Sample records for functionally important atp

  1. Interaction of ATP with a small heat shock protein from Mycobacterium leprae: effect on its structure and function.

    PubMed

    Nandi, Sandip Kumar; Chakraborty, Ayon; Panda, Alok Kumar; Ray, Sougata Sinha; Kar, Rajiv Kumar; Bhunia, Anirban; Biswas, Ashis

    2015-03-01

    Adenosine-5'-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of "HSP18-ATP" interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and αB-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that β4-β8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts.

  2. Interaction of ATP with a Small Heat Shock Protein from Mycobacterium leprae: Effect on Its Structure and Function

    PubMed Central

    Nandi, Sandip Kumar; Chakraborty, Ayon; Panda, Alok Kumar; Sinha Ray, Sougata; Kar, Rajiv Kumar; Bhunia, Anirban; Biswas, Ashis

    2015-01-01

    Adenosine-5’-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of “HSP18-ATP” interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and αB-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that β4-β8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts. PMID:25811190

  3. Real-time imaging of inflation-induced ATP release in the ex vivo rat lung.

    PubMed

    Furuya, Kishio; Tan, Ju Jing; Boudreault, Francis; Sokabe, Masahiro; Berthiaume, Yves; Grygorczyk, Ryszard

    2016-11-01

    Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that regulate diverse processes critical for lung function, including mucociliary clearance, surfactant secretion, and local blood flow. Cellular ATP release is mechanosensitive; however, the impact of physical stimuli on ATP release during breathing has never been tested in intact lungs in real time and remains elusive. In this pilot study, we investigated inflation-induced ATP release in rat lungs ex vivo by real-time luciferin-luciferase (LL) bioluminescence imaging coupled with simultaneous infrared tissue imaging to identify ATP-releasing sites. With LL solution introduced into air spaces, brief inflation of such edematous lung (1 s, ∼20 cmH 2 O) induced transient (<30 s) ATP release in a limited number of air-inflated alveolar sacs during their recruitment/opening. Released ATP reached concentrations of ∼10 -6 M, relevant for autocrine/paracrine signaling, but it remained spatially restricted to single alveolar sacs or their clusters. ATP release was stimulus dependent: prolonged (100 s) inflation evoked long-lasting ATP release that terminated upon alveoli deflation/derecruitment while cyclic inflation/suction produced cyclic ATP release. With LL introduced into blood vessels, inflation induced transient ATP release in many small patchlike areas the size of alveolar sacs. Findings suggest that inflation induces ATP release in both alveoli and the surrounding blood capillary network; the functional units of ATP release presumably consist of alveolar sacs or their clusters. Our study demonstrates the feasibility of real-time ATP release imaging in ex vivo lungs and provides the first direct evidence of inflation-induced ATP release in lung air spaces and in pulmonary blood capillaries, highlighting the importance of purinergic signaling in lung function. Copyright © 2016 the American Physiological Society.

  4. Hemoglobin Function in Stored Blood.

    DTIC Science & Technology

    1974-08-01

    States during 1973. Several advantages over ACA) are important. Blood stored in CPD maintains higher ./ levels of 2,3-DPG (2,3- diphosphoglycerate ) and a...survival and ATP levels in stored blood is explained by the several functions of ATP which are necessary for cell viability. However, ATP levels do...not correlate with oxygen affinity during storage. Levels of 2,3-DPG determine oxygen affinity and thus hemoglobin function. (12,13) When normal levels

  5. The Therapeutic Potential of Adenosine Triphosphate as an Immune Modulator in the Treatment of HIV/AIDS: A Combination Approach with HAART

    PubMed Central

    Wagner, Marc C.E.

    2011-01-01

    Extracellular adenosine triphosphate (eATP) is a potent molecule that has the capacity to modulate various aspects of cell functions including gene expression. This element of modulation is essential to the role of ATP as a therapeutic agent. The hypothesis presented is that ATP can have an important impact on the treatment of HIV infection. This is supported in part by published research, although a much greater role for ATP is suggested than prior authors ever thought possible. ATP has the ability to enhance the immune system and could thus improve the host’s own defense mechanisms to eradicate the virus-infected cells and restore normal immune function. This could provide effective therapy when used in conjunction with highly active antiretroviral therapies (HAART) to eliminate the latently infected cells. The key lies in applying ATP through the methodology described. This article presents a strategy for using ATP therapeutically along with background evidence to substantiate the importance of using ATP in the treatment of HIV infection. PMID:21675943

  6. Agonist trapped in ATP-binding sites of the P2X2 receptor.

    PubMed

    Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas

    2011-05-31

    ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent "tethering" reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel.

  7. Agonist trapped in ATP-binding sites of the P2X2 receptor

    PubMed Central

    Jiang, Ruotian; Lemoine, Damien; Martz, Adeline; Taly, Antoine; Gonin, Sophie; Prado de Carvalho, Lia; Specht, Alexandre; Grutter, Thomas

    2011-01-01

    ATP-gated P2X receptors are trimeric ion channels, as recently confirmed by X-ray crystallography. However, the structure was solved without ATP and even though extracellular intersubunit cavities surrounded by conserved amino acid residues previously shown to be important for ATP function were proposed to house ATP, the localization of the ATP sites remains elusive. Here we localize the ATP-binding sites by creating, through a proximity-dependent “tethering” reaction, covalent bonds between a synthesized ATP-derived thiol-reactive P2X2 agonist (NCS-ATP) and single cysteine mutants engineered in the putative binding cavities of the P2X2 receptor. By combining whole-cell and single-channel recordings, we report that NCS-ATP covalently and specifically labels two previously unidentified positions N140 and L186 from two adjacent subunits separated by about 18 Å in a P2X2 closed state homology model, suggesting the existence of at least two binding modes. Tethering reaction at both positions primes subsequent agonist binding, yet with distinct functional consequences. Labeling of one position impedes subsequent ATP function, which results in inefficient gating, whereas tethering of the other position, although failing to produce gating by itself, enhances subsequent ATP function. Our results thus define a large and dynamic intersubunit ATP-binding pocket and suggest that receptors trapped in covalently agonist-bound states differ in their ability to gate the ion channel. PMID:21576497

  8. The KATP channel in migraine pathophysiology: a novel therapeutic target for migraine.

    PubMed

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne; Jansen-Olesen, Inger; Ashina, Messoud

    2017-08-23

    To review the distribution and function of K ATP channels, describe the use of K ATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. K ATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic K ATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that K ATP channel opening may cause headache, possibly due to vascular mechanisms. Whether K ATP channel openers can provoke migraine in migraine sufferers is not known. We suggest that K ATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.

  9. The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70-Tim44 interaction driving mitochondrial protein import.

    PubMed Central

    Schneider, H C; Westermann, B; Neupert, W; Brunner, M

    1996-01-01

    Import of preproteins into the mitochondrial matrix is driven by the ATP-dependent interaction of mt-Hsp70 with the peripheral inner membrane import protein Tim44 and the preprotein in transit. We show that Mge1p, a co-chaperone of mt-Hsp70, plays a key role in the ATP-dependent import reaction cycle in yeast. Our data suggest a cycle in which the mt-Hsp70-Tim44 complex forms with ATP: Mge1p promotes assembly of the complex in the presence of ATP. Hydrolysis of ATP by mt-Hsp70 occurs in complex with Tim44. Mge1p is then required for the dissociation of the ADP form of mt-Hsp70 from Tim44 after release of inorganic phosphate but before release of ADP. ATP hydrolysis and complex dissociation are accompanied by tight binding of mt-Hsp70 to the preprotein in transit. Subsequently, the release of mt-Hsp70 from the polypeptide chain is triggered by Mge1p which promotes release of ADP from mt-Hsp70. Rebinding of ATP to mt-Hsp70 completes the reaction cycle. Images PMID:8918457

  10. Human RAD50 makes a functional DNA-binding complex.

    PubMed

    Kinoshita, Eri; van Rossum-Fikkert, Sari; Sanchez, Humberto; Kertokalio, Aryandi; Wyman, Claire

    2015-06-01

    The MRE11-RAD50-NBS1 (MRN) complex has several distinct functions in DNA repair including important roles in both non-homologous end-joining (NHEJ) and homologous recombination (HR). The biochemical activities of MR(N) have been well characterized implying specific functional roles for the components. The arrangement of proteins in the complex implies interdependence of their biochemical activities making it difficult to separate specific functions. We obtained purified human RAD50 and observed that it binds ATP, undergoes ATP-dependent conformational changes as well as having ATPase activity. Scanning force microscopy analysis clearly showed that RAD50 binds DNA although not as oligomers. RAD50 alone was not functional in tethering DNA molecules. ATP increased formation of RAD50 multimers which were however globular lacking extended coiled coils, in contrast to the MR complex where ATP induced oligomers have obvious coiled coils protruding from a central domain. These results suggest that MRE11 is important in maintaining the structural arrangement of RAD50 in the protein complex and perhaps has a role in reinforcing proper alignment of the coiled coils in the ATP-bound state. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. ATP7A-related copper transport diseases-emerging concepts and future trends.

    PubMed

    Kaler, Stephen G

    2011-01-01

    This Review summarizes recent advances in understanding copper-transporting ATPase 1 (ATP7A), and examines the neurological phenotypes associated with dysfunction of this protein. Involvement of ATP7A in axonal outgrowth, synapse integrity and neuronal activation underscores the fundamental importance of copper metabolism to neurological function. Defects in ATP7A cause Menkes disease, an infantile-onset, lethal condition. Neonatal diagnosis and early treatment with copper injections enhance survival in patients with this disease, and can normalize clinical outcomes if mutant ATP7A molecules retain small amounts of residual activity. Gene replacement rescues a mouse model of Menkes disease, suggesting a potential therapeutic approach for patients with complete loss-of-function ATP7A mutations. Remarkably, a newly discovered ATP7A disorder-isolated distal motor neuropathy-has none of the characteristic clinical or biochemical abnormalities of Menkes disease or its milder allelic variant occipital horn syndrome (OHS), instead resembling Charcot-Marie-Tooth disease type 2. These findings indicate that ATP7A has a crucial but previously unappreciated role in motor neuron maintenance, and that the mechanism underlying ATP7A-related distal motor neuropathy is distinct from Menkes disease and OHS pathophysiology. Collectively, these insights refine our knowledge of the neurology of ATP7A-related copper transport diseases and pave the way for further progress in understanding ATP7A function.

  12. Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Miller, Aaron W.; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E.

    2015-01-01

    Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes. PMID:26585826

  13. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    PubMed

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  14. Connexin 43 and ATP-sensitive potassium channels crosstalk: a missing link in hypoxia/ischemia stress.

    PubMed

    Ahmad Waza, Ajaz; Ahmad Bhat, Shabir; Ul Hussain, Mahboob; Ganai, Bashir A

    2018-02-01

    Connexin 43 (Cx43) is a gap junction protein expressed in various tissues and organs of vertebrates. Besides functioning as a gap junction, Cx43 also regulates diverse cellular processes like cell growth and differentiation, cell migration, cell survival, etc. Cx43 is critical for normal cardiac functioning and is therefore abundantly expressed in cardiomyocytes. On the other hand, ATP-sensitive potassium (K ATP ) channels are metabolic sensors converting metabolic changes into electrical activity. These channels are important in maintaining the neurotransmitter release, smooth muscle relaxation, cardiac action potential repolarization, normal physiology of cellular repolarization, insulin secretion and immune function. Cx43 and K ATP channels are part of the same signaling pathway, regulating cell survival during stress conditions and ischemia/hypoxia preconditioning. However, the underlying molecular mechanism for their combined role in ischemia/hypoxia preconditioning is largely unknown. The current review focuses on understanding the molecular mechanism responsible for the coordinated role of Cx43 and K ATP channel protein in protecting cardiomyocytes against ischemia/hypoxia stress.

  15. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    PubMed Central

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  16. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts.

    PubMed

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X 1 -P2X 7 ) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K + -ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K + -ATP-induced currents were inhibited by P2X 4 and P2X 7 selective inhibitors (5-BDBD and KN62, respectively), while P2X 1 and P2X 3 inhibitors had no effects. P2X 7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X 1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K + -ATP-induced current were increased in solution without extracellular Ca 2+ , but decreased in Na + -free extracellular solution. In the absence of both of extracellular Na + and Ca 2+ , K + -ATP-induced currents were completely abolished. K + -ATP-induced Na + currents were inhibited by P2X 7 inhibitor, while the Ca 2+ currents were sensitive to P2X 4 inhibitor. These results indicated that odontoblasts functionally expressed P2X 4 and P2X 7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury.

  17. In Vitro Reassembly of the Ribose ATP-binding Cassette Transporter Reveals a Distinct Set of Transport Complexes*

    PubMed Central

    Clifton, Matthew C.; Simon, Michael J.; Erramilli, Satchal K.; Zhang, Huide; Zaitseva, Jelena; Hermodson, Mark A.; Stauffacher, Cynthia V.

    2015-01-01

    Bacterial ATP-binding cassette (ABC) importers are primary active transporters that are critical for nutrient uptake. Based on structural and functional studies, ABC importers can be divided into two distinct classes, type I and type II. Type I importers follow a strict alternating access mechanism that is driven by the presence of the substrate. Type II importers accept substrates in a nucleotide-free state, with hydrolysis driving an inward facing conformation. The ribose transporter in Escherichia coli is a tripartite complex consisting of a cytoplasmic ATP-binding cassette protein, RbsA, with fused nucleotide binding domains; a transmembrane domain homodimer, RbsC2; and a periplasmic substrate binding protein, RbsB. To investigate the transport mechanism of the complex RbsABC2, we probed intersubunit interactions by varying the presence of the substrate ribose and the hydrolysis cofactors, ATP/ADP and Mg2+. We were able to purify a full complex, RbsABC2, in the presence of stable, transition state mimics (ATP, Mg2+, and VO4); a RbsAC complex in the presence of ADP and Mg2+; and a heretofore unobserved RbsBC complex in the absence of cofactors. The presence of excess ribose also destabilized complex formation between RbsB and RbsC. These observations suggest that RbsABC2 shares functional traits with both type I and type II importers, as well as possessing unique features, and employs a distinct mechanism relative to other ABC transporters. PMID:25533465

  18. Activation of lysosomal P2X4 by ATP transported into lysosomes via VNUT/SLC17A9 using V‐ATPase generated voltage gradient as the driving force

    PubMed Central

    Zhong, Xi Zoë; Cao, Qi; Sun, Xue

    2016-01-01

    Key points SLC17A9 proteins function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation.P2X4 receptors act as lysosomal ion channels activated by luminal ATP.SLC17A9‐mediated ATP transport across the lysosomal membrane is suppressed by Bafilomycin A1, the V‐ATPase inhibitor.SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V‐ATPase as the driving force to transport ATP into the lysosome to activate P2X4. Abstract The lysosome contains abundant ATP which plays important roles in lysosome functions and in cell signalling. Recently, solute carrier family 17 member 9 (SLC17A9, also known as VNUT for vesicular nucleotide transporter) proteins were suggested to function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation, and P2X4 receptors were suggested to be lysosomal ion channels that are activated by luminal ATP. However, the molecular mechanism of SLC17A9 transporting ATP and the regulatory mechanism of lysosomal P2X4 are largely unknown. In this study, we report that SLC17A9‐mediated ATP transport across lysosomal membranes is suppressed by Bafilomycin A1, the V‐ATPase inhibitor. By measuring P2X4 activity, which is indicative of ATP transport across lysosomal membranes, we further demonstrated that SLC17A9 mainly uses voltage gradient but not pH gradient as the driving force to transport ATP into lysosomes. This study provides a molecular mechanism for lysosomal ATP transport mediated by SLC17A9. It also suggests a regulatory mechanism of lysosomal P2X4 by SLC17A9. PMID:27477609

  19. Use of a small molecule as an initiator for interchain staudinger reaction: A new ATP sensing platform using product fluorescence.

    PubMed

    Yu, Huan; Zheng, Jing; Yang, Sheng; Asiri, Abdullah M; Alamry, Khalid A; Sun, Mingtai; Zhang, Kui; Wang, Suhua; Yang, Ronghua

    2018-02-01

    We demonstrated that a small molecule induced interchain Staudinger reaction can be employed for highly selective detection of adenosine triphosphate (ATP), an important energy-storage biomolecule. A designed ATP split aptamer (A1) was first functionalized with a weakly fluorescent coumarin derivative due to an azide group (azido-coumarin). The second DNA strand (A2) was covalently linked with triphenylphosphine, which could selectively and efficiently reduce azido to amino group through the Staudinger reaction. The A2 was then hybridized with a half of another designed longer DNA strand (T1). The second half of T1 was a split aptamer and selectively recognized ATP with A1 to form a sandwich structure. The specific interaction between ATP and the aptamers drew the two functionalized DNA strands (A1 and A2) together to initiate the interchain Staudinger reduction at fmol-nmol concentration level, hence produced fluorescent 7-aminocoumarin which could be used as an indicator for the presence of trace ATP. The reaction process had a concentration dependent manner with ATP in a large concentration range. Such a strategy of interchain Staudinger reaction can be extended to construct biosensors for other small functional molecules on the basis of judiciously designed aptamers. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The scaffold protein calcium/calmodulin-dependent serine protein kinase controls ATP release in sensory ganglia upon P2X3 receptor activation and is part of an ATP keeper complex.

    PubMed

    Bele, Tanja; Fabbretti, Elsa

    2016-08-01

    P2X3 receptors, gated by extracellular ATP, are expressed by sensory neurons and are involved in peripheral nociception and pain sensitization. The ability of P2X3 receptors to transduce extracellular stimuli into neuronal signals critically depends on the dynamic molecular partnership with the calcium/calmodulin-dependent serine protein kinase (CASK). The present work used trigeminal sensory neurons to study the impact that activation of P2X3 receptors (evoked by the agonist α,β-meATP) has on the release of endogenous ATP and how CASK modulates this phenomenon. P2X3 receptor function was followed by ATP efflux via Pannexin1 (Panx1) hemichannels, a mechanism that was blocked by the P2X3 receptor antagonist A-317491, and by P2X3 silencing. ATP efflux was enhanced by nerve growth factor, a treatment known to potentiate P2X3 receptor function. Basal ATP efflux was not controlled by CASK, and carbenoxolone or Pannexin silencing reduced ATP release upon P2X3 receptor function. CASK-controlled ATP efflux followed P2X3 receptor activity, but not depolarization-evoked ATP release. Molecular biology experiments showed that CASK was essential for the transactivation of Panx1 upon P2X3 receptor activation. These data suggest that P2X3 receptor function controls a new type of feed-forward purinergic signaling on surrounding cells, with consequences at peripheral and spinal cord level. Thus, P2X3 receptor-mediated ATP efflux may be considered for the future development of pharmacological strategies aimed at containing neuronal sensitization. P2X3 receptors are involved in sensory transduction and associate to CASK. We have studied in primary sensory neurons the molecular mechanisms downstream P2X3 receptor activation, namely ATP release and partnership with CASK or Panx1. Our data suggest that CASK and P2X3 receptors are part of an ATP keeper complex, with important feed-forward consequences at peripheral and central level. © 2016 International Society for Neurochemistry.

  1. The Stimulated Glycolytic Pathway Is Able to Maintain ATP Levels and Kinetic Patterns of Bovine Epididymal Sperm Subjected to Mitochondrial Uncoupling.

    PubMed

    Losano, João D A; Padín, Juan Fernando; Méndez-López, Iago; Angrimani, Daniel S R; García, Antonio G; Barnabe, Valquiria H; Nichi, Marcilio

    2017-01-01

    Studies have reported the importance of mitochondria in sperm functionality. However, for some species, the glycolytic pathway appears to be as important as oxidative phosphorylation in ATP synthesis and sperm kinetics. These mechanisms have not been fully elucidated for bovine spermatozoa. Therefore, the aim of this study was to evaluate the role of mitochondria and the glycolytic pathway in ATP synthesis, sperm movement patterns, and oxidative homeostasis of epididymal spermatozoa in bovine specimens. We observed that mitochondrial uncoupling with protonophores significantly reduced ATP levels. However, these levels were reestablished after stimulation of the glycolytic pathway. We verified the same pattern of results for sperm kinetic variables and the production of reactive oxygen species (ROS). Thus, we suggest that, after its appropriate stimulation, the glycolytic pathway is capable of maintaining ATP levels, sperm kinetic patterns, and oxidative balance of bovine epididymal spermatozoa submitted to mitochondrial uncoupling.

  2. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  3. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    PubMed

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Functional analysis of mutations in the ATP loop of the Wilson disease copper transporter, ATP7B.

    PubMed

    Luoma, Leiah M; Deeb, Taha M M; Macintyre, Georgina; Cox, Diane W

    2010-05-01

    Wilson disease (WND) is an autosomal recessive disorder resulting from mutation of ATP7B. Transport of copper by ATP7B from the trans-Golgi of hepatocytes into apical membrane-trafficked vesicles for excretion in the bile is the major means of copper elimination from the body. Although copper is an essential nutrient, homeostasis must be carefully maintained. If homeostasis is disrupted, copper can accumulate within the liver, kidney, cornea, and/or brain. The range of organs affected leads to clinical heterogeneity and difficulty in WND diagnosis. Sequencing of ATP7B is an important adjunct for diagnosis but has led to the discovery of many novel missense variants. Although prediction programs are available, functional characterization is essential for determining the consequence of novel variants. We have tested 12 missense variants localized to the ATP loop of ATP7B and compared three predictive programs (SIFT, PolyPhen, and Align-GVGD). We found p.L1043P, p.G1000R, p.G1101R, p.I1102T, p.V1239G, and p.D1267V deleterious; p.G1176E and p.G1287S intermediate; p.E1173G temperature sensitive; p.T991M and p.I1148T mild; and p.R1228T functioning as wild type. We found that SIFT most often agreed with functional data (92%), compared with PolyPhen (83%) and Align-GVGD (67%). We conclude that variants found to negatively affect function likely contribute to the WND phenotype in patients. (c) 2010 Wiley-Liss, Inc.

  5. [Crystallography of ATP hydrolysis mechanism in rat brain kinesin].

    PubMed

    Wan, Qun; Zhu, Pingting; Lü, Houning; Chen, Xinhong

    2014-04-01

    Rat brain kinesin is a conventional kinesin that uses the energy from ATP hydrolysis to walk along the microtubule progressively. Studying how the chemical energy in ATP is utilized for mechanical movement is important to understand this moving function. The monomeric motor domain, rK354, was crystallized. An ATP analog, AMPPNP, was soaked in the active site. Comparing the complex structure of rK354 x AMPPNP and that of rK354ADP, a hypothesis is proposed that Glu237 in the Switch II region sensors the presence of gamma-phosphate and transfers the signal to the microtubule binding region.

  6. Sequential allosteric mechanism of ATP hydrolysis by the CCT/TRiC chaperone is revealed through Arrhenius analysis

    PubMed Central

    Gruber, Ranit; Levitt, Michael; Horovitz, Amnon

    2017-01-01

    Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential ‟conformational waves.” They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively. PMID:28461478

  7. Sequential allosteric mechanism of ATP hydrolysis by the CCT/TRiC chaperone is revealed through Arrhenius analysis.

    PubMed

    Gruber, Ranit; Levitt, Michael; Horovitz, Amnon

    2017-05-16

    Knowing the mechanism of allosteric switching is important for understanding how molecular machines work. The CCT/TRiC chaperonin nanomachine undergoes ATP-driven conformational changes that are crucial for its folding function. Here, we demonstrate that insight into its allosteric mechanism of ATP hydrolysis can be achieved by Arrhenius analysis. Our results show that ATP hydrolysis triggers sequential ‟conformational waves." They also suggest that these waves start from subunits CCT6 and CCT8 (or CCT3 and CCT6) and proceed clockwise and counterclockwise, respectively.

  8. The molecular basis for relative physiological functionality of the ADP/ATP carrier isoforms in Saccharomyces cerevisiae.

    PubMed

    Smith, Christopher P; Thorsness, Peter E

    2008-07-01

    AAC2 is one of three paralogs encoding mitochondrial ADP/ATP carriers in the yeast Saccharomyces cerevisiae, and because it is required for respiratory growth it has been the most extensively studied. To comparatively examine the relative functionality of Aac1, Aac2, and Aac3 in vivo, the gene encoding each isoform was expressed from the native AAC2 locus in aac1Delta aac3Delta yeast. Compared to Aac2, Aac1 exhibited reduced capacity to support growth of yeast lacking mitochondrial DNA or of yeast lacking the ATP/Mg-P(i) carrier, both conditions requiring ATP import into the mitochondrial matrix through the ADP/ATP carrier. Sixteen AAC1/AAC2 chimeric genes were constructed and analyzed to determine the key differences between residues or sections of Aac1 and Aac2. On the basis of the growth rate differences of yeast expressing different chimeras, the C1 and M2 loops of the ADP/ATP carriers contain divergent residues that are responsible for the difference(s) between Aac1 and Aac2. One chimeric gene construct supported growth on nonfermentable carbon sources but failed to support growth of yeast lacking mitochondrial DNA. We identified nine independent intragenic mutations in this chimeric gene that suppressed the growth phenotype of yeast lacking mitochondrial DNA, identifying regions of the carrier important for nucleotide exchange activities.

  9. Characterization of cellular protective effects of ATP13A2/PARK9 expression and alterations resulting from pathogenic mutants.

    PubMed

    Covy, Jason P; Waxman, Elisa A; Giasson, Benoit I

    2012-12-01

    Mutations in ATP13A2, which encodes a lysosomal P-type ATPase of unknown function, cause an autosomal recessive parkinsonian syndrome. With mammalian cells, we show that ATP13A2 expression protects against manganese and nickel toxicity, in addition to proteasomal, mitochondrial, and oxidative stress. Consistent with a recessive mode of inheritance of gene defects, disease-causing mutations F182L and G504R are prone to misfolding and do not protect against manganese and nickel toxicity because they are unstable as a result of degradation via the endoplasmic reticulum-associated degradation (ERAD)-proteasome system. The protective effects of ATP13A2 expression are not due to inhibition of apoptotic pathways or a reduction in typical stress pathways, insofar as these pathways are still activated in challenged ATP13A2-expressing cells; however, these cells display a dramatic reduction in the accumulation of oxidized and damaged proteins. These data indicate that, contrary to a previous suggestion, ATP13A2 is unlikely to convey cellular resilience simply by acting as a lysosomal manganese transporter. Consistent with the recent identification of an ATP13A2 recessive mutation in Tibetan terriers that develop neurodegeneration with neuronal ceroid lipofucinoses, our data suggest that ATP13A2 may function to import a cofactor required for the function of a lysosome enzyme(s). Copyright © 2012 Wiley Periodicals, Inc.

  10. Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology.

    PubMed

    Wang, Jiao; Wang, Qian; Zhou, Fangfang; Wang, Dong; Wen, Tieqiao

    2017-01-01

    RNA interference (RNAi) technology is one of the main research tools in many studies of neural stem cells. This study describes effects of ATP11B on the morphology change of neural stem cells by using RNAi. ATP11B belongs to P4-ATPases family, which is preferential translocate phosphatidylserine of cell membrane. Although it exists in neural stem cells, its physiological function is poorly understood. By using RNAi technology to downregulate expression of ATP11B, we found distinct morphological changes in neural stem cells. More important, psiRNA-ATP11B-transfected cells displayed short neurite outgrowth compared to the control cells. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.

  11. Knocking out P2X receptors reduces transmitter secretion in taste buds

    PubMed Central

    Huang, Yijen A.; Stone, Leslie M.; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C.; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E.; Kinnamon, Sue C.; Roper, Stephen D.

    2011-01-01

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors (P2X2 and P2X3 double knockout, or “DKO” mice). The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca2+ in taste Receptor (Type II) cells from DKO mice, as from wild type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we employed reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion. PMID:21940456

  12. Knocking out P2X receptors reduces transmitter secretion in taste buds.

    PubMed

    Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth; Yang, Ruibiao; Kinnamon, John C; Dvoryanchikov, Gennady; Chaudhari, Nirupa; Finger, Thomas E; Kinnamon, Sue C; Roper, Stephen D

    2011-09-21

    In response to gustatory stimulation, taste bud cells release a transmitter, ATP, that activates P2X2 and P2X3 receptors on gustatory afferent fibers. Taste behavior and gustatory neural responses are largely abolished in mice lacking P2X2 and P2X3 receptors [P2X2 and P2X3 double knock-out (DKO) mice]. The assumption has been that eliminating P2X2 and P2X3 receptors only removes postsynaptic targets but that transmitter secretion in mice is normal. Using functional imaging, ATP biosensor cells, and a cell-free assay for ATP, we tested this assumption. Surprisingly, although gustatory stimulation mobilizes Ca(2+) in taste Receptor (Type II) cells from DKO mice, as from wild-type (WT) mice, taste cells from DKO mice fail to release ATP when stimulated with tastants. ATP release could be elicited by depolarizing DKO Receptor cells with KCl, suggesting that ATP-release machinery remains functional in DKO taste buds. To explore the difference in ATP release across genotypes, we used reverse transcriptase (RT)-PCR, immunostaining, and histochemistry for key proteins underlying ATP secretion and degradation: Pannexin1, TRPM5, and NTPDase2 (ecto-ATPase) are indistinguishable between WT and DKO mice. The ultrastructure of contacts between taste cells and nerve fibers is also normal in the DKO mice. Finally, quantitative RT-PCR show that P2X4 and P2X7, potential modulators of ATP secretion, are similarly expressed in taste buds in WT and DKO taste buds. Importantly, we find that P2X2 is expressed in WT taste buds and appears to function as an autocrine, positive feedback signal to amplify taste-evoked ATP secretion.

  13. Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle.

    PubMed

    Komlódi, T; Tretter, L

    2017-09-01

    Methylene blue (MB), a potential neuroprotective agent, is efficient in various neurodegenerative disease models. Beneficial effects of MB have been attributed to improvements in mitochondrial functions. Substrate-level phosphorylation (SLP) results in the production of ATP independent from the ATP synthase (ATP-ase). In energetically compromised mitochondria, ATP produced by SLP can prevent the reversal of the adenine nucleotide translocase and thus the hydrolysis of glycolytic ATP. The aim of the present study was to investigate the effect of MB on mitochondrial SLP catalysed by succinyl-CoA ligase. Measurements were carried out on isolated guinea pig cortical mitochondria respiring on α-ketoglutarate, glutamate, malate or succinate. The mitochondrial functions and parameters like ATP synthesis, oxygen consumption, membrane potential, and NAD(P)H level were followed online, in parallel with the redox state of MB. SLP-mediated ATP synthesis was measured in the presence of inhibitors for ATP-ase and adenylate kinase. In the presence of the ATP-ase inhibitor oligomycin MB stimulated respiration with all of the respiratory substrates. However, the rate of ATP synthesis increased only with substrates α-ketoglutarate and glutamate (forming succinyl-CoA). MB efficiently stimulated SLP and restored the membrane potential in mitochondria also with the combined inhibition of Complex I and ATP synthase. ATP formed by SLP alleviated the energetic insufficiency generated by the lack of oxidative phosphorylation. Thus, the MB-mediated stimulation of SLP might be important in maintaining the energetic competence of mitochondria and in preventing the mitochondrial hydrolysis of glycolytic ATP. The mitochondrial effects of MB are explained by the ability to accept electrons from reducing equivalents and transfer them to cytochrome c bypassing the respiratory Complexes I and III. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. ATP activates P2x receptors and requires extracellular Ca(++) participation to modify outer hair cell nonlinear capacitance.

    PubMed

    Yu, Ning; Zhao, Hong-Bo

    2008-11-01

    Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca(++) participation. Removal of extracellular Ca(++) abolished the ATP effect. However, chelation of intracellular Ca(++) concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K(+) ions. Substitution of Cs(+) for intracellular or extracellular K(+) did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca(++) is required for this modification.

  15. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  16. Hypo-and hyperthyroidism affect the ATP, ADP and AMP hydrolysis in rat hippocampal and cortical slices.

    PubMed

    Bruno, Alessandra Nejar; Diniz, Gabriela Placoná; Ricachenevsky, Felipe Klein; Pochmann, Daniela; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Sarkis, João José Freitas

    2005-05-01

    The presence of severe neurological symptoms in thyroid diseases has highlighted the importance of thyroid hormones in the normal functioning of the mature brain. Since, ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system (CNS), the ectonucleotidase cascade that hydrolyzes ATP to adenosine, is also involved in the control of brain functions. Thus, we investigated the influence of hyper-and hypothyroidism on the ATP, ADP and AMP hydrolysis in hippocampal and cortical slices from adult rats. Hyperthyroidism was induced by daily injections of l-thyroxine (T4) 25 microg/100 g body weight, for 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water for 14 days. Hypothyroid rats were hormonally replaced by daily injections of T4 (5 microg/100 g body weight, i.p.) for 5 days. Hyperthyroidism significantly inhibited the ATP, ADP and AMP hydrolysis in hippocampal slices. In brain cortical slices, hyperthyroidism inhibited the AMP hydrolysis. In contrast, hypothyroidism increased the ATP, ADP and AMP hydrolysis in both hippocampal and cortical slices and these effects were reverted by T4 replacement. Furthermore, hypothyroidism increased the expression of NTPDase1 and 5'-nucleotidase, whereas hyperthyroidism decreased the expression of 5'-nucleotidase in hippocampus of adult rats. These findings demonstrate that thyroid disorders may influence the enzymes involved in the complete degradation of ATP to adenosine and possibly affects the responses mediated by adenine nucleotides in the CNS of adult rats.

  17. Interaction between ATP, metal ions, glycine, and several minerals

    NASA Technical Reports Server (NTRS)

    Rishpon, J.; Ohara, P. J.; Lawless, J. G.; Lahav, N.

    1982-01-01

    Interactions between ATP, glycine and montmorillonite and kaolinite clay minerals in the presence of various metal cations are investigated. The adsorption of adenine nucleotides on clays and Al(OH)3 was measured as a function of pH, and glycine condensation was followed in the presence of ATP, ZnCl2, MgCl2 and either kaolinite or montmorillonite. The amounts of ATP and ADP adsorbed are found to decrease with increasing Ph, and to be considerably enhanced in experiments with Mg(2+)- and Zn(2+)-montmorillonite with respect to Na(+)-montmorillonite. The effects of divalent cations are less marked in kaolinite. Results for Al(OH)3 show the importance of adsorption at clay platelet edges at high pH. The decomposition of ATP during drying at high temperature is observed to be inhibited by small amounts of clay, vacuum, or Mg(2+) or Zn(2+) ions, and to be accompanied by peptide formation in the presence of glycine. Results suggest the importance of Zn(2+) and Mg(2+) in chemical evolution.

  18. Interdependence of ATP signalling and pannexin channels; the servant was really the master all along?

    PubMed

    Jackson, Michael F

    2015-12-15

    Pannexin channels are recognized as important conduits for the release of ATP, which contributes to purinergic signalling. Pathologically, ATP release via these channels acts as a find-me signal for apoptotic cell clearance. Accordingly, there is considerable and growing interest in understanding the function and regulation of pannexin channels. In a recent issue of the Biochemical Journal, Boyce et al. provide evidence that the surface expression of pannexin channels is regulated by extracellular ATP. They propose a model in which ATP triggers pannexin channel internalization through a pathway involving clathrin- and caveolin-independent entry into early endosomes. Intriguingly, their evidence suggests that internalization is initiated through the association of ATP with pannexin channels themselves as well as ionotropic purinergic receptor 7 (P2X7) receptors. © 2015 Authors; published by Portland Press Limited.

  19. The ADP/ATP Carrier and Its Relationship to Oxidative Phosphorylation in Ancestral Protist Trypanosoma brucei

    PubMed Central

    Gnipová, Anna; Šubrtová, Karolína; Panicucci, Brian; Horváth, Anton; Lukeš, Julius

    2015-01-01

    The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote. PMID:25616281

  20. P2X7 ionotropic receptor is functionally expressed in rabbit articular chondrocytes and mediates extracellular ATP cytotoxicity.

    PubMed

    Tanigawa, Hitoshi; Toyoda, Futoshi; Kumagai, Kosuke; Okumura, Noriaki; Maeda, Tsutomu; Matsuura, Hiroshi; Imai, Shinji

    2018-05-29

    Extracellular ATP regulates various cellular functions by engaging multiple subtypes of P2 purinergic receptors. In many cell types, the ionotropic P2X7 receptor mediates pathological events such as inflammation and cell death. However, the importance of this receptor in chondrocytes remains largely unexplored. Here, we report the functional identification of P2X7 receptor in articular chondrocytes and investigate the involvement of P2X7 receptors in ATP-induced cytotoxicity. Chondrocytes were isolated from rabbit articular cartilage, and P2X7 receptor currents were examined using the whole-cell patch-clamp technique. ATP-induced cytotoxicity was evaluated by measuring caspase-3/7 activity, lactate dehydrogenase (LDH) leakage, and prostagrandin E 2 (PGE 2 ) release using microscopic and fluorimetric/colorimetric evaluation. Extracellular ATP readily evoked a cationic current without obvious desensitization. This ATP-activated current was dose related, but required millimolar concentrations. A more potent P2X7 receptor agonist, BzATP, also activated this current but at 100-fold lower concentrations. ATP-induced currents were largely abolished by selective P2X7 antagonists, suggesting a predominant role for the P2X7 receptor. RT-PCR confirmed the presence of P2X7 in chondrocytes. Heterologous expression of a rabbit P2X7 clone successfully reproduced the ATP-induced current. Exposure of chondrocytes to ATP increased caspase-3/7 activities, an effect that was totally abrogated by P2X7 receptor antagonists. Extracellular ATP also enhanced LDH release, which was partially attenuated by the P2X7 inhibitor. The P2X7 receptor-mediated elevation in apoptotic caspase signaling was accompanied by increased PGE 2 release and was attenuated by inhibition of either phospholipase A 2 or cyclooxygenase-2. This study provides direct evidence for the presence of functional P2X7 receptors in articular chondrocytes. Our results suggest that the P2X7 receptor is a potential therapeutic target in chondrocyte death associated with cartilage injury and disorders including osteoarthritis.

  1. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions☆

    PubMed Central

    Mailloux, Ryan J.; Jin, Xiaolei; Willmore, William G.

    2013-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling. PMID:24455476

  2. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.

    PubMed

    Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G

    2014-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.

  3. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierra, Ana, E-mail: ana-sierra@uiowa.edu; Subbotina, Ekaterina, E-mail: ekaterina-subbotina@uiowa.edu; Zhu, Zhiyong, E-mail: zhiyong-zhu@uiowa.edu

    Sarcolemmal ATP-sensitive potassium (K{sub ATP}) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle K{sub ATP} channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle K{sub ATP} channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of K{sub ATP} channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology tomore » atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) – an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish K{sub ATP} channel-dependent musclin production as a potential mechanistic link coupling “local” skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities. - Highlights: • ATP-sensitive K{sup +} channels regulate musclin production by skeletal muscles. • Lipolytic ANP signaling is promoted by augmented skeletal muscle musclin production. • Skeletal muscle musclin transcription is promoted by a CaMKII/HDAC/FOXO1 pathway. • Musclin links adipose mobilization to energy use in K{sub ATP} channel deficient skeletal muscle.« less

  4. Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase

    PubMed Central

    Ludtmann, Marthe H.R.; Angelova, Plamena R.; Ninkina, Natalia N.; Gandhi, Sonia

    2016-01-01

    Misfolded α-synuclein is a key factor in the pathogenesis of Parkinson's disease (PD). However, knowledge about a physiological role for the native, unfolded α-synuclein is limited. Using brains of mice lacking α-, β-, and γ-synuclein, we report that extracellular monomeric α-synuclein enters neurons and localizes to mitochondria, interacts with ATP synthase subunit α, and modulates ATP synthase function. Using a combination of biochemical, live-cell imaging and mitochondrial respiration analysis, we found that brain mitochondria of α-, β-, and γ-synuclein knock-out mice are uncoupled, as characterized by increased mitochondrial respiration and reduced mitochondrial membrane potential. Furthermore, synuclein deficiency results in reduced ATP synthase efficiency and lower ATP levels. Exogenous application of low unfolded α-synuclein concentrations is able to increase the ATP synthase activity that rescues the mitochondrial phenotypes observed in synuclein deficiency. Overall, the data suggest that α-synuclein is a previously unrecognized physiological regulator of mitochondrial bioenergetics through its ability to interact with ATP synthase and increase its efficiency. This may be of particular importance in times of stress or PD mutations leading to energy depletion and neuronal cell toxicity. SIGNIFICANCE STATEMENT Misfolded α-synuclein aggregations in the form of Lewy bodies have been shown to be a pathological hallmark in histological staining of Parkinson's disease (PD) patient brains. It is known that misfolded α-synuclein is a key driver in PD pathogenesis, but the physiological role of unfolded monomeric α-synuclein remains unclear. Using neuronal cocultures and isolated brain mitochondria of α-, β-, and γ-synuclein knock-out mice and monomeric α-synuclein, this current study shows that α-synuclein in its unfolded monomeric form improves ATP synthase efficiency and mitochondrial function. The ability of monomeric α-synuclein to enhance ATP synthase efficiency under physiological conditions may be of importance when α-synuclein undergoes the misfolding and aggregation reported in PD. PMID:27733604

  5. Dynamics of shear-induced ATP release from red blood cells.

    PubMed

    Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2008-10-28

    Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.

  6. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE PAGES

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; ...

    2017-07-24

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented.« less

  7. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas thosemore » expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Secdependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. But, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Thus, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented.« less

  8. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets].

    PubMed

    Nakaya, Haruaki; Miki, Takashi; Seino, Susumu; Yamada, Katsuya; Inagaki, Nobuya; Suzuki, Masashi; Sato, Toshiaki; Yamada, Mitsuhiko; Matsushita, Kenji; Kurachi, Yoshihisa; Arita, Makoto

    2003-09-01

    ATP-sensitive K(+) (K(ATP)) channels comprise the pore-forming subunit (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptors (SUR1 or SUR2). K(ATP) channels with different combinations of these subunits are present in various tissues and regulate cellular functions. From the analysis of mouse models with targeted deletion of the gene encoding the pore-forming subunit Kir6.1 or Kir6.2, functional roles of K(ATP) channels in various organs have been clarified. Kir6.1(-/-) mice showed sudden death associated with ST elevation and atrioventricular block in ECG, a phenotype resembling Prinzmetal angina in humans. Kir6.2(-/-) mice were more susceptible to generalized seizure during hypoxia than wild-type (WT) mice, suggesting that neuronal K(ATP) channels, probably composed of Kir6.2 and SUR1, play a crucial role for the protection of the brain against lethal damage due to seizure. In Kir6.2(-/-) mice lacking the sarcolemmal K(ATP) channel activity in cardiac cells, ischemic preconditioning failed to reduce the infarct size, suggesting that sarcolemmal K(ATP) channels play an important role in cardioprotection against ischemia/reperfusion injuries in the heart. Mitochondrial K(ATP) channels have been also proposed to play a crucial role in cardioprotection, although the molecular identity of the channel has not been established. Nicorandil and minoxidil, K(+) channel openers activating mitochondrial K(ATP) channels, decreased the mitochondrial membrane potential, thereby preventing the Ca(2+) overload in the mitochondria of guinea-pig ventricular cells. SURs are the receptors for K(+) channel openers and the activating effects on sarcolemmal K(ATP) channels in cardiovascular tissues could be modulated by the interaction of nucleotides. Due to the molecular diversity of the accessory and pore subunits of K(ATP) channels, there would be considerable differences in the tissue selectivity of K(ATP) channel-acting drugs. Studies of Kir6.1 and Kir6.2 knockout mice indicate that K(ATP) channels are involved in the mechanisms of the protection against metabolic stress. Further clarification of physiological as well as pathophysiological roles of K(ATP) channels may lead to a new therapeutic strategy to improve the quality of life.

  9. The cholinergic and purinergic components of detrusor contractility in a whole rabbit bladder model.

    PubMed

    Chancellor, M B; Kaplan, S A; Blaivas, J G

    1992-09-01

    Whole rabbit bladders were suspended in a bath chamber and stimulated with ATP, bethanechol, electrical field stimulation, and bethanechol + ATP. Detrusor pressure and fluid expelled by the bladder were recorded, synchronized, and digitized. Detrusor work and power were calculated with a computer program. Maximum work was 61.4 +/- 28.7, 83.3 +/- 17.0, 85.0 +/- 15.0, 90.8 +/- 13.1 cm. H2O, ml. for ATP, bethanechol, electrical and bethanechol + ATP, respectively. Maximum power generated by ATP was 4.8 +/- 3.0 cm. H2O, ml./sec and was approximately 66% of that generated by bethanechol, and 50% of that generated by electrical stimulation, and bethanechol + ATP. ATP cannot empty the bladder with moderate outlet resistance while bethanechol and electrical stimulation can. Our results suggest that ATP is able to generate detrusor power and achieve work in bladder emptying. However, ATP generated power and work is considerably less than that of electrical stimulation or bethanechol alone. ATP mediated contraction is not inhibited by atropine or tetrodotoxin but is inhibited by P2 purinoceptor desensitization, suggesting a functional role of purine receptors on detrusor smooth muscle. Since ATP generated pressure is more rapid than with bethanechol alone, we support the hypothesis that ATP may be important in the initiation of micturition.

  10. Mechanosensing Dynamics of Red blood Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  11. Sequence and RT-PCR expression analysis of two peroxidases from Arabidopsis thaliana belonging to a novel evolutionary branch of plant peroxidases.

    PubMed

    Kjaersgård, I V; Jespersen, H M; Rasmussen, S K; Welinder, K G

    1997-03-01

    cDNA clones encoding two new Arabidopsis thaliana peroxidases, ATP 1a and ATP 2a, have been identified by searching the Arabidopsis database of expressed sequence tags (dbEST). They represent a novel branch of hitherto uncharacterized plant peroxidases which is only 35% identical in amino acid sequence to the well characterized group of basic plant peroxidases represented by the horseradish (Armoracia rusticana) isoperoxidases HRP C, HRP E5 and the similar Arabidopsis isoperoxidases ATP Ca, ATP Cb, and ATP Ea. However ATP 1a is 87% identical in amino acid sequence to a peroxidase encoded by an mRNA isolated from cotton (Gossypium hirsutum). As cotton and Arabidopsis belong to rather diverse families (Malvaceae and Crucifereae, respectively), in contrast with Arabidopsis and horseradish (both Crucifereae), the high degree of sequence identity indicates that this novel type of peroxidase, albeit of unknown function, is likely to be widespread in plant species. The atp 1 and atp 2 types of cDNA sequences were the most redundant among the 28 different isoperoxidases identified among about 200 peroxidase encoding ESTs. Interestingly, 8 out of totally 38 EST sequences coding for ATP 1 showed three identical nucleotide substitutions. This variant form is designated ATP 1b. Similarly, six out of totally 16 EST sequences coding for ATP 2 showed a number of deletions and nucleotide changes. This variant form is designated ATP 2b. The selected EST clones are full-length and contain coding regions of 993 nucleotides for atp 1a, and 984 nucleotides for atp 2a. These regions show 61% DNA sequence identity. The predicted mature proteins ATP 1a, and ATP 2a are 57% identical in sequence and contain the structurally and functionally important residues, characteristic of the plant peroxidase superfamily. However, they do show two differences of importance to peroxidase catalysis: (1) the asparagine residue linked with the active site distal histidine via hydrogen bonding is absent; (2) an N-glycosylation site is located right at the entrance to the heme channel. The reverse transcriptase polymerase chain reaction (RT-PCR) was used to identify mRNAs coