, predators, and bees. Agricultural landscape, habitat type, farming system, landscape composition and connectivity all contribute to explaining species biodiversity and richness. Moreover, based on current and relevant studies, the results showed that the application of refugia blocks has increased arthropod diversity and composition.
Adaptation to elevated CO2 in different biodiversity contexts
Kleynhans, Elizabeth J.; Otto, Sarah P.; Reich, Peter B.; Vellend, Mark
2016-01-01
In the absence of migration, species persistence depends on adaption to a changing environment, but whether and how adaptation to global change is altered by community diversity is not understood. Community diversity may prevent, enhance or alter how species adapt to changing conditions by influencing population sizes, genetic diversity and/or the fitness landscape experienced by focal species. We tested the impact of community diversity on adaptation by performing a reciprocal transplant experiment on grasses that evolved for 14 years under ambient and elevated CO2, in communities of low or high species richness. Using biomass as a fitness proxy, we find evidence for local adaptation to elevated CO2, but only for plants assayed in a community of similar diversity to the one experienced during the period of selection. Our results indicate that the biological community shapes the very nature of the fitness landscape within which species evolve in response to elevated CO2. PMID:27510545
The Politics of Diversity: Integration in an Era of Political and Legal Uncertainty
ERIC Educational Resources Information Center
Diem, Sarah; Frankenberg, Erica
2013-01-01
Background: The demographic landscape in the United States has shifted dramatically since "Brown v. Board of Education," leading to more complex diversity in many school districts than the diversity contemplated nearly 60 years ago. Desegregation research has shown that countywide districts are better able to maintain diverse schools,…
USDA-ARS?s Scientific Manuscript database
Beneficial arthropods which provide important ecosystems services have come under threat as a result of intensive agricultural practices and landscape simplification. Engineering diverse heterogeneous agricultural landscapes to provide optimal resources for beneficial arthropods may recover and enha...
Sunny, Armando; Monroy-Vilchis, Octavio; Zarco-González, Martha M; Mendoza-Martínez, Germán David; Martínez-Gómez, Daniel
2015-12-01
It is necessary to determine genetic diversity of fragmented populations in highly modified landscapes to understand how populations respond to land-use change. This information will help guide future conservation and management strategies. We conducted a population genetic study on an endemic Mexican Dusky Rattlesnake (Crotalus triseriatus) in a highly modified landscape near the Toluca metropolitan area, in order to provide crucial information for the conservation of this species. There was medium levels of genetic diversity, with a few alleles and genotypes. We identified three genetically differentiated clusters, likely as a result of different habitat cover type. We also found evidence of an ancestral genetic bottleneck and medium values of effective population size. Inbreeding coefficients were low and there was a moderate gene flow. Our results can be used as a basis for future research and C. triseriatus conservation efforts, particularly considering that the Trans-Mexican Volcanic Belt is heavily impacted by destructive land-use practices.
Carter, Sarah K.; Carr, Natasha B.; Miller, Kevin H.; Wood, David J.A.
2017-01-19
The Bureau of Land Management (BLM) is implementing a landscape approach to resource management (hereafter, landscape approach) to more effectively work with partners and understand the effects of management decisions. A landscape approach is a set of concepts and principles used to guide resource management when multiple stakeholders are involved and goals include diverse and sustainable social, environmental, and economic outcomes. Core principles of a landscape approach include seeking meaningful participation of diverse stakeholders, considering diverse resource values in multifunctional landscapes, acknowledging the tradeoffs needed to meet diverse objectives in the context of sustainable resource management, and addressing the complexity of social and ecological processes by embracing interdisciplinarity and considering multiple and broad spatial and temporal perspectives.In chapter 1, we outline the overall goal of this report: to provide a conceptual foundation and framework for implementing a landscape approach to resource management in the BLM, focusing on the role of multiscale natural resource monitoring and assessment information. In chapter 2, we describe a landscape approach to resource management. BLM actions taken to implement a landscape approach include a major effort to compile broad-scale data on natural resource status and condition across much of the west. These broadscale data now provide a regional context for interpreting monitoring data collected at individual sites and informing decisions made for local projects. We also illustrate the utility of using multiscale data to understand potential effects of different resource management decisions, define relevant terms in landscape ecology, and identify spatial scales at which planning and management decisions may be evaluated.In chapter 3, we describe how the BLM Rapid Ecoregional Assessment program and Assessment, Inventory and Monitoring program may be integrated to provide the multiscale monitoring data needed to inform a landscape approach. We propose six core, broad-scale indicators of natural resource status and condition: the amount, spatial distribution, patch size and connectivity of ecosystems and wildlife habitats, and the pattern of existing development across the landscape. Additional supplemental broad-scale indicators may include fire return intervals, distributions of invasive species, and vulnerability of ecosystems to a changing climate. Landscape intactness is an additional derived indicator that is calculated from one or more of the core and supplemental broad-scale indicators. We then outline a process for assessing broad-scale indicators that is consistent with the overall BLM Assessment, Inventory, and Monitoring process, facilitating development of a multiscale natural resource monitoring program. Finally, we describe how broad-scale indicators of natural resource status and condition may guide field monitoring implemented through the BLM Assessment, Inventory and Monitoring program and help address complex management questions.In chapter 4, we consider the specific question of assessing the ecological integrity of rangelands across the western United States. We first define ecological integrity and its relation to land health. We then suggest that a combination of six local-scale indicators collected through field sampling at individual sites and five complementary broad-scale indicators together provide information on the composition, structure, and function of rangelands. The terrestrial monitoring indicators collected at the level of individual field sites are the amount of bare ground, vegetation composition (including invasive plants and plants of management concern), vegetation height, and the proportion of the soil surface in large intercanopy gaps. The broad-scale indicators are vegetation amount, distribution, patch size, connectivity, and productivity, along with the pattern of terrestrial development. Our suggested approach to quantifying ecological integrity focuses specifically on informing management of public lands for multiple resource uses, and illustrates how existing data collected through BLM monitoring and assessment programs may be used together to provide multiscale information on land condition across broad extents.In chapter 5, we develop a method for quantifying landscape intactness and apply this method to the western United States. Our multiscale index of landscape intactness is designed to be defensible, decomposable, and easy to understand. The foundation of the multiscale index of landscape intactness is the surface disturbance footprint of anthropogenic development, including energy and urban development, roads and railroads, cultivated croplands, surface mines and quarries, and energy transmission lines and pipelines. The index represents a gradient of anthropogenic influence as represented by development summarized at two spatial scales of analysis: 2.5 and 20 kilometers. We provide several example applications of the index, illustrating how these data may inform natural resource decisions at the spatial extent of BLM field and district offices, states, ecoregions, and the western United States. We find that 19.2 percent of lands managed by the BLM across the 17 western states of the conterminous United States had the highest landscape intactness. The largest intact areas occur on public lands at high elevations or in the Great Basin.We believe the frameworks, processes, and analyses provided in this report will improve the ability of the BLM to identify and evaluate potential direct and indirect effects of management actions (such as habitat restoration and renewable energy development), and assist the BLM in further implementing a landscape approach to resource management.
Contrasting effects of landscape composition on crop yield mediated by specialist herbivores.
Perez-Alvarez, Ricardo; Nault, Brian A; Poveda, Katja
2018-04-01
Landscape composition not only affects a variety of arthropod-mediated ecosystem services, but also disservices, such as herbivory by insect pests that may have negative effects on crop yield. Yet, little is known about how different habitats influence the dynamics of multiple herbivore species, and ultimately their collective impact on crop production. Using cabbage as a model system, we examined how landscape composition influenced the incidence of three specialist cruciferous pests (aphids, flea beetles, and leaf-feeding Lepidoptera), lepidopteran parasitoids, and crop yield across a gradient of landscape composition in New York, USA. We expected that landscapes with a higher proportion of cropland and lower habitat diversity would lead to an increase in pest pressure of the specialist herbivores and a reduction in crop yield. However, results indicated that neither greater cropland area nor lower landscape diversity influenced pest pressure or yield. Rather, pest pressure and yield were best explained by the presence of non-crop habitats (i.e., meadows) in the landscape. Specifically, cabbage was infested with fewer Lepidoptera in landscapes with a higher proportion of meadows likely resulting from increased parasitism. Conversely, cabbage was infested with more flea beetles and aphids as the proportion of meadows in the landscape increased, suggesting that these pests benefit from non-crop habitats. Furthermore, path analysis confirmed that these landscape-mediated effects on pest populations can have either positive or negative cascading effects on crop yield. Our findings illustrate how different pest species within the same cropping system show contrasting responses to landscape composition with respect to both the direction and spatial scale of the relationship. Such tradeoffs resulting from the complex interaction between multiple-pests, natural enemies, and landscape composition must be considered, if we are to manage landscapes for pest suppression benefits. © 2018 by the Ecological Society of America.
Diversity of fruit-feeding butterflies in a mountaintop archipelago of rainforest.
Pereira, Geanne Carla Novais; Coelho, Marcel Serra; Beirão, Marina do Vale; Braga, Rodrigo Fagundes; Fernandes, Geraldo Wilson
2017-01-01
We provide the first description of the effects of local vegetation and landscape structure on the fruit-feeding butterfly community of a natural archipelago of montane rainforest islands in the Serra do Espinhaço, southeastern Brazil. Butterflies were collected with bait traps in eleven forest islands through both dry and rainy seasons for two consecutive years. The influence of local and landscape parameters and seasonality on butterfly species richness, abundance and composition were analyzed. We also examined the partitioning and decomposition of temporal and spatial beta diversity. Five hundred and twelve fruit-feeding butterflies belonging to thirty-four species were recorded. Butterfly species richness and abundance were higher on islands with greater canopy openness in the dry season. On the other hand, islands with greater understory coverage hosted higher species richness in the rainy season. Instead, the butterfly species richness was higher with lower understory coverage in the dry season. Butterfly abundance was not influenced by understory cover. The landscape metrics of area and isolation had no effect on species richness and abundance. The composition of butterfly communities in the forest islands was not randomly structured. The butterfly communities were dependent on local and landscape effects, and the mechanism of turnover was the main source of variation in β diversity. The preservation of this mountain rainforest island complex is vital for the maintenance of fruit-feeding butterfly community; one island does not reflect the diversity found in the whole archipelago.
Diversity of fruit-feeding butterflies in a mountaintop archipelago of rainforest
Pereira, Geanne Carla Novais; Beirão, Marina do Vale; Braga, Rodrigo Fagundes; Fernandes, Geraldo Wilson
2017-01-01
We provide the first description of the effects of local vegetation and landscape structure on the fruit-feeding butterfly community of a natural archipelago of montane rainforest islands in the Serra do Espinhaço, southeastern Brazil. Butterflies were collected with bait traps in eleven forest islands through both dry and rainy seasons for two consecutive years. The influence of local and landscape parameters and seasonality on butterfly species richness, abundance and composition were analyzed. We also examined the partitioning and decomposition of temporal and spatial beta diversity. Five hundred and twelve fruit-feeding butterflies belonging to thirty-four species were recorded. Butterfly species richness and abundance were higher on islands with greater canopy openness in the dry season. On the other hand, islands with greater understory coverage hosted higher species richness in the rainy season. Instead, the butterfly species richness was higher with lower understory coverage in the dry season. Butterfly abundance was not influenced by understory cover. The landscape metrics of area and isolation had no effect on species richness and abundance. The composition of butterfly communities in the forest islands was not randomly structured. The butterfly communities were dependent on local and landscape effects, and the mechanism of turnover was the main source of variation in β diversity. The preservation of this mountain rainforest island complex is vital for the maintenance of fruit-feeding butterfly community; one island does not reflect the diversity found in the whole archipelago. PMID:28666003
Bowker, M.A.; Miller, M.E.; Belnap, J.; Sisk, T.D.; Johnson, N.C.
2008-01-01
Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000-ha Grand Staircase-Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function- and diversity-based conservation-value layers on the potential degradation layer. Different methods for ascribing conservation-value and conservation-priority layers all yielded strikingly similar results (r = 0.89-0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant-community properties) and that such information can be used to prioritize conservation effort in drylands. ?? 2008 Society for Conservation Biology.
Pillsbury, Finn C; Miller, James R
2008-07-01
Urbanization has been cited as an important factor in worldwide amphibian declines, and although recent work has illustrated the important influence of broad-scale ecological patterns and processes on amphibian populations, little is known about the factors structuring amphibian communities in urban landscapes. We therefore examined amphibian community responses to wetland habitat availability and landscape characteristics along an urban-rural gradient in central Iowa, USA, a region experiencing rapid suburban growth. We conducted call surveys at 61 wetlands to estimate anuran calling activity, and quantified wetland habitat structure and landscape context. We used canonical correspondence analysis (CCA) to examine patterns in anuran community structure and identify the most important variables associated with those patterns. Urban density at the landscape scale had a significant negative influence on overall anuran abundance and diversity. While every species exhibited a decrease in abundance with increasing urban density, this pattern was especially pronounced for species requiring post-breeding upland habitats. Anurans most affected by urbanization were those associated with short hydroperiods, early breeding activity, and substantial upland habitat use. We suggest that broad-scale landscape fragmentation is an important factor underlying anuran community structure in this region, possibly due to limitations on the accessibility of otherwise suitable habitat in fragmented urban landscapes. This study underscores the importance of a regional approach to amphibian conservation in urban and urbanizing areas; in fragmented landscapes, a network of interconnected wetland and upland habitats may be more likely to support a successful, diverse anuran community than will isolated sites.
Landscape structure and climate influences on hydrologic response
NASA Astrophysics Data System (ADS)
Nippgen, Fabian; McGlynn, Brian L.; Marshall, Lucy A.; Emanuel, Ryan E.
2011-12-01
Climate variability and catchment structure (topography, geology, vegetation) have a significant influence on the timing and quantity of water discharged from mountainous catchments. How these factors combine to influence runoff dynamics is poorly understood. In this study we linked differences in hydrologic response across catchments and across years to metrics of landscape structure and climate using a simple transfer function rainfall-runoff modeling approach. A transfer function represents the internal catchment properties that convert a measured input (rainfall/snowmelt) into an output (streamflow). We examined modeled mean response time, defined as the average time that it takes for a water input to leave the catchment outlet from the moment it reaches the ground surface. We combined 12 years of precipitation and streamflow data from seven catchments in the Tenderfoot Creek Experimental Forest (Little Belt Mountains, southwestern Montana) with landscape analyses to quantify the first-order controls on mean response times. Differences between responses across the seven catchments were related to the spatial variability in catchment structure (e.g., slope, flowpath lengths, tree height). Annual variability was largely a function of maximum snow water equivalent. Catchment averaged runoff ratios exhibited strong correlations with mean response time while annually averaged runoff ratios were not related to climatic metrics. These results suggest that runoff ratios in snowmelt dominated systems are mainly controlled by topography and not by climatic variability. This approach provides a simple tool for assessing differences in hydrologic response across diverse watersheds and climate conditions.
