Science.gov

Sample records for functionally graded coatings

  1. Functionally graded mullite coatings for gas turbines

    NASA Astrophysics Data System (ADS)

    Kulkarni, Tushar

    The next generation of heat exchangers and gas turbines require high performance materials as they need to operate at higher temperatures for higher efficiency. SiC and Si3N4 are promising candidates as they have excellent high temperature properties. However, when used in complex combustion environments found in gas-turbine applications, these materials have two major concerns; namely hot-corrosion and recession. It is well established that environmental barrier coatings (EBC) can be utilized to overcome these limitations. Although chemical vapor deposited (CVD) mullite (3Al2O 3.2SiO2) coatings developed before this study have shown promise in protecting Si-based substrates, there is concern that the silica content within the mullite coating itself might be susceptible to hot-corrosion and recession during long term exposure to corrosive atmospheres containing Na/V salts and water vapor. There is thus strong motivation to substantially reduce or even virtually eliminate the silica component from the surfaces of mullite coatings that are in direct contact with atmospheres containing corrosive oxides and steam. In this study, CVD has been used to deposit mullite coatings with potential promise to protect Si-based ceramics for high temperature applications. The composition of these functionally graded mullite coatings was varied from silica-rich close to the coating/substrate (SiC) interface for coefficient of thermal expansion match to alumina-rich towards the outer surface of the coating. In the process, the highest alumina-rich mullite ever reported has been deposited. The phase transformation and hot-corrosion behavior of the coatings was also investigated in this work. The coatings show immense potential to protect Si-based ceramics. It is expected that these coatings will have very broad impact by enabling gas turbines to operate at higher temperatures leading to improved fuel efficiency and reduced emissions.

  2. Functionally graded bioactive coatings: From fabrication to testing

    NASA Astrophysics Data System (ADS)

    Foppiano, Silvia

    Every year about half a million Americans undergo total joint replacement surgery of some kind. This number is expected to steadily increase in the future. About 20% of these patients will need a revision surgery because of implant failure, with a significant increase in health care cost. Current implant materials for load bearing applications must be strong enough to support the loads involved in daily activities, and bioinert, to limit reactivity in the body that may cause inflammatory and other adverse reactions. Metal alloys are typically used as materials for load bearing implants and rely on mechanical interlocking to achieve fixation which can be improved by using bone cements. To improve implant osteointegration, metal implants have been coated with a bone-like mineral: hydroxyapatite (HA). The plasma spray technique is commonly used to apply the HA coating. Such implants do not require the use of bone cement. Plasma sprayed HA coated implants are FDA approved and currently on the market, but their properties are not reproducible or reliable. Thus, coating delamination can occur. Our research group developed a novel family of bioactive glasses which were enameled onto titanium alloy using a functionally graded approach. We stratified the coating with different glass compositions to fulfill different functions. We coupled a first glass layer, with a good CTE match to the alloy, with a second layer of bioactive glass obtaining a functionally graded bioactive coating (FGC). In this thesis for the first time the cytocompatibility of novel bioactive glasses, and their functionally graded coatings on Ti6Al4V, was studied with an in vitro bone model (MC3T3-E1.4 mouse preosteblast cells). The novel bioactive glasses are cytocompatible and no compositional change is required. The fabrication process is reproducible, introduces a small (average 6 vol%) amount of crystallization, which does not significantly affect bioactivity in SBF as tested. The coatings are

  3. Functionally Graded Hydroxyapatite Coatings Doped with Antibacterial Components

    SciTech Connect

    Bai, Xiao; More, Karren Leslie; Rouleau, Christopher M; Rabiei, Afsaneh

    2010-01-01

    A series of functionally graded hydroxyapatite (FGHA) coatings incorporated with various percentages of silver were deposited on titanium substrates using ion beam assisted deposition (IBAD). The analysis of the coating s cross-section using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), equipped with energy dispersive X-ray spectroscopy (EDS), has shown a decreased crystallinity as well as a distribution of nano scale (10 ~ 50nm) silver particles from the coating/substrate interface to top surface. Both X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) results revealed the presence of hydroxyapatite within the coatings. The amount of Ag (wt. %) on the outer surface of the FGHA, as determined from X-ray photoelectron spectroscopy (XPS), ranged from 1.09 ~ 6.59, which was about half of the average Ag wt. % incorporated in the entire coating. Average adhesion strengths evaluated by pull-off tests were in the range of 83 6 - 88 3 MPa, which is comparable to 85 MPa for FGHA without silver. Further optical observations of failed areas illustrated that the dominant failure mechanism was epoxy failure and FGHA coating delamination was not observed.

  4. Functionally Graded Coating of Ni-Fe Fabricated by Pulse Electrodeposition

    NASA Astrophysics Data System (ADS)

    Torabinejad, V.; Aliofkhazraei, M.; Sabour Rouhaghdam, A.; Allahyarzadeh, M. H.

    2016-12-01

    Functionally graded (FG) coatings of Ni-Fe were deposited on mild steel substrate by applying pulse electrodeposition. First, the Ni-Fe FG coatings at constant frequency by gradually reducing the pulse duty cycle in eight steps (D coatings). In these coatings, the amount of Fe was gradually decreased from the substrate/coating interface toward the top surface. Next, the frequency was changed continuously at constant duty cycle (F Coatings), where partial changes were observed in the chemical composition of the coatings. In order to assess corrosion and the tribological behavior of the coatings, potentiodynamic and pin-on-disk tests were conducted. The corrosion tests showed that the corrosion resistance of the D coatings is higher than the F coatings. In addition, increasing the pulse frequency decreased the corrosion resistance of the D coatings. Finally, the wear test results showed that reduction of frequency improves the wear resistance of the D coatings.

  5. Novel Investigation on Nanostructured Multilayer and Functionally Graded Ni-P Electroless Coatings on Stainless Steel

    NASA Astrophysics Data System (ADS)

    Anvari, S. R.; Monirvaghefi, S. M.; Enayati, M. H.

    2015-06-01

    In this study, step-wise multilayer and functionally graded Ni-P coatings were deposited with electroless in which the content of phosphorus and nickel would be changed gradually and step-wise through the thickness of the coatings, respectively. To compare the properties of these coatings with Ni-P single-layer coatings, three types of coatings with different phosphorus contents were deposited. Heat treatment of coatings was performed at 400 °C for 1 h. The microstructure and phase transformation of coatings were characterized by SEM/EDS, TEM, and XRD. The mechanical properties of coatings were studied by nanoindentation test. According to the results of the single-layer coatings, low P coating had the maximum hardness and also the ratio of hardness ( H) to elasticity modulus ( E) for the mentioned coating was maximum. In addition, low and medium P coatings had crystalline and semi-crystalline structure, respectively. The mentioned coatings had <111> texture and after heat treatment their texture didn't change. While high P coating had amorphous structure, after heat treatment it changed to crystalline structure with <100> texture for nickel grains. Furthermore, the results showed that functionally graded and step-wise multilayer coatings were deposited successfully by using the same initial bath and changing the temperature and pH during deposition. Nanoindentation test results showed that the hardness of the mentioned coatings changed from 670 Hv near the substrate to 860 Hv near the top surface of coatings. For functionally graded coating the hardness profile had gradual changes, while step-wise multilayer coating had step-wise hardness profile. After heat treatment trend of hardness profiles was changed, so that near the substrate, hardness was measured 1400 Hv and changed to 1090 Hv at the top coat.

  6. Co-electrodeposition of Functionally Graded Ni-NCZ (Nickel Coated ZrO2) Composite Coating

    NASA Astrophysics Data System (ADS)

    Bostani, B.; Parvini Ahmadi, N.; Yazdani, S.; Arghavanian, R.

    2017-02-01

    In this study, functionally NCZ (electroless nickel plated ZrO2) content graded Ni-NCZ composite coating has been successfully co-electrodeposited from a bath with gradually increasing of stirring rate. For this, different composite coatings were electroplated in the same bath with different stirring rates to find the optimum condition. SEM, XRD, EDX and electrochemical studies showed that co-electrodeposition in a bath with stirring rate of 250 rpm results in the maximum co-electrodeposited particle content and the best particle distribution and corrosion resistance. Also, this sample had the highest wear resistance with respect to the other samples. To produce NCZ content graded Ni-NCZ composite coating, the stirring rate was continuously increased from 0 to 250 rpm. The electroplated coating had a continuous gradient increasing of co-electrodeposited NCZ content from substrate toward the surface. This distribution of NCZ particles results in a gradient increasing of the microhardness in the cross section of the coating. Bend test revealed that the functionally graded composite coating shows better adhesion to the substrate compared with the uniformly distributed Ni-NCZ on the same substrate. This result has been attributed to lower mechanical mismatch between coating and substrate in the functionally graded composite coating with respect to the uniformly distributed one.

  7. FGM (Functionally Graded Material) Thermal Barrier Coatings for Hypersonic Structures - Design and Thermal Structural Analysis

    DTIC Science & Technology

    2007-06-29

    1 AOARD REPORT Contract No. 064043 FGM (Functionally Graded Material) Thermal Barrier Coatings for Hypersonic Structures – Design and...Material) Thermal Barrier Coatings for Hypersonic Structures ? Design and Thermal Structural Analysis 5a. CONTRACT NUMBER FA48690610074 5b. GRANT...modeling. Additionally, the TBCs will be applied to realistic hypersonic structures such as a cylindrical combustor and tested under realistic combustion

  8. Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass.

    PubMed

    Cattini, Andrea; Bellucci, Devis; Sola, Antonella; Pawłowski, Lech; Cannillo, Valeria

    2014-04-01

    Various bioactive glass/hydroxyapatite (HA) functional coatings were designed by the suspension plasma spraying (SPS) technique. Their microstructure, scratch resistance, and apatite-forming ability in a simulated body fluid (SBF) were compared. The functional coatings design included: (i) composite coating, that is, randomly distributed constituent phases; (ii) duplex coating with glass top layer onto HA layer; and (iii) graded coating with a gradual changing composition starting from pure HA at the interface with the metal substrate up to pure glass on the surface. The SPS was a suitable coating technique to produce all the coating designs. The SBF tests revealed that the presence of a pure glass layer on the working surface significantly improved the reactivity of the duplex and graded coatings, but the duplex coating suffered a relatively low scratch resistance because of residual stresses. The graded coating therefore provided the best compromise between mechanical reliability and apatite-forming ability in SBF. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 551-560, 2014.

  9. Microstructure and Properties of Thermally Sprayed Functionally Graded Coatings for Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Sutter, J. K.

    2003-01-01

    The use of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines offers significant benefits for aircraft engine performance but their useful lifetime is limited by their poor erosion resistance. High velocity oxy-fuel (HVOF) sprayed polymer/cermet functionally graded (FGM) coatings are being investigated as a method to address this technology gap by providing erosion and oxidation protection to polymer matrix composites. The FGM coating structures are based on a polyimide matrix filled with varying volume fractions of WC-Co. The graded coating architecture was produced using a combination of internal and external feedstock injection, via two computer-controlled powder feeders and controlled substrate preheating. Porosity, coating thickness and volume fraction of the WC-Co filler retained in the coatings were determined using standard metallographic techniques and computer image analysis. The pull-off strength (often referred to as the adhesive strength) of the coatings was evaluated according to the ASTM D 4541 standard test method, which measured the greatest normal tensile force that the coating could withstand. Adhesive/cohesive strengths were determined for three different types of coating structures and compared based on the maximum indicated load and the surface area loaded. The nature and locus of the fractures were characterized according to the percent of adhesive and/or cohesive failure, and the tested interfaces and layers involved were analyzed by Scanning Electron Microscopy.

  10. Inspection of functionally graded coating materials using frequency domain photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Steen, Thomas Lowell

    A frequency domain photoacoustic microscopy system has been developed for the inspection of functionally graded mullite coatings deposited on SiC substrates. Narrow-bandwidth surface acoustic waves (SAWs) are generated with an amplitude modulated laser source. A photorefractive crystal based interferometer coupled to a lock-in amplifier is used for the detection of the resulting surface displacements. The complex displacement field is mapped over a source-to-receiver distance of approximately 500mum in order to extract the wavelengths of SAWs at a given excitation frequency, from which the phase velocities are determined. SAW dispersion characteristics are sensitive to the elastic properties of the near surface region. The measured SAW dispersion is compared to a theoretical model in order to extract the elastic properties and thickness of the coatings. Frequency domain photoacoustic microscopy allows for the rapid, non-contact characterization of graded coatings and is potentially suitable for in-situ process control. The velocities of SAWs propagating in graded materials are found using the reflectance function technique combined with a transfer matrix approach. Theoretical results demonstrate that SAW dispersion in micron-scale functionally graded coatings over the 100-200 MHz frequency range is most sensitive to the mean elastic modulus of the coating and the coating thickness. In addition, the dispersion behavior is also influenced by the form of the elastic property variation through the coating thickness and can, in some cases, be used to determine the elastic property distribution. The photoacoustic microscopy technique was used to measure SAW dispersion on as-grown mullite coatings, and a simplex optimization algorithm was used to determine the mean elastic modulus and thickness through minimization of the error between measured and calculated SAW velocities. The results show agreement with independent measurements of the mean elastic modulus and thickness

  11. Processing and Characterization of Functionally Graded Hydroxyapatite Coatings for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Bai, Xiao

    Hydroxyapatite [Ca10(PO4)6(OH) 2, HA] has been widely applied as a coating on various biomedical bone/dental implants to improve biocompatibility and bioactivity. It has been observed that primary reasons leading to implantation failure of commercial HA coated implants processed by plasma spraying are the poor mechanical properties of coatings and infections accompanied by implantation. It has been also reported an ideal coating should be able to stimulate new bone growth at the initial stage of implantation and stay stable both mechanically and chemically thereafter. This research has investigated a functionally graded hydroxyapatite (FGHA) coating that is capable of improving the stability of implants, facilitating recovery, and preventing infections after implantation. A series of FGHA coatings with incorporated Ag 0 ˜ 13.53 wt. % has been deposited onto Ti substrate using ion beam assisted deposition (IBAD) with in-situ heat treatment. The compositional, microstructural, mechanical, and biological properties of coatings have been analyzed via various tests. The relationship among processing parameters, coating properties and biological behaviors has been established and the processing parameters for processing FGHA coatings with/without incorporated Ag have been optimized. Microstructure observations of coating cross section via transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) for set temperature coatings deposited at 450°C ˜ 750°C reveals that in-situ substrate temperature is the primary factor controlling the crystallinity of the coatings. The microstructure observation of cross section via TEM/STEM for both FGHA coatings with/without incorporated Ag has shown that coatings are dense and have a gradually decreased crystallinity from substrate/coating interface to top surface. In particular, the interface has an atomically intermixed structure; the region near the interface has a columnar grain structure whereas

  12. Time-dependent behavior and thermal fracture in functionally graded thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Rangaraj, Sudarshan V.

    The objective of this research was to characterize the thermo-mechanical response and fracture behavior of zirconia-bond coat (BC) alloy functionally graded thermal barrier coatings (TBCs) under high heat flux thermal loads. Under the resulting high surface temperatures and gradients, the coatings develop surface cracks as well as TBC-BC interface cracks. Time-dependent (viscoplastic) deformations in the TBC layers were the major cause for surface and interface fracture. Micromechanics models were developed to estimate the effective thermo-elastic properties and time-dependent response of YSZ-BC alloy particulate composites that constitute the layers of a graded TBC. These effective properties were then utilized in numerical fracture mechanics analyses to study the influence of coating architecture on its fracture response. The driving force for surface crack initiation and for the formation of multiple surface cracks was found to increase with compositional gradation. It was also found that replacing a single-layer (non-graded) TBC by a functionally graded TBC of comparable thermal resistance resulted in a reduced driving force for interface crack growth. The formation of multiple surface cracks and its higher flexural stiffness were found to impart a graded TBC with a higher resistance to interface fracture. Methodologies were developed to estimate the fracture resistance and toughness of graded TBCs. It was found that both the single-layer zirconia TBC as well as functionally graded TBCs showed an increase in fracture resistance with crack advance. The addition of BC alloy was found to enhance the fracture toughness of the layers in a graded TBC. However, the magnitude of toughness enhancement seen was not very significant. Laser thermal shock experiments were conducted on plasma sprayed single-layer zirconia-BC alloy composite coatings. Coatings with three different compositions, of similar thermal resistance were considered. It was found that coatings with a

  13. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    SciTech Connect

    Prof. Stratis V. Sotirchos

    2001-02-01

    The main objective of this research project was the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Since alumina has excellent resistance to corrosion but coefficient than silicon carbide, the key idea of this project has been to develop graded coatings with composition varying smoothly along their thickness between an inner (base) layer of mullite in contact with the silicon carbide component and an outer layer of pure alumina, which would function as the actual protective coating of the component. (Mullite presents very good adhesion towards silicon carbide and has thermal expansion coefficient very close to that of the latter.)

  14. Functionally graded Co-Cr-Mo coating on Ti-6Al-4V alloy structures.

    PubMed

    Vamsi Krishna, B; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit

    2008-05-01

    Functionally graded, hard and wear-resistant Co-Cr-Mo alloy was coated on Ti-6Al-4V alloy with a metallurgically sound interface using Laser Engineering Net Shaping (LENS). The addition of the Co-Cr-Mo alloy onto the surface of Ti-6Al-4V alloy significantly increased the surface hardness without any intermetallic phases in the transition region. A 100% Co-Cr-Mo transition from Ti-6Al-4V was difficult to produce due to cracking. However, using optimized LENS processing parameters, crack-free coatings containing up to 86% Co-Cr-Mo were deposited on Ti-6Al-4V alloy with excellent reproducibility. Human osteoblast cells were cultured to test in vitro biocompatibility of the coatings. Based on in vitro biocompatibility, increasing the Co-Cr-Mo concentration in the coating reduced the live cell numbers after 14 days of culture on the coating compared with base Ti-6Al-4V alloy. However, coated samples always showed better bone cell proliferation than 100% Co-Cr-Mo alloy. Producing near net shape components with graded compositions using LENS could potentially be a viable route for manufacturing unitized structures for metal-on-metal prosthetic devices to minimize the wear-induced osteolysis and aseptic loosening that are significant problems in current implant design.

  15. Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Khor, K. A.; Cheang, P.

    1998-03-01

    Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.

  16. The axisymmetric torsional contact problem of a functionally graded piezoelectric coated half-space

    NASA Astrophysics Data System (ADS)

    Su, Jie; Ke, Liao-Liang; Wang, Yue-Sheng; Xiang, Yang

    2017-01-01

    In this article, we study the axisymmetric torsional contact problem of a half-space coated with functionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thickness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral transform technique and reduce the problem to a singular integral equation, and then numerically determine the unknown contact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.

  17. Initiation of surface and interface edge cracks in functionally graded ceramic thermal barrier coatings

    SciTech Connect

    Kokini, K.; Case, M.

    1997-04-01

    The initiation of surface and interface edge cracks in functionally graded ceramic thermal barrier coatings resulting from the application of a thermal load is studied. For a given specimen configuration, the singular behavior of the thermal stresses is analytically determined in terms of a singularity power {beta} and pseudo-stress intensity factors K{sub 1} and K{sub 2}. Crack initiation at the surface at the interface is related to the surface temperature and the temperature difference between the surface of the coating and the substrate. The experimental results are used to provide Weibull curves for the probability of survival of plasma sprayed mullite and CoCrAlY coating systems.

  18. Functionally Graded Alumina/Mullite Coatings for Protection of Silicon Carbide Ceramic Components from Corrosion

    SciTech Connect

    Sotirchos, S.V.

    1997-04-01

    During the six months of this reporting period, we accomplished the following: Preparatory work was done on the development of the feed supply system (for mixtures of AlCl{sub 3}, SiCl{sub 4}, H{sub 2} and CO{sub 2}) and effluent treatment section for the CVD system we plan to employ for coating preparation. A comprehensive literature survey of past work done on the chemical vapor deposition of silica, alumina and aluminosilicates (mullite) was carried out, and work was initiated on the study of thermochemical equilibrium in the Al/Si/Cl/C/O/H system so as to identify the boundaries of the region of the space of operating parameters and conditions where preparation of functionally graded mullite/ alumina coatings through CVD from metal chloride, CO{sub 2}, and H{sub 2} is feasible. Since the alumina/mullite films that are proposed to be developed can also be applied to carbon matrix composites provided that a layer that bridges the gap that exists between the thermal expansion coefficient of carbon and that of mullite is employed, experiments were conducted on the preparation of compositionally graded carbon/silicon carbide coatings. Deposition from mixtures of ethylene and methyltrichlorosilane or tetrachlorosilane (silicon tetrachloride) in hydrogen was used for the preparation of SiC/C coatings, and our experiments focused on the study of the occurrence of multiple steady states in the deposition process and the effects of the type of chlorosilane on the deposition rate and the deposit composition and their variation along the length of the reactor. The results showed that when operation is carried out outside the multiplicity region, codeposition of SiC and C from ethylene and chlorosilanes is a feasible route for preparation of SiC/C graded coatings.

  19. Preparation of a Functionally Graded Fluoropolymer Thin Film and Its Application to Antireflective Coating

    NASA Astrophysics Data System (ADS)

    Senda, Kazuo; Matsuda, Tsuyoshi; Kawanishi, Takumi; Tanaka, Kuniaki; Usui, Hiroaki

    2013-05-01

    Fluoropolymer thin films were prepared by the ion-assisted vapor deposition polymerization (IAD) of 2-(perfluorohexyl) ethylacrylate (Rf-6) under Ar ion irradiation. The ion acceleration voltage Va largely affected the film characteristics. With increasing Va, the adhesion strength between the film and the substrate improved, while the surface energy and the refractive index increased. To attain a high adhesion strength, a low surface energy, and a low optical reflectivity simultaneously, a functionally graded film was prepared by varying Va from 300 to 0 V continually in the course of film growth. As a consequence, an antireflective coating with good adhesion and low surface energy was obtained. The optical reflectivity of a glass substrate was reduced from 4.9 to 0.55% at a wavelength of 400 nm by depositing a 100-nm-thick single-layer functionally graded fluoropolymer film. The surface energy of this film was 8.5 mJ/m2.

  20. Graded functionalization of biomaterial surfaces using mussel-inspired adhesive coating of polydopamine.

    PubMed

    Perikamana, Sajeesh Kumar Madhurakkat; Shin, Young Min; Lee, Jin Kyu; Lee, Yu Bin; Heo, Yunhoe; Ahmad, Taufiq; Park, So Yeon; Shin, Jisoo; Park, Kyung Min; Jung, Hyun Suk; Cho, Seung-Woo; Shin, Heungsoo

    2017-08-19

    Biomaterials with graded functionality have various applications in cell and tissue engineering. In this study, by controlling oxidative polymerization of dopamine, we demonstrated universal techniques for generating chemical gradients on various materials with adaptability for secondary molecule immobilization. Diffusion-controlled oxygen supply was successfully exploited for coating of polydopamine (PD) in a gradient manner on different materials, regardless of their surface chemistry, which resulted in gradient in hydrophilicity and surface roughness. The PD gradient controlled graded adhesion and spreading of human mesenchymal stem cells (hMSCs) and endothelial cells. Furthermore, the PD gradient on these surfaces served as a template to allow for graded immobilization of different secondary biomolecules such as cell adhesive arginine-glycine-aspartate (RGD) peptides and siRNA lipidoid nanoparticles (sLNP) complex, for site-specific adhesion of human mesenchymal stem cells, and silencing of green fluorescent protein (GFP) expression on GFP-HeLa cells, respectively. In addition, the same approach was adapted for generation of nanofibers with surface in graded biomineralization under simulated body fluid (SBF). Collectively, oxygen-dependent generation of PD gradient on biomaterial substrates can serve as a simple and versatile platform that can be used for various applications realizing in vivo tissue regeneration and in vitro high-throughput screening of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  2. Novel Functionally Graded Thermal Barrier Coatings in Coal-Fired Power Plant Turbines

    SciTech Connect

    Zhang, Jing

    2016-11-01

    This project presents a detailed investigation of a novel functionally graded coating material, pyrochlore oxide, for thermal barrier coating (TBC) in gas turbines used in coal-fired power plants. Thermal barrier coatings are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The ultimate goal of this research is to develop a manufacturing process to produce the novel low thermal conductivity and high thermal stability pyrochlore oxide based coatings with improved high-temperature durability. The current standard TBC, yttria stabilized zirconia (YSZ), has service temperatures limited to <1200°C, due to sintering and phase transition at higher temperatures. In contrast, pyrochlore oxide, e.g., lanthanum zirconate (La2Zr2O7, LZ), has demonstrated lower thermal conductivity and better thermal stability, which are crucial to high temperature applications, such as gas turbines used in coal-fired power plants. Indiana University – Purdue University Indianapolis (IUPUI) has collaborated with Praxair Surface Technologies (PST), and Changwon National University in South Korea to perform the proposed research. The research findings are critical to the extension of current TBCs to a broader range of high-temperature materials and applications. Several tasks were originally proposed and accomplished, with additional new opportunities identified during the course of the project. In this report, a description of the project tasks, the main findings and conclusions are given. A list of publications and presentations resulted from this research is listed in the Appendix at the end of the report.

  3. High-temperature thermo-mechanical behavior of functionally graded materials produced by plasma sprayed coating: Experimental and modeling results

    NASA Astrophysics Data System (ADS)

    Choi, Kang Hyun; Kim, Hyun-Su; Park, Chang Hyun; Kim, Gon-Ho; Baik, Kyoung Ho; Lee, Sung Ho; Kim, Taehyung; Kim, Hyoung Seop

    2016-09-01

    Thermal barrier coatings are widely used in aerospace industries to protect exterior surfaces from harsh environments. In this study, functionally graded materials (FGMs) were investigated with the aim to optimize their high temperature resistance and strength characteristics. NiCrAlY bond coats were deposited on Inconel-617 superalloy substrate specimens by the low vacuum plasma spraying technique. Functionally graded Ni-yttria-stabilized zirconia (YSZ) coatings with gradually varying amounts of YSZ (20%-100%) were fabricated from composite powders by vacuum plasma spraying. Heat shield performance tests were conducted using a high- temperature plasma torch. The temperature distributions were measured using thermocouples at the interfaces of the FGM layers during the tests. A model for predicting the temperature at the bond coating-substrate interface was established. The temperature distributions simulated using the finite element method agreed well with the experimental results.

  4. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    SciTech Connect

    1997-10-01

    The main objective of this research project is the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Mullite will be employed as the inner (base) layer and the composition of the film will be continuously changed to a layer of pure alumina, which will function as the actual protective coating of the component. Chemical vapor deposition reactions of silica, alumina, and aluminosilicates (mullite) through hydrolysis of aluminum and silicon chlorides in the presence of CO{sub 2} and H{sub 2} will be employed to deposit compositionally graded films of mullite and alumina. Our studies will include the kinetic investigation of the silica, alumina, and aluminosilicate deposition processes, characterization of the composition, microstructure, surface morphology, and mechanical behavior of the prepared films, and modeling of the various deposition processes. During this six-month reporting period, we continued the work on the development and construction of the thermogravimetric chemical vapor deposition system that we intend to employ for studying the deposition of alumina, silica, and aluminosilicates (such as mullite) from mixtures of metal chlorides in H{sub 2} and CO{sub 2}. Specifically, we worked on the development of the tubular flow reactor that will be used for producing aluminum chloride for delivery to the chemical vapor deposition system and of the vapor and gas supply system. Various problems arising from condensation of aluminum chlorides in some sections of the supply line were resolved, and we expect to perform experiments using mixtures containing AlCl{sub 3} in the next reporting period. Preliminary experiments on the

  5. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    SciTech Connect

    1998-03-01

    The main objective of this research project is the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Mullite will be employed as the inner (base) layer and the composition of the film will be continuously changed to a layer of pure alumina, which will function as the actual protective coating of the component. Chemical vapor deposition reactions of silica, alumina, and aluminosilicates (mullite) through hydrolysis of aluminum and silicon chlorides in the presence of CO{sub 2} and H{sub 2} will be employed to deposit compositionally graded films of mullite and alumina. Our studies will include the kinetic investigation of the silica, alumina, and aluminosilicate deposition processes, characterization of the composition, microstructure, surface morphology, and mechanical behavior of the prepared films, and modeling of the various deposition processes. During this reporting period, the construction and development of the chemical vapor deposition system was completed, and experiments were conducted on the deposition of alumina, silica, and aluminosilicates (such as mullite) from mixtures of AlCl{sub 3} and CH{sub 3}SiCl{sub 3} in CO{sub 2} and H{sub 2}. Work was mainly done on the investigation of the effects of the reaction temperature on the deposition kinetics. It was found that the temperature had a positive effect on the single oxides deposition rates and the codeposition rate. The apparent activation energy values extracted from the deposition rate vs. temperature curves in the high temperature region were similar for the three deposition processes, having a value around 20 kcal/mol. The codeposition rates were higher, by a

  6. Plane contact problem on indentation of a flat punch into a transversely-isotropic half-plane with functionally graded transversely-isotropic coating

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. S.; Volkov, S. S.; Aizikovich, S. M.; Mitrin, B. I.

    2017-02-01

    Plane contact problem of the theory of elasticity on indentation of a non-deformable punch with a flat base into an elastic transversely-isotropic half-plane with a transversely-isotropic functionally graded coating is considered. Elastic moduli of the coating vary with depth according to arbitrary functions. An approximated analytical solution effective for a whole range of geometrical parameter (relative layer thickness) of the problem is constructed. Some properties of the contact normal pressure under the punch are obtained analytically and illustrated by the numerical examples for a transversely-isotropic homogeneous and functionally graded coatings with different types of variation of elastic moduli with depth. The distinctions in distribution of contact normal pressure for homogeneous and functionally graded materials, coated and non-coated bodies are studied analytically and numerically.

  7. Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition.

    PubMed

    Farnoush, Hamidreza; Aghazadeh Mohandesi, Jamshid; Çimenoğlu, Hüseyin

    2015-06-01

    In the present study, functionally graded coatings of HA/TiO2 nanoparticles and HA-TiO2 nanocomposite coatings with 0, 10 and 20 wt% of TiO2 were fabricated by electrophoretic deposition on Ti-6Al-4V substrate. The functionally graded structure of HA/TiO2 coatings was formed by gradual addition of HA suspension into the deposition cell containing TiO2 nanoparticles. Micro-scratch test results showed the highest critical distances of crack initiation and delamination, normal load before failure and critical contact pressures for functionally graded coating. It was observed that the improvement of adhesion strength and fracture toughness of functionally graded coatings would be due to the reduction of thermal expansion coefficient mismatch between Ti-6Al-4V substrate and HA. The results of potentiodynamic polarization measurements showed that the graded structure of the coating could efficiently increase the corrosion resistance of substrate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy

  9. Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding.

    PubMed

    Weidong, Zhu; Qibin, Liu; Min, Zheng; Xudong, Wang

    2008-11-01

    The application of plasma spray is the most popular method by which a metal-bioceramic surface composite can be prepared for the repair of biological hard-tissue, but this method has disadvantages. These disadvantages include poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In the investigation described in this article, a gradient bioceramic coating was prepared on a Ti-6Al-4V titanium alloy surface using a gradient composite design and wide-band laser cladding techniques. Using a trilayer-structure composed of a substratum, an alloy and bioceramics, the coating was chemically and metallurgically bonded with the substratum. The coating, which contains beta-tricalcium phosphate and hydroxyapatite, showed favorable biocompatibility with the bone tissue and promoted in vivo osteogenesis.

  10. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    NASA Astrophysics Data System (ADS)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  11. SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures

    NASA Astrophysics Data System (ADS)

    Abdollahi, Alireza; Ehsani, Naser; Valefi, Zia; Khalifesoltani, Ali

    2017-05-01

    A SiC nanoparticle toughened-SiC/MoSi2-SiC functionally graded oxidation protective coating on graphite was prepared by reactive melt infiltration (RMI) at 1773 and 1873 K under argon atmosphere. The phase composition and anti-oxidation behavior of the coatings were investigated. The results show that the coating was composed of MoSi2, α-SiC and β-SiC. By the variations of Gibbs free energy (calculated by HSC Chemistry 6.0 software), it could be suggested that the SiC coating formed at low temperatures by solution-reprecipitation mechanism and at high temperatures by gas-phase reactions and solution-reprecipitation mechanisms simultaneously. SiC nanoparticles could improve the oxidation resistance of SiC/MoSi2-SiC multiphase coating. Addition of SiC nanoparticles increases toughness of the coating and prevents spreading of the oxygen diffusion channels in the coating during the oxidation test. The mass loss and oxidation rate of the SiC nanoparticle toughened-SiC/MoSi2-SiC-coated sample after 10-h oxidation at 1773 K were only 1.76% and 0.32 × 10-2 g/cm3/h, respectively.

  12. Functionally graded boron carbide

    SciTech Connect

    Petrovic, J.J.; McClellan, K.J.; Kise, C.D.; Hoover, R.C.; Scarborough, W.K.

    1998-12-31

    Lightweight body armor is important for the protection of US soldiers in the field. Here, fabrication techniques were developed for producing graded porosity B{sub 4}C, and for producing aluminum-B{sub 4}C and epoxy-B{sub 4}C functionally graded materials. The key fabrication aspect was obtaining the graded porosity B{sub 4}C. The feasibility of producing graded porosity B{sub 4}C using a grading of carbon densification aid produced from a gradient of furfuryl alcohol carbon precursor was demonstrated. This approach is quite promising, but it was not optimized in the present investigation. Graded porosity B{sub 4}C materials were produced by a layering approach using different size distributions of B{sub 4}C powders in the green state, and then densifying the layered assembly by hot pressing at 1,900 C. The hardness of uninfiltrated graded B{sub 4}C, aluminum infiltrated B{sub 4}C, and epoxy infiltrated B{sub 4}C was observed to be similar.

  13. Graded coatings for metallic implant alloys

    SciTech Connect

    Saiz, Eduardo; Tomsia, Antoni P.; Fujino, Shigeru; Gomez-Vega, Jose M.

    2002-08-01

    Graded glass and glass-hydroxyapatite coatings on Ti-based and Co-Cr alloys have been prepared using a simple enameling technique. The composition of the glasses has been tailored to match the thermal expansion of the alloys. By controlling the firing time, and temperature, it has been possible to control the reactivity between the glass and the alloy and to fabricate coatings (25 to 150 mu m thick) with excellent adhesion to the substrate, resistant to corrosion and able to precipitate hydroxyapatite during in vitro tests in simulated body fluid.

  14. Transmitting and reflecting diffuser. [using ultraviolet grade fused silica coatings

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Burcher, E. E.; Kopia, L. P. (Inventor)

    1977-01-01

    An ultraviolet grade fused silica substrate is coated with vaporized fused silica. The coating thickness is controlled, one thickness causing ultraviolet light to diffuse and another thickness causing ultraviolet light to reflect a near Lambertian pattern.

  15. Functionally-graded shape memory alloy by diffusion annealing of palladium-coated NiTi plates

    NASA Astrophysics Data System (ADS)

    Khaleghi, Fatemeh; Tajally, Mohammad; Emadoddin, Esmaeil; Mohri, Maryam

    2017-09-01

    Diffusion annealing of palladium-coated Ti-Ni plates was performed at temperatures ranging from 900 °C to 1,000 °C, to accomplish a compositional gradient in Ti-rich, Ti-Ni shape memory alloys. The aim of this study was to increase the transformation temperatures and transformation temperature intervals. Palladium diffusion profiles were measured by energy dispersive spectroscopy, and the corresponding approximate diffusion coefficients of the annealed specimens were calculated. The Gaussian solution of Fick's second law for the one-dimensional lattice diffusion of a tracer was used. The transformation behavior studies were performed by differential scanning calorimetry. It was depicted that annealed specimens show longer transformation intervals compared to the bare alloy. In addition, annealed specimens showed improved shape memory properties that were attributed to the lower amount of Ti2Ni precipitates in the diffusion layer. The shape memory behaviour of the samples was detected using micro-indentation at room temperature, followed by heating them above the austenite formation temperature to calculate the shape recovery ratio.

  16. Fatigue Characterization of Functionally Graded Metallic Alloys

    SciTech Connect

    Silva, F. S.

    2008-02-15

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting and solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.

  17. Fatigue Characterization of Functionally Graded Metallic Alloys

    NASA Astrophysics Data System (ADS)

    Silva, F. S.

    2008-02-01

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting and solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.

  18. Method of forming graded polymeric coatings or films

    DOEpatents

    Liepins, Raimond

    1983-01-01

    Very smooth polymeric coatings or films graded in atomic number and density can readily be formed by first preparing the coating or film from the desired monomeric material and then contacting it with a fluid containing a metal or a mixture of metals for a time sufficient for such metal or metals to sorb and diffuse into the coating or film. Metal resinate solutions are particularly advantageous for this purpose. A metallic coating can in turn be produced on the metal-loaded film or coating by exposing it to a low pressure plasma of air, oxygen, or nitrous oxide. The process permits a metallic coating to be formed on a heat sensitive substrate without the use of elevated temperatures.

  19. Spray coated nanosilver functional layers

    NASA Astrophysics Data System (ADS)

    Krzemiński, J.; Szałapak, J.; Dybowska-Sarapuk, L.; Jakubowska, M.

    2016-09-01

    Silver coatings are highly conductive functional layers. There are many different ways to product the silver coating but most of them need vacuum or high temperature. Spray coating is a technique that is free of this disadvantages - it doesn't need a cleanroom or high temperature. What's more the layer thickness is about 10 μm. In this article the spray coating process of silver nanolayer is described. Four different inks were tested and measured. The layer resistance was measured and show as a graph. After the layer resistance was measured the adhesion test was performed. The pull-off test was performed on testing machine with special self made module. To conclude the article include the test and measurements of spray coated nanosilver functional layers. The layers was examined for the current conductivity and adhesion force.

  20. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  1. A novel graded bioactive high adhesion implant coating

    NASA Astrophysics Data System (ADS)

    Brohede, Ulrika; Zhao, Shuxi; Lindberg, Fredrik; Mihranyan, Albert; Forsgren, Johan; Strømme, Maria; Engqvist, Håkan

    2009-06-01

    One method to increase the clinical success rate of metal implants is to increase their bone bonding properties, i.e. to develop a bone bioactive surface leading to reduced risks of interfacial problems. Much research has been devoted to modifying the surface of metals to make them become bioactive. Many of the proposed methods include depositing a coating on the implant. However, there is a risk of coating failure due to low substrate adhesion. This paper describes a method to obtain bioactivity combined with a high coating adhesion via a gradient structure of the coating. Gradient coatings were deposited on Ti (grade 5) using reactive magnetron sputtering with increasing oxygen content. To increase the grain size in the coating, all coatings were post annealed at 385 °C. The obtained coating exhibited a gradual transition over 70 nm from crystalline titanium oxide (anatase) at the surface to metallic Ti in the substrate, as shown using cross-section transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling. Using scratch testing, it could be shown that the adhesion to the substrate was well above 1 GPa. The bioactivity of the coating was verified in vitro by the spontaneous formation of hydroxylapatite upon storage in phosphate buffer solution at 37 °C for one week. The described process can be applied to implants irrespective of bulk metal in the base and should introduce the possibility to create safer permanent implants like reconstructive devices, dental, or spinal implants.

  2. Antireflective graded index silica coating, method for making

    DOEpatents

    Yoldas, Bulent E.; Partlow, Deborah P.

    1985-01-01

    Antireflective silica coating for vitreous material is substantially non-reflecting over a wide band of radiations. This is achieved by providing the coating with a graded degree of porosity which grades the index of refraction between that of air and the vitreous material of the substrate. To prepare the coating, there is first prepared a silicon-alkoxide-based coating solution of particular polymer structure produced by a controlled proportion of water to alkoxide and a controlled concentration of alkoxide to solution, along with a small amount of catalyst. The primary solvent is alcohol and the solution is polymerized and hydrolized under controlled conditions prior to use. The prepared solution is applied as a film to the vitreous substrate and rapidly dried. It is thereafter heated under controlled conditions to volatilize the hydroxyl radicals and organics therefrom and then to produce a suitable pore morphology in the residual porous silica layer. The silica layer is then etched in order to enlarge the pores in a graded fashion, with the largest of the pores remaining being sufficiently small that radiations to be passed through the substrate are not significantly scattered. For use with quartz substrates, extremely durable coatings which display only 0.1% reflectivity have been prepared.

  3. Interfaces in graded coatings on titanium-based implants

    PubMed Central

    Lopez-Esteban, S.; Gutierrez-Gonzalez, C. F.; Gremillard, L.; Saiz, E.; Tomsia, A. P.

    2013-01-01

    Graded bilayered glass-ceramic composite coatings on Ti6Al4V substrates were fabricated using an enameling technique. The layers consisted of a mixture of glasses in the CaO-MgO-Na2O-K2O-P2O5 system with different amounts of calcium phosphates (CPs). Optimum firing conditions have been determined for the fabrication of coatings having good adhesion to the metal, while avoiding deleterious reactions between the glass and the ceramic particles. The final coatings do not crack or delaminate. The use of high-silica layers (>60 wt % SiO2) in contact with the alloy promotes long-term stability of the coating; glass-metal adhesion is achieved through the formation of a nanostructured Ti5Si3 layer. A surface layer containing a mixture of a low-silica glass (~53 wt % SiO2) and synthetic hydroxyapatite particles promotes the precipitation of new apatite during tests in vitro. The in vitro behavior of the coatings in simulated body fluid depends both on the composition of the glass matrix and the CP particles, and is strongly affected by the coating design and the firing conditions. PMID:18384170

  4. Graded index antireflective coatings for glass. Second annual report

    SciTech Connect

    Haggerty, J.S.

    1980-05-01

    M.I.T. is conducting research which will lead to a process for forming broad band antireflective (AR) coatings on glass. Use of these coatings increases the extractable heat from flat-plate solar collectors by 30 to 50% compared with their performance under equivalent solar flux, surface temperature and ambient conditions without broad band AR coatings. Graded index surface films can virtually eliminate reflection losses if controlled properly. Graded index films on a borosilicate glass (Corning Glass Works No. 7740, Pyrex) has been demonstrated. While glass treated this way exhibited adequate optical properties, the glass itself, cannot be fabricated by the float glass process because of excessive working temperatures, and consequently is too expensive for solar applications. The objective of this work is to define glass compositions and processing steps which will result in graded index surface films (which exhibit broad band AR characteristics) on glasses which can be fabricated by the float glass process. The mechanism by which these graded index surface films are produced on glass surfaces consists of preferentially etching one phase from a phase separated glass. The film which remains consists of a porous structure in which the fraction of solid phase increases continuously from the free surface toward the bulk glass. Scattering effects are eliminated by limiting the size of the pore structure to dimensions which are substantially less than the wavelength of light. With this structure, the local index of refraction is proportional to the fraction of solid phase which is present. Characterizations are intended to define the microstructural and chemical nature of the surface film throughout its thickness. Progress is reported. (WHK)

  5. Functional profile coatings and film stress

    NASA Astrophysics Data System (ADS)

    Liu, Chian; Conley, R.; Macrander, A. T.

    2004-07-01

    In recent years, we have developed a profile-coating technique to obtain functional thickness-profiled thin films and multilayers. This technique uses linear motion of the substrate in a dc magnetron sputter system and a contoured mask to obtain the desired profile perpendicular to the substrate-moving direction. The shape of the contour is determined according to the desired profile and knowledge of the film-thickness distribution at the substrate level. Applications of this technique include laterally graded multilayers and elliptical x-ray Kirkpatrick-Baez (KB) mirrors. An elliptical shape is essential for aberration-free optics. The use of profile coating to make x-ray-quality elliptical KB mirrors overcomes the obstacle of polishing asymmetrical mirror surfaces and provides the x-ray community with a practical way to obtain monolithic KB mirrors for microfocusing. Previously, we have used gold as a coating material and cylindrical Si mirrors as substrates to obtain elliptical KB mirrors. More recently, we have used flat Si substrates to fabricate elliptical KB mirrors. Substantially thicker and steeper gradients of Au films are needed to obtain an elliptical profile from a flat substrate. The Au films may relax to droplets when the stress in the film is too large. The challenges and solutions for this problem will be discussed. .

  6. Polarization aberrations induced by graded multilayer coatings in EUV lithography scanners

    NASA Astrophysics Data System (ADS)

    Jota, Thiago S.; Chipman, Russell A.

    2016-03-01

    The functional form of coating-induced polarization aberrations in EUV lithography systems is evaluated through polarization ray tracing of an example 3×EUV scanner with state-of-the-art graded multilayer coatings. In particular, the impact of coating-induced on-axis astigmatism, as well as diattenuation and retardance on image quality are investigated. The point spread function (PSF) consists of four polarization-dependent components: two are nearly diffraction limited and two are highly apodized, and all components can be described by a Mueller matrix Point Spread Matrix (PSM). The highly apodized components are "ghost" images that are larger than the diffraction limit, reducing image contrast and resolution.

  7. Direct Laser Synthesis of Functional Coatings

    SciTech Connect

    P. Schaaf; Michelle D. Shinn; E. Carpene; J. Kaspar

    2005-06-01

    The direct laser synthesis of functional coatings employs the irradiation of materials with short intensive laser pulses in a reactive atmosphere. The material is heated and plasma is ignited in the reactive atmosphere. This leads to an intensive interaction of the material with the reactive species and a coating is directly formed on the materials surface. By that functional coatings can be easily produced a fast way on steel, aluminium, and silicon by irradiation in nitrogen, methane, or even hydrogen. The influence of the processing parameters to the properties of the functional coatings will be presented for titanium nitride coating produced on titanium with the free electron laser.

  8. Fracture behaviour of functionally graded materials

    NASA Astrophysics Data System (ADS)

    Marur, Prabhakar R.

    Functionally graded materials (FGMs) are special composites consisting of two constituent phases whose composition change continuously along one direction. The gradual transition in material properties alleviates thermal mismatch problems experienced by cladded and coated components. The microstructure of FGM is usually heterogenous and the dominant failure mode of FGM is the crack initiation and propagation from the inclusions. Hence, the knowledge of crack growth and propagation is important in designing components involving FGM. The interface crack problem is studied by examining the asymptotic behavior of stress and displacement fields around the crack in FGM, and by comparing the results with known solutions for bimaterial systems. The, focus is on characterizing the influence of material nonhomogeneity on the fracture parameters, and determining the fracture strength of FGM under quasi-static and dynamic loading. The numerical and experimental techniques developed in this study are unified for both bimaterial and FGM, permitting direct comparison of fracture parameters and test results obtained for different material types. A crack opening displacement (COD) extrapolation technique is developed for the numerical computation of the fracture parameters from finite element analysis, and a new strain gage technique is devised for complex SIF measurement in both bimaterial and FGM. A simple and highly repeatable FGM manufacturing process has been established, and the continuous variation of material properties is evaluated using a novel technique involving ultrasonic wave velocity and local contact stiffness measurements. The nature of singular field around the crack in FGM is studied by varying material gradient, the position of the crack in the graded region and the crack length. The various fracture parameters are compared with that computed for homogenous and bimaterial counterparts. The numerical results show that the crack in FGM, regardless of the position

  9. Functionally Graded Adhesives for Composite Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    Adhesives with functionally graded material properties are being considered for use in adhesively bonded joints to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. An enhanced joint finite element, which uses an analytical formulation to obtain exact shape functions, is used to model the joint. Furthermore, proof of concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint.

  10. Advancement in Preparation of Hydroxyapatite/bioglass Graded Coatings by Electrophoretic Deposition

    NASA Astrophysics Data System (ADS)

    Yao, Liang; Chen, Chuanzhong; Wang, Diangang; Bao, Quanhe; Ma, Jie

    Electrophoretic deposition is a good method in the preparation of hydroxyapatite/bioglass graded coatings. Its processing parameters are easy to be operated. As it is nonbeeline process, it can be used in the deposition of complex shape and porous surface. This paper reviewed the advancement of the graded coatings in recent years, concluded the principles, characters, steps of electrophoretic deposition of bioceramic coatings and analyzed influencing factors in detail, such as granularity of suspension, aging of suspension, dispersion media, PH of suspension, electricity, voltage, deposition time, pretreatment of substrate and sintering. The foreground of hydroxyapatite/bioglass graded coatings is expected.

  11. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  12. Functionalized Nano and Micro Structured Composite Coatings

    DTIC Science & Technology

    2011-06-01

    AFRL-RX-TY-TR-2011-0069 FUNCTIONALIZED NANO AND MICRO STRUCTURED COMPOSITE COATINGS (FINAL REPORT) Igor Luzinov and Konstantin Kornev...Technical Report 21-MAY-2009 -- 31-MAY-2011 Functional Polymeric Materials - from Research Labs to Field Applications: Functionalized Nano and Micro ...work was to conduct research on development of effective nano and micro structured composite coatings capable to collect and decontaminate the

  13. Engineering functionality gradients by dip coating process in acceleration mode.

    PubMed

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  14. Evaluation of Ceolus™ microcrystalline cellulose grades for the direct compression of enteric-coated pellets.

    PubMed

    Kucera, Sandra U; DiNunzio, James C; Kaneko, Nobuya; McGinity, James W

    2012-03-01

    The preparation of multiparticulate tablets by direct compression of functionally coated pellets is technologically challenging. The objective was to investigate the influence of different grades of microcrystalline cellulose (Ceolus™ UF-711, PH-102, PH-200 and KG-802) as fillers on the properties of blends and tablets containing enteric pellets. Celphere™ spheres were drug-layered and then functionally coated with Eudragit(®) L 30 D-55/FS 30D dispersion. Tablets loaded with 50% pellets were prepared using pure or binary blends of microcrystalline cellulose fillers. The influence of the filler on the blend flow, segregation tendency, tablet hardness and enteric release properties were studied using a mixture design, and the optimum filler composition was determined. Rapidly disintegrating tablets, which yielded a drug release of less than 10% after 2 hours in acidic medium, could be successfully prepared. The blend composition had a significant effect on the flowability, but less on the tablet hardness which was influenced by the selection of lubricant. Blends containing celluloses with low bulk densities exhibited a reduced tendency to segregate. Pellet distribution uniformity was further improved when using Ceolus™ UF-711 blended with a high-density grade. As a conclusion, multiparticulate tablets containing enteric pellets with preserved delayed-release properties were successfully prepared using Ceolus™ microcrystalline celluloses as tableting excipients. The optimized filler blend for the direct compression of 50% enteric pellets into tablets contained Ceolus™ UF-711 as main component in combination with Ceolus™ PH-200.

  15. Elementary Grades Students' Capacity for Functional Thinking

    ERIC Educational Resources Information Center

    Blanton, Maria L.; Kaput, James J.

    2004-01-01

    This is a study of how urban elementary grades students develop and express functions. Data were analyzed according to the forms of representations students used, the progression in students' mathematical language and the operations they employed, and how they attended to one or more varying quantities. Findings indicate that students are capable…

  16. Electrodeposited silk coatings for functionalized implant applications

    NASA Astrophysics Data System (ADS)

    Elia, Roberto

    The mechanical and morphological properties of titanium as well as its biocompatibility and osteoinductive characteristics have made it the material of choice for dental implant systems. Although the success rate of titanium implants exceeds 90% in healthy individuals, a large subset of the population has one or more risk factors that inhibit implant integration. Treatments and coatings have been developed to improve clinical outcomes via introduction of appropriate surface topography, texture and roughness or incorporation of bioactive molecules. It is essential that the coatings and associated deposition techniques are controllable and reproducible. Currently, methods of depositing functional coatings are dictated by numerous parameters (temperature, particle size distribution, pH and voltage), which result in variable coating thickness, strength, porosity and weight, and hinder or preclude biomolecule incorporation. Silk is a highly versatile protein with a unique combination of mechanical and physical properties, including tunable degradation, biocompatibility, drug stabilizing capabilities and mechanical properties. Most recently an electrogelation technique was developed which allows for the deposition of gels which dry seamlessly over the contoured topography of the conductive substrate. In this work we examine the potential use of silk electrogels as mechanically robust implant coatings capable of sequestering and releasing therapeutic agents. Electrodeposition of silk electrogels formed in uniform electric fields was characterized with respect to field intensity and deposition time. Gel formation kinetics were used to derive functions which allowed for the prediction of coating deposition over a range of process and solution parameters. Silk electrogel growth orientation was shown to be influenced by the applied electric field. Coatings were reproducible and tunable via intrinsic silk solution properties and extrinsic process parameters. Adhesion was

  17. Wide-angle and broadband graded-refractive-index antireflection coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Chao; Xiong, Li-Min; Fang, Ming; He, Hong-Bo

    2013-04-01

    The design and fabrication of graded-refractive-index (GRIN) antireflection (AR) coatings with wide-angle and broadband characteristics are demonstrated. The optimization of the graded-index profiles with a genetic algorithm is used in the design of the GRIN AR coatings. The average reflectance over a wavelength range from 400 nm to 800 nm and angles of incidence from 0° to 80° could be reduced to only 0.1% by applying an optimized AR coating onto BK7 glass. The optimization of step-graded GRIN AR coating is then further investigated in detail. A two-layer AR coating was deposited by electron beam evaporation with glancing angle deposition technology, and the positional homogeneity was improved by depositing the film from two opposite directions. The microstructure of the AR coating was investigated by scanning electron microscopy, and the residual reflectances of the coating sample are in agreement with theoretical calculations. The optimized GRIN AR coatings are beneficial to increasing the efficiency of light utilization.

  18. Dental implants from functionally graded materials.

    PubMed

    Mehrali, Mehdi; Shirazi, Farid Seyed; Mehrali, Mohammad; Metselaar, Hendrik Simon Cornelis; Kadri, Nahrizul Adib Bin; Osman, Noor Azuan Abu

    2013-10-01

    Functionally graded material (FGM) is a heterogeneous composite material including a number of constituents that exhibit a compositional gradient from one surface of the material to the other subsequently, resulting in a material with continuously varying properties in the thickness direction. FGMs are gaining attention for biomedical applications, especially for implants, owing to their reported superior composition. Dental implants can be functionally graded to create an optimized mechanical behavior and achieve the intended biocompatibility and osseointegration improvement. This review presents a comprehensive summary of biomaterials and manufacturing techniques researchers employ throughout the world. Generally, FGM and FGM porous biomaterials are more difficult to fabricate than uniform or homogenous biomaterials. Therefore, our discussion is intended to give the readers about successful and obstacles fabrication of FGM and porous FGM in dental implants that will bring state-of-the-art technology to the bedside and develop quality of life and present standards of care.

  19. Modeling of functionally graded piezoelectric ultrasonic transducers.

    PubMed

    Rubio, Wilfredo Montealegre; Buiochi, Flávio; Adamowski, Julio Cezar; Silva, Emílio Carlos Nelli

    2009-05-01

    The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.

  20. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  1. Enhanced light extraction of Bi3Ge4O12 scintillator by graded-refractive-index antireflection coatings

    NASA Astrophysics Data System (ADS)

    Tong, Fei; Liu, Bo; Chen, Hong; Zhu, Zhichao; Gu, Mu

    2013-08-01

    A three-layer graded-refractive-index antireflection coating is designed and prepared on the one surface of the Bi3Ge4O12 scintillator by sol-gel technology. The emission intensity of the Bi3Ge4O12 with a graded-refractive-index antireflection coating exhibits a broadband and omnidirectional enhancement of 15.9% compared with the reference sample without coating. This significant enhancement is attributed to the decrease of Fresnel reflection, which is consistent with the measurement of transmission spectra. Additionally, it is evident that the graded-refractive-index coating is superior to the conventional quarter-wave coating due to the omnidirectionality advantage.

  2. Thermal Stress Analysis of W/Cu Functionally Graded Materials by Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yang, Zhenxiao; Liu, Min; Deng, Chunming; Zhang, Xiaofeng; Deng, Changguang

    2013-03-01

    Copper alloys with tungsten coating shows an excellent plasma irradiation resistance, however, the difference of coefficient thermal expansion between W and Cu makes it really a difficult job to prepare over 1 mm W coating with high adhesive strength. Functionally graded material (FGM) seems to be an effective method to improve the adhesive strength of thick W coating. This paper focused on the finite element simulation on thermal stress for W/Cu FGM with different graded layers, composition and thicknesses. In addition, the variance of stresses for functionally graded coatings with the steady state heat flux were simulated by finite element analysis (ANSYS Workbench). The results showed that the W/Cu FGM was effectively beneficial for the stress relief of W coating. Meanwhile, the maximum von mises stress decreased approximately by 52.8 % compared to monolithic W plasma facing material. And the four-layer FGM with a compositional exponent of 2 was optimum for 1.5 mm W coating.

  3. Evaluating Sermons: The Function of Grades in Teaching Preaching

    ERIC Educational Resources Information Center

    Helsel, Carolyn Browning

    2017-01-01

    What are grades doing in a homiletics classroom? This article traces the function of grades through the broader history of the educational system in the United States and then makes suggestions for how grades can be used more effectively in teaching preaching. Beginning in the nineteenth century, teachers used grades to rank and motivate students,…

  4. Impact of Functionally Graded Cylinders: Theory

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, S. M. (Technical Monitor)

    2001-01-01

    This final report summarizes the work funded under the Grant NAG3-2411 during the 04/05/2000-04/04/2001 period. The objective of this one-year project was to generalize the theoretical framework of the two-dimensional higher-order theory for the analysis of cylindrical functionally graded materials/structural components employed in advanced aircraft engines developed under past NASA Glenn funding. The completed generalization significantly broadens the theory's range of applicability through the incorporation of dynamic impact loading capability into its framework. Thus, it makes possible the assessment of the effect of damage due to fuel impurities, or the presence of submicron-level debris, on the life of functionally graded structural components. Applications involving advanced turbine blades and structural components for the reusable-launch vehicle (RLV) currently under development will benefit from the completed work. The theory's predictive capability is demonstrated through a numerical simulation of a one-dimensional wave propagation set up by an impulse load in a layered half-plane. Full benefit of the completed generalization of the higher-order theory described in this report will be realized upon the development of a related computer code.

  5. The influence of target erosion grade in the optoelectronic properties of AZO coatings growth by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zubizarreta, C.; G-Berasategui, E.; Ciarsolo, I.; Barriga, J.; Gaspar, D.; Martins, R.; Fortunato, E.

    2016-09-01

    Aluminum-doped zinc oxide (AZO) transparent conductor coating has emerged as promising substitute to tin-doped indium oxide (ITO) as electrode in optoelectronic applications such as photovoltaics or light emitting diodes (LEDs). Besides its high transmission in the visible spectral region and low resistivity, AZO presents a main advantage over other candidates such as graphene, carbon nanotubes or silver nanowires; it can be deposited using the technology industrially implemented to manufacture ITO layers, the magnetron sputtering (MS). This is a productive, reliable and green manufacturing technique. But to guarantee the robustness, reproducibility and reliability of the process there are still some issues to be addressed, such as the effect and control of the target state. In this paper a thorough study of the influence of the target erosion grade in developed coatings has been performed. AZO films have been deposited from a ceramic target by RF MS. Structure, optical transmittance and electrical properties of the produced coatings have been analyzed as function of the target erosion grade. No noticeable differences have been found neither in optoelectronic properties nor in the structure of the coatings, indicating that the RF MS is a stable and consistent process through the whole life of the target.

  6. Modeling Bamboo as a Functionally Graded Material

    NASA Astrophysics Data System (ADS)

    Silva, Emílio Carlos Nelli; Walters, Matthew C.; Paulino, Glaucio H.

    2008-02-01

    Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

  7. Modeling Bamboo as a Functionally Graded Material

    SciTech Connect

    Silva, Emilio Carlos Nelli; Walters, Matthew C.; Paulino, Glaucio H.

    2008-02-15

    Natural fibers are promising for engineering applications due to their low cost. They are abundantly available in tropical and subtropical regions of the world, and they can be employed as construction materials. Among natural fibers, bamboo has been widely used for housing construction around the world. Bamboo is an optimized composite material which exploits the concept of Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials that have complicated shapes and material distribution inside their domain, and thus the use of numerical methods such as the finite element method and multiscale methods such as homogenization, can help to further understanding of the mechanical behavior of these materials. The objective of this work is to explore techniques such as the finite element method and homogenization to investigate the structural behavior of bamboo. The finite element formulation uses graded finite elements to capture the varying material distribution through the bamboo wall. To observe bamboo behavior under applied loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying bamboo composite. Three-dimensional models of bamboo cells were built and simulated under tension, torsion, and bending load cases.

  8. Monolithic graded-refractive-index glass-based antireflective coatings. Broadband/omnidirectional light harvesting and self-cleaning characteristics

    DOE PAGES

    Aytug, Tolga; Lupini, Andrew R.; Jellison, Gerald E.; ...

    2015-04-23

    The design of multifunctional coatings impact impact the performance of many optical systems and components. Such coatings should be mechanically robust, and combine user-defined optical and wetting functions with scalable fabrication formulations. By taking cues from the properties of some natural biological structures, we report here the formation of low-refractive index antireflective glass films that embody omni-directional optical properties over a wide range of wavelengths, while also possessing specific wetting capabilities. The coatings comprise an interconnected network of nanoscale pores surrounded by a nanostructured silica framework. These structures result from a novel fabrication method that utilizes metastable spinodal phase separationmore » in glass-based materials. The approach not only enables design of surface microstructures with graded-index antireflection characteristics, where the surface reflection is suppressed through optical impedance matching between interfaces, but also facilitates self-cleaning ability through modification of the surface chemistry. Based on near complete elimination of Fresnel reflections (yielding >95% transmission through a single-side coated glass) and corresponding increase in broadband transmission, the fabricated nanostructured surfaces are found to promote a general and an invaluable ~3–7% relative increase in current output of multiple direct/indirect bandgap photovoltaic cells. Moreover, these antireflective surfaces also demonstrate superior resistance against mechanical wear and abrasion. Unlike conventional counterparts, the present antireflective coatings are essentially monolithic, enabling simultaneous realization of graded index anti-reflectivity, self-cleaning capability, and mechanical stability within the same surface. Moreover, the concept represents a fundamental basis for development of advanced coated optical quality products, especially where environmental exposure is required.« less

  9. Monolithic graded-refractive-index glass-based antireflective coatings. Broadband/omnidirectional light harvesting and self-cleaning characteristics

    SciTech Connect

    Aytug, Tolga; Lupini, Andrew R.; Jellison, Gerald E.; Joshi, Pooran C.; Ivanov, Ilia H.; Liu, Tao; Wang, Peng; Menon, Rajesh; Trejo, Rosa M.; Lara-Curzio, Edgar; Hunter, Scott R.; Simpson, John T.; Paranthaman, M. Parans; Christen, David K.

    2015-04-23

    The design of multifunctional coatings impact impact the performance of many optical systems and components. Such coatings should be mechanically robust, and combine user-defined optical and wetting functions with scalable fabrication formulations. By taking cues from the properties of some natural biological structures, we report here the formation of low-refractive index antireflective glass films that embody omni-directional optical properties over a wide range of wavelengths, while also possessing specific wetting capabilities. The coatings comprise an interconnected network of nanoscale pores surrounded by a nanostructured silica framework. These structures result from a novel fabrication method that utilizes metastable spinodal phase separation in glass-based materials. The approach not only enables design of surface microstructures with graded-index antireflection characteristics, where the surface reflection is suppressed through optical impedance matching between interfaces, but also facilitates self-cleaning ability through modification of the surface chemistry. Based on near complete elimination of Fresnel reflections (yielding >95% transmission through a single-side coated glass) and corresponding increase in broadband transmission, the fabricated nanostructured surfaces are found to promote a general and an invaluable ~3–7% relative increase in current output of multiple direct/indirect bandgap photovoltaic cells. Moreover, these antireflective surfaces also demonstrate superior resistance against mechanical wear and abrasion. Unlike conventional counterparts, the present antireflective coatings are essentially monolithic, enabling simultaneous realization of graded index anti-reflectivity, self-cleaning capability, and mechanical stability within the same surface. Moreover, the concept represents a fundamental basis for development of advanced coated optical quality products, especially where environmental exposure is required.

  10. Functionally Graded Nickel Matrix Alumina Reinforced Nanocomposites

    NASA Astrophysics Data System (ADS)

    Young, Austin; Farias, Stephen; Cammarata, Robert

    2013-03-01

    Hierarchical structured nanocomposites are of great interest particularly in the fields of defense, aeronautics, and metamaterials. Previous work has demonstrated the ability to create uniform nickel matrices embedded with aluminum oxide nanoparticles via electrodeposition using a rotating disk electrode (RDE). This process allows for controlled enhancement of yield strength without negatively affecting other properties. The speed of the RDE controls the rate of particle incorporation, and therefore, particle volume fraction. Hierarchical structures can be formed by simply changing the rotation rate during electrodeposition. This allows for controlled variations of composite structure throughout the material. Simply layered and functionally graded hierarchical materials have been produced using this method with structural resolution of the order of single microns. These layered structures produced unique mechanical properties, even exceeding those of uniformly dispersed composites.

  11. Engineering functionally graded tissue engineering scaffolds.

    PubMed

    Leong, K F; Chua, C K; Sudarmadji, N; Yeong, W Y

    2008-04-01

    Tissue Engineering (TE) aims to create biological substitutes to repair or replace failing organs or tissues due to trauma or ageing. One of the more promising approaches in TE is to grow cells on biodegradable scaffolds, which act as temporary supports for the cells to attach, proliferate and differentiate; after which the scaffold will degrade, leaving behind a healthy regenerated tissue. Tissues in nature, including human tissues, exhibit gradients across a spatial volume, in which each identifiable layer has specific functions to perform so that the whole tissue/organ can behave normally. Such a gradient is termed a functional gradient. A good TE scaffold should mimic such a gradient, which fulfils the biological and mechanical requirements of the target tissue. Thus, the design and fabrication process of such scaffolds become more complex and the introduction of computer-aided tools will lend themselves well to ease these challenges. This paper reviews the needs and characterization of these functional gradients and the computer-aided systems used to ease the complexity of the scaffold design stage. These include the fabrication techniques capable of building functionally graded scaffolds (FGS) using both conventional and rapid prototyping (RP) techniques. They are able to fabricate both continuous and discrete types of FGS. The challenge in fabricating continuous FGS using RP techniques lies in the development of suitable computer aided systems to facilitate continuous FGS design. What have been missing are the appropriate models that relate the scaffold gradient, e.g. pore size, porosity or material gradient, to the biological and mechanical requirements for the regeneration of the target tissue. The establishment of these relationships will provide the foundation to develop better computer-aided systems to help design a suitable customized FGS.

  12. Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses.

    PubMed

    Boanini, Elisa; Torricelli, Paola; Sima, Felix; Axente, Emanuel; Fini, Milena; Mihailescu, Ion N; Bigi, Adriana

    2015-06-15

    Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption.

  13. Functionally Graded Nanophase Beryllium/Carbon Composites

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Beryllium, beryllium alloys, beryllium carbide, and carbon are the ingredients of a class of nanophase Be/Be2C/C composite materials that can be formulated and functionally graded to suit a variety of applications. In a typical case, such a composite consists of a first layer of either pure beryllium or a beryllium alloy, a second layer of B2C, and a third layer of nanophase sintered carbon derived from fullerenes and nanotubes. The three layers are interconnected through interpenetrating spongelike structures. These Be/Be2C/C composite materials are similar to Co/WC/diamond functionally graded composite materials, except that (1) W and Co are replaced by Be and alloys thereof and (2) diamond is replaced by sintered carbon derived from fullerenes and nanotubes. (Optionally, one could form a Be/Be2C/diamond composite.) Because Be is lighter than W and Co, the present Be/Be2C/C composites weigh less than do the corresponding Co/WC/diamond composites. The nanophase carbon is almost as hard as diamond. WC/Co is the toughest material. It is widely used for drilling, digging, and machining. However, the fact that W is a heavy element (that is, has high atomic mass and mass density) makes W unattractive for applications in which weight is a severe disadvantage. Be is the lightest tough element, but its toughness is less than that of WC/Co alloy. Be strengthened by nanophase carbon is much tougher than pure or alloy Be. The nanophase carbon has an unsurpassed strength-to-weight ratio. The Be/Be2C/C composite materials are especially attractive for terrestrial and aerospace applications in which there are requirements for light weight along with the high strength and toughness of the denser Co/WC/diamond materials. These materials could be incorporated into diverse components, including cutting tools, bearings, rocket nozzles, and shields. Moreover, because Be and C are effective as neutron moderators, Be/Be2C/C composites could be attractive for some nuclear applications.

  14. An Anti-CD34 Antibody-Functionalized Clinical-Grade POSS-PCU Nanocomposite Polymer for Cardiovascular Stent Coating Applications: A Preliminary Assessment of Endothelial Progenitor Cell Capture and Hemocompatibility

    PubMed Central

    Farhatnia, Yasmin; G, Natasha; Lim, Jing; Teoh, Swee-Hin; Rajadas, Jayakumar; Alavijeh, Mohammad S.; Seifalian, Alexander M.

    2013-01-01

    In situ endothelialization of cardiovascular implants has emerged in recent years as an attractive means of targeting the persistent problems of thrombosis and intimal hyperplasia. This study aimed to investigate the efficacy of immobilizing anti-CD34 antibodies onto a POSS-PCU nanocomposite polymer surface to sequester endothelial progenitor cells (EPCs) from human blood, and to characterize the surface properties and hemocompatibility of this surface. Amine-functionalized fumed silica was used to covalently conjugate anti-CD34 to the polymer surface. Water contact angle, fluorescence microscopy, and scanning electron microscopy were used for surface characterization. Peripheral blood mononuclear cells (PBMCs) were seeded on modified and pristine POSS-PCU polymer films. After 7 days, adhered cells were immunostained for the expression of EPC and endothelial cell markers, and assessed for the formation of EPC colonies. Hemocompatibility was assessed by thromboelastography, and platelet activation and adhesion assays. The number of EPC colonies formed on anti-CD34-coated POSS-PCU surfaces was not significantly higher than that of POSS-PCU (5.0±1.0 vs. 1.7±0.6, p>0.05). However, antibody conjugation significantly improved hemocompatibility, as seen from the prolonged reaction and clotting times, decreased angle and maximum amplitude (p<0.05), as well as decreased platelet adhesion (76.8±7.8 vs. 8.4±0.7, p<0.05) and activation. Here, we demonstrate that POSS-PCU surface immobilized anti-CD34 antibodies selectively captured CD34+ cells from peripheral blood, although only a minority of these were EPCs. Nevertheless, antibody conjugation significantly improves the hemocompatibility of POSS-PCU, and should therefore continue to be explored in combination with other strategies to improve the specificity of EPC capture to promote in situ endothelialization. PMID:24116210

  15. Gastro-resistant characteristics of GRAS-grade enteric coatings for pharmaceutical and nutraceutical products.

    PubMed

    Czarnocka, Justyna K; Alhnan, Mohamed A

    2015-01-01

    The use of naturally derived excipients to develop enteric coatings offers significant advantages over conventional synthetic polymers. Unlike synthetic polymers, they are biodegradable, relatively abundant, have no daily intake limits or restrictions on use for dietary and nutraceutical products. However, little information is available on their dissolution properties under different gastrointestinal conditions and in comparison to each other. This work investigated the gastric resistance properties of commercially available GRAS-based coating technologies. Three coating systems were evaluated: ethyl cellulose+carboxymethyl cellulose (EC-CMC), ethyl cellulose+sodium alginate (EC-Alg) and shellac+sodium alginate (Sh-Alg) combinations. The minimum coating levels were optimized to meet USP pharmacopoeial criteria for delayed release formulations (<10% release after 2h in pH 1.2 followed by >80% release after 45 min of pH change). Theophylline 150 mg tablets were coated with 6.5%, 7%, and 2.75% coating levels of formulations EC-CMC, EC-Alg and Sh-Alg, respectively. In vitro dissolution test revealed a fast release in pH 6.8 for ethyl cellulose based coatings: t80% value of 65 and 45 min for EC-CMC and EC-Alg respectively, while a prolonged drug release from Sh-Alg coating was observed in both pH 6.8 and 7.4 phosphate buffers. However, when more biologically relevant bicarbonate buffer was used, all coatings showed slower drug release. Disintegration test, carried out in both simulated gastric and intestinal fluid, confirmed good mechanical resistance of EC-CMC and EC-Alg coating, and revealed poor durability of the thinner Sh-Alg. Under elevated gastric pH conditions (pH 2, 3 and 4), EC-CMC and EC-Alg coatings were broken after 70, 30, 55 min and after 30, 15, 15 min, respectively, while Sh-Alg coated tablets demonstrated gastric resistance at all pH values. In conclusion, none of the GRAS-grade coatings fully complied with the different biological demands of delayed

  16. Polymer coatings to functionalize carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abou Rich, S.; Yedji, M.; Amadou, J.; Terwagne, G.; Felten, A.; Avril, L.; Pireaux, J.-J.

    2012-03-01

    Multi-walled carbon nanotubes (MWCNTs) were modified by plasma polymerization with methyl methacrylate (MMA) and allylamine (AA) as monomers. Conditions of the MMA and AA plasma polymerization processes in a specially designed reactor and the plasma-polymerized MMA and AA coatings were studied. The chemical composition of the surface was analyzed by X-ray Photoelectron Spectroscopy (XPS); the polymer deposited on the CNTs surface was visualized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), while Fourier Transform Infrared spectroscopy (FTIR) allowed checking for the chemical structure of deposited plasma polymers (PP). In this work, we show that plasma functionalization creates C=O and C-O-C functional groups, or C-NH2 at the MWCNT surface, as a result of polymer deposited during the MMA or AA plasma treatments, respectively.

  17. Functionalized graphene and graphene oxide solution via polyacrylate coating.

    PubMed

    Saha, Arindam; Basiruddin, S K; Ray, S C; Roy, S S; Jana, Nikhil R

    2010-12-01

    Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene.

  18. Fatigue Crack Growth Analysis Models for Functionally Graded Materials

    SciTech Connect

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    2008-02-15

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  19. Phase Composition and Microstructural Responses of Graded Mullite/YSZ Coatings Under Water Vapor Environments

    NASA Astrophysics Data System (ADS)

    Garcia, E.; Mesquita-Guimarães, J.; Miranzo, P.; Osendi, M. I.; Cojocaru, C. V.; Wang, Y.; Moreau, C.; Lima, R. S.

    2011-01-01

    Mullite-based systems have been considered as environmental barrier coatings (EBCs) for high temperature protection of Si-based ceramic (Si3N4, SiC) substrates against water vapor corrosion, for application in forthcoming turbine engines. Graded mullite/Y-ZrO2 composites plasma sprayed over Hexoloy SiC substrates were analyzed as EBCs. All feedstock materials were purposely prepared and singular spraying conditions were used to assure superior crystallization. The different coated specimens were subjected to temperatures of 1300 °C for 100-500 h under water vapor environment. The effect of water corrosion on the exposed coatings was investigated by focusing on their phase and microstructure changes.

  20. Vesicle coats: structure, function, and general principles of assembly.

    PubMed

    Faini, Marco; Beck, Rainer; Wieland, Felix T; Briggs, John A G

    2013-06-01

    The transport of proteins and lipids between distinct cellular compartments is conducted by coated vesicles. These vesicles are formed by the self-assembly of coat proteins on a membrane, leading to collection of the vesicle cargo and membrane bending to form a bud. Scission at the bud neck releases the vesicle. X-ray crystallography and electron microscopy (EM) have recently generated models of isolated coat components and assembled coats. Here, we review these data to present a structural overview of the three main coats: clathrin, COPII, and COPI. The three coats have similar function, common ancestry, and structural similarities, but exhibit fundamental differences in structure and assembly. We describe the implications of structural similarities and differences for understanding the function, assembly principles, and evolution of vesicle coats.

  1. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  2. Experimental Fracture Measurements of Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Carpenter, Ray Douglas

    The primary objective of this research was to extend established fracture toughness testing methods to a new class of engineering materials known as functionally graded materials (FGMs). Secondary goals were to compare experimental results to those predicted by finite element models and to provide fracture test results as feedback toward optimizing processing parameters for the in-house synthesis of a MoSi2/SiC FGM. Preliminary experiments were performed on commercially pure (CP) Ti and uniform axial tensile tests resulted in mechanical property data including yield strength, 268 MPa, ultimate tensile strength, 470 MPa and Young's modulus, 110 GPa. Results from 3-point bending fracture experiments on CP Ti demonstrated rising R-curve behavior and experimentally determined JQ fracture toughness values ranged between 153 N/mm and 254 N/mm. Similar experimental protocols were used for fracture experiments on a 7- layered Ti/TiB FGM material obtained from Cercom in Vista, California. A novel technique for pre-cracking in reverse 4-point bending was developed for this ductile/brittle FGM material. Fracture test results exhibited rising R-curve behavior and estimated JQ fracture toughness values ranged from 0.49 N/mm to 2.63 N/mm. A 5- layered MoSi2/SiC FGM was synthesized using spark plasma sintering (SPS). Samples of this material were fracture tested and the results again exhibited a rising R-curve with KIC fracture toughness values ranging from 2.7 MPa-m1/2 to 6.0 MPa-m1/2. Finite Element Models predicted rising R-curve behavior for both of the FGM materials tested. Model results were in close agreement for the brittle MoSi2/SiC FGM. For the relatively more ductile Ti/TiB material, results were in close agreement at short crack lengths but diverged at longer crack lengths because the models accounted for fracture toughening mechanisms at the crack tip but not those acting in the crack wake.

  3. Functional polysaccharides as edible coatings for cheese.

    PubMed

    Cerqueira, Miguel A; Lima, Alvaro M; Souza, Bartolomeu W S; Teixeira, José A; Moreira, Renato A; Vicente, António A

    2009-02-25

    The objective of the present study was to apply the polysaccharides from different nontraditional sources for cheese coatings. Chitosan, galactomannan from Gleditsia triacanthos, and agar from Glacilaria birdiae were tested, with different formulations and with the addition of plasticizer and corn oil. The surface properties of the cheese and the wetting capacity of the coatings on the cheese were determined. The three best solutions for each polysaccharide were chosen, further films were cast, and permeability to water vapor, oxygen, and carbon dioxide was determined, along with opacity. The solutions of G. triacanthos (formulation: 1.5% of galactomannan, 2.0% of glycerol, and 0.5% of oil) presented the best properties to coat the cheese: -38.76 mN x m(-1) for wettability; 3.24 x 10(-11) (g x (m x s x Pa)(-1)) for water vapor permeability; 0.94 x 10(-15) and 15.35 x 10(-15) (g x m(Pa x s x m(2))(-1)) for oxygen and carbon dioxide permeabilities, respectively; and opacity values of 5.27%. The O(2) consumption and CO(2) production rates of the cheese with and without coating were evaluated, showing a decrease of the respiration rates when the coating was applied. The uncoated cheese had an extensive mold growth at the surface when compared with the coated cheese. The results show that these coatings can be applied as an alternative to synthetic coatings.

  4. FUNCTIONALY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    SciTech Connect

    PROF. STRATIS V. SOTIRCHOS

    1998-10-01

    The main objective of this research project is the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Mullite will be employed as the inner (base) layer and the composition of the film will be continuously changed to a layer of pure alumina, which will function as the actual protective coating of the component. Chemical vapor deposition reactions of silica, alumina, and aluminosilicates (mullite) through hydrolysis of aluminum and silicon chlorides in the presence of CO2 and H2 will be employed to deposit compositionally graded films of mullite and alumina. Our studies will include the kinetic investigation of the silica, alumina, and aluminosilicate deposition processes, characterization of the composition, microstructure, surface morphology, and mechanical behavior of the prepared films, and modeling of the various deposition processes. During this six-month reporting period, the experimental work on the investigation of the deposition of alumina, silica, and aluminosilicates from mixtures of methyltrichlorosilane (MTS), aluminum trichloride, carbon dioxide, and hydrogen was continued. Experiments were also conducted on the deposition processes of the simple oxides, alumina and silica, from mixtures containing only one chloride (AlCl3 and MTS, respectively). Deposition rate data were obtained in a relatively broad range of operating conditions: temperatures in the range 800-1000 o C, 100 Torr pressure, 0.006-0.015 AlCl3 feed mole fraction, 0.011- 0.027 CH3SiCl3 feed mole fraction, and 0.004-0.07 CO2 feed mole fraction, and various positions along the axis of the deposition reactor. Since the effect of temperature had been

  5. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.; Moorhead, Arthur J.

    2002-01-01

    A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  6. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.

    2001-01-01

    A gelcasting method of making an internally graded article includes the steps of: preparing at least two slurries, each of the slurries including a different gelcastable powder suspended in a gelcasting solution, the slurries characterized by having comparable shrinkage upon drying and sintering thereof; casting the slurries into a mold having a selected shape, wherein relative proportions of the slurries is varied in at least one direction within the selected shape; gelling the slurries to form a solid gel while preserving the variation in relative proportions of the slurries; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying because of the variation in relative proportions of the starting slurries. A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  7. Functionalized graphene and graphene oxide solution via polyacrylate coating

    NASA Astrophysics Data System (ADS)

    Saha, Arindam; Basiruddin, Sk; Ray, S. C.; Roy, S. S.; Jana, Nikhil R.

    2010-12-01

    Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene.Water soluble graphene with various chemical- and biofunctionalities is essential for their different applications. However, exfoliated graphenes are insoluble in water and water soluble graphene oxide precipitate if they are chemically reduced to graphene. We have developed a polyacrylate coating method for graphene oxide and then chemically reduced it into graphene. We found that polyacrylate coating can improve the colloidal stability of both graphene and graphene oxide. The coated graphene has been characterized using XPS, FTIR, XRD and micro-Raman spectroscopy. The primary amine present on the coating backbone has been used to derive glucose functionalized water soluble graphene. Various other functional graphenes can be anticipated from the polyacrylate coated graphene. Electronic supplementary information (ESI) available: Details of XPS, XRD, AFM and FTIR of polymer coated GO and G and results of fluorescence quenching experiments. See DOI: 10.1039/c0nr00376j

  8. Ceramic/polymer functionally graded material (FGM) lightweight armor system

    SciTech Connect

    Petrovic, J.J.; McClellan, K.J.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Functionally graded material is an enabling technology for lightweight body armor improvements. The objective was to demonstrate the ability to produce functionally graded ceramic-polymer and ceramic-metal lightweight armor materials. This objective involved two aspects. The first and key aspect was the development of graded-porosity boron-carbide ceramic microstructures. The second aspect was the development of techniques for liquid infiltration of lightweight metals and polymers into the graded-porosity ceramic. The authors were successful in synthesizing boron-carbide ceramic microstructures with graded porosity. These graded-porosity boron-carbide hot-pressed pieces were then successfully liquid-infiltrated in vacuum with molten aluminum at 1,300 C, and with liquid polymers at room temperature. Thus, they were able to demonstrate the feasibility of producing boron carbide-aluminum and boron carbide-polymer functionally graded materials.

  9. A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility.

    PubMed

    Cui, Wenfang; Qin, Gaowu; Duan, Jingzhu; Wang, Huan

    2017-02-01

    In order to solve wear resistance of Ti alloy biomaterials, the concept of a graded nano-TiN coating has been proposed. The coating was prepared on Ti-6Al-4V bio-alloy by DC reactive magnetron sputtering. The wear performance of the coated specimens was measured in Hank's solution under the load of 10N, and the biocompatibility was evaluated according to ISO-10993-4 standard. The results show that the gradient coating exhibits a gradual change in compositions and microstructures along the direction of film growth. Nano-TiN with the size of several to dozens nanometers and Ti4N3-x transitional phase with variable composition form a graded composite structure, which significantly improves adhesion strength (Lc1=80N, Lc2=120N), hardness (21GPa) and anti-wear performance (6.2×10(-7)mm(3)/Nm). The excellent bonding and wear resistance result from a good match of mechanical properties at substrate/coating interface and the strengthening and toughening effects of the nanocrystalline composite. The nano-TiN coating has also been proved to have good biocompatibility through in-vitro cytotoxicity, hemocompatibility and general toxicity tests. And thus, the proposed graded nano-TiN coating is a good candidate improving wear resistance of many implant medical devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Functionalization, coordination, and coating of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hamilton, Christopher Eric

    Single-walled carbon nanotubes were covalently end-functionalized with various donor ligands in order to facilitate the coordination of metal catalyst nanoparticles. The purpose of this study was to optimize catalyst complexation to SWNT ends, allowing growth from preformed seeds (SWNT-cats). The "SWNT amplification" method is envisioned as a route to bulk single-chirality nanotube samples. Study by 31P MAS NMR was undertaken in order to characterize SWNT phosphine derivatives. The synthesis of new N-aryl dipyridylamines (dpas) and related compounds is reported. The products, chelating N-donor ligands, will be used to prepare copper complexes. Copper dpa complexes are able to discriminate between olefin isomers in simple mixtures. Similar triarylamines have been similarly prepared and characterized; these have been tested for their ability to separate SWNTs of particular diameters (or chiral angles) by selective pi-pi stacking interactions. This method is a possible route to single or few-chirality samples, which could then be subjected to SWNT amplification. A novel method for production of high-yield dispersions of single and few layer graphene is presented. o-Dichlorobenzene suspensions of graphene provide twice the yield of previous methods. Moreover, ODCB graphene dispersions form a convenient platform from which to pursue covalent derivatization of graphene in a nonpolar medium. ODCB dispersions have been used to covalently functionalize graphene with perfluoroalkyl groups by a free radical method. Initiation of radical reactions was achieved by both UV photolysis and thermal decomposition of peroxides. Perfluoroalkylated graphene is highly exfoliated and shows great promise for use in polymer composites, lubricants and coatings. Chemical bath deposition (CBD) of II-VI semiconductor materials on SWNT substrates is demonstrated. Bulk heterojunction photovoltaic devices have been prepared from these SWNT-semiconductor composites. The CBD process of depositing

  11. Dual-Functional Antifogging/Antimicrobial Polymer Coating.

    PubMed

    Zhao, Jie; Ma, Li; Millians, William; Wu, Tiehang; Ming, Weihua

    2016-04-06

    Dual-functional antifogging/antimicrobial polymer coatings were prepared by forming a semi-interpenetrating polymer network (SIPN) of partially quaternized poly(2-(dimethylamino)ethyl methacrylate-co-methyl methacrylate) and polymerized ethylene glycol dimethacrylate network. The excellent antifogging behavior of the smooth coating was mainly attributed to the hydrophilic/hydrophobic balance of the partially quaternized copolymer, while the covalently bonded, hydrophobic quaternary ammonium compound (5 mol % in the copolymer) rendered the coating strongly antimicrobial, as demonstrated by the total kill against both Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli. The antimicrobial action of the SIPN coating was based on contact killing, without leaching of bactericidal species, as revealed by a zone-of-inhibition test. This type of dual-functional coating may find unique applications where both antimicrobial and antifogging properties are desired.

  12. Freeze Tape Casting of Functionally Graded Porous Ceramics

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.

    2007-01-01

    Freeze tape casting is a means of making preforms of ceramic sheets that, upon subsequent completion of fabrication processing, can have anisotropic and/or functionally graded properties that notably include aligned and graded porosity. Freeze tape casting was developed to enable optimization of the microstructures of porous ceramic components for use as solid oxide electrodes in fuel cells: Through alignment and grading of pores, one can tailor surface areas and diffusion channels for flows of gas and liquid species involved in fuel-cell reactions. Freeze tape casting offers similar benefits for fabrication of optimally porous ceramics for use as catalysts, gas sensors, and filters.

  13. Surface functionalization with strontium-containing nanocomposite coatings via EPD.

    PubMed

    Ma, Kena; Huang, Dan; Cai, Jing; Cai, Xinjie; Gong, Lingling; Huang, Pin; Wang, Yining; Jiang, Tao

    2016-10-01

    Metal orthopedic implants still face challenges in some compromised conditions, partly due to bio-inertness. The present study aimed to functionalize metallic implants with organic-inorganic nanocomposite (strontium-containing chitosan/gelatin) coatings through a simple single-step electrophoretic deposition under mild conditions. The surface characterization and in vitro cellular response were studied and compared with chitosan/gelatin (CS/G) coatings. SEM images suggested the inorganic nanoparticles may be encapsulated within or mixed with organic polymers. The XRD patterns showed that strontium carbonate was generated in the coatings. The TEM images revealed strontium-containing nanoparticles were released from the coatings in PBS. The continuous release after the initial burst release ensured the enduring effects of the functionalized surface. The tensile bond strength of the coatings to the substrates increased after the addition of strontium. In vitro cellular study confirmed that strontium-containing coatings supported the proliferation of MC3T3-E1 cells and exhibited excellent ability to enhance the differentiation of such pre-osteoblasts. Therefore, such organic-inorganic nanocomposite coatings are a promising candidate to functionalize orthopedic implant surfaces.

  14. Designing functionally graded materials with superior load-bearing properties

    PubMed Central

    Zhang, Yu; Sun, Ming-jie; Zhang, Denzil

    2011-01-01

    Ceramic prostheses often fail from fracture and wear. We hypothesize that these failures may be substantially mitigated by an appropriate grading of elastic modulus at the ceramic surface. In this study, we elucidate the effect of elastic modulus profile on the flexural damage resistance of functionally graded materials (FGMs), providing theoretical guidlines for designing FGM with superior load-bearing property. The Young's modulus of the graded structure is assumed to vary in a power-law relation with a scaling exponent n; this is in accordance with experimental observations from our laboratory and elsewhere. Based on the theory for bending of graded beams, we examine the effect of n value and bulk-to-surface modulus ratio (Eb/Es) on stress distribution through the graded layer. Theory predicts that a low exponent (0.15 < n < 0.5), coupled with a relatively small modulus ratio (3 < Eb/Es < 6), is most desirable for reducing the maximum stress and transferring it into the interior, while keeping the surface stress low. Experimentally, we demonstrate that elastically graded materials with various n values and Eb/Es ratios can be fabricated by infiltrating alumina and zirconia with a low-modulus glass. Flexural tests show that graded alumina and zirconia with suitable values of these parameters exhibit superior load-bearing capacity, 20% to 50% higher than their homogeneous counterparts. Improving load-bearing capacity of ceramic materials could have broad impacts on biomedical, civil, structural, and an array of other engineering applications. PMID:22178651

  15. Combinatorial atmospheric pressure chemical vapor deposition of graded TiO₂-VO₂ mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings.

    PubMed

    Wilkinson, Mia; Kafizas, Andreas; Bawaked, Salem M; Obaid, Abdullah Y; Al-Thabaiti, Shaeel A; Basahel, Sulaiman N; Carmalt, Claire J; Parkin, Ivan P

    2013-06-10

    A combinatorial film with a phase gradient from V:TiO₂ (V: Ti ≥ 0.08), through a range of TiO₂-VO₂ composites, to a vanadium-rich composite (V: Ti = 1.81) was grown by combinatorial atmospheric pressure chemical vapor deposition (cAPCVD). The film was grown from the reaction of TiCl₄, VCl₄, ethyl acetate (EtAc), and H₂O at 550 °C on glass. The gradient in gas mixtures across the reactor induced compositional film growth, producing a single film with numerous phases and compositions at different positions. Seventeen unique positions distributed evenly along a central horizontal strip were investigated. The physical properties were characterized by wavelength dispersive X-ray (WDX) analysis, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and UV-visible spectroscopy. The functional properties examined included the degree of photoinduced hydrophilicity (PIH), UVC-photocatalysis, and thermochromism. Superhydrophilic contact angles could be achieved at all positions, even within a highly VO₂-rich composite (V: Ti = 1.81). A maximum level of UVC photocatalysis was observed at a position bordering the solubility limit of V:TiO₂ (V: Ti ≈ 0.21) and fragmentation into a mixed-phase composite. Within the mixed-phase TiO₂: VO₂ composition region (V: Ti = 1.09 to 1.81) a decrease in the semiconductor-to-metal transition temperature of VO₂ from 68 to 51 °C was observed.

  16. Functionalized gold nanorod solution via reverse micelle based polyacrylate coating.

    PubMed

    Basiruddin, S K; Saha, Arindam; Pradhan, Narayan; Jana, Nikhil R

    2010-05-18

    Functionalization of gold nanorods is a key issue for their biomedical application, and currently it is performed via either electrostatic interaction or thiol based strategy. We have developed a polyacrylate based coating chemistry for gold nanorods that can be used in deriving a variety of functional nanorods with high colloidal stability. The coating processes can introduce primary amines, fluorescein, or poly(ethylene glycol) (PEG) on the nanorod surface in one step process. While fluorescein incorporation can produce fluorescent nanorods, primary amine groups can be used for further functionalization. Various functional nanorods have been successfully synthesized from these coated nanorods and used in different applications. Glucose and biotin functionalized nanorods are used for protein detection, and oleyl functionalized nanorods with fluorescein incorporated in the polymer shell are used for fluorescence based cell labeling.

  17. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1999-01-01

    This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.

  18. Ubiquitin-dependent regulation of COPII coat size and function

    PubMed Central

    Jin, Lingyan; Pahuja, Kanika Bajaj; Wickliffe, Katherine E.; Gorur, Amita; Baumgärtel, Christine; Schekman, Randy; Rape, Michael

    2012-01-01

    Packaging of proteins from the ER into COPII-vesicles is essential for secretion. In cells, most COPII-vesicles are ~60-80nm in diameter, yet some must increase their size to accommodate 300-400nm procollagen fibers or chylomicrons. Impaired COPII function results in collagen deposition defects, cranio-lenticulo-sutural dysplasia, or chylomicron retention disease, but mechanisms to enlarge COPII-coats have remained elusive. Here, we have identified the ubiquitin ligase Cul3Klhl12 as a regulator of COPII coat formation. Cul3Klhl12 catalyzes the monoubiquitination of the COPII-component Sec31 and drives the assembly of large COPII coats. As a result, ubiquitination by Cul3Klhl12 is essential for collagen export, yet less important for the transport of small cargo. We conclude that monoubiquitination controls the size and function of a vesicle coat. PMID:22358839

  19. Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings

    NASA Astrophysics Data System (ADS)

    Borsoi, C.; Zattera, A. J.; Ferreira, C. A.

    2016-02-01

    Functionalization of cellulose nanowhiskers (CNW) was performed by means of chemical synthesis involving polymerization of polyaniline in emeraldine salt form (PAni SE) in the presence of CNW. Thermal, chemical and morphological samples properties were evaluated. Polymeric coatings were obtained with epoxy, aminopropyltriethoxysilane (APS), CNW and CNW/PAni SE applied on carbon steel with a conversion coating of zirconia (Zr) and the mechanical properties were evaluated. With regard to CNW functionalization the sample was encapsulated with PAni SE as observed by FTIR and morphologic analysis, with decreased thermal stability. Regarding the mechanical properties of CNW and CNW/PAni SE polymeric coatings, improvements in flexibility and hardness properties using the APS and Zr layer were observed. The adherence of polymer coatings improved by the incorporation of CNW and CNW/PAni SE. Through morphological analysis it was observed that CNW shows good dispersion in the polymer matrix without agglomerates formation.

  20. Functionalized, biocompatible, and impermeable nanoscale coatings for PEEK.

    PubMed

    Awaja, Firas; Cools, Pieter; Lohberger, Birgit; Nikiforov, Anton Yu; Speranza, Giorgio; Morent, Rino

    2017-07-01

    Biologically compatible coatings that provide hermetic seal could resolve a major technological hurdle in the attempt to replace metals with polymers for biochips and active medical implants. The use of amorphous carbon/diamond like carbon (a-C:H) coatings to hermetically seal and biologically enhance polyether-ether-ketone (PEEK) for biomedical device integration in the human body was investigated. The PEEK coating functionality (sp3/sp2 ratio), hardness and thickness (70-200nm) were controlled, by varying H2 and N2 concentration during the plasma operation with CH4. a-C:H coatings having the highest indentation modulus of 13.5GPa, originate out of a CH4 (90%) rich composition. Even in a mixture of 70/30 H2/CH4 the hardness is 4.76GPa, corresponding to hard and dense coatings. In all tested conditions of deposition coatings hardens was sufficient for the purpose of PEEK implants modification. The synthesized (a-C:H) nanoscale coatings were not water permeable as measured by the hydrolysis test, resolving the traditional challenge of swelling in wet environment. The hardness of the coatings showed strong correlations with the thickness, surprisingly however, with no correlations with the sp3/sp2 ratio. Selected non water permeable nanoscale coating on PEEK showed strong bioactivity by being viable for human osteoblast (hFOB) and human fibroblast (hGF) cells without toxicity issues. No correlation was observed between the coatings sp3/sp2 ratio and biological performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Functional Carbon Nanocomposite, Optoelectronic, and Catalytic Coatings

    NASA Astrophysics Data System (ADS)

    Liang, Yu Teng

    Over the past couple decades, fundamental research into carbon nanomaterials has produced a steady stream of groundbreaking physical science. Their record setting mechanical strength, chemical stability, and optoelectronic performance have fueled many optimistic claims regarding the breadth and pace of carbon nanotube and graphene integration. However, present synthetic, processing, and economic constraints have precluded these materials from many practical device applications. To overcome these limitations, novel synthetic techniques, processing methodologies, device geometries, and mechanistic insight were developed in this dissertation. The resulting advancements in material production and composite device performance have brought carbon nanomaterials ever closer to commercial implementation. For improved materials processing, vacuum co-deposition was first demonstrated as viable technique for forming carbon nanocomposite films without property distorting covalent modifications. Co-deposited nanoparticle, carbon nanotube, and graphene composite films enabled rapid device prototyping and compositional optimization. Cellulosic polymer stabilizers were then shown to be highly effective carbon nanomaterial dispersants, improving graphene production yields by two orders of magnitude in common organic solvents. By exploiting polarity interactions, iterative solvent exchange was used to further increase carbon nanomaterial dispersion concentrations by an additional order of magnitude, yielding concentrated inks. On top of their low causticity, these cellulosic nanomaterial inks have highly tunable viscosities, excellent film forming capacity, and outstanding thermal stability. These processing characteristics enable the efficient scaling of carbon nanomaterial coatings and device production using existing roll-to-roll fabrication techniques. Utilizing these process improvements, high-performance gas sensing, energy storage, transparent conductor, and photocatalytic

  2. Functionally graded materials for orthopedic applications - an update on design and manufacturing.

    PubMed

    Sola, Antonella; Bellucci, Devis; Cannillo, Valeria

    2016-01-01

    Functionally graded materials (FGMs) are innovative materials whose composition and/or microstructure gradually vary in space according to a designed law. As a result, also the properties gradually vary in space, so as to meet specific non-homogeneous service requirements without any abrupt interface at the macroscale. FGMs are emerging materials for orthopedic prostheses, since the functional gradient can be adapted to reproduce the local properties of the original bone, which helps to minimize the stress shielding effect and, at the same time, to reduce the shear stress between the implant and the surrounding bone tissue, two critical prerequisites for a longer lifespan of the graft. After a brief introduction to the origin of the FGM concept, the review surveys some representative examples of graded systems which are present in nature and, in particular, in the human body, with a focus on bone tissue. Then the rationale for using FGMs in orthopedic devices is discussed more in detail, taking into account both biological and biomechanical requirements. The core of the paper is dedicated to two fundamental topics, which are essential to benefit from the use of FGMs for orthopedic applications, namely (1) the computational tools for materials design and geometry optimization, and (2) the manufacturing techniques currently available to produce FGM-based grafts. This second part, in its turn, is structured to consider the production of functionally graded coatings (FGCs), of functionally graded 3D parts, and of special devices with a gradient in porosity (functionally graded scaffolds). The inspection of the literature on the argument clearly shows that the integration of design and manufacturing remains a critical step to overpass in order to achieve effective FGM-based implants. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES

    NASA Technical Reports Server (NTRS)

    Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.

    2006-01-01

    A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.

  4. Mechanical Properties of Double-Layer and Graded Composite Coatings of YSZ Obtained by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Carpio, Pablo; Rayón, Emilio; Salvador, María Dolores; Lusvarghi, Luca; Sánchez, Enrique

    2016-04-01

    Double-layer and graded composite coatings of yttria-stabilized zirconia were sprayed on metallic substrates by atmospheric plasma spray. The coating architecture was built up by combining two different feedstocks: one micro- and one nanostructured. Microstructural features and mechanical properties (hardness and elastic modulus) of the coatings were determined by FE-SEM microscopy and nanoindentation technique, respectively. Additional adherence and scratch tests were carried out in order to assess the failure mechanisms occurring between the layers comprising the composites. Microstructural inspection of the coatings confirms the two-zone microstructure. This bimodal microstructure which is exclusive of the layer obtained from the nanostructured feedstock negatively affects the mechanical properties of the whole composite. Nanoindentation tests suitably reproduce the evolution of mechanical properties through coatings thickness on the basis of the position and/or amount of nanostructured feedstock used in the depositing layer. Adhesion and scratch tests show the negative effect on the coating adhesion of layer obtained from the nanostructured feedstock when this layer is deposited on the bond coat. Thus, the poor integrity of this layer results in lower normal stresses required to delaminate the coating in the adhesion test as well as minor critical load registered by using the scratch test.

  5. Preparation and post-functionalization of hyperbranched polyurea coatings.

    PubMed

    Xiang, Fei; Asri, Lia; Ivashenko, Oleksii; Rudolf, Petra; Loontjens, Ton

    2015-03-10

    Postfunctionalizable hyperbranched polyurea coatings were prepared by the bulk polycondensation of AB2 monomers on preactivated silicon substrates. As previously shown, AB2 monomers were prepared, comprising a secondary amino group (A) and two blocked isocyanates (B) connected by hexyl spacers, in a single step and in quantitative yields. Covalent anchoring of the coatings on substrates was accomplished by reacting the secondary amino group in the focal point of the polymers with the blocked isocyanates (BIs) of the covalently attached coupling agent. The BIs in the top layer of the coatings were storage-stable under ambient conditions but well-modifiable with amino- or hydroxyl-functional compounds on heating. Attachment of polyethylene glycol or perfluoro-1-decanol afforded hydrophilic or hydrophobic surfaces. Immobilization and quaternization of polyethylenimines yielded highly charged surfaces. The coatings were extensively characterized by a number of techniques, such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and contact -angle measurements.

  6. The Effects of Curcuma Longa on the Functionality of Pigmentation for Thin Film Coating

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Rus, A. Z. M.; Tan, N. A. M. S.

    2017-08-01

    This project presents the effects of turmeric (Curcuma Longa) on the functionality of pigmentation was carried out to improve the sustainability, environment impact and reduction of potential cost saving without sacrificing the performance of thin film coating. The Curcuma Longa pigment was extracted by grating the turmeric into small particles at different percentages which is 20%, 40%, 60% and 80% of Curcuma Longa pigment with 3, 6 and 9 layers of coating. The different percentages of Curcuma Longa pigment was formulated and synthesized with polyols by crosslinking agent of glycerol and calcium carbonate into temperature at 140 °C for 2 hours. The results of water droplet test (ASTM D5964) showed the water contact angle was achieved the optimum superhydrophobic characteristic up to 60% of Curcuma Longa at 153°. The formulation of 60% Curcuma Longa was revealed the optimum adhesion resistance test with no flaking and detachment when the coating applied at 9 layers in the classification grading of adhesion test at 5B. It is indicated that the adhesion resistance of thin film coating on metal substrate was obviously increased as the layer of coating as well as the Curcuma Longa pigment percentage up to 60% at 9 layers. This project also highlighted the potential of Curcuma Longa pigment to produce quality in the natural pigmentation as a replacement synthetic pigment which is long-term health hazards.

  7. Investigating effects of hydroxypropyl methylcellulose (HPMC) molecular weight grades on lag time of press-coated ethylcellulose tablets.

    PubMed

    Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree

    2016-11-01

    The research undertaken exemplifies the effects of hydroxypropyl methylcellulose (HPMC) molecular weight (MW) grades of on lag time of press-coated ethylcellulose (EC) tablets. The formulation comprised an immediate release core (containing prednisone as a model drug) surrounded by compression coating with variegated EC-HPMC blends. Five selected HPMC grades (E5, E15, E50, K100LV and K4M) were explored at three different concentrations (10% w/w, 20% w/w and 30% w/w in outer coat) to understand their effects on lag time and drug release. In vitro drug release testing demonstrated that, with increase in concentration of E5 and E15, up to 30% w/w, the mean lag time decreased progressively; whereas with remaining grades, the mean lag time initially decreased up to 20% w/w level and thereafter increased for 30% w/w level. Importantly, with increase in HPMC concentration in the outer coat, the variability in lag time (%RSD; n = 6) was decreased for each of E5, E15 and E50, whereas increased for K100LV and K4M. In general, the variability in lag time was increased with increase in HPMC MW at studied concentration levels. Markedly, tablets with 30% w/w K4M in outer coat exhibited slight premature release (before the rupture of outer coat) along with high variability in lag time. Overall, the study concluded that low MW HPMCs (E5, E15 and E50) were found rather efficient than higher MW HPMCs for developing robust EC-based press-coated pulsatile release formulations where precise lag time followed by sharp burst release is desired.

  8. Bio-inspired Propulsion with Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Schleicher, William; Floryan, Daniel; van Buren, Tyler; Smits, Alexander; Moored, Keith; Lehigh University Team; Priceton University Team

    2015-11-01

    From an engineering perspective, biological swimmers are a composite material system with varying material properties across their propulsors. These material properties govern how the swimmer's structure interacts with its surrounding fluid. A two dimensional boundary element fluid solver is strongly coupled to a direct, implicit, geometrically non-linear structure solver to study the effects of functionally graded materials. A zeroth order functionally graded material approximation is used, where a rigid material abruptly meets a flexible material. Thrust, input power, and propulsive efficiency are studied as functions of non-dimensional frequency, reduced frequency, Strouhal number, flexion ratio, and effective stiffness. The numerical results are compared to experimental results for zero attack angle cases, building confidence in the numerical model. The results are further compared to structurally rigid materials. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  9. Immobilization of Amphiphilic Polycations by Catechol Functionality for Antimicrobial Coatings

    PubMed Central

    Han, Hua; Wu, Jianfeng; Avery, Christopher W.; Mizutani, Masato; Jiang, Xiaoming; Kamigaito, Masami; Chen, Zhan; Xi, Chuanwu; Kuroda, Kenichi

    2011-01-01

    A new strategy to prepare antimicrobial surfaces by a simple dip-coating procedure is reported. Amphiphilic polycations with different mole ratios of monomers containing dodecyl quaternary ammonium, methoxyethyl, and catechol groups were synthesized by free-radical polymerization. The polymer coatings were prepared by immersing glass slides into a polymer solution and subsequent drying and heating. The quaternary ammonium side chains endow the coatings with potent antibacterial activity, while the methoxyetyhyl side chains enable tuning the hydrophobic/hydrophilic balance and the catachol groups promote immobilization of the polymers into films. The polymer coated surfaces displayed bactericidal activity against Escherichia coli and Staphylococcus aureus in a dynamic contact assay and prevented accumulation of viable E. coli, S. aureus, and Acinetobacter baumannii for up to 96 hours. Atomic force microscopy (AFM) images of coating surfaces indicated that the surfaces exhibit virtually the same smoothness for all polymers except the most hydrophobic. The hydrophobic polymer without methoxyethyl side chains showed clear structuring into polymer domains, causing high surface roughness. Sum-frequency generation (SFG) vibrational spectroscopy characterization of the surface structures demonstrated that the dodecyl chains are predominantly localized at the surface-air interface of the coatings. SFG also showed that the phenyl groups of the catechols are oriented on the substrate surface. These results support our hypothesis that the adhesive or cross-linking functionality of catechol groups discourages leaching of polymers, allowing tuning of the amphiphilic balance by incorporating hydrophilic components into the polymer chains to gain potent biocidal activity. PMID:21391641

  10. Physical, metabolic and developmental functions of the seed coat

    PubMed Central

    Radchuk, Volodymyr; Borisjuk, Ljudmilla

    2014-01-01

    The conventional understanding of the role of the seed coat is that it provides a protective layer for the developing zygote. Recent data show that the picture is more nuanced. The seed coat certainly represents a first line of defense against adverse external factors, but it also acts as channel for transmitting environmental cues to the interior of the seed. The latter function primes the seed to adjust its metabolism in response to changes in its external environment. The purpose of this review is to provide the reader with a comprehensive view of the structure and functionality of the seed coat, and to expose its hidden interaction with both the endosperm and embryo. Any breeding and/or biotechnology intervention seeking to increase seed size or modify seed features will have to consider the implications on this tripartite interaction. PMID:25346737

  11. The Swedish Infant High-grade Reflux Trial - Bladder function.

    PubMed

    Nordenström, J; Sillen, U; Holmdahl, G; Linnér, T; Stokland, E; Sjöström, S

    2017-04-01

    It has been suggested that infants with high-grade vesicoureteral reflux (VUR) have lower urinary tract dysfunction (LUTD) that is characterised by large bladder capacity (BC) and increased post-void residual (PVR). However, most of these infants have normal or small BC in early infancy and develop large capacity during the first year of life. This study aimed to see whether LUTD development during the infant years in children with high-grade VUR could be prevented by early reflux resolution. For early VUR intervention, endoscopic treatment (ET) was used in a randomised trial comprising 77 infants (55 boys) aged <8 months with VUR grade 4-5 (n = 30/n = 47); 39 were randomised to antibiotic prophylaxis and 38 to ET. Voiding cystourethrogram, free voiding observation (FVO) and renal scintigraphy were performed at baseline and after 1 year. Bladder capacity and PVR were obtained from FVO. LUTD was defined as a BC of ≥150% of expected and a PVR of ≥20 ml. There were no differences in bladder function variables seen between the treatment groups, despite significant differences in VUR resolution. Analysing bladder function related to VUR outcome (VUR grade ≤2 vs grade >2), independent of treatment, showed that VUR grade ≤2 was associated with a smaller BC at 1 year (P = 0.050) (a tendency already seen at baseline) and a lower PVR at baseline (P = 0.010). PVR increased from baseline to 1 year (P = 0.037) in children with grade ≤2 VUR (Summary Table). The group with persistent bilateral grade 5 VUR at 1 year had more abnormal bladder variables compared with other study subjects, with a tendency of larger BC (P = 0.057), higher PVR (P = 0.0073) and more LUTD (P = 0.029) at baseline and a larger BC at 1 year (P = 0.016). In explanatory analyses, using logistic regression, a high PVR at baseline was identified as a predictor of VUR grade >2 (P = 0.046), persistent bilateral grade 5 VUR (P = 0.022), recurrent urinary tract infection (P = 0

  12. Analysis of Functionally Graded Shells Subjected to Blast Loads

    DTIC Science & Technology

    2008-07-21

    and the bending stiffness matrices, respectively. For an FGM , E = E (x3), v = v (x3) and α = α (x3), where E, v and α are, respectively, Young’s...temperatures, new structural paradigms, enabling one to overcome these adverse effects, are needed. Advances in functionally graded materials ( FGMs ) [1...curved shells made of FGMs to time-dependent loads induced by an explo- sion, a sonic-boom or a shock wave is studied. 2 Phase distribution and

  13. Functionally Graded Multifunctional Hybrid Composites for Extreme Environments

    DTIC Science & Technology

    2010-02-01

    formation for self- healing   Systematic fabrication of porous metal and shape memory alloys by PM method, which will be used to form high...Ti, Shape Memory Alloys AFOSR-MURI Functionally Graded Hybrid Composites 25 Multi-scale Characterization Characterization of Composite Layers...different amount of pore-formers at different temperatures to obtain MAX phase with controlled porosity for infiltration of metals and shape memory

  14. A new method for fracture toughness determination of graded (Pt,Ni)Al bond coats by microbeam bend tests

    NASA Astrophysics Data System (ADS)

    Jaya B, Nagamani; Jayaram, Vikram; Biswas, Sanjay Kumar

    2012-09-01

    A novel method is proposed for fracture toughness determination of graded microstructurally complex (Pt,Ni)Al bond coats using edge-notched doubly clamped beams subjected to bending. Micron-scale beams are machined using the focused ion beam and loaded in bending under a nanoindenter. Failure loads gathered from the pop-ins in the load-displacement curves combined with XFEM analysis are used to calculate K c at individual zones, free from substrate effects. The testing technique and sources of errors in measurement are described and possible micromechanisms of fracture in such heterogeneous coatings discussed.

  15. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Pindera, M. J.; Arnold, Steven M.

    2001-01-01

    Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.

  16. Fabrication of a Functionally Graded Copper-Zinc Sulfide Phosphor

    PubMed Central

    Park, Jehong; Park, Kwangwon; Kim, Jongsu; Jeong, Yongseok; Kawasaki, Akira; Kwon, Hansang

    2016-01-01

    Functionally graded materials (FGMs) are compositionally gradient materials. They can achieve the controlled distribution of the desired characteristics within the same bulk material. We describe a functionally graded (FG) metal-phosphor adapting the concept of the FGM; copper (Cu) is selected as a metal and Cu- and Cl-doped ZnS (ZnS:Cu,Cl) is selected as a phosphor and FG [Cu]-[ZnS:Cu,Cl] is fabricated by a very simple powder process. The FG [Cu]-[ZnS:Cu,Cl] reveals a dual-structured functional material composed of dense Cu and porous ZnS:Cu,Cl, which is completely combined through six graded mediating layers. The photoluminescence (PL) of FG [Cu]-[ZnS:Cu,Cl] is insensitive to temperature change. FG [Cu]-[ZnS:Cu,Cl] also exhibits diode characteristics and photo reactivity for 365 nm -UV light. Our FG metal-phosphor concept can pave the way to simplified manufacturing of low-cost and can be applied to various electronic devices. PMID:26972313

  17. Fabrication of a Functionally Graded Copper-Zinc Sulfide Phosphor

    NASA Astrophysics Data System (ADS)

    Park, Jehong; Park, Kwangwon; Kim, Jongsu; Jeong, Yongseok; Kawasaki, Akira; Kwon, Hansang

    2016-03-01

    Functionally graded materials (FGMs) are compositionally gradient materials. They can achieve the controlled distribution of the desired characteristics within the same bulk material. We describe a functionally graded (FG) metal-phosphor adapting the concept of the FGM; copper (Cu) is selected as a metal and Cu- and Cl-doped ZnS (ZnS:Cu,Cl) is selected as a phosphor and FG [Cu]-[ZnS:Cu,Cl] is fabricated by a very simple powder process. The FG [Cu]-[ZnS:Cu,Cl] reveals a dual-structured functional material composed of dense Cu and porous ZnS:Cu,Cl, which is completely combined through six graded mediating layers. The photoluminescence (PL) of FG [Cu]-[ZnS:Cu,Cl] is insensitive to temperature change. FG [Cu]-[ZnS:Cu,Cl] also exhibits diode characteristics and photo reactivity for 365 nm -UV light. Our FG metal-phosphor concept can pave the way to simplified manufacturing of low-cost and can be applied to various electronic devices.

  18. Functionalization of polydopamine coated magnetic nanoparticles with biological entities

    NASA Astrophysics Data System (ADS)

    Mǎgeruşan, Lidia; Mrówczyński, Radosław; Turcu, Rodica

    2015-12-01

    New hybrid materials, obtained through introduction of cysteine, lysine and folic acid as biological entities into polydopamine-coated magnetite nanoparticles, are reported. The syntheses are straight forward and various methods were applied for structural and morphological characterization of the resulting nanoparticles. XPS proved a very powerful tool for surface chemical analysis and it evidences the functionalization of polydopamine coated magnetite nanoparticles. The superparamagnetic behavior and the high values of saturation magnetization recommend all products for further application where magnetism is important for targeting, separation, or heating by alternative magnetic fields.

  19. Fracture and fatigue analysis of functionally graded and homogeneous materials using singular integral equation approach

    NASA Astrophysics Data System (ADS)

    Zhao, Huaqing

    There are two major objectives of this thesis work. One is to study theoretically the fracture and fatigue behavior of both homogeneous and functionally graded materials, with or without crack bridging. The other is to further develop the singular integral equation approach in solving mixed boundary value problems. The newly developed functionally graded materials (FGMs) have attracted considerable research interests as candidate materials for structural applications ranging from aerospace to automobile to manufacturing. From the mechanics viewpoint, the unique feature of FGMs is that their resistance to deformation, fracture and damage varies spatially. In order to guide the microstructure selection and the design and performance assessment of components made of functionally graded materials, in this thesis work, a series of theoretical studies has been carried out on the mode I stress intensity factors and crack opening displacements for FGMs with different combinations of geometry and material under various loading conditions, including: (1) a functionally graded layer under uniform strain, far field pure bending and far field axial loading, (2) a functionally graded coating on an infinite substrate under uniform strain, and (3) a functionally graded coating on a finite substrate under uniform strain, far field pure bending and far field axial loading. In solving crack problems in homogeneous and non-homogeneous materials, a very powerful singular integral equation (SEE) method has been developed since 1960s by Erdogan and associates to solve mixed boundary value problems. However, some of the kernel functions developed earlier are incomplete and possibly erroneous. In this thesis work, mode I fracture problems in a homogeneous strip are reformulated and accurate singular Cauchy type kernels are derived. Very good convergence rates and consistency with standard data are achieved. Other kernel functions are subsequently developed for mode I fracture in

  20. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I. N.; Petrovic, R.; Janackovic, Dj.

    2007-12-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10(PO 4) 6(OH) 2, or bioglasses in the system SiO 2-Na 2O-K 2O-CaO-MgO-P 2O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* ( λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2O vapors, while the bioglass layers were deposited in O 2. Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications.

  1. Multilayer crack-free hybrid coatings for functional devices

    NASA Astrophysics Data System (ADS)

    Islam, Shumaila; Bidin, Noriah; Riaz, Saira; Naseem, Shahzad; Marsin Sanagi, Mohd.; Imran, M.

    2016-04-01

    Porous acid catalyzed TiO2 single, SiO2-TiO2 hybrid, and TiO2/SiO2-TiO2/SiO2 multilayer coatings are synthesized and characterized for optical and electro-optical applications. The reflection value is reasonably reduced from the surface of the glass by integrating sol-gel based spin-coated single and multilayer thin films. Structurally, the films show uniform, crack-free, and porous nanofilms with good surface roughness of below 10 nm, which has potential for optical applications. Wide range tunability of refractive index (2.83 to 1.59) with more than 78% optical transparency is observed. The multilayered reflection profile is observed around 0.18%, so these coatings are desirable for optochemical functional devices.

  2. Combustion zone durability program-B. Task VIII. Sputter deposited ceramic and metallic coatings. Executive summary. [Graded metal; metal/ceramic layered; dense surface ceramic

    SciTech Connect

    Patten, J. W.; Moss, R. W.; Hays, D. D.

    1980-11-01

    The graded metal coatings are of the CoCrAlY type modified by including high Cr surface compositions, gradients in Cr and Al composition, underlayers and graded Pt additions, and Hf substitutions for Y. The metal ceramic layered coatings consist of alternate metal (Ni, Ni-Cr, CoCrAlY or Pt) and ceramic (Al/sub 2/O/sub 3/ or ZrO/sub 2/ + Y) layers. Investigations of dense surface ceramic coatings are directed towards methods for obtaining adherent impermeable ceramic protective coatings for gas turbine hot section components. Increased coating adherence is being sought through two coating designs intended to accomodate expansion and modulus mismatches at the coating-substrate interface.

  3. Transition mode long period grating biosensor with functional multilayer coatings.

    PubMed

    Pilla, Pierluigi; Malachovská, Viera; Borriello, Anna; Buosciolo, Antonietta; Giordano, Michele; Ambrosio, Luigi; Cutolo, Antonello; Cusano, Andrea

    2011-01-17

    We report our latest research results concerning the development of a platform for label-free biosensing based on overlayered Long Period Gratings (LPGs) working in transition mode. The main novelty of this work lies in a multilayer design that allows to decouple the problem of an efficient surface functionalization from that of the tuning in transition region of the cladding modes. An innovative solvent/nonsolvent strategy for the dip-coating technique was developed in order to deposit on the LPG multiple layers of transparent polymers. In particular, a primary coating of atactic polystyrene was used as high refractive index layer to tune the working point of the device in the so-called transition region. In this way, state-of-the-art-competitive sensitivity to surrounding medium refractive index changes was achieved. An extremely thin secondary functional layer of poly(methyl methacrylate-co-methacrylic acid) was deposited onto the primary coating by means of an original identification of selective solvents. This approach allowed to obtain desired functional groups (carboxyls) on the surface of the device for a stable covalent attachment of bioreceptors and minimal perturbation of the optical design. Standard 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide / N-hydrosuccinimide (EDC / NHS) coupling chemistry was used to link streptavidin on the surface of the coated LPG. Highly sensitive real-time monitoring of multiple affinity assays between streptavidin and biotinylated bovine serum albumin was performed by following the shift of the LPGs attenuation bands.

  4. Milestones in Functional Titanium Dioxide Thermal Spray Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Gardon, M.; Guilemany, J. M.

    2014-04-01

    Titanium dioxide has been the most investigated metal oxide due to its outstanding performance in a wide range of applications, chemical stability and low cost. Coating processes that can produce surfaces based on this material have been deeply studied. Nevertheless, the necessity of coating large areas by means of rapid manufacturing processes renders laboratory-scale techniques unsuitable, leading to a noteworthy interest from the thermal spray (TS) community in the development of significant intellectual property and a large number of scientific publications. This review unravels the relationship between titanium dioxide and TS technologies with the aim of providing detailed information related to the most significant achievements, lack of knowhow, and performance of TS TiO2 functional coatings in photocatalytic, biomedical, and other applications. The influence of thermally activated techniques such as atmospheric plasma spray and high-velocity oxygen fuel spray on TiO2 feedstock based on powders and suspensions is revised; the influence of spraying parameters on the microstructural and compositional changes and the final active behavior of the coating have been analyzed. Recent findings on titanium dioxide coatings deposited by cold gas spray and the capacity of this technology to prevent loss of the nanostructured anatase metastable phase are also reviewed.

  5. Method and system using power modulation for maskless vapor deposition of spatially graded thin film and multilayer coatings with atomic-level precision and accuracy

    DOEpatents

    Montcalm, Claude; Folta, James Allen; Tan, Swie-In; Reiss, Ira

    2002-07-30

    A method and system for producing a film (preferably a thin film with highly uniform or highly accurate custom graded thickness) on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source operated with time-varying flux distribution. In preferred embodiments, the source is operated with time-varying power applied thereto during each sweep of the substrate to achieve the time-varying flux distribution as a function of time. A user selects a source flux modulation recipe for achieving a predetermined desired thickness profile of the deposited film. The method relies on precise modulation of the deposition flux to which a substrate is exposed to provide a desired coating thickness distribution.

  6. Damage tolerant functionally graded materials for advanced wear and friction applications

    NASA Astrophysics Data System (ADS)

    Prchlik, Lubos

    The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to

  7. Functional characterization of Clostridium difficile spore coat proteins.

    PubMed

    Permpoonpattana, Patima; Phetcharaburanin, Jutarop; Mikelsone, Anna; Dembek, Marcin; Tan, Sisareuth; Brisson, Marie-Clémence; La Ragione, Roberto; Brisson, Alain R; Fairweather, Neil; Hong, Huynh A; Cutting, Simon M

    2013-04-01

    Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface.

  8. Functional Characterization of Clostridium difficile Spore Coat Proteins

    PubMed Central

    Permpoonpattana, Patima; Phetcharaburanin, Jutarop; Mikelsone, Anna; Dembek, Marcin; Tan, Sisareuth; Brisson, Marie-Clémence; La Ragione, Roberto; Brisson, Alain R.; Fairweather, Neil; Hong, Huynh A.

    2013-01-01

    Spores of Clostridium difficile play a key role in the dissemination of this important human pathogen, and until recently little has been known of their functional characteristics. Genes encoding six spore coat proteins (cotA, cotB, cotCB, cotD, cotE, and sodA) were disrupted by ClosTron insertional mutagenesis. Mutation of one gene, cotA, presented a major structural defect in spore assembly, with a clear misassembly of the outermost layers of the spore coat. The CotA protein is most probably subject to posttranslational modification and could play a key role in stabilizing the spore coat. Surprisingly, mutation of the other spore coat genes did not affect the integrity of the spore, although for the cotD, cotE, and sodA mutants, enzyme activity was reduced or abolished. This could imply that these enzymatic proteins are located in the exosporium or alternatively that they are structurally redundant. Of the spore coat proteins predicted to carry enzymatic activity, three were confirmed to be enzymes using both in vivo and in vitro methods, the latter using recombinant expressed proteins. These were a manganese catalase, encoded by cotD, a superoxide dismutase (SOD), encoded by sodA, and a bifunctional enzyme with peroxiredoxin and chitinase activity, encoded by cotE. These enzymes being exposed on the spore surface would play a role in coat polymerization and detoxification of H2O2. Two additional proteins, CotF (a tyrosine-rich protein and potential substrate for SodA) and CotG (a putative manganese catalase) were shown to be located at the spore surface. PMID:23335421

  9. Crack propagation in functionally graded strip under thermal shock

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Sadowski, T.; Pietras, D.

    2013-09-01

    The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.

  10. Thermal Characterization of Functionally Graded Materials: Design of Optimum Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    This paper is a study of optimal experiment design applied to the measure of thermal properties in functionally graded materials. As a first step, a material with linearly-varying thermal properties is analyzed, and several different tran- sient experimental designs are discussed. An optimality criterion, based on sen- sitivity coefficients, is used to identify the best experimental design. Simulated experimental results are analyzed to verify that the identified best experiment design has the smallest errors in the estimated parameters. This procedure is general and can be applied to design of experiments for a variety of materials.

  11. FUNCTIONALIZED LATERAL SURFACE COATED LASERS FOR CHEM-BIO DETECTION

    SciTech Connect

    Goddard, L L; Bond, T C; Cole, G D; Behymer, E M

    2007-07-05

    We present a class of compact, monolithic, photonic sensors consisting of multiple section edge emitting lasers with functionalized lateral surface coatings for low level detection of chemical or biological agents. Specifically, we discuss 8 {micro}m x 250 {micro}m Pd-coated H{sub 2} sensors and configurations to reduce the minimum detection limit from 138ppm for passive sensors to 1ppm for active sensors. Compared with conventional optical H{sub 2} sensors that use fiber gratings, surface plasmon resonances, or surface reflectance, our sensors offer the advantages of smaller size, wider dynamic range, monolithic integration of laser source and detector, and 2-D scalability to arrays of sensors that are functionalized to detect different agents.

  12. Functional silver coated colloidosomes as targeted carriers for small molecules.

    PubMed

    Sun, Qian; Du, Yao; Zhao, Ziyan; Hall, Elizabeth Anne Howlett; Gao, Hui; Sukhorukov, Gleb B; Routh, Alexander Francis

    2017-03-30

    Colloidosomes have attracted great interest in recent years because of their capability for storage and delivery of small molecules for medical and pharmaceutical applications. However, traditional polymer shell colloidosomes leak low molecular weight drugs due to their intrinsic shell permeability. Here, we report aqueous core colloidosomes with a silver shell, which seals the core and makes the shell impermeable. The silver coated colloidosomes were prepared by reacting L-Ascorbic acid in the microcapsule core with silver nitrate in the wash solution. The silver shell colloidosomes were then modified by using 4,4'-dithiodibutyric acid and linked with rabbit Immunoglobulin G (IgG). Label-free Surface Plasmon Resonance was used to test the specific targeting of the functional silver shell with rabbit antigen. To break the shells, ultrasound treatment was used. The results demonstrate that a new type of functional silver coated colloidosome with immunoassay targeting, non-permeability, and ultrasound sensitivity could be applied to many medical applications.

  13. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    Lei Yang; Ze Liu; Shizhone Wang; Jaewung Lee; Meilin Liu

    2008-04-30

    The main objective of this DOE project is to demonstrate that the performance and long-term stability of the state-of-the-art LSCF cathode can be enhanced by a catalytically active coating (e.g., LSM or SSC). We have successfully developed a methodology for reliably evaluating the intrinsic surface catalytic properties of cathode materials. One of the key components of the test cell is a dense LSCF film, which will function as the current collector for the electrode material under evaluation to eliminate the effect of ionic and electronic transport. Since it is dense, the effect of geometry would be eliminated as well. From the dependence of the electrode polarization resistance on the thickness of a dense LSCF electrode and on partial pressure of oxygen, we have confirmed that the surface catalytic activity of LSCF limits the performances of LSCF-based cathodes. Further, we have demonstrated, using test cells of different configurations, that the performance of LSCF-based electrodes can be significantly enhanced by infiltration of a thin film of LSM or SSC. In addition, the stability of LSCF-based cathodes was also improved by infiltration of LSM or SSC. While the concept feasibility of the electrode architecture is demonstrated, many details are yet to be determined. For example, it is not clear how the surface morphology, composition, and thickness of the coatings change under operating conditions over time, how these changes influence the electrochemical behavior of the cathodes, and how to control the microscopic details of the coatings in order to optimize the performance. The selection of the catalytic materials as well as the detailed microstructures of the porous LSCF and the catalyst layer may critically impact the performance of the proposed cathodes. Further, other fundamental questions still remain; it is not clear why the degradation rates of LSCF cathodes are relatively high, why a LSM coating improves the stability of LSCF cathodes, which catalysts

  14. Fabrication of graded TiN coatings on nitinol occluders and effects on in vivo nickel release.

    PubMed

    Zhang, Deyuan; Zhang, Zhiwei; Zi, Zhenjun; Zhang, Yanhong; Zeng, Weijun; Chu, Paul K

    2008-01-01

    A nano-structured TiN/Ti coating with a total thickness of 0.9 mum was deposited on nitinol cardiac occluders using the filtered multi-arc vacuum ion plating technique at less than 300 degrees C. The coating was composed of laminated TiN/Ti layers with thickness of about 100 nm. The cardiac occluders made of a nitinol mesh with and without a graded nano-structured titanium nitride (TiN) coating were implanted into the hearts of rams. The nickel concentration of the whole blood of the animals were measured one week, one month, three months, and six months after implantation and compared to that before operation. The nickel concentration in the neo-endocardium covered occluders was also measured using graphite furnace atomic absorption spectrophotometry. After one week, the nickel content in the blood increased by a factor of three compared to the level before operation and decreased afterwards returning to the normal level after six months when endothelialization was complete. Statistical analyses showed that the TiN coating could mitigate nickel release into blood (P<0.01). For example, the nickel concentration released from the control increased from about 2.65+/-1.20 microg/kg, the normal concentration, to 7.30+/-1.00 microg/kg but just from 2.56+/-1.16 microg/kg to 4.68+/-1.29 microg/kg from the TiN coated occluder after 7 days. The nickel concentration in the neo-endocardium covered and TiN coated occluders reached 17.0+/-8.05 microg/kg in two months after implantation. In comparison, it was 31.0+/-5.72 microg/kg for the occluder without the TiN coating. While normal concentration of nickel in endocardium is also 2.6+/-1.09 microg/kg. Our results demonstrate that the graded TiN coating can significantly reduce nickel release into the endocardium (P<0.01) under in vivo conditions.

  15. Flexural Strength of Functionally Graded Nanotube Reinforced Sandwich Spherical Panel

    NASA Astrophysics Data System (ADS)

    Mahapatra, Trupti R.; Mehar, Kulmani; Panda, Subrata K.; Dewangan, S.; Dash, Sushmita

    2017-02-01

    The flexural behaviour of the functionally graded sandwich spherical panel under uniform thermal environment has been investigated in the present work. The face sheets of the sandwich structure are made by the functionally graded carbon nanotube reinforced material and the core face is made by the isotropic and homogeneous material. The material properties of both the fiber and matrix are assumed to be temperature dependent. The sandwich panel model is developed in the framework of the first order shear deformation theory and the governing equation of motion is derived using the variational principle. For the discretization purpose a suitable shell element has been employed from the ANSYS library and the responses are computed using a parametric design language (APDL) coding. The performance and accuracy of the developed model has been established through the convergence and validation by comparing the obtained results with previously published results. Finally, the influence of different geometrical parameters and material properties on the flexural behaviour of the sandwich spherical panel in thermal environment has been investigated through various numerical illustrations and discussed in details.

  16. Mode-3 spontaneous crack propagation along functionally graded bimaterial interfaces

    NASA Astrophysics Data System (ADS)

    Kubair, D. V.; Bhanu-Chandar, B.

    2007-06-01

    The effects of combining functionally graded materials (FGMs) of different inhomogeneous property gradients on the mode-3 propagation characteristics of an interfacial crack are numerically investigated. Spontaneous interfacial crack propagation simulations were performed using the newly developed spectral scheme. The numerical scheme derived and implemented in the present work can efficiently simulate planar crack propagation along functionally graded bimaterial interfaces. The material property inhomogeneity was assumed to be in the direction normal to the interface. Various bimaterial combinations were simulated by varying the material property inhomogeneity length scale. Our parametric study showed that the inclusion of a softening type FGM in the bimaterial system leads to a reduction in the fracture resistance indicated by the increase in crack propagation velocity and power absorbed. An opposite trend of increased fracture resistance was predicted when a hardening material was included in the bimaterial system. The cohesive tractions and crack opening displacements were altered due to the material property inhomogeneity, but the stresses ahead of the cohesive zone remained unaffected.

  17. Wave field localization in a prestressed functionally graded layer

    NASA Astrophysics Data System (ADS)

    Belyankova, T. I.; Kalinchuk, V. V.

    2017-05-01

    Characteristic features of wave field formation caused by a surface source of harmonic vibration in a prestressed functionally graded layer are investigated. It is assumed that the elastic moduli and the density of the material vary with depth according to arbitrary laws. The initial material of the medium is represented by a model hyperelastic material with third-order elastic moduli. The boundary-value problem for a set of Lamè equations is reduced to a set of Cauchy problems with initial conditions, which is solved by the Runge-Kutta-Merson method modified to fit the specific problem under study. Considering shear vibrations of a functionally graded layer as an example, effects of the type of its inhomogeneity, variations in its properties, and nature of its initial stressed state on the displacement distribution in depth are investigated. Special attention is paid to characteristic features of displacement localization in a layer with an interface-type inclusion near critical frequencies. A direct relation between the inhomogeneous layer structure and the type of displacement localization in depth is demonstrated. It is found that the role of initial stresses and variations in material parameters considerably increases in the vicinities of critical frequencies.

  18. Bending analysis of different material distributions of functionally graded beam

    NASA Astrophysics Data System (ADS)

    Aldousari, S. M.

    2017-04-01

    Most analyses of functional graded materials (FGM) focusing on power law distribution, which presents stress concentration at the interface when material properties change rapidly. The objective of the current paper is to develop two symmetric and anti-symmetric functions and compare their effects on the static deflection and bending stresses with classical power-law distribution. The proposed distributions are a symmetric power-law and a sigmoid function which is anti-symmetric. To homogenized micromechanical properties of FGM, the effective material properties are derived on the basis of Voigt model. Kinematic relation of Euler-Bernoulli beam is assumed and virtual work is proposed to derive the equilibrium equations. A finite element model is proposed to form stiffness matrix and force vector and then solve the problem numerically. Proposed model has been validated. Numerical results presents the effect of power exponent, and elasticity ratios on a static deflection and stresses of FG beams. The most significant finding is that, the symmetric power function is more reliable and can considerably reduce the stress than the other two functions. However, the sigmoid function distribution represents the highest stress.

  19. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility.

    PubMed

    Nagarajan, Srinivasan; Mohana, Marimuthu; Sudhagar, Pitchaimuthu; Raman, Vedarajan; Nishimura, Toshiyasu; Kim, Sanghyo; Kang, Yong Soo; Rajendran, Nallaiyan

    2012-10-24

    The 316 L stainless steel is one of the most commonly available commercial implant materials with a few limitations in its ease of biocompatibility and long-standing performance. Hence, porous TiO(2)/ZrO(2) nanocomposite coated over 316 L stainless steels was studied for their enhanced performance in terms of its biocompatibility and corrosion resistance, following a sol-gel process via dip-coating technique. The surface composition and porosity texture was studied to be uniform on the substrate. Biocompatibility studies on the TiO(2)/ZrO(2) nanocomposite coatings were investigated by placing the coated substrate in a simulated body fluid (SBF). The immersion procedure resulted in the complete coverage of the TiO(2)/ZrO(2) nanocomposite (coated on the surface of 316 L stainless steel) with the growth of a one-dimensional (1D) rod-like carbonate-containing apatite. The TiO(2)/ZrO(2) nanocomposite coated specimens showed a higher corrosion resistance in the SBF solution with an enhanced biocompatibility, surpassing the performance of the pure oxide coatings. The cell viability of TiO(2)/ZrO(2) nanocomposite coated implant surface was examined under human dermal fibroblasts culture, and it was observed that the composite coating enhances the proliferation through effective cellular attachment compared to pristine 316 L SS surface.

  20. Cohesive fracture model for functionally graded fiber reinforced concrete

    SciTech Connect

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-06-15

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  1. Processing and optimization of functional ceramic coatings and inorganic nanomaterials

    NASA Astrophysics Data System (ADS)

    Nyutu, Edward Kennedy G.

    Processing of functional inorganic materials including zero (0-D) dimensional (e.g. nanoparticles), 1-D (nanorods, nanofibers), and 2-D (films/coating) structures is of fundamental and technological interest. This research will have two major sections. The first part of section one focuses on the deposition of silicon dioxide onto a pre-deposited molybdenum disilicide coating on molybdenum substrates for both high (>1000 °C) and moderate (500-600 °C) temperature oxidation protection. Chemical vapor deposition (CVD/MOCVD) techniques will be utilized to deposit the metal suicide and oxide coatings. The focus of this study will be to establish optimum deposition conditions and evaluate the metal oxide coating as oxidation - thermal barriers for Mo substrates under both isothermal (static) and cyclic oxidation conditions. The second part of this section will involve a systematic evaluation of a boron nitride (BN) interface coating prepared by chemical vapor deposition. Ceramic matrix composites (CMCs) are prospective candidates for high (>1000 °C) temperature applications and fiber- matrix interfaces are the dominant design parameters in ceramic matrix composites (CMCs). An important goal of the study is to determine a set of process parameters, which would define a boron nitride (BN) interface coating by a chemical vapor deposition (CVD) process with respect to coating. In the first part of the second section, we will investigate a new approach to synthesize ultrafine metal oxides that combines microwave heating and an in-situ ultrasonic mixing of two or more liquid precursors with a tubular flow reactor. Different metal oxides such as nickel ferrite and zinc aluminate spinels will be studied. The synthesis of metal oxides were investigated in order to study the effects of the nozzle and microwave (INM process) on the purity, composition, and particle size of the resulting powders. The second part of this research section involves a study of microwave frequency

  2. Fabricating functionally graded films with designed gradient profiles using pulsed laser deposition

    SciTech Connect

    Won, Yoo Jai; Ki, Hyungson

    2013-05-07

    A novel picosecond-laser pulsed laser deposition method has been developed for fabricating functionally graded films with pre-designed gradient profiles. Theoretically, the developed method is capable of precisely fabricating films with any thicknesses and any gradient profiles by controlling the laser beam powers for the two different targets based on the film composition profiles. As an implementation example, we have successfully constructed functionally graded diamond-like carbon films with six different gradient profiles: linear, quadratic, cubic, square root, cubic root, and sinusoidal. Energy dispersive X-ray spectroscopy is employed for investigating the chemical composition along the thickness of the film, and the deposition profile and thickness errors are found to be less than 3% and 1.04%, respectively. To the best of the authors' knowledge, this is the first method for fabricating films with designed gradient profiles and has huge potential in many areas of coatings and films, including multifunctional optical films. We believe that this method is not only limited to the example considered in this study, but also can be applied to all material combinations as long as they can be deposited using the pulsed laser deposition technique.

  3. Experiments on deformation behaviour of functionally graded NiTi structures.

    PubMed

    Shariat, Bashir S; Meng, Qinglin; Mahmud, Abdus S; Wu, Zhigang; Bakhtiari, Reza; Zhang, Junsong; Motazedian, Fakhrodin; Yang, Hong; Rio, Gerard; Nam, Tae-Hyun; Liu, Yinong

    2017-08-01

    Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled "Functionally graded shape memory alloys: design, fabrication and experimental evaluation" (Shariat et al., 2017) [1]. Stress-strain variation of microstructurally graded NiTi wires is presented at different heat treatment conditions and testing temperatures. The complex 4-way shape memory behaviour of a compositionally graded NiTi strip during one complete thermal cycle is demonstrated. The effects of geometrical design on pseudoelastic behaviour of geometrically graded NiTi plates over tensile loading cycles are presented on the stress-strain diagrams.

  4. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Castillo, M.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.; Zhang, X.; Umakoshi, M.; Yi, H. C.; Guigne, J. Y.

    2003-07-01

    Combustion synthesis, or self-propagating, high temperature synthesis is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr 3C 2, MOSi 2-SiC, NiAl-TiB 2, to engineered porous composites, e.g., B 4C-Al 2O 3, Ti-TiB x, Ni-Ti, Ca 3(P0 4) 2 and glass-ceramic composites, e.g., CaO-SiO 2-BaO-Al 2O 3-TiB 2. The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3(PO 4) 2. Recent experiments on the NASA parabolic flight (KC-135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMS TM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  5. Effects of gravity on combustion synthesis of functionally graded biomaterials

    NASA Astrophysics Data System (ADS)

    Moore, J.; Schowengerdt, F.; Ayers, R.; Castillo, M.; Zhang, X.; Umakoshi, U.; Yi, C.; Guigne, J.

    Combustion synthesis, or self-propagating, high temperature synthesis (SHS) is currently being used at the Colorado School of Mines to produce advanced materials for biomedical applications. These biomaterials include ceramic, intermetallic, and metal-matrix composites for applications ranging from structural to oxidation- and wear-resistant materials, e.g., TiC-Ti, TiC-Cr3 C2 , MoSi2 - SiC, NiAl-TiB2 , to engineered porous composites, e.g., B4 C-A l2 O3 , Ti-TiBx , Ni-Ti, Ca 3 (PO4 )2 and glass- ceramic composites, e.g., CaO-SiO2 - B a O-A l2 O3 -T i B2 . The goal of the functionally graded biomaterials project is to develop new materials, graded in porosity and composition, which will combine the desirable mechanical properties of implant, e.g., NiTi, with the bone-growth enhancement properties of porous biodegradable ceramics, e.g., Ca 3 (PO4 )2 . Recent experiments on the NASA parabolic flight (KC- 135) aircraft have shown that gravity plays an important role in controlling the structure and properties of materials produced by combustion synthesis. The results of these studies, which will be presented at the conference, will provide valuable input to the design of experiments to be done in Space-DRUMSTM, a containerless materials processing facility scheduled to be placed on the International Space Station in 2003.

  6. Applications and functions of food-grade phosphates.

    PubMed

    Lampila, Lucina E

    2013-10-01

    Food-grade phosphates are used in the production of foods to function as buffers, sequestrants, acidulants, bases, flavors, cryoprotectants, gel accelerants, dispersants, nutrients, precipitants, and as free-flow (anticaking) or ion-exchange agents. The actions of phosphates affect the chemical leavening of cakes, cookies, pancakes, muffins, and doughnuts; the even melt of processed cheese; the structure of a frankfurter; the bind and hydration of delicatessen meats; the fluidity of evaporated milk; the distinctive flavor of cola beverages; the free flow of spice blends; the mineral content of isotonic beverages; and the light color of par-fried potato strips. In the United States, food-grade phosphates are generally recognized as safe, but use levels have been defined for some foods by the Code of Federal Regulations, specifically Titles 9 and 21 for foods regulated by the U.S. Department of Agriculture (USDA) and the U.S. Food and Drug Administration (FDA), respectively. Standards for food purity are defined nationally and internationally in sources such as the Food Chemicals Codex and the Joint Food and Agriculture Organization and World Health Organization (FAO/WHO) Expert Committee on Food Additives.

  7. Micromechanics Modeling of Functionally Graded Interphase Regions in Carbon Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Seidel, Gary D.; Lagoudas, Dimitris C.; Frankland, Sarah Jane V.; Gates, Thomas S.

    2006-01-01

    The effective elastic properties of a unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes are modeled herein through the use of a multi-scale method involving the molecular dynamics/equivalent continuum and micromechanics methods. The specific lamina representative volume element studied consists of a carbon fiber surrounded by a region of epoxy containing a radially varying concentration of carbon nanotubes which is then embedded in the pure epoxy matrix. The variable concentration of carbon nanotubes surrounding the carbon fiber results in a functionally graded interphase region as the properties of the interphase region vary according to the carbon nanotube volume fraction. Molecular dynamics and equivalent continuum methods are used to assess the local effective properties of the carbon nanotube/epoxy comprising the interphase region. Micromechanics in the form of the Mori-Tanaka method are then applied to obtain the global effective properties of the graded interphase region wherein the carbon nanotubes are randomly oriented. Finally, the multi-layer composite cylinders micromechanics approach is used to obtain the effective lamina properties from the lamina representative volume element. It was found that even very small quantities of carbon nanotubes (0.36% of lamina by volume) coating the surface of the carbon fibers in the lamina can have a significant effect (8% increase) on the transverse properties of the lamina (E22, k23, G23 and G12) with almost no affect on the lamina properties in the fiber direction (E11 and v12).

  8. Nonlinear vibration of edge cracked functionally graded Timoshenko beams

    NASA Astrophysics Data System (ADS)

    Kitipornchai, S.; Ke, L. L.; Yang, J.; Xiang, Y.

    2009-07-01

    Nonlinear vibration of beams made of functionally graded materials (FGMs) containing an open edge crack is studied in this paper based on Timoshenko beam theory and von Kármán geometric nonlinearity. The cracked section is modeled by a massless elastic rotational spring. It is assumed that material properties follow exponential distributions through beam thickness. The Ritz method is employed to derive the governing eigenvalue equation which is then solved by a direct iterative method to obtain the nonlinear vibration frequencies of cracked FGM beams with different end supports. A detailed parametric study is conducted to study the influences of crack depth, crack location, material property gradient, slenderness ratio, and end supports on the nonlinear free vibration characteristics of cracked FGM beams. It is found that unlike isotropic homogeneous beams, both intact and cracked FGM beams show different vibration behavior at positive and negative amplitudes due to the presence of bending-extension coupling in FGM beams.

  9. Some basic fracture mechanics concepts in functionally graded materials

    NASA Astrophysics Data System (ADS)

    Jin, Z.-H.; Batra, R. C.

    1996-08-01

    In this paper, the crack-tip fields in a general nonhomogeneous material are summarized. The fracture toughness and R-curve of functionally graded materials (FGMs) are studied based on the crack-bridging concept and a rule of mixtures. It is shown that the fracture toughness is significantly increased when a crack grows from the ceramic-rich region into the metal-rich region in an alumina-nickel FGM. By applying the concept of the toughening mechanism to the study of the strength behavior of FGMs, it is found that the residual strength of the alumina-nickel FGM with an edge crack on the ceramic side is quite notch insensitive.

  10. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  11. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  12. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications

    NASA Astrophysics Data System (ADS)

    Finšgar, Matjaž; Uzunalić, Amra Perva; Stergar, Janja; Gradišnik, Lidija; Maver, Uroš

    2016-05-01

    Corrosion resistance, biocompatibility, improved osteointegration, as well the prevention of inflammation and pain are the most desired characteristics of hip replacement implants. In this study we introduce a novel multi-layered coating on AISI 316LVM stainless steel that shows promise with regard to all mentioned characteristics. The coating is prepared from alternating layers of the biocompatible polysaccharide chitosan and the non-steroid anti-inflammatory drug (NSAID), diclofenac. Electrochemical methods were employed to characterize the corrosion behavior of coated and uncoated samples in physiological solution. It is shown that these coatings improve corrosion resistance. It was also found that these coatings release the incorporated drug in controlled, multi-mechanism manner. Adding additional layers on top of the as-prepared samples, has potential for further tailoring of the release profile and increasing the drug dose. Biocompatibility was proven on human-derived osteoblasts in several experiments. Only viable cells were found on the sample surface after incubation of the samples with the same cell line. This novel coating could prove important for prolongation of the application potential of steel-based hip replacements, which are these days often replaced by more expensive ceramic or other metal alloys.

  13. Novel chitosan/diclofenac coatings on medical grade stainless steel for hip replacement applications

    PubMed Central

    Finšgar, Matjaž; Uzunalić, Amra Perva; Stergar, Janja; Gradišnik, Lidija; Maver, Uroš

    2016-01-01

    Corrosion resistance, biocompatibility, improved osteointegration, as well the prevention of inflammation and pain are the most desired characteristics of hip replacement implants. In this study we introduce a novel multi-layered coating on AISI 316LVM stainless steel that shows promise with regard to all mentioned characteristics. The coating is prepared from alternating layers of the biocompatible polysaccharide chitosan and the non-steroid anti-inflammatory drug (NSAID), diclofenac. Electrochemical methods were employed to characterize the corrosion behavior of coated and uncoated samples in physiological solution. It is shown that these coatings improve corrosion resistance. It was also found that these coatings release the incorporated drug in controlled, multi-mechanism manner. Adding additional layers on top of the as-prepared samples, has potential for further tailoring of the release profile and increasing the drug dose. Biocompatibility was proven on human-derived osteoblasts in several experiments. Only viable cells were found on the sample surface after incubation of the samples with the same cell line. This novel coating could prove important for prolongation of the application potential of steel-based hip replacements, which are these days often replaced by more expensive ceramic or other metal alloys. PMID:27215333

  14. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO2/Ag-exchanged-zeolite-A nanocomposite

    NASA Astrophysics Data System (ADS)

    Nosrati, Rahimeh; Olad, Ali; Nofouzi, Katayoon

    2015-08-01

    The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO2/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV-visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO2/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO2/Ag-exchanged-zeolite-A nanocomposite additive with TiO2 to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  15. Dynamic fracture of functionally graded magnetoelectroelastic composite materials

    NASA Astrophysics Data System (ADS)

    Stoynov, Y.; Dineva, P.

    2014-11-01

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamental solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.

  16. Development of polymeric functionally graded scaffolds: a brief review.

    PubMed

    Scaffaro, Roberto; Lopresti, Francesco; Maio, Andrea; Sutera, Fiorenza; Botta, Luigi

    2016-12-16

    Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance.In general, FGSs can be categorized as bilayered or multilayered, depending on the number of layers in the whole structure. In other cases, scaffolds are characterized by a continuous gradient of 1 or more specific properties that cannot be related to the presence of clearly distinguished layers. Since each traditional approach presents peculiar advantages and disadvantages, FGSs are good candidates to overcome the limitations of current treatment options. In contrast to the reviews reported in the literature, which usually focus on the application of FGS, this brief review provides an overview of the most common strategies adopted to prepare FGS.

  17. Dynamic fracture of functionally graded magnetoelectroelastic composite materials

    SciTech Connect

    Stoynov, Y.; Dineva, P.

    2014-11-12

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamental solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.

  18. Finite Element Analysis of Multilayered and Functionally Gradient Tribological Coatings With Measured Material Properties (Preprint)

    DTIC Science & Technology

    2006-11-01

    gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were assumed as a series of perfectly bonded layers with...resistance and low friction. Ti1-xCx (0≤ x ≤1) gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were...indenter tip was used for the FEA model. Each coating sample consists of 1 μm thick coating and 440C stainless steel substrate. The area function for

  19. A Facile Approach to Functionalize Cell Membrane-Coated Nanoparticles

    PubMed Central

    Zhou, Hao; Fan, Zhiyuan; Lemons, Pelin K.; Cheng, Hao

    2016-01-01

    Convenient strategies to provide cell membrane-coated nanoparticles (CM-NPs) with multi-functionalities beyond the natural function of cell membranes would dramatically expand the application of this emerging class of nanomaterials. We have developed a facile approach to functionalize CM-NPs by chemically modifying live cell membranes prior to CM-NP fabrication using a bifunctional linker, succinimidyl-[(N-maleimidopropionamido)-polyethyleneglycol] ester (NHS-PEG-Maleimide). This method is particularly suitable to conjugate large bioactive molecules such as proteins on cell membranes as it establishes a strong anchorage and enable the control of linker length, a critical parameter for maximizing the function of anchored proteins. As a proof of concept, we show the conjugation of human recombinant hyaluronidase, PH20 (rHuPH20) on red blood cell (RBC) membranes and demonstrate that long linker (MW: 3400) is superior to short linker (MW: 425) for maintaining enzyme activity, while minimizing the changes to cell membranes. When the modified membranes were fabricated into RBC membrane-coated nanoparticles (RBCM-NPs), the conjugated rHuPH20 can assist NP diffusion more efficiently than free rHuPH20 in matrix-mimicking gels and the pericellular hyaluronic acid matrix of PC3 prostate cancer cells. After quenching the unreacted chemical groups with polyethylene glycol, we demonstrated that the rHuPH20 modification does not reduce the ultra-long blood circulation time of RBCM-NPs. Therefore, this surface engineering approach provides a platform to functionlize CM-NPs without sacrificing the natural function of cell membranes. PMID:27217834

  20. Fabrication, Characterization and Modeling of Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Lee, Po-Hua

    In the past few decades, a number of theoretical and experimental studies for design, fabrication and performance analysis of solar panel systems (photovoltaic/thermal systems) have been documented. The existing literature shows that the use of solar energy provides a promising solution to alleviate the shortage of natural resources and the environmental pollution associated with electricity generation. A hybrid solar panel has been invented to integrate photovoltaic (PV) cells onto a substrate through a functionally graded material (FGM) with water tubes cast inside, through which water flow serves as both a heat sink and a solar heat collector. Due to the unique and graded material properties of FGMs, this novel design not only supplies efficient thermal harvest and electrical production, but also provides benefits such as structural integrity and material efficiency. In this work, a sedimentation method has been used to fabricate aluminum (Al) and high-density polyethylene (HDPE) FGMs. The size effect of aluminum powder on the material gradation along the depth direction is investigated. Aluminum powder or the mixture of Al and HDPE powder is thoroughly mixed and uniformly dispersed in ethanol and then subjected to sedimentation. During the sedimentation process, the concentration of Al and HDPE particles temporally and spatially changes in the depth direction due to the non-uniform motion of particles; this change further affects the effective viscosity of the suspension and thus changes the drag force of particles. A Stokes' law based model is developed to simulate the sedimentation process, demonstrate the effect of manufacturing parameters on sedimentation, and predict the graded microstructure of deposition in the depth direction. In order to improve the modeling for sedimentation behavior of particles, the Eshelby's equivalent inclusion method (EIM) is presented to determine the interaction between particles, which is not considered in a Stokes' law based

  1. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel

    NASA Astrophysics Data System (ADS)

    Gopi, D.; Rajeswari, D.; Ramya, S.; Sekar, M.; R, Pramod; Dwivedi, Jishnu; Kavitha, L.; Ramaseshan, R.

    2013-12-01

    The surface of 316L stainless steel (316L SS) is irradiated by high energy low current DC electron beam (HELCDEB) with energy of 500 keV and beam current of 1.5 mA followed by the electrodeposition of strontium hydroxyapatite (Sr-HAp) to enhance its corrosion resistance in physiological fluid. The coatings were characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and High resolution scanning electron microscopy (HRSEM). The Sr-HAp coating on HELCDEB treated 316L SS exhibits micro-flower structure. Electrochemical results show that the Sr-HAp coating on HELCDEB treated 316L SS possesses maximum corrosion resistance in Ringer's solution.

  2. New design graded refractive index antireflection coatings for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Xu, Weilong; Zhao, Yu; Xiao, Jin; Zhu, Xifang

    2017-07-01

    Reflectance spectrum of nanoporous silicon dioxide (SiO2) double layer was calculated by using the matrix method. The results were compared with the corresponding spectrum of silicon oxynitride (SiOxNy)-porous silicon (PS) double layer which deposited on nanostructured black silicon coatings. The nanoporous silicon dioxide (SiO2) double layer deposited on nanostructure black silicon antireflection coating presents a lower reflectance in a broad range of solar spectrum. This research outcome may find a wide application in solar cell industry.

  3. Design optimization of a radial functionally graded dental implant.

    PubMed

    Ichim, Paul I; Hu, Xiaozhi; Bazen, Jennifer J; Yi, Wei

    2016-01-01

    In this work, we use FEA to test the hypothesis that a low-modulus coating of a cylindrical zirconia dental implant would reduce the stresses in the peri-implant bone and we use design optimization and the rule of mixture to estimate the elastic modulus and the porosity of the coating that provides optimal stress shielding. We show that a low-modulus coating of a dental implant significantly reduces the maximum stresses in the peri-implant bone without affecting the average stresses thus creating a potentially favorable biomechanical environment. Our results suggest that a resilient coating is capable of reducing the maximum compressive and tensile stresses in the peri-implant bone by up to 50% and the average stresses in the peri-implant bone by up to 15%. We further show that a transitional gradient between the high-modulus core and the low-modulus coating is not necessary and for a considered zirconia/HA composite the optimal thickness of the coating is 100 µ with its optimal elastic at the lowest value considered of 45 GPa.

  4. Optimum weight design of functionally graded material gears

    NASA Astrophysics Data System (ADS)

    Jing, Shikai; Zhang, He; Zhou, Jingtao; Song, Guohua

    2015-11-01

    Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials (FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization (GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.

  5. Functionally Graded Al Alloy Matrix In-Situ Composites

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Subramaniya Sarma, V.; Murty, B. S.

    2010-01-01

    In the present work, functionally graded (FG) aluminum alloy matrix in-situ composites (FG-AMCs) with TiB2 and TiC reinforcements were synthesized using the horizontal centrifugal casting process. A commercial Al-Si alloy (A356) and an Al-Cu alloy were used as matrices in the present study. The material parameters (such as matrix and reinforcement type) and process parameters (such as mold temperature, mold speed, and melt stirring) were found to influence the gradient in the FG-AMCs. Detailed microstructural analysis of the composites in different processing conditions revealed that the gradients in the reinforcement modify the microstructure and hardness of the Al alloy. The segregated in-situ formed TiB2 and TiC particles change the morphology of Si particles during the solidification of Al-Si alloy. A maximum of 20 vol pct of reinforcement at the surface was achieved by this process in the Al-4Cu-TiB2 system. The stirring of the melt before pouring causes the reinforcement particles to segregate at the periphery of the casting, while in the absence of such stirring, the particles are segregated at the interior of the casting.

  6. Thermal Fracture and Thermal Shock Resistance of Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Jin, Z.-H.; Batra, R. C.

    We first analyze thermal stresses and thermal cracking in a strip of a functionally graded material (FGM) subjected to sudden cooling. It is assumed that the shear modulus of the material decreases hyperbolically with the higher value occurring at the surface exposed to the thermal shock and that thermal conductivity varies exponentially. It is shown that the maximum tensile thermal stress induced in the strip is substantially reduced by the presumed thermal conductivity gradient. Thermal stress intensity factors (TSIFs) are also calculated for an edge crack at the surface exposed to the thermal shock and results show that while the TSIF is relatively insensitive to the shear modulus gradient, it is significantly reduced by the thermal conductivity gradient. The crack growth resistance curve of a ceramic-metal FGM is also studied and it is found that the FGM exhibits strong R-curve behavior when a crack grows from the ceramic-rich region into the metalrich region. Finally, the thermal shock resistance of FGMs is discussed.

  7. Protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating characterized using quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Vaidya, Shyam V.; Yuan, Min; Narváez, Alfredo R.; Daghfal, David; Mattzela, James; Smith, David

    2016-02-01

    The protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating (Dursan®) were compared to that of an amorphous fluoropolymer (AF1600) coating and bare 316L grade stainless steel by studying non-specific adsorption of various proteins onto these surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D). A wash solution with nonionic surfactant, polyoxyethyleneglycol dodecyl ether (or Brij 35), facilitated 100% removal of the adsorbed bovine serum albumin (BSA), mouse immunoglobulin G (IgG), and normal human plasma proteins from the Dursan surface and of the adsorbed normal human plasma proteins from the AF1600 surface, whereas these proteins remained adsorbed on the bare stainless steel surface. Mechanical stress in the form of sonication demonstrated durability of the Dursan coating to mechanical wear and showed no negative impact on the coating's ability to prevent adsorption of plasma proteins. Surface delamination was observed in case of the sonicated AF1600 coating, which further led to adsorption of normal human plasma proteins.

  8. Structurally Integrated, Damage Tolerant Thermal Spray Coatings: Processing Effects on Surface and System Functionalities

    NASA Astrophysics Data System (ADS)

    Vackel, Andrew

    Thermal Spray (TS) coatings have seen extensive application as protective surfaces to enhance the service life of substrates prone to damage in their operating environment (wear, corrosion, heat etc.). With the advent of high velocity TS processes, the ability to deposit highly dense (>99%) metallic and cermet coatings has further enhanced the protective ability of these coatings. In addition to surface functionality, the influence of the coating application on the mechanical performance of a coated component is of great concern when such a component will experience either static or cyclic loading during service. Using a process mapping methodology, the processing-property interplay between coating materials meant to provide damage tolerant surface or for structural restoration are explored in terms of relevant mechanical properties. Most importantly, the residual stresses inherent in TS deposited coatings are shown to play a significant role in the integrated mechanical performance of these coatings. Unique to high velocity TS processes is the ability to produce compressive stresses within the deposit from the cold working induced by the high kinetic energy particles upon impact. The extent of these formation stresses are explored with different coating materials, as well as processing influence. The ability of dense TS coatings to carry significant structural load and synergistically strengthen coated tensile specimens is demonstrated as a function of coating material, processing, and thickness. The sharing of load between the substrate and otherwise brittle coating enables higher loads before yield for the bi-material specimens, offering a methodology to improve the tensile performance of coated components for structural repair or multi-functionality (surface and structure). The concern of cyclic fatigue damage in coated components is explored, since the majority of service application are designed for loading to be well below the yield point. The role of

  9. Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells.

    PubMed

    Gopi, D; Ramya, S; Rajeswari, D; Surendiran, M; Kavitha, L

    2014-02-01

    The present study deals with the successful development of bilayer coatings by electropolymerisation of poly(3,4-ethylenedioxythiophene) (PEDOT) on surgical grade stainless steel (316L SS) followed by the electrodeposition of strontium (Sr) and magnesium (Mg) substituted porous hydroxyapatite (Sr, Mg-HA). The bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM). Corrosion resistance of the obtained coatings was investigated in Ringer's solution by electrochemical techniques and the results were in good agreement with those obtained from chemical analysis, namely inductively coupled plasma atomic emission spectrometry (ICP-AES). Also, the mechanical and biological properties of the bilayer coatings were analyzed. From the obtained results it was evident that the PEDOT/Sr, Mg-HA bilayer exhibited greater adhesion strength than the Sr, Mg-HA coated 316L SS. In vitro cell adhesion test of the Sr, Mg-HA coating on PEDOT coated specimen is found to be more bioactive compared to that of the single substituted hydroxyapatite (Sr or Mg-HA) on the PEDOT coated 316L SS. Thus, the PEDOT/Sr, Mg-HA bilayer coated 316L SS can serve as a prospective implant material for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The Contribution of Executive Functions to Narrative Writing in Fourth Grade Children

    ERIC Educational Resources Information Center

    Drijbooms, Elise; Groen, Margriet A.; Verhoeven, Ludo

    2015-01-01

    The present study investigated the contribution of executive functions to narrative writing in fourth grade children, and evaluated to what extent executive functions contribute differentially to different levels of narrative composition. The written skills of 102 Dutch children in fourth grade were assessed using a narrative picture-elicitation…

  11. The Contribution of Executive Functions to Narrative Writing in Fourth Grade Children

    ERIC Educational Resources Information Center

    Drijbooms, Elise; Groen, Margriet A.; Verhoeven, Ludo

    2015-01-01

    The present study investigated the contribution of executive functions to narrative writing in fourth grade children, and evaluated to what extent executive functions contribute differentially to different levels of narrative composition. The written skills of 102 Dutch children in fourth grade were assessed using a narrative picture-elicitation…

  12. Nanomechanical properties, wear resistance and in-vitro characterization of Ta2O5 nanotubes coating on biomedical grade Ti-6Al-4V.

    PubMed

    Sarraf, Masoud; Razak, Bushroa Abdul; Nasiri-Tabrizi, Bahman; Dabbagh, Ali; Kasim, Noor Hayaty Abu; Basirun, Wan Jefrey; Bin Sulaiman, Eshamsul

    2017-02-01

    Tantalum pentoxide nanotubes (Ta2O5 NTs) can dramatically raise the biological functions of different kinds of cells, thus have promising applications in biomedical fields. In this study, Ta2O5 NTs were prepared on biomedical grade Ti-6Al-4V alloy (Ti64) via physical vapor deposition (PVD) and a successive two-step anodization in H2SO4: HF (99:1)+5% EG electrolyte at a constant potential of 15V. To improve the adhesion of nanotubular array coating on Ti64, heat treatment was carried out at 450°C for 1h under atmospheric pressure with a heating/cooling rate of 1°Cmin(-)(1). The surface topography and composition of the nanostructured coatings were examined by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS), to gather information about the corrosion behavior, wear resistance and bioactivity in simulated body fluids (SBF). From the nanoindentation experiments, the Young's modulus and hardness of the 5min anodized sample were ~ 135 and 6GPa, but increased to ~ 160 and 7.5GPa, respectively, after annealing at 450°C. It was shown that the corrosion resistance of Ti64 plates with nanotubular surface modification was higher than that of the bare substrate, where the 450°C annealed specimen revealed the highest corrosion protection efficiency (99%). Results from the SBF tests showed that a bone-like apatite layer was formed on nanotubular array coating, as early as the first day of immersion in simulated body fluid (SBF), indicating the importance of nanotubular configuration on the in-vitro bioactivity.

  13. Fabrication and characterization of Mg-doped chitosan-gelatin nanocompound coatings for titanium surface functionalization.

    PubMed

    Cai, Xinjie; Cai, Jing; Ma, Kena; Huang, Pin; Gong, Lingling; Huang, Dan; Jiang, Tao; Wang, Yining

    2016-07-01

    Titanium and its alloys have been widely used in clinic and achieved great success. Due to the bio-inertness of titanium surface, challenges still exit in some compromised conditions. The present study aimed to functionalize titanium surface with magnesium (Mg)-doped chitosan/gelatin (CS/G) nanocompound coatings via electrophoretic deposition (EPD). CS/G coatings loaded with different amount of magnesium were successfully prepared on titanium substrate via EPD. Physicochemical characterization of the coatings confirmed that magnesium ions were loaded into the coatings in a dose-dependent manner. XRD results demonstrated that co-deposition of magnesium influenced the crystallinity of the coatings, and a new crystalline substance presented, namely hydrated basic magnesium carbonate. Mechanical tests showed improved tensile and shear bond strength of the magnesium-doped coatings, while the excessively high magnesium concentration could eventually decrease the bonding strength. Sustained release of magnesium ion was detected by ICP-OES within 28 days. TEM images also displayed that nanoparticles could be released from the coatings. In vitro cellular response assays demonstrated that the Mg-doped nanocompound coatings could enhance the proliferation and osteogenic differentiation of MC3T3-E1 cells compared to CS/G coatings. Therefore, it could be concluded that Mg-doped CS/G nanocompound coatings were successfully fabricated on titanium substrates via EPD. It would be a promising candidate to functionalize titanium surface with such organic-inorganic nanocompound coatings.

  14. Transfer function of long spliced graded-index fibers with mode scramblers.

    PubMed

    Ikeda, M; Kitayama, K

    1978-01-01

    Transfer functions of long spliced graded-index fibers are described. The transfer function of a spliced graded-index fiber is determined with the steady state mode exciter and the mode scramblers loaded just after each splicing. Under these conditions, the total transfer function calculated by the linear combination of each fiber's transfer function is in good agreement with the measurement results. It has been found that the transmission bandwidth can be widened by using mode scramblers.

  15. Fabrication of Al2O3-W Functionally Graded Materials by Slipcasting Method

    NASA Astrophysics Data System (ADS)

    Katayama, Tomoyuki; Sukenaga, Sohei; Saito, Noritaka; Kagata, Hajime; Nakashima, Kunihiko

    2011-10-01

    We have successfully fabricated a functionally graded material (FGM) from tungsten and alumina powders by a slip-casting method. This FGM has applications as a sealing and conducting component for high-intensity discharge lamps (HiDLs) that have a translucent alumina envelope. Two types of W powder, with different oxidizing properties, were used as the raw powders for the Al2O3-W FGM. "Oxidized W" was prepared by heat-treatment at 200 °C for 180 min in air. Alumina and each of the W powders were mixed in ultrapure water by ultrasonic stirring. The slurry was then cast into a cylindrical acrylic mold, which had a base of porous alumina, under controlled pressure. The green compacts were subsequently dried, and then sintered using a vacuum furnace at 1600 °C for a fixed time. The microstructures of the FGMs were observed by scanning electron microscopy (SEM) of the polished section. The Al2O3-W FGM with the "oxidized W" powder resulted in a microscopic compositional gradient. However, the FGM with "as-received W" showed no compositional gradient. This result was mainly attributed to the difference between the ζ-potentials of the W powders with the different oxidizing conditions; basically "oxidized W" powder tends to disperse because of the larger ζ-potential of the oxide layer coated on the W powder core.

  16. Optimal Design of Functionally Graded Metallic Foam Insulations

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Sankar, Bhavani; Venkataraman, Satchi; Zhu, Huadong

    2002-01-01

    The focus of our work has been on developing an insight into the physics that govern the optimum design of thermal insulation for use in thermal protection systems of launch vehicle. Of particular interest was to obtain optimality criteria for designing foam insulations that have density (or porosity) distributions through the thickness for optimum thermal performance. We investigate the optimum design of functionally graded thermal insulation for steady state heat transfer through the foam. We showed that the heat transfer in the foam has competing modes, of radiation and conduction. The problem assumed a fixed inside temperature of 400 K and varied the aerodynamic surface heating on the outside surface from 0.2 to 1.0 MW/sq m. The thermal insulation develops a high temperature gradient through the thickness. Investigation of the model developed for heat conduction in foams showed that at high temperatures (as on outside wall) intracellular radiation dominates the heat transfer in the foam. Minimizing radiation requires reducing the pore size, which increases the density of the foam. At low temperatures (as on the inside wall), intracellular conduction (of the metal and air) dominates the heat transfer. Minimizing conduction requires increasing the pore size. This indicated that for every temperature there was an optimum value of density that minimized the heat transfer coefficient. Two optimization studies were performed. One was to minimize the heat transmitted though a fixed thickness insulation by varying density profiles. The second was to obtain the minimum mass insulation for specified thickness. Analytical optimality criteria were derived for the cases considered. The optimality condition for minimum heat transfer required that at each temperature we find the density that minimizes the heat transfer coefficient. Once a relationship between the optimum heat transfer coefficient and the temperature was found, the design problem reduced to the solution of a

  17. Surface Coating of Oxide Powders: A New Synthesis Method to Process Biomedical Grade Nano-Composites

    PubMed Central

    Palmero, Paola; Montanaro, Laura; Reveron, Helen; Chevalier, Jérôme

    2014-01-01

    Composite and nanocomposite ceramics have achieved special interest in recent years when used for biomedical applications. They have demonstrated, in some cases, increased performance, reliability, and stability in vivo, with respect to pure monolithic ceramics. Current research aims at developing new compositions and architectures to further increase their properties. However, the ability to tailor the microstructure requires the careful control of all steps of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering. This review aims at deepening understanding of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on the key role of the synthesis methods to develop homogeneous and tailored microstructures. In this frame, the authors have developed an innovative method, named “surface-coating process”, in which matrix oxide powders are coated with inorganic precursors of the second phase. The method is illustrated into two case studies; the former, on Zirconia Toughened Alumina (ZTA) materials for orthopedic applications, and the latter, on Zirconia-based composites for dental implants, discussing the advances and the potential of the method, which can become a valuable alternative to the current synthesis process already used at a clinical and industrial scale. PMID:28788117

  18. Technology Tips: Two Useful Functions for Excel Grade Books

    ERIC Educational Resources Information Center

    Lobo, Glen E.

    2006-01-01

    The topic of this month's department is writing macros in Excel. The examples given are of use to teachers who maintain their grade books in Excel, and show, for example, how to drop the lowest or choose the highest scores from a student's record. The Surfing Note cites a collection of online tools and resources for professional development…

  19. Technology Tips: Two Useful Functions for Excel Grade Books

    ERIC Educational Resources Information Center

    Lobo, Glen E.

    2006-01-01

    The topic of this month's department is writing macros in Excel. The examples given are of use to teachers who maintain their grade books in Excel, and show, for example, how to drop the lowest or choose the highest scores from a student's record. The Surfing Note cites a collection of online tools and resources for professional development…

  20. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    NASA Astrophysics Data System (ADS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  1. Ceria and copper/ceria functional coatings for electrochemical applications: Materials preparation and characterization

    NASA Astrophysics Data System (ADS)

    Melnik, J.; Fu, X. Z.; Luo, J. L.; Sanger, A. R.; Chuang, K. T.; Yang, Q. M.

    Following preliminary investigations, two electrodeposition techniques (electrophoretic and electrolytic) were selected and adapted for deposition of doped ceria ceramic and copper/doped ceria composite coatings on Ni substrates (foil and foam). The copper/doped ceria composites have potential value as protective functional coatings for current collectors in electrochemical cells including solid oxide fuel sells (SOFC). The doped ceria ceramic coating has potential application as a porous matrix for anodes of SOFCs operating on syngas, sour gas, or hydrocarbons.

  2. Differential Item Functioning by Gender on a Large-Scale Science Performance Assessment: A Comparison across Grade Levels.

    ERIC Educational Resources Information Center

    Holweger, Nancy; Taylor, Grace

    The fifth-grade and eighth-grade science items on a state performance assessment were compared for differential item functioning (DIF) due to gender. The grade 5 sample consisted of 8,539 females and 8,029 males and the grade 8 sample consisted of 7,477 females and 7,891 males. A total of 30 fifth grade items and 26 eighth grade items were…

  3. A Progression in First-Grade Children's Thinking about Variable and Variable Notation in Functional Relationships

    ERIC Educational Resources Information Center

    Blanton, Maria; Brizuela, Bárbara M.; Gardiner, Angela Murphy; Sawrey, Katie; Newman-Owens, Ashley

    2017-01-01

    Recent research suggests that children in elementary grades have some facility with variable and variable notation in ways that warrant closer attention. We report here on an empirically developed progression in first-grade children's thinking about these concepts in functional relationships. Using learning trajectories research as a framework for…

  4. Investigation of Eighth-Grade Students' Understanding of the Slope of the Linear Function

    ERIC Educational Resources Information Center

    Birgin, Osman

    2012-01-01

    This study aimed to investigate eighth-grade students' difficulties and misconceptions and their performance of translation between the different representation modes related to the slope of linear functions. The participants were 115 Turkish eighth-grade students in a city in the eastern part of the Black Sea region of Turkey. Data was collected…

  5. The Correlation between the Fourth Grade Students' Level of Functional Literacy and Metacognitive Awareness

    ERIC Educational Resources Information Center

    Özenç, Emine Gül; Dikici, Hidayet

    2016-01-01

    The present study aims at presenting the relationship between the fourth grade primary school students' level of functional literacy and metacognitive awareness. The study group of the research is made up of 406 fourth grade students attending school during 2015-2016 academic year in Nigde. This study adopts survey model and its data collection…

  6. Preparation of metal surfaces for application of functional coatings

    NASA Astrophysics Data System (ADS)

    Gabdrakhmanov, Az T.; Israphilov, I. H.; Galiakbarov, A. T.; Gabdrakhmanov, Al T.

    2017-01-01

    This paper proposes an efficient method of plasma purification of metal surfaces before applying coatings or the product finishing treatment. The plasma purification is performed in a steam-gas discharge with an aluminum anode and a liquid cathode.

  7. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption

    PubMed Central

    2015-01-01

    Coating surfaces with thin or thick films of zwitterionic material is an effective way to reduce or eliminate nonspecific adsorption to the solid/liquid interface. This review tracks the various approaches to zwitteration, such as monolayer assemblies and polymeric brush coatings, on micro- to macroscopic surfaces. A critical summary of the mechanisms responsible for antifouling shows how zwitterions are ideally suited to this task. PMID:24754399

  8. Graphene Nanoplatelets Based Protective and Functionalizing Coating for Stainless Steel.

    PubMed

    Mondal, Jayanta; Kozlova, Jekaterina; Sammelselg, Väino

    2015-09-01

    Stainless steel is the most widely used alloy for many industrial and everyday applications, and protection of this alloy substrate against corrosion is an important industrial issue. Here we report a promising application of graphene oxide and graphene nanoplatelets as effective corrosion inhibitors for AISI type 304 stainless steel alloy. The graphene oxide and graphene coatings on the stainless steel substrates were prepared using spin coating techniques. Homogeneous and complete surface coverage by the graphene oxide and graphene nanoplatelets were observed with a high-resolution scanning electron microscope. The corrosion inhibition ability of these materials was investigated through measurement of open circuit potential and followed by potentiodymamic polarization analysis in aqueous sodium chloride solution before and after a month of immersion. Analyzed result exhibits effective corrosion inhibition for both substrates coated with graphene oxide or graphene nanoplatelets by increasing corrosion potential, pitting potential and decreasing passive current density. The corrosion inhibition ability of the coated substrates has not changed even after the long-term immersion. The result showed both graphene materials can be used as an effective corrosion inhibitor for the stainless steel substrates, which would certainly increase lifetime the substrate. However, long-term protection ability of the graphene coated susbtsrate showed somewhat better inhibition performance than the ones coated with graphene oxide.

  9. Water-Based Assembly of Polymer-Metal Organic Framework (MOF) Functional Coatings

    SciTech Connect

    De, Souvik; Nandasiri, Manjula I.; Schaef, Herbert T.; McGrail, Benard Peter; Nune, Satish K.; Lutkenhaus, Jodie L.

    2016-12-27

    Metal organic frameworks (MOFs) have gained tremendous attention for their porosity, size selectivity, and structural diversity. There is a need for MOF-based coatings, particularly in applications such as separations, electronics and energy; yet forming thin, functional, conformal coatings is prohibitive because MOFs exist as a powder. Layer-by- layer assembly, a versatile thin film coating approach, offers a unique solution to this problem, but this approach requires MOFs that are water-dispersible and bear a surface charge. Here, we address these issues by examining water-based dispersions of MIL-101(Cr) that facilitate the formation of robust polymer-MOF hybrid coatings. Specifically, the substrate to be coated is alternately exposed to an aqueous solution of poly(styrene sulfonate) and dispersion MIL-101(Cr), yielding linear film growth and coatings with a MOF content as high as 77 wt%.This approach is surface-agnostic, in which the coating is successfully applied to silicon, glass, flexible plastic, and even cotton fabric, conformally coating individual fibers. In contrast, prior attempts at forming MOF-coatings were severely limited to a handful of surfaces, required harsh chemical treatment, and were not conformal. The approach presented here unambiguously confirms that MOFs can be conformally coated onto complex and unusual surfaces, opening the door for a wide variety of applications.

  10. Sound symbolic naming of novel objects is a graded function.

    PubMed

    Thompson, Patrick D; Estes, Zachary

    2011-12-01

    Although linguistic traditions of the last century assumed that there is no link between sound and meaning (i.e., arbitrariness), recent research has established a nonarbitrary relation between sound and meaning (i.e., sound symbolism). For example, some sounds (e.g., /u/ as in took) suggest bigness whereas others (e.g., /i/ as in tiny) suggest smallness. We tested whether sound symbolism only marks contrasts (e.g., small versus big things) or whether it marks object properties in a graded manner (e.g., small, medium, and large things). In two experiments, participants viewed novel objects (i.e., greebles) of varying size and chose the most appropriate name for each object from a list of visually or auditorily presented nonwords that varied incrementally in the number of "large" and "small" phonemes. For instance, "wodolo" contains all large-sounding phonemes, whereas "kitete" contains all small-sounding phonemes. Participants' choices revealed a graded relationship between sound and size: The size of the object linearly predicted the number of large-sounding phonemes in its preferred name. That is, small, medium, and large objects elicited names with increasing numbers of large-sounding phonemes. The results are discussed in relation to cross-modal processing, gesture, and vocal pitch.

  11. "Click-functional" block copolymers provide precise surface functionality via spin coating.

    PubMed

    Rengifo, Hernán R; Chen, Lu; Grigoras, Cristian; Ju, Jingyue; Koberstein, Jeffrey T

    2008-07-15

    There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.

  12. New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings.

    PubMed

    Mehta, Prina; Justo, Lucas; Walsh, Susannah; Arshad, Muhammad S; Wilson, Clive G; O'Sullivan, Ciara K; Moghimi, Seyed M; Vizirianakis, Ioannis S; Avgoustakis, Konstantinos; Fatouros, Dimitris G; Ahmad, Zeeshan

    2015-05-01

    A scalable platform to prepare multi-functional ocular lenses is demonstrated. Using rapidly dissolving polyvinylpyrrolidone (PVP) as the active stabilizing matrix, both sides of ocular lenses were coated using a modified scaled-up masking electrohydrodynamic atomization (EHDA) technique (flow rates variable between 5 and 10 µL/min, applied voltage 4-11 kV). Each side was coated (using a specially designed flip-able well) selectively with a pre-determined morphology and model drug substance. PVP nanoparticles (inner side, to be in contact with the cornea, mean size functional polymers/excipients and advanced controlled release strategies) suggests several therapeutic platforms for ocular lenses can be further developed at ambient temperature and pressure. These provide multi-functional properties (in personalized delivery, nanomedicine and nanosensors) from a single drug delivery device.

  13. Crosslinked basement membrane-based coatings enhance glucose sensor function and continuous glucose monitoring in vivo.

    PubMed

    Klueh, Ulrike; Ludzinska, Izabela; Czajkowski, Caroline; Qiao, Yi; Kreutzer, Donald L

    2017-09-05

    Overcoming sensor-induced tissue reactions is an essential element of achieving successful continuous glucose monitoring (CGM) in the management of diabetes, particularly when used in closed loop technology. Recently, we demonstrated that basement membrane (BM)-based glucose sensor coatings significantly reduced tissue reactions at sites of device implantation. However, the biocompatible BM-based biohydrogel sensor coating rapidly degraded over a less than a 3-week period, which effectively eliminated the protective sensor coating. In an effort to increase the stability and effectiveness of the BM coating, we evaluated the impact of crosslinking BM utilizing glutaraldehyde as a crosslinking agent, designated as X-Cultrex. Sensor performance (nonrecalibrated) was evaluated for the impact of these X-Cultrex coatings in vitro and in vivo. Sensor performance was assessed over a 28-day time period in a murine CGM model and expressed as mean absolute relative difference (MARD) values. Tissue reactivity of Cultrex-coated, X-Cultrex-coated, and uncoated glucose sensors was evaluated over a 28-day time period in vivo using standard histological techniques. These studies demonstrated that X-Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo, glucose sensor performance was significantly enhanced following X-Cultrex coating throughout the 28-day study. Histological evaluations of X-Cultrex-treated sensors demonstrated significantly less tissue reactivity when compared to uncoated sensors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2017. © 2017 Wiley Periodicals, Inc.

  14. Assessment of S-phase coated medical grade stainless steel (Ortron 90) for use in the human joint replacement corrosion wear environment

    NASA Astrophysics Data System (ADS)

    Dearnley, P. A.; Figueiredo Pina, C. G.; Fisher, J.

    2008-05-01

    Hard and corrosion resistant coating materials such as S-phase, a nitrogen supersaturated Fe-Ni-Cr-Mo phase, have the potential to limit the corrosion-wear (tribo-corrosion) damage that can affect the metallic bearing surfaces of joint replacement devices in vivo, but hitherto have not been much investigated. To test their suitability, a range of S-phase coatings (with five nitrogen concentrations [N]) was applied to several polished Ortron 90 (biomedical grade austenitic stainless steel) test pieces via magnetron sputter deposition. Crevice attack, via intergranular corrosion, was found to be worse for most S-phase coated and uncoated Ortron 90 materials when tested in bovine serum compared with testing in 0.89% NaCl solution. Measurements of the breakdown potentials and the anodic passive current density, for a given test solution, revealed the crevice corrosion response of uncoated Ortron 90 to be more severe than the S-phase coated materials, although this was not unequivocally supported by 2D profilometry measurements. Corrosion-wear tests made using a sliding contact Al2O3 counterface showed the surface degradation to be more aggressive in saline solution than in bovine serum. All S-phase coatings were very effective in mitigating corrosion-wear of Ortron 90 in bovine serum solution, but only one S-phase coating composition, containing 21 at% N, gave improved resistance when tested in 0.89% NaCl solution.

  15. The potential application of a Cobalt Chrome Molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies.

    PubMed

    Hazlehurst, K B; Wang, C J; Stanford, M

    2013-12-01

    The cementless fixation of porous coated femoral stems is a common technique employed for Total Hip Arthroplasty (THA). With the rate of revision surgery appearing to rise and younger more active patients requiring primary surgery it can be thought that alternative methods for increasing implant longevity need to be considered. The stress shielding of periprosthetic bone still remains a contributing factor to implant loosening, caused through a mismatch in stiffness between the implant and the bone. However, the ability to achieve stiffness matching characteristics is being realised through the use of Additive Layer Manufacturing (ALM) technologies and Functionally Graded Materials (FGM). This paper proposes an alternative design methodology for a monoblock Cobalt Chrome Molybdenum (CoCrMo) femoral stem. It hypothesises that a femoral stem suitable for cementless fixation can be manufactured using Laser Melting (LM) technology offering orthotropic functionally graded porous structures with similar mechanical properties to human bone. The structure and mechanical properties of the natural femur have been used as a basis for the design criteria which hypothesises that through a combination of numerical analysis and physical testing, an optimal design can be proposed to provide a lightweight, customised femoral stem that can reduce the risk of implant loosening through stress shielding whilst maintaining bone-implant interface stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Direct writing of bio-functional coatings for cardiovascular applications.

    PubMed

    Perkins, Jessica; Hong, Yi; Ye, Sang-Ho; Wagner, William R; Desai, Salil

    2014-12-01

    The surface modification of metallic biomaterials is of critical importance to enhance the biocompatibility of surgical implant materials and devices. This article investigates the use of a direct-write inkjet technique for multilayer coatings of a biodegradable polymer (polyester urethane urea (PEUU)) embedded with an anti-proliferation drug paclitaxel (Taxol). The direct-write inkjet technique provides selective patterning capability for depositing multimaterial coatings on three-dimensional implant devices such as pins, screws, and stents for orthopedic and vascular applications. Drug release profiles were studied to observe the influence of drug loading and coating thickness for obtaining tunable release kinetics. Platelet deposition studies were conducted following ovine blood contact and significant reduction in platelet deposition was observed on the Taxol loaded PEUU substrate compared with the unloaded control. Rat smooth muscle cells were used for cell proliferation studies. Significant reduction in cell growth was observed following the release of anti-proliferative drug from the biopolymer thin film. This research provides a basis for developing anti-proliferative biocompatible coatings for different biomedical device applications.

  17. Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness

    NASA Astrophysics Data System (ADS)

    Awrejcewicz, J.; Krysko, A. V.; Pavlov, S. P.; Zhigalov, M. V.; Krysko, V. A.

    2017-09-01

    Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf's, Rosenstein's, Kantz's, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.

  18. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-03-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  19. Differences in Functional Outcome Across Subtypes with Spetzler-Martin Grade II Arteriovenous Malformations.

    PubMed

    Hung, Alice L; Yang, Wuyang; Westbroek, Erick M; Garzon-Muvdi, Tomas; Caplan, Justin M; Braileanu, Maria; Wang, Joanna Y; Colby, Geoffrey P; Coon, Alexander L; Tamargo, Rafael J; Huang, Judy

    2017-09-01

    The Spetzler-Martin grading system for brain arteriovenous malformations (AVMs) is based on size (S), eloquence (E), and deep venous drainage (V). However, variation exists due to subgroup heterogeneity. While previous studies have demonstrated variations in outcomes within grade III AVMs, no studies have focused on grade II AVM subtypes. We aim to delineate how functional outcomes differ among patients with subtypes of grade II AVMs. We retrospectively reviewed patients with AVMs evaluated at our institution from 1990 to 2013. Grade II AVMs were divided into 3 subtypes: group 1 (S2V0E0), group 2 (S1V0E1), and group 3 (S1V1E0). Baseline characteristics were compared, and functional status was assessed using the modified Rankin Scale (mRS) at pretreatment and last follow-up. Differences in mRS between the 2 time points were compared. A total of 208 grade II patients (34.0%) were retrieved from 611 graded patients. After accounting for missing data, our cohort consisted of 137 patients. Mean age of all patients was 37.2 years, with 74 females (54.0%). No significant difference was observed across subgroups for pretreatment mRS ( P = .096), treatment modalities ( P = .943), follow-up durations ( P = .125), and mRS at last follow-up ( P = .716). In a subgroup analysis between group 1 and group 3, more patients with worsened mRS were observed in group 3 ( P = .039). This distinction was further confirmed in surgically treated patients ( P = .049), but not in patients treated with radiosurgery ( P = .863). Subtypes of grade II AVMs portend different posttreatment gains in functional outcome. Group 1 (S2V0E0) patients had the best functional outcome gain from treatment, while group 3 (S1V1E0) patients fared less well, particularly with surgical treatment.

  20. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    PubMed Central

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-01-01

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment. PMID:28824130

  1. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    PubMed

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  2. Functionally Graded Cathodes for Solid Oxide Fuel Cells

    SciTech Connect

    YongMan Choi; Meilin Liu

    2006-09-30

    This DOE SECA project focused on both experimental and theoretical understanding of oxygen reduction processes in a porous mixed-conducting cathode in a solid oxide fuel cell (SOFC). Elucidation of the detailed oxygen reduction mechanism, especially the rate-limiting step(s), is critical to the development of low-temperature SOFCs (400 C to 700 C) and to cost reduction since much less expensive materials may be used for cell components. However, cell performance at low temperatures is limited primarily by the interfacial polarization resistances, specifically by those associated with oxygen reduction at the cathode, including transport of oxygen gas through the porous cathode, the adsorption of oxygen onto the cathode surface, the reduction and dissociation of the oxygen molecule (O{sub 2}) into the oxygen ion (O{sup 2-}), and the incorporation of the oxygen ion into the electrolyte. In order to most effectively enhance the performance of the cathode at low temperatures, we must understand the mechanism and kinetics of the elementary processes at the interfaces. Under the support of this DOE SECA project, our accomplishments included: (1) Experimental determination of the rate-limiting step in the oxygen reduction mechanism at the cathode using in situ FTIR and Raman spectroscopy, including surface- and tip-enhanced Raman spectroscopy (SERS and TERS). (2) Fabrication and testing of micro-patterned cathodes to compare the relative activity of the TPB to the rest of the cathode surface. (3) Construction of a mathematical model to predict cathode performance based on different geometries and microstructures and analyze the kinetics of oxygen-reduction reactions occurring at charged mixed ionic-electronic conductors (MIECs) using two-dimensional finite volume models with ab initio calculations. (4) Fabrication of cathodes that are graded in composition and microstructure to generate large amounts of active surface area near the cathode/electrolyte interface using a

  3. Prediction of First Grade Social-Emotional and Intellectual Functioning.

    ERIC Educational Resources Information Center

    Kohn, Martin; And Others

    In order to determine the longitudinal persistence of two major personality dimensions, namely Apathy-Withdrawal versus Interest-Participation (Factor 1) and Anger-Defiance versus Conformity-Compliance (Factor 2), and to test the hypothesis that the social-emotional functioning of the preschool child is predictive of later intellectual-academic…

  4. Novel concept of functional oxide coatings providing enhanced oxidation resistance to Ni-based superalloys

    SciTech Connect

    Pedraza, F. Balmain, J. Bonnet, G. Bouchaud, B.

    2014-01-01

    Graphical abstract: - Highlights: • New concept for providing extended oxidation resistance to Ni-based superalloys. • Oxygen-defective nanostructured oxide coatings reduce the oxygen partial pressure at the substrate interface. • Pre-oxidation of the substrate during annealing with the formation of alpha-alumina. • Growth of CeAlO{sub 3} perovskite enhancing the adherence of the ceria top coat. • Microstructural stability of the coating system with no SRZ formation upon exposure. - Abstract: Aluminide-coated Ni-based superalloys are prone to microstructural instabilities during long-term exposure at high temperature with the growth of a secondary reaction zone (SRZ) detrimental from a mechanical viewpoint. This has been since overcome by the use of thermodynamically stable coatings (γ-Ni/γ′-Ni{sub 3}Al). However, additions of Pt and Hf are required to provide the formation of an exclusive α-Al{sub 2}O{sub 3} scale and improved oxidation resistance in cyclic and isothermal regimes. The present work proposes a new coating system that relies on the use of a superficial nanostructured functional oxide providing the establishment of a stable alumina while avoiding SRZ formation. Tailored oxygen-defective and multi-cracked coatings were designed for 2nd generation Ni-based superalloys and generated by electrosynthesis using a water-based solution. Cyclic oxidation tests were carried out at 1100 °C in air and the oxidation properties and the microstructural stability of the coating system were demonstrated.

  5. Smart Surfaces: New Coatings & Paints with Radiation Detection Functionality

    SciTech Connect

    Farmer, J; Choi, J

    2007-03-12

    Paints are being developed and tested that might ultimately be able to detect radiological agents in the environment by incorporating special pigments into an organic polymeric binder that can be applied as a paint or coatings. These paints detect radioactive sources and contaminants with inorganic or organic scintillation or thermo-luminescent pigments, which are selected based upon the radiation ({alpha}, {beta}, {gamma} or n) to be detected, and are shown in Figure 1.

  6. Finite element analysis of the dynamic behavior of radially polarized Functionally Graded Piezoelectric (FGP) structures

    NASA Astrophysics Data System (ADS)

    Kandasamy, Ramkumar; Cui, Fangsen

    2016-04-01

    In the traditional layered piezoelectric structures, high stress concentrations could cause the structural failure in interlayer surfaces due to repeated strain reversals. To overcome the performance limitations of these structures, the concept of Functionally Graded Materials (FGMs) has been introduced to improve the lifetime, integrity, and reliability of these structures. In this paper, the free and forced vibration of radially polarized Functionally Graded Piezoelectric (FGP) cylinders under different sets of loading are studied. Material properties such as piezoelectric, elastic and permittivity are assumed to change along its thickness, based on a specific gradation function. Four-parameter power law distribution is used to grade the volume fraction of the constituents comprising of PZT-5A and PZT-5H. Material property is assumed to be temperature dependent for a few numerical studies. The present modeling approach is validated by comparing the free and forced vibration of radially polarized Functionally Graded Piezoelectric (FGP) cylinders with those reported in the literature. The effects of material composition, loading and boundary conditions on the dynamic behavior of FGP cylinder are described. Since the modeling of functionally graded piezoelectric systems is challenging, the present study can help in the design and analysis of FGP cylinders.

  7. Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Qu, Yinying; Li, Xiaoshuang; Zhang, Sheng; Wei, Qingsong; Shi, Yusheng; Chen, Lili

    2014-06-01

    Electrophoretic deposition has been widely used for the fabrication of functional coatings onto metal implant. A characteristic feature of this process is that positively charged materials migrate toward the cathode and can deposit on it. In this study, silk fibroin was decorated with tetracycline in aqueous solution to impart positive charge, and then deposited on negatively titanium cathode under certain electric field. The characterization of the obtained coatings indicated that the intermolecular hydrogen bonds formed between the backbone of silk fibroin and tetracycline molecular. In vitro biological tests demonstrated that osteoblast-like cells achieved acceptable cell affinity on the tetracycline cross-linked silk fibroin coatings, although greater cell viability was seen on pure silk fibroin coatings. The cationic silk fibroin coatings showed remarkable antibacterial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. Therefore, we concluded that electrophoretic deposition was an effective and efficient technique to prepare cationic silk fibroin coatings on the titanium surface and that cationic silk fibroin coatings with acceptable biocompatibility and antibacterial property were promising candidates for further loading of functional agents.

  8. The development of a nanostructured, graded multilayer Cr-CrxNy-Cr1-xAlxN coating produced by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) for use in aluminum pressure die casting dies.

    PubMed

    Lin, Jianliang; Mishra, Brajendra; Myers, Sterling; Ried, Peter; Moore, John J

    2009-06-01

    The main objective of this research is to design an optimized 'coating system' that extends die life by minimizing premature die failure. The concept of the multilayer coating system with desired combinations of different kinds of single-layer coatings was introduced. A pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) deposition system has been used to deposit Cr-CrxNy-Cr1-xAlxN compositionally graded multilayer coating structures. In this study, three power law scenarios have been adopted to vary the aluminum concentration in the graded Cr1-xAlxN layer: (i) p = 1, the aluminum concentration was increased linearly in the Cr1-xAlxN layer. (ii) p = 0.2, the Cr1-xAlxN layer is an aluminum-rich graded layer, and (iii) p = 2, the Cr1-xAlxN layer is a chromium-rich graded layer. It was found that all the graded coatings exhibit lower residual stress and higher adhesion strength than the homogeneous Cr1-xAlxN (x = 0.585) film. However, different power law grading architectures have significant influence on the hardness and wear resistance of the films. When p = 2 and p = 1, the graded films exhibited relatively low hardness values (24 and 26 GPa respectively) and high COF (0.55 to 0.60). When p = 0.2 the graded film exhibited both high hardness (34 GPa) and good wear resistance (COF = 0.45) due to the structural consistency in the graded zone. The paper discusses the correlation between the pulsing parameters and coating architecture with the resulting nanostructure and tribological properties of this Cr-CrxNy-Cr1-xAlxN coating system.

  9. Creep Behavior of Anisotropic Functionally Graded Rotating Discs

    NASA Astrophysics Data System (ADS)

    Rattan, Minto; Chamoli, Neeraj; Singh, Satya Bir; Gupta, Nishi

    2013-08-01

    The creep behavior of an anisotropic rotating disc of functionally gradient material (FGM) has been investigated in the present study using Hill's yield criteria and the creep behavior in this case is assumed to follow Sherby's constitutive model. The stress and strain rate distributions are calculated for disc having different types of anisotropy and the results obtained are compared graphically. It is concluded that the anisotropy of the material has a significant effect on the creep behavior of the FGM disc. It is also observed that the FGM disc shows better creep behavior than the non-FGM disc.

  10. Elastoplastic crack analysis of thermally shocked functionally graded material with neural network application

    SciTech Connect

    Nakagaki, Michihiko; Shibata; Yasunari; Kuranari, Reiji; Hagihara, Seiya

    1995-11-01

    An analytical methodology is developed for studying a cracked in a functionally graded material subjected to an intense thermal shock load. An elastoplastic material modeling of the functionally graded material is performed with the use of a micromechanics analysis and a hierarchical neural network algorithm. The material is compose of ZrO{sub 2} and Ti-6Al-4V, where the plastic flow is considered to occur in the titanium alloy phase. The elastic-plastic constitutive law for the functionally graded material is described by a micromechanics analysis on a periodic grain model subsequently processed by the use of a hierarchical neural network for arbitrary temperature and volume fraction. To detect the crack-tip fracture severity in the highly inhomogeneous media, T* integral parameter is employed for the thermal shock problem of the cracked material.

  11. Issues and Advancements in Space Durable Multi-Functional Thermal Control Coatings

    NASA Astrophysics Data System (ADS)

    Dever, Joyce A.; Deshpande, Mukund S.; Jaworske, Donald A.; Cerbus, Clifford A.

    2006-01-01

    Passive spacecraft thermal control coatings are required to possess properties of low solar absorptance, high thermal emittance, and stability to survive the space environment for the mission duration. The white paint coatings Z-93, YB-71 and S13G/LO, originally developed in the 1960s, have been successfully used for satellite thermal control and have served as standards for spacecraft white thermal control paints. Since their original development, these coatings have gone through re-formulations as original raw materials became unavailable; however, their replacement products continue to serve as standards for spaceflight thermal control. Unique conditions of space exploration and space science missions have required that additional functionalities be incorporated into spacecraft thermal control coatings. Coating development efforts have addressed needs for long-life stability, surface conductivity, and the ability to clean coating surfaces. Advancements in development of lightweight composite structures for spacecraft have led to the need for thermal control coatings that are adherent and compatible with these composite substrates, whereas the original formulations of white paints were developed for application to aluminum substrates. The pursuit of nuclear reactor powered spacecraft for future missions requires coating/substrate systems which are not only compatible with harsh space radiation environmental exposures, but must also perform at higher temperatures than have been previously required. Future missions to the lunar and Martian surfaces will additionally require thermal control coatings for which dust accumulation can be mitigated. Although advancements continue in the area of thermal control materials technologies, thermal control coatings are not currently commercially available to meet all of these advanced requirements. This paper presents some of the unique challenges for thermal control material systems for future space missions and some current

  12. The dead seed coat functions as a long-term storage for active hydrolytic enzymes.

    PubMed

    Raviv, Buzi; Aghajanyan, Lusine; Granot, Gila; Makover, Vardit; Frenkel, Omer; Gutterman, Yitzchak; Grafi, Gideon

    2017-01-01

    Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the "seedsphere" and could contribute to seed persistence in the soil, germination and seedling establishment.

  13. Electrical Properties of Conductive Cotton Yarn Coated with Eosin Y Functionalized Reduced Graphene Oxide.

    PubMed

    Kim, Eunju; Arul, Narayanasamy Sabari; Han, Jeong In

    2016-06-01

    This study reports the fabrication and investigation of the electrical properties of two types of conductive cotton yarns coated with eosin Y or eosin B functionalized reduced graphene (RGO) and bare graphene oxide (GO) using dip-coating method. The surface morphology of the conductive cotton yarn coated with reduced graphene oxide was observed by Scanning Electron Microscope (SEM). Due to the strong electrostatic attractive forces, the negatively charged surface such as the eosin Y functionalized reduced graphene oxide or bare GO can be easily coated to the positively charged polyethyleneimine (PEI) treated cotton yarn. The maximum current for the conductive cotton yarn coated with eosin Y functionalized RGO and bare GO with 20 cycles repetition of (5D + R) process was found to be 793.8 μA and 3482.8 μA. Our results showed that the electrical conductivity of bare GO coated conductive cotton yarn increased by approximately four orders of magnitude with the increase in the dipping cycle of (5D+R) process.

  14. The dead seed coat functions as a long-term storage for active hydrolytic enzymes

    PubMed Central

    Raviv, Buzi; Aghajanyan, Lusine; Granot, Gila; Makover, Vardit; Frenkel, Omer; Gutterman, Yitzchak

    2017-01-01

    Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the “seedsphere” and could contribute to seed persistence in the soil, germination and seedling establishment. PMID:28700755

  15. Closed-Form Solutions for Free Vibration Frequencies of Functionally Graded Euler-Bernoulli Beams

    NASA Astrophysics Data System (ADS)

    Chen, W. R.; Chang, H.

    2017-03-01

    The bending vibration of a functionally graded Euler-Bernoulli beam is investigated by the transformed-section method. The material properties of the functionally graded beam (FGB) are assumed to vary across its thickness according to a simple power law. Closed-form solutions for free vibration frequencies of FGBs with classical boundary conditions are derived. Some analytical results are compared with numerical results found in the published literature to verify the accuracy of the model presented, and a good agreement between them is observed.

  16. The contribution of executive functions to narrative writing in fourth grade children.

    PubMed

    Drijbooms, Elise; Groen, Margriet A; Verhoeven, Ludo

    The present study investigated the contribution of executive functions to narrative writing in fourth grade children, and evaluated to what extent executive functions contribute differentially to different levels of narrative composition. The written skills of 102 Dutch children in fourth grade were assessed using a narrative picture-elicitation task. In addition, a large test battery assessing transcription skills, language skills and executive functions, was administered. The results showed that executive functions contributed both directly and indirectly to narrative composition. More specifically, analyses revealed that inhibition and updating, but not planning, contributed directly to the text length of the narrative, and indirectly, through handwriting, to the text length, syntactic complexity, and story content. The findings underscore the need to assess a variety of executive functions and support the idea that in developing writers executive functions also play a role in more complex written composition tasks, such as narrative writing.

  17. The "flowerpot" sign: inference of poor renal function in high grade vesicoureteral reflux by calyceal orientation.

    PubMed

    Martin, Aaron D; Gupta, Kavita; Swords, Kelly A; Belman, A Barry; Majd, Massoud; Rushton, H Gil; Pohl, Hans G

    2015-02-01

    Modern radiographic advances have allowed for detailed and accurate imaging of not only urologic anatomy but also urologic function. The art of observational inference of subtle anatomic features and function from a static radiograph is being traded for new, more precise, and more expensive modalities. While the superiority of these methods cannot be denied, the total information provided in simpler tests should not be ignored. The relationship between high grade vesicoureteral reflux with the dilated calyces arranged cephalad to a dilated funnel-shaped renal pelvis on VCUG and reduced differential renal function has not been previously described, but has been anecdotally designated a "flowerpot" sign by our clinicians. We hypothesize that the appearance of a "flowerpot" kidney as described herein is an indicator of poor renal function in the setting of high grade VUR. IRB approval was obtained and 315 patients were identified from system-wide VCUG reports from 2004-2012 with diagnosed "high grade" or "severe" vesicoureteral reflux. Inclusion into the study required grade IV or V VUR on initial VCUG and an initial radionuclide study for determination of differential function. Patients with a solitary kidney, posterior urethral valve, multicystic dysplastic kidney, renal ectopia, or duplex collecting systems were excluded. Grade of reflux, angle of the inferior-superior calyceal axis relative to the lumbar spine, and differential uptake were recorded along with presence of the new "flowerpot" sign. Variables were analyzed using the Mann-Whitney U test to determine statistical significance. Fifty seven patients met inclusion criteria with 11 being designated as "flowerpot" kidneys. These "flowerpot" kidneys could be objectively differentiated from other kidneys with grade IV and/or grade V VUR both by inferior-superior calyceal axis (median angle, 52° [37-66] vs. 13° [2-37], respectively p < 0.001) and by differential renal uptake (median, 23% [5-49] vs. 45% [15

  18. Development of Functionally Graded Materials for Manufacturing Tools and Dies and Industrial Processing Equipment

    SciTech Connect

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.; Sears, James, W.

    2009-03-23

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. While thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the

  19. Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.

    PubMed

    Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K

    2016-02-01

    This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices.

  20. A priori mesh grading for the numerical calculation of the head-related transfer functions.

    PubMed

    Ziegelwanger, Harald; Kreuzer, Wolfgang; Majdak, Piotr

    2016-12-15

    Head-related transfer functions (HRTFs) describe the directional filtering of the incoming sound caused by the morphology of a listener's head and pinnae. When an accurate model of a listener's morphology exists, HRTFs can be calculated numerically with the boundary element method (BEM). However, the general recommendation to model the head and pinnae with at least six elements per wavelength renders the BEM as a time-consuming procedure when calculating HRTFs for the full audible frequency range. In this study, a mesh preprocessing algorithm is proposed, viz., a priori mesh grading, which reduces the computational costs in the HRTF calculation process significantly. The mesh grading algorithm deliberately violates the recommendation of at least six elements per wavelength in certain regions of the head and pinnae and varies the size of elements gradually according to an a priori defined grading function. The evaluation of the algorithm involved HRTFs calculated for various geometric objects including meshes of three human listeners and various grading functions. The numerical accuracy and the predicted sound-localization performance of calculated HRTFs were analyzed. A-priori mesh grading appeared to be suitable for the numerical calculation of HRTFs in the full audible frequency range and outperformed uniform meshes in terms of numerical errors, perception based predictions of sound-localization performance, and computational costs.

  1. A priori mesh grading for the numerical calculation of the head-related transfer functions

    PubMed Central

    Ziegelwanger, Harald; Kreuzer, Wolfgang; Majdak, Piotr

    2017-01-01

    Head-related transfer functions (HRTFs) describe the directional filtering of the incoming sound caused by the morphology of a listener’s head and pinnae. When an accurate model of a listener’s morphology exists, HRTFs can be calculated numerically with the boundary element method (BEM). However, the general recommendation to model the head and pinnae with at least six elements per wavelength renders the BEM as a time-consuming procedure when calculating HRTFs for the full audible frequency range. In this study, a mesh preprocessing algorithm is proposed, viz., a priori mesh grading, which reduces the computational costs in the HRTF calculation process significantly. The mesh grading algorithm deliberately violates the recommendation of at least six elements per wavelength in certain regions of the head and pinnae and varies the size of elements gradually according to an a priori defined grading function. The evaluation of the algorithm involved HRTFs calculated for various geometric objects including meshes of three human listeners and various grading functions. The numerical accuracy and the predicted sound-localization performance of calculated HRTFs were analyzed. A-priori mesh grading appeared to be suitable for the numerical calculation of HRTFs in the full audible frequency range and outperformed uniform meshes in terms of numerical errors, perception based predictions of sound-localization performance, and computational costs. PMID:28239186

  2. Sensing abilities of functionalized calix[4]arene coated QCM sensors towards volatile organic compounds in aqueous media

    NASA Astrophysics Data System (ADS)

    Temel, Farabi; Ozcelik, Egemen; Ture, Ayse Gul; Tabakci, Mustafa

    2017-08-01

    This study presents the sensing studies of QCM sensors which coated with calix[4]arene derivatives bearing different functional groups towards some selected Volatile Organic Compounds (VOCs). Initial experiments revealed that QCM sensor coated with calix-3 bearing bromopropyl functionalities was relatively more effective sensor for methylene chloride (MC) emissions than the other calix[4]arene coated QCM sensors, in aqueous media. In further experiments, this effective calix-3 coated QCM sensor were used in detailed sensing studies of selected VOCs. However, the results demonstrated that calix-3 coated QCM sensor was most useful sensor for toluene (TOL) emissions among all. Moreover, the sensing of TOLs with calix-3 coated QCM sensor was also evaluated in terms of sorption phenomena. Consequently, calix-3 coated QCM sensor was good sensor for TOL emissions, and thus it demonstrated that the coating of QCM sensor surface with calixarenes was good approach for sensing of the VOCs.

  3. Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Roca, A. G.; Carmona, D.; Miguel-Sancho, N.; Bomatí-Miguel, O.; Balas, F.; Piquer, C.; Santamaría, J.

    2012-04-01

    We report here a detailed structural and magnetic study of different silica nanocapsules containing uniform and highly crystalline maghemite nanoparticles. The magnetic phase consists of 5 nm triethylene glycol (TREG)- or dimercaptosuccinic acid (DMSA)-coated maghemite particles. TREG-coated nanoparticles were synthesized by thermal decomposition. In a second step, TREG ligands were exchanged by DMSA. After the ligand exchange, the ζ potential of the particles changed from - 10 to - 40 mV, whereas the hydrodynamic size remained constant at around 15 nm. Particles coated by TREG and DMSA were encapsulated in silica following a sol-gel procedure. The encapsulation of TREG-coated nanoparticles led to large magnetic aggregates, which were embedded in coalesced silica structures. However, DMSA-coated nanoparticles led to small magnetic clusters inserted in silica spheres of around 100 nm. The final nanostructures can be described as the result of several competing factors at play. Magnetic measurements indicate that in the TREG-coated nanoparticles the interparticle magnetic interaction scenario has not dramatically changed after the silica encapsulation, whereas in the DMSA-coated nanoparticles, the magnetic interactions were screened due to the function of the silica template. Moreover, the analysis of the AC susceptibility suggests that our systems essentially behave as cluster spin glass systems.

  4. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    PubMed

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt.

  5. Ultrathin sP(EO-stat-PO) hydrogel coatings are biocompatible and preserve functionality of surface bound growth factors in vivo.

    PubMed

    Neuerburg, Carl; Recknagel, Stefan; Fiedler, Jörg; Groll, Jürgen; Moeller, Martin; Bruellhoff, Kristina; Reichel, Heiko; Ignatius, Anita; Brenner, Rolf E

    2013-10-01

    Hydrogel coatings prepared from reactive star shaped polyethylene oxide based prepolymers (NCO-sP(EO-stat-PO)) minimize unspecific protein adsorption in vitro, while proteins immobilized on NCO-sP(EO-stat-PO) coatings retain their structure and biological function. The aim of the present study was to assess biocompatibility and the effect on early osseointegrative properties of a NCO-sP(EO-stat-PO) coating with additional RGD-peptides and augmentation with bone morphogenetic protein-4 (BMP) used on a medical grade high-density polyethylene (HDPE) base under in vivo circumstances. For testing of biocompatibility dishes with large amounts of bulk NCO-sP(EO-stat-PO) were implanted subcutaneously into 14 Wistar rats. In a second set-up functionalization of implants with ultrathin surface layers by coating ammonia-plasma treated HDPE with NCO-sP(EO-stat-PO), functionalization with linear RGD-peptides, and augmentation with RGD and BMP-4 was analyzed. Therefore, implants were placed subcutaneously in the paravertebral tissue and transcortically in the distal femur of another 14 Wistar rats. Both tests revealed no signs of enhanced inflammation of the surrounding tissue analyzed by CD68, IL-1ß-/TNF-α-antibody staining, nor systemic toxic reactions according to histological analysis of various organs. The mean thickness of the fibrous tissue surrounding the femoral implants was highest in native HDPE-implants and tended to be lower in all NCO-sP(EO-stat-PO) modified implants. Micro-CT analysis revealed a significant increase of peri-implant bone volume in RGD/BMP-4 coated samples. These results demonstrate that even very low amounts of surface bound growth factors do have significant effects when immobilized in an environment that retains their biological function. Hence, NCO-sP(EO-stat-PO)-coatings could offer an attractive platform to improve integration of orthopedic implants.

  6. Prediction of the adhesive behavior of bio-inspired functionally graded materials against rough surfaces

    NASA Astrophysics Data System (ADS)

    Peijian, Chen; Juan, Peng; Yucheng, Zhao; Feng, Gao

    2014-06-01

    Roughness effect and adhesion properties are important characteristics to be accessed in the development of functionally graded materials for biological and biomimetic applications, particularly for the hierarchical composition in biomimetic gecko robot. A multi-asperities adhesion model to predict the adhesive forces is presented in this work. The effect of surface roughness and graded material properties, which significantly alter the adhesive strength between contact bodies, can be simultaneously considered in the generalized model. It is found that proper interfacial strength can be controlled by adjusting surface roughness σ / R, graded exponent k and material parameter E*R / Δγ. The results should be helpful in the design of new biomimetic materials and useful in application of micro functional instruments.

  7. Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations

    NASA Astrophysics Data System (ADS)

    Bich, Dao Huy; Xuan Nguyen, Nguyen

    2012-12-01

    In the present work, the study of the nonlinear vibration of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads is presented. Material properties are graded in the thickness direction of the shell according to a simple power law distribution in terms of volume fractions of the material constituents. Governing equations are derived using improved Donnell shell theory ignoring the shallowness of cylindrical shells and kinematic nonlinearity is taken into consideration. One-term approximate solution is assumed to satisfy simply supported boundary conditions. The Galerkin method, the Volmir's assumption and fourth-order Runge-Kutta method are used for dynamical analysis of shells to give explicit expressions of natural frequencies, nonlinear frequency-amplitude relation and nonlinear dynamic responses. Numerical results show the effects of characteristics of functionally graded materials, pre-loaded axial compression and dimensional ratios on the dynamical behavior of shells. The proposed results are validated by comparing with those in the literature.

  8. Functionalized hexagonal boron nitride nano-coatings for protection of transparent plastics

    NASA Astrophysics Data System (ADS)

    Van Tran, Thu; Usta, Aybala; Asmatulu, Ramazan

    2016-04-01

    Nanocoating is the result of a coating application of nanomaterials to build a consistent network of molecules in a paint to protect the surfaces of various materials and devices. Hexagonal Boron Nitride (h-BN) is in two dimensional form with excellent thermal, mechanical and chemical properties. These BN nanocoatings are also a thermally insulating material for heat management. After adding functionalized h-BNs into paints or other coatings, they will absorb the harmful UV part of sunlight and prevent coating against the environmental degradations. The impacts of the environmental factors on the coatings can be substantially eliminated. In the present study, h-BNs were modified with [2-(2-Aminoethylamino) propyl] trimethoxysilane and uniformly dispersed into the polyurethane coatings with different amounts, such as 0.1, 0.2, 0.4, and 0.8wt% to increase hardness and water resistance, and decrease the UV degradation level of coatings and transparent plastics. The prepared samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), Water Contact Angle, and Differential Scanning Calorimeter (DSC). The test results showed that the nanocoatings with functionalized h-BN provided excellent physical and chemical behaviors against the UV and other physical degradations on the substrates.

  9. Meltable dextran esters as biocompatible and functional coating materials.

    PubMed

    Liebert, Tim; Wotschadlo, Jana; Laudeley, Peggy; Heinze, Thomas

    2011-08-08

    The conversion of dextran with in situ synthesized iminium chlorides of long chain carboxylic acids was used to obtain pure and defined melting dextran esters in an efficient one-pot synthesis. The melting point of these esters can be tailored by the degree of substitutions (DS), the molecular weight of the starting polymer, and the chain length of the ester moiety. The dextran esters give homogeneous and completely transparent melts, which form stable films on a broad variety of materials. Even complex geometries, such as implants, can be evenly coated by multiple melting steps. The films do not display any inhomogeneity and have a very low surface roughness. Therefore, no unspecific protein binding is observed. Moreover, the dextran esters are biocompatible as demonstrated for the interaction with three types of cells namely human brain microvascular endothelial cell, primary human fibroblasts, and mouse myoblast cells.

  10. Functional Coatings or Films for Hard-Tissue Applications

    PubMed Central

    Wang, Guocheng; Zreiqat, Hala

    2010-01-01

    Metallic biomaterials like stainless steel, Co-based alloy, Ti and its alloys are widely used as artificial hip joints, bone plates and dental implants due to their excellent mechanical properties and endurance. However, there are some surface-originated problems associated with the metallic implants: corrosion and wear in biological environments resulting in ions release and formation of wear debris; poor implant fixation resulting from lack of osteoconductivity and osteoinductivity; implant-associated infections due to the bacterial adhesion and colonization at the implantation site. For overcoming these surface-originated problems, a variety of surface modification techniques have been used on metallic implants, including chemical treatments, physical methods and biological methods. This review surveys coatings that serve to provide properties of anti-corrosion and anti-wear, biocompatibility and bioactivity, and antibacterial activity. PMID:28883319

  11. Functional analysis of bioactivated and antiinfective PDLLA - coated surfaces.

    PubMed

    Haidari, Selgai; Boskov, Marko; Schillinger, Ulrike; Bissinger, Oliver; Wolff, Klaus-Dietrich; Plank, Christian; Kolk, Andreas

    2017-06-01

    Common scaffold surfaces such as titanium can have side effects; for example, infections, cytotoxicity, impaired osseointegration, or low regeneration rates for bone tissue. These effects lead to poor implant integration or even implant loss. Therefore, bioactive implants are promising instruments in tissue regeneration. Osteoinductive elements-such as growth factors and anti-infectives-support wound healing and bone growth and thereby enable faster osseointegration, even in elderly patients. In this study, titanium surfaces were coated with a poly-(d,l-lactide) (PDLLA) layer containing different concentrations of copolymer-protected gene vectors (COPROGs) to locally provide bone morphogenetic protein-2 (BMP-2) or activated anti-infective agents, such as chlorhexidine gluconate, triclosan, and metronidazole, to prevent peri-implantitis. The coated titanium implants were then loaded with osteoblasts, NIH 3T3 fibroblasts, and human mesenchymal stem cells in 96-well plates. When shielded by COPROGs as a protective layer and resuspended in PDLLA, BMP-2-encoding pDNA at relatively low doses (5.63 µg/implant) induced the local expression of BMP-2. A linear dose dependence, which is common for recombinant growth factors, was not found, probably due to the retention property of the PDLLA surface. PDLLA, in general, successfully retains additional elements, such as osteoconductive growth factors (BMP-2) and anti-infective agents, which was demonstrated using metronidazole, and thus prevents the systemic application of excessive doses. These bioactive implant surfaces that provide the local release of therapeutic gene vectors or anti-infective agents allow the controlled stimulation of the implant and scaffold osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1672-1683, 2017. © 2017 Wiley Periodicals, Inc.

  12. Influence of Functionalization of Nanocontainers on Self-Healing Anticorrosive Coatings.

    PubMed

    Zheng, Zhaoliang; Schenderlein, Matthias; Huang, Xing; Brownbill, Nick J; Blanc, Frédéric; Shchukin, Dmitry

    2015-10-21

    Feedback coating based on pH-induced release of inhibitor from organosilyl-functionalized containers is considered as a compelling candidate to achieve smart self-healing corrosion protection. Four key factors that determine the overall coating performance include (1) the uptake and release capacity of containers, (2) prevention of the premature leakage, (3) compatibility of containers in coating matrix, and (4) cost and procedure simplicity consideration. The critical influence introduced by organosilyl-functionalization of containers is systematically demonstrated by investigating MCM-41 silica nanoparticles modified with ethylenediamine (en), en-4-oxobutanoic acid salt (en-COO(-)), and en-triacetate (en-(COO(-))3) with higher and lower organic contents. The properties of the modified silica nanoparticles as containers were mainly characterized by solid-state (13)C nuclear magnetic resonance, scanning and transmission electron microscopy, N2 sorption, thermogravimetric analysis, small-angle X-ray scattering, dynamic light scattering, and UV-vis spectroscopy. Finally, the self-healing ability and anticorrosive performances of hybrid coatings were examined through scanning vibrating electrode technique (SVET) and electrochemical impedance spectroscopy (EIS). We found that en-(COO(-))3-type functionalization with content of only 0.23 mmol/g performed the best as a candidate for establishing pH-induced release system because the resulting capped and loaded (C-L) functionalized silica nanocontainers (FSNs) exhibit high loading (26 wt %) and release (80%) capacities for inhibitor, prevention of premature leakage (less than 2%), good dispersibility in coating matrix, and cost effectiveness.

  13. AFM characterization of nonwoven material functionalized by ZnO sputter coating

    SciTech Connect

    Deng Bingyao; Yan Xiong; Wei Qufu Gao Weidong

    2007-10-15

    Sputter coatings provide new approaches to the surface functionalization of textile materials. In this study, polyethylene terephthalate (PET) nonwoven material was used as a substrate for creating functional nanostructures on the fiber surfaces. A magnetron sputter coating was used to deposit functional zinc oxide (ZnO) nanostructures onto the nonwoven substrate. The evolution of the surface morphology of the fibers in the nonwoven web was examined using atomic force microscopy (AFM). The AFM observations revealed a significant difference in the morphology of the fibers before and after the sputter coating. The AFM images also indicated the effect of the sputtering conditions on the surface morphology of the fibers. The increase in the sputtering time led to the growth of the ZnO grains on the fiber surfaces. The higher pressure in the sputtering chamber could cause the formation of larger grains on the fiber surfaces. The higher power used also generated larger grains on the fiber surfaces.

  14. Enhancing the functionality of biobased polyester coating resins through modification with citric acid.

    PubMed

    Noordover, Bart A J; Duchateau, Robbert; van Benthem, Rolf A T M; Ming, Weihua; Koning, Cor E

    2007-12-01

    Citric acid (CA) was evaluated as a functionality-enhancing monomer in biobased polyesters suitable for coating applications. Model reactions of CA with several primary and secondary alcohols and diols, including the 1,4:3,6-dianhydrohexitols, revealed that titanium(IV) n-butoxide catalyzed esterification reactions involving these compounds proceed at relatively low temperatures, often via anhydride intermediates. Interestingly, the facile anhydride formation from CA at temperatures around CA's melting temperature ( T m = 153 degrees C) proved to be crucial in modifying sterically hindered secondary hydroxyl end groups. OH-functional polyesters were reacted with CA in the melt between 150 and 165 degrees C, yielding slightly branched carboxylic acid functional materials with strongly enhanced functionality. The acid/epoxy curing reaction of the acid-functional polymers was simulated with a monofunctional glycidyl ether. Finally, the CA-modified polyesters were applied as coatings, using conventional cross-linking agents. The formulations showed rapid curing, resulting in chemically and mechanically stable coatings. These results demonstrate that citric acid can be applied in a new way, making use of its anhydride formation to functionalize OH-functional polyesters, which is an important new step toward fully biobased coating systems.

  15. Eighth Grade In-Service Teachers' Knowledge of Proportional Reasoning and Functions: A Secondary Data Analysis

    ERIC Educational Resources Information Center

    Masters, Jessica

    2012-01-01

    A secondary data analysis was conducted using a large dataset from a study related to online professional development for eighth grade teachers of mathematics. Using this data, the paper provides a snapshot of the current state of teachers' knowledge related to proportional reasoning and functions. The paper also considers how teachers' knowledge…

  16. Mothers' Depressive Symptoms and Children's Cognitive and Social Agency: Predicting First-Grade Cognitive Functioning

    ERIC Educational Resources Information Center

    Yan, Ni; Dix, Theodore

    2016-01-01

    Using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care and Youth Development (N = 1,364), the present study supports an agentic perspective; it demonstrates that mothers' depressive symptoms in infancy predict children's poor first-grade cognitive functioning because depressive symptoms…

  17. Sticking to rough surfaces using functionally graded bio-inspired microfibres.

    PubMed

    Gorumlu, Serdar; Aksak, Burak

    2017-06-01

    Synthetic fibrillar adhesives inspired by nature, most commonly by the gecko lizard, have been shown to strongly and repeatedly attach to smooth surfaces. These adhesives, mostly of monolithic construction, perform on par with their natural analogues on smooth surfaces but exhibit far inferior adhesive performance on rough surfaces. In this paper, we report on the adhesive performance of functionally graded microfibrillar adhesives based on a microfibre with a divergent end and a thin soft distal layer on rough surfaces. Monolithic and functionally graded fibre arrays were fabricated from polyurethanes and their adhesive performance on surfaces of varying roughness were quantified from force-distance data obtained using a custom adhesion measurement system. Average pull-off stress declined significantly with increasing roughness for the monolithic fibre array, dropping from 77 kPa on the smoothest (54 nm RMS roughness) to 19 kPa on the roughest (408 nm RMS roughness) testing surface. In comparison, pull-off stresses of 81 kPa and 63 kPa were obtained on the same respective smooth and rough surfaces with a functionally graded fibre array, which represents a more than threefold increase in adhesion to the roughest adhering surface. These results show that functionally graded fibrillar adhesives perform similar on all the testing surfaces unlike monolithic arrays and show potential as repeatable and reusable rough surface adhesives.

  18. Sticking to rough surfaces using functionally graded bio-inspired microfibres

    PubMed Central

    Gorumlu, Serdar

    2017-01-01

    Synthetic fibrillar adhesives inspired by nature, most commonly by the gecko lizard, have been shown to strongly and repeatedly attach to smooth surfaces. These adhesives, mostly of monolithic construction, perform on par with their natural analogues on smooth surfaces but exhibit far inferior adhesive performance on rough surfaces. In this paper, we report on the adhesive performance of functionally graded microfibrillar adhesives based on a microfibre with a divergent end and a thin soft distal layer on rough surfaces. Monolithic and functionally graded fibre arrays were fabricated from polyurethanes and their adhesive performance on surfaces of varying roughness were quantified from force–distance data obtained using a custom adhesion measurement system. Average pull-off stress declined significantly with increasing roughness for the monolithic fibre array, dropping from 77 kPa on the smoothest (54 nm RMS roughness) to 19 kPa on the roughest (408 nm RMS roughness) testing surface. In comparison, pull-off stresses of 81 kPa and 63 kPa were obtained on the same respective smooth and rough surfaces with a functionally graded fibre array, which represents a more than threefold increase in adhesion to the roughest adhering surface. These results show that functionally graded fibrillar adhesives perform similar on all the testing surfaces unlike monolithic arrays and show potential as repeatable and reusable rough surface adhesives. PMID:28680663

  19. Mothers' Depressive Symptoms and Children's Cognitive and Social Agency: Predicting First-Grade Cognitive Functioning

    ERIC Educational Resources Information Center

    Yan, Ni; Dix, Theodore

    2016-01-01

    Using data from the National Institute of Child Health and Human Development (NICHD) Study of Early Child Care and Youth Development (N = 1,364), the present study supports an agentic perspective; it demonstrates that mothers' depressive symptoms in infancy predict children's poor first-grade cognitive functioning because depressive symptoms…

  20. Eighth Grade In-Service Teachers' Knowledge of Proportional Reasoning and Functions: A Secondary Data Analysis

    ERIC Educational Resources Information Center

    Masters, Jessica

    2012-01-01

    A secondary data analysis was conducted using a large dataset from a study related to online professional development for eighth grade teachers of mathematics. Using this data, the paper provides a snapshot of the current state of teachers' knowledge related to proportional reasoning and functions. The paper also considers how teachers' knowledge…

  1. How Executive Functions Predict Development in Syntactic Complexity of Narrative Writing in the Upper Elementary Grades

    ERIC Educational Resources Information Center

    Drijbooms, Elise; Groen, Margriet A.; Verhoeven, Ludo

    2017-01-01

    The aim of this study was to examine the contribution of transcription skills, oral language skills, and executive functions to growth in narrative writing between fourth and sixth grade. While text length and story content of narratives did not increase with age, syntactic complexity of narratives showed a clear developmental progression. Results…

  2. Sub-stoichiometric functionally graded titania fibres for water-splitting applications

    NASA Astrophysics Data System (ADS)

    Adamaki, Vaia; Sergejevs, A.; Clarke, C.; Clemens, F.; Marken, F.; Bowen, C. R.

    2015-06-01

    The photo-electro-chemical (PEC) splitting of water requires semiconductor materials with a minimum energy gap of 1.23 eV along with conduction and valence bands overlapping the oxidation of H2O and reduction of H+ respectively. This work overcomes the limitations of stoichiometric titania by manufacturing fine scale fibres that exhibit a compositional gradient of oxygen vacancies across the fibre length. In such a fibre configuration the fibre end that is chemically reduced to a relatively small extent performs as the photoanode and the oxygen vacancies enhance the absorption of light. The fibre end that is reduced the most consists of Magnéli phases and exhibits metallic electrical conductivity that enhances the electron-hole separation. The structure and composition of the functionally graded fibres, which were manufactured through extrusion, pressureless sintering and carbo-thermal reduction, are studied using XRD and electron microscopy. Electrochemical impedance spectroscopy measurements were performed in a three-electrode electrochemical system and showed that the oxygen vacancies in the functionally graded fibres affect the flat band potential and have increased carrier density. The efficiency of the system was evaluated with PEC measurements that shows higher efficiency for the functionally graded fibres compared to homogeneous TiO2 or Magnéli phase fibres. The functionally graded and fine scale fibres have the potential to be used as an array of active fibres for water splitting applications.

  3. Algebraic Reasoning: Professor Arbegla Introduces Variables and Functions. GEMS Teacher's Guide for Grades 3-5.

    ERIC Educational Resources Information Center

    Kopp, Jaine; Bergman, Lincoln

    This teacher guide helps build a solid foundation in algebra for students in grades 3-5 in which students gain essential understanding of properties of numbers, variables, functions, equations, and formulas. Throughout the problem solving activities, students use computational skills and gain a deeper understanding of the number system. Students…

  4. How Executive Functions Predict Development in Syntactic Complexity of Narrative Writing in the Upper Elementary Grades

    ERIC Educational Resources Information Center

    Drijbooms, Elise; Groen, Margriet A.; Verhoeven, Ludo

    2017-01-01

    The aim of this study was to examine the contribution of transcription skills, oral language skills, and executive functions to growth in narrative writing between fourth and sixth grade. While text length and story content of narratives did not increase with age, syntactic complexity of narratives showed a clear developmental progression. Results…

  5. Functional multilayer coated long period grating tuned in transition region for life science applications

    NASA Astrophysics Data System (ADS)

    Pilla, P.; Malachovská, V.; Borriello, A.; Giordano, M.; Ambrosio, L.; Cutolo, A.; Cusano, A.

    2010-09-01

    We report preliminary results on the development of multilayer coated long period gratings (LPGs) for life science applications. The dip-coating technique and a solvent/nonsolvent strategy were exploited to deposit double-layer polymeric film onto a LPG. A primary coating of atactic polystyrene was used as high refractive index layer to tune the working point of the device in the so-called transition region thus achieving remarkable surrounding medium refractive index sensitivity. A secondary layer of atactic poly(methyl methacrylate-co-methacrylic acid) containing functional carboxyl groups, characterized by a lower refractive index, was deposited onto the primary coating in order to have the desired functional groups on the surface of the device. Commonly used covalent immobilization procedure, NHS/EDC coupling method, was exploited to link streptavidin on the surface of the functionalized coated device. Finally, real-time detection of biotinylated bovine serum albumin affinity binding on immobilized streptavidin was performed by monitoring the shift of the LPG attenuation bands.

  6. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition.

    PubMed

    Rajesh, P; Muraleedharan, C V; Sureshbabu, S; Komath, Manoj; Varma, Harikrishna

    2012-02-01

    Bioactive ceramic coatings based on calcium phosphates yield better functionality in the human body for a variety of metallic implant devices including orthopaedic and dental prostheses. In the present study chemically and hence functionally gradient bioceramic coating was obtained by pulsed laser deposition method. Calcium phosphate bioactive ceramic coatings based on hydroxyapatite (HA) and tricalcium phosphate (TCP) were deposited over titanium substrate to produce gradation in physico-chemical characteristics and in vitro dissolution behaviour. Sintered targets of HA and α-TCP were deposited in a multi target laser deposition system. The obtained deposits were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. Inductively coupled plasma spectroscopy was used to estimate the in vitro dissolution behaviour of coatings. The variation in mechanical property of the gradient layer was evaluated through scratch test and micro-indentation hardness. The bioactivity was examined in vitro with respect to the ability of HA layer to form on the surface as a result of contact with simulated body fluid. It could be inferred that chemically gradient functional bioceramic coating can be produced by laser deposition of multiple sintered targets with variable chemical composition.

  7. Elastic Contact Analysis of Functionally Graded Brake Disks Subjected to Thermal and Mechanical Loads

    NASA Astrophysics Data System (ADS)

    Shahzamanian, M. M.; Sahari, B. B.; Bayat, M.; Mustapha, F.; Ismarrubie, Z. N.

    2013-01-01

    In this paper, finite element contact analysis of a functionally graded (FG) brake disk in contact with a pad, subjected to rotation, contact pressure, and frictional heat, is presented. The material properties vary through the thickness according to a power-law characterized by a grading index, n. The contact surfaces are full-ceramic with full-metal free surface. The effects of n on the displacement, contact status, strain and stress are investigated. From the analysis, thermo-elastic and contact results are extremely dependent on n. Hence, n is an important criteria for the design of FG brake disks for automotive and aircraft applications.

  8. Nitinol-based Nanotubular and Nanowell Coatings for the Modulation of Human Vascular Cell Functions

    NASA Astrophysics Data System (ADS)

    Lee, Phin Peng

    Current approaches to reducing restenosis do not balance the reduction of vascular smooth muscle cell proliferation with the increase in the healing of the endothelium. Here, I present my study on the synthesis and characterization of a nanotubular coating on Nitinol substrates. I found that the coating demonstrated 'pro-healing' properties by increasing primary human aortic endothelial cell spreading, migration and collagen and elastin production. Certain cellular functions such as collagen and elastin production were also found to be affected by changes in nanotube diameter. The coating also reduced the proliferation and mRNA expression of collagen I and MMP2 for primary human aortic smooth muscle cells. I will also demonstrate the synthesis of a nanowell coating on Nitinol stents as well as an additional poly(lactic-co-glycolic acid) coating on top of the nanowells that has the potential for controlling drug release. These findings demonstrate the potential for the coatings to aid in the prevention of restenosis and sets up future explorations of ex vivo and in vivo studies.

  9. Calcium-doped ceria/titanate tabular functional nanocomposite by layer-by-layer coating method

    SciTech Connect

    Liu, Xiang W.; Devaraju, M.K.; Yin, Shu; Sato, Tsugio

    2010-07-15

    Ca-doped ceria (CDC)/tabular titanate (K{sub 0.8}Li{sub 0.27}Ti{sub 1.73}O{sub 4}, TT) UV-shielding functional nanocomposite with fairly uniform CDC coating layers was prepared through a polyelectrolyte-associated layer-by-layer (LbL) coating method. TT with lepidocrocite-like layered structure was used as the substrate, poly (diallyldimethylammonium chloride) (PDDA) was used as a coupling agent, CDC nanoparticles were used as the main UV-shielding component. CDC/TT nanocomposites with various coating layers of CDC were obtained through a multistep coating process. The phases were studied by X-ray diffraction. The morphology and coating quality were studied by scanning electron microscopy and element mapping of energy dispersive X-ray analysis. The oxidation catalytic activity, UV-shielding ability and using comfort were characterized by Rancimat test, UV-vis spectra and dynamic friction test, respectively. CDC/TT nanocomposites with low oxidation catalytic activity, high UV-shielding ability and good using comfort were finally obtained. - Graphical abstract: Through the control of surface charge of particles calcium-doped ceria/titanate composites with low oxidation catalytic activity, higher UV-shielding ability and excellent comfort was obtained by a facile layer-by-layer coating method.

  10. Antimicrobial lysozyme-chitosan coatings affect functional properties and shelf life of chicken eggs during storage.

    PubMed

    Yuceer, Muhammed; Caner, Cengiz

    2014-01-15

    The interior quality, shell impact strength and functional characteristics of eggs coated with chitosan and lysozyme-chitosan combinations were evaluated for enhancing egg freshness during storage. A 10% (w/w) lysozyme solution was incorporated into 1% (w/w) chitosan film-forming solution at ratios of 0, 10, 20 and 60% (w/w). Storage time and coating had significant effects on Haugh unit, yolk index, weight loss, albumen pH, dry matter, relative whipping capacity (RWC) and albumen viscosity. Uncoated eggs had higher albumen pH and weight loss and lower albumen viscosity. All coated eggshells showed greater puncture strength than uncoated eggshells, resulting in extended shelf life. The 20 and 60% lysozyme-chitosan coatings were more effective in maintaining the internal quality of eggs (e.g. pH, dry matter and RWC). Attributes such as pH, dry matter and RWC were better after the 20% lysozyme-chitosan treatment than after the other treatments. The 10, 20 and 60% lysozyme-chitosan coatings, considered active packaging, showed promising attributes. They could be a viable alternative to existing techniques for maintaining the internal quality of fresh eggs during long-term storage. Chitosan coatings also improved shell strength. This study also confirms that measurements of albumen quality (pH, dry matter, viscosity and RWC) are excellent indicators of egg freshness. © 2013 Society of Chemical Industry.

  11. MFI-type zeolite functional liquid phase sensor coated on the optical fiber end-face

    NASA Astrophysics Data System (ADS)

    Hu, Yaoxin; Sidiroglou, Fotios; Hill, Matthew R.; Collins, Stephen F.; Duke, Mikel

    2012-02-01

    Optical fibers are a unique medium to coat with functional sensor materials that change in refractive index upon adsorption/interaction with specific compounds. In this work, we demonstrate a simple technique to coat the end face of an optical fiber with the microporous MFI-type zeolite. The exposure of the zeolite films from air to water or to aqueous solutions of ethanol and isopropanol causes a distinct change in the film's refractive index. This change was then detected using a simple fiber optic refractive index sensor by monitoring the signal intensity reflected back from the coated fiber endface and as the zeolite is transferred between air, water and solutions containing ethanol and isopropanol. The zeolite coating was developed using the in-situ templated growth technique to grow the zeolite crystals on the cleaved endface of an optical fiber. Effective coating was achieved when the fiber was oriented horizontally in the hydrothermal reactor. The zeolite coated end face reflected less energy in water, at 0.0201 μW, and exhibited almost no change (~2% increase) with increasing ethanol concentration, but exhibited a 135% increase in reflected energy, i.e. 0.048 μW, in 100% ethanol. The zeolite therefore gave the sensor alcohol selectivity. Further work is exploring applicability for liquid phase chemical and water quality analysis.

  12. Application of laser engineered net shaping (LENS) to manufacture porous and functionally graded structures for load bearing implants.

    PubMed

    Bandyopadhyay, Amit; Krishna, B V; Xue, Weichang; Bose, Susmita

    2009-12-01

    Fabrication of net shape load bearing implants with complex anatomical shapes to meet desired mechanical and biological performance is still a challenge. In this article, an overview of our research activities is discussed focusing on application of Laser Engineered Net Shaping (LENS) toward load bearing implants to increase in vivo life time. We have demonstrated that LENS can fabricate net shape, complex metallic implants with designed porosities up to 70 vol.% to reduce stress-shielding. The effective modulus of Ti, NiTi, and other alloys was tailored to suit the modulus of human cortical bone by introducing 12-42 vol.% porosity. In addition, laser processed porous NiTi alloy samples show a 2-4% recoverable strain, a potentially significant result for load bearing implants. To minimize the wear induced osteolysis, unitized structures with functionally graded Co-Cr-Mo coating on porous Ti6Al4V were also made using LENS, which showed high hardness with excellent bone cell-materials interactions. Finally, LENS is also being used to fabricate porous, net shape implants with a functional gradation in porosity characteristics.

  13. Metal coated functionalized single-walled carbon nanotubes for composite applications

    NASA Astrophysics Data System (ADS)

    Zeng, Qiang

    This study is considered as a method for producing multifunctional composite materials by using metals coated Single-walled Carbon Nanotubes (SWCNTs). In this research, various metals (Ni, Cu, Ag) were successfully deposited onto the surface of SWCNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coatings on SWCNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified SWCNTs and creates more nucleation sites for subsequent metal deposition. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Raman spectroscopy, fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). Bulk copper/aluminum-SWNT composites were processed by powder metallurgy with wet mixing techniques. Coated SWCNTs were well dispersed in the metal matrix. Cold pressing followed by sintering was applied to control porosity. The relationships between hardness and SWCNTs addition were discussed. Ni-SWCNTs composite coatings were prepared by electro-composite deposition. SWCNTs were suspended in a Ni deposition electrolyte and deposited together with nickel during electrodeposition. SWCNTs concentrations in the coatings were found to be related to the SWCNTs concentration in the solution, current density and agitation rate. The microstructure of the coatings has been examined by electron microscopy. Ni coated SWCNTs were also incorporated into the high temperature Bismaleimide (BMI)/graphite composite to improve Electromagnetic Interference (EMI) shielding and surface conductivity. The vacuum assisted resin transfer molding (VARTM) was used to process these composites. Surface and volume resistivity and EMI shielding effectiveness of the composites

  14. Use of Aloe vera gel coating preserves the functional properties of table grapes.

    PubMed

    Serrano, María; Valverde, Juan Miguel; Guillén, Fabian; Castillo, Salvador; Martínez-Romero, Domingo; Valero, Daniel

    2006-05-31

    Table grapes (Vitis vinifera L. cv. Crimson Seedless) were coated with Aloe vera gel according to our developed patent (SP Patent P200302937) and then stored for 35 days at 1 degrees C, and the subsequent shelf life (SL) was monitored at 20 degrees C. Uncoated clusters showed a rapid loss of functional compounds, such as total phenolics and ascorbic acid. These changes were accompanied by reduction of the total antioxidant activity (TAA) and increases in total anthocyanins, showing an accelerated ripening process. On the contrary, table grapes coated with Aloe vera gel significantly delayed the above changes, such as the retention of ascorbic acid during cold storage or SL. Consequently, Aloe vera gel coating, a simple and noncontaminating treatment, maintained the functional properties during postharvest storage of table grapes.

  15. Chemical tailoring of hybrid sol-gel thick coatings as hosting matrix for functional patterned microstructures.

    PubMed

    Falcaro, Paolo; Costacurta, Stefano; Malfatti, Luca; Buso, Dario; Patelli, Alessandro; Schiavuta, Piero; Piccinini, Massimo; Grenci, Gianluca; Marmiroli, Benedetta; Amenitsch, Heinz; Innocenzi, Plinio

    2011-02-01

    A phenyl-based hybrid organic - inorganic coating has been synthesized and processed by hard X-ray lithography. The overall lithography process is performed in a two-step process only (X-rays exposure and chemical etching). The patterns present high aspect ratio, sharp edges, and high homogeneity. The coating has been doped with a variety of polycyclic aromatic hydrocarbon functional molecules, such as anthracene, pentacene, and fullerene. For the first time, hard X-rays have been combined with thick hybrid functional coatings, using the sol-gel thick film directly as resist. A new technique based on a new material combined with hard X-rays is now available to fabricate optical devices. The effect due to the high-energy photon exposure has been investigated using FT-IR and Raman spectroscopy, laser scanner, optical profilometer, and confocal and electron microscope. High-quality thick hybrid fullerene-doped microstructures have been fabricated.

  16. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function

    NASA Astrophysics Data System (ADS)

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T.; Fang, Ronnie H.; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-01

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.

  17. An accurate and efficient analytical method for 1D hexagonal quasicrystal coating based on Green's function

    NASA Astrophysics Data System (ADS)

    Hou, Peng-Fei; Chen, Bing-Jie; Zhang, Yang

    2017-08-01

    As a solid material between the crystal and the amorphous, the study on quasicrystals has become an important branch of condensed matter physics. Due to the special arrangement of atoms, quasicrystals own some desirable properties, such as low friction coefficient, low adhesion, high wear resistance and low porosity. Thus, quasicrystals are expected to be applied to the coating surfaces for engines, solar cells, nuclear fuel containers and heat converters. However, when the quasicrystals are used as coating material, it is very hard to simulate the coupling fields by the finite elements numerical methods because of its thin thickness and extreme stress gradient. This is the main reason why the structure of quasicrystal coating cannot be calculated accurately and stably by various numerical platform. A general solution method which can be used to solve this contact problem for a 1D hexagonal quasicrystal coating perfectly bonded to a transversely isotropic semi-infinite substrate under the point force is presented in this paper. The solutions of the Green's function under the distributed load can be obtained through the superposition principle. The simulation results show that this method is correct and effective, which has high calculation accuracy and fast convergence speed. The phonon-phason coupling field and elastic field in the coating and semi-infinite substrate will be derived based on the axisymmetric general solution, and the complicated coupling field of quasicrystals in coating contact space is explicitly presented in terms of elementary functions. In addition, the relationship between the coating thickness or external force and the stress component is also obtained to solve practical problems in engineering applications. The solutions presented not only bear theoretical merits, but also can serve as benchmarks to clarify various approximate methods.

  18. Grading of degenerative disk disease and functional impairment: imaging versus patho-anatomical findings

    PubMed Central

    Wilke, Hans-Joachim

    2008-01-01

    Degenerative instability affecting the functional spinal unit is discussed as a cause of symptoms. The value of imaging signs for assessing the resulting functional impairment is still unclear. To determine the relationship between slight degrees of degeneration and function, we performed a biomechanical study with 18 multisegmental (L2-S2) human lumbar cadaveric specimens. The multidirectional spinal deformation was measured during the continuous application of pure moments of flexion/extension, bilateral bending and rotation in a spine tester. The three flexibility parameters neutral zone, range of motion and neutral zone ratio were evaluated. Different grading systems were used: (1) antero-posterior and lateral radiographs (degenerative disk disease) (2) oblique radiographs (facet joint degeneration) (3) macroscopic and (4) microscopic evaluation. The most reliable correlation was between the grading of microscopic findings and the flexibility parameters; the imaging evaluation was not as informative. PMID:18839226

  19. Copper Ferrocyanide-Functionalized Magnetic Adsorbents Using Polyethyleneimine Coated Fe3O4 Nanoparticles for the Removal of Radioactive Cesium.

    PubMed

    Yang, Hee-Man; Hong, Sang Bum; Cho, Yong Suk; Lee, Kune-Woo; Seo, Bum-Kyoung; Moon, Jei-Kwon

    2016-03-01

    Copper ferrocyanide-functionalized magnetic nano-adsorbents were successfully synthesized by electrostatic coating of citric acid coated Fe3O4 nanoparticles with polyethyleneimine, and immobilizing copper and ferrocyanide on the surfaces of polyethyleneimine-coated nanoparticles. Radioactive cesium (Cs) adsorption tests were conducted to investigate the effectiveness of the copper ferrocyanide-functionalized magnetic nano-adsorbents toward the removal of radioactive Cs.

  20. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO₂ nanoparticles.

    PubMed

    Schaeffer, Daniel A; Polizos, Georgios; Smith, D Barton; Lee, Dominic F; Hunter, Scott R; Datskos, Panos G

    2015-02-06

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a 'self-cleaning' effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 160°-175°. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, they exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the CA and optical transmission between 190 and 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents, while the binder used was a polyurethane clearcoat. This solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 min, these coatings exhibited superhydrophobic behavior with a static CA ≥ 160°.

  1. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel A.; Polizos, Georgios; Barton Smith, D.; Lee, Dominic F.; Hunter, Scott R.; Datskos, Panos G.

    2015-02-01

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a ‘self-cleaning’ effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 160°-175°. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, they exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the CA and optical transmission between 190 and 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents, while the binder used was a polyurethane clearcoat. This solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 min, these coatings exhibited superhydrophobic behavior with a static CA ≥ 160°.

  2. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles

    DOE PAGES

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton; ...

    2015-01-09

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannotmore » be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.« less

  3. Low-Velocity Impact Response of Sandwich Beams with Functionally Graded Core

    NASA Technical Reports Server (NTRS)

    Apetre, N. A.; Sankar, B. V.; Ambur, D. R.

    2006-01-01

    The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young's modulus is represented by a polynomial in the thickness coordinate, but the Poisson's ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel - the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of thc beam with graded core Increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load arc reduced considerably due to grading of thc core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.

  4. Low-Velocity Impact Response of Sandwich Beams with Functionally Graded Core

    NASA Technical Reports Server (NTRS)

    Apetre, N. A.; Sankar, B. V.; Ambur, D. R.

    2006-01-01

    The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young's modulus is represented by a polynomial in the thickness coordinate, but the Poisson's ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel - the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of thc beam with graded core Increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load arc reduced considerably due to grading of thc core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.

  5. A simple and accurate grading system for orthoiodohippurate renal scans in the assessment of post-transplant renal function

    SciTech Connect

    Zaki, S.K.; Bretan, P.N.; Go, R.T.; Rehm, P.K.; Streem, S.B.; Novick, A.C. )

    1990-06-01

    Orthoiodohippurate renal scanning has proved to be a reliable, noninvasive method for the evaluation and followup of renal allograft function. However, a standardized system for grading renal function with this test is not available. We propose a simple grading system to distinguish the different functional phases of hippurate scanning in renal transplant recipients. This grading system was studied in 138 patients who were evaluated 1 week after renal transplantation. There was a significant correlation between the isotope renographic functional grade and clinical correlates of allograft function such as the serum creatinine level (p = 0.0001), blood urea nitrogen level (p = 0.0001), urine output (p = 0.005) and need for hemodialysis (p = 0.007). We recommend this grading system as a simple and accurate method to interpret orthoiodohippurate renal scans in the evaluation and followup of renal allograft recipients.

  6. A comparative study on solid particle erosion behavior of plasma sprayed Cr2O3 coatings on 410 grade steel

    NASA Astrophysics Data System (ADS)

    Sreenivas Rao, K. V.; Girisha, K. G.; Eswar, Sushruta

    2016-09-01

    In the present investigation chromium oxide (Cr2O3) powder particles were used to deposit on 410 martensitic steel. Ni-Cr was used as bond coat. Erosion studies were directed on uncoated and also plasma sprayed steel examples at room temperature. The Erosion analyses were done utilizing an air-jet erosion test rig at a speed of 30 m/s by varying stand-off distance as per ASTM G-76. The stand-off distance considered were 10mm, 20mm, 30mm & 40mm. Silica sand particles of size 312μm was used as erodent. The surface morphologies were characterized using Scanning electron microscope (SEM) and presence of coating material was confirmed using energy dispersive X-ray analyzer (EDS). Vickers micro harness test was performed on surface of coated and un-coated substrates. It was observed that Cr2O3 Coated specimen exhibits better Erosion resistance when contrasted with uncoated substrates because of its enhanced property like micro hardness.

  7. Relationships between tumor grade and neurocognitive functioning in patients with glioma of the left temporal lobe prior to surgical resection

    PubMed Central

    Noll, Kyle R.; Sullaway, Catherine; Ziu, Mateo; Weinberg, Jeffrey S.; Wefel, Jeffrey S.

    2015-01-01

    Background Various tumor characteristics have been associated with neurocognitive functioning (NCF), though the role of tumor grade has not been adequately examined. Methods Seventy-two patients with histologically confirmed grade IV glioma (n = 37), grade III glioma (n = 20), and grade II glioma (n = 15) in the left temporal lobe completed preoperative neuropsychological assessment. Rates of impairment and mean test performances were compared by tumor grade with follow-up analysis of the influence of other tumor- and patient-related characteristics on NCF. Results NCF impairment was more frequent in patients with grade IV tumor compared with patients with lower-grade tumors in verbal learning, executive functioning, as well as language abilities. Mean performances significantly differed by tumor grade on measures of verbal learning, processing speed, executive functioning, and language, with the grade IV group exhibiting worse performances than patients with lower-grade tumors. Group differences in mean performances remained significant when controlling for T1-weighted and fluid attenuated inversion recovery MRI-based lesion volume. Performances did not differ by seizure status or antiepileptic and steroid use. Conclusions Compared with patients with grade II or III left temporal lobe glioma, patients with grade IV tumors exhibit greater difficulty with verbal learning, processing speed, executive functioning, and language. Differences in NCF associated with glioma grade were independent of lesion volume, seizure status, and antiepileptic or steroid use, lending support to the concept of “lesion momentum” as a primary contributor to deficits in NCF of newly diagnosed patients prior to surgery. PMID:25227126

  8. Versatile technique to functionalize optical microfibers via a modified sol-gel dip-coating method.

    PubMed

    Xu, Z Y; Li, Y H; Wang, L J

    2014-01-01

    We present a convenient and versatile technique to functionalize microfibers by depositing sol-gel jackets via a modified dip-coating method. This was elucidated by gain-functionalizing microfibers with erbium-ytterbium codoped silica sol-gel jackets. For a 4.5-cm-long coated microfiber, an internal gain of 1.8 dB and a net gain of 0.8 dB for a 1550 nm signal were observed, when combing together the gain of the doped jackets and low loss of microfibers. With benefits of convenience and versatility, this technique can be used for functionalizing microfibers with jackets showing gains in other spectral ranges, high nonlinearity, high sensitivity, and many other functions.

  9. Modeling the absorption behavior of solar thermal collector coatings utilizing graded alpha-C:H/TiC layers.

    PubMed

    Gruber, D P; Engel, G; Sormann, H; Schüler, A; Papousek, W

    2009-03-10

    Wavelength selective coatings are of common use in order to enhance the efficiency of devices heated by radiation such as solar thermal collectors. The use of suitable materials and the optimization of coating layer thicknesses are advisable ways to maximize the absorption. Further improvement is achievable by embedding particles in certain layers in order to modify material properties. We focus on optimizing the absorption behavior of a solar collector setup using copper as substrate, a layer of amorphous hydrogenated carbon with embedded titanium carbide particles (a-C:H/TiC), and an antireflection coating of amorphous silicon dioxide (aSiO(2)). For the setup utilizing homogeneous particle distribution, a relative absorption of 90.98% was found, while inhomogeneous particle embedding yielded 98.29%. These results are particularly interesting since until now, absorption of more than 95% was found only by using embedded Cr but not by using the more biocompatible Ti.

  10. Experimental and numerical analysis concerning the behaviour of OL50 steel grade specimens coated with polyurea layer under dynamics loadings

    NASA Astrophysics Data System (ADS)

    Bucur, Florina; Trana, Eugen; Rotariu, Adrian; Gavrus, Adinel; Barbu, Cristian; Guines, Dominique

    2015-09-01

    This study refers to an experimental and numerical evaluation of a polyurea coating layer influence on the dynamic behaviour of OL50 specimens. Mechanical quasi-static and dynamic tensile tests were performed in axial loading conditions, for 2 mm steel plate specimens. Several metallic specimens have been previously coated with 1.5 mm and 3 mm respectively thickness polyurea layer and tested in traction. The findings results indicate that the presence of polyurea changes the loading pattern of metallic material in the necking area. In terms of polyurea coated metal specimens fracture, there was clearly observed a change of fracture limit. One possible explanation of this phenomenon is the modification of triaxiality state in the necking zone, fact proven by the numerical simulations. Test results indicate that the presence of polyurea layer delays the necking onset phenomenon which precedes the OL50 metallic specimen fracture.

  11. Free Vibration Characteristics of Functionally Graded Pre-twisted Conical Shells under Rotation

    NASA Astrophysics Data System (ADS)

    Das, Apurba; Karmakar, Amit

    2017-06-01

    This article deals with effect of rotation and pretwist angle on free vibration characteristics of functionally graded conical shells. The dynamic equilibrium equation is derived from Lagrange's equation neglecting the Coriolis effect for moderate rotational speeds. The materials properties of conical shell are varied with a power-law distribution of the volume fractions of their constituents through its thickness. Convergence studies are performed in respect of mesh sizes, and comparisons of the present solutions and those reported in open literature are provided to substantiate the accuracy of the proposed method. Computer codes developed to obtain the numerical results for the combined effects of twist angle and rotational speed on the natural frequencies of functionally graded conical shells. The mode shapes for a typical laminate configuration under different conditions are also illustrated. Numerical results are obtained for the non-dimensional fundamental (NDFF) and second frequencies (NDSF).

  12. Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof

    DOEpatents

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A

    2015-03-03

    In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.

  13. Application of metal coatings for functionalization of technical fibers and fabrics

    NASA Astrophysics Data System (ADS)

    Lusis, A.; Pentjuss, E.; Balodis, J.; Janeliukštis, R.; Zandersons, J.

    2011-12-01

    The metal coatings in combination with sonochemical and leaching processes are used for nanostructuring and functionalization of glass, flax and hemp fabrics. The leaching is used for nanostructuring sodium alumosilicate K-glass fabrics to obtained silica like fibre with nanoporous structure on surface and in volume. The natural fibres as well as fabrics themselves are porous media. The porous media adsorbs water and content of moisture in fabrics have to be controlled. The metal-coated fabric characterization is an actual problem. Application of metal coatings for the functionalization of technical fibres and fabrics faced with influence of moisture on functional properties, e.g., the impedance of the metal coated K-glass and flax and hemp fabrics have strong dependence of content absorbed water or moisture. Presented studies are on the moisture content determination methodology based on fhermogravimetric analyses and impedance spectroscopy. The leached K-glass fibres have three absorption sites with different kinetic and desorption heat. The flax has more complicated distribution of sorption/desorption sites. The water desorption heatl,3 kJ/g for both type of fabrics in temperature range 30-150 0C is comparable to the water evaporation heat 2,3 kJ/g at 100 0C. For leached K-glass fibre from the isothermal nitrogen sorption/desorption plot the pore volume is up to 7.5 cm3/g. and pore sizes are in range 2-100 nm.

  14. Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces

    PubMed Central

    Chen, Hongwei; Zou, Hao; Paholak, Hayley J.; Ito, Masayuki; Qian, Wei; Che, Yong; Sun, Duxin

    2014-01-01

    Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups, such as –COOH and –NH2, to conjugate targeting ligands or drugs. However, introducing highly charged surfaces promotes binding of the nanoparticles to biomolecules in biological systems through ionic interactions, causing the nanoparticles to aggregate in biological environments and consequently undergo strong non-specific binding to off-target cells and tissues. Developing a unique polymer with neutral surfaces that can be further functionalized directly would be critical to develop suitable nanomaterials for nanomedicine. Here, we report a thiol-reactive amphiphilic block copolymer poly(ethylene oxide)-block-poly(pyridyldisulfide ethylmeth acrylate) (PEO-b-PPDSM) for coating gold nanoparticles (AuNPs). The resultant polymer-coated AuNPs have almost neutral surfaces with slightly negative zeta potentials from -10 to 0 mV over a wide pH range from 2 to 12. Although the zeta potential is close to zero we show that the PEO-b-PPDSM copolymer-coated AuNPs have both good stability in various physiological conditions and reduced non-specific adsorption of proteins/biomolecules. Because of the multiple pyridyldisulfide groups on the PPDSM block, these individually dispersed nanocomplexes with an overall hydrodynamic size around 43.8 nm can be directly functionalized via disulfide-thiol exchange chemistry. PMID:24729795

  15. Novel Active Surface Prepared by Embedded Functionalized Clays in an Acrylate Coating.

    PubMed

    Xia, Yining; Ghasemlou, Mehran; Rubino, Maria; Auras, Rafael; Baghdachi, Jamil

    2015-11-11

    The research on a self-decontaminating surface has received significant attention because of the growth of pathogenic microorganisms on surfaces. In this study, a novel and simple technique for producing an active surface with antimicrobial functionality is demonstrated. A tethering platform was developed by grafting the biocide ampicillin (Amp) to a nanoclay and dispersing the nanoclay in a UV-curable acrylate coating applied on polypropylene films as the substrate. A coupling agent, [3-(glycidyloxy)propyl]trimethoxysilane, was used as a linker between the nanoclay and Amp. The Amp-functionalized clay was further modified with an organic surfactant to improve the compatibility with the coating. Several characterization assays, such as Fourier infrared transform analysis, thermogravimetric analysis, and X-ray diffraction, were conducted to confirm the presence of Amp in the nanoclay. Transmission electron microscopy images revealed that the clay particles were well dispersed in the coating and had a partial exfoliated morphology. The active coating surface was effective in inhibiting the growth of Gram-positive Listeria monocytogenes and Gram-negative Salmonella Typhimurium via contact. These findings suggest the potential for the development of active surfaces with the implementation of nanotechnology to achieve diverse functionalities.

  16. Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces.

    PubMed

    Chen, Hongwei; Zou, Hao; Paholak, Hayley J; Ito, Masayuki; Qian, Wei; Che, Yong; Sun, Duxin

    2014-04-21

    Nanoparticles designed for biomedical applications are often coated with polymers containing reactive functional groups, such as -COOH and -NH2, to conjugate targeting ligands or drugs. However, introducing highly charged surfaces promotes binding of the nanoparticles to biomolecules in biological systems through ionic interactions, causing the nanoparticles to aggregate in biological environments and consequently undergo strong non-specific binding to off-target cells and tissues. Developing a unique polymer with neutral surfaces that can be further functionalized directly would be critical to develop suitable nanomaterials for nanomedicine. Here, we report a thiol-reactive amphiphilic block copolymer poly(ethylene oxide)-block-poly(pyridyldisulfide ethylmeth acrylate) (PEO-b-PPDSM) for coating gold nanoparticles (AuNPs). The resultant polymer-coated AuNPs have almost neutral surfaces with slightly negative zeta potentials from -10 to 0 mV over a wide pH range from 2 to 12. Although the zeta potential is close to zero we show that the PEO-b-PPDSM copolymer-coated AuNPs have both good stability in various physiological conditions and reduced non-specific adsorption of proteins/biomolecules. Because of the multiple pyridyldisulfide groups on the PPDSM block, these individually dispersed nanocomplexes with an overall hydrodynamic size around 43.8 nm can be directly functionalized via disulfide-thiol exchange chemistry.

  17. Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle

    NASA Astrophysics Data System (ADS)

    Aliofkhazraei, M.; Rouhaghdam, A. Sabour

    2012-01-01

    Plasma electrolytic oxidation (PEO) was applied on the surface of commercially pure titanium substrates in a mixed aluminate-phosphate electrolyte in the presence of silicon nitride nanoparticles as suspension in the electrolyte in order to fabricate nanocomposite coatings. Pulsed current was applied based on variable duty cycle in order to synthesize functionally gradient coatings (FGC). Different rates of variable duty cycle (3, 1.5 and 1%/min), applied current densities (0.06-0.14 A/cm2) and concentrations of nanoparticles in the electrolyte (2, 4, 6, 8 and 10 g l-1) were investigated. The nanopowder and coated samples were analyzed by atomic force microscope, scanning electron microscope and transmission electron microscope. The influence of different rates of variable duty cycle (or treatment times) on the growth rate of nanocomposite coatings and their microhardness values was investigated. The experimental results revealed that the content of Si3N4 nanoparticulates in the layer increases with the increase of its concentration in the plasma electrolysis bath. Nanocomposite coatings fabricated with lower rate of variable duty cycle have higher microhardness with smoother microhardness profile.

  18. Wear and Friction Behavior of the Spray-Deposited SiCp/Al-20Si-3Cu Functionally Graded Material

    NASA Astrophysics Data System (ADS)

    Su, B.; Yan, H. G.; Chen, J. H.; Zeng, P. L.; Chen, G.; Chen, C. C.

    2013-05-01

    The spray-deposited SiCp/Al-20Si-3Cu functionally graded material (FGM) can meet the structure design requirements of brake disk. The effects of rotational speed and load on the wear and friction behaviors of the SiCp/Al-20Si-3Cu FGM sliding against the resin matrix friction material were investigated. For comparison, the wear and friction behaviors of a commercially used cast iron (HT250) brake rotor were also studied. The results indicate that the friction coefficient of the SiCp/Al-20Si-3Cu FGM decreases constantly with the increase of load or rotational speed and is affected by the gradient distribution of SiC particles. The wear rate of the SiCp/Al-20Si-3Cu FGM firstly increases, then decreases and finally increases again with increasing load or speed, and is about 1/10 of that of HT250. Based on observations and analyses on the morphology and substructure of the worn surface, the mechanical mixing layer acts as a protective coating and lubricant, and its thickness reduces with the SiC content increasing. Furthermore, it is proposed that the dominant wear mechanism of SiCp/Al-20Si-3Cu FGM changes from the abrasive wear to the oxidative wear and further to the delamination wear with increasing load or speed.

  19. Silicone foul release coatings: effect of the interaction of oil and coating functionalities on the magnitude of macrofouling attachment strengths.

    PubMed

    Stein, Judith; Truby, Kathryn; Wood, Christina Darkangelo; Stein, Jeff; Gardner, Martha; Swain, Geoffrey; Kavanagh, Christopher; Kovach, Brett; Schultz, Michael; Wiebe, Deborah; Holm, Eric; Montemarano, Jean; Wendt, Dean; Smith, Celia; Meyer, Anne

    2003-04-01

    Silicone biofouling release coatings have been shown to be an effective method of combating fouling. Nearly all silicone foul release coatings are augmented with an oil additive to decrease macrofouling attachment strength. This paper addresses the effect of the type of oil that is incorporated into the silicone coating and the type of silicone coating itself (silica vs calcium carbonate filled) on macrofouling adhesion strengths to the coating. It was found that not only are the main effects of oil type and silicone coating type important in determining the magnitude of the attachment strength of the organism, but the interaction term (oil type crossed with coating type) is highly significant for all organisms studied, except oysters at the University of Hawaii test site (Oahu, Hawaii) which has a significance level of alpha = 0.1. Each of the organisms exhibited a unique response to the various silicone fouling release coatings. Thus, in order to predict the effectives of foul release coatings, the composition variables of the coatings and the type of target organisms must be considered.

  20. Method and apparatus for determination of mechanical properties of functionally-graded materials

    DOEpatents

    Giannakopoulos, Antonios E.; Suresh, Subra

    1999-01-01

    Techniques for the determination of mechanical properties of homogenous or functionally-graded materials from indentation testing are presented. The technique is applicable to indentation on the nano-scale through the macro-scale including the geological scale. The technique involves creating a predictive load/depth relationship for a sample, providing an experimental load/depth relationship, comparing the experimental data to the predictive data, and determining a physical characteristic from the comparison.

  1. Prediction of acoustic radiation from functionally graded shells of revolution in light and heavy fluids

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Meng, Guang

    2016-08-01

    This paper presents a semi-analytical method for the vibro-acoustic analysis of a functionally graded shell of revolution immersed in an infinite light or heavy fluid. The structural model of the shell is formulated on the basis of a modified variational method combined with a multi-segment technique, whereas a spectral Kirchhoff-Helmholtz integral formulation is employed to model the exterior fluid field. The material properties of the shell are estimated by using the Voigt's rule of mixture and the Mori-Tanaka's homogenization scheme. Displacement and sound pressure variables of each segment are expanded in the form of a mixed series using Fourier series and Chebyshev orthogonal polynomials. A set of collocation nodes distributed over the roots of Chebyshev polynomials are employed to establish the algebraic system of the acoustic integral equations, and the non-uniqueness solution is eliminated using a combined Helmholtz integral equation formulation. Loosely and strongly coupled schemes are implemented for the structure-acoustic interaction problem of a functionally graded shell immersed in a light and heavy fluid, respectively. The present method provides a flexible way to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of functionally graded shells of revolution in an analytical manner. Numerical tests are presented for sound radiation problems of spherical, cylindrical, conical and coupled shells. The individual contributions of the circumferential modes to the radiated sound pressure and sound power of functionally graded shells are observed. Effects of the material profile on the sound radiation of the shells are also investigated.

  2. Multi-objective Optimization of Geometric Dimensions and Material Composition of Functionally Graded Components

    NASA Astrophysics Data System (ADS)

    Vel, Senthil S.; Goupee, Andrew J.

    2008-02-01

    In this paper, we study the two-dimensional volume fraction optimization of a metal/metal functionally graded material active cooling component. The plane stress transient thermoelastic behavior of the component is analyzed using the element-free Galerkin method. A multi-objective genetic algorithm optimization procedure is used to determine the optimal volume fraction distribution and shape parameters that will minimize multiple objectives subject to nonlinear constraints.

  3. Multiscale Structured and Functionally Graded Gas Diffusion Electrodes for PEM-Fuel Cells and Electrodialysis

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Franz, M.; Bienhüls, C.; Willert-Porada, M.

    2008-02-01

    In the presented work, different methods of preparation of functionally graded gas diffusion electrodes (GDE) for fuel cell and electrodialysis application were investigated. High electrochemical performance with a low platinum catalyst content of only 0.1 mg/cm2 was achieved. The new GDEs are superior to commercial ones with five times higher platinum content, due to their optimized pore structure and improved distribution of catalyst and ion conductive polymer.

  4. Force and Power Measurements of a Functionally-Graded Chordwise-Flexible Flapping Wing

    NASA Astrophysics Data System (ADS)

    Mudbhari, Durlav; Erdogan, Malcolm; Moored, Keith

    2016-11-01

    Flyers and swimmers flap their wings and fins to propel themselves efficiently over long distances. A key element to achieve their high performance is the flexibility of their appendages. While numerous studies have shown that homogeneously flexible wings can enhance force production and efficiency, animals actually have wings with varying flexural rigidity along their chord and span. The goal of this study is to understand and characterize the force production and energetics of functionally-graded, chordwise flexible wings. A flapping wing composed of a rigid and a flexible region, that define a chordwise gradient in flexural rigidity, is used to model functionally-graded materials. By varying the ratio of the lengths of the rigid to flexible regions, the flexural rigidity of the flexible region, and the flapping frequency, the thrust production of a functionally-graded wing is directly measured in a wind tunnel. A novel vacuum chamber apparatus is used in conjunction with the wind tunnel measurements to reliably measure the aerodynamic power input and the propulsive efficiency. Limited flow visualization is performed with particle image velocimetry in order to connect the force production and energetics of the partially-flexible wing with its generated flow structures. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI Grant Number N00014-14-1-0533.

  5. Investigating the Force Production of Functionally-Graded Flexible Wings in Flapping Wing Flight

    NASA Astrophysics Data System (ADS)

    Mudbhari, Durlav; Erdogan, Malcolm; He, Kai; Bateman, Daniel; Lipkis, Rory; Moored, Keith

    2015-11-01

    Birds, insects and bats oscillate their wings to propel themselves over long distances and to maneuver with unprecedented agility. A key element to achieve their impressive aerodynamic performance is the flexibility of their wings. Numerous studies have shown that homogeneously flexible wings can enhance force production, propulsive efficiency and lift efficiency. Yet, animal wings are not homogenously flexible, but instead have varying material properties. The aim of this study is to characterize the force production and energetics of functionally-graded flexible wings. A partially-flexible wing composed of a rigid section and a flexible section is used as a first-order model of functionally-graded materials. The flexion occurs in the spanwise direction and it is affected by the spanwise flexion ratio, that is, the ratio of the length of the rigid section compared to the total span length. By varying the flexion ratio as well as the material properties of the flexible section, the study aims to examine the force production and energetics of flapping flight with functionally-graded flexible wings. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-14-1-0533.

  6. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering.

    PubMed

    Zhou, Changchun; Deng, Congying; Chen, Xuening; Zhao, Xiufen; Chen, Ying; Fan, Yujiang; Zhang, Xingdong

    2015-08-01

    Functionally graded materials (FGM) open the promising approach for bone tissue repair. In this study, a novel functionally graded hydroxyapatite (HA) bioceramic with micrograin and nanograin structure was fabricated. Its mechanical properties were tailored by composition of micrograin and nanograin. The dynamic mechanical analysis (DMA) indicated that the graded HA ceramics had similar mechanical property compared to natural bones. Their cytocompatibility was evaluated via fluorescent microscopy and MTT colorimetric assay. The viability and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs) on ceramics indicated that this functionally graded HA ceramic had better cytocompatibility than conventional HA ceramic. This study demonstrated that functionally graded HA ceramics create suitable structures to satisfy both the mechanical and biological requirements of bone tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Polymeric active coatings with functionality in vascular applications.

    PubMed

    Aguilar, María Rosa; Rodríguez, Gema; Fernández, Mar; Gallardo, Alberto; San Román, Julio

    2002-12-01

    Copolymers containing functional groups with activity as antiaggregating agents for platelets, based on random chains of metacryloyloxyethyl [2-(acetyloxy)-4-(trifluoromethyl)]benzoate, TH, and 2-acrylamido-2-metylpropanesulfonic acid, AMPS, with AMPS molar fractions ranging from 0.1 to 0.4, have been prepared. The spectroscopical characterization and the in vitro swelling behavior have been studied, as well as the surface free energy, showing the copolymers an appropriate surface properties from a haemocompatible point of view. Preliminary in vitro tests using human blood have shown a promising antiaggregating behavior.

  8. Predictors of subjective versus objective cognitive functioning in patients with stable grades II and III glioma

    PubMed Central

    Gehring, Karin; Taphoorn, Martin J.B.; Sitskoorn, Margriet M.; Aaronson, Neil K.

    2015-01-01

    Background Studies in cancer and noncancer populations demonstrate lower than expected correlations between subjective cognitive symptoms and cognitive functioning as determined by standardized neuropsychological tests. This paper systematically examines the association between subjective and objective cognitive functioning in patients with low-grade glioma and the associations of these indicators of cognitive function with clusters of sociodemographic, clinical, and self-reported physical and mental health factors. Methods Multiple regression analyses with the subjective and 2 objective indicators of cognitive functioning as dependent variables and 4 clusters of predictor variables were conducted in 169 patients with predominantly low-grade glioma. Results Correlations between the subjective and the 2 objective cognitive indicators were negligible (0.04) to low (0.24). Objective cognitive deficits were predominantly associated with sociodemographic (older age, lower education, male sex) and clinical (left hemisphere tumor) variables, while lower ratings of subjective cognitive function were more closely related to self-reported mental health symptoms (fatigue, lower mental well-being), physical (motor) dysfunction and female sex. Self-reported communication deficits were associated significantly with both subjective and objective dysfunction. Conclusions We recommend that both subjective and objective measures of cognitive functioning, together with a measure of psychological distress, be used for comprehensive neuropsychological assessments of patients with glioma to determine which areas are most affected and which specific intervention strategies are most appropriate. PMID:26034638

  9. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers.

    PubMed

    Szczurek, Anna; Barcikowski, Michał; Leluk, Karol; Babiarczuk, Bartosz; Kaleta, Jerzy; Krzak, Justyna

    2017-08-25

    The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl-coating 1, 3-mercaptopropyl-coating 2, 2-(3,4-epoxycyclohexyl) ethyl-coating 3, methyl-coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components.

  10. The narwhal (Monodon monoceros) cementum-dentin junction: a functionally graded biointerphase.

    PubMed

    Grandfield, Kathryn; Chattah, Netta Lev-Tov; Djomehri, Sabra; Eidelmann, Naomi; Eichmiller, Frederick C; Webb, Samuel; Schuck, P James; Nweeia, Martin; Ho, Sunita P

    2014-08-01

    In nature, an interface between dissimilar tissues is often bridged by a graded zone, and provides functional properties at a whole organ level. A perfect example is a "biological interphase" between stratified cementum and dentin of a narwhal tooth. This study highlights the graded structural, mechanical, and chemical natural characteristics of a biological interphase known as the cementum-dentin junction layer and their effect in resisting mechanical loads. From a structural perspective, light and electron microscopy techniques illustrated the layer as a wide 1000-2000 μm graded zone consisting of higher density continuous collagen fiber bundles from the surface of cementum to dentin, that parallels hygroscopic 50-100 μm wide collagenous region in human teeth. The role of collagen fibers was evident under compression testing during which the layer deformed more compared to cementum and dentin. This behavior is reflected through site-specific nanoindentation indicating a lower elastic modulus of 2.2 ± 0.5 GPa for collagen fiber bundle compared to 3 ± 0.4 GPa for mineralized regions in the layer. Similarly, microindentation technique illustrated lower hardness values of 0.36 ± 0.05 GPa, 0.33 ± 0.03 GPa, and 0.3 ± 0.07 GPa for cementum, dentin, and cementum-dentin layer, respectively. Biochemical analyses including Raman spectroscopy and synchrotron-source microprobe X-ray fluorescence demonstrated a graded composition across the interface, including a decrease in mineral-to-matrix and phosphate-to-carbonate ratios, as well as the presence of tidemark-like bands with Zn. Understanding the structure-function relationships of wider tissue interfaces can provide insights into natural tissue and organ function.

  11. Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling.

    PubMed

    Yang, Wen Jing; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Rittschof, Daniel

    2012-09-10

    "Click" chemistry-enabled layer-by-layer (LBL) deposition of multilayer functional polymer coatings provides an alternative approach to combating biofouling. Fouling-resistant azido-functionalized poly(ethylene glycol) methyl ether methacrylate-based polymer chains (azido-poly(PEGMA)) and antimicrobial alkynyl-functionalized 2-(methacryloyloxy)ethyl trimethyl ammonium chloride-based polymer chains (alkynyl-poly(META)) were click-assembled layer-by-layer via alkyne-azide 1,3-dipolar cycloaddition. The polymer multilayer coatings are resistant to bacterial adhesion and are bactericidal to marine Gram-negative Pseudomonas sp. NCIMB 2021 bacteria. Settlement of barnacle ( Amphibalanus (= Balanus ) amphitrite ) cyprids is greatly reduced on the multilayer polymer-functionalized substrates. As the number of the polymer layers increases, efficacy against bacterial fouling and settlement of barnacle cyprids increases. The LBL-functionalized surfaces exhibit low toxicity toward the barnacle cyprids and are stable upon prolonged exposure to seawater. LBL click deposition is thus an effective and potentially environmentally benign way to prepare antifouling coatings.

  12. SYNTHESIS AND CHARACTERIZATION OF SMART FUNCTIONAL COATINGS BY CHEMICAL SOLUTION DEPOSITION METHODS

    SciTech Connect

    Mendez-Torres, A.

    2011-07-19

    New coating technology enables the fabrication of low cost structural health monitoring (SHM) and tamper indication devices that can be employed to strengthen national and international safeguards objectives. In particular, such innovations could serve the safeguards community by improving both the timeliness of detection and confidence in verification and monitoring. This work investigates the synthesis of functional surface coatings using chemical solutions deposition methods. Chemical solution deposition has recently received attention in the materials research community due to its unique advantages such as low temperature processing, high homogeneity of final products and the ability to fabricate materials with controlled surface properties and pore structures. The synthesis of functional coatings aimed at modifying the materials conductivity and optical properties was investigated by the incorporation of transition element (e.g. Cr{sup +3}) and rare earth (e.g. Er{sup +3}) serving as dopants in a polymer or gel matrix. The structural and morphological investigation of the as-deposited films was carried out using UV/Vis and photoluminescence (PL) spectroscopy. The as deposited coating was further investigated by scanning electron microscopy and energy dispersive x-ray microscopy.

  13. Manufacturing and Mechanical Testing of a New Functionally Graded Fiber Reinforced Cement Composite

    SciTech Connect

    Shen Bin; Hubler, Mija; Paulino, Glaucio H.; Struble, Leslie J.

    2008-02-15

    A functionally graded (FG) material system is employed to make fiber use more efficient in a fiber reinforced cement composite (FRCC). This preliminary study demonstrates beam elements that were functionally graded fiber reinforced cement composite (FGFRCC) with four layers, each with a different fiber volume ratio. Fiber volume ratio was graded in accordance with its potential contribution to the mechanical load-bearing capacity so as to reduce the overall fiber volume ratio while preserving the flexural strength and ductility of the beam. Extrusion was used to produce single homogeneous layers of constant fiber volume ratio. The FRCC layers with different fiber volume ratios were stacked according to a desired configuration and then pressed to make an integrated FGFRCC. Flexural tests were carried out to characterize the mechanical behavior, and the results were analyzed to evaluate the effectiveness of the designed fiber distribution. Compared with homogeneous FRCC with the same overall fiber volume fraction, the FGFRCC exhibited about 50% higher strength and comparable ductility.

  14. Manufacturing and Mechanical Testing of a New Functionally Graded Fiber Reinforced Cement Composite

    NASA Astrophysics Data System (ADS)

    Shen, Bin; Hubler, Mija; Paulino, Glaucio H.; Struble, Leslie J.

    2008-02-01

    A functionally graded (FG) material system is employed to make fiber use more efficient in a fiber reinforced cement composite (FRCC). This preliminary study demonstrates beam elements that were functionally graded fiber reinforced cement composite (FGFRCC) with four layers, each with a different fiber volume ratio. Fiber volume ratio was graded in accordance with its potential contribution to the mechanical load-bearing capacity so as to reduce the overall fiber volume ratio while preserving the flexural strength and ductility of the beam. Extrusion was used to produce single homogeneous layers of constant fiber volume ratio. The FRCC layers with different fiber volume ratios were stacked according to a desired configuration and then pressed to make an integrated FGFRCC. Flexural tests were carried out to characterize the mechanical behavior, and the results were analyzed to evaluate the effectiveness of the designed fiber distribution. Compared with homogeneous FRCC with the same overall fiber volume fraction, the FGFRCC exhibited about 50% higher strength and comparable ductility.

  15. Assessment of Preoperative Liver Function in Patients with Hepatocellular Carcinoma - The Albumin-Indocyanine Green Evaluation (ALICE) Grade.

    PubMed

    Kokudo, Takashi; Hasegawa, Kiyoshi; Amikura, Katsumi; Uldry, Emilie; Shirata, Chikara; Yamaguchi, Takamune; Arita, Junichi; Kaneko, Junichi; Akamatsu, Nobuhisa; Sakamoto, Yoshihiro; Takahashi, Amane; Sakamoto, Hirohiko; Makuuchi, Masatoshi; Matsuyama, Yutaka; Demartines, Nicolas; Malagó, Massimo; Kokudo, Norihiro; Halkic, Nermin

    2016-01-01

    Most patients with hepatocellular carcinoma (HCC) have underlying liver disease, therefore, precise preoperative evaluation of the patient's liver function is essential for surgical decision making. We developed a grading system incorporating only two variables, namely, the serum albumin level and the indocyanine green retention rate at 15 minutes (ICG R15), to assess the preoperative liver function, based on the overall survival of 1868 patients with HCC who underwent liver resection. We then tested the model in a European cohort (n = 70) and analyzed the predictive power for the postoperative short-term outcome. The Albumin-Indocyanine Green Evaluation (ALICE) grading system was developed in a randomly assigned training cohort: linear predictor = 0.663 × log10ICG R15 (%)-0.0718 × albumin (g/L) (cut-off value: -2.20 and -1.39). This new grading system showed a predictive power for the overall survival similar to the Child-Pugh grading system in the validation cohort. Determination of the ALICE grade in Child-Pugh A patients allowed further stratification of the postoperative prognosis. This result was reproducible in the European cohort. Determination of the ALICE grade allowed better prediction of the risk of postoperative liver failure and mortality (ascites: grade 1, 2.1%; grade 2, 6.5%; grade 3, 16.0%; mortality: grade 1, 0%; grade 2, 1.3%; grade 3, 5.3%) than the previously reported model based on the presence/absence of portal hypertension. This new grading system is a simple method for prediction of the postoperative long-term and short-term outcomes.

  16. Stresses and Displacements in Functionally Graded Materials of Semi-Infinite Extent Induced by Rectangular Loadings

    PubMed Central

    Xiao, Hong-Tian; Yue, Zhong-Qi

    2012-01-01

    This paper presents the stress and displacement fields in a functionally graded material (FGM) caused by a load. The FGM is a graded material of Si3N4-based ceramics and is assumed to be of semi-infinite extent. The load is a distributed loading over a rectangular area that is parallel to the external surface of the FGM and either on its external surface or within its interior space. The point-load analytical solutions or so-called Yue’s solutions are used for the numerical integration over the distributed loaded area. The loaded area is discretized into 200 small equal-sized rectangular elements. The numerical integration is carried out with the regular Gaussian quadrature. Weak and strong singular integrations encountered when the field points are located on the loaded plane, are resolved with the classical methods in boundary element analysis. The numerical integration results have high accuracy. PMID:28817040

  17. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    NASA Astrophysics Data System (ADS)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the

  18. Processing, microstructure and mechanics of functionally graded Al A359/SiC(p) composite

    NASA Astrophysics Data System (ADS)

    Rodriguez-Castro, Ramon

    2000-11-01

    Metal matrix composites (MMCs) have great promise for high temperature, high strength, wear resistant applications. However, their brittleness has limited their use in load bearing applications. Functionally graded MMCs with a reinforcement concentration higher on the surface than in the interior offer new opportunities, as these materials will have high surface hardness as well as high resistance to crack growth towards the interior. In this dissertation the processing and mechanical properties of a functionally graded MMC are investigated. Rectangular blocks (100 mmx60 mmx50 mm) of functionally graded SiC particulate reinforced aluminum A359 matrix composite were prepared by centrifugal casting techniques. The reinforcement volume fraction profiles varied as the centrifugal force was applied, owing to the different densities of Al and SiC. The casting at 1300 rpm (angular velocity) had a well-mixed, refined microstructure with the maximum SiC volume fraction of 44% near the outer surface of the blocks. This surface exhibited an elevated hardness. The effect of SiC particulate reinforcement on strengthening of A359 Al alloy was experimentally studied by tensile testing specimens prepared from the cast blocks. There was a continuous increase in tensile and yield strength with increasing SiC volume fractions in the range of 0.20 to 0.30. On the contrary, there was a reduction in tensile and yield strength for SiC concentrations in the range of 0.30 to 0.40. The elasticity modulus increased with increasing SiC volume fractions in the whole reinforcement range (0.20--0.40). Fractographic analysis by SEM revealed a ductile failure process of void growth in the matrix, but the amount of the void growth was less when the SiC concentration was higher. SEM also revealed SiC reinforcement fracture and decohesion, with the particle fracture increasing with the particle concentration. Appropriate flat specimens with a continuously graded microstructure for fracture mechanics

  19. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum.

    PubMed

    Baron, Cécile

    2011-02-01

    As a non-destructive, non-invasive and non-ionizing evaluation technique for heterogeneous media, the ultrasonic method is of major interest in industrial applications but especially in biomedical fields. Among the unidirectionally heterogeneous media, the continuously varying media are a particular but widespread case in natural materials. The first studies on laterally varying media were carried out by geophysicists on the Ocean, the atmosphere or the Earth, but the teeth, the bone, the shells and the insects wings are also functionally graded media. Some of them can be modeled as planar structures but a lot of them are curved media and need to be modeled as cylinders instead of plates. The present paper investigates the influence of the tubular geometry of a waveguide on the propagation of elastic waves. In this paper, the studied structure is an anisotropic hollow cylinder with elastic properties (stiffness coefficients c(ij) and mass density ρ) functionally varying in the radial direction. An original method is proposed to find the eigenmodes of this waveguide without using a multilayered model for the cylinder. This method is based on the sextic Stroh's formalism and an analytical solution, the matricant, explicitly expressed under the Peano series expansion form. This approach has already been validated for the study of an anisotropic laterally-graded plate (Baron et al., 2007; Baron and Naili, 2010) [6,5]. The dispersion curves obtained for the radially-graded cylinder are compared to the dispersion curves of a corresponding laterally-graded plate to evaluate the influence of the curvature. Preliminary results are presented for a tube of bone in vacuum modelling the in vitro conditions of bone strength evaluation. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Hydrophobic Coatings by Thiol-Ene Click Functionalization of Silsesquioxanes with Tunable Architecture

    PubMed Central

    Génois, Isabelle

    2017-01-01

    The hydrolysis-condensation of trialkoxysilanes under strictly controlled conditions allows the production of silsesquioxanes (SSQs) with tunable size and architecture ranging from ladder to cage-like structures. These nano-objects can serve as building blocks for the preparation of hybrid organic/inorganic materials with selected properties. The SSQs growth can be tuned by simply controlling the reaction duration in the in situ water production route (ISWP), where the kinetics of the esterification reaction between carboxylic acids and alcohols rules out the extent of organosilane hydrolysis-condensation. Tunable SSQs with thiol functionalities (SH-NBBs) are suitable for further modification by exploiting the simple thiol-ene click reaction, thus allowing for modifying the wettability properties of derived coatings. In this paper, coatings were prepared from SH-NBBs with different architecture onto cotton fabrics and paper, and further functionalized with long alkyl chains by means of initiator-free UV-induced thiol-ene coupling with 1-decene (C10) and 1-tetradecene (C14). The coatings appeared to homogeneously cover the natural fibers and imparted a multi-scale roughness that was not affected by the click functionalization step. The two-step functionalization of cotton and paper warrants a stable highly hydrophobic character to the surface of natural materials that, in perspective, suggests a possible application in filtration devices for oil-water separation. Furthermore, the purification of SH-NBBs from ISWP by-products was possible during the coating process, and this step allowed for the fast, initiator-free, click-coupling of purified NBBs with C10 and C14 in solution with a nearly quantitative yield. Therefore, this approach is an alternative route to get sol-gel-derived, ladder-like, and cage-like SSQs functionalized with long alkyl chains. PMID:28786939

  1. Hydrophobic Coatings by Thiol-Ene Click Functionalization of Silsesquioxanes with Tunable Architecture.

    PubMed

    Dirè, Sandra; Bottone, Davide; Callone, Emanuela; Maniglio, Devid; Génois, Isabelle; Ribot, François

    2017-08-08

    The hydrolysis-condensation of trialkoxysilanes under strictly controlled conditions allows the production of silsesquioxanes (SSQs) with tunable size and architecture ranging from ladder to cage-like structures. These nano-objects can serve as building blocks for the preparation of hybrid organic/inorganic materials with selected properties. The SSQs growth can be tuned by simply controlling the reaction duration in the in situ water production route (ISWP), where the kinetics of the esterification reaction between carboxylic acids and alcohols rules out the extent of organosilane hydrolysis-condensation. Tunable SSQs with thiol functionalities (SH-NBBs) are suitable for further modification by exploiting the simple thiol-ene click reaction, thus allowing for modifying the wettability properties of derived coatings. In this paper, coatings were prepared from SH-NBBs with different architecture onto cotton fabrics and paper, and further functionalized with long alkyl chains by means of initiator-free UV-induced thiol-ene coupling with 1-decene (C10) and 1-tetradecene (C14). The coatings appeared to homogeneously cover the natural fibers and imparted a multi-scale roughness that was not affected by the click functionalization step. The two-step functionalization of cotton and paper warrants a stable highly hydrophobic character to the surface of natural materials that, in perspective, suggests a possible application in filtration devices for oil-water separation. Furthermore, the purification of SH-NBBs from ISWP by-products was possible during the coating process, and this step allowed for the fast, initiator-free, click-coupling of purified NBBs with C10 and C14 in solution with a nearly quantitative yield. Therefore, this approach is an alternative route to get sol-gel-derived, ladder-like, and cage-like SSQs functionalized with long alkyl chains.

  2. Electrochemical Biosensor: Multistep functionalization of thiolated ssDNA on gold-coated microcantilever

    NASA Astrophysics Data System (ADS)

    Dulanto Carbajal, Jorge

    Bio-chemical sensors are an emerging and vibrant area of research. The use of micromechanical cantilevers is relatively new as biomechanical recognition detectors. Reactions on a gold coated and chemically functionalized surface produce a mechanical deflection of the cantilever which is used as the input signal of the detector. Within the area of biosensors, DNA-sensors have a wide range of applications such as DNA hybridization detectors, DNA mismatch sequence detectors and protein detectors. We designed and built a microcantilever sensor system which allows for control and characterization of surface conditions. This includes controlled functionalization which can be a dominant factor in signal generation and reproducibility in these systems. Additionally, we developed a multistep functionalization protocol which consists of a sequence of short incubations and characterizations of thiolated ssDNA on a gold-coated cantilever. Multistep functionalization is a new protocol that is used to control the ssDNA surface density on a gold-coated cantilever. Repeatable responses and feasible biosensors are obtained using this protocol.

  3. Biocompatible polymers coated on carboxylated nanotubes functionalized with betulinic acid for effective drug delivery.

    PubMed

    Tan, Julia M; Karthivashan, Govindarajan; Abd Gani, Shafinaz; Fakurazi, Sharida; Hussein, Mohd Zobir

    2016-02-01

    Chemically functionalized carbon nanotubes are highly suitable and promising materials for potential biomedical applications like drug delivery due to their distinct physico-chemical characteristics and unique architecture. However, they are often associated with problems like insoluble in physiological environment and cytotoxicity issue due to impurities and catalyst residues contained in the nanotubes. On the other hand, surface coating agents play an essential role in preventing the nanoparticles from excessive agglomeration as well as providing good water dispersibility by replacing the hydrophobic surfaces of nanoparticles with hydrophilic moieties. Therefore, we have prepared four types of biopolymer-coated single walled carbon nanotubes systems functionalized with anticancer drug, betulinic acid in the presence of Tween 20, Tween 80, polyethylene glycol and chitosan as a comparative study. The Fourier transform infrared spectroscopy studies confirm the bonding of the coating molecules with the SWBA and these results were further supported by Raman spectroscopy. All chemically coated samples were found to release the drug in a slow, sustained and prolonged fashion compared to the uncoated ones, with the best fit to pseudo-second order kinetic model. The cytotoxic effects of the synthesized samples were evaluated in mouse embryonic fibroblast cells (3T3) at 24, 48 and 72 h. The in vitro results reveal that the cytotoxicity of the samples were dependent upon the drug release profiles as well as the chemical components of the surface coating agents. In general, the initial burst, drug release pattern and cytotoxicity could be well-controlled by carefully selecting the desired materials to suit different therapeutic applications.

  4. Functional Isoeugenol-Modified Nanogel Coatings for the Design of Biointerfaces.

    PubMed

    Kather, Michael; Skischus, Merle; Kandt, Pierre; Pich, Andrij; Conrads, Georg; Neuss, Sabine

    2017-02-20

    A new route for the synthesis of functional aqueous nanogels decorated with a controlled amount of surface-drafted isoeugenol molecules has been developed. Obtained nanogels exhibit two key functions: a) antibacterial activity against different oral pathogens and b) cell-adhesive and -growth-promoting properties. Functional nanogels can be potentially used as building blocks in the design of bioactive coatings on various implants preventing infections and accelerating tissue regeneration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A hierarchical polymer brush coating with dual-function antibacterial capability.

    PubMed

    Yan, Shunjie; Song, Lingjie; Luan, Shifang; Xin, Zhirong; Du, Shanshan; Shi, Hengchong; Yuan, Shuaishuai; Yang, Yuming; Yin, Jinghua

    2017-01-01

    Bacterial infections are problematic in many healthcare-associated devices. Antibacterial surfaces integrating the strength of bacteria repellent and bactericidal functions exhibit an encouraging efficacy in tackling this problem. Herein, a hierarchical dual-function antibacterial polymer brush coating that integrates an antifouling bottom layer with a bactericidal top layer is facilely constructed via living photograft polymerization. Excellent resistance to bacterial attachment is correlated with the antifouling components, and good bactericidal activity is afforded by the bactericidal components, and therefore the hierarchical coating shows an excellent long-term antibacterial capability. In addition, due to the presence of the hydrophilic background layer, the hierarchical surface has the greatly improved biocompatibility, as shown by the suppression of platelet adhesion and activation, the inhibition of erythrocyte adhesion and damage, and low toxicity against mammalian cells. The hierarchical polymer brush system provides the basis for the development of long-term antibacterial and biocompatible surfaces.

  6. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery.

    PubMed

    Kristo, Gert; Raemaekers, Mathijs; Rutten, Geert-Jan; de Gelder, Beatrice; Ramsey, Nick F

    2015-03-01

    Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemisphere is linked to inter-hemispheric reorganization. Based on literature, we hypothesized that reorganization would induce changes in the spatial pattern of activation specifically in tumour homologue brain areas in the healthy right hemisphere. An experimental group (EG) of 14 patients with a glioma in the left hemisphere near language related brain areas, and a control group of 6 patients with a glioma in the right, non-language dominant hemisphere were scanned before and after resection. In addition, an age and gender matched second control group of 18 healthy volunteers was scanned twice. A verb generation task was used to map language related areas and a novel technique was used for data analysis. Contrary to our hypothesis, we found that functional recovery following surgery of low-grade gliomas cannot be linked to functional reorganization in language homologue brain areas in the healthy, right hemisphere. Although elevated changes in the activation pattern were found in patients after surgery, these were largest in brain areas in proximity to the surgical resection, and were very similar to the spatial pattern of the brain shift following surgery. This suggests that the apparent perilesional functional reorganization is mostly caused by the brain shift as a consequence of surgery. Perilesional functional reorganization can however not be excluded. The study suggests that language recovery after transient post-surgical language deficits involves recovery of functioning of the presurgical language system.

  7. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  8. Availability of Tongue Diagnosis System for Assessing Tongue Coating Thickness in Patients with Functional Dyspepsia

    PubMed Central

    Son, Jiyoung; Jang, Seungwon; Nam, Dong-Hyun; Han, Gajin; Yeo, Inkwon; Ko, Seok-Jae; Park, Jae-Woo; Ryu, Bongha; Kim, Jinsung

    2013-01-01

    Tongue diagnosis is an important procedure in traditional Korean medicine (TKM). In particular, tongue coating thickness (TCT) is deemed to show the progression of the disease. However, conventional tongue diagnosis has limitations because of various external factors. Therefore, it is necessary to investigate the availability of tongue diagnosis system (TDS) in the assessment of TCT. This study has been designed as a prospective clinical trial involving 60 patients with functional dyspepsia. Tongue images will be obtained by TDS twice with a 30 min interval. The system will measure the percentage of TCT and classify it as either no coating, thin coating, or thick coating according to the existing diagnostic criteria. After finishing the collection of 60 patients' tongue images, TCT on the images will be simultaneously evaluated by the conventional method to establish the gold standard for assessing TCT by 5 well-trained clinicians. The evaluation will be repeated by the same clinicians after 2 weeks, but the order of the images will be changed. This trial is expected to provide clinical evidence for the availability of TDS as a diagnostic tool and to contribute to the standardization of the diagnosis system used in TKM. This trial is registered with ClinicalTrials.gov NCT01864837. PMID:24159343

  9. Structure-Function Relationships in Macadamia integrifolia Seed Coats – Fundamentals of the Hierarchical Microstructure

    PubMed Central

    Schüler, Paul; Speck, Thomas; Bührig-Polaczek, Andreas; Fleck, Claudia

    2014-01-01

    The shells/coats of nuts and seeds are often very hard to crack. This is particularly the case with Macadamia seed coats, known to exhibit astoundingly high strength and toughness. We performed an extensive materials science characterization of the complex hierarchical structure of these coats, using light and scanning electron microscopy in 2D as well as microCT for 3D characterization. We differentiate nine hierarchical levels that characterize the structure ranging from the whole fruit on the macroscopic scale down to the molecular scale. From a biological viewpoint, understanding the hierarchical structure may elucidate why it is advantageous for these seed coats to be so difficult to break. From an engineering viewpoint, microstructure characterization is important for identifying features that contribute to the high strength and cracking resistance of these objects. This is essential for revealing the underlying structure-function-relationships. Such information will help us develop engineering materials and lightweight-structures with improved fracture and puncture resistance. PMID:25102155

  10. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions.

    PubMed

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2013-01-21

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  11. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions

    NASA Astrophysics Data System (ADS)

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2012-12-01

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  12. Cysteine-functionalized polyaspartic acid: a polymer for coating and bioconjugation of nanoparticles and quantum dots.

    PubMed

    Jana, Nikhil R; Erathodiyil, Nandanan; Jiang, Jiang; Ying, Jackie Y

    2010-05-04

    We have synthesized a biocompatible polyaspartic acid-based polymer (molecular weight approximately 15,000-25,000) with cysteine on its backbone for use as a capping ligand for functionalized Au, Ag, and CdSe@ZnS nanoparticles. Nearly monodisperse, hydrophobic Au and Ag nanoparticles and CdSe@ZnS quantum dots were first prepared in organic solvents via conventional synthesis and then ligand exchanged to derive polymer-coated water-soluble nanoparticles. Multiple thiol groups in the polymer backbone conferred excellent protection against aggregation of the nanoparticles, and the carboxylic acid groups in the polymer provided the possibility of covalent binding with antibodies. Compared to the conventional thiol-based ligands, this polymer coating led to superior colloidal stability under the experimental conditions involved in the bioconjugation and purification steps. Goat antihuman-IgG (anti-h-IgG) and antimouse epidermal growth factor receptor (anti-m-EGFR) antibodies were conjugated with the polymer-coated nanoparticles and successfully applied to protein detection. This polymer coating exhibited minimal nonspecific interaction with cells and could be broadly applied to cell labeling.

  13. Structure-function relationships in Macadamia integrifolia seed coats--fundamentals of the hierarchical microstructure.

    PubMed

    Schüler, Paul; Speck, Thomas; Bührig-Polaczek, Andreas; Fleck, Claudia

    2014-01-01

    The shells/coats of nuts and seeds are often very hard to crack. This is particularly the case with Macadamia seed coats, known to exhibit astoundingly high strength and toughness. We performed an extensive materials science characterization of the complex hierarchical structure of these coats, using light and scanning electron microscopy in 2D as well as microCT for 3D characterization. We differentiate nine hierarchical levels that characterize the structure ranging from the whole fruit on the macroscopic scale down to the molecular scale. From a biological viewpoint, understanding the hierarchical structure may elucidate why it is advantageous for these seed coats to be so difficult to break. From an engineering viewpoint, microstructure characterization is important for identifying features that contribute to the high strength and cracking resistance of these objects. This is essential for revealing the underlying structure-function-relationships. Such information will help us develop engineering materials and lightweight-structures with improved fracture and puncture resistance.

  14. Diamond-like carbon coatings for orthopedic applications: Tribological behaviors of vacuum arc diamond-like carbon-coated titanium alloy against medical-grade ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Xu, Tianzong

    An extensive and detailed investigation of tribological behaviors of vacuum arc carbon coated Ti6Al4V against medical grade ultra high molecular weight polyethylene were conducted in this work in order to investigate the potential use of diamond-like carbon coatings for orthopedic applications. Further, the gas plasma sterilization and surface modification technique were evaluated as an alternative to the currently used gamma-radiation technique which has previously shown degradation effects on the mechanical properties of the UHMWPE. In addition, an emerging polymer surface modification technique using high-energy ion-implantation is explored to modify the surface of the UHMWPE for improved wear performance. The experiments were performed using a standard pin-on-disk wear tester under both dry and distilled water lubricated condition. The evolution of friction and wear processes are interpreted in the context of in situ recorded coefficient of friction and microscopic images of worn surfaces. Sliding wear tests demonstrated the existence of two distinct friction and wear regimes which comprise physically different dominant mechanisms: an adhesive and abrasive mechanism activated early in the run-in stage, followed by fatigue processes which developed later microscopically in the (quasi) steady-state sliding stage. The effects of surface roughness, distilled water lubricant, coating structure, polymer sterilization and surface modification on the tribological behaviors are presented and discussed in light of these results. Explanations based on theories of sliding contact stress fields, temperature profiles, as well as lubrication and coating fracture mechanics are presented to discuss and support the experimental results. It is revealed that, largely depending on material structures and surface roughness of both articulating components, significantly improved friction and wear performance can be achieved by optimal design of their process

  15. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    PubMed

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants.

  16. Laser-assisted direct manufacturing of functionally graded 3D objects

    NASA Astrophysics Data System (ADS)

    Iakovlev, A.; Trunova, E.; Grevey, Dominique; Smurov, Igor

    2003-09-01

    Coaxial powder injection into a laser beam was applied for the laser-assisted direct manufacturing of 3D functionally graded (FG) objects. The powders of Stainless Steel 316L and Stellite grade 12 were applied. The following laser sources were used: (1) quasi-cw CO2 Rofin Sinar laser with 120 μm focal spot diameter and (2) pulsed-periodic Nd:YAG (HAAS HL 304P) with 200 μm focal spot diameter. The objects were fabricated layer-by-layer in the form of "walls", having the thickness of about 200 μm for CO2 laser and 300 μm for Nd:YAG laser. SEM analysis was applied for the FG objects fabricated by CO2 laser, yielding wall elements distribution in vertical direction. It was found that microhardness distribution is fully correlated with the components distribution. The compositional gradient can be smooth or sharp. Periodic multi-layered structures can be obtained as well. Minimal thickness of a layer with the fixed composition (for cw CO2 laser) is about 50 μm. Minimal thickness of a graded material zone, i.e. zone with composition variation from pure stainless steel to pure stellite is about 30 μm.

  17. A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM).

    PubMed

    Ben Salah, Issam; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2012-02-01

    An exact approach is used to investigate Rayleigh waves in a functionally graded piezoelectric material (FGPM) layer bonded to a semi infinite homogenous solid. The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x(1). The FGPM character imposes that the material properties change gradually with the thickness of the layer. Contrary to the analytical approach, the adopted numerical methods, including the ordinary differential equation (ODE) and the stiffness matrix method (SMM), treat separately the electrical and mechanical gradients. The influences of graded variations applied to FGPM film coefficients on the dispersion curves of Rayleigh waves are discussed. The effects of gradient coefficients on electromechanical coupling factor, displacement fields, stress distributions and electrical potential, are reported. The obtained deviations in comparison with the ungraded homogenous film are plotted with respect to the dimensionless wavenumber. Opposite effects are observed on the coupling factor when graded variations are applied separately. A particular attention has been devoted to the maximum of the coupling factor and it dependence on the stratification rate and the gradient coefficient. This work provides with a theoretical foundation for the design and practical applications of SAW devices with high performance.

  18. Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach

    PubMed Central

    Boccaccio, Antonio; Uva, Antonio Emmanuele; Fiorentino, Michele; Mori, Giorgio; Monno, Giuseppe

    2016-01-01

    Functionally Graded Scaffolds (FGSs) are porous biomaterials where porosity changes in space with a specific gradient. In spite of their wide use in bone tissue engineering, possible models that relate the scaffold gradient to the mechanical and biological requirements for the regeneration of the bony tissue are currently missing. In this study we attempt to bridge the gap by developing a mechanobiology-based optimization algorithm aimed to determine the optimal graded porosity distribution in FGSs. The algorithm combines the parametric finite element model of a FGS, a computational mechano-regulation model and a numerical optimization routine. For assigned boundary and loading conditions, the algorithm builds iteratively different scaffold geometry configurations with different porosity distributions until the best microstructure geometry is reached, i.e. the geometry that allows the amount of bone formation to be maximized. We tested different porosity distribution laws, loading conditions and scaffold Young’s modulus values. For each combination of these variables, the explicit equation of the porosity distribution law–i.e the law that describes the pore dimensions in function of the spatial coordinates–was determined that allows the highest amounts of bone to be generated. The results show that the loading conditions affect significantly the optimal porosity distribution. For a pure compression loading, it was found that the pore dimensions are almost constant throughout the entire scaffold and using a FGS allows the formation of amounts of bone slightly larger than those obtainable with a homogeneous porosity scaffold. For a pure shear loading, instead, FGSs allow to significantly increase the bone formation compared to a homogeneous porosity scaffolds. Although experimental data is still necessary to properly relate the mechanical/biological environment to the scaffold microstructure, this model represents an important step towards optimizing geometry

  19. Atomic to Nanoscale Investigation of Functionalities of Al2O3 Coating Layer on Cathode for Enhanced Battery Performance

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Zhang, Xiaofeng; Xu, Rui; Amine, Khalil; Xiao, Jie; Zhang, Jiguang; Wang, Chong M.

    2016-01-06

    Surface coating of cathode has been identified as an effective approach for enhancing the capacity retention of layered structure cathode. However, the underlying operating mechanism of such a thin layer of coating, in terms of surface chemical functionality and capacity retention, remains unclear. In this work, we use aberration corrected scanning transmission electron microscopy and high efficient spectroscopy to probe the delicate functioning mechanism of Al2O3 coating layer on Li1.2Ni0.2Mn0.6O2 cathode. We discovered that in terms of surface chemical function, the Al2O3 coating suppresses the side reaction between cathode and the electrolyte upon the battery cycling. At the same time, the Al2O3 coating layer also eliminates the chemical reduction of Mn from the cathode particle surface, therefore avoiding the dissolution of the reduced Mn into the electrolyte. In terms of structural stability, we found that the Al2O3 coating layer can mitigate the layer to spinel phase transformation, which otherwise will initiate from the particle surface and propagate towards the interior of the particle with the progression of the battery cycling. The atomic to nanoscale effects of the coating layer observed here provide insight for optimized design of coating layer on cathode to enhance the battery properties.

  20. A study of crack in functionally graded material under dynamic loading

    SciTech Connect

    Nakagaki, Michihiko; Sasaki, Hiroyuki; Hagihara, Seiya

    1995-11-01

    The paper addresses a numerical treatment of a fracture occurring in the functionally graded materials (FGM) under a dynamic load. The FGM is composed of a titanium alloy as an inclusion and zirconia as the matrix, where a generation of microcracks is considered to occur in the ceramic phase of the high stressed area. A spherical grain model is used to describe thee elastic constitutive law for the FGM composite, in which the nonlinear effects due to the microcracking are accounted for. The most appropriate fracture parameter, T*, is used to assess the crack-tip severity in the highly inhomogeneous materials such as the present.

  1. An Exploration of Several Structural Measurement Techniques for Usage with Functionally Graded Materials

    DTIC Science & Technology

    2006-12-01

    FGM …………………………………………………… 30 12. ’Strong’ functionally graded beam after testing…………………………... 31 13. Strain gauge data for specimens F05 and F10...EXPERIMENTAL BACKGROUND 2.1 Basic Bending Theory The well-known Euler-Bernoulli beam equation for the normal stress can be determined along any distance y...relationship, combined with the shear and moment diagram from an idealized four point- bend , a simple approximation of the stresses for a beam structure can

  2. Lamb wave Propagation in Functionally Graded Piezoelectric Material Created by Internal Temperature Gradient

    NASA Astrophysics Data System (ADS)

    Dammak, Y.; Thomas, J. H.; Ghozlen, M. H. Ben

    This work presents a theoretical study of the propagation behavior of lamb wave in a functionally graded piezoelectric material (FGPM). The piezoelectric material is polarized when the six fold symmetry axis is put along the propagation direction x1 and the material properties change gradually perpendicularly to the plate. The FGPM behavior is created by forming a temperature variation across the plate. The ordinary differential equation (ODE) and the Stiffness Matrix Method (SMM) are used to investigate the propagation of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb wave modes.

  3. Microstructure and properties of multiphase and functionally graded materials prepared by chemical vapor deposition

    SciTech Connect

    Lee, W.Y.

    1996-05-01

    The synthesis of multiphase and functionally graded materials by chemical vapor deposition is discussed from a perspective of controlling their composition and microstructure at a nano-scale level, and ultimately, tailoring their material properties. Prior research is briefly reviewed to address the current state of this novel material concept. Recent experimental results relating to controlling the selected properties of two multiphase systems, TiN + MoS{sub 2} and NiAl + Al{sub 2}O{sub 3}, are described to illustrate this concept`s potential merits and challenges for use in realistic applications.

  4. Synchronized brain activity and neurocognitive function in patients with low-grade glioma: a magnetoencephalography study.

    PubMed

    Bosma, Ingeborg; Douw, Linda; Bartolomei, Fabrice; Heimans, Jan J; van Dijk, Bob W; Postma, Tjeerd J; Stam, Cornelis J; Reijneveld, Jaap C; Klein, Martin

    2008-10-01

    We investigated the mechanisms underlying neurocognitive dysfunction in patients with low-grade glioma (LGG) by relating functional connectivity revealed by magnetoencephalography to neurocognitive function. We administered a battery of standardized neurocognitive tests measuring six neurocognitive domains to a group of 17 LGG patients and 17 healthy controls, matched for age, sex, and educational level. Magnetoencephalography recordings were conducted during an eyes-closed "resting state," and synchronization likelihood (a measure of statistical correlation between signals) was computed from the delta to gamma frequency bands to assess functional connectivity between different brain areas. We found that, compared with healthy controls, LGG patients performed more poorly in psychomotor function, attention, information processing, and working memory. LGG patients also had significantly higher long-distance synchronization scores in the delta, theta, and lower gamma frequency bands than did controls. In contrast, patients displayed a decline in synchronization likelihood in the lower alpha frequency band. Within the delta, theta, and lower and upper gamma bands, increasing short- and long-distance connectivity was associated with poorer neurocognitive functioning. In summary, LGG patients showed a complex overall pattern of differences in functional resting-state connectivity compared with healthy controls. The significant correlations between neurocognitive performance and functional connectivity in various frequencies and across multiple brain areas suggest that the observed neurocognitive deficits in these patients can possibly be attributed to differences in functional connectivity due to tumor and/or treatment.

  5. Feasibility Assessment of Self-Grading Metallic Bond Coat Alloys for EBCs/TBCs to Protect Si-Based Ceramics

    SciTech Connect

    Brady, Michael P; Armstrong, Beth L; Lin, Hua-Tay; Lance, Michael J; More, Karren Leslie; Walker, Larry R; Huang, F; Weaver, Mark

    2005-01-01

    A sputtered {gamma} (TiAl)+Laves TiAlCr coating formed an adherent Al{sub 2}O{sub 3} scale on SN 282 Si{sub 3}N{sub 4} when oxidized. A Ti-N rich layer was formed at the TiAlCr-Si{sub 3}N{sub 4} interface, which effectively resulted in beneficial local Al enrichment underneath the growing Al{sub 2}O{sub 3} scale, rather than detrimental Al loss to the substrate.

  6. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties.

    PubMed

    Lim, Kaiyang; Chua, Ray Rong Yuan; Bow, Ho; Tambyah, Paul Anantharajah; Hadinoto, Kunn; Leong, Susanna Su Jan

    2015-03-01

    Catheter-associated urinary tract infections (CAUTIs) are the most common hospital-acquired infections worldwide, aggravating the problem of antimicrobial resistance and patient morbidity. There is a need for a potent and robust antimicrobial coating for catheters to prevent these infections. An ideal coating agent should possess high antimicrobial efficacy and be easily and economically conjugated to the catheter surface. In this study, we report a simple yet effective immobilization strategy to tether a potent synthetic antimicrobial peptide, CWR11, onto catheter-relevant surfaces. Polydopamine (PD) was deposited as a thin adherent film onto a polydimethylsiloxane (PDMS) surface to facilitate attachment of CWR11 onto the PD-functionalized polymer. Surface characterization of the CWR11-tethered surfaces confirmed the successful immobilization of peptides onto the PD-coated PDMS. The CWR11-immobilized PDMS slides displayed excellent antimicrobial (significant inhibition of 5×10(4) colony-forming units of CAUTI-relevant microbes) and antibiofilm (∼92% enhanced antibacterial adherence) properties. To assess its clinical relevance, the PD-based immobilization platform was translated onto commercial silicone-coated Foley catheters. The CWR11-impregnated catheter displayed potent bactericidal properties against both Gram-positive and Gram-negative bacteria, and retained its antimicrobial functionality for at least 21days, showing negligible cytotoxicity against human erythrocyte and uroepithelial cells. The outcome of this study demonstrates the proof-of-concept potential of a polydopamine-CWR11-functionalized catheter to combat CAUTIs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy.

    PubMed

    Silva, Catarina Oliveira; Petersen, Steffen B; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100-200 nm) showed a plasmon absorption band located within the near-infrared range (650-900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0-25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue.

  8. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    PubMed Central

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  9. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-01

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  10. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    SciTech Connect

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-22

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  11. Wetting properties of model interphases coated with defined organic functional groups

    NASA Astrophysics Data System (ADS)

    Woche, Susanne K.; Goebel, Marc-O.; Guggenberger, Georg; Tunega, Daniel; Bachmann, Joerg

    2013-04-01

    Surface properties of soil particles are of particular interest regarding transport of water and sorption of solutes, especially hazardous xenobiotic species. Wetting properties (e.g. determined by contact angle, CA), governed by the functional groups exposed, are crucial to understand sorption processes in water repellent soils as well as for the geometry of water films sustaining microbial processes on the pore scale. Natural soil particle surfaces are characterized by a wide variety of mineralogical and chemical compounds. Their composition is almost impossible to identify in full. Hence, in order to get a better understanding about surface properties, an option is the usage of defined model surfaces, whereas the created surface should be comparable to natural soil interphases. We exposed smooth glass surfaces to different silane compounds, resulting in a coating covalently bound to the surface and exhibiting defined organic functional groups towards the pore space. The wetting properties as evaluated by CA and the surface free energy (SFE), calculated according to the Acid-Base Theory, were found to be a function of the specific functional group. Specifically, the treated surfaces showed a large variation of CA and SFE as function of chain length and polarity of the organic functional group. The study of wetting properties was accompanied by XPS analysis for selective detection of chemical compounds of the interphase. As the reaction mechanism of the coating process is known, the resulting interphase structure can be modeled based on energetic considerations. A next step is to use same coatings for the defined modification of the pore surfaces of porous media to study transport and sorption processes in complex three phase systems.

  12. The influence of white-coat hypertension on left atrial phasic function.

    PubMed

    Tadic, Marijana; Cuspidi, Cesare; Pencic, Biljana; Rihor, Branislav; Radojkovic, Jana; Kocijanic, Vesna; Celic, Vera

    2017-04-01

    We aimed to investigate the association between white-coat hypertension (WCH) and left atrial (LA) phasic function assessed by the volumetric and speckle tracking method. This cross-sectional study included 52 normotensive individuals, 49 subjects with WCH and 56 untreated hypertensive patients who underwent a 24-h ambulatory BP monitoring and complete two-dimensional echocardiographic examination (2DE). WCH was diagnosed if clinic blood pressure (BP) was elevated and 24-h BP was normal. We obtained that maximum, minimum LA and pre-A LAV volumes and volume indexes gradually and significantly increased from the normotensive subjects, throughout the white-coat hypertensive individuals to the hypertensive patients. Passive LA emptying fraction (EF), representing the LA conduit function, gradually reduced from normotensive to hypertensive subjects. Active LA EF and the parameter of the LA booster pump function increased in the same direction. Similar results were obtained by 2DE strain analysis. The LA stiffness index gradually increased from normotensive controls, throughout white-coat hypertensive subjects to hypertensive patients. Clinic systolic BP was associated with LA passive EF (β= -0.283, p = 0.001), LA active EF (β = 0.342, p < 0.001), LA total longitudinal strain (β= -0.356, p < 0.001), LA positive longitudinal strain (β= -0.264, p = 0.009) and LA stiffness index (β = 0.398, p < 0.001) without regard to age, BMI, left ventricular structure and diastolic function in the whole study population. In the conclusion, WCH significantly impacts LA phasic function and stiffness. Clinic systolic BP was associated with functional and mechanical LA remodeling in the whole study population.

  13. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.

    PubMed

    Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li

    2016-08-01

    The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps.

  14. Photocatalytic and antibacterial properties of medical-grade PVC material coated with TiO2 film.

    PubMed

    Lin, Huaxiang; Xu, Ziting; Wang, Xuxu; Long, Jinlin; Su, Wenyue; Fu, Xianzhi; Lin, Qun

    2008-11-01

    The TiO(2) film was coated on poly vinyl chloride (PVC) surface by dip-coating process from TiO(2)-PVC-THF suspension. The morphology and crystal structure of the as-synthesized samples were characterized by SEM and XRD. The photocatalytic properties were measured by the photodegradation reaction of RhB and the anti-adhesion and anti-bacteria for Escherichia coli. The results show that the resultant TiO(2) film is well-conglutinated on PVC surface and has the same crystal structure as the original TiO(2) powder. The TiO(2)/PVC shows excellent photocatalytic activity for the degradation of aqueous RhB and the activity increases with increasing reaction time and tends toward stable after accumulative illumination for 11.5 h. The TiO(2) film shows good bacterial anti-adhesion activity following photo-activation and sterilization property under UV irradiation. The E. coli can be killed completely after UV irradiation for 1.5 h.

  15. Dynamics of goat distal hind limb muscle–tendon function in response to locomotor grade

    PubMed Central

    McGuigan, M. Polly; Yoo, Edwin; Lee, David V.; Biewener, Andrew A.

    2009-01-01

    Summary The functional roles of the lateral gastrocnemius (LG), medial gastrocnemius (MG) and superficial digital flexor (SDF) muscle–tendon units (MTUs) in domestic goats (N=6) were studied as a function of locomotor grade, testing the hypothesis that changes in distal limb muscle work would reflect changes in mechanical work requirements while goats walked or trotted on the level, 15 deg. decline and 15 deg. incline. As steep terrain-adapted animals, changes in muscle work output are expected to be particularly important for goats. In vivo muscle–tendon forces, fascicle length changes and muscle activation were recorded via tendon force buckles, sonomicrometry and electromyography to evaluate the work performance and elastic energy recovery of the three distal MTUs. These recordings confirmed that fascicle strain and force within goat distal hind limb muscles are adjusted in response to changes in mechanical work demand associated with locomotor grade. In general, muscle work was modulated most consistently by changes in fascicle strain, with increased net shortening (P<0.001) observed as goats switched from decline to level to incline locomotion. Peak muscle stresses increased as goats increased speed from a walk to a trot within each grade condition (P<0.05), and also increased significantly with grade (P<0.05 to P<0.01). Due to the increase in net fascicle shortening and muscle force, net muscle work per cycle also increased significantly (P<0.05 to P<0.005) as goats switched from decline to level to incline conditions (LG work: 20 mJ to 56 mJ to 209 mJ; MG work: –7 mJ to 34 mJ to 179 mJ; SDF work: –42 mJ to 14 mJ to 71 mJ, at a 2.5 ms–1 trot). Although muscle work was modulated in response to changes in grade, the amount of work produced by these three distal pennate muscles was small (being <3%) in comparison with the change in mechanical energy required of the limb as a whole. Elastic energy recovery in the SDF and gastrocnemius (GA) tendons was

  16. In Vitro and In Vivo Evaluation of Tetracycline Loaded Chitosan-Gelatin Nanosphere Coatings for Titanium Surface Functionalization.

    PubMed

    Ma, Kena; Cai, Xinjie; Zhou, Yi; Wang, Yining; Jiang, Tao

    2017-02-01

    Owing to the biocompatibility of titanium surface, titanium implants are suitable substrates for microbial colonization and biofilm formation, which is still a serious clinical threat. Current research trends have been focused on the development of antibacterial coatings on titanium substrate or adhesion resistant surface. In our previous study, tetracycline (Tc) loaded chitosan-gelatin (CSG) nanosphere coatings are successfully fabricated on titanium substrates via electrophoretic deposition. These coatings show nanosphere structure, and excellent antibacterial property in vitro. However, further in vitro and in vivo evaluation of the coatings is required for the future application. Therefore, in the present study, the authors investigate the coatings' mechanical, swelling and degradation property, in vitro cellular response to preosteoblast cells, and the antibacterial property in rabbits. Results show that Tc incorporation can improve the tensile bond strength of the coating, decrease the swelling ratio, and accelerate the degradation of the coating. Although high Tc concentration group exhibits cytotoxicity to MC3T3-E1 cells, its in vivo antibacterial property is preferred, and shows better outcome than the prophylactic administration of Tc. Tc loaded CSG nanosphere coatings are suitable antibacterial coatings for titanium surface functionalization.

  17. The Hygroscopic Opening of Sesame Fruits Is Induced by a Functionally Graded Pericarp Architecture

    PubMed Central

    Shtein, Ilana; Elbaum, Rivka; Bar-On, Benny

    2016-01-01

    To enhance the distribution of their seeds, plants often utilize hygroscopic deformations that actuate dispersal mechanisms. Such movements are based on desiccation-induced shrinkage of tissues in predefined directions. The basic hygroscopic deformations are typically actuated by a bi-layer configuration, in which shrinking of an active tissue layer is resisted by a stiff layer, generating a set of basic movements including bending, coiling, and twisting. In this study, we investigate a new type of functionally graded hygroscopic movement in the fruit (capsule) of sesame (Sesamum indicum L.). Microscopic observations of the capsules showed that the inner stiff endocarp layer is built of a bilayer of transverse (i.e., circumferential) and longitudinal fiber cells with the layers positioned in a semi-circle, one inside the other. The outer mesocarp layer is made of soft parenchyma cells. The thickness of the fibrous layers and of the mesocarp exhibits a graded architecture, with gradual changes in their thickness around the capsule circumference. The cellulose microfibrils in the fiber cell walls are lying parallel to the cell long axis, rendering them stiff. The outer mesocarp layer contracted by 300% as it dried. Removal of this outer layer inhibited the opening movement, indicating that it is the active tissue. A biomechanical hygro-elastic model based on the relative thicknesses of the layers successfully simulated the opening curvature. Our findings suggest that the sesame capsules possess a functionally graded architecture, which promotes a non-uniform double-curvature hygroscopic bending movement. In contrast to other hygroscopic organs described in the literature, the sesame capsule actuating and resisting tissues are not uniform throughout the device, but changing gradually. This newly described mechanism can be exploited in bio-inspired designs of novel actuating platforms. PMID:27777579

  18. The Hygroscopic Opening of Sesame Fruits Is Induced by a Functionally Graded Pericarp Architecture.

    PubMed

    Shtein, Ilana; Elbaum, Rivka; Bar-On, Benny

    2016-01-01

    To enhance the distribution of their seeds, plants often utilize hygroscopic deformations that actuate dispersal mechanisms. Such movements are based on desiccation-induced shrinkage of tissues in predefined directions. The basic hygroscopic deformations are typically actuated by a bi-layer configuration, in which shrinking of an active tissue layer is resisted by a stiff layer, generating a set of basic movements including bending, coiling, and twisting. In this study, we investigate a new type of functionally graded hygroscopic movement in the fruit (capsule) of sesame (Sesamum indicum L.). Microscopic observations of the capsules showed that the inner stiff endocarp layer is built of a bilayer of transverse (i.e., circumferential) and longitudinal fiber cells with the layers positioned in a semi-circle, one inside the other. The outer mesocarp layer is made of soft parenchyma cells. The thickness of the fibrous layers and of the mesocarp exhibits a graded architecture, with gradual changes in their thickness around the capsule circumference. The cellulose microfibrils in the fiber cell walls are lying parallel to the cell long axis, rendering them stiff. The outer mesocarp layer contracted by 300% as it dried. Removal of this outer layer inhibited the opening movement, indicating that it is the active tissue. A biomechanical hygro-elastic model based on the relative thicknesses of the layers successfully simulated the opening curvature. Our findings suggest that the sesame capsules possess a functionally graded architecture, which promotes a non-uniform double-curvature hygroscopic bending movement. In contrast to other hygroscopic organs described in the literature, the sesame capsule actuating and resisting tissues are not uniform throughout the device, but changing gradually. This newly described mechanism can be exploited in bio-inspired designs of novel actuating platforms.

  19. ON THE POSSIBLE FUNCTION OF COATED VESICLES IN MELANOGENESIS OF THE REGENERATING FOWL FEATHER

    PubMed Central

    Maul, Gerd G.; Brumbaugh, J. A.

    1971-01-01

    How tyrosinase becomes associated with the premelanosomes was investigated by histochemical demonstration of tyrosinase activity by the use of dihydroxyphenylalanine (DOPA) in melanocytes of regenerating fowl feathers. The reaction product of DOPA was localized in the anastomosing membrane tubules associated with the concave side of some dictyosomes of the Golgi apparatus and in coated vesicles most of which were in connection with the dictyosomes. No reaction product was found in early premelanosomes. In premelanosomes, the reaction product of DOPA appears first in vesicles approximately 400 A in diameter which are surrounded by a matrix with a characteristic periodicity. These observations seem to allow the speculation that the coated vesicles function in the transport of tyrosinase, and that the premelanosomes are formed in a process which is not necessarily dependent on the Golgi apparatus as was assumed earlier. PMID:4993485

  20. Effect of dielectric coating on the electron work function and the surface stress of a metal

    NASA Astrophysics Data System (ADS)

    Babich, A. V.; Pogosov, V. V.

    2009-08-01

    The electron work function, contact potential difference, and surface stress of the elastically deformed faces of the metal covered by a dielectric are calculated by using the Kohn-Sham method and stabilized jellium model. Our calculations demonstrate the opposite deformation dependencies of the work function and contact potential difference. Dielectric coating leads to a negative change in the work function and a positive change in the contact potential difference. It is shown that the measurements of the contact potential difference of a deformed face by the Kelvin method give only the change in the value of the one-electron effective potential in the plane of a virtual image behind the surface, rather than the value of the electron work function. The obtained values of the electron work function and surface stress for Al, Au, Cu, and Zn are in agreement with the results of experiments for polycrystals.

  1. Fretting contact of a functionally graded piezoelectric layered half-plane under a conducting punch

    NASA Astrophysics Data System (ADS)

    Su, Jie; Ke, Liao-Liang; Wang, Yue-Sheng

    2016-02-01

    This paper investigates the fretting contact between a functionally graded piezoelectric layered half-plane and a rigid cylindrical punch. The electro-elastic properties of functionally graded piezoelectric materials (FGPMs) vary exponentially along the thickness direction. It is assumed that the punch is a perfect conductor with a constant electric potential within the contact region. The two bodies are brought into contact first by a monotonically increasing normal load, and then by a cyclic tangential load which is less than that necessary to cause complete sliding. The whole contact region is composed of an inner stick region and two outer slip regions in which Coulomb’s friction law is assumed. The problem is reduced to a set of coupled Cauchy singular integral equations by using the Fourier integral transform technique and the superposition theorem. An iterative method is used to determine the unknown stick/slip region, normal contact pressure, electric charge and tangential traction. The effects of the resultant electric charge and gradient index on the surface electromechanical fields are discussed during different loading phases. It is found that FGPMs could potentially be applied to improve fretting contact damage in smart devices.

  2. Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Norouzzadeh, A.

    2016-10-01

    The size-dependent static buckling responses of circular, elliptical and skew nanoplates made of functionally graded materials (FGMs) are investigated in this article based on an isogeometric model. The Eringen nonlocal continuum theory is implemented to capture nonlocal effects. According to the Gurtin-Murdoch surface elasticity theory, surface energy influences are also taken into account by the consideration of two thin surface layers at the top and bottom of nanoplate. The material properties vary in the thickness direction and are evaluated using the Mori-Tanaka homogenization scheme. The governing equations of buckled nanoplate are achieved by the minimum total potential energy principle. To perform the isogeometric analysis as a solution methodology, a novel matrix-vector form of formulation is presented. Numerical examples are given to study the effects of surface stress as well as other important parameters on the critical buckling loads of functionally graded nanoplates. It is found that the buckling configuration of nanoplates at small scales is significantly affected by the surface free energy.

  3. A study on the dynamics of rotating beams with functionally graded properties

    NASA Astrophysics Data System (ADS)

    Piovan, M. T.; Sampaio, R.

    2009-10-01

    The constant needs of the industry impel the engineering community in seeking of new concepts and new strategies in order to improve the structural response of structures as well as to enhance the endurance of materials. This is particularly true in the case of rotating blades that are subjected to severe environmental conditions such as high temperatures as well as mechanical conditions such as high rotating accelerations, centrifugal forces, geometric stiffening, among others. It is well known that flexible beams become stiffer when subjected to high speed rotations, because of the axial-bending coupling associated to the large displacements of the beam cross-section. This is called geometric stiffening effect and it was analyzed over the last decades in many beam applications from blade problems to drill-string modeling. In this paper a rotating nonlinear beam model accounting for arbitrary axial deformations is developed. The beam is made of functionally graded materials (FGM). This model is also employed to analyze other simplified models based on isotropic materials or composite materials, that are particular cases of the present formulation. The assumption of steady-state values of centrifugal loads is evaluated. It has to be said that there is a lack of information about modeling of beams made of functionally graded materials and this paper is intended to be a contribution on the subject.

  4. Hydrothermoelastic Stability of Functionally Graded Circular Cylindrical Shells Containing a Fluid

    NASA Astrophysics Data System (ADS)

    Bochkarev, S. A.; Lekomtsev, S. V.; Matveenko, V. P.

    2016-09-01

    The thermoelastic and hydroelastic stability of heated circular cylindrical shells made of functionally graded materials and interacting with an internal flow of an ideal compressible fluid was investigated. The effective properties of the material vary across the shell thickness according to a power law and depend on temperature. By way of a mathematical formulation the problem on dynamics the elastic structure, the classical theory of shells and the principle of virtual displacements are used. The radial temperature distribution is determined by solving the one-dimensional heat conduction equation. Behavior of the fluid is described using the potential theory. The corresponding wave equation, together with impermeability and boundary conditions, are transformed to a system of equations with the use of the Bubnov-Galerkin method. The solution of the problem, found by employing a semianalytical version of the finite-element method, is reduced to computing the complex eigenvalues of a coupled system of equations. A comparative analysis of the circular cylindrical shells is carried out at different boundary conditions and for different values of the consistency index of the functionally graded material. The effect of a thermal load on the critical speed of the loss of stability and of flow speed on the thermoelastic stability is estimated. It is shown that a flowing fluid has the greatest effect on the stability boundaries of heated cantilevered shells.

  5. Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells

    NASA Astrophysics Data System (ADS)

    Bhangale, Rajesh K.; Ganesan, N.; Padmanabhan, Chandramouli

    2006-04-01

    In recent years, structures made up of functionally graded materials (FGMs) have received considerable attention for use in high-temperature applications. In this article, a finite element formulation based on First-Order Shear Deformation Theory (FSDT) is used to study the thermal buckling and vibration behavior of truncated FGM conical shells in a high-temperature environment. A Fourier series expansion for the displacement variable in the circumferential direction is used to model the FGM conical shell. The material properties of the truncated FGM conical shells are functionally graded in the thickness direction according to a volume fraction power law distribution. Temperature-dependent material properties are considered to carry out a linear thermal buckling and free vibration analysis. The conical shell is assumed to be clamped-clamped and has a high temperature specified on the inner surface while the outer surface is at ambient temperature. The one-dimensional heat conduction equation is used across the thickness of the conical shell to determine the temperature distribution and thereby the material properties. In addition, the influence of initial stresses on the frequency behavior of FGM shells has also been investigated. Numerical studies involving the understanding of the role of power law index, r/h ratios, and semi-vertex angle on the thermal buckling temperature as well as on vibration have been carried out.

  6. Design of new generation femoral prostheses using functionally graded materials: a finite element analysis.

    PubMed

    Oshkour, A A; Abu Osman, N A; Yau, Y H; Tarlochan, F; Abas, W A B Wan

    2013-01-01

    This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.

  7. Comparison of Physicochemical and Functional Traits of Hanwoo Steer Beef by the Quality Grade

    PubMed Central

    Lim, Dong-Gyun; Jo, Cheorun; Lee, Kyung Haeng; Kim, Jong-Ju

    2014-01-01

    The physicochemical and functional traits for loin muscles of Hanwoo steers were compared by quality grade (QG). A total of 500 Hanwoo steers were slaughtered, their carcasses were categorized into four groups (QG 1++, 1+, 1, and 2), and the longissimus dorsi muscles were analyzed. QG 1++ group had the highest fat and lowest moisture content (p<0.05). QG 1++ showed higher L* and b* color values, higher cooking loss, and lower shear force values, compared with the other groups (p<0.05). The flavor, tenderness, juiciness, and preference scores by sensory evaluation were highly ranked for premium QG groups (1++ and 1+). Regarding the micro compounds, QG 1 and QG 2 had greater amounts of inosine monophosphate, and QG 2 had greater amounts of anserine, carnosine, and creatine, than QG 1++ (p<0.05). QG 1++ and 1+ had higher percentages of oleic acid (C18:1) than QG 2 (p<0.05). Within premium QG 1++ and 1+, the results of the nucleotides, free amino acids, dipeptides, and fatty acids did not show any distinctive differences. Hanwoo beef as determined by the current grading system was not significantly different in terms of functional components; the only significant difference was in intramuscular fat content. PMID:26761169

  8. Theoretical study on functionally graded cylindrical magnetoelectric composites using d15 shear-mode response

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Gao, Yuanwen

    2017-08-01

    In this study, a novel functionally graded cylindrical magnetoelectric (ME) composite based on d15 shear-mode response is analyzed theoretical by using the elastic mechanics model and equivalent circuit model. The composite is mounted around AC current-carrying power lines to scavenge AC magnetic field energy. For different sensing configurations, the generated magnetic fields are calculated, respectively. Then, based on the theoretical models, the dependences of the ME performances, i.e., the ME voltage and power, upon the type of the material gradation, the material constants, and geometrical parameters of the cylindrical ME composite are numerically evaluated. The results show that the ME coupling effect in the functionally graded cylindrical ME composite with special gradation is stronger than that in the homogeneous structure. The ME performance can be improved by geometrical parameters as well. The presented two models can be synthesized under the open-circuit condition, which provide a theoretical basis to understand and improve the ME property of the d15 shear-mode cylindrical ME composites operating at resonant frequency and off-resonance frequency.

  9. Functional metal oxide coatings by molecule-based thermal and plasma chemical vapor deposition techniques.

    PubMed

    Mathur, S; Ruegamer, T; Donia, N; Shen, H

    2008-05-01

    Deposition of thin films through vaccum processes plays an important role in industrial processing of decorative and functional coatings. Many metal oxides have been prepared as thin films using different techniques, however obtaining compositionally uniform phases with a control over grain size and distribution remains an enduring challenge. The difficulties are largely related to complex compositions of functional oxide materials, which makes a control over kinetics of nucleation and growth processes rather difficult to control thus resulting in non-uniform material and inhomogeneous grain size distribution. Application of tailor-made molecular precursors in low pressure or plasma-enhanced chemical vapor deposition (CVD) techniques offers a viable solution for overcoming thermodynamic impediments involved in thin film growth. In this paper molecule-based CVD of functional coatings is demonstrated for iron oxide (Fe2O3, Fe3O4), vanadium oxide (V2O5, VO2) and hafnium oxide (HfO2) phases followed by the characterization of their microstructural, compositional and functional properties which support the advantages of chemical design in simplifying deposition processes and optimizing functional behavior.

  10. Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams

    NASA Astrophysics Data System (ADS)

    Shafiei, Navvab; Kazemi, Mohammad; Ghadiri, Majid

    2016-09-01

    The target of this paper is to present an exhaustive study on the small scale effect on vibrational behavior of a rotary tapered axially functionally graded (AFG) microbeam on the basis of Timoshenko and Euler-Bernoulli beam and modified couple stress theories. The variation of the material properties and cross section along the longitudinal direction of the microbeam are taken into consideration as a linear function. Hamilton's principle is used to derive the equations for cantilever and propped cantilever boundary conditions and the generalized differential quadrature method (GDQM) is employed to solve the equations. By parametric study, the effects of small-scale parameter, rates of cross section change of the microbeam and angular velocity on the fundamental and second frequencies of the microbeam are studied. Also, comparison between the frequencies of Timoshenko and Euler-Bernoulli microbeams are presented. The results can be used in many applications such as micro-robots and biomedical microsystems.

  11. Calcium as a superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage

    SciTech Connect

    Yoon, Mina; Yang, Shenyuan; Hicke, Christian; Wang, Enge; Geohegan, David B; Zhang, Zhenyu

    2008-01-01

    We explore theoretically the feasibility of functionalizing carbon nanostructures for hydrogen storage, focusing on the coating of C60 fullerenes with light alkaline-earth metals. Our first-principles density functional theory studies show that both Ca and Sr can bind strongly to the C60 surface, and highly prefer monolayer coating, thereby explaining existing experimental observations. The strong binding is attributed to an intriguing charge transfer mechanism involving the empty d levels of the metal elements. The charge redistribution, in turn, gives rise to electric fields surrounding the coated fullerenes, which can now function as ideal attractors upon molecular hydrogen adsorption with binding strengths strong enough for potential room temperature applications but weak enough to avoid H2 dissociation. With a hydrogen uptake of >8.4wt% on Ca32C60, Ca is superior to all the recently suggested metal coating elements.

  12. Thiol-ene click reaction as a general route to functional trialkoxysilanes for surface coating applications.

    PubMed

    Tucker-Schwartz, Alexander K; Farrell, Richard A; Garrell, Robin L

    2011-07-27

    Functionalized trialkoxysilanes are widely used to modify the surface properties of materials and devices. It will be shown that the photoinitiated radical-based thiol-ene "click" reaction provides a simple and efficient route to diverse trialkoxysilanes. A total of 15 trialkoxysilanes were synthesized by reacting either alkenes with 3-mercaptopropyltrialkoxysilane or thiols with allyltrialkoxysilanes in the presence of a photoinitiator. The functionalized trialkoxysilanes were obtained in quantitative to near-quantitative yields with high purity. The photochemical reactions can be run neat in standard borosilicate glassware using a low power 15-W blacklight. A wide range of functional groups is tolerated in this approach, and even complex alkenes click with the silane precursors. To demonstrate that these silanes can be used as surface coating agents, several were reacted with iron oxide superparamagnetic nanoparticles and the loadings quantified. The photoinitiated thiol-ene reaction thus offers a facile and efficient method for preparing surface-active functional trialkoxysilanes.

  13. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  14. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings

    NASA Astrophysics Data System (ADS)

    Esmeryan, Karekin D.; Bressler, Ashton H.; Castano, Carlos E.; Fergusson, Christian P.; Mohammadi, Reza

    2016-12-01

    Although the superhydrophobic surfaces are preferable for passive anti-icing systems, as they provide water shedding before initiation of ice nucleation, their practical usage is still under debate. This is so, as the superhydrophobic materials are not necessarily icephobic and most of the synthesis techniques are characterized with low fabrication scalability. Here, we describe a rational strategy for the atmospheric icing prevention, based on chemically functionalized carbon soot, suitable for large-scale fabrication of superhydrophobic coatings that exhibit and retain icephobicity in harsh operational conditions. This is achieved through a secondary treatment with ethanol and aqueous fluorocarbon solution, which improves the coating's mechanical strength without altering its water repellency. Subsequent experimental analyses on the impact dynamics of icy water droplets on soot coated aluminum and steel sheets show that these surfaces remain icephobic in condensate environments and substrate temperatures down to -35 °C. Furthermore, the soot's icephobicity and non-wettability are retained in multiple icing/de-icing cycles and upon compressed air scavenging, spinning and water jetting with impact velocity of ∼25 m/s. Finally, on frosted soot surfaces, the droplets freeze in a spherical shape and are entirely detached by adding small amount of thermal energy, indicating lower ice adhesion compared to the uncoated metal substrates.

  15. A density functional theory study of the carbon-coating effects on lithium iron borate battery electrodes.

    PubMed

    Loftager, Simon; García-Lastra, Juan María; Vegge, Tejs

    2017-01-18

    Lithium iron borate (LiFeBO3) is a promising cathode material due to its high theoretical specific capacity, inexpensive components and small volume change during operation. Yet, challenges related to severe air- and moisture-induced degradation have prompted the utilization of a protective coating on the electrode which also improves the electronic conductivity. However, not much is known about the preferential geometries of the coating as well as how these coating-electrode interfaces influence the lithium diffusion between the coating and the electrode. Here, we therefore present a density functional theory (DFT) study of the anchoring configurations of carbon coating on the LiFeBO3 electrode and its implications on the interfacial lithium diffusion. Due to large barriers associated with Li-ion diffusion through a parallel-oriented pristine graphene coating on the FeBO3 and LiFeBO3 electrode surfaces, large structural defects in the graphene coating are required for fast Li-ion diffusion. However, such defects are expected to exist only in small concentrations due to their high formation energies. Alternative coating geometries were therefore investigated, and the configuration in which the coating layers were anchored normal to the electrode surface at B and O atoms was found to be most stable. Nudged elastic band (NEB) calculations of the lithium diffusion barriers across the interface between the optimally oriented coating layers and the electrode show no kinetic limitations for lithium extraction and insertion. Additionally, this graphite-coating configuration showed partial blocking of electrode-degrading species.

  16. Functionalization and Characterization of Metal Oxide Coatings of Stainless Steel and Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Slaney, Anne Margaret

    The development of tolerogens, fabricated devices eliciting tolerance toward incompatible donor ABO antigens in implant patients, is the ultimate goal of this project. This would permit ABO incompatible organ transplants, increase the donor pool for patients, increase efficiency in the use of available organs, reduce waitlist times and reduce mortality rates of patients. Stainless steel stents and silica nanoparticles were chosen as platforms for the stationary and circulating tolerogens. Stainless steel was coated with silica by solgel dip-coating, electrodeposition, and atomic layer deposition (ALD). The coatings were evaluated by CV, EIS, SEM, AFM, VASE, FTIR, XPS, and AES. Of the silica films, those deposited by ALD provided superior insulating, conformal, and thin coatings. These silica ALD films outperformed even titania ALD films upon stressing. Silica ALD films were subsequently functionalized with mixtures of silane derivatives of poly(ethylene glycol) (PEG), to prevent nonspecific protein binding, and monosaccharides (MS) or trisaccharide and tetrasaccharide (TS) antigens. Functionalizations were characterized by FTIR, XPS and UV-Vis following enzyme-linked lectin assays (ELLAs) or enzyme-linked immunosorbent assays (ELISAs). Effective functionalization allowing biological availability and activity even after incubation in blood plasma was confirmed. Microarray microscope slides were similarly developed with all ABO antigen subtypes, characterized by ToF-SIMS and ELISA, and proved useful in detecting antibodies in human blood samples. Silica nanoparticles, including fluorescent and magnetic varieties, in a range of sizes were prepared by sol-gel synthesis. The nanoparticles were evaluated by SEM, DLS, zeta potential measurements, fluorescence imaging, flow cytometry, two-photon excitation fluorescence correlation spectroscopy and TEM. Different dye incorporation methods were used for effective detection of NPs, and additional silica layers improved

  17. Functional Circuitry on Commercial Fabric via Textile-Compatible Nanoscale Film Coating Process for Fibertronics.

    PubMed

    Bae, Hagyoul; Jang, Byung Chul; Park, Hongkeun; Jung, Soo-Ho; Lee, Hye Moon; Park, Jun-Young; Jeon, Seung-Bae; Son, Gyeongho; Tcho, Il-Woong; Yu, Kyoungsik; Im, Sung Gap; Choi, Sung-Yool; Choi, Yang-Kyu

    2017-09-18

    Fabric-based electronic textiles (e-textiles) are the fundamental components of wearable electronic systems, which can provide convenient hand-free access to computer and electronics applications. However, e-textile technologies presently face significant technical challenges. These challenges include difficulties of fabrication due to the delicate nature of the materials, and limited operating time, a consequence of the conventional normally on computing architecture, with volatile power-hungry electronic components, and modest battery storage. Here, we report a novel poly(ethylene glycol dimethacrylate) (pEGDMA)-textile memristive nonvolatile logic-in-memory circuit, enabling normally off computing, that can overcome those challenges. To form the metal electrode and resistive switching layer, strands of cotton yarn were coated with aluminum (Al) using a solution dip coating method, and the pEGDMA was conformally applied using an initiated chemical vapor deposition process. The intersection of two Al/pEGDMA coated yarns becomes a unit memristor in the lattice structure. The pEGDMA-Textile Memristor (ETM), a form of crossbar array, was interwoven using a grid of Al/pEGDMA coated yarns and untreated yarns. The former were employed in the active memristor and the latter suppressed cell-to-cell disturbance. We experimentally demonstrated for the first time that the basic Boolean functions, including a half adder as well as NOT, NOR, OR, AND, and NAND logic gates, are successfully implemented with the ETM crossbar array on a fabric substrate. This research may represent a breakthrough development for practical wearable and smart fibertronics.

  18. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating.

    PubMed

    Subbiahdoss, G; Pidhatika, B; Coullerez, G; Charnley, M; Kuijer, R; van der Mei, H C; Textor, M; Busscher, H J

    2010-05-13

    Biomaterials-associated-infections (BAI) are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol) (PEG) brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid) (bioactive "PEG-RGD") were compared to mono-functional PEG brush-coatings (biopassive "PEG") and bare titanium oxide (TiO2) surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1). After 2 h, staphylococcal adhesion was reduced to 3.6-/+1.8 x 103 and 6.0-/+3.9 x 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3-/+0.4 x 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1) U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the "race for the surface" between bacteria and mammalian cells.

  19. Biological response on a titanium implant-grade surface functionalized with modular peptides☆

    PubMed Central

    Yazici, H.; Fong, H.; Wilson, B.; Oren, E.E.; Amos, F.A.; Zhang, H.; Evans, J.S.; Snead, M.L.; Sarikaya, M.; Tamerler, C.

    2015-01-01

    Titanium (Ti) and its alloys are among the most successful implantable materials for dental and orthopedic applications. The combination of excellent mechanical and corrosion resistance properties makes them highly desirable as endosseous implants that can withstand a demanding biomechanical environment. Yet, the success of the implant depends on its osteointegration, which is modulated by the biological reactions occurring at the interface of the implant. A recent development for improving biological responses on the Ti-implant surface has been the realization that bifunctional peptides can impart material binding specificity not only because of their molecular recognition of the inorganic material surface, but also through their self-assembly and ease of biological conjugation properties. To assess peptide-based functionalization on bioactivity, the present authors generated a set of peptides for implant-grade Ti, using cell surface display methods. Out of 60 unique peptides selected by this method, two of the strongest titanium binding peptides, TiBP1 and TiBP2, were further characterized for molecular structure and adsorption properties. These two peptides demonstrated unique, but similar molecular conformations different from that of a weak binder peptide, TiBP60. Adsorption measurements on a Ti surface revealed that their disassociation constants were 15-fold less than TiBP60. Their flexible and modular use in biological surface functionalization were demonstrated by conjugating them with an integrin recognizing peptide motif, RGDS. The functionalization of the Ti surface by the selected peptides significantly enhanced the bioactivity of osteoblast and fibroblast cells on implant-grade materials. PMID:23159566

  20. Thermo-acoustic random response of temperature-dependent functionally graded material panels

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Hamed; Yoo, Hong Hee; Tawfik, Mohammad; Lee, Kwan-Soo

    2010-08-01

    A nonlinear finite element model is provided for the nonlinear random response of functionally graded material panels subject to combined thermal and random acoustic loads. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations are derived using the first-order shear-deformable plate theory with von Karman geometric nonlinearity and the principle of virtual work. The thermal load is assumed to be steady state constant temperature distribution, and the acoustic excitation is considered to be a stationary white-Gaussian random pressure with zero mean and uniform magnitude over the plate surface. The governing equations are transformed to modal coordinates to reduce the computational efforts. Newton-Raphson iteration method is employed to obtain the dynamic response at each time step of the Newmark implicit scheme for numerical integration. Finally, numerical results are provided to study the effects of volume fraction exponent, temperature rise, and the sound pressure level on the panel response.

  1. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials

    SciTech Connect

    Zheng, Jianming; Gu, Meng; Xiao, Jie; Polzin, Bryant; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Zhang, Jiguang

    2014-11-25

    Li- and Mn-rich (LMR) material is a very promising cathode for lithium ion batteries because of their high theoretical energy density (~900 Wh kg-1) and low cost. However, their poor long-term cycling stability, voltage fade, and low rate capability are significant barriers hindered their practical applications. Surface coating, e.g. AlF3 coating, can significantly improve the capacity retention and enhance the rate capability. However, the fundamental mechanism of this improvement and the microstructural evolution related to the surface coating is still not well understood. Here, we report systematic studies of the microstructural changes of uncoated and AlF3-coated materials before and after cycling using aberration-corrected scanning/transmission electron microscopy and electron energy loss spectroscopy. The results reveal that surface coating can reduce the oxidation of electrolyte at high voltage, thus suppressing the accumulation of SEI layer on electrode particle surface. Surface coating also enhances structural stability of the surface region (especially the electrochemically transformed spinel-like phase), and protects the electrode from severe etching/corrosion by the acidic species in the electrolyte, therefore limiting the degradation of the material. Moreover, surface coating can alleviate the undesirable voltage fade by minimize layered-spinel phase transformation in the bulk region of the materials. These fundamental findings may also be widely applied to explain the functioning mechanism of other surface coatings used in a broad range of electrode materials.

  2. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities.

    PubMed

    Zhi, Zelun; Su, Yajuan; Xi, Yuewei; Tian, Liang; Xu, Miao; Wang, Qianqian; Padidan, Sara; Li, Peng; Huang, Wei

    2017-03-29

    In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol1200/2400 modified PHMB (APEG1200/2400-PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG1200/2400-PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG2400-PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG2400-PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG2400-PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.

  3. Focusing X-rays to a 1-{mu}m spot using elastically bent, graded multilayer coated mirrors

    SciTech Connect

    Underwood, J.H.; Thompson, A.C.; Kortright, J.B.

    1997-04-01

    In the x-ray fluorescent microprobe at beamline 10.3.1, the ALS bending magnet source is demagnified by a factor of several hundred using a pair of mirrors arranged in the Kirkpatrick-Baez (K-B) configuration. These are coated with multilayers to increase reflectivity and limit the pass band of the x-rays striking the sample. The x-rays excite characteristic fluorescent x-rays of elements in the sample, which are analyzed by an energy dispersive Si-Li detector, for a sensitive assay of the elemental content. By scanning the focal spot the spatial distribution of the elements is determined; the spatial resolution depends on the size of this spot. When spherical mirrors are used, the spatial resolution is limited by aberrations to 5 or 10 {mu}m. This has been improved to 1 {mu}m through the use of an elliptical mirror formed by elastically bending a plane mirror of uniform width and thickness with the optimum combination of end couples.

  4. Functionalization of a long period grating coated with gold nanoparticles for glyphosate detection

    NASA Astrophysics Data System (ADS)

    Heidemann, Bárbara R.; Pereira, Júlia C.; Chiamenti, Ismael; Oliveira, Marcela M.; Muller, Marcia; Fabris, José L.

    2017-04-01

    This work describes a method for producing a nanostructured fiber optic device for sensing of pesticides in water environment. The device consists of a long period grating with a coating of gold nanoparticles functionalized with cysteamine. The LPG shows attenuation bands near the phase matching turning point at the visible spectral range. A bottom-up production route was used to deposit gold nanoparticles on the fiber surface. Sensitivity to the refractive index of the external medium was measured before and after the layer deposition. Cysteamine was used as a ligand for glyphosate present in water at a concentration of 100 μM.

  5. Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings

    NASA Astrophysics Data System (ADS)

    Li, Fang; Ye, Jianfeng; Yang, Linming; Deng, Chunhua; Tian, Qing; Yang, Bo

    2015-08-01

    Due to the ease of processing and stability during filtration, polydopamine (PD) coatings with grafted hydrophilic polymers have recently received significant attention. In this study, glycine-functionalized PVA was synthesized and grafted to a PD-coated ultrafiltration (UF) membrane to improve its performance during wastewater filtration. The membranes were modified by grafting PD with glycine-functionalized PVA (PD-g-PVA), and the resultant materials were characterized using surface morphology analyses, contact angle measurements, flux, oil/water emulsion separation tests, and grafted layer stability tests. The performance of the PD-g-PVA membrane was compared to that of the membrane modified with PD-g-polyethylene glycol (PEG). After grafting the PD-g-PVA, the surface roughness of the membranes decreased significantly. The grafted PVA layer, which was stable under acidic and alkaline conditions, protected the PD layer. The filtration experiments with an oil/water emulsion indicated that modifying the glycine-functionalized PVA by grafting can significantly improve the antifouling ability of membranes.

  6. Design of capillary flows with functionally graded porous titanium oxide films fabricated by anodization instability.

    PubMed

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen R

    2014-06-01

    We have developed an electrochemical fabrication method utilizing breakdown anodization (BDA) to yield capillary flows that can be expressed as functions of capillary height. This method uses anodization instability with high electric potentials and mildly acidic electrolytes that are maintained at low temperature. BDA produces highly porous micro- and nano-structured surfaces composed of amorphous titanium oxide on titanium substrates, resulting in high capillary pressure and capillary diffusivity. With this fabrication technique the capillary flow properties can be controlled by varying the applied electric field and electrolyte temperature. Furthermore, they can be expressed as functions of capillary height when customized electric fields are used in BDA. To predict capillary flows on BDA surfaces, we developed a conceptual model of highly wettable porous films, which are modeled as multiple layers of capillary tubes oriented in the flow direction. From the model, we derived a general capillary flow equation of motion in terms of capillary pressure and capillary diffusivity, both of which can be expressed as functions of capillary height. The theoretical model was verified by comparisons with experimental capillary flows, showing good agreement. From investigation of the surface morphology we found that the surface structures were also functionally graded with respect to the capillary height (i.e. applied electric field). The suggested fabrication method and the theoretical model offer novel design methodologies for microscale liquid transport devices requiring control over propagation speed.

  7. Grading and Quantification of Upper Extremity Function in Children with Spasticity

    PubMed Central

    Wallen, Margaret; Stewart, Kirsty

    2016-01-01

    The World Health Organization's International Classification of Functioning, Disability and Health (ICF) provides an ideal framework within which to conceptualize grading and quantification of upper extremity function for children with spasticity. In this article the authors provide an overview of assessments and classification tools used to (1) understand upper extremity function associated with spasticity and the factors that contribute to dysfunction, (2) guide the selection of appropriate interventions, (3) identify specific muscles to target using surgical interventions and botulinum toxin-A injections, and (4) measure the outcomes of upper extremity interventions. Assessments of upper extremity function are briefly described and categorized as to whether they (1) measure children's best ability or actual performance in daily life, (2) are clinician administered or are a child/proxy report, (3) assist in planning intervention and/or measuring outcomes, and (4) evaluate unimanual or bimanual ability. In addition, measures of spasticity and hypertonicity, and classifications of static and dynamic upper extremity postures are summarized. PMID:26869858

  8. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation

    PubMed Central

    Duffau, H; Capelle, L; Denvil, D; Sichez, N; Gatignol, P; Lopes, M; Mitchell, M; Sichez, J; Van Effenterre, R

    2003-01-01

    Objectives: To describe functional recovery after surgical resection of low grade gliomas (LGG) in eloquent brain areas, and discuss the mechanisms of compensation. Methods: Seventy-seven right-handed patients without deficit were operated on for a LGG invading primary and/or secondary sensorimotor and/or language areas, as shown anatomically by pre-operative MRI and intraoperatively by electrical brain stimulation and cortico-subcortical mapping. Results: Tumours involved 31 supplementary motor areas, 28 insulas, 8 primary somatosensory areas, 4 primary motor areas, 4 Broca's areas, and 2 left temporal language areas. All patients had immediate post-operative deficits. Recovery occurred within 3 months in all except four cases (definitive morbidity: 5%). Ninety-two percent of the lesions were either totally or extensively resected on post-operative MRI. Conclusions: These findings suggest that spatio-temporal functional re-organisation is possible in peritumoural brain, and that the process is dynamic. The recruitment of compensatory areas with long term perilesional functional reshaping would explain why: before surgery, there is no clinical deficit despite the tumour growth in eloquent regions; immediately after surgery, the occurrence of a deficit, which could be due to the resection of invaded areas participating (but not essential) to the function; and why three months after surgery, almost complete recovery had occurred. This brain plasticity, which decreases the long term risk of surgical morbidity, may be used to extend the limits of surgery in eloquent areas. PMID:12810776

  9. Analysis and generic properties of gene regulatory networks with graded response functions

    NASA Astrophysics Data System (ADS)

    Plahte, Erik; Kjøglum, Sissel

    2005-02-01

    The mass of new genomic data has lead to a growing interest in gene regulatory models describing the regulatory aspects of gene activity. In these models, the rates of change of gene product concentrations are expressed as a sum of regulatory switches in terms of sums of products of sigmoid functions, mimicking complex logical on-off functions turning gene activity on and off. The customary way to analyse such equations is to replace the sigmoid functions by step functions and disregard models with autoregulation. This leads to discontinuous equations of motion, but in models without autoregulation, continuous solutions can easily be obtained. With effective autoregulation this simple approach breaks down. As real regulators have finite gain, and autoregulation is ubiquitous in biological systems, we propose a generalised gene regulatory model framework admitting autoregulation and graded sigmoid functions with different steepnesses. Using singular perturbation analysis methods we derive a set of reformulated, continuous equations for the limit solution when the sigmoids approach step functions, and show that the solution for steep sigmoids approaches this limit solution uniformly in a finite time interval. A conspicuous feature of the limit solution is so-called sliding motion during which the solution slides along a threshold hyperplane or the intersection of such hyperplanes. A particular mapping leads to a dual picture of the flow, where the fast parts are magnified at the expense of the slow parts. Combining the two dual pictures, a simple and powerful method to analyse the flow is obtained. We show that for steep sigmoid functions the flow may be highly sensitive to the relative steepnesses of the sigmoids. This has important consequences when stochastic effects are taken into account. Also, it implies that the observation by Glass and Kauffman in 1973 that the qualitative features of the solution do not change provided the underlying “logical” structure

  10. Inkjet printing of Chitlac-nanosilver--a method to create functional coatings for non-metallic bone implants.

    PubMed

    Nganga, Sara; Moritz, Niko; Kolakovic, Ruzica; Jakobsson, Kristina; Nyman, Johan O; Borgogna, Massimiliano; Travan, Andrea; Crosera, Matteo; Donati, Ivan; Vallittu, Pekka K; Sandler, Niklas

    2014-10-22

    Biostable fiber-reinforced composites, based on bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate thermoset polymer matrix reinforced with E-glass fibers have been successfully used in cranial reconstructions and the material has been approved for clinical use. As a further refinement of these implants, antimicrobial, non-cytotoxic coatings on the composites were created by an immersion procedure driven by strong electrostatic interactions. Silver nanoparticles (nAg) were immobilized in lactose-modified chitosan (Chitlac) to prepare the bacteriostatic coatings. Herein, we report the use of inkjet technology (a drop-on-demand inkjet printer) to deposit functional Chitlac-nAg coatings on the thermoset substrates. Characterization methods included scanning electron microscopy, scanning white light interferometry and electro-thermal atomic absorption spectroscopy. Inkjet printing enabled the fast and flexible functionalization of the thermoset surfaces with controlled coating patterns. The coatings were not impaired by the printing process: the kinetics of silver release from the coatings created by inkjet printing and conventional immersion technique was similar. Further research is foreseen to optimize printing parameters and to tailor the characteristics of the coatings for specific clinical applications.

  11. Low speed centrifugal casting of Functionally Graded solid cast ingot by anomalous particle distribution

    NASA Astrophysics Data System (ADS)

    Mer, K. K. S.; Ray, S.

    2011-12-01

    Functionally graded cylindrical ingot of Al-Al2O3 composite synthesized by centrifugal casting shows particle distribution and hardness decreasing radially from the outer radius to inner radius. The progressive decrease in alumina content and hardness from the outer radius towards the center may be attributed to higher centrifugal force acting on relatively denser alumina particles during rotation, as compared to that acting on lighter alloy melt. It is also observed, as one moves down from the top to the bottom of cast ingot the alumina content decreases. This is surprising in view of higher density of alumina particles relative to the melt. The particle settling should have resulted at more particles towards the bottom, but distribution observed is in contradiction.

  12. 2D crack problems in functionally graded magnet-electro-elastic materials

    NASA Astrophysics Data System (ADS)

    Stoynov, Yonko

    2016-12-01

    Magneto-electro-elastic composite materials have extensive application in modern smart structures, because they possess good coupling between mechanical, electrical and magnetic fields. This new effect was reported for the first time by Van Suchtelen [1] in 1972. Due to their ceramic structure cracks inevitably exists in these materials. In this study we consider functionally graded magneto-electro-elastic materials subjected to anti-plane time harmonic load. We use Boundary integral equation method (BIEM) to evaluate the dependence of stress concentration near the crack tip on the frequency of the applied external load. For complex crack configurations numerical calculations are tedious and need too much time. Here we present a new analytical approach that will significantly improve the numerical procedure for calculation of stress intensity factors (SIF).

  13. An exact analysis of surface acoustic waves in a plate of functionally graded materials.

    PubMed

    Gao, Liming; Wang, Ji; Zhong, Zheng; Du, Jianke

    2009-12-01

    Some traditional applications of structures and devices with homogeneous materials are being gradually replaced by functionally graded materials (FGM) with spatial variation of properties. The analysis of SAW propagating in FGM structures will be different primarily due to variations of material properties and resulting differential equations with variable coefficients. To provide an effective method and accurate results for the analysis of SAWs in FGM structures, we employed the Frobenius method as the only available method for a detailed analysis of SAW in materials with property variations in a linear pattern. Analytical examples are presented to demonstrate the effectiveness of the method and the effect of FGM on changes of surface displacements in SAW propagation.

  14. Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory

    NASA Astrophysics Data System (ADS)

    Shojaeian, Milad; Beni, Yaghoub Tadi; Ataei, Hossein

    2016-01-01

    Electromechanical buckling (EMB) of beam-type nanoelectromechanical systems (NEMSs) is investigated based on modified strain gradient theory. The system is modeled as a clamped-guided nanobeam which is under compressive or tensile axial loads as well as the effect of nonlinear electrostatic and van der Waals symmetric transverse forces. In addition, the beam is considered to be made of axially and transverse functionally graded materials. Here, FGM is Poly-SiGe, of which the general properties change gradually from silicon to germanium based on a simple power-law method. Considering the Euler-Bernoulli beam theory and using the principle of minimum potential energy, the governing equations and corresponding boundary conditions are established. After validation of results, the effects of power law index, variation of size effect parameters, length-thickness ratio and the distance between the two fixed and movable electrodes on the buckling response of the system are discussed.

  15. Asymmetric bifurcation of thermally and electrically actuated functionally graded material microbeam

    PubMed Central

    2016-01-01

    In this paper, we investigate the symmetric snap-through buckling and the asymmetric bifurcation behaviours of an initially curved functionally graded material (FGM) microbeam subject to the electrostatic force and uniform/non-uniform temperature field. The beam model is developed in the framework of Euler–Bernoulli beam theory, accounting for the through-thickness power law variation of the beam material and the physical neutral plane. Based on the Galerkin decomposition method, the beam model is simplified as a 2 d.f. reduced-order model, from which the necessary snap-through and symmetry breaking criteria are derived. The results of our work reveal the significant effects of the power law index on the snap-through and symmetry breaking criteria. Our results also reveal that the non-uniform temperature field can actuate the FGM microbeam and induce the snap-through and asymmetric bifurcation behaviours. PMID:27118887

  16. Recent development in modeling and analysis of functionally graded materials and structures

    NASA Astrophysics Data System (ADS)

    Gupta, Ankit; Talha, Mohammad

    2015-11-01

    In this article, an extensive review related to the structural response of the functionally graded materials (FGMs) and structures have been presented. These are high technology materials developed by a group scientist in the late 1980's in Japan. The emphasis has been made here, to present the structural characteristics of FGMs plates/shells under thermo-electro-mechanical loadings under various boundary and environmental conditions. This paper also provides an overview of different fabrication procedures and the future research directions which is required to implement these materials in the design and analysis appropriately. The expected outcome of present review can be treated as milestone for future studies in the area of high technology materials and structures, and would be definitely advantageous for the researchers, scientists, and designers working in this field.

  17. Direct Metal Deposition of Functional Graded Structures in Ti- Al System

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I.; Missemer, F.; Smurov, I.

    A direct laser metal deposition (DLMD) technology with co-axial powder injection is used to fabricate a complex functional graded structure (FGS) fabrication. The aim of the study is to demonstrate the possibility to produce intermetallic phases in the Ti-Al powder systems in the course of a single-step DMD process. Besides, relationships between the main laser cladding parameters and the intermetallic phase structures of the built-up objects have been studied. In our research we applied the optical microscopy, X-ray analysis, microhardness measurement and SEM with EDX analysis of the laser-fabricated intermetallics. The discussion of the mechanisms of Ti x Al y (x,y = 1.3) intermetallic transformations in exothermal reactions is also offered in the report.

  18. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Azimi, Majid; Mirjavadi, Seyed Sajad; Shafiei, Navvab; Hamouda, A. M. S.

    2017-01-01

    The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton's principle. The small-scale effect has been considered using the nonlocal Eringen's elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are cantilever type of boundary conditions. Presented numerical results are validated by comparing the obtained results with the published results in the literature. The influences of the nonlocal small-scale parameter, angular velocity, hub radius, FG index and also thermal effects on the frequencies of the FG nanobeams are investigated in detail.

  19. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability

    PubMed Central

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-01-01

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching. PMID:27796291

  20. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability

    NASA Astrophysics Data System (ADS)

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-10-01

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching.

  1. Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response.

    PubMed

    Fang, Fei Fei; Liu, Ying Dan; Choi, Hyoung Jin; Seo, Yongsok

    2011-09-01

    The dispersion stability of soft magnetic carbonyl iron (CI)-based magnetorheological (MR) fluids was improved by applying a unique functional coating composed of a conducting polyaniline layer and a multiwalled carbon nanotube nest to the surfaces of the CI particles via conventional dispersion polymerization, followed by facile solvent casting. The coating morphology and thickness were analyzed by SEM and TEM imaging. Chemical composition of the polyaniline layer was detected by Raman spectroscope, which also confirmed the coating performance successfully. The influence of the functional coating on the magnetic properties was investigated by measuring the MR performance and sedimentation properties using a vibrating sample magnetometer, rotational rheometer, and Turbiscan apparatus. Improved dispersion characteristics of the MR fluid were observed.

  2. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability.

    PubMed

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-10-31

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching.

  3. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration.

    PubMed

    Muszanska, Agnieszka K; Rochford, Edward T J; Gruszka, Agnieszka; Bastian, Andreas A; Busscher, Henk J; Norde, Willem; van der Mei, Henny C; Herrmann, Andreas

    2014-06-09

    This paper describes the synthesis and characterization of polymer-peptide conjugates to be used as infection-resistant coating for biomaterial implants and devices. Antiadhesive polymer brushes composed of block copolymer Pluronic F-127 (PF127) were functionalized with antimicrobial peptides (AMP), able to kill bacteria on contact, and arginine-glycine-aspartate (RGD) peptides to promote the adhesion and spreading of host tissue cells. The antiadhesive and antibacterial properties of the coating were investigated with three bacterial strains: Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The ability of the coating to support mammalian cell growth was determined using human fibroblast cells. Coatings composed of the appropriate ratio of the functional components: PF127, PF127 modified with AMP, and PF127 modified with RGD showed good antiadhesive and bactericidal properties without hampering tissue compatibility.

  4. Functional Grammar and Teaching of Reading--A Pedagogy Based on Graded Teaching of College English in China

    ERIC Educational Resources Information Center

    Xu, Tuo; Zhang, Beili

    2015-01-01

    This article discusses the importance of functional grammar and demonstrates its application to the teaching of reading among graded college students. Functional grammar holds that a discourse is composed of two levels: the interior level and the exterior level. Therefore, reading activities involve both linguistic elements and contexts.…

  5. Dual functional nisin-multi-walled carbon nanotubes coated filters for bacterial capture and inactivation.

    PubMed

    Dong, Xiuli; Yang, Liju

    2015-01-01

    Removal of pathogens from water is one way to prevent waterborne illness. In this paper, we developed dual functional carbon nanotube (CNT) modified filters for bacterial capture and inactivation, utilizing multi-walled CNTs (MWCNTs) to coat on commercially available filters and making use of the exceptional adsorption property of CNTs to adsorb a natural antimicrobial peptide-nisin on it. Two types of MWCNTs with different outer layer diameters were used (MWCNTs1: <8 nm in diameter; MWCNTs2: 10-20 nm in diameter). The thickness of MWCNT layers, surface morphology, and surface hydrophobicity of both types of MWCNT coated filters were characterized. The MWCNT coating on filters significantly increased the surface hydrophobicity. The absorption of nisin and the capture of bacterial pathogens were correlated with increased surface hydrophobicity. The MWCNTs1 and MWCNTs2 filters with 1.5 mg MWCNTs loading captured 2.44 and 3.88 log of cells, respectively, from aqueous solutions containing a total of ~10(6) CFU/mL cells. Nisin deposit at the amount of 0.5 mg on the surfaces of MWCNT filters significantly reduced the viability of captured B. anthracis cells by 95.71-97.19 %, and inhibited the metabolic activities of the captured cells by approximately 98.3 %. The results demonstrated that the MWCNT-nisin filters achieved dual functions in bacterial pathogen capture and inhibition in one single filtration step, which is potentially applicable in removing undesired microorganisms from water sources and inhibiting captured Gram positive bacteria activities.

  6. Adsorption and functionality of fibrinogen on triblock copolymer-coated surfaces

    NASA Astrophysics Data System (ADS)

    O'Connor, Stephen Moss

    To assess the influence of the surface microenvironment on the adsorption and biologic activity of fibrinogen, a series of poly(ethylene oxide)/poly(propylene oxide) triblock copolymers were adsorbed to solid, hydrophobic polystyrene-divinylbenzene beads. The copolymers, which were of the form PEOsb{b}PPOsb{a}PEOsb{b}, varied in their hydrophile/lipophile balances (HLB) due only to differences in their PEO chain length (5 to 129 EO units) as the hydrophobic PPO core segment was of fixed length (56 or 69 PO units). The surface coverage of copolymers was determined first and after exposing the beads to fibrinogen or to human plasma, the total amount of protein adsorbed to their surface was measured. The functionality of fibrinogen bound to copolymer-modified beads was assessed in terms of fibrin clot formation and by the adherence of macrophages (THP-1 tumor cells). Enzymatic processing was used to probe the surface orientation of fibrinogen. The copolymers appear to adsorb in an expanded fashion, a conclusion supported by surface pressure-area isotherms of the copolymers spread at the air-water interface. As compared to copolymer-free surfaces, protein adsorption decreases by up to 90% as the PEO chain length of the copolymers increases. The copolymer coatings appear to lower fibrinogen adsorption by limiting the available surface area. On surfaces coated with the hydrophobic versions of the copolymers, the biologic assays demonstrate that fibrinogen is as reactive/coagulable as for surfaces with saturated coverages of fibrin despite that these copolymer-coated surfaces have 60% less fibrinogen adsorbed to them. When adsorbed at the same low surface concentration in the absence of copolymer, fibrinogen is not active. Enzymatic processing of bound fibrinogen suggests that the presence of the copolymers promote the adsorption of the protein in end-on fashion. It is proposed here, that when adsorbed end-on, fibrinogen is functional because its reactive sites are

  7. Deposition Routes for the Development of Multi-Functional Coatings for Naval Application via Nano-Engineering Methods

    DTIC Science & Technology

    2007-01-01

    YEAR-END SUMMARY REPORT TITLE: Deposition Routes for the Development of Multi-Functional Coatingsfor Naval Application via Nano-Engineering...thermal spray deposit occurs as a result of both the high temperature plasma flame and adiabatic recalescence associated with particle solidification...determined and produced in ingot/powder form and deposited as nano- crystalline coatings. Hardness and fatigue testing indicated that the first coatings

  8. Thermoelastic buckling analysis of pre-twisted functionally graded beams with temperature-dependent material properties

    NASA Astrophysics Data System (ADS)

    Shenas, Amin Ghorbani; Malekzadeh, Parviz; Ziaee, Sima

    2017-04-01

    As a first endeavor, the thermal buckling behavior of pre-twisted functionally graded (FG) beams with temperature-dependent material properties is investigated. The governing stability equations are derived based on the third-order shear deformation theory (TSDT) in conjunction with the adjacent equilibrium state criterion under the von Kármán's nonlinear kinematic assumptions using the Chebyshev-Ritz method. The Chebyshev polynomials multiplied with some suitable boundary functions are used as the basis functions, which allow one to analyze the beams with different boundary conditions. The extracted system of nonlinear algebraic eigenvalue equations is solved iteratively to obtain the critical temperature rise. The convergence behavior together with accuracy of the solution method and the correctness of formulation are demonstrated through different examples. Then, the influences of the linear and nonlinear variation of the angle of twist along the beam axis, the value of twist angle, length-to-thickness ratio, thickness-to-width ratio, material gradient index and temperature dependence of material properties on the critical temperature rise of the pre-twisted FG beams under different boundary conditions are investigated. It is shown that the pre-twist angle increases the thermal buckling resistance of the pre-twisted FG beams, but the temperature dependence of material properties reduces it.

  9. Return to Full Functioning after Graded Exercise Assessment and Progressive Exercise Treatment of Postconcussion Syndrome

    PubMed Central

    Baker, John G.; Freitas, Michael S.; Leddy, John J.; Kozlowski, Karl F.; Willer, Barry S.

    2012-01-01

    Exercise assessment and aerobic exercise training for postconcussion syndrome (PCS) may reduce concussion-related physiological dysfunction and symptoms by restoring autonomic balance and improving cerebral blood flow autoregulation. In a descriptive pilot study of 91 patients referred to a university clinic for treatment of PCS, a subset of 63 patients were contacted by telephone for assessment of symptoms and return to full daily functioning. Those who experienced symptoms during a graded exercise treadmill test (physiologic PCS, n = 40) were compared to those who could exercise to capacity (PCS, n = 23). Both groups had been offered progressive exercise rehabilitation. Overall 41 of 57 (72%) who participated in the exercise rehabilitation program returned to full daily functioning. This included 27 of 35 (77%) from the physiologic PCS group, and 14 of 22 (64%) from the PCS group. Only 1 of the 6 patients who declined exercise rehabilitation returned to full functioning. Interpretation of these results is limited by the descriptive nature of the study, the small sample size, and the relatively few patients who declined exercise treatment. Nonetheless, exercise assessment indicates that approximately one third of those examined did not have physiologic PCS. PMID:22292122

  10. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    PubMed

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  11. Functional separator consisted of polyimide nonwoven fabrics and polyethylene coating layer for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Chuan; Zhang, Peng; Huang, Shaohua; He, Xinyi; Yang, Pingting; Wu, Dezhi; Sun, Daoheng; Zhao, Jinbao

    2015-12-01

    In this paper, a composite membrane with nonwoven polyimide (PI) membrane as structural support and polyethylene (PE) particles coating layer as a thermal shutdown layer, is fabricated as the separator for lithium-ion battery. Different from PI nonwoven membrane, the PE coating PI nonwoven composite membrane (PE-PI-S) not only shows excellent thermal shutdown function, similar to traditional multilayer PP/PE/PP separator, but also exhibits much higher thermal stability, better wettability to the polar electrolyte and lower internal resistance than the PP/PE/PP separator. The electrolyte uptake and ionic conductivity of PE-PI-S increase from 58%, 0.84 mS cm-1 to 400%, 1.34 mS cm-1, respectively. Furthermore, the thermal shutdown function of PE-PI-S can be controlled widely in the temperature range from 120 °C to more than 200 °C while the multilayer PP/PE/PP separator only with a shutdown temperature range from 130 °C to 160 °C. Lithium ion battery with PE-PI-S nonwoven separator also shows excellent stable cycling and good rate performance.

  12. Mesoporous Silica Coated Polydopamine Functionalized Reduced Graphene Oxide for Synergistic Targeted Chemo-Photothermal Therapy.

    PubMed

    Shao, Leihou; Zhang, Ruirui; Lu, Jianqing; Zhao, Caiyan; Deng, Xiongwei; Wu, Yan

    2017-01-18

    The integration of different therapies into a single nanoplatform has shown great promise for synergistic tumor treatment. Herein, mesoporous silica (MS) coated polydopamine functionalized reduced graphene oxide (pRGO) further modified with hyaluronic acid (HA) (pRGO@MS-HA) has been utilized as a versatile nanoplatform for synergistic targeted chemo-photothermal therapy against cancer. A facile and green chemical method is adopted for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) by using mussel inspired dopamine (DA) to enhance biocompatibility and the photothermal effect. Then, it was coated with mesoporous silica (MS) (pRGO@MS) to enhance doxorubicin (DOX) loading and be further modified with the targeting moieties hyaluronic acid (HA). The pH-dependent and near-infrared (NIR) laser irradiation-triggered DOX release from pRGO@MS(DOX)-HA is observed, which could enhance the chemo-photothermal therapy effect. In vitro experimental results confirm that pRGO@MS(DOX)-HA exhibits good dispersibility, excellent photothermal property, remarkable tumor cell killing efficiency, and specificity to target tumor cells. In vivo antitumor experiments further demonstrated that pRGO@MS(DOX)-HA could exhibit an excellent synergistic antitumor efficacy, which is much more distinct than any monotherapy. This work presents a novel nanoplatform which could load chemotherapy drugs with high efficiency and be used as light-mediated photothermal cancer therapy agent.

  13. Functionality of chitosan in batter formulations for coating of fish sticks: Effect on physicochemical quality.

    PubMed

    Martin Xavier, K A; Hauzoukim; Kannuchamy, Nagalakshmi; Balange, Amjad K; Chouksey, M K; Gudipati, Venkateshwarlu

    2017-08-01

    Chitosan is a natural polymer having diverse applications in food industry. The present study was undertaken to evaluate chitosan as a hydrocolloid in batter composition in developing enrobed fish sticks with better functional properties and improved quality. Different concentrations of chitosan gel were made in acetic acid medium and incorporated into batter for making enrobed fish sticks. Coating parameters, fat uptake, oil reduction, chemical quality parameters, instrumental texture analysis and colour were studied. Addition of chitosan gel had a significant effect (P<0.05) on the coating pickup, adhesion degree and cooking yield of the product. Total volatile basic nitrogen, pH, lipid oxidation parameters like peroxide value and thiobarbituric acid reactive substances of par-fried fish sticks also showed significant differences. The oil reduction in par-fried samples were 36.84, 65.05, 73.83, 77.65% respectively for 0.5, 1.0, 1.5, 2.0% chitosan added samples. Addition of chitosan significantly reduced crispness, gumminess, Warner-Bratzler shear force and toughness (P<0.05) of the product. The study clearly demonstrated that the inclusion of chitosan at 1.0% in batter can improve functional and other quality aspects of enrobed products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. New biobased high functionality polyols and their use in polyurethane coatings.

    PubMed

    Pan, Xiao; Webster, Dean C

    2012-02-13

    High-functionality polyols for application in polyurethanes (PUs) were prepared by epoxide ring-opening reactions from epoxidized sucrose esters of soybean oil-epoxidized sucrose soyates-in which secondary hydroxyl groups were generated from epoxides on fatty acid chains. Ester polyols were prepared by using a base-catalyzed acid-epoxy reaction with carboxylic acids (e.g., acetic acid); ether polyols were prepared by using an acid-catalyzed alcohol-epoxy reaction with monoalcohols (e.g., methanol). The polyols were characterized by using gel permeation chromatography, FTIR spectroscopy, (1)H NMR spectroscopy, differential scanning calorimetry (DSC), and viscosity measurements. PU thermosets were prepared by using aliphatic polyisocyanates based on isophorone diisocyanate and hexamethylene diisocyanate. The properties of the PUs were studied by performing tensile testing, dynamic mechanical analysis, DSC, and thermogravimetric analysis. The properties of PU coatings on steel substrates were evaluated by using ASTM methods to determine coating hardness, adhesion, solvent resistance, and ductility. Compared to a soy triglyceride polyol, sucrose soyate polyols provide greater hardness and range of cross-link density to PU thermosets because of the unique structure of these macromolecules: well-defined compact structures with a rigid sucrose core coupled with high hydroxyl group functionality.

  15. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    NASA Astrophysics Data System (ADS)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  16. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Šulek, Franja; Drofenik, Miha; Habulin, Maja; Knez, Željko

    2010-01-01

    A systematic approach towards the fabrication of highly functionalized silica shell magnetic nanoparticles, presently used for enzyme immobilization, is herein fully presented. The synthesis of bare maghemite (γ-Fe 2O 3) nanoparticles was accomplished by thermal co-precipitation of iron ions in ammonia alkaline solution at harsh reaction conditions, respectively. Primary surface engineering of maghemite nanoparticles was successfully performed by the proper deposition of silica onto nanoparticles surface under strictly regulated reaction conditions. Next, the secondary surface functionalization of the particles was achieved by coating the particles with organosilane followed by glutaraldehyde activation in order to enhance protein immobilization. Covalent immobilization of cholesterol oxidase was attempted afterwards. The structural and magnetic properties of magnetic silica nanocomposites were characterized by TEM and vibrating sample magnetometer (VSM) instruments. X-ray diffraction measurements confirmed the spinel structure and average size of uncoated maghemite nanoparticles to be around 20 nm in diameter. SEM-EDS spectra indicated a strong signal for Si, implying the coating procedure of silica onto the particles surface to be successfully accomplished. Fourier transform infrared (FT-IR) spectra analysis confirmed the binding of amino silane molecules onto the surface of the maghemite nanoparticles mediated Si-O-Si chemical bonds. Compared to the free enzyme, the covalently bound cholesterol oxidase retained 50% of its activity. Binding of enzyme onto chemically modified magnetic nanoparticles via glutaraldehyde activation is a promising method for developing biosensing components in biomedicine.

  17. Diversity and function of maize pollen coat proteins: from biochemistry to proteomics

    PubMed Central

    Gong, Fangping; Wu, Xiaolin

    2015-01-01

    Maize (Zea mays L.) is globally cultivated as one of the most important grain crops. As a wind-pollinated species, maize produces a large quantity of pollen grains that heavier and larger compared to Arabidopsis. Maize is an important model plant in pollen biology of monocots. The pollen coat, the outermost layer of pollen, plays a vital role in pollen–stigma interactions and successful fertilization. Pollen coat proteins (PCPs), which confer species specificity, are required for pollen adhesion, recognition, hydration, and germination on the stigma. Thus, PCPs have attracted intensive research efforts in plant science for decades. However, only a few PCPs in maize have been characterized to date, whereas the functions of most maize PCPs remain unclear. In this review, we summarize the current knowledge of maize PCPs with regard to protein constituents, synthesis and transport, and functions by comparison with the model plant Arabidopsis thaliana and Brassica plants. An understanding of the comprehensive knowledge of maize PCPs will help to illuminate the mechanism by which PCPs are involved in pollen–stigma interactions in maize and other crop plants. PMID:25870606

  18. Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides.

    PubMed

    Li, Jinan; Wang, Fangjun; Wan, Hao; Liu, Jing; Liu, Zheyi; Cheng, Kai; Zou, Hanfa

    2015-12-18

    Hydrophilic interaction chromatography (HILIC) adsorbents have drawn increasing attention in recent years due to their high efficiency in N-glycopeptides enrichment. The hydrophilicity and binding capacity of HILIC adsorbents are crucial to the enrichment efficiency and mass spectrometry (MS) detection sensitivity of N-glycopeptides. Herein, magnetic nanoparticles coated with maltose-functionalized polyethyleneimine (Fe3O4-PEI-Maltose MNPs) were prepared by one-pot solvothermal reaction coupled with "click chemistry" and utilized for N-glycopeptides enrichment. Owing to the presence of hydrophilic and branched polyethyleneimine, the amount of immobilized disaccharide units was improved about four times. The N-glycopeptides capturing capacity was about 150mg/g (IgG/MNPs) and the MS detection limitation as low as 0.5fmol for IgG and 85% average enrichment recovery were feasibly achieved by using this hybrid magnetic adsorbent. Finally, 1237 unique N-glycosylation sites and 1567 unique N-glycopeptides from 684 N-glycoproteins were reliably characterized from 60μg protein sample extracted from mouse liver. Therefore, this maltose-functionalized polyethyleneimine coated adsorbent can play a promising role in highly efficient N-glycopeptides enrichment for glycoproteomic analyses of complex protein samples.

  19. ENHANCED SAFEGUARDS: THE ROLE OF SMART FUNCTIONAL COATINGS FOR TAMPER INDICATION

    SciTech Connect

    Mendez-Torres, A.; Martinez-Rodriguez, M.; Brinkman, K.; Krementz, D.

    2012-02-24

    This work investigates the synthesis of smart functional coatings (SFC) using chemical solution deposition methods. Chemical solution deposition methods have recently received attention in the materials research community due to several unique advantages that include low temperature processing, high homogeneity of final products, the ability to fabricate materials with controlled surface properties and pore structures, and the ease of dopant incorporation in controlled concentrations. The optical properties of thin films were investigated using UV-Vis spectroscopy, Raman, SEM and EDS, with the aim of developing a protective transparent coating for a ceramic surface as a first line of defense for tamper indication. The signature produced by the addition of rare earth dopants will be employed as an additional tamper indicating feature. The integration of SFC's as part of a broader verification system such as an electronic seals can provide additional functionality and defense in depth. SFC's can improve the timeliness of detection by providing a robust, in-situ verifiable tamper indication framework.

  20. PREFACE: Low temperature Plasma in the Processes of Functional Coating Preparation

    NASA Astrophysics Data System (ADS)

    Gali Yunusovich, Dautov; Kashapov Faikovich, Nail; Larionov, Viktor; Gerfanovich Zaripov, Renat; Galyautdinov Tagirovich, Raphael; Ilnaz, Fayrushin; Ramil Nailevich, Kashapov

    2013-12-01

    In November 2013 the V Republican Scientific Technical Conference 'Low-temperature plasma during the deposition of functional coatings' was held in Kazan. The Conference took place from 4-7 November at the Academy of Sciences of the Republic of Tatarstan and Kazan Federal University chaired by a member of the Academy of Sciences of the Republic of Tatarstan Nail Kashapov, Professor, Doctor of Technical Science, and a member of the Scientific and Technical Council of the Ministry of Economy of the Republic of Tatarstan. At the conference, the participants were offered a wide range of issues affecting the theoretical and computational aspects of the research problems in the physics and technology of low-temperature plasma. There was also a whole series of works devoted to the study of thin films, obtained by low-temperature plasma. For the second year at this conference, work dedicated to the related field of pulsation combustion and low- temperature plasma was considered. In addition much interest is devoted to reports on the exploration of gas discharges with liquid electrolytic electron trodes and the study of dusty plasmas. The VI All-Russian Conference 'Low-temperature plasma during the deposition of functional coatings', an extended version with international participation, is scheduled to take place in November 2014. Nail Kashapov Editor

  1. Fabrication and evaluation of SiC/Cu functionally graded material used for plasma facing components in a fusion reactor

    NASA Astrophysics Data System (ADS)

    Ling, Yun-Han; Li, Jiang-Tao; Ge, Chang-Chun; Bai, Xin-De

    2002-06-01

    A new SiC/Cu functionally graded material that contains a spectrum of 0-100% compositional distributions of SiC used for plasma facing component was proposed and fabricated by a novel process termed graded sintering under ultra-high pressure, by which a near dense graded composite has been successfully obtained. Tests on plasma relevant performances showed that in SiC/Cu graded composite the CD 4 production due to chemical sputtering is 85% lower than that of SMF800 nuclear graphite, while its thermal desorption is about 10% of that graphite; fatigue cracks and chemical decomposition were found on the surface of SiC/Cu FGM after 300 cyclic impacts of laser pulse with power density of 398 MW/m 2; slight damage was also observed on the material surface after in situ plasma irradiation in a Tokamak facility.

  2. Longitudinal Investigation of Adaptive Functioning Following Conformal Irradiation for Pediatric Craniopharyngioma and Low-Grade Glioma

    SciTech Connect

    Netson, Kelli L.; Conklin, Heather M.; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E.

    2013-04-01

    Purpose: Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Methods and Materials: Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Results: Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. Conclusions: There was relative sparing of postirradiation functional outcomes over time in this sample

  3. Longitudinal investigation of adaptive functioning following conformal irradiation for pediatric craniopharyngioma and low-grade glioma.

    PubMed

    Netson, Kelli L; Conklin, Heather M; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E

    2013-04-01

    Children treated for brain tumors with conformal radiation therapy experience preserved cognitive outcomes. Early evidence suggests that adaptive functions or independent-living skills may be spared. This longitudinal investigation prospectively examined intellectual and adaptive functioning during the first 5 years following irradiation for childhood craniopharyngioma and low-grade glioma (LGG). The effect of visual impairment on adaptive outcomes was investigated. Children with craniopharyngioma (n=62) and LGG (n=77) were treated using conformal or intensity modulated radiation therapy. The median age was 8.05 years (3.21-17.64 years) and 8.09 years (2.20-19.27 years), respectively. Serial cognitive evaluations including measures of intelligence quotient (IQ) and the Vineland Adaptive Behavior Scales (VABS) were conducted at preirradiation baseline, 6 months after treatment, and annually through 5 years. Five hundred eighty-eight evaluations were completed during the follow-up period. Baseline assessment revealed no deficits in IQ and VABS indices for children with craniopharyngioma, with significant (P<.05) longitudinal decline in VABS Communication and Socialization indices. Clinical factors associated with more rapid decline included females and preirradiation chemotherapy (interferon). The only change in VABS Daily Living Skills correlated with IQ change (r=0.34; P=.01) in children with craniopharyngioma. Children with LGG performed below population norms (P<.05) at baseline on VABS Communication, Daily Living Indices, and the Adaptive Behavior Composite, with significant (P<.05) longitudinal decline limited to VABS Communication. Older age at irradiation was a protective factor against longitudinal decline. Severe visual impairment did not independently correlate with poorer adaptive outcomes for either tumor group. There was relative sparing of postirradiation functional outcomes over time in this sample. Baseline differences in functional abilities before

  4. Improve the performance of coated cemented hip stem through the advanced composite materials.

    PubMed

    Hedia, H S; Fouda, N

    2015-01-01

    Design of hip joint implant using functionally graded material (FGM) (advanced composite material) has been used before through few researches. It gives great results regarding the stress distribution along the implant and bone interfaces. However, coating of orthopaedic implants has been widely investigated through many researches. The effect of using advanced composite stem material, which mean by functionally graded stem material, in the total hip replacement coated with the most common coated materials has not been studied yet. Therefore, this study investigates the effect of utilizing these two concepts together; FGM and coating, in designing new stem material. It is concluded that the optimal FGM cemented stem is consisting from titanium at the upper stem layers graded to collagen at a lower stem layers. This optimal graded stem coated with hydroxyapatite found to reduce stress shielding by 57% compared to homogenous titanium stem coated with hydroxyapatite. However, the optimal functionally graded stem coated with collagen reduced the stress shielding by 51% compared to homogenous titanium stem coated with collagen.

  5. An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge

    NASA Astrophysics Data System (ADS)

    Hou, Peng-Fei; Zhang, Yang

    2017-09-01

    Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.

  6. BMP2-encapsulated chitosan coatings on functionalized Ti surfaces and their performance in vitro and in vivo.

    PubMed

    Han, Lu; Lin, Hong; Lu, Xiong; Zhi, Wei; Wang, Ke-Feng; Meng, Fan-Zhi; Jiang, Ou

    2014-07-01

    Bone morphogenic protein-2 (BMP2)-encapsulated chitosan (CS) coatings were prepared to immobilize BMP2 on titanium (Ti) surfaces. The Ti substrates were functionalized through a three-step process: alkali treatment, silanization with 3-aminopropyltriethoxysilane and aldehydation with glutaraldehyde (GA). BMP2-encapsulated CS coatings (BMP2-CS) were bonded to Ti surfaces through reactions between the aldehyde groups of GA and the amine groups of CS. Direct BMP2 immobilization on aldehyde-treated Ti (BMP2-Ti) and pure CS coatings (CS-Ti) were used as controls. The release rate of BMP2-CS-Ti was half of that of BMP2-Ti at initial stage, which indicates that the CS coatings are suitable carriers for sustained BMP2 release. The osteoinductivities of BMP2-CS-Ti, BMP2-Ti, CS-Ti and pristine Ti were examined by both in vitro cell tests and in vivo experiments. Bone marrow stem cell (BMSC) culture indicated that BMP2-CS-Ti is more potent in stimulating the differentiation of the adhering BMSC than the three other groups. Rabbit femur implantation revealed the excellent osteoinductivity of BMP2-CS-coated Ti implants. These results demonstrate that the BMP2-encapsulated CS coatings are stable osteoinductive coatings that realize the sustained release of BMP2 and maintain the activity of the protein.

  7. Antimicrobial polycaprolactone/polyethylene glycol embedded lysozyme coatings of Ti implants for osteoblast functional properties in tissue engineering

    NASA Astrophysics Data System (ADS)

    Visan, A.; Cristescu, R.; Stefan, N.; Miroiu, M.; Nita, C.; Socol, M.; Florica, C.; Rasoga, O.; Zgura, I.; Sima, L. E.; Chiritoiu, M.; Chifiriuc, M. C.; Holban, A. M.; Mihailescu, I. N.; Socol, G.

    2017-09-01

    In this study, coatings based on lysozyme embedded into a matrix of polyethylene glycol (PEG) and polycaprolactone (PCL) were fabricated by two different methods (Matrix Assisted Pulsed Laser Evaporation - MAPLE and Dip Coating) for obtaining antimicrobial coatings envisaged for long term medical applications. Coatings with different PEG:PCL compositions (3:1; 1:1; 1:3) were synthesized in order to evaluate the antimicrobial activity of lysozyme embedded into the polymeric matrix. The main surface features, such as roughness and wettability, with impact on the microbial adhesion as well as on the eukaryote cell function were measured. The obtained composite coatings exhibited a significant antibacterial activity against Escherichia coli, Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus strains. As well, specific blended coatings showed appropriate viability, good spreading and normal cell morphology of SaOs2 human osteoblasts and mesenchymal stem cells (MSCs). These investigations highlight the suitability of biodegradable composites as implant coatings for decreasing the risk of bacterial contamination associated with prosthetic procedures.

  8. Functional Multi-Nanolayer Coatings of Amorphous Carbon/Tungsten Carbide with Exceptional Mechanical Durability and Corrosion Resistance.

    PubMed

    Nemati, Narguess; Bozorg, Mansoor; Penkov, Oleksiy V; Shin, Dong-Gap; Sadighzadeh, Asghar; Kim, Dae-Eun

    2017-09-06

    A novel functional multilayer coating with periodically stacked nanolayers of amorphous carbon (a:C)/tungsten carbide (WC) and an adhesion layer of chromium (Cr) was deposited on 304 stainless steel using a dual magnetron sputtering technique. Through process optimization, highly densified coatings with high elasticity and shear modulus, excellent wear resistance, and minimal susceptibility to corrosive and caustic media could be acquired. The structural and mechanical properties of the optimized coatings were studied in detail using a variety of analytical techniques. Furthermore, finite element method simulations indicated that the stress generated due to contact against a steel ball was distributed well within the coating, which allowed the stresses to be lower than the yield threshold of the coating. Thus, an ultralow wear rate of ∼10(-12)mm(3)/N mm could be achieved in dry sliding conditions under relatively high Hertzian contact pressures of ∼0.4-0.9 GPa. The amorphous and pinhole-free structure of the individual layers, sufficient number of pairs, and the relatively dense stacked layers resulted in significant polarization resistance (Z″ = 5.5 × 10(6) Ω cm(2)) and increased the corrosion resistance of the coating by 10-fold compared to that of recently reported corrosion-resistant coatings.

  9. Carbohydrate coated, folate functionalized colloidal graphene as a nanocarrier for both hydrophobic and hydrophilic drugs.

    PubMed

    Maity, Amit Ranjan; Chakraborty, Atanu; Mondal, Avijit; Jana, Nikhil R

    2014-03-07

    Although graphene based drug delivery has gained significant recent interest, the synthesis of colloidal graphene based nanocarriers with high drug loading capacities and with targeting ligands at the outer surface is a challenging issue. We have synthesized carbohydrate coated and folate functionalized colloidal graphene which can be used as a nanocarrier for a wide variety of hydrophobic and hydrophilic drugs. The synthesized colloidal graphene is loaded with paclitaxol, camptothecin, doxorubicin, curcumin and used for their targeted delivery to cancer cells. We demonstrate that this drug loaded functional graphene nanocarrier can successfully deliver drugs into target cells and offers an enhanced therapeutic performance. The reported approach can be extended to the cellular delivery of other hydrophobic and hydrophilic drugs and the simultaneous delivery of multiple drugs.

  10. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    PubMed Central

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  11. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bloemen, Maarten; Brullot, Ward; Luong, Tai Thien; Geukens, Nick; Gils, Ann; Verbiest, Thierry

    2012-09-01

    Superparamagnetic iron oxide nanoparticles can provide multiple benefits for biomedical applications in aqueous environments such as magnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles' surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality water-dispersible nanoparticles around 10 nm in size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.

  12. Bending strength of zirconia/porcelain functionally graded materials prepared using spark plasma sintering.

    PubMed

    Tsukada, Gakuji; Sueyoshi, Hidekazu; Kamibayashi, Hiroki; Tokuda, Masayuki; Torii, Mitsuo

    2014-12-01

    The purpose of this study was to fabricate functionally graded materials (FGMs) consisting of yttria-stabilised tetragonal zirconia polycrystal (Y-TZP) and porcelain using spark plasma sintering (SPS) and examine the influence of their microstructures and thermal stress on their bending strengths. Two types of four-layered Y-TZP/porcelain FGMs having a constant layer thickness and a varying layer thickness, Y-TZP/porcelain composite materials having a microstructure corresponding to each layer in FGMs and monolithic materials of Y-TZP and porcelain were fabricated by SPS. The Y-TZP/porcelain volume fraction of each layer in FGMs was varied over 100/0-70/30. Three-point bending test, X-ray diffraction, density measurement, microstructure observation, and thermal stress estimation were performed to characterise the materials. The bending strength of the Y-TZP/porcelain composite materials decreased with the volume fraction of the porcelain. About FGMs, when the 100%Y-TZP layer was on the tensile stress side during the bending test, the bending strength was almost the same as that of the 100%Y-TZP monolithic material. On the other hand, when the 100%Y-TZP layer was on the compressive stress side, the bending strength of FGM having a constant layer thickness was almost the same as that of the 70%Y-TZP+30%porcelain composite material, while the bending strength of FGM with a varying layer thickness was significantly higher than that of the 70%Y-TZP+30%porcelain composite material. The FGMs prepared and analyzed in this research can potentially be used for crowns and bridges as well as for inlays and onlays. The SPS method could effectively fabricate the Y-TZP/porcelain FGMs, and the bending strength results revealed that the graded structure was very efficient to raise the bending strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. PREFACE: 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM 2012)

    NASA Astrophysics Data System (ADS)

    Zhou, Zhangjian; Li, Jingfeng; Zhang, Lianmeng; Ge, Changchun

    2013-03-01

    The 12th International Symposium on Multiscale, Multifunctional and Functionally Graded Materials (FGM-2012) was held in Beijing, China, from 22-36 October 2012. This was part of a series of conferences organized every two years endorsed by International Advisory Committee for FGM's, which serves as a forum for scientists, educators, engineers and young students interested in the development of functionally graded materials (FGM). The series continues from the previous international symposium on FGM held in Sendai, Japan (1990), San Francisco, USA (1992), Lausanne, Switzerland (1994), Tsukuba, Japan (1996), Dresden, Germany (1998), Estes Park, USA (2000), Beijing, China (2002), Leuven, Belgium (2004), Hawaii, USA (2006), Sendai, Japan (2008) and Guimaraes, Portugal (2010). Functionally graded materials are non-uniform materials which are designed with embodied continuous spatial variations in composition and microstructure for the specific purpose of adjusting their thermal, structural, mechanical, biological or functional response to specific application conditions. Such multi-phase materials cover a range of space and time scales, and are best understood by means of a comprehensive multiscale, multiphysics approach. These kinds of materials are presently in the forefront of materials research, receiving worldwide attention. They have a broad range of applications including for example, biomedical, biomechanical, automotive, aerospace, mechanical, civil, nuclear, and naval engineering. New applications are continuously being discovered and developed. The objective of the FGM-2012 intends to provide opportunities for exchanging ideas and discussing state-of-the-art theories, techniques and applications in the fields of multiscale, multifunctional and FGM, through invited lectures, oral and poster presentations. FGM-2012 was organized and hosted by University of Science and Technology Beijing, China, together with Tsing-hua University and Wuhan University of

  14. Mussel-inspired functionalization of PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy.

    PubMed

    Tian, Peng; Xu, Demin; Liu, Xuanyong

    2016-05-01

    The rapid degradation of magnesium-based implants in physiological environments in vivo not only will quickly deteriorate their mechanical strengths but will also lead to a severe change of the micro-environment around the implants, which may cause the final failure of magnesium-based implants. In this work, a polycaprolactone (PCL) layer was prepared to seal the plasma electrolytic oxidization coating (PEO) to form a PEO/PCL composite coating on a biodegradable AZ31 magnesium alloy, followed by further surface functionalization with polydopamine. The in vitro degradation behaviors of the bare AZ31 alloy and coated samples were evaluated in a simulated body fluid (SBF) using the potentiodynamic polarization curve test and the static immersion test. The bioactivity of the samples was investigated using the SBF soaking test. The cytocompatibility of all samples was evaluated using the cytotoxicity test and analysis of the adhesion and proliferation of osteoblast cells (MC3T3-E1) directly cultivated on the sample surface. The results showed that the PCL layer successfully sealed the pores of the PEO coating, and then the polydopamine layer formed on its surface. The in vitro degradation tests showed that the PEO/PCL composite coating improved the corrosion resistance of the AZ31 alloy in SBF with a more positive corrosion potential and a lower corrosion current density. Due to the protection of the PEO/PCL composite coating, the surrounding environment showed nearly no influence on the degradation of the coated sample, which led to no obvious local alkalization and hydrogen evolution. Moreover, compared with the AZ31 alloy and PEO coating, the PEO/PCL composite coating was more suitable for cell adhesion and proliferation. After further surface functionalization by polydopamine, the corrosion resistance of the composite coating was maintained, while its bioactivity was significantly enhanced with a large amount of hydroxyapatite (HA) formed on its surface after

  15. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-02-01

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system.

  16. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    SciTech Connect

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-02-15

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system.

  17. A functionally graded material model for the transmural stress distribution of the aortic valve leaflet.

    PubMed

    Rego, Bruno V; Sacks, Michael S

    2017-03-21

    Heterogeneities in structure and stress within heart valve leaflets are of significant concern to their functional physiology, as they affect how the tissue constituents remodel in response to pathological and non-pathological (e.g. exercise, pregnancy) alterations in cardiac function. Indeed, valve interstitial cells (VICs) are known to synthesize and degrade leaflet extracellular matrix (ECM) components in a manner specific to their local micromechanical environment. Quantifying local variations in ECM structure and stress is thus necessary to understand homeostatic valve maintenance as well as to develop predictive models of disease progression and post-surgical outcomes. In the aortic valve (AV), transmural variations in stress have previously been investigated by modeling the leaflet as a composite of contiguous but mechanically distinct layers. Based on previous findings about the bonded nature of these layers (Buchanan and Sacks, BMMB, 2014), we developed a more generalized structural constitutive model by treating the leaflet as a functionally graded material (FGM), whose properties vary continuously over the thickness. We informed the FGM model using high-resolution morphological measurements, which demonstrated that the composition and fiber structure change gradually over the thickness of the AV leaflet. For validation, we fit the model against an extensive database of whole-leaflet and individual-layer mechanical responses. The FGM model predicted large stress variations both between and within the leaflet layers at end-diastole, with low-collagen regions bearing significant radial stress. These novel results suggest that the continually varying structure of the AV leaflet has an important purpose with regard to valve function and tissue homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Right ventricular function and its relationship with grade of hepatosteatosis in non-alcoholic fatty liver disease

    PubMed Central

    Bekler, Adem; Gazi, Emıne; Erbag, Gokhan; Binnetoglu, Emine; Barutcu, Ahmet; Sen, Hacer; Temiz, Ahmet; Altun, Burak

    2015-01-01

    Summary Objective This study was designed to assess right ventricular systolic and diastolic function and its relationship with grade of hepatosteatosis (HS) in non-alcoholic fatty liver disease (NAFLD) patients using conventional and tissue Doppler echocardiography. Methods NAFLD was diagnosed in 32 individuals (15 males, 17 females; 59% were grade I HS, 41% grade II–III HS) by means of ultrasonography. Twenty-two individuals, whose ultrasonography data did not show HS, comprised the control group (11 males, 11 females) and were included in the study. Right ventricular systolic and diastolic function and their relationship with grade of HS were assessed by conventional and tissue Doppler echocardiography. Additionally, right ventricular global function was assessed by myocardial performance index (MPI). Results When compared by conventional echocardiographic parameters, there were no significant differences between the two groups. With tissue Doppler parameters, the tricuspid annulus peak early diastolic velocity and ratio of early-tolate diastolic velocity were lower in the patients than in the controls (p = 0.03, p = 0.02, respectively). The isovolumetric relaxation time and MPI were significantly higher (p < 0.001, p < 0.001, respectively) in the patient group. HS grade was positively correlated with right ventricular isovolumetric relaxation time and MPI index (r = 0.295, p = 0.03, r = 0.641, p < 0.001, respectively). Conclusion These results show that right ventricular diastolic dysfunction (RVDD) in patients with NAFLD and degree of HS was associated with RVDD. PMID:26592905

  19. Management of Grade III Mobile Anterior Tooth in Function Using Endostabilizer – A Case Report

    PubMed Central

    Patil, Swapnil N

    2014-01-01

    Impact of implant dentistry is such that today very few dentists think about saving grade III mobile anterior teeth. A patient with grade III mobility of central incisor due to apical root resorption was treated by using 80 no.stainless steel ‘H’ file as endostabiliser and one year follow up was done. Endostabiliser reduced the mobility of grade III mobile teeth drastically, immediately after its placement. Tooth was absolutely asymptomatic throughout one year follow up. PMID:25654043

  20. Analytical performance characteristics of nanoelectrospray emitters as a function of conductive coating.

    PubMed

    Smith, Douglas R; Moy, Marie A; Dolan, Anthony R; Wood, Troy D

    2006-04-01

    As miniaturization of electrospray continues to become more prevalent in the mass spectrometry arsenal, numerous types of conductive coatings have been developed with miniaturized electrospray emitters. Different conductive coatings have different properties that may lead to differences in analytical performance. This paper investigates and compares the analytical properties of a series of applied conductive coatings for low-flow electrospray ionization developed in this laboratory vs. commercially-available types. Evaporated graphite is thoroughly compared with commercially available polyaniline (PANI) coated emitters and metal coated emitters. Each set of emitters was investigated to determine various performance characteristics, including susceptibility to electrical discharge in both positive and negative ionization modes, as well as emitter reproducibility and generation of a standard curve to determine each emitter coating's limit of detection and limit of quantitation. Furthermore, evaporated graphite and polyaniline coated fused silica capillaries were investigated to determine which coating is more stable over long-term analyses and during electrical discharge.

  1. Academic and Cognitive Functioning in First Grade: Associations with Earlier Home and Child Care Predictors and with Concurrent Home and Classroom Experiences

    ERIC Educational Resources Information Center

    Downer, Jason T.; Pianta, Robert C.

    2006-01-01

    Family and child care experiences from birth to 54 months, achievement and social competence at entry to school, maternal sensitivity at first grade, and qualities of first-grade classrooms were used to predict academic and cognitive functioning at first grade for 832 children enrolled in the National Institute of Child Health and Human…

  2. Functionalized boron nitride nanotubes with a stannic oxide coating: a novel chemical route to full coverage.

    PubMed

    Han, Wei-Qiang; Zettl, Alex

    2003-02-26

    BN nanotubes are coated with SnO(2) by a simple chemical reaction in solution. BN nanotubes are stirred inside a SnCl(2) solution at room temperature for 1 h. The coating is uniform with complete coverage. The coating thickness is typically 1-5 nm. The coating layer contains SnO(2) nanoparticles with sizes ranging from 1 to 5 nm.

  3. Active vibration control of functionally graded beams with piezoelectric layers based on higher order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Bendine, K.; Boukhoulda, F. B.; Nouari, M.; Satla, Z.

    2016-12-01

    This paper reports on a study of active vibration control of functionally graded beams with upper and lower surface-bonded piezoelectric layers. The model is based on higher-order shear deformation theory and implemented using the finite element method (FEM). The proprieties of the functionally graded beam (FGB) are graded along the thickness direction. The piezoelectric actuator provides a damping effect on the FGB by means of a velocity feedback control algorithm. A Matlab program has been developed for the FGB model and compared with ANSYS APDL. Using Newmark's method numerical solutions are obtained for the dynamic equations of FGB with piezoelectric layers. Numerical results show the effects of the constituent volume fraction and the influence the feedback control gain on the frequency and dynamic response of FGBs.

  4. Membranes for periodontal regeneration: From commercially available to spatially designed and functionally graded materials

    NASA Astrophysics Data System (ADS)

    Bottino, Marco Cicero

    The aging of the global population will lead to a considerable increase in the number of surgical and restorative procedures related to oral rehabilitation or periodontal regeneration. Periodontitis is one of the most aggressive pathologies that concern the integrity of the periodontal system that can lead to the destruction of the periodontium. Guided tissue and guided bone regeneration (GTR/GBR) have been used for the repair and regeneration of periodontal tissues by utilizing an occlusive membrane. The goal of this dissertation is to advance the knowledge in the area of periodontal regeneration by investigating the properties of a commercially available freeze-dried collagen-based graft (AlloDermRTM) and by designing/fabricating a functionally graded membrane (FGM) via multilayer electrospinning. The effects of different rehydration times and of a simultaneous rehydration/crosslinking procedure on the biomechanical properties and matrix stability of the commercially available membrane were investigated. The results revealed that there are significant changes on the biomechanical properties of the graft as rehydration time increases. Moreover, it was demonstrated that the simultaneous rehydration/crosslinking protocol has a synergistic effect in terms of enhancing biomechanical properties. A FGM consisting of a core-layer (CL) and two functional surface-layers (SL) was fabricated via sequential electrospinning. Hydroxyapatite nanoparticles (n-HAp) were incorporated to enhance bone formation (SL facing bone defect), and metronidazole benzoate (MET) was added to prevent bacterial colonization (SL facing the epithelial tissue). Degradation studies performed on both the CL and the FGM confirmed that the design holds promise in terms of providing the required mechanical stability to avoid membrane collapse and, therefore, enhance bone regeneration. Finally, it was demonstrated that MET incorporation into the SL that would face epithelial tissue is effective in

  5. Friction Spinning—New Innovative Tool Systems For The Production of Complex Functionally Graded Workpieces

    NASA Astrophysics Data System (ADS)

    Homberg, Werner; Hornjak, Daniel

    2011-05-01

    Friction spinning is a new innovative and promising incremental forming technology implying high potential regarding the manufacturing of complex functionally graded workpieces and enhancing existing forming limits of conventional metal spinning processes. The friction spinning process is based on the integration of thermo-mechanical friction subprocesses in this incremental forming process. By choosing the appropriate process parameters, e.g. axial feed rate or relative motion, the contact conditions between tool and workpiece can be influenced in a defined way and, thus, a required temperature profile can be obtained. Friction spinning allows the extension of forming limits compared to conventional metal spinning in order to produce multifunctional components with locally varying properties and the manufacturing of e.g. complex hollow parts made of tubes, profiles, or sheet metals. In this way, it meets the demands regarding efficiency and the manufacturing of functionally graded lightweight components. There is e.g. the possibility of locally increasing the wall thickness in joining zones and, as a consequence, achieving higher quality of the joint at decreased expense. These products are not or only hardly producible by conventional processes so far. In order to benefit from the advantages and potentials of this new innovative process new tooling systems and concepts are indispensable which fulfill the special requirements of this thermo-mechanical process concerning thermal and tribological loads and which allow simultaneous and defined forming and friction operations. An important goal of the corresponding research work at the Chair of Forming and Machining Technology at the University of Paderborn is the development of tool systems that allow the manufacturing of such complex parts by simple uniaxial or sequential biaxial linear tool paths. In the paper, promising tool systems and geometries as well as results of theoretical and experimental research work (e

  6. Investigation of non-isocyanate urethane functional latexes and carbon nanofiller/epoxy coatings

    NASA Astrophysics Data System (ADS)

    Meng, Lei

    This dissertation consists of two parts. In the first part, a new class of non-isocyanate urethane methacrylates was synthesized and the effect of the new monomers on the urethane functional latex was investigated. The second part focused on a comparison of carbon nanofillers in inorganic/organic epoxy coating system for anticorrosive applications. A new class of non-isocyanate urethane methacrylates (UMAs) monomers was synthesized through an environmentally friendly non-isocyanate pathway. The kinetics of seeded semibatch emulsion polymerization of UMAs with methyl methacrylate (MMA) and butyl acrylate (BA) was monitored. The particle size and morphology were investigated by dynamic light scattering (DLS), ultrasound acoustic attenuation spectroscopy (UAAS) and transmission electron microscopy (TEM). The minimum film formation temperature (MFFT), mechanical and viscoelastic properties were studied. It was found that the emulsion polymerization processes all proceeded via Smith-Ewart control, leading to the uniform morphology and particle size. The glass transition temperature (Tg) and the mechanical properties of poly(MMA/BA/UMA) decreased with the increasing chain length of urethane methacrylate monomers due to the increasing flexibility of side chains. Without the effect of Tg, lower MFFT and improved mechanical properties were observed from urethane functional latexes. The improved mechanical properties were due to the increasing particle interaction by forming hydrogen bonding. Furthermore, the effect of urethane functionality in terms of the polymer composition, the location and the concentration was investigated by the batch, single-stage and two-stage semibatch polymerization of 2-[(butylcarbamoyl)oxy]ethyl methacrylate (BEM) with MMA and BA. The core-shell and homogeneous structures were evaluated by TEM, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (SS-NMR). The compositional drift was observed from the batch

  7. Functional Outcome After Poor-Grade Subarachnoid Hemorrhage: A Single-Center Study and Systematic Literature Review.

    PubMed

    de Oliveira Manoel, Airton Leonardo; Mansur, Ann; Silva, Gisele Sampaio; Germans, Menno R; Jaja, Blessing N R; Kouzmina, Ekaterina; Marotta, Thomas R; Abrahamson, Simon; Schweizer, Tom A; Spears, Julian; Macdonald, R Loch

    2016-12-01

    Poor-grade subarachnoid hemorrhage (SAH) (World Federation of Neurosurgical Societies grade 4 and 5) is associated with high mortality rates and unfavorable functional outcomes. We report a single-center cohort of poor-grade SAH patients, combined with a systematic review of studies reporting functional outcome in the poor-grade SAH population. Data on a cohort of poor-grade SAH patients treated between 2009 and 2013 were retrospectively collected and combined with a systematic review (from inception to November 2015; PubMed, Embase). Two reviewers assessed the studies independently based on predefined inclusion criteria: consecutive poor-grade SAH, functional outcome measured at least 3 months after hemorrhage, and the report of patients who died before aneurysm treatment. The search yielded 329 publications, and 23 met our inclusion criteria with 2713 subjects enrolled from 1977 to 2014 in 10 countries (including 179 poor-grade patients from our cohort). Mortality rate was 60 % (1683 patients), of which 806 (29 %) died before and 877 (31 %) died after aneurysm treatment, respectively. Treatment was undertaken in 1775 patients (1775/2826-63 %): 1347 by surgical clipping (1347/1775-76 %) and 428 (428/1775-24 %) by endovascular methods. Outcome was favorable in 794 patients (28 %) and unfavorable in 1867 (66 %). When the studies were grouped into decades, favorable outcome increased from 13 % in the late 1970s to early 1980s to 35 % in the late 1980s to early 1990s, and remained unchanged thereafter. Although mortality remains high in poor-grade SAH patients, a favorable functional outcome can be achieved in approximately one-third of patients. The development of new diagnostic methods and implementation of therapeutic approaches were probably responsible for the decrease in mortality and improvement in the functional outcome from 1970 to the 1990s. The plateau in functional outcome seen thereafter might be explained by the treatment of sicker and older

  8. Cytotoxicity of Protein-Carbon Nanotubes on J774 Macrophages Is a Functionalization Grade-Dependent Effect

    PubMed Central

    Montes-Fonseca, Silvia Lorena; Sánchez-Ramírez, Blanca; Luna-Velasco, Antonia; Arzate-Quintana, Carlos; Silva-Cazares, Macrina Beatriz; González Horta, Carmen

    2015-01-01

    Carbon nanotubes (CNTs) are used as carriers in medicine due to their ability to be functionalized with chemical substances. However, cytotoxicity analysis is required prior to use for in vivo models. The aim of this study was to evaluate the cytotoxic effect of CNTs functionalized with a 46 kDa surface protein from Entamoeba histolytica (P46-CNTs) on J774A macrophages. With this purpose, CNTs were synthesized by spray pyrolysis and purified (P-CNTs) using sonication for 48 h. A 46 kDa protein, with a 4.6–5.4 pI range, was isolated from E. histolytica HM1:IMSS strain trophozoites using an OFFGEL system. The P-CNTs were functionalized with the purified 46 kDa protein, classified according to their degree of functionalization, and characterized by Raman and Infrared spectroscopy. In vitro cytotoxicity was evaluated by MTT, apoptosis, and morphological assays. The results demonstrated that P46-CNTs exhibited cytotoxicity dependent upon the functionalized grade. Contrary to what was expected, P46-CNTs with a high grade of functionalization were more toxic to J774 macrophages than P46-CNTs with a low grade of functionalization, than P-CNTs, and had a similar level of toxicity as UP-CNT. This suggests that the nature of the functionalized protein plays a key role in the cytotoxicity of these nanoparticles. PMID:26075262

  9. Awake surgery for hemispheric low-grade gliomas: oncological, functional and methodological differences between pediatric and adult populations.

    PubMed

    Trevisi, Gianluca; Roujeau, Thomas; Duffau, Hugues

    2016-10-01

    Brain mapping through a direct cortical and subcortical electrical stimulation during an awake craniotomy has gained an increasing popularity as a powerful tool to prevent neurological deficit while increasing extent of resection of hemispheric diffuse low-grade gliomas in adults. However, few case reports or very limited series of awake surgery in children are currently available in the literature. In this paper, we review the oncological and functional differences between pediatric and adult populations, and the methodological specificities that may limit the use of awake mapping in pediatric low-grade glioma surgery. This could be explained by the fact that pediatric low-grade gliomas have a different epidemiology and biologic behavior in comparison to adults, with pilocytic astrocytomas (WHO grade I glioma) as the most frequent histotype, and with WHO grade II gliomas less prone to anaplastic transformation than their adult counterparts. In addition, aside from the issue of poor collaboration of younger children under 10 years of age, some anatomical and functional peculiarities of children developing brain (cortical and subcortical myelination, maturation of neural networks and of specialized cortical areas) can influence direct electrical stimulation methodology and sensitivity, limiting its use in children. Therefore, even though awake procedure with cortical and axonal stimulation mapping can be adapted in a specific subgroup of children with a diffuse glioma from the age of 10 years, only few pediatric patients are nonetheless candidates for awake brain surgery.

  10. Cyclic Nanoindentation and Nano-Impact Fatigue Mechanisms of Functionally Graded TiN/TiNi Film

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Prathuru, Anil K.; Goel, Saurav; Ahmed, R.; Droubi, M. G.; Beake, B. D.; Fu, Y. Q.

    2017-03-01

    The mechanisms of nanoscale fatigue of functionally graded TiN/TiNi films have been studied using multiple-loading cycle nanoindentation and nano-impact tests. The functionally graded films were sputter deposited onto silicon substrates, in which the TiNi film provides pseudo-elasticity and shape memory behaviour, while a top TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to investigate the localised film performance and failure modes of the functionally graded film using both Berkovich and conical indenters with loads between 100 μN and 500 mN. The loading history was critical to define film failure modes (i.e. backward depth deviation) and the pseudo-elastic/shape memory effect of the functionally graded layer. The results were sensitive to the applied load, loading mode (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it was concluded that the shape of the indenter is critical to induce localised indentation stress and film failure, and generation of pseudo-elasticity at a lower load range. Finite-element simulation of the elastic loading process indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure.

  11. Cyclic Nanoindentation and Nano-Impact Fatigue Mechanisms of Functionally Graded TiN/TiNi Film

    NASA Astrophysics Data System (ADS)

    Faisal, N. H.; Prathuru, Anil K.; Goel, Saurav; Ahmed, R.; Droubi, M. G.; Beake, B. D.; Fu, Y. Q.

    2017-06-01

    The mechanisms of nanoscale fatigue of functionally graded TiN/TiNi films have been studied using multiple-loading cycle nanoindentation and nano-impact tests. The functionally graded films were sputter deposited onto silicon substrates, in which the TiNi film provides pseudo-elasticity and shape memory behaviour, while a top TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to investigate the localised film performance and failure modes of the functionally graded film using both Berkovich and conical indenters with loads between 100 μN and 500 mN. The loading history was critical to define film failure modes (i.e. backward depth deviation) and the pseudo-elastic/shape memory effect of the functionally graded layer. The results were sensitive to the applied load, loading mode (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it was concluded that the shape of the indenter is critical to induce localised indentation stress and film failure, and generation of pseudo-elasticity at a lower load range. Finite-element simulation of the elastic loading process indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure.

  12. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    NASA Astrophysics Data System (ADS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-05-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  13. Sugar‐coated sperm: Unraveling the functions of the mammalian sperm glycocalyx

    PubMed Central

    Tecle, Eillen

    2015-01-01

    SUMMARY Mammalian spermatozoa are coated with a thick glycocalyx that is assembled during sperm development, maturation, and upon contact with seminal fluid. The sperm glycocalyx is critical for sperm survival in the female reproductive tract and is modified during capacitation. The complex interplay among the various glycoconjugates generates numerous signaling motifs that may regulate sperm function and, as a result, fertility. Nascent spermatozoa assemble their own glycans while the cells still possess a functional endoplasmic reticulum and Golgi in the seminiferous tubule, but once spermatogenesis is complete, they lose the capacity to produce glycoconjugates de novo. Sperm glycans continue to be modified, during epididymal transit by extracellular glycosidases and glycosyltransferases. Furthermore, epididymal cells secrete glycoconjugates (glycophosphatidylinositol‐anchored glycoproteins and glycolipids) and glycan‐rich microvesicles that can fuse with the maturing sperm membrane. The sperm glycocalyx mediates numerous functions in the female reproductive tract, including the following: inhibition of premature capacitation; passage through the cervical mucus; protection from innate and adaptive female immunity; formation of the sperm reservoir; and masking sperm proteins involved in fertilization. The immense diversity in sperm‐associated glycans within and between species forms a remarkable challenge to our understanding of essential sperm glycan functions. Mol. Reprod. Dev. 82: 635–650, 2015. © 2015 The Authors. Molecular Reproduction and Development published by Wiley Periodicals, Inc. PMID:26061344

  14. Interface Oscillation in the Side-by-Side (SBS) Tape Casting of Functionally Graded Ceramics (FGCs)

    NASA Astrophysics Data System (ADS)

    Jabbari, Masoud; Bulatova, Regina; Hattel, Jesper; Bahl, Christian

    2012-11-01

    Room temperature magnetic refrigeration is a new highly efficient and environmentally protective technology. Although it has not been maturely developed, it shows great applicable prosperity and seems to be a potential substitute for the traditional vapor compression technology. Tape Casting is a common process in producing multilayer ceramics, which now is used for producing side-by-side (SBS) functionally graded ceramics (FGCs). These FGCs are mostly used in the magnetic refrigeration sectors due to the varying composition of the magnetocaloric materials so that the magnetic transition temperature of the magnetic regenerator varies along the paths. The main goal of this research is to study the multiple material flow in SBS tape casting and analyze its influence on the interface between the stripes. The materials used for the experimental part are La0 . 85 Sr0 . 15 MnO3 and Ce0 . 9 Gd0 . 1O2 ceramic slurries. The rheological behavior of the slurries are extracted from experiments and used in the ANSYS FLUENT commercial code to develop a fluid flow model for the non-Newtonian ceramic slurries and evaluate the interface oscillation between the stripes in SBS tape casting. The Numerical results show reasonable agreement with corresponding experimental results.

  15. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates

    NASA Astrophysics Data System (ADS)

    Qing Wang, Yan; Zu, Jean W.

    2017-10-01

    This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge–Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.

  16. Acoustic pulse interaction with a submerged functionally graded material hollow cylinder

    NASA Astrophysics Data System (ADS)

    Hasheminejad, Seyyed M.; Abbasion, Saeed; Mirzaei, Yaser

    2011-01-01

    A detailed study is undertaken to analyze the two-dimensional transient fluid-structure interaction of a plane acoustic pressure pulse with an arbitrarily thick, isotropic, functionally graded, hollow cylinder of infinite length, submerged in and filled with non-viscous compressible fluids. A laminate approximate model is adopted to deal with the assumed power-law variation of the constituents' volume fractions across the thickness of the inhomogeneous cylinder. The problem solution is obtained by employing the classical method of modal expansion in conjunction with the powerful Transfer matrix solution technique and Durbin's numerical Laplace inversion algorithm. Detailed numerical examples for the transient responses of water-filled and submerged thick-walled TiC-Al FGM cylinders with ceramic or metal rich material compositional gradient profiles under wideband and narrowband Gaussian incident shock loadings are presented and discussed. Many of the interesting dynamic features in the transient shell-shock interaction are addressed through appropriate plots of the internal/external pressure field as well as the induced dynamic stress concentrations within the shell material. Also, the response curves for the FGM cylinders are compared with those of equivalent bi-laminate shells containing comparable total volume fractions of constituent materials. A limiting case is considered and the validity of the work is established by comparison with the data obtained with the aid of a commercial finite element package.

  17. Nonlinear dynamics of initially imperfect functionally graded circular cylindrical shell under complex loads

    NASA Astrophysics Data System (ADS)

    Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.

    2015-07-01

    The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.

  18. A numerical study on the application of the functionally graded materials in the stent design.

    PubMed

    Khosravi, Arezoo; Bahreinizad, Hossein; Bani, Milad Salimi; Karimi, Alireza

    2017-04-01

    Undesirable deformation of the stent can induce a significant amount of injure not only to the blood vessel but also to the plaque. The objective of this study was to reduce/minimize these undesirable deformations by the application of Functionally Graded Materials (FGM). To do this, Finite Element (FE) method was employed to simulate the expansion of a stent and the corresponding displacement of the stenosis plaque. Three hyperelastic plaque types as well as five elastoplastic stents were simulated. Dogboning, foreshortening, maximum stress in the plaque, and the pressure which is needed to fully expand the stent for different stent materials, were acquired. While all FGMs had lower dogboning in comparison to the stents made of the uniform materials, the stent with the lowest heterogeneous index displayed the lowest amount of dogboning. Steel stent showed the lowest foreshortening and fully expansion pressure but the difference was much lower than that the one for dogboning. Therefore, the FGM with the heterogeneous index of 0.5 is expected to exhibit the most suitable results. In addition, the results revealed that the material parameters has crucial effects on the deformation of the stent and, as a result, as a design point of view the FGM parameters can be tailored to achieve the goal of the biomechanical optimization.

  19. Comparison of various functionally graded femoral prostheses by finite element analysis.

    PubMed

    Oshkour, Azim Ataollahi; Talebi, Hossein; Shirazi, Seyed Farid Seyed; Bayat, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2014-01-01

    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent.

  20. Comparison of Various Functionally Graded Femoral Prostheses by Finite Element Analysis

    PubMed Central

    Seyed Shirazi, Seyed Farid; Bayat, Mehdi; Yau, Yat Huang; Tarlochan, Faris; Abu Osman, Noor Azuan

    2014-01-01

    This study is focused on finite element analysis of a model comprising femur into which a femoral component of a total hip replacement was implanted. The considered prosthesis is fabricated from a functionally graded material (FGM) comprising a layer of a titanium alloy bonded to a layer of hydroxyapatite. The elastic modulus of the FGM was adjusted in the radial, longitudinal, and longitudinal-radial directions by altering the volume fraction gradient exponent. Four cases were studied, involving two different methods of anchoring the prosthesis to the spongy bone and two cases of applied loading. The results revealed that the FG prostheses provoked more SED to the bone. The FG prostheses carried less stress, while more stress was induced to the bone and cement. Meanwhile, less shear interface stress was stimulated to the prosthesis-bone interface in the noncemented FG prostheses. The cement-bone interface carried more stress compared to the prosthesis-cement interface. Stair climbing induced more harmful effects to the implanted femur components compared to the normal walking by causing more stress. Therefore, stress shielding, developed stresses, and interface stresses in the THR components could be adjusted through the controlling stiffness of the FG prosthesis by managing volume fraction gradient exponent. PMID:25302331

  1. Development of 3D functionally graded models by laser-assisted coaxial powder injection

    NASA Astrophysics Data System (ADS)

    Yakovlev, Artem; Bertrand, Ph.; Smurov, Igor Y.

    2004-04-01

    Relatively new method of producing 3D objects with Functionally Graded Material (FGM) structure is realized by coaxial powder injection with variable composition into the zone of laser beam action. The desired 3-dimensional material distribution is realized by repetitive deposition process. Theoretical analysis and experimental results show essential role of radiation mode and powder granularity as optimization parameters. Applied laser sources are continuous wave Nd:YAG(HAAS 2006D, 2kW), pulse-periodic Nd:YAG(HAAS HL304P, avg. power 300 W), quazi-cw CO2 (Rofin-Sinar, 300 W). Among applied materials are nanostructured WC/Co, CuSn, Stainless steel 316L, 430L, Co-base alloy, nanostructured FeCu, etc. The originality of obtained results is that different gradient types are produced "in situ" and combined within one sample: smooth, sharp or multilayered gradients. The number of samples is produced and examined with metallographical and SEM analysis. The minimal spatial gradient resolution (transition zone between two different materials) is starting from 10 microns and can be varied in a wide range; the surface roughness depends from powder granularity, best value of Ra is about 5 μm, microhardness of differet zones of samples is varied from 120 to 450 HV. The achieved geometry spatial resolution is 200 μm.

  2. Spin-polarized Wide Electron Slabs in Functionally Graded Polar Oxide Heterostructures

    PubMed Central

    Ye, Jiandong; Ter Lim, Sze; Bosman, Michel; Gu, Shulin; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Sun, Xiaowei; Teo, Kie Leong

    2012-01-01

    We report on the high mobility wide electron slabs with enhanced correlation effects by tailoring the polarization effects in a functionally graded ZnMgO/ZnO heterostructures. The characteristics of three-dimensional (3D) spreading electrons are evidenced by the capacitance-voltage profiling and the quantization of 3D Fermi surface in magneto-transport measurements. Despite the weak spin-orbit interaction, such electron slabs are spin-polarized with a large zero-field spin splitting energy, which is induced by the carrier-mediated ferromagnetism. Our results suggest that the vast majority of electrons are localized at the surface magnetic moment which does not allow spin manipulations, and only in the region visited by the itinerant carriers that the ferromagnetic exchange interactions via coupling to the surface local moments contribute to the spin transport. The host ferromagnetism is likely due to the formation of Zn cation vacancies on the surface regime induced by the stabilization mechanism and strain-relaxation in ZnMgO polar ionic surface. PMID:22833785

  3. Spin-polarized wide electron slabs in functionally graded polar oxide heterostructures.

    PubMed

    Ye, Jiandong; Ter Lim, Sze; Bosman, Michel; Gu, Shulin; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Sun, Xiaowei; Teo, Kie Leong

    2012-01-01

    We report on the high mobility wide electron slabs with enhanced correlation effects by tailoring the polarization effects in a functionally graded ZnMgO/ZnO heterostructures. The characteristics of three-dimensional (3D) spreading electrons are evidenced by the capacitance-voltage profiling and the quantization of 3D Fermi surface in magneto-transport measurements. Despite the weak spin-orbit interaction, such electron slabs are spin-polarized with a large zero-field spin splitting energy, which is induced by the carrier-mediated ferromagnetism. Our results suggest that the vast majority of electrons are localized at the surface magnetic moment which does not allow spin manipulations, and only in the region visited by the itinerant carriers that the ferromagnetic exchange interactions via coupling to the surface local moments contribute to the spin transport. The host ferromagnetism is likely due to the formation of Zn cation vacancies on the surface regime induced by the stabilization mechanism and strain-relaxation in ZnMgO polar ionic surface.

  4. Bi-functionally Graded Electrode Supported SOFC Modeling and Computational Thermal Fluid Analysis for Experimental Design

    SciTech Connect

    Shi, J.; Xue, X.

    2011-01-01

    A comprehensive 3D CFD model is developed for a bi-electrode supported cell (BSC) SOFC. The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reaction. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but nonlinear porosity distributions. Extensive numerical analysis is performed to elucidate the effects of both porous microstructure distributions and operating condition on cell performance. Results indicate that cell performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design, the uniform hydrogen distribution within porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. The modeling results can be employed to guide experimental design of BSC test and provide pre-experimental analysis, as a result, to circumvent high cost associated with try-and-error experimental design and setup.

  5. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    NASA Astrophysics Data System (ADS)

    Yang, R. B.; Liang, W. F.; Wu, C. H.; Chen, C. C.

    2016-05-01

    Radar absorbing materials (RAMs) also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI) reduction and human health protection. In this study, the synthesis of functionally graded material (FGM) (CI/Polyurethane composites), which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA) to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below -10 dB can be obtained in the frequency range of 5.12˜18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of -25.2 dB at 6.64 GHz and its bandwidth below - 10 dB is larger than 12.8 GHz.

  6. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout

    PubMed Central

    Mirzaei, Mostafa

    2016-01-01

    Summary During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement. PMID:27335742

  7. Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability

    NASA Astrophysics Data System (ADS)

    Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.

    2017-04-01

    In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.

  8. Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys

    NASA Astrophysics Data System (ADS)

    Asadi, H.; Akbarzadeh, A. H.; Chen, Z. T.; Aghdam, M. M.

    2015-04-01

    The present paper deals with the nonlinear thermal instability of geometrically imperfect sandwich cylindrical shells under uniform heating. The sandwich shells are made of a shape memory alloy (SMA)-fiber-reinforced composite and functionally graded (FG) face sheets (FG/SMA/FG). The Brinson phenomenological model is used to express the constitutive characteristics of SMA fibers. The governing equations are established within the framework of the third-order shear deformation shell theory by taking into account the von Karman geometrical nonlinearity and initial imperfection. The material properties of constituents are assumed to be temperature dependent. The Galerkin technique is utilized to derive expressions of the bifurcation points and bifurcation paths of the sandwich cylindrical shells. Using the developed closed-form solutions, extensive numerical results are presented to provide an insight into the influence of the SMA fiber volume fraction, SMA pre-strain, core thickness, non-homogeneity index, geometrical imperfection, geometry parameters of sandwich shells and temperature dependency of materials on the stability of shells. The results reveal that proper application of SMA fibers postpones the thermal bifurcation point and dramatically decreases thermal post-buckling deflection. Moreover, the induced tensile recovery stress of SMA fibers could also stabilize the geometrically imperfect shells during the inverse martensite phase transformation.

  9. Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells

    NASA Astrophysics Data System (ADS)

    Sun, Jiabin; Lim, C. W.; Zhou, Zhenhuan; Xu, Xinsheng; Sun, Wei

    2016-06-01

    This paper presents new analytical solutions for buckling of carbon nanotubes (CNTs) and functionally graded (FG) cylindrical nanoshells subjected to compressive and thermal loads. The model applies Eringen's nonlocal differential constitutive relation to describe the size-dependence of nanoshells. Based on Reddy's higher-order shear deformation theory, governing equations are established and solved by separating the variables. The analysis first re-examines the classical buckling of single-walled CNTs. Accurate solutions are established, and it is found that the buckling stress decreases drastically when the nonlocal parameter reaches a certain value. For CNTs with constant wall-thickness, the buckling stress eventually decreases with enhanced size effect. By comparing with CNTs molecular dynamic simulations, the obtained nonlocal parameters are much smaller than those proposed previously. Subsequently, FG cylindrical nanoshells are analyzed, and it is concluded that similar behavior that has been observed for CNTs is also valid for FG cylindrical nanoshells. The paper further discusses in detail the effects of different geometric parameters, material distribution, and temperature field.

  10. The potential application of functionally graded material for proximal femoral nail antirotation device.

    PubMed

    Gong, He; Wang, Lizhen; Zheng, Dong; Fan, Yubo

    2012-09-01

    Proximal femoral nail antirotation (PFNA) device is an intramedullary nail system designing for the treatment of trochanteric fractures. It is composed of a helical neck blade, a nail and a distal locking bolt. There were some reports of femoral shaft fractures even after the fractures were healed. The stress shielding effects of the PFNA device made of stiff titanium alloy on the bone-remodeling behavior of the host femur and the uneven distribution of interface shear stress may contribute to this complication. Recently, a new class of composite called functionally graded material (FGM) was developed, that consisted a gradual pattern of material composition and/or microstructures, and was introduced in dental implant and cementless hip stem. Accordingly, in this paper, we hypothesized that FGM might be used as the material of the nail in PFNA device with the material composition of the nail gradually shifting from more stiff at the proximal side of the femur to more flexible 'iso-elastic' towards the distal side. This hypothesis can be evaluated from the long-term remodeling behavior of host femur and the stress distributions in the PFNA device and bone.

  11. Deformation and Plateau Region of Functionally Graded Aluminum Foam by Amount Combinations of Added Blowing Agent.

    PubMed

    Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro

    2015-10-21

    Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH₂) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0-0 mass %, 0.4-0 mass %, and 0.2-0 mass % TiH₂ were selected as the amounts of TiH₂ relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH₂ addition) layer and shifted to the low-porosity (without TiH₂ addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH₂ (i.e., the combination of pore structures), can be fabricated.

  12. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout.

    PubMed

    Mirzaei, Mostafa; Kiani, Yaser

    2016-01-01

    During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement.

  13. Buckling analysis of cracked functionally graded material column with piezoelectric patches

    NASA Astrophysics Data System (ADS)

    Maleki, Vahid A.; Mohammadi, Nader

    2017-03-01

    In the current study, stability analysis of cracked functionally graded material (FGM) columns under the effect of piezoelectric patches is analytically investigated. Configuration of the patches is somehow chosen to create axial load in the column. The crack is modeled by a rotational massless spring which connects the two intact parts of the column at the crack location. After applying the boundary and compatibility conditions at the crack location and the ends of the piezoelectric patches, the governing equation of buckling behavior of the cracked FGM column is derived. The effect of important parameters on the first and second buckling load of the column such as crack parameters (location and depth), location and length of the patches and also applied voltage is studied and discussed. Results show that a crack significantly reduces the column load capacity which is dependent on location and depth of the crack. By applying static load to the column, piezoelectric patches produce local torque, and controlling this torque leads to reduced crack effects on the column. Using piezoelectric patches with proper location and length compensates the effect of the crack. Despite the first buckling load, positive voltage increases the second buckling load of the column.

  14. Probabilistic Fracture Analysis of Functionally Graded Materials—Part II: Implementation and Numerical Examples

    NASA Astrophysics Data System (ADS)

    Nguyen, Tam H.; Song, Junho; Paulino, Glaucio H.

    2008-02-01

    Probabilistic fracture analyses are performed for investigating uncertain fracture response of Functionally Graded Material (FGM) structures. The First-Order-Reliability-Method (FORM) is implemented into an existing Finite Element code for FGM (FE-FGM), which was previously developed at the University of Illinois at Urbana-Champaign [2]. The computational simulation will be used in order to estimate the probability of crack initiation with uncertainties in the material properties only. The two-step probability analysis method proposed in the companion paper (Part I, [1]) is illustrated by a numerical example of a composite strip with an edge crack. First, the reliability index of a crack initiation event is estimated as we vary the mean and standard deviation of the slope and the location of the inflection point of the spatial profile of Young's modulus. Secondly, the reliability index is estimated as we vary the standard deviation and the correlation length of the random field that characterize the random spatial fluctuation of Young's modulus. Also investigated is the relative importance of the uncertainties in the toughness compared to those in Young's modulus.

  15. Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects

    NASA Astrophysics Data System (ADS)

    Saffari, Shahab; Hashemian, Mohammad; Toghraie, Davood

    2017-09-01

    Based on nonlocal Timoshenko beam theory, dynamic stability of functionally graded (FG) nanobeam under axial and thermal loading was investigated. Surface stress effects were implemented according to Gurtin-Murdoch continuum theory. Using power law distribution for FGM and von Karman geometric nonlinearity, governing equations were derived based on Hamilton's principle. The developed nonlocal models have the capability of interpreting small scale effects. Pasternak elastic medium was employed to represent the interaction of the FG nanobeam and the surrounding elastic medium. A parametric study was conducted to focus influences of the static load factor, temperature change, gradient index, nonlocal parameter, slenderness ratio, surface effect and springs constants of the elastic medium on the dynamic instability region (DIR) of the FG beam with simply-supported boundary conditions. It was found that differences between DIRs predicted by local and nonlocal beam theories are significant for beams with lower aspect ratio. Moreover, it was observed that in contrast to high temperature environments, at low temperatures, increasing the temperature change moves the origin of the DIR to higher excitation frequency zone and leads to further stability. Considering surface stress effects shifts the DIR of FG beam to higher frequency zone, also increasing the gradient index enhances the frequency of DIR.

  16. Bending analysis of laminated SWCNT Reinforced functionally graded plate Using FEM

    NASA Astrophysics Data System (ADS)

    Chavan, Shivaji G.; Lal, Achchhe

    2017-01-01

    In this paper presents bending characteristic of multi-layered carbon nanotube reinforced functionally graded composite plates. The finite element implementation of bending analysis of laminated composite plate via well-established higher order shear deformation theory(HSDT). A seven degree of freedom and C0 continuity finite element model using nine noded isoperimetric elements is developed for precise computation of ply-by-ply deflection and stresses of laminated Single Wall Carbon Nanotube Reinforced composite plate subjected to uniform transverse loading. The finite element implementation is carried out through a finite element code developed in MATLAB.The results obtained by present approach are compared with results available in the literatures. The effective material properties of the laminated SWCNTRC plate are used by Mori-Tanaka method.Numerical results have been obtained with different parameters, width-to-thickness ratio(a/h), stress distribution profile along thickness direction,different SWCNTRC-FG plate, boundary condition and various lamination schemes.

  17. Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method.

    PubMed

    Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2015-01-01

    The Peano-series expansion is used to investigate the propagation of the lowest-order symmetric (S0) and antisymmetric (A0) Lamb wave modes in a functionally graded piezoelectric material (FGPM) plate. Aluminum nitride has been retained for illustration, it is polarized along the thickness axis, and at the same time the material properties change gradually perpendicularly to the plate with an exponential variation. The effects of the gradient variation on the phase velocity and the coupling electromechanical factor are obtained. Appropriate curves are given to reflect their behavior with respect to frequency. The highest value of the electromechanical coupling factor has been observed for S0 mode, it is close to six percent, conversely for A0 mode it does not exceed 1.5%. The coupling factor maxima undergo a shift toward the high frequency area when the corresponding gradient coefficient increases. The Peano-series method computed under Matlab software, gives rapid convergence and accurate phase velocity when analysing Lamb waves in FGPM plate. The obtained numerical results can be used to design different sensors with high performance working at different frequency ranges by adjusting the extent of the gradient property. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Functionally Graded Aluminum Foam Fabricated by Friction Powder Sintering Process with Traversing Tool

    NASA Astrophysics Data System (ADS)

    Hangai, Yoshihiko; Morita, Tomoaki; Koyama, Shinji; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2016-09-01

    Functionally graded aluminum foam (FG Al foam) is a new class of Al foam in which the pore structure varies over the foam, resulting in corresponding variations in the mechanical properties of the foam. In this study, FG Al foam plates were fabricated by a friction powder sintering (FPS) process with a traversing tool that is based on a previously developed sintering and dissolution process. The variation of the mechanical properties was realized by setting the volume fraction φ of NaCl in the mixture to 60, 70, and 80%. Long FG Al foam plates were fabricated with a length equal to the tool traversing length with φ varying in the tool traversing direction. From x-ray computed tomography observation, it was shown that the density of the Al foam decreased with increasing φ. In contrast, almost uniform pore structures were obtained in each area. According to the results of compression tests on each area, the plateau stress and energy absorption tended to decrease with increasing φ. Therefore, it was shown that FG Al foam plates with varying mechanical properties can be fabricated by the FPS process with the traversing tool.

  19. A novel method for characterizing the impact response of functionally graded plates

    NASA Astrophysics Data System (ADS)

    Larson, Reid A.

    Functionally graded material (FGM) plates are advanced composites with properties that vary continuously through the thickness of the plate. Metal-ceramic FGM plates have been proposed for use in thermal protection systems where a metal-rich interior surface of the plate gradually transitions to a ceramic-rich exterior surface of the plate. The ability of FGMs to resist impact loads must be demonstrated before using them in high-temperature environments in service. This dissertation presents a novel technique by which the impact response of FGM plates is characterized for low-velocity, low- to medium-energy impact loads. An experiment was designed where strain histories in FGM plates were collected during impact events. These strain histories were used to validate a finite element simulation of the test. A parameter estimation technique was developed to estimate local material properties in the anisotropic, non-homogenous FGM plates to optimize the finite element simulations. The optimized simulations captured the physics of the impact events. The method allows research & design engineers to make informed decisions necessary to implement FGM plates in aerospace platforms.

  20. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    PubMed

    De Craene, Johan-Owen; Courte, Fanny; Rinaldi, Bruno; Fitterer, Chantal; Herranz, Mari Carmen; Schmitt-Keichinger, Corinne; Ritzenthaler, Christophe; Friant, Sylvie

    2014-01-01

    The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor) Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  1. Health Sensing Functions in Thermal Barrier Coatings Incorporating Rare-Earth-Doped Luminescent Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Singh, J.; Wolfe, D. E.

    2004-01-01

    Great effort has been directed towards developing techniques to monitor the health of thermal barrier coatings (TBCs) that would detect the approach of safety-threatening conditions. An unconventional approach is presented here where health sensing functionality is integrated into the TBC itself by the incorporation of rare-earth-doped luminescent sublayers to monitor erosion as well as whether the TBC is maintaining the underlying substrate at a sufficiently low temperature. Erosion indication is demonstrated in electron-beam physical vapor deposited (EB-PVD) TBCs consisting of 7wt% yttria-stabilized zirconia (7YSZ) with europium-doped and terbium-doped sublayers. Multiple ingot deposition produced sharp boundaries between the doped sublayers without interrupting the columnar growth of the TBC. The TBC-coated specimens were subjected to alumina particle jet erosion, and the erosion depth was then indicated under ultraviolet illumination that excited easily visible luminescence characteristic of sublayer that was exposed by erosion. In addition, temperature measurements from a bottom-lying europium-doped sublayer in a TBC produced by multiple ingot EB-PVD were accomplished by measuring the temperature-dependent decay time from the 606 nm wavelength emission excited in that sublayer with a 532 nm wavelength laser that was selected for its close match to one of the europium excitation wavelengths as well as being at a wavelength where the TBC is relatively transparent. It is proposed the low dopant levels and absence of interruption of the TBC columnar growth allow the addition of the erosion and temperature sensing functions with minimal effects on TBC performance.

  2. Health Sensing Functions in Thermal Barrier Coatings Incorporating Rare-Earth-Doped Luminescent Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Singh, J.; Wolfe, D. E.

    2004-01-01

    Great effort has been directed towards developing techniques to monitor the health of thermal barrier coatings (TBCs) that would detect the approach of safety-threatening conditions. An unconventional approach is presented here where health sensing functionality is integrated into the TBC itself by the incorporation of rare-earth-doped luminescent sublayers to monitor erosion as well as whether the TBC is maintaining the underlying substrate at a sufficiently low temperature. Erosion indication is demonstrated in electron-beam physical vapor deposited (EB-PVD) TBCs consisting of 7wt% yttria-stabilized zirconia (7YSZ) with europium-doped and terbium-doped sublayers. Multiple ingot deposition produced sharp boundaries between the doped sublayers without interrupting the columnar growth of the TBC. The TBC-coated specimens were subjected to alumina particle jet erosion, and the erosion depth was then indicated under ultraviolet illumination that excited easily visible luminescence characteristic of sublayer that was exposed by erosion. In addition, temperature measurements from a bottom-lying europium-doped sublayer in a TBC produced by multiple ingot EB-PVD were accomplished by measuring the temperature-dependent decay time from the 606 nm wavelength emission excited in that sublayer with a 532 nm wavelength laser that was selected for its close match to one of the europium excitation wavelengths as well as being at a wavelength where the TBC is relatively transparent. It is proposed the low dopant levels and absence of interruption of the TBC columnar growth allow the addition of the erosion and temperature sensing functions with minimal effects on TBC performance.

  3. Flap-wise and chord-wise vibrations of axially functionally graded tapered beams rotating around a hub

    NASA Astrophysics Data System (ADS)

    Mazanoglu, Kemal; Guler, Serkan

    2017-05-01

    This paper presents flap-wise and chord-wise flexural vibration analyses for centrifugally stiffened tapered beams made of functionally graded material in axial direction. Functions of material properties varying along beam are defined in terms of the power law distribution. Calculations are conducted by simple computation technique of the Rayleigh-Ritz method that uses simple shape functions and energy expressions written for centrifugally stiffened Euler-Bernoulli beams. Effects of taper ratio, hub radius, angular velocity and non-homogeneity are inspected for the thin beams with several classical boundary conditions. Results given as non-dimensional natural frequencies are validated by the results given in existing literature and/or the outputs of finite element analyses performed for axially functionally graded solid beam. Achievements and limitations of the method are discussed and clearly reflected.

  4. Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries

    NASA Astrophysics Data System (ADS)

    Ikeda, Noriaki; Xu, Xiaomeng

    2014-11-01

    Consistent boundary conditions for Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) sigma models and the corresponding boundary theories are analyzed. As their mathematical structures, we introduce a generalization of differential graded symplectic manifolds, called twisted QP manifolds, in terms of graded symplectic geometry, canonical functions, and QP pairs. We generalize the AKSZ construction of topological sigma models to sigma models with Wess-Zumino terms and show that all the twisted Poisson-like structures known in the literature can actually be naturally realized as boundary conditions for AKSZ sigma models.

  5. Formation of iron(III) (hydr)oxides on polyaspartate- and alginate-coated substrates: effects of coating hydrophilicity and functional group.

    PubMed

    Ray, Jessica R; Lee, Byeongdu; Baltrusaitis, Jonas; Jun, Young-Shin

    2012-12-18

    To better understand the transport of contaminants in aqueous environments, we need more accurate information about heterogeneous and homogeneous nucleation of iron(III) hydroxide nanoparticles in the presence of organics. We combined synchrotron-based grazing incidence small-angle X-ray scattering (GISAXS) and SAXS and other nanoparticle and substrate surface characterization techniques to observe iron(III) (hydr)oxide [10⁻⁴ M Fe(NO₃)₃ in 10 mM NaNO₃] precipitation on quartz and on polyaspartate- and alginate-coated glass substrates and in solution (pH = 3.7 ± 0.2). Polyaspartate was determined to be the most negatively charged substrate and quartz the least; however, after 2 h, total nanoparticle volume calculations--from GISAXS--indicate that positively charged precipitation on quartz is twice that of alginate and 10 times higher than on polyaspartate, implying that electrostatics do not govern iron(III) (hydr)oxide nucleation. On the basis of contact angle measurements and surface characterization, we concluded that the degree of hydrophilicity may control heterogeneous nucleation on quartz and organic-coated substrates. The arrangement of functional groups at the substrate surface (--OH and --COOH) may also contribute. These results provide new information for elucidating the effects of polymeric organic substrate coatings on the size, volume, and location of nucleating iron hydroxides, which will help predict nanoparticle interactions in natural and engineered systems.

  6. Functional coating of liposomes using a folate– polymer conjugate to target folate receptors

    PubMed Central

    Watanabe, Kazuo; Kaneko, Makoto; Maitani, Yoshie

    2012-01-01

    Folate-polymer-coated liposomes were developed for targeted chemotherapy using doxorubicin (DXR) as a model drug. Folate-poly(L-lysine) (F–PLL) conjugates with a folate modification degree of 16.7 mol% on epsilon amino groups of PLL were synthesized. DXR-loaded anionic liposomes were coated with F–PLL, and the cellular association of F–PLL-coated liposomes was evaluated by flow cytometry, and confocal microscopy in human nasopharyngeal carcinoma KB cells overexpressing folate receptors (FRs), and human lung adenocarcinoma A549 cells [FR (−)]. The existence of a polymer layer on the surface of F–PLL-coated liposomes was confirmed by zeta potential analysis. The KB cellular association of F–PLL-coated liposomal DXR was increased compared with that of PLL-coated liposomes and was inhibited in the presence of free folic acid. Twofold higher cytotoxicity of F–PLL-coated liposomal DXR was observed compared with that of the PLL-coated liposomal DXR in KB cells, but not in A549 cells, suggesting the presence of FR-mediated endocytosis. These results indicated that folate-targeted liposomes were prepared successfully by coating the folate–polymer conjugate F–PLL. This novel preparation method of folate-targeted liposomes is expected to provide a powerful tool for the development of a folate-targeting drug nanodevice as coating with ligand–polymer conjugates can be applicable to many kinds of particles, as well as to lipid-based particles. PMID:22888227

  7. Octadecyltrimethoxysilane functionalized ZnO nanorods as a novel coating for solid-phase microextraction with strong hydrophobic surface.

    PubMed

    Zeng, Jingbin; Liu, Haihong; Chen, Jinmei; Huang, Jianli; Yu, Jianfeng; Wang, Yiru; Chen, Xi

    2012-09-21

    In this paper, we have, for the first time, proposed an approach by combining self-assembled monolayers (SAMs) and nanomaterials (NMs) for the preparation of novel solid-phase microextraction (SPME) coatings. The self-assembly of octadecyltrimethoxysilane (OTMS) on the surface of ZnO nanorods (ZNRs) was selected as a model system to demonstrate the feasibility of this approach. The functionalization of OTMS on the surface of ZNRs was characterized and confirmed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The OTMS-ZNRs coated fiber exhibited stronger hydrophobicity after functionalization, and its extraction efficiency for non-polar benzene homologues was increased by a factor of 1.5-3.6 when compared to a ZNRs fiber with almost identical thickness and façade. In contrast, the extraction efficiency of the OTMS-ZNRs coated fiber for polar aldehydes was 1.6-4.0-fold lower than that of the ZNRs coated fiber, further indicating its enhanced surface hydrophobicity. The OTMS-ZNRs coated fiber revealed a much higher capacity upon increasing the OTMS layer thickness to 5 μm, leading to a factor of 12.0-13.4 and 1.8-2.5 increase in extraction efficiency for the benzene homologues relative to a ZNRs coated fiber and a commercial PDMS fiber, respectively. The developed HS-SPME-GC method using the OTMS-ZNRs coated fiber was successfully applied to the determination of the benzene homologues in limnetic water samples with recovery ranging from 83 to 113% and relative standard deviations (RSDs) of less than 8%.

  8. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles

    SciTech Connect

    Schaeffer, Daniel A.; Polizos, Georgios; Smith, D. Barton; Lee, Dominic F.; Hunter, Scott R.; Datskos, Panos G.

    2015-01-09

    Optical surfaces such as mirrors and windows that are exposed to outdoor environmental conditions are susceptible to dust buildup and water condensation. The application of transparent superhydrophobic coatings on optical surfaces can improve outdoor performance via a self-cleaning effect similar to the Lotus effect. The contact angle (CA) of water droplets on a typical hydrophobic flat surface varies from 100° to 120°. Adding roughness or microtexture to a hydrophobic surface leads to an enhancement of hydrophobicity and the CA can be increased to a value in the range of 16≥0° to 175°. This result is remarkable because such behavior cannot be explained using surface chemistry alone. When surface features are on the order of 100 nm or smaller, surfaces exhibit superhydrophobic behavior and maintain their optical transparency. In this work we discuss our results on transparent superhydrophobic coatings that can be applied across large surface areas. We have used functionalized silica nanoparticles to coat various optical elements and have measured the contact angle and optical transmission between 190 to 1100 nm on these elements. The functionalized silica nanoparticles were dissolved in a solution of the solvents isopropyl alcohol and 4-chlorobenzotrifluoride (PCBTF) and a proprietary ceramic binder (Cerakote ). Finally, this solution was spin-coated onto a variety of test glass substrates, and following a curing period of about 30 minutes, these coatings exhibited superhydrophobic behavior with a static CA ≥160°.

  9. Thermo-physical characteristics of nickel-coated aluminum powder as a function of particle size and oxidant

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyup; Noh, Kwanyoung; Lim, Jihwan; Yoon, Woongsup

    2016-10-01

    Aluminum particles 15-25 µm in size are widely used in fuel propellants and underwater propulsion systems in national defense research. However, these particles are covered with an aluminum oxide film, which has a high melting point, so ignition is difficult. To improve the ignitability of high-energy aluminum powder and to understand the reaction phenomenon as a function of particle size(15-25 µm, 74-105 µm, and 2.38 mm) and oxidizer(air, CO2, and argon), the natural oxide films are chemically removed. The particles are then coated with nickel using an electro-less method. The degree of nickel deposition is confirmed qualitatively and quantitatively through surface analysis using scanning electron microscopy/energy dispersive spectroscopy. To characterize the nickel coatings, elemental analysis is also conducted by using X-ray diffraction. Thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) enable comparisons between the uncoated and coated aluminum, and the reaction process are investigated through fine structural analysis of the particle surfaces and cross sections. There are little difference in reactivity as a function of oxidant type. However, a strong exothermic reaction in the smaller nickel-coated aluminum particles near the melting point of aluminum accelerates the reaction of the smaller particles. Explanation of the reactivity of the nickel-coated aluminum depending on the particle sizes is attempted.

  10. How preschool executive functioning predicts several aspects of math achievement in Grades 1 and 3: A longitudinal study.

    PubMed

    Viterbori, Paola; Usai, M Carmen; Traverso, Laura; De Franchis, Valentina

    2015-12-01

    This longitudinal study analyzes whether selected components of executive function (EF) measured during the preschool period predict several indices of math achievement in primary school. Six EF measures were assessed in a sample of 5-year-old children (N = 175). The math achievement of the same children was then tested in Grades 1 and 3 using both a composite math score and three single indices of written calculation, arithmetical facts, and problem solving. Using previous results obtained from the same sample of children, a confirmatory factor analysis examining the latent EF structure in kindergarten indicated that a two-factor model provided the best fit for the data. In this model, inhibition and working memory (WM)-flexibility were separate dimensions. A full structural equation model was then used to test the hypothesis that math achievement (the composite math score and single math scores) in Grades 1 and 3 could be explained by the two EF components comprising the kindergarten model. The results indicate that the WM-flexibility component measured during the preschool period substantially predicts mathematical achievement, especially in Grade 3. The math composite scores were predicted by the WM-flexibility factor at both grade levels. In Grade 3, both problem solving and arithmetical facts were predicted by the WM-flexibility component. The results empirically support interventions that target EF as an important component of early childhood mathematics education. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Bi-functional gold-coated magnetite composites with improved biocompatibility.

    PubMed

    Arsianti, Maria; Lim, May; Lou, Shi Nee; Goon, Ian Y; Marquis, Christopher P; Amal, Rose

    2011-02-15

    The effect of gold attachment on the physical characteristics, cellular uptake, gene expression efficiency, and biocompatibility of magnetic iron oxide (MNP) vector was investigated in vitro in BHK21 cells. The surface modification of magnetite with gold was shown to alter the morphology and surface charge of the vector. Nonetheless, despite the differences in the surface charge with and without gold attachment, the surface charge of all vectors were positive when conjugated with PEI/DNA complex, and switched from positive to negative when suspended in cell media containing serum, indicating the adsorption of serum components onto the composite. The cellular uptake of all MNP vectors under the influence of a magnetic field increased when the composite loadings increased, and was higher for the MNP vector that was modified with gold. Both bare magnetite and gold-coated magnetite vectors gave similar optimal gene expression efficiency, however, the gold-coated magnetite vector required a 25-fold higher overall loading to achieve a comparable efficiency as the attachment of gold increased the particle size, thus reducing the surface area for PEI/DNA complex conjugation. The MNP vector without gold showed optimal gene expression eff