NASA Astrophysics Data System (ADS)
Tóthmérész, Béla; Mitchley, Jonathan; Jongepierová, Ivana; Baasch, Annett; Fajmon, Karel; Kirmer, Anita; Prach, Karel; Řehounková, Klára; Tischew, Sabine; Twiston-Davies, Grace; Dutoit, Thierry; Buisson, Elise; Jeunatre, Renaud; Valkó, Orsolya; Deák, Balázs; Török, Péter
2017-04-01
Sustaining the human well-being and the quality of life, it is essential to develop and support green infrastructure (strategically planned network of natural and semi-natural areas with other environmental features designed and managed to deliver a wide range of ecosystem services). For developing and sustaining green infrastructure the conservation and restoration of biodiversity in natural and traditionally managed habitats is essential. Species-rich landscapes in Europe have been maintained over centuries by various kinds of low-intensity use. Recently, they suffered by losses in extent and diversity due to land degradation by intensification or abandonment. Conservation of landscape-scale biodiversity requires the maintenance of species-rich habitats and the restoration of lost grasslands. We are focusing on landscape-level restoration studies including multiple sites in wide geographical scale (including Czech Republic, France, Germany, Hungary, and UK). In a European-wide perspective we aimed at to address four specific questions: (i) What were the aims and objectives of landscape-scale restoration? (ii) What results have been achieved? (iii) What are the costs of large-scale restoration? (iv) What policy tools are available for the restoration of landscape-scale biodiversity? We conclude that landscape-level restoration offers exciting new opportunities to reconnect long-disrupted ecological processes and to restore landscape connectivity. Generally, these measures enable to enhance the biodiversity at the landscape scale. The development of policy tools to achieve restoration at the landscape scale are essential for the achievement of the ambitious targets of the Convention on Biological Diversity and the European Biodiversity Strategy for ecosystem restoration.
NASA Astrophysics Data System (ADS)
Xie, Shilin; Lu, Fei; Cao, Lei; Zhou, Weiqi; Ouyang, Zhiyun
2016-07-01
Understanding the factors that influence the characteristics of avian communities using urban parks at both the patch and landscape level is important to focus management effort towards enhancing bird diversity. Here, we investigated this issue during the breeding season across urban parks in Beijing, China, using high-resolution satellite imagery. Fifty-two bird species were recorded across 29 parks. Analysis of residence type of birds showed that passengers were the most prevalent (37%), indicating that Beijing is a major node in the East Asian-Australasian Flyway. Park size was crucial for total species abundance, but foliage height diversity was the most important factor influencing avian species diversity. Thus, optimizing the configuration of vertical vegetation structure in certain park areas is critical for supporting avian communities in urban parks. Human visitation also showed negative impact on species diversity. At the landscape level, the percentage of artificial surface and largest patch index of woodland in the buffer region significantly affected total species richness, with insectivores and granivores being more sensitive to the landscape pattern of the buffer region. In conclusion, urban birds in Beijing are influenced by various multi-scale factors; however, these effects vary with different feeding types.
Xie, Shilin; Lu, Fei; Cao, Lei; Zhou, Weiqi; Ouyang, Zhiyun
2016-07-11
Understanding the factors that influence the characteristics of avian communities using urban parks at both the patch and landscape level is important to focus management effort towards enhancing bird diversity. Here, we investigated this issue during the breeding season across urban parks in Beijing, China, using high-resolution satellite imagery. Fifty-two bird species were recorded across 29 parks. Analysis of residence type of birds showed that passengers were the most prevalent (37%), indicating that Beijing is a major node in the East Asian-Australasian Flyway. Park size was crucial for total species abundance, but foliage height diversity was the most important factor influencing avian species diversity. Thus, optimizing the configuration of vertical vegetation structure in certain park areas is critical for supporting avian communities in urban parks. Human visitation also showed negative impact on species diversity. At the landscape level, the percentage of artificial surface and largest patch index of woodland in the buffer region significantly affected total species richness, with insectivores and granivores being more sensitive to the landscape pattern of the buffer region. In conclusion, urban birds in Beijing are influenced by various multi-scale factors; however, these effects vary with different feeding types.
Soares, Luis Eduardo; Goetze, Márcia; Zanella, Camila M.; Bered, Fernanda
2018-01-01
Abstract The Southern Brazilian Highlands are composed by a mosaic of Mixed Ombrophilous Forest (MOF) and grassland formations, an interesting landscape for the study of population structure. We analyzed the genetic diversity within and among populations of the MOF-endemic bromeliad Vriesea reitzii by genotyping seven nuclear microsatellite loci in 187 individuals from six populations. We characterized levels of genetic diversity and assessed the genetic structure among populations. Vriesea reitzii populations showed high levels of genetic variation (number of alleles 28 - 43, allelic richness 3.589 - 5.531) and moderate levels of genetic differentiation (F ST = 0.123, R ST = 0.096). The high levels of genetic diversity may be explained by species life-history traits, such as habit and mating system. The moderate structure may be a product of the combination of ancient and contemporary gene flow, resulting from the expansion of the forest in the Holocene, and/or due to facilitated dispersal mediated by the MOF’s mosaic landscape. The genetic results indicated no imminent threat to this bromeliad. However, the species is highly associated with the MOF, putting landscape conservation at the center of conservation efforts for the species’ maintenance. PMID:29583153
Sambhu, Hemchandranauth; Northfield, Tobin; Nankishore, Alliea; Ansari, Abdullah; Turton, Stephen
2017-12-08
Tropical forests account for at least 50% of documented diversity, but anthropogenic activities are converting forests to agriculture and urban areas at an alarming rate, with potentially strong effects on insect abundance and diversity. However, the questions remain whether insect populations are uniformly affected by land conversion and if insect conservation can occur in agricultural margins and urban gardens. We compare butterfly populations in tropical secondary forests to those found in sugarcane and urban areas in coastal Guyana and evaluate the potential for particular butterfly communities to inhabit human-modified landscapes. Butterflies were sampled for 1 yr using fruit-baited traps in three separated geographical locations on the coast. We used nonmetric multidimensional scaling to assess differences in species assemblages and a generalized linear mixed model to evaluate abundance, species richness, evenness, and diversity. The secondary forests in all three locations supported higher butterfly abundance and diversity than other human-modified areas, although the magnitude of this effect varied by season and location. However, each land use supported its own type of butterfly community, as species composition was different across the three land uses. Sugarcane field margins and urban gardens supported populations of butterflies rarely found in our tropical secondary forest sites. Land management practices that encourage forest conservation along with butterfly-friendly activities in human settlements and agricultural areas could improve butterfly conservation. To this end, butterfly conservation in Guyana and other tropical landscapes would benefit from a shift from inadvertently to actively making the landscape attractive for butterflies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fenderson, Lindsey E; Kovach, Adrienne I; Litvaitis, John A; O'Brien, Kathleen M; Boland, Kelly M; Jakubas, Walter J
2014-01-01
Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2–36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape. PMID:24963381
Fenderson, Lindsey E; Kovach, Adrienne I; Litvaitis, John A; O'Brien, Kathleen M; Boland, Kelly M; Jakubas, Walter J
2014-05-01
Landscape features of anthropogenic or natural origin can influence organisms' dispersal patterns and the connectivity of populations. Understanding these relationships is of broad interest in ecology and evolutionary biology and provides key insights for habitat conservation planning at the landscape scale. This knowledge is germane to restoration efforts for the New England cottontail (Sylvilagus transitionalis), an early successional habitat specialist of conservation concern. We evaluated local population structure and measures of genetic diversity of a geographically isolated population of cottontails in the northeastern United States. We also conducted a multiscale landscape genetic analysis, in which we assessed genetic discontinuities relative to the landscape and developed several resistance models to test hypotheses about landscape features that promote or inhibit cottontail dispersal within and across the local populations. Bayesian clustering identified four genetically distinct populations, with very little migration among them, and additional substructure within one of those populations. These populations had private alleles, low genetic diversity, critically low effective population sizes (3.2-36.7), and evidence of recent genetic bottlenecks. Major highways and a river were found to limit cottontail dispersal and to separate populations. The habitat along roadsides, railroad beds, and utility corridors, on the other hand, was found to facilitate cottontail movement among patches. The relative importance of dispersal barriers and facilitators on gene flow varied among populations in relation to landscape composition, demonstrating the complexity and context dependency of factors influencing gene flow and highlighting the importance of replication and scale in landscape genetic studies. Our findings provide information for the design of restoration landscapes for the New England cottontail and also highlight the dual influence of roads, as both barriers and facilitators of dispersal for an early successional habitat specialist in a fragmented landscape.
González-Valdivia, Noel; Ochoa-Gaona, Susana; Pozo, Carmen; Ferguson, Bruce Gordon; Rangel-Ruiz, Luis José; Arriaga-Weiss, Stefan Louis; Ponce-Mendoza, Alejandro; Kampichler, Christian
2011-09-01
Ecological indicators of habitat and biodiversity in a Neotropical landscape: multitaxonomic perspective. The use of indicator species to characterize specific ecological areas is of high importance in conservation/restoration biology. The objective of this study was to identify indicator species of diverse taxa that characterize different landscape units, and to better understand how management alters species composition. We identified two ecomosaics, tropical rain forest and the agricultural matrix, each one comprised of four landscape units. The taxonomic groups studied included birds (highly mobile), butterflies (moderately mobile), terrestrial gastropods (less mobile) and trees (sessile). Sampling efficiency for both ecomosaics was > or = 86%. We found 50 mollusks, 74 butterflies, 218 birds and 172 tree species, for a total of 514 species. Using ordination and cluster analysis, we distinguished three habitat types in the landscape: tropical rainforest, secondary vegetation and pastures with scattered trees and live fences. The InVal (> or = 50%) method identified 107 indicator species, including 45 tree species, 38 birds, 14 butterflies and 10 gastropods. Of these, 35 trees, 10 birds, four butterflies and eight gastropods were forest indicators. Additionally, 10, 28, 10 and two species, respectively per group, were characteristic of the agricultural matrix. Our results revealed a pattern of diversity decrease of indicator species along the rainforest-secondary forest-pasture gradient. In the forest, the gastropods Carychium exiguum, Coelocentrum turris, Glyphyalinia aff. indentata y Helicina oweniana were significantly correlated (p < 0.05) with 90% of the other groups of flora and fauna indicator species. These findings suggest that gastropods may be good indicators of forest habitat quality and biodiversity. The secondary vegetation is an intermediate disturbance phase that fosters high diversity in the agricultural matrix. We exemplify a multitaxa approach, including mesofauna, for ecological monitoring of agricultural landscapes.
Umaña, María Natalia; Norden, Natalia; Cano, Angela; Stevenson, Pablo R
2012-01-01
The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.
Umaña, María Natalia; Norden, Natalia; Cano, Ángela; Stevenson, Pablo R.
2012-01-01
The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties. PMID:23028844
Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics
Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Dormontt, E E; Lowe, A J
2015-01-01
Most woody plants are animal-pollinated, but the global problem of habitat fragmentation is changing the pollination dynamics. Consequently, the genetic diversity and fitness of the progeny of animal-pollinated woody plants sired in fragmented landscapes tend to decline due to shifts in plant-mating patterns (for example, reduced outcrossing rate, pollen diversity). However, the magnitude of this mating-pattern shift should theoretically be a function of pollinator mobility. We first test this hypothesis by exploring the mating patterns of three ecologically divergent eucalypts sampled across a habitat fragmentation gradient in southern Australia. We demonstrate increased selfing and decreased pollen diversity with increased fragmentation for two small-insect-pollinated eucalypts, but no such relationship for the mobile-bird-pollinated eucalypt. In a meta-analysis, we then show that fragmentation generally does increase selfing rates and decrease pollen diversity, and that more mobile pollinators tended to dampen these mating-pattern shifts. Together, our findings support the premise that variation in pollinator form contributes to the diversity of mating-pattern responses to habitat fragmentation. PMID:24002239
Pearse, Aaron T.; Kaminski, Richard M.; Reinecke, Kenneth J.; Dinsmore, Stephen J.
2012-01-01
Landscape features influence distribution of waterbirds throughout their annual cycle. A conceptual model, the wetland habitat complex, may be useful in conservation of wetland habitats for dabbling ducks (Anatini). The foundation of this conceptual model is that ducks seek complexes of wetlands containing diverse resources to meet dynamic physiological needs. We included flooded croplands, wetlands and ponds, public-land waterfowl sanctuary, and diversity of habitats as key components of wetland habitat complexes and compared their relative influence at two spatial scales (i.e., local, 0.25-km radius; landscape, 4-km) on dabbling ducks wintering in western Mississippi, USA during winters 2002–2004. Distribution of mallard (Anas platyrhynchos) groups was positively associated with flooded cropland at local and landscape scales. Models representing flooded croplands at the landscape scale best explained occurrence of other dabbling ducks. Habitat complexity measured at both scales best explained group size of other dabbling ducks. Flooded croplands likely provided food that had decreased in availability due to conversion of wetlands to agriculture. Wetland complexes at landscape scales were more attractive to wintering ducks than single or structurally simple wetlands. Conservation of wetland complexes at large spatial scales (≥5,000 ha) on public and private lands will require coordination among multiple stakeholders.
Crossman, Neville D.; MacEwan, Richard J.; Wallace, D. Dugal; Bennett, Lauren T.
2014-01-01
Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km2 in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes. PMID:24616632
Forouzangohar, Mohsen; Crossman, Neville D; MacEwan, Richard J; Wallace, D Dugal; Bennett, Lauren T
2014-01-01
Soil degradation has been associated with a lack of adequate consideration of soil ecosystem services. We demonstrate a broadly applicable method for mapping changes in the supply of two priority soil ecosystem services to support decisions about sustainable land-use configurations. We used a landscape-scale study area of 302 km(2) in northern Victoria, south-eastern Australia, which has been cleared for intensive agriculture. Indicators representing priority soil services (soil carbon sequestration and soil water storage) were quantified and mapped under both a current and a future 25-year land-use scenario (the latter including a greater diversity of land uses and increased perennial crops and irrigation). We combined diverse methods, including soil analysis using mid-infrared spectroscopy, soil biophysical modelling, and geostatistical interpolation. Our analysis suggests that the future land-use scenario would increase the landscape-level supply of both services over 25 years. Soil organic carbon content and water storage to 30 cm depth were predicted to increase by about 11% and 22%, respectively. Our service maps revealed the locations of hotspots, as well as potential trade-offs in service supply under new land-use configurations. The study highlights the need to consider diverse land uses in sustainable management of soil services in changing agricultural landscapes.
Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso
2012-01-01
Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments. PMID:22529994
Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso
2012-01-01
Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments.
Araújo, Kássio C.; Guzzi, Anderson; Ávila, Robson W.
2018-01-01
Abstract Anurans have close associations with environmental conditions and therefore represent an interesting vertebrate group for examining how resource availability and environmental variables influence species diversity. Associations between habitat heterogeneity and anuran species diversity were tested in the Restinga landscapes of the Parnaíba River delta in northeastern Brazil. Twenty-one anuran species were sampled in the rainy season during monthly excursions (December 2015 to June 2016) into areas of Restinga on two islands in the Parnaíba River delta. The fourth highest anuran diversity was found in this type of environment in Brazil and is the third in northeastern Brazil. Microenvironments, characterized by a combination of vernal pools with different vegetational and physical structures, better explained anuran species composition in the Parnaíba River delta. PMID:29780267
Araújo, Kássio C; Guzzi, Anderson; Ávila, Robson W
2018-01-01
Anurans have close associations with environmental conditions and therefore represent an interesting vertebrate group for examining how resource availability and environmental variables influence species diversity. Associations between habitat heterogeneity and anuran species diversity were tested in the Restinga landscapes of the Parnaíba River delta in northeastern Brazil. Twenty-one anuran species were sampled in the rainy season during monthly excursions (December 2015 to June 2016) into areas of Restinga on two islands in the Parnaíba River delta. The fourth highest anuran diversity was found in this type of environment in Brazil and is the third in northeastern Brazil. Microenvironments, characterized by a combination of vernal pools with different vegetational and physical structures, better explained anuran species composition in the Parnaíba River delta.
Bliege Bird, R.; Bird, D. W.; Codding, B. F.; Parker, C. H.; Jones, J. H.
2008-01-01
Aboriginal burning in Australia has long been assumed to be a “resource management” strategy, but no quantitative tests of this hypothesis have ever been conducted. We combine ethnographic observations of contemporary Aboriginal hunting and burning with satellite image analysis of anthropogenic and natural landscape structure to demonstrate the processes through which Aboriginal burning shapes arid-zone vegetational diversity. Anthropogenic landscapes contain a greater diversity of successional stages than landscapes under a lightning fire regime, and differences are of scale, not of kind. Landscape scale is directly linked to foraging for small, burrowed prey (monitor lizards), which is a specialty of Aboriginal women. The maintenance of small-scale habitat mosaics increases small-animal hunting productivity. These results have implications for understanding the unique biodiversity of the Australian continent, through time and space. In particular, anthropogenic influences on the habitat structure of paleolandscapes are likely to be spatially localized and linked to less mobile, “broad-spectrum” foraging economies. PMID:18809925
Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel
Sinare, Hanna; Enfors Kautsky, Elin; Ouedraogo, Issa; Gordon, Line J.
2018-01-01
Most current approaches to landscape scale ecosystem service assessments rely on detailed secondary data. This type of data is seldom available in regions with high levels of poverty and strong local dependence on provisioning ecosystem services for livelihoods. We develop a method to extrapolate results from a previously published village scale ecosystem services assessment to a higher administrative level, relevant for land use decision making. The method combines remote sensing (using a hybrid classification method) and interviews with community members. The resulting landscape scale maps show the spatial distribution of five different livelihood benefits (nutritional diversity, income, insurance/saving, material assets and energy, and crops for consumption) that illustrate the strong multifunctionality of the Sahelian landscapes. The maps highlight the importance of a diverse set of sub-units of the landscape in supporting Sahelian livelihoods. We see a large potential in using the resulting type of livelihood benefit maps for guiding future land use decisions in the Sahel. PMID:29389965
Mapping regional livelihood benefits from local ecosystem services assessments in rural Sahel.
Malmborg, Katja; Sinare, Hanna; Enfors Kautsky, Elin; Ouedraogo, Issa; Gordon, Line J
2018-01-01
Most current approaches to landscape scale ecosystem service assessments rely on detailed secondary data. This type of data is seldom available in regions with high levels of poverty and strong local dependence on provisioning ecosystem services for livelihoods. We develop a method to extrapolate results from a previously published village scale ecosystem services assessment to a higher administrative level, relevant for land use decision making. The method combines remote sensing (using a hybrid classification method) and interviews with community members. The resulting landscape scale maps show the spatial distribution of five different livelihood benefits (nutritional diversity, income, insurance/saving, material assets and energy, and crops for consumption) that illustrate the strong multifunctionality of the Sahelian landscapes. The maps highlight the importance of a diverse set of sub-units of the landscape in supporting Sahelian livelihoods. We see a large potential in using the resulting type of livelihood benefit maps for guiding future land use decisions in the Sahel.
Massad, Tara Joy; Balch, Jennifer K; Mews, Cândida Lahís; Porto, Pábio; Marimon Junior, Ben Hur; Quintino, Raimundo Mota; Brando, P M; Vieira, Simone A; Trumbore, Susan E
2015-07-01
Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.
Forest species diversity reduces disease risk in a generalist plant pathogen invasion
Sarah E. Haas; Mevin B. Hooten; David M. Rizzo; Ross K. Meentemeyer
2011-01-01
Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the diversity-disease hypothesis for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum...
Environmental factors affecting understory diversity in second-growth deciduous forests
Cynthia D. Huebner; J.C. Randolph; G.R. Parker
1995-01-01
The purpose of this study was to determine the most important nonanthropogenic factors affecting understory (herbs, shrubs and low-growing vines) diversity in forested landscapes of southern Indiana. Fourteen environmental variables were measured for 46 sites. Multiple regression analysis showed significant positive correlation between understory diversity and tree...
Amy C. Ganguli; Johathan B. Haufler; Carolyn A. Mehl; Jimmie D. Chew
2011-01-01
Understanding historical ecosystem diversity and wildlife habitat quality can provide a useful reference for managing and restoring rangeland ecosystems. We characterized historical ecosystem diversity using available empirical data, expert opinion, and the spatially explicit vegetation dynamics model SIMPPLLE (SIMulating Vegetative Patterns and Processes at Landscape...
Does prescribed burning result in biotic homogenization of coastal heathlands?
Velle, Liv Guri; Nilsen, Liv Sigrid; Norderhaug, Ann; Vandvik, Vigdis
2014-05-01
Biotic homogenization due to replacement of native biodiversity by widespread generalist species has been demonstrated in a number of ecosystems and taxonomic groups worldwide, causing growing conservation concern. Human disturbance is a key driver of biotic homogenization, suggesting potential conservation challenges in seminatural ecosystems, where anthropogenic disturbances such as grazing and burning are necessary for maintaining ecological dynamics and functioning. We test whether prescribed burning results in biotic homogenization in the coastal heathlands of north-western Europe, a seminatural landscape where extensive grazing and burning has constituted the traditional land-use practice over the past 6000 years. We compare the beta-diversity before and after fire at three ecological scales: within local vegetation patches, between wet and dry heathland patches within landscapes, and along a 470 km bioclimatic gradient. Within local patches, we found no evidence of homogenization after fire; species richness increased, and the species that entered the burnt Calluna stands were not widespread specialists but native grasses and herbs characteristic of the heathland system. At the landscapes scale, we saw a weak homogenization as wet and dry heathland patches become more compositionally similar after fire. This was because of a decrease in habitat-specific species unique to either wet or dry habitats and postfire colonization by a set of heathland specialists that established in both habitat types. Along the bioclimatic gradient, species that increased after fire generally had more specific environmental requirements and narrower geographical distributions than the prefire flora, resulting in a biotic 'heterogenisation' after fire. Our study demonstrates that human disturbance does not necessarily cause biotic homogenization, but that continuation of traditional land-use practices can instead be crucial for the maintenance of the diversity and ecological function of a seminatural ecosystem. The species that established after prescribed burning were heathland specialists with relatively narrow geographical ranges. © 2013 John Wiley & Sons Ltd.
Wildlife tradeoffs based on landscape models of habitat
Loehle, C.; Mitchell, M.S.
2000-01-01
It is becoming increasingly clear that the spatial structure of landscapes affects the habitat choices and abundance of wildlife. In contrast to wildlife management based on preservation of critical habitat features such as nest sites on a beach or mast trees, it has not been obvious how to incorporate spatial structure into management plans. We present techniques to accomplish this goal. We used multiscale logistic regression models developed previously for neotropical migrant bird species habitat use in South Carolina (USA) as a basis for these techniques. Based on these models we used a spatial optimization technique to generate optimal maps (probability of occurrence, P = 1.0) for each of seven species. To emulate management of a forest for maximum species diversity, we defined the objective function of the algorithm as the sum of probabilities over the seven species, resulting in a complex map that allowed all seven species to coexist. The map that allowed for coexistence is not obvious, must be computed algorithmically, and would be difficult to realize using rules of thumb for habitat management. To assess how management of a forest for a single species of interest might affect other species, we analyzed tradeoffs by gradually increasing the weighting on a single species in the objective function over a series of simulations. We found that as habitat was increasingly modified to favor that species, the probability of presence for two of the other species was driven to zero. This shows that whereas it is not possible to simultaneously maximize the likelihood of presence for multiple species with divergent habitat preferences, compromise solutions are possible at less than maximal likelihood in many cases. Our approach suggests that efficiency of habitat management for species diversity can by maximized for even small landscapes by incorporating spatial context. The methods we present are suitable for wildlife management, endangered species conservation, and nature reserve design.
Complexity and valued landscapes
Michael M. McCarthy
1979-01-01
The variable "complexity," or "diversity," has received a great deal of attention in recent research efforts concerned with visual resource management, including the identification of complexity as one of the primary evaluation measures. This paper describes research efforts that support the hypothesis that the landscapes we value are those with...
[Landscape classification: research progress and development trend].
Liang, Fa-Chao; Liu, Li-Ming
2011-06-01
Landscape classification is the basis of the researches on landscape structure, process, and function, and also, the prerequisite for landscape evaluation, planning, protection, and management, directly affecting the precision and practicability of landscape research. This paper reviewed the research progress on the landscape classification system, theory, and methodology, and summarized the key problems and deficiencies of current researches. Some major landscape classification systems, e. g. , LANMAP and MUFIC, were introduced and discussed. It was suggested that a qualitative and quantitative comprehensive classification based on the ideology of functional structure shape and on the integral consideration of landscape classification utility, landscape function, landscape structure, physiogeographical factors, and human disturbance intensity should be the major research directions in the future. The integration of mapping, 3S technology, quantitative mathematics modeling, computer artificial intelligence, and professional knowledge to enhance the precision of landscape classification would be the key issues and the development trend in the researches of landscape classification.
River networks as ecological corridors: A coherent ecohydrological perspective
NASA Astrophysics Data System (ADS)
Rinaldo, Andrea; Gatto, Marino; Rodriguez-Iturbe, Ignacio
2018-02-01
This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. laboratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially to our understanding of the function of river networks as ecological corridors. Such function proves relevant to: the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease. As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi-Missouri basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species' richness, the zebra mussel invasion of the same Mississippi-Missouri river system, and the spread of proliferative kidney disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape, constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions, i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the authors' view, to future developments in ecohydrologic research.
Gut microbiomes of mobile predators vary with landscape context and species identity.
Tiede, Julia; Scherber, Christoph; Mutschler, James; McMahon, Katherine D; Gratton, Claudio
2017-10-01
Landscape context affects predator-prey interactions and predator diet composition, yet little is known about landscape effects on insect gut microbiomes, a determinant of physiology and condition. Here, we combine laboratory and field experiments to examine the effects of landscape context on the gut bacterial community and body condition of predatory insects. Under laboratory conditions, we found that prey diversity increased bacterial richness in insect guts. In the field, we studied the performance and gut microbiota of six predatory insect species along a landscape complexity gradient in two local habitat types (soybean fields vs. prairie). Insects from soy fields had richer gut bacteria and lower fat content than those from prairies, suggesting better feeding conditions in prairies. Species origin mediated landscape context effects, suggesting differences in foraging of exotic and native predators on a landscape scale. Overall, our study highlights complex interactions among gut microbiota, predator identity, and landscape context.
Scale-dependent factors affecting North American river otter distribution in the midwest
Jeffress, Mackenzie R.; Paukert, C.P.; Whittier, Joanna B.; Sandercock, B.K.; Gipson, P.S.
2011-01-01
The North American river otter (Lontra canadensis) is recovering from near extirpation throughout much of its range. Although reintroductions, trapping regulations and habitat improvements have led to the reestablishment of river otters in the Midwest, little is known about how their distribution is influenced by local- and landscape-scale habitat. We conducted river otter sign surveys from Jan. to Apr. in 2008 and 2009 in eastern Kansas to assess how local- and landscape-scale habitat factors affect river otter occupancy. We surveyed three to nine 400-m stretches of stream and reservoir shorelines for 110 sites and measured local-scale variables (e.g., stream order, land cover types) within a 100 m buffer of the survey site and landscape-scale variables (e.g., road density, land cover types) for Hydrological Unit Code 14 watersheds. We then used occupancy models that account for the probability of detection to estimate occupancy as a function of these covariates using Program PRESENCE. The best-fitting model indicated river otter occupancy increased with the proportion of woodland cover and decreased with the proportion of cropland and grassland cover at the local scale. Occupancy also increased with decreased shoreline diversity, waterbody density and stream density at the landscape scale. Occupancy was not affected by land cover or human disturbance at the landscape scale. Understanding the factors and scale important to river otter occurrence will be useful in identifying areas for management and continued restoration. ?? 2011, American Midland Naturalist.
Power, Eileen F.; Kelly, Daniel L.; Stout, Jane C.
2012-01-01
Parallel declines in insect-pollinated plants and their pollinators have been reported as a result of agricultural intensification. Intensive arable plant communities have previously been shown to contain higher proportions of self-pollinated plants compared to natural or semi-natural plant communities. Though intensive grasslands are widespread, it is not known whether they show similar patterns to arable systems nor whether local and/or landscape factors are influential. We investigated plant community composition in 10 pairs of organic and conventional dairy farms across Ireland in relation to the local and landscape context. Relationships between plant groups and local factors (farming system, position in field and soil parameters) and landscape factors (e.g. landscape complexity) were investigated. The percentage cover of unimproved grassland was used as an inverse predictor of landscape complexity, as it was negatively correlated with habitat-type diversity. Intensive grasslands (organic and conventional) contained more insect-pollinated forbs than non-insect pollinated forbs. Organic field centres contained more insect-pollinated forbs than conventional field centres. Insect-pollinated forb richness in field edges (but not field centres) increased with increasing landscape complexity (% unimproved grassland) within 1, 3, 4 and 5km radii around sites, whereas non-insect pollinated forb richness was unrelated to landscape complexity. Pollination systems within intensive grassland communities may be different from those in arable systems. Our results indicate that organic management increases plant richness in field centres, but that landscape complexity exerts strong influences in both organic and conventional field edges. Insect-pollinated forb richness, unlike that for non-insect pollinated forbs, showed positive relationships to landscape complexity reflecting what has been documented for bees and other pollinators. The insect-pollinated forbs, their pollinators and landscape context are clearly linked. This needs to be taken into account when managing and conserving insect-pollinated plant and pollinator communities. PMID:22666450
Multiscale assessment of landscape structure in heterogeneous forested area
NASA Astrophysics Data System (ADS)
Simoniello, T.; Pignatti, S.; Carone, M. T.; Fusilli, L.; Lanfredi, M.; Coppola, R.; Santini, F.
2010-05-01
The characterization of landscape structure in space or time is fundamental to infer ecological processes (Ingegnoli, 2002). Landscape pattern arrangements strongly influence forest ecological functioning and biodiversity, as an example landscape fragmentation can induce habitat degradation reducing forest species populations or limiting their recolonization. Such arrangements are spatially correlated and scale-dependent, therefore they have distinctive operational-scales at which they can be best characterized (Wu, 2004). In addition, the detail of the land cover classification can have substantial influences on resulting pattern quantification (Greenberg et al.2001). In order to evaluate the influence of the observational scales and labelling details, we investigated a forested area (Pollino National Park; southern Italy) by analyzing the patch arrangement derived from three remote sensing sensors having different spectral and spatial resolutions. In particular, we elaborated data from the hyperspectral MIVIS (102 bands; ~7m) and Hyperion (220 bands; 30m), and the multispectral Landsat-TM (7 bands; 30m). Moreover, to assess the landscape evolution we investigated the hierarchical structure of the study area (landscape, class, patch) by elaborating two Landsat-TM acquired in 1987 and 1998. Preprocessed data were classified by adopting a supervised procedure based on the Minimum Distance classifier. The obtained labelling correspond to Corine level 5 for the high resolution MIVIS data, to Corine level 4 for Hyperion and to an intermediate level 4-3 for TM data. The analysis was performed by taking into account patch density, diversity and evenness at landscape level; mean patch size and interdispersion at class level; patch structure and perimeter regularity at patch level. The three sensors described a landscape with a quite high level of richness and distribution. The high spectral and spatial resolution of MIVIS data provided the highest diversity level (SHDI = 2.05), even if the results obtained for TM were not so different (1.93), Hyperion showed the lowest value (1.79). The obtained evenness index was similar for all the landscapes (~ 0.72). At class level, the interdispersion increases as the spatial and spectral resolution power decrease. Due to the low labelling detail, TM classes represent an aggregation of MIVIS and Hyperion classes; therefore they result larger and more diffused over the territory favouring higher interspersion values in the computation. The investigation of the patch structure highlighted the highest MIVIS capability in describing the patch articulation; Hyperion and TM showed quite similar situation. The historical analysis based on TM imagery showed a fragmentation process for some forested patches (mainly beeches): an increase of structure complexity (higher FRACT) is coupled with a higher patch number and an extension reduction. On the whole, the obtained results showed that the multispectral Landsat-TM images represent a good data source for supporting studies on landscape structure of forested areas and that for analyzing the articulation of particular species the high spectral resolution needs to be coupled with a high spatial resolution, i.e. Hyperion sampling is not adequate for such a purpose.
Adaptation to elevated CO 2 in different biodiversity contexts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleynhans, Elizabeth J.; Otto, Sarah P.; Reich, Peter B.
In the absence of migration, species persistence depends on adaption to a changing environment, but whether and how adaptation to global change is altered by community diversity is not understood. Community diversity may prevent, enhance or alter how species adapt to changing conditions by influencing population sizes, genetic diversity and/or the fitness landscape experienced by focal species. For this study, we tested the impact of community diversity on adaptation by performing a reciprocal transplant experiment on grasses that evolved for 14 years under ambient and elevated CO 2, in communities of low or high species richness. Using biomass as amore » fitness proxy, we find evidence for local adaptation to elevated CO 2, but only for plants assayed in a community of similar diversity to the one experienced during the period of selection. Our results indicate that the biological community shapes the very nature of the fitness landscape within which species evolve in response to elevated CO 2.« less
Adaptation to elevated CO 2 in different biodiversity contexts
Kleynhans, Elizabeth J.; Otto, Sarah P.; Reich, Peter B.; ...
2016-08-11
In the absence of migration, species persistence depends on adaption to a changing environment, but whether and how adaptation to global change is altered by community diversity is not understood. Community diversity may prevent, enhance or alter how species adapt to changing conditions by influencing population sizes, genetic diversity and/or the fitness landscape experienced by focal species. For this study, we tested the impact of community diversity on adaptation by performing a reciprocal transplant experiment on grasses that evolved for 14 years under ambient and elevated CO 2, in communities of low or high species richness. Using biomass as amore » fitness proxy, we find evidence for local adaptation to elevated CO 2, but only for plants assayed in a community of similar diversity to the one experienced during the period of selection. Our results indicate that the biological community shapes the very nature of the fitness landscape within which species evolve in response to elevated CO 2.« less
Spatio-temporal distribution of stored-product inects around food processing and storage facilities
USDA-ARS?s Scientific Manuscript database
Grain storage and processing facilities consist of a landscape of indoor and outdoor habitats that can potentially support stored-product insect pests, and understanding patterns of species diversity and spatial distribution in the landscape surrounding structures can provide insight into how the ou...
78 FR 60177 - National Public Lands Day, 2013
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... diverse and rugged landscapes reflect our national character, the way we care for these open spaces.... Since I established this initiative, we have expanded access to recreation, restored critical landscapes, and created urban parks and water trails. We are also working with partners to let young people serve...
The role of the silviculturist at multiple scales
Russell T. Graham; Barry Bollenbacher
2001-01-01
Traditionally, silviculturists have been involved with fine resolution landscape assessments. Today, silviculturists are asked to go beyond that scale to look at a wide range of objectives (including wildlife, commodities, sustainability, diversity, and ecosystem resilience) on scales ranging from landscape to adjacent stands, watershed, regions, and sub-regions. As...
Using LANDIS II to study the effects of global change in Siberia
Eric J. Gustafson; Brian R. Sturtevant; Anatoly Z. Shvidenko; Robert M. Scheller
2010-01-01
Landscape dynamics are characterized by complex interactions among multiple disturbance regimes, anthropogenic use and management, and the mosaic of diverse ecological conditions. LANDIS-IT is a landscape forest succession and disturbance model that independently simulates multiple ecological and disturbance processes, accounting for complex interactions to predict...
The adult stage of streams insects is responsible for important life-cycle processes such as dispersal and reproduction, yet interactions of adult stream insects with terrestrial landscapes are rarely studied. This trend is especially problematic in urbanized landscapes where th...
Management of Forested Landscapes: Simulations of three alternatives
Stephen G. Boyce; W. Henry McNab
1994-01-01
Forested landscapes can be managed to support variouscombinations of timber, biological diversity,esthetic values, and habitats. However, all such management decisions arechoices basedon opinions about future events. Opinions underlie managementdecisionsbecause thereis no way to jump into the future, verify a future event, jump back to the present, and make a...
The quantification of pattern is a key element of landscape analyses. One aspect of this quantification of particular importance to landscape ecologists regards the classification of continuous variables to produce categorical variables such as land-cover type or elevation strat...
Yeboah, Daniel; Chen, Han Y H; Kingston, Steve
2016-02-01
Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and Shannon's index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon's index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon's index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest.
Xie, Shilin; Lu, Fei; Cao, Lei; Zhou, Weiqi; Ouyang, Zhiyun
2016-01-01
Understanding the factors that influence the characteristics of avian communities using urban parks at both the patch and landscape level is important to focus management effort towards enhancing bird diversity. Here, we investigated this issue during the breeding season across urban parks in Beijing, China, using high-resolution satellite imagery. Fifty-two bird species were recorded across 29 parks. Analysis of residence type of birds showed that passengers were the most prevalent (37%), indicating that Beijing is a major node in the East Asian–Australasian Flyway. Park size was crucial for total species abundance, but foliage height diversity was the most important factor influencing avian species diversity. Thus, optimizing the configuration of vertical vegetation structure in certain park areas is critical for supporting avian communities in urban parks. Human visitation also showed negative impact on species diversity. At the landscape level, the percentage of artificial surface and largest patch index of woodland in the buffer region significantly affected total species richness, with insectivores and granivores being more sensitive to the landscape pattern of the buffer region. In conclusion, urban birds in Beijing are influenced by various multi-scale factors; however, these effects vary with different feeding types. PMID:27404279
Dispersal responses override density effects on genetic diversity during post-disturbance succession
Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.
2016-01-01
Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225
sGD software for estimating spatially explicit indices of genetic diversity
A. J. Shirk; Samuel Cushman
2011-01-01
Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is...
Preparing Teachers for Diversity: The Role of Initial Teacher Education. Final Report
ERIC Educational Resources Information Center
European Commission, 2017
2017-01-01
Even though the diversity found in European societies is not a new phenomenon, its nature is rapidly changing. Europe is becoming increasingly diverse due to intra-European mobility, international migration and globalisation. These societal changes affect the educational landscape and organisation, and create both new opportunities and challenges…
Eiler, Alexander; Zaremba-Niedzwiedzka, Katarzyna; Martínez-García, Manuel; McMahon, Katherine D; Stepanauskas, Ramunas; Andersson, Siv G E; Bertilsson, Stefan
2014-01-01
Little is known about the diversity and structuring of freshwater microbial communities beyond the patterns revealed by tracing their distribution in the landscape with common taxonomic markers such as the ribosomal RNA. To address this gap in knowledge, metagenomes from temperate lakes were compared to selected marine metagenomes. Taxonomic analyses of rRNA genes in these freshwater metagenomes confirm the previously reported dominance of a limited subset of uncultured lineages of freshwater bacteria, whereas Archaea were rare. Diversification into marine and freshwater microbial lineages was also reflected in phylogenies of functional genes, and there were also significant differences in functional beta-diversity. The pathways and functions that accounted for these differences are involved in osmoregulation, active transport, carbohydrate and amino acid metabolism. Moreover, predicted genes orthologous to active transporters and recalcitrant organic matter degradation were more common in microbial genomes from oligotrophic versus eutrophic lakes. This comparative metagenomic analysis allowed us to formulate a general hypothesis that oceanic- compared with freshwater-dwelling microorganisms, invest more in metabolism of amino acids and that strategies of carbohydrate metabolism differ significantly between marine and freshwater microbial communities. PMID:24118837
[Avifauna in silvopastoral systems in the Mesoamerican Biological Corridor, Tabasco, México].
González-Valdivia, Noel; Barba-Macías, Everardo; Hernández-Daumás, Salvador; Ochoa-Gaona, Susana
2014-09-01
Silvopastoral systems support local ecological and economical features as they enhance conservation of floral and faunal communities. As other animal communities, avifauna may be a good representative of habitat alterations, both as the species and functional levels. In order to attend the initiative of Mesoamerican Biological Corridor initiative (CBM) in the state of Tabasco, we studied the diversity of birds in two silvopastoral systems: scattered trees in pastures (ADP), and trees in boundary-hedgerows (AL). For this, we applied the fixed radius counting point method in three priority sites in Tabasco's CBM during the dry and wet season of 2011, and a total of 56, 60 and 62 points were evaluated in Huimanguillo, Tenosique and Tacotalpa, respectively. We observed 2 084 individuals of 154 species (79-89% of expected diversity) and 36 bird families. We detected 92, 87 and 85 species in Huimanguillo, Tenosique and Tacotalpa, respectively, including 35 protected species, of which 23, 19 and 16 in each locality, respectively. All sites showed high diversity (H' ≥ 3.20), low species dominance (D ≥ 0.08) and high equitability (J ≥ 0.77). Species composition showed differences between sites, being most similar Tacotalpa and Tenosique. Ten species were considered characteristic for sites. Although the silvopastoral system did contain protected species, the low diversity and the early successional character of the arboreal components were not attractive to frugivorous bird species. Diversification with native trees can improve the systems to create a complementary habitat and to increase landscape connectivity. The management of silvopastoral practices on cattle dominated landscapes in Tabasco could improve its ecological quality, and thus achieve the CBM's objectives ofbiodiversity conservation combined with human economic activities.
Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan
2015-01-01
Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.
Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.
Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto
2013-08-01
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal-plant mutualistic networks. © 2013 Society for Conservation Biology.
Morante-Filho, José Carlos; Rhodes, Jonathan
2015-01-01
Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist. PMID:26083245
Charles Curtin
2006-01-01
Numerous ecologists and conservationists believe that prairie dogs increase ecosystem diversity and preserve the function of grasslands (Whicker and Detling 1988, Miller et al. 1994, Jones et al. 1994, Power et al. 1996, Weltzin et al. 1997, Miller et al. 2000), yet this perspective is controversial (Stapp 1998). In contrast, many ranchers and land owners view prairie...
ERIC Educational Resources Information Center
Kissell, Bradley W.
2014-01-01
The main objective of this study was to determine whether relationships existed between workplace diversity and organizational performance in accredited U.S. evangelical Christian colleges and universities. Evidence points to a rapidly changing demographic landscape. The U.S. and its workforce are quickly becoming racially and ethnically diverse.…
Shifting Patterns of Agricultural Diversity
USDA-ARS?s Scientific Manuscript database
Although monocultural cropping systems can provide the greatest yield efficiency in the short term, more diverse agricultural landscapes may contribute multiple ecosystem benefits. The USDA's Cropland Data Layer provides a yearly map of the agricultural lands of the continental United States broken ...
Loewen, Charlie J G; Vinebrooke, Rolf D
2016-10-01
Species diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g., a mountainous gradient) is expected to beget greater regional species diversity and variation in functional traits related to environmental tolerances. Thus, heterogeneous metacommunities are expected to provide more tolerant colonists that buffer stressed local communities in the absence of dispersal limitation. We tested the hypothesis that importation of a regional zooplankton pool assembled from a diverse array of lakes and ponds lessens the impacts of a novel predator on local species-poor alpine communities by increasing response diversity (i.e., diversity of tolerances to environmental change) as mediated by variation in functional traits related to predator evasion. We also tested whether impacts varied with temperature, as warming may modify (e.g., dampen or amplify) invasion effects. An eight-week factorial experiment ([fishless vs. introduced Oncorhynchus mykiss (rainbow trout)] × [ambient temperature vs. heated] × [local vs. local + regional species pool]) was conducted using 32 1,000-L mesocosms. Associations between experimental treatments and species functional traits were tested by R-mode linked to Q-mode (RLQ) and fourth-corner analyses. Although the introduced predator suppressed local species richness and community biomass, colonization by several montane zooplankters reversed these negative effects, resulting in increased species diversity and production. Invasion resistance was unaffected by higher temperatures, which failed to elicit any significance impacts on the community. We discovered that the smaller body sizes of imported species drove functional overcompensation (i.e., increased production) in invaded communities. The observed ecological surprise showed how regionally sourced biodiversity from a highly heterogeneous landscape can offset, and even reverse, the local negative impacts of an invasive species. Further, prey body size was found to be a key species trait mediating the ecological impacts of the aquatic invasive predator. Our study highlights the novel application of a functional approach to understanding the impacts of biological invasions, using species traits that pertain directly to potential responses to exotic species. © 2016 by the Ecological Society of America.
Limiting similarity and functional diversity along environmental gradients
Schwilk, D.W.; Ackerly, D.D.
2005-01-01
Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.
Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff
2015-12-01
Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse species may provide the greatest benefit. Wildflower mixes may be particularly important for providing resources for some taxa, such as bumble bees, which are known to be in decline in several regions of North America. No mix consistently attained the full diversity that was planted. Further study is needed on how to achieve the desired floral display and diversity from seed mixes.
Ecobelts: reconnecting agriculture and communities - case studies
Gary Bentrup; Michele Schoeneberger; Scott Josiah; Charles Francis
2001-01-01
Historically, landscapes graded from urban centers to scattered villages, to a diverse mosaic of farmlands and natural areas (Figure 1). This gradient allowed both a visual and physical transition while maintaining ecologic, economic, and social connections within the larger landscape. Conflicts between urban and rural residents were minimal, in part due to the limited...
Assessment of carbon in woody plants and soil across a vineyard-woodland landscape
USDA-ARS?s Scientific Manuscript database
The Mediterranean-type biome is rich in biological diversity and species endemism yet it supports large centers of human population and agriculture. Wine-grape production constitutes a major land use in this biome, and the mosaic of vines and native plant communities found in vineyard landscapes rep...
Revealing Campus Nature: The Lessons of the Native Landscape for Campus Heritage Planning
ERIC Educational Resources Information Center
Bruce, Jeffrey L.
2011-01-01
As American settlement spread to the Midwest, college and university campuses came to symbolize some of the greatest achievements of public policy and private philanthropy. However, the expansion westward often ignored the cultural precedents of Native Americans and the diversity of the varied native landscapes. Today, campus planners and historic…
Using Landscape Hierarchies To Guide Restoration Of Disturbed Ecosystems
Brian J. Palik; Charles P. Goebel; Katherine L. Kirkman; Larry West
2000-01-01
Reestablishing native plant communities is an important focus of ecosystem restoration. In complex landscapes containing a diversity of ecosystem types, restoration requires a set of reference vegetation conditions for the ecosystems of concern, and a predictive model to relate plant community composition to physical variables. Restoration also requires an approach for...
USDA-ARS?s Scientific Manuscript database
Variability among farms across an agricultural landscape may reveal diverse biophysical contexts and experiences that show innovations and insights to improve nitrogen (N) cycling and yields, and thus the potential for multiple ecosystem services. In order to assess potential tradeoffs between yield...
Predicting plant species diversity in a longleaf pine landscape
L. Katherine Kirkman; P. Charles Goebel; Brian J. Palik; Larry T. West
2004-01-01
In this study, we used a hierarchical, multifactor ecological classification system to examine how spatial patterns of biodiversity develop in one of the most species-rich ecosystems in North America, the fire-maintained longleaf pine-wiregrass ecosystem and associated depressional wetlands and riparian forests. Our goal was to determine which landscape features are...
Forest Ecosystem Analysis Using a GIS
S.G. McNulty; W.T. Swank
1996-01-01
Forest ecosystem studies have expanded spatially in recent years to address large scale environmental issues. We are using a geographic information system (GIS) to understand and integrate forest processes at landscape to regional spatial scales. This paper presents three diverse research studies using a GIS. First, we used a GIS to develop a landscape scale model to...
Understory vegetation and site factors : implications for a managed Wisconsin landscape
K.D. Brosofske; J. Chen; Thomas R. Crow
2001-01-01
We investigated relationships between edaphic and environmental factors (soil, forest floor, topography, and canopy) and understory vegetation (composition, richness, and Shannon-Wiener diversity index, H')among 77 plots representing seven major patch types comprising a landscape in northern Wisconsin that has a long history of human management. Sampled patch...
Restoring habitat corridors in fragmented landscapes using optimization and percolation models
Justin C. Williams; Stephanie A. Snyder
2005-01-01
Landscape fragmentation and habitat loss are significant threats to the conservation of biological diversity. Creating and restoring corridors between isolated habitat patches can help mitigate or reverse the impacts of fragmentation. It is important that restoration and protection efforts be undertaken in the most efficient and effective way possible because...
Sydenham, Markus A K; Moe, Stein R; Stanescu-Yadav, Diana N; Totland, Ørjan; Eldegard, Katrine
2016-02-01
Anthropogenic landscape elements, such as roadsides, hedgerows, field edges, and power line clearings, can be managed to provide important habitats for wild bees. However, the effects of habitat improvement schemes in power line clearings on components of diversity are poorly studied. We conducted a large-scale experiment to test the effects of different management practices on the species, phylogenetic, and functional diversity of wild bees in power line clearings (n = 19 sites across southeastern Norway) and explored whether any treatment effects were modified by the environmental context. At each site, we conducted the following treatments: (1) Cut: all trees cut and left to decay in the clearing; (2) Cut + Remove: all trees cut and removed from the plot; and (3) Uncut: uncleared. The site-specific environmental context (i.e., elevation and floral diversity) influenced the species, phylogenetic, and functional diversity within bee species assemblages. The largest number of species was found in the Cut + Remove treatment in plots with a high forb species richness, indicating that the outcome of management practices depends on the environmental context. Clearing of treatment plots with many forb species also appeared to alter the phylogenetic composition of bee species assemblages, that is, more closely related species were found in the Cut and the Cut + Remove plots than in the Uncut plots. Synthesis and applications: Our experimental simulation of management practices in power line clearings influenced the species, phylogenetic, and functional diversity of bee species assemblages. Frequent clearing and removal of the woody debris at low elevations with a high forb species richness can increase the value of power line clearings for solitary bees. It is therefore important for managers to consider the environmental context when designing habitat improvement schemes for solitary bees.
ERIC Educational Resources Information Center
Fleming, Daniel; Lovat, Terence
2014-01-01
Democratic societies today face increasing diversity, including religious diversity, and are finding that interfaith engagement possesses potential to bring out the worst and the best of human responses and, correlatively, that such engagement can either assist in or undermine the social cohesion of these societies. This article employs Triune…
Wultsch, Claudia; Waits, Lisette P; Kelly, Marcella J
2016-01-01
With increasing anthropogenic impact and landscape change, terrestrial carnivore populations are becoming more fragmented. Thus, it is crucial to genetically monitor wild carnivores and quantify changes in genetic diversity and gene flow in response to these threats. This study combined the use of scat detector dogs and molecular scatology to conduct the first genetic study on wild populations of multiple Neotropical felids coexisting across a fragmented landscape in Belize, Central America. We analyzed data from 14 polymorphic microsatellite loci in 1053 scat samples collected from wild jaguars (Panthera onca), pumas (Puma concolor), and ocelots (Leopardus pardalis). We assessed levels of genetic diversity, defined potential genetic clusters, and examined gene flow for the three target species on a countrywide scale using a combination of individual- and population-based analyses. Wild felids in Belize showed moderate levels of genetic variation, with jaguars having the lowest diversity estimates (HE = 0.57 ± 0.02; AR = 3.36 ± 0.09), followed by pumas (HE = 0.57 ± 0.08; AR = 4.20 ± 0.16), and ocelots (HE = 0.63 ± 0.03; AR = 4.16 ± 0.08). We observed low to moderate levels of genetic differentiation for all three target species, with jaguars showing the lowest degree of genetic subdivision across the country, followed by ocelots and pumas. Although levels of genetic diversity and gene flow were still fairly high, we detected evidence of fine-scale genetic subdivision, indicating that levels of genetic connectivity for wild felids in Belize are likely to decrease if habitat loss and fragmentation continue at the current rate. Our study demonstrates the value of understanding fine-scale patterns of gene flow in multiple co-occurring felid species of conservation concern, which is vital for wildlife movement corridor planning and prioritizing future conservation and management efforts within human-impacted landscapes.
Wultsch, Claudia; Waits, Lisette P.; Kelly, Marcella J.
2016-01-01
With increasing anthropogenic impact and landscape change, terrestrial carnivore populations are becoming more fragmented. Thus, it is crucial to genetically monitor wild carnivores and quantify changes in genetic diversity and gene flow in response to these threats. This study combined the use of scat detector dogs and molecular scatology to conduct the first genetic study on wild populations of multiple Neotropical felids coexisting across a fragmented landscape in Belize, Central America. We analyzed data from 14 polymorphic microsatellite loci in 1053 scat samples collected from wild jaguars (Panthera onca), pumas (Puma concolor), and ocelots (Leopardus pardalis). We assessed levels of genetic diversity, defined potential genetic clusters, and examined gene flow for the three target species on a countrywide scale using a combination of individual- and population-based analyses. Wild felids in Belize showed moderate levels of genetic variation, with jaguars having the lowest diversity estimates (HE = 0.57 ± 0.02; AR = 3.36 ± 0.09), followed by pumas (HE = 0.57 ± 0.08; AR = 4.20 ± 0.16), and ocelots (HE = 0.63 ± 0.03; AR = 4.16 ± 0.08). We observed low to moderate levels of genetic differentiation for all three target species, with jaguars showing the lowest degree of genetic subdivision across the country, followed by ocelots and pumas. Although levels of genetic diversity and gene flow were still fairly high, we detected evidence of fine-scale genetic subdivision, indicating that levels of genetic connectivity for wild felids in Belize are likely to decrease if habitat loss and fragmentation continue at the current rate. Our study demonstrates the value of understanding fine-scale patterns of gene flow in multiple co-occurring felid species of conservation concern, which is vital for wildlife movement corridor planning and prioritizing future conservation and management efforts within human-impacted landscapes. PMID:26974968
Harradine, E L; Andrew, M E; Thomas, J W; How, R A; Schmitt, L H; Spencer, P B S
2015-12-01
Islands present a unique scenario in conservation biology, offering refuge yet imposing limitations on insular populations. The Kimberley region of northwestern Australia has more than 2500 islands that have recently come into focus as substantial conservation resources. It is therefore of great interest for managers to understand the driving forces of genetic structure of species within these island archipelagos. We used the ubiquitous bar-shouldered skink (Ctenotus inornatus) as a model species to represent the influence of landscape factors on genetic structure across the Kimberley islands. On 41 islands and 4 mainland locations in a remote area of Australia, we genotyped individuals across 18 nuclear (microsatellite) markers. Measures of genetic differentiation and diversity were used in two complementary analyses. We used circuit theory and Mantel tests to examine the influence of the landscape matrix on population connectivity and linear regression and model selection based on Akaike's information criterion to investigate landscape controls on genetic diversity. Genetic differentiation between islands was best predicted with circuit-theory models that accounted for the large difference in resistance to dispersal between land and ocean. In contrast, straight-line distances were unrelated to either resistance distances or genetic differentiation. Instead, connectivity was determined by island-hopping routes that allow organisms to minimize the distance of difficult ocean passages. Island populations of C. inornatus retained varying degrees of genetic diversity (NA = 1.83 - 7.39), but it was greatest on islands closer to the mainland, in terms of resistance-distance units. In contrast, genetic diversity was unrelated to island size. Our results highlight the potential for islands to contribute to both theoretical and applied conservation, provide strong evidence of the driving forces of population structure within undisturbed landscapes, and identify the islands most valuable for conservation based on their contributions to gene flow and genetic diversity. © 2015 Society for Conservation Biology.
Briones-Salas, Miguel; Lavariega, Mario C; Moreno, Claudia E
2017-01-01
Wind energy has rapidly become an important alternative among renewable energies, and it is generally considered clean. However, little is known about its impact at the level of ecological communities, especially in biodiversity hotspots. The Isthmus of Tehuantepec is a highly biodiverse region in Mesoamerica, and has the highest potential for generating wind energy in Mexico. To assess the effects of installing a wind farm on the understory bat community in a landscape of fragmented habitat, we assessed its diversity and composition over four stages of installation (site preparation, construction, and two stages of operation). We captured 919 bats belonging to 22 species. Species richness, functional diversity and phylogenetic diversity decreased during construction and the first stage of operation. However, these components of biodiversity increased during the second stage of operation, and species composition began to resemble that of the site preparation stage. No species considered as sensitive to disturbance was recorded at any stage. This is the first study to reveal the diversity of a Neotropical bat community after wind turbines begin to operate.
Lavariega, Mario C.; Moreno, Claudia E.
2017-01-01
Wind energy has rapidly become an important alternative among renewable energies, and it is generally considered clean. However, little is known about its impact at the level of ecological communities, especially in biodiversity hotspots. The Isthmus of Tehuantepec is a highly biodiverse region in Mesoamerica, and has the highest potential for generating wind energy in Mexico. To assess the effects of installing a wind farm on the understory bat community in a landscape of fragmented habitat, we assessed its diversity and composition over four stages of installation (site preparation, construction, and two stages of operation). We captured 919 bats belonging to 22 species. Species richness, functional diversity and phylogenetic diversity decreased during construction and the first stage of operation. However, these components of biodiversity increased during the second stage of operation, and species composition began to resemble that of the site preparation stage. No species considered as sensitive to disturbance was recorded at any stage. This is the first study to reveal the diversity of a Neotropical bat community after wind turbines begin to operate. PMID:28630802
Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara
2014-07-01
Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.
Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape
Morris, Geoffrey P.; Grabowski, Paul; Borevitz, Justin O.
2011-01-01
Connecting broad-scale patterns of genetic variation and population structure to genetic diversity on a landscape is a key step towards understanding historical processes of migration and adaptation. New genomic approaches can be used to increase the resolution of phylogeographic studies while reducing locus sampling effects and circumventing ascertainment bias. Here, we use a novel approach based on high-throughput sequencing to characterize genetic diversity in complete chloroplast genomes and >10,000 nuclear loci in switchgrass, across a continental and landscape scale. Switchgrass is a North American tallgrass species, which is widely used in conservation and perennial biomass production, and shows strong ecotypic adaptation and population structure across the continental range. We sequenced 40.9 billion base pairs from 24 individuals from across the species’ range and 20 individuals from the Indiana Dunes. Analysis of plastome sequence revealed 203 variable SNP sites that define eight haplogroups, which are differentiated by 4 to 127 SNPs and confirmed by patterns of indel variation. These include three deeply divergent haplogroups, which correspond to the previously described lowland-upland ecotypic split and a novel upland haplogroup split that dates to the mid-Pleistoscene. Most of the plastome haplogroup diversity present in the northern switchgrass range, including in the Indiana Dunes, originated in the mid- or upper-Pleistocene prior to the most recent postglacial recolonization. Furthermore, a recently colonized landscape feature (~150 ya) in the Indiana Dunes contains several deeply divergent upland haplogroups. Nuclear markers also support a deep lowland-upland split, followed by limited gene flow, and show extensive gene flow in the local population of the Indiana Dunes. PMID:22060816
NASA Astrophysics Data System (ADS)
Jianguo Liu, Edited By; Taylor, William W.
2002-08-01
The rapidly increasing global population has dramatically increased the demands for natural resources and has caused significant changes in quantity and quality of natural resources. To achieve sustainable resource management, it is essential to obtain insightful guidance from emerging disciplines such as landscape ecology. This text addresses the links between landscape ecology and natural resource management. These links are discussed in the context of various landscape types, a diverse set of resources and a wide range of management issues. A large number of landscape ecology concepts, principles and methods are introduced. Critical reviews of past management practices and a number of case studies are presented. This text provides many guidelines for managing natural resources from a landscape perspective and offers useful suggestions for landscape ecologists to carry out research relevant to natural resource management. In addition, it will be an ideal supplemental text for graduate and advanced undergraduate ecology courses. Written, and rigorously reviewed, by many of the world's leading landscape ecologists and natural resource managers Contains numerous case studies and insightful guidelines for landscape ecologists and natural resource managers
Multiple ecosystem services in a working landscape
Eastburn, Danny J.; O’Geen, Anthony T.; Tate, Kenneth W.; Roche, Leslie M.
2017-01-01
Policy makers and practitioners are in need of useful tools and models for assessing ecosystem service outcomes and the potential risks and opportunities of ecosystem management options. We utilize a state-and-transition model framework integrating dynamic soil and vegetation properties to examine multiple ecosystem services—specifically agricultural production, biodiversity and habitat, and soil health—across human created vegetation states in a managed oak woodland landscape in a Mediterranean climate. We found clear tradeoffs and synergies in management outcomes. Grassland states maximized agricultural productivity at a loss of soil health, biodiversity, and other ecosystem services. Synergies existed among multiple ecosystem services in savanna and woodland states with significantly larger nutrient pools, more diversity and native plant richness, and less invasive species. This integrative approach can be adapted to a diversity of working landscapes to provide useful information for science-based ecosystem service valuations, conservation decision making, and management effectiveness assessments. PMID:28301475
Multiple ecosystem services in a working landscape.
Eastburn, Danny J; O'Geen, Anthony T; Tate, Kenneth W; Roche, Leslie M
2017-01-01
Policy makers and practitioners are in need of useful tools and models for assessing ecosystem service outcomes and the potential risks and opportunities of ecosystem management options. We utilize a state-and-transition model framework integrating dynamic soil and vegetation properties to examine multiple ecosystem services-specifically agricultural production, biodiversity and habitat, and soil health-across human created vegetation states in a managed oak woodland landscape in a Mediterranean climate. We found clear tradeoffs and synergies in management outcomes. Grassland states maximized agricultural productivity at a loss of soil health, biodiversity, and other ecosystem services. Synergies existed among multiple ecosystem services in savanna and woodland states with significantly larger nutrient pools, more diversity and native plant richness, and less invasive species. This integrative approach can be adapted to a diversity of working landscapes to provide useful information for science-based ecosystem service valuations, conservation decision making, and management effectiveness assessments.
Kut'in, S D; Konstantinov, V M
2008-01-01
Studies on specific features of nesting bird populations in patchy landscapes were performed in Meshchovsk Opolye, Kaluga Region, from 1981 to 1990. Indices of similarity between the avifaunas of agricultural fields, lowland bogs, and small-leaved forests markedly differed from parameters of their population density in rank and value. In the series of biotopes differing in the relative amount of woodland, from central areas of small-leaved forests to forest margins and then to forest islands gradually decreasing in size, the birds segregated into two distinct groups, one characteristic of forest margins and large forest islands and the other characteristic of small and very small forest islands. Specific features of bird density distribution in forest-meadow-field landscapes of Meshchovsk Opolye reflected heterogeneity of their populations manifested in diverse connections with nesting biotopes.
Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G
2015-09-07
Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. © 2015 The Author(s).
Dorresteijn, Ine; Schultner, Jannik; Nimmo, Dale G.; Fischer, Joern; Hanspach, Jan; Kuemmerle, Tobias; Kehoe, Laura; Ritchie, Euan G.
2015-01-01
Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface. PMID:26336169
Santos, Bráulio A; Arroyo-Rodríguez, Víctor; Moreno, Claudia E; Tabarelli, Marcelo
2010-09-08
Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest.
A structural equation model analysis of postfire plant diversity in California shrublands
Grace, J.B.; Keeley, J.E.
2006-01-01
This study investigates patterns of plant diversity following wildfires in fire-prone shrublands of California, seeks to understand those patterns in terms of both local and landscape factors, and considers the implications for fire management. Ninety study sites were established following extensive wildfires in 1993, and 1000-m2 plots were used to sample a variety of parameters. Data on community responses were collected for five years following fire. Structural equation modeling (SEM) was used to relate plant species richness to plant abundance, fire severity, abiotic conditions, within-plot heterogeneity, stand age, and position in the landscape. Temporal dynamics of average richness response was also modeled. Richness was highest in the first year following fire, indicating postfire enhancement of diversity. A general decline in richness over time was detected, with year-to-year variation attributable to annual variations in precipitation. Peak richness in the landscape was found where (1) plant abundance was moderately high, (2) within-plot heterogeneity was high, (3) soils were moderately low in nitrogen, high in sand content, and with high rock cover, (4) fire severity was low, and (5) stands were young prior to fire. Many of these characteristics were correlated with position in the landscape and associated conditions. We infer from the SEM results that postfire richness in this system is strongly influenced by local conditions and that these conditions are, in turn, predictably related to landscape-level conditions. For example, we observed that older stands of shrubs were characterized by more severe fires, which were associated with a low recovery of plant cover and low richness. These results may have implications for the use of prescribed fire in this system if these findings extrapolate to prescribed burns as we would expect. ?? 2006 by the Ecological Society of America.
Landscape functionality of plant communities in the Impala Platinum mining area, Rustenburg.
van der Walt, L; Cilliers, S S; Kellner, K; Tongway, D; van Rensburg, L
2012-12-30
The tremendous growth of the platinum mining industry in South Africa has affected the natural environment adversely. The waste produced by platinum mineral processing is alkaline, biologically sterile and has a low water-holding capacity. These properties in the environment may constitute dysfunctional areas that will create 'leaky' and dysfunctional landscapes, limiting biological development. Landscape Function Analysis (LFA) is a monitoring procedure that assesses the degradation of landscapes, as brought about by human, animal and natural activities, through rapidly assessing certain soil surface indicators which indicate the biophysical functionality of the system. The "Trigger-Transfer-Reserve-Pulse" (TTRP) conceptual framework forms the foundation for assessing landscape function when using LFA. The two main aspects of this framework are the loss of resources from the system and the utilisation of resources by the system. After a survey of landscape heterogeneity to reflect the spatial organisation of the landscape, soil surface indicators are assessed within different patch types (identifiable units that retains resources that pass through the system) and interpatches (units between patches where vital resources are not retained, but lost) to assess the capacity of patches with various physical properties in regulating the effectiveness of resource control in the landscape. Indices describing landscape organisation are computed by a spreadsheet analysis, as well as soil surface quality indices. When assembled in different combinations, three indices emerge that reflect soil productive potential, namely: the (1) surface stability, (2) infiltration capacity, and (3) the nutrient cycling potential of the landscape. In this study we compared the landscape functionality of natural thornveld areas, rehabilitated opencast mines and rehabilitated slopes of tailings dams in the area leased for mining in the Rustenburg area. Our results show that the rehabilitated areas had a higher total SSA functionality due to higher infiltration and nutrient cycling indices than the natural thornveld landscapes. The length of interpatches and the width of patches greatly influenced the landscape function of the studied areas. The natural thornveld areas had a marginally higher total patch area than the rehabilitated areas. Vegetated patches (grass-, sparse grass-, grassy forb-, and grassy shrub-patches) generally scored the highest functionality indices, whilst bare soil interpatches contributed to the landscape functionality of the various plant communities the least. Copyright © 2012 Elsevier Ltd. All rights reserved.
Landscape Fragmentation as a Risk Factor for Buruli Ulcer Disease in Ghana
Wu, Jianyong; Smithwick, Erica A. H.
2016-01-01
Land cover and its change have been linked to Buruli ulcer (BU), a rapidly emerging tropical disease. However, it is unknown whether landscape structure affects the disease prevalence. To examine the association between landscape pattern and BU presence, we obtained land cover information for 20 villages in southwestern Ghana from high resolution satellite images, and analyzed the landscape pattern surrounding each village. Eight landscape metrics indicated that landscape patterns between BU case and reference villages were different (P < 0.05) at the broad spatial extent examined (4 km). The logistic regression models showed that landscape fragmentation and diversity indices were positively associated with BU presence in a village. Specifically, for each increase in patch density and edge density by 100 units, the likelihood of BU presence in a village increased 2.51 (95% confidence interval [CI] = 1.36–4.61) and 4.18 (95% CI = 1.63–10.76) times, respectively. The results suggest that increased landscape fragmentation may pose a risk to the emergence of BU. PMID:27185767
ERIC Educational Resources Information Center
Gray, Katti
2010-01-01
Faced with America's stratified religious landscape, colleges and universities work to embrace spiritual diversity through inclusive discourse, initiatives and programs. Nationwide, some campuses have focused on the rise in religious diversity and mending the religious fractures that persist. They have crafted programs aimed at letting a shifting…
Lin, Meng-lung; Cao, Yu; Wang, Shin
2008-01-01
In this paper, the Lizejian wetland landscape patterns in northeastern Taiwan of China were established by landscape indices and aerial photo interpretation, and a parallel analysis was made on them. The results showed that landscape indices could only indicate the landscape geometric characteristics of the wetland at patch and landscape levels, but could not present its spatial and functional characteristics observed from aerial photos. Combining aerial photo interpretation with landscape indices could be helpful to the holistic understanding of Lizejian wetland' s landscape structure and function, and improve the landscape pattern analysis. The new method for assessing landscape structure from a holistic point of view would play an important role in future landscape ecology research.
Tian, Zhimei; Cheng, Longjiu
2015-05-28
Ligand-protected gold (Au-L) nanoclusters have attracted much attention, where the reported electronic and geometric structures show great diversity. To give a direct and overall view of the energy landscape of Au-L binary systems, the AuxCly (x + y = 20) system is taken as a test case. By intensive global search of the potential energy surface at the level of density functional theory, a diverse set of global minima and low-lying isomers are found at each composition, and the structural phase diagram is obtained. The unbiased global search is carried out using the method combining the genetic algorithm with the TPSS functional. At x = 10 with the stoichiometric ratio of Au and Cl (1 : 1), the cluster presents a catenane structure. When x is in the range of 11-20, the clusters are Au-rich, and the Au-Cl system can be viewed as Cl-protected gold nanoclusters, where the gold cores consist of superatoms, superatom networks, or superatomic molecules in electronic structures. At x = 11-15, the gold cores consist of Au3, Au4 and Au5 2e-superatoms protected by staple motifs. At x = 16-20, the clusters are pyramidal superatomic molecules with one Au16 superatom core bonding with the four vertical atoms (Au or Cl). When x is in the scope of 9-5, the clusters are Cl-rich, and the 5d electrons of Au participate in bonding, resulting in high multiplicities. The Au-Cl binary system shows great diversity and flexibility in electronic and geometric structures, and there are corresponding structures to most of the experimentally produced Au-L nanoclusters in our structural phase diagram. We believe that the structural phase diagram gives an overall perspective on the universe of Au-L nanoclusters.
Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity
Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.
2014-01-01
Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.
Wartime scars or reservoirs of biodiversity? The value of bomb crater ponds in aquatic conservation
Vad, Csaba F.; Péntek, Attila L.; Cozma, Nastasia J.; Földi, Angéla; Tóth, Adrienn; Tóth, Bence; Böde, NóraA.; Móra, Arnold; Ptacnik, Robert; Ács, Éva; Zsuga, Katalin; Horváth, Zsófia
2017-01-01
Considering the ongoing loss of aquatic habitats, anthropogenic ponds are gaining importance as substitute habitats. It is therefore important to assess their functioning in comparison to their natural precursors. Here we assess the biodiversity value of sodic bomb crater ponds by comparing their gamma diversity to that of natural reference habitats, astatic soda pans, and assess their importance on the landscape level by studying alpha and beta diversity. We studied aquatic organisms ranging from algae to vertebrates in a dense cluster of 54 sodic bomb crater ponds in Central Europe. Despite the overall small area of the pond cluster, gamma diversity was comparable to that found in surveys of natural habitats that encompassed much wider spatial and temporal scales. We also found a considerable number of species shared with reference habitats, indicating that these anthropogenic habitats function as important refuge sites for several species that are associated with the endangered soda pans. Moreover, we found a number of regionally or worldwide rare species. Among the components of beta diversity, species replacement dominated community assembly. Individual ponds contributed similarly to beta diversity in terms of replacement, being equally important for maintaining high gamma diversity and emphasising the role of the pond network rather than individual ponds. This pattern was seen in all studied groups. Bomb crater ponds therefore acted as important contributors to aquatic biodiversity. Considering the tremendous losses of ponds throughout Europe, anthropogenic ponds should be taken into consideration in nature conservation, especially when occurring in pond networks. PMID:28529346
Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity
NASA Astrophysics Data System (ADS)
Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.
2014-08-01
Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.
Yahya, Muhammad S; Syafiq, Muhamad; Ashton-Butt, Adham; Ghazali, Amal; Asmah, Siti; Azhar, Badrul
2017-08-01
Monoculture farming is pervasive in industrial oil palm agriculture, including those RSPO plantations certified as sustainably managed. This farming practice does not promote the maintenance of farmland biodiversity. However, little scientific attention has been given to polyculture farming in oil palm production landscapes. Polyculture farming is likely to increase the floristic diversity and stand structural complexity that underpins biodiversity. Mist nets were used to sample birds at 120 smallholdings in Peninsular Malaysia. At each site, 12 vegetation structure characteristics were measured. We compared bird species richness, abundance, and composition between monoculture and polyculture smallholdings and used predictive models to examine the effects of habitat quality on avian biodiversity. Bird species richness was significantly greater in polyculture than that of monoculture smallholdings. The number of fallen and standing, dead oil palms were also important positive predictors of species richness. Bird abundance was also strongly increased by standing and dead oil palms and decreased with oil palm stand height. Our results indicate that polyculture farming can improve bird species richness in oil palm production landscapes. In addition, key habitat variables that are closely associated with farming practices, such as the removal of dead trees, should and can be managed by oil palm growers in order to promote biodiversity. To increase the sustainability of oil palm agriculture, it is imperative that stakeholders modify the way oil palms are currently planted and managed. Our findings can guide policy makers and certification bodies to promote oil palm production landscapes that will function more sustainably and increase existing biodiversity of oil palm landscapes.
Roets, Francois; Samways, Michael J.
2016-01-01
Southern Africa’s grassland biodiversity is threatened by habitat transformation such as commercial forestry. Ecological networks (ENs) have been instigated to alleviate the pressure of habitat transformation on local biodiversity. ENs are large scale webs of corridors and patches of natural vegetation criss-crossing production landscapes that can simulate conditions in protected areas (PAs). Many ENs have lost many native large mammal species, which have been replaced by domestic livestock to retain natural grazing dynamics, which could have an impact on the long-term value of ENs for insects. Here we compared dung beetle, butterfly and grasshopper diversity in ENs across a landscape mosaic of timber plantations, where 1) wild megaherbivores were maintained, 2) in ENs where these herbivores were replaced by livestock and, 3) in a nearby World Heritage PA which retained its natural complement of megaherbivores. Sites in the PA far from any plantation were similar in composition to those in the wild grazed EN. Presence of the wild grazers improved the alpha- and beta-diversity of all focal insect taxa when compared to domestic grazing. Furthermore, species composition shows significant differences between the two grazing systems indicating that an assemblage of native large mammals facilitates insect diversity conservation. We support the maintenance or introduction of large native mammals in ENs or similar conservation areas in production landscapes to simulate the ecological conditions and natural heterogeneity in nearby PAs. PMID:27783685
Pryke, James S; Roets, Francois; Samways, Michael J
2016-01-01
Southern Africa's grassland biodiversity is threatened by habitat transformation such as commercial forestry. Ecological networks (ENs) have been instigated to alleviate the pressure of habitat transformation on local biodiversity. ENs are large scale webs of corridors and patches of natural vegetation criss-crossing production landscapes that can simulate conditions in protected areas (PAs). Many ENs have lost many native large mammal species, which have been replaced by domestic livestock to retain natural grazing dynamics, which could have an impact on the long-term value of ENs for insects. Here we compared dung beetle, butterfly and grasshopper diversity in ENs across a landscape mosaic of timber plantations, where 1) wild megaherbivores were maintained, 2) in ENs where these herbivores were replaced by livestock and, 3) in a nearby World Heritage PA which retained its natural complement of megaherbivores. Sites in the PA far from any plantation were similar in composition to those in the wild grazed EN. Presence of the wild grazers improved the alpha- and beta-diversity of all focal insect taxa when compared to domestic grazing. Furthermore, species composition shows significant differences between the two grazing systems indicating that an assemblage of native large mammals facilitates insect diversity conservation. We support the maintenance or introduction of large native mammals in ENs or similar conservation areas in production landscapes to simulate the ecological conditions and natural heterogeneity in nearby PAs.
Roque, F O; Guimarães, E A; Ribeiro, M C; Escarpinati, S C; Suriano, M T; Siqueira, T
2014-11-01
Predicting how anthropogenic activities may influence the various components of biodiversity is essential for finding ways to reduce diversity loss. This challenge involves: a) understanding how environmental factors influence diversity across different spatial scales, and b) developing ways to measure these relationships in a way that is fast, economical, and easy to communicate. In this study, we investigate whether landscape and bioclimatic variables could explain variation in biodiversity indices in macroinvertebrate communities from 39 Atlantic Forest streams. In addition to traditional diversity measures, i.e., species richness, abundance and Shannon index, we used a taxonomic distinctness index that measures the degree of phylogenetic relationship among taxa. The amount of variation in the diversity measures that was explained by environmental and spatial variables was estimated using variation partitioning based on multiple regression. Our study demonstrates that taxonomic distinctness does not respond in the same way as the traditional used in biodiversity studies. We found no evidence that taxonomic distinctness responds predictably to variation in landscape metrics, indicating the need for the incorporation of predictors at multiple scales in this type of study. The lack of congruence between taxonomic distinctness and other indices and its low predictability may be related to the fact that this measure expresses long-term evolutionary adaptation to ecosystem conditions, while the other traditional biodiversity metrics respond to short-term environmental changes.
Are hotspots of evolutionary potential adequately protected in southern California?
Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.
2008-01-01
Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.
Samuel A. Cushman; Tamara Max; Nashelly Meneses; Luke M. Evans; Sharon Ferrier; Barbara Honchak; Thomas G. Whitham; Gerard J. Allan
2014-01-01
Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined...
Managed forest landscape structure and avian species richness in the southeastern US
Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood
2005-01-01
Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...
Michael J. Papaik; Andrew Fall; Brian Sturtevant; Daniel Kneeshaw; Christian Messier; Marie-Josee Fortin; Neal Simon
2010-01-01
Forest management practices conducted primarily at the stand scale result in simplified forests with regeneration problems and low structural and biological diversity. Landscape models have been used to help design management strategies to address these problems. However, there remains a great deal of uncertainty that the actual management practices result in the...
Alejandro A. Royo; Susan L. Stout; David S. deCalesta; Timothy G. Pierson
2010-01-01
White-tailed deer (Odocoileus virginianus) overbrowsing has altered plant species diversity throughout deciduous forest understories in eastern North America. Here we report on a landscape-level (306 km2) project in Pennsylvania, USA that tracked the herbaceous community response to deer herd reductions. From 2001 to 2007, we...
Jared D. Wolfe; Philip C. Stouffer; Karl Mokross; Luke L. Powell; Marina M. Anciães
2015-01-01
Avian diversity in fragmented Amazonian landscapes depends on a balance between extinction and colonization in cleared and disturbed areas. Regenerating forest facilitates bird dispersal within degraded Amazonian landscapes and may tip the balance in favor of persistence in habitat patches. Determining the response of Amazonian birds to fragmentation may be...
Trends in fire patterns in a southern African savanna under alternative land use practices
A. T. Hudak; D. H. K. Fairbanks; B. H. Brockett
2004-01-01
Climate, topography, vegetation and land use interact to influence fire regimes.Variable fire regimes may promote landscape heterogeneity, diversification in vegetation pattern and biotic diversity. The objective was to compare effects of alternative land use practices on landscape heterogeneity. Patch characteristics of fire scars were measured from 21 annual burn...
Influence of climate and environment on post-fire recovery of mountain big sagebrush
Zachary J. Nelson; Peter J. Weisberg; Stanley G. Kitchen
2014-01-01
In arid and semi-arid landscapes around the world, wildfire plays a key role in maintaining species diversity. Dominant plant associations may depend upon particular fire regime characteristics for their persistence. Mountain shrub communities in high-elevation landscapes of the Intermountain West, USA, are strongly influenced by the post-fire recovery dynamics of the...
Tropical forests and fragmentation: A case of South Garo Hills, Meghalaya, North East India
Ashish Kumar; Bruce Marcot; Rohitkumar Patel
2017-01-01
This study presents an ecological assessment of tropical forests at stand and landscape levels to provide knowledge, tools and, indicators to evaluate specific diversity patterns and related ecological processes happening in these tropical forest conditions; and for monitoring landscape changes for managing forest and wildlife resources of Jhum (shifting cultivation)...
Herpetofaunal abundance in forested edge and interior locations of West Virginia
James T. Anderson; Amy B. Solis; Joseph D. Osbourne
2013-01-01
The diversity of forest types in the Central Appalachians provides important habitat for amphibians and reptiles. As development continues, increased fragmentation is evident on the landscape. The objectives of our study were to determine the influence of location within a forest (edge or interior) and landscape position (riparian and upland) on West Virginia...
Patterns and trends in urban biodiversity and landscape design
Norbert Müller; Maria Ignatieva; Charles H. Nilon; Peter Werner; Wayne C. Zipperer
2013-01-01
Urbanization destroys or modifi es native habitats and creates new ones with its infrastructure. Because of these changes, urban landscapes favor non-native and native species that are generalists. Nevertheless, cities reveal a great variety of habitats and species, and, especially in temperate cities, the diversity of vascular plants and birds can be higher than in...
da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G
2015-01-01
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150
Pestov, S V; Paniukova, E V
2013-01-01
The data on the distribution of 34 species of bloodsucking mosquitoes and on 42 horsefly species of the fauna of the northeastern Russian Plain are given. The analysis of the landscape and zonal changes in species diversity and their abundance was performed. Species diversity of these families increased northwards. Two borders of the fauna's depletion were discovered: at the border between the middle and northern taiga subzones (mosquitoes and horseflies) and at the border between the northernmost taiga subzone and the forest-tundra zone (horseflies only). The northern and southern boundaries of species ranges in the region are identified.
Are ecosystem services stabilized by differences among species? A test using crop pollination.
Winfree, Rachael; Kremen, Claire
2009-01-22
Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.
NASA Astrophysics Data System (ADS)
Roca, Roberto; Adkins, Leslie; Wurschy, Maria Christina; Skerl, Kevin
1996-11-01
Future conservation efforts will need to transcend geopolitical boundaries in efforts to protect entire landscapes and ecosystems. Neotropical migratory birds are as a group a useful conservation tool for linking diverse landscapes and people due to their dependence on multiple habitats, sensitivity to habitat changes, and universal public appeal. The conservation of neotropical migrants can therefore function as a powerful hemispheric umbrella for ecosystem protection. Efforts to protect neotropical migratory birds on their nonbreeding grounds have traditionally been focused on Mexico, Central America, and the Caribbean. To assess the importance of South America to neotropical migrants, an ecoregional classification system was used to determine species distributions in the Andean/Southern Cone Region (Bolivia, Colombia, Ecuador, Paraguay, Peru, and Venezuela). The occurrence of migrants in protected areas that are part of The Nature Conservancy's Parks in Peril program was also assessed. Of the 406 neotropical migrant species, nearly one third (132) occur as regular nonbreeding residents in the region and for almost half of these species (53), South America is their main nonbreeding ground. All Parks in Peril sites were found to harbor neotropical migrants. Forty-eight species (36%) have declining longterm North American Breeding Bird Survey population trends and/or high Partners in Flight concern scores and thus are of significant conservation concern. Most importantly, 29 species (22%) of conservation concern use South America as their primary nonbreeding ground, indicating a need for focused conservation action. The nature of the ecoregional approach used in this endeavor makes future prioritization of ecoregions and conservation strategies for neotropical migrants across national boundaries possible. The ability to link diverse landscapes using a common element such as migratory birds allows for unique transboundary partnerships and opportunities for habitat conservation, which support the goal of the Conservancy's new Migratory Bird Initiative.
Roger W. Perry; Ronald E. Thill
2008-01-01
We examined attributes of 45 roost sites used by 17 adult male evening bats (Nycticeius humeralis) in a diverse forested landscape within the Ouachita Mountains, Arkansas. Bats roosted in a diverse array of substrates, including live or dead Pinus echinata $15 cm diam at breast height (29% of roosts) and small (,10 cm) understory or midstory...
sGD: software for estimating spatially explicit indices of genetic diversity.
Shirk, A J; Cushman, S A
2011-09-01
Anthropogenic landscape changes have greatly reduced the population size, range and migration rates of many terrestrial species. The small local effective population size of remnant populations favours loss of genetic diversity leading to reduced fitness and adaptive potential, and thus ultimately greater extinction risk. Accurately quantifying genetic diversity is therefore crucial to assessing the viability of small populations. Diversity indices are typically calculated from the multilocus genotypes of all individuals sampled within discretely defined habitat patches or larger regional extents. Importantly, discrete population approaches do not capture the clinal nature of populations genetically isolated by distance or landscape resistance. Here, we introduce spatial Genetic Diversity (sGD), a new spatially explicit tool to estimate genetic diversity based on grouping individuals into potentially overlapping genetic neighbourhoods that match the population structure, whether discrete or clinal. We compared the estimates and patterns of genetic diversity using patch or regional sampling and sGD on both simulated and empirical populations. When the population did not meet the assumptions of an island model, we found that patch and regional sampling generally overestimated local heterozygosity, inbreeding and allelic diversity. Moreover, sGD revealed fine-scale spatial heterogeneity in genetic diversity that was not evident with patch or regional sampling. These advantages should provide a more robust means to evaluate the potential for genetic factors to influence the viability of clinal populations and guide appropriate conservation plans. © 2011 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Wallin, David O.; Cohen, Warren B.; Bradshaw, G. A.; Spies, T. A.; Hansen, A.; Huff, M. H.; Lehmkuhl, J. F.; Raphael, M. G.; Ripple, W. J.
1998-01-01
While there is widespread recognition of the importance of preserving biological diversity there is considerable uncertainty about how to map current patterns of diversity and monitor changes through time. Ground-based approaches are impractical for examining regional patterns of biological diversity, for monitoring change, and they may actually overlook important higher-order phenomena. Thus, there is a critical need for innovative techniques to examine land-use effects on biological diversity at the landscape and regional scales. In this project, we have used satellite-based remote sensing to examine land-use effects on forest ecosystems in the Pacific NorthWest region (PNW) of the U.S.A. Rates and patterns of forest change throughout the region were quantified for the period from 1972 to 1993. This information was then used to map changes in the abundance and distribution of potential habitat for selected vertebrate species. The results of this project will be useful for identifying "keystone" stands that are important in maintaining habitat connectivity at the regional scale and for evaluating the impact of future land-use on vertebrate diversity throughout the region. The approaches developed here will also be useful in other forested regions throughout the world.
Frank, Hannah K; Frishkoff, Luke O; Mendenhall, Chase D; Daily, Gretchen C; Hadly, Elizabeth A
2017-08-01
If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.
Holland, Greg J; Clarke, Michael F; Bennett, Andrew F
2017-04-01
Prescribed burning to achieve management objectives is a common practice in fire-prone regions worldwide. Structural components of habitat that are combustible and slow to develop are particularly susceptible to change associated with prescribed burning. We used an experimental, "whole-landscape" approach to investigate the effect of differing patterns of prescribed burning on key habitat components (logs, stumps, dead trees, litter cover, litter depth, and understorey vegetation). Twenty-two landscapes (each ~100 ha) were selected in a dry forest ecosystem in southeast Australia. Experimental burns were conducted in 16 landscapes (stratified by burn extent) while six served as untreated controls. We measured habitat components prior to and after burning. Landscape burn extent ranged from 22% to 89% across the 16 burn treatments. With the exception of dead standing trees (no change), all measures of habitat components declined as a consequence of burning. The degree of loss increased as the extent to which a landscape was burned also increased. Prescribed burning had complex effects on the spatial heterogeneity (beta diversity) of structural components within landscapes. Landscapes that were more heterogeneous pre-fire were homogenized by burning, while those that were more homogenous pre-fire tended to display greater differentiation post-burning. Thus, the notion that patch mosaic burning enhances heterogeneity at the landscape-scale depends on prior conditions. These findings have important management implications. Where prescribed burns must be undertaken, effects on important resources can be moderated via control of burn characteristics (e.g., burn extent). Longer-term impacts of prescribed burning will be strongly influenced by the return interval, given the slow rate at which some structural components accumulate (decades to centuries). Management of habitat structural components is important given the critical role they play in (1) provision of habitat resources for diverse organisms, (2) retention of moisture and nutrients in otherwise dry, low-productivity systems, and (3) carbon storage. © 2016 by the Ecological Society of America.
Yurek, Simeon; DeAngelis, Donald L.; Trexler, Joel C.; Klassen, Stephen; Larsen, Laurel G.
2016-01-01
In flood-pulsed ecosystems, hydrology and landscape structure mediate transfers of energy up the food chain by expanding and contracting in area, enabling spatial expansion and growth of fish populations during rising water levels, and subsequent concentration during the drying phase. Connectivity of flooded areas is dynamic as waters rise and fall, and is largely determined by landscape geomorphology and anisotropy. We developed a methodology for simulating fish dispersal and concentration on spatially-explicit, dynamic floodplain wetlands with pulsed food web dynamics, to evaluate how changes in connectivity through time contribute to the concentration of fish biomass that is essential for higher trophic levels. The model also tracks a connectivity index (DCI) over different compass directions to see if fish biomass dynamics can be related in a simple way to topographic pattern. We demonstrate the model for a seasonally flood-pulsed, oligotrophic system, the Everglades, where flow regimes have been greatly altered. Three dispersing populations of functional fish groups were simulated with empirically-based dispersal rules on two landscapes, and two twelve-year time series of managed water levels for those areas were applied. The topographies of the simulations represented intact and degraded ridge-and-slough landscapes (RSL). Simulation results showed large pulses of biomass concentration forming during the onset of the drying phase, when water levels were falling and fish began to converge into the sloughs. As water levels fell below the ridges, DCI declined over different directions, closing down dispersal lanes, and fish density spiked. Persistence of intermediate levels of connectivity on the intact RSL enabled persistent concentration events throughout the drying phase. The intact landscape also buffered effects of wet season population growth. Water level reversals on both landscapes negatively affected fish densities by depleting fish populations without allowing enough time for them to regenerate. Testable, spatiotemporal predictions of the timing, location, duration, and magnitude of fish concentration pulses were produced by the model, and can be applied to restoration planning.
DEM-based analysis of landscape organization: 2) Application to catchment comparison
NASA Astrophysics Data System (ADS)
Seibert, J.; McGlynn, B.
2003-04-01
The delineation of homogeneous landscape elements (or "hydrologic response units") is often a prerequisite in field investigations and the application of semi-distributed hydrologic (or coupled hydrologic and biogeochemical) models. Delineation and quantification of dominant landscape elements requires methods to extract the features from digital elevation data or other readily available information. It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. In addition, we have found that that the degree of hillslope water expression in stormflow is partially a function of riparian to hillslope reservoir ratios and landscape organization. Therefore, we developed a simple approach for quantifying landscape organization and distributed riparian to hillslope area ratios (riparian buffer ratios), as described in the accompanying contribution. Here we use this method as a framework for comparing and classifying diverse catchments located in Europe, the U.S., and New Zealand. Based on the three catchments Maimai (New Zealand), Panola (Georgia) and Sleepers (Vermont) we obtained the following preliminary results: (1) Local area entering the stream channels was most variable at Maimai and consistently diffuse at Sleepers and Panola. Also the median local area entering the channel network was largest at Maimai and smallest at Sleepers and Panola. This demonstrates the degree of landscape dissection (highest for Maimai) and the concentration of hillslope inputs along the stream network. (2) Riparian areas were smallest at Maimai, larger at Sleepers, and largest at Panola. The combination of riparian zone extent and focused (Maimai) versus diffuse (Sleepers and Panola) hillslope inputs to riparian zones controls local riparian to hillslope area ratios (riparian buffer capacities). (3) Area was accumulated to a large extend in the channel heads in all catchments. At Sleepers about 75 percent of all area originated from sub-catchments of less than 5 ha, whereas this proportion was 50 and 40 percent at Panola and Maimai respectively.
Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts.
Sanford, Jeremy R; Wang, Xin; Mort, Matthew; Vanduyn, Natalia; Cooper, David N; Mooney, Sean D; Edenberg, Howard J; Liu, Yunlong
2009-03-01
Metazoan genes are encrypted with at least two superimposed codes: the genetic code to specify the primary structure of proteins and the splicing code to expand their proteomic output via alternative splicing. Here, we define the specificity of a central regulator of pre-mRNA splicing, the conserved, essential splicing factor SFRS1. Cross-linking immunoprecipitation and high-throughput sequencing (CLIP-seq) identified 23,632 binding sites for SFRS1 in the transcriptome of cultured human embryonic kidney cells. SFRS1 was found to engage many different classes of functionally distinct transcripts including mRNA, miRNA, snoRNAs, ncRNAs, and conserved intergenic transcripts of unknown function. The majority of these diverse transcripts share a purine-rich consensus motif corresponding to the canonical SFRS1 binding site. The consensus site was not only enriched in exons cross-linked to SFRS1 in vivo, but was also enriched in close proximity to splice sites. mRNAs encoding RNA processing factors were significantly overrepresented, suggesting that SFRS1 may broadly influence the post-transcriptional control of gene expression in vivo. Finally, a search for the SFRS1 consensus motif within the Human Gene Mutation Database identified 181 mutations in 82 different genes that disrupt predicted SFRS1 binding sites. This comprehensive analysis substantially expands the known roles of human SR proteins in the regulation of a diverse array of RNA transcripts.
Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.
2013-01-01
In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.
Middleton, B.; Wu, X.B.
2008-01-01
Agricultural development on floodplains contributes to hydrologic alteration and forest fragmentation, which may alter landscape-level processes. These changes may be related to shifts in the seed bank composition of floodplain wetlands. We examined the patterns of seed bank composition across a floodplain watershed by looking at the number of seeds germinating per m2 by species in 60 farmed and intact forested wetlands along the Cache River watershed in Illinois. The seed bank composition was compared above and below a water diversion (position), which artificially subdivides the watershed. Position of these wetlands represented the most variability of Axis I in a Nonmetric Multidimensional Scaling (NMS) analysis of site environmental variables and their relationship to seed bank composition (coefficient of determination for Axis 1: r2 = 0.376; Pearson correlation of position to Axis 1: r = 0.223). The 3 primary axes were also represented by other site environmental variables, including farming status (farmed or unfarmed), distance from the mouth of the river, latitude, and longitude. Spatial analysis based on Mantel correlograms showed that both water-dispersed and wind/water-dispersed seed assemblages had strong spatial structure in the upper Cache (above the water diversion), bur the spatial structure of water-dispersed seed assemblage was diminished in the lower Cache (below the water diversion), which lost floodpulsing. Bearing analysis also Suggested that water-dispersal process had a stronger influence on the overall spatial pattern of seed assemblage in the upper Cache, while wind/water-dispersal process had a stronger influence in the lower Cache. An analysis of the landscapes along the river showed that the mid-lower Cache (below the water diversion) had undergone greater land cover changes associated with agriculture than did the upper Cache watershed. Thus, the combination of forest fragmentation and hydrologic changes in the surrounding landscape may have had an influence on the seed bank composition and spatial distribution of the seed banks of the Cache River watershed. Our study suggests that the spatial pattern of seed bank composition may be influenced by landscape-level factors and processes.
Leaf litter arthropod responses to tropical forest restoration.
Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R
2016-08-01
Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.
Asian germplasm in American horticulture: new thoughts on an old theme
USDA-ARS?s Scientific Manuscript database
North American horticulture cultivates an astonishing diversity of ornamental species, from nearly every floristic region, but its landscapes are dominated by temperate species drawn from the Eastern Asiatic floristic region. The East Asiatic floristic region is one of the most diverse in the world...
NASA Astrophysics Data System (ADS)
Seufert, V.; Wood, S.; Reid, A.; Gonzalez, A.; Rhemtulla, J.; Ramankutty, N.
2014-12-01
The most important current driver of biodiversity loss is the conversion of natural habitats for human land uses, mostly for the purpose of food production. However, by causing this biodiversity loss, food production is eroding the very same ecosystem services (e.g. pollination and soil fertility) that it depends on. We therefore need to adopt more wildlife-friendly agricultural practices that can contribute to preserving biodiversity. Organic farming has been shown to typically host higher biodiversity than conventional farming. But how is the biodiversity benefit of organic management dependent on the landscape context farms are situated in? To implement organic farming as an effective means for protecting biodiversity and enhancing ecosystem services we need to understand better under what conditions organic management is most beneficial for species. We conducted a meta-analysis of the literature to answer this question, compiling the most comprehensive database to date of studies that monitored biodiversity in organic vs. conventional fields. We also collected information about the landscape surrounding these fields from remote sensing products. Our database consists of 348 study sites across North America and Europe. Our analysis shows that organic management can improve biodiversity in agricultural fields substantially. It is especially effective at preserving biodiversity in homogeneous landscapes that are structurally simplified and dominated by either cropland or pasture. In heterogeneous landscapes conventional agriculture might instead already hold high biodiversity, and organic management does not appear to provide as much of a benefit for species richness as in simplified landscapes. Our results suggest that strategies to maintain biodiversity-dependent ecosystem services should include a combination of pristine natural habitats, wildlife-friendly farming systems like organic farming, and high-yielding conventional systems, interspersed in structurally diverse, heterogeneous landscapes.
Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei
2014-01-01
Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning. PMID:25251460
Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei
2014-01-01
Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.
Landscape pattern and car use: Linking household data with satellite imagery
NASA Astrophysics Data System (ADS)
Keller, R.; Vance, C.
2013-12-01
Landscape pattern has long been hypothesized to influence automobile dependency. Because choices about land development tend to have long-lasting impacts that span over decades, understanding the magnitude of this influence is critical to the design of policies to reduce emissions and other negative externalities associated with car use. Combining household survey data from Germany with satellite imagery and other geo-referenced data sources, we undertake an econometric analysis of the relation between landscape pattern and automobile dependency. Specifically, we employ a two-part model to investigate two dimensions of car use, the discrete decision to own a car and, conditional upon ownership, the continuous decision of how far to drive. Results indicate that landscape pattern, as captured by measures of both land cover (e.g. the extent of open space and landscape diversity) and land use (e.g. the density of regional businesses) are important predictors of car ownership and use. Other policy-relevant variables, such as fuel prices and public transit infrastructure, are also identified as correlates. Based on the magnitude of our estimates, we conclude that carefully considered land development and zoning measures - ones that encourage dense development, diverse land cover and mixed land use - can have beneficial impacts in reducing car dependency that extend far into the future. Key terms: Landscape pattern, Satellite imagery, Germany, Two-part model Figure 1. Distribution of Elasticities of Landscape and Social Effects on German Household Weekly Car Use Results from Two Part Model N = 13,089 (probit) N = 10,987 (OLS)Robust standard errors in parentheses***, **, and *, denotes significance at the 0.01, 0.05, and 0.1 levels
Vegetation-site relationships and fire history of a savanna-glade-woodland mosaic in the Ozarks
Sean E. Jenkins; Richard Guyette; Alan J. Rebertus
1997-01-01
There is a growing interest in reconstructing past disturbance regimes and how they influenced plant composition, structure and landscape pattern. Such information is useful to resource managers for determining the effects of fire suppression on vegetation or tailoring prescribed fires to restore community and landscape diversity. In the spring of 1995, the National...
R.E. Haugo; C.B. Halpern; J.D. Bakker
2011-01-01
Forest-meadow ecotones are prominent and dynamic features of mountain ecosystems. Understanding how vegetation changes are shaped by long-term interactions with trees and are mediated by the physical environment is critical to predicting future trends in biological diversity across these landscapes. We examined 26 yr of vegetation change (1983-2009) across 20 forest-...
Colonizing Bodies: Corporate Power and Biotechnology in Young Adult Science Fiction
ERIC Educational Resources Information Center
Guerra, Stephanie
2009-01-01
The American cultural and political landscape has seen changes on the level of seismic shifts in the past four decades, thanks in part to the two very diverse fields of big business and biotechnology. Linking the two arenas together in the literary landscape is a growing body of young adult science fiction that envisions a future shaped profoundly…
2012-01-01
Background The most substantial and best preserved area of Atlantic Forest is within the biogeographical sub-region of Serra do Mar. The topographic complexity of the region creates a diverse array of microclimates, which can affect species distribution and diversity inside the forest. Given that Atlantic Forest includes highly heterogeneous environments, a diverse and medically important Culicidae assemblage, and possible species co-occurrence, we evaluated mosquito assemblages from bromeliad phytotelmata in Serra do Mar (southeastern Brazil). Methods Larvae and pupae were collected monthly from Nidularium and Vriesea bromeliads between July 2008 and June 2009. Collection sites were divided into landscape categories (lowland, hillslope and hilltop) based on elevation and slope. Correlations between bromeliad mosquito assemblage and environmental variables were assessed using multivariate redundancy analysis. Differences in species diversity between bromeliads within each category of elevation were explored using the Renyi diversity index. Univariate binary logistic regression analyses were used to assess species co-occurrence. Results A total of 2,024 mosquitoes belonging to 22 species were collected. Landscape categories (pseudo-F value = 1.89, p = 0.04), bromeliad water volume (pseudo-F = 2.99, p = 0.03) and bromeliad fullness (Pseudo-F = 4.47, p < 0.01) influenced mosquito assemblage structure. Renyi diversity index show that lowland possesses the highest diversity indices. The presence of An. homunculus was associated with Cx. ocellatus and the presence of An. cruzii was associated with Cx. neglectus, Cx. inimitabilis fuscatus and Cx. worontzowi. Anopheles cruzii and An. homunculus were taken from the same bromeliad, however, the co-occurrence between those two species was not statistically significant. Conclusions One of the main findings of our study was that differences in species among mosquito assemblages were influenced by landscape characteristics. The bromeliad factor that influenced mosquito abundance and assemblage structure was fullness. The findings of the current study raise important questions about the role of An. homunculus in the transmission of Plasmodium in Serra do Mar, southeastern Atlantic Forest. PMID:22340486
Marques, Tatiani C; Bourke, Brian P; Laporta, Gabriel Z; Sallum, Maria Anice Mureb
2012-02-16
The most substantial and best preserved area of Atlantic Forest is within the biogeographical sub-region of Serra do Mar. The topographic complexity of the region creates a diverse array of microclimates, which can affect species distribution and diversity inside the forest. Given that Atlantic Forest includes highly heterogeneous environments, a diverse and medically important Culicidae assemblage, and possible species co-occurrence, we evaluated mosquito assemblages from bromeliad phytotelmata in Serra do Mar (southeastern Brazil). Larvae and pupae were collected monthly from Nidularium and Vriesea bromeliads between July 2008 and June 2009. Collection sites were divided into landscape categories (lowland, hillslope and hilltop) based on elevation and slope. Correlations between bromeliad mosquito assemblage and environmental variables were assessed using multivariate redundancy analysis. Differences in species diversity between bromeliads within each category of elevation were explored using the Renyi diversity index. Univariate binary logistic regression analyses were used to assess species co-occurrence. A total of 2,024 mosquitoes belonging to 22 species were collected. Landscape categories (pseudo-F value = 1.89, p = 0.04), bromeliad water volume (pseudo-F = 2.99, p = 0.03) and bromeliad fullness (Pseudo-F = 4.47, p < 0.01) influenced mosquito assemblage structure. Renyi diversity index show that lowland possesses the highest diversity indices. The presence of An. homunculus was associated with Cx. ocellatus and the presence of An. cruzii was associated with Cx. neglectus, Cx. inimitabilis fuscatus and Cx. worontzowi. Anopheles cruzii and An. homunculus were taken from the same bromeliad, however, the co-occurrence between those two species was not statistically significant. One of the main findings of our study was that differences in species among mosquito assemblages were influenced by landscape characteristics. The bromeliad factor that influenced mosquito abundance and assemblage structure was fullness. The findings of the current study raise important questions about the role of An. homunculus in the transmission of Plasmodium in Serra do Mar, southeastern Atlantic Forest.
Constance I. Millar; Bohun B. Kinloch; Robert D. Westfall
1992-01-01
Genetic diversity in sugar plne will be severely reduced by the blister rust pandemic predicted within the next 50 to 75 years. We model effects of the epidemic on genetic diversity at the stand and landscape levels for both natural and artificial regeneration. In natural stands, because natural frequencies of the dominant gene (R) for resistance are low, the most...
Anthropogenic Halo Disturbances Alter Landscape and Plant Richness: A Ripple Effect
Liu, Bingliang; Su, Jinbao; Chen, Jianwei; Cui, Guofa; Ma, Jianzhang
2013-01-01
Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs), with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence–here we term these “Halo disturbance effects” (HDEs). We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed) as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies. PMID:23424648
Fine-scale genetic response to landscape change in a gliding mammal.
Goldingay, Ross L; Harrisson, Katherine A; Taylor, Andrea C; Ball, Tina M; Sharpe, David J; Taylor, Brendan D
2013-01-01
Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km) and temporal scales (20-50 years) in the squirrel glider (Petaurus norfolcensis), a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity.
NASA Astrophysics Data System (ADS)
Henry, Mary Catherine
The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.
Poulos, Helen M; Camp, Ann E
2010-04-01
The abundance and distribution of species reflect how the niche requirements of species and the dynamics of populations interact with spatial and temporal variation in the environment. This study investigated the influence of geographical variation in environmental site conditions on tree dominance and diversity patterns in three topographically dissected mountain ranges in west Texas, USA, and northern Mexico. We measured tree abundance and basal area using a systematic sampling design across the forested areas of three mountain ranges and related these data to a suite of environmental parameters derived from field and digital elevation model data. We employed cluster analysis, classification and regression trees (CART), and rarefaction to identify (1) the dominant forest cover types across the three study sites and (2) environmental influences on tree distribution and diversity patterns. Elevation, topographic position, and incident solar radiation were the major influences on tree dominance and diversity. Mesic valley bottoms hosted high-diversity vegetation types, while hotter and drier mid-slopes and ridgetops supported lower tree diversity. Valley bottoms and other topographic positions shared few species, indicating high species turnover at the landscape scale. Mountain ranges with high topographic complexity also had higher species richness, suggesting that geographical variability in environmental conditions was a major influence on tree diversity. This study stressed the importance of landscape- and regional-scale topographic variability as a key factor controlling vegetation pattern and diversity in southwestern North America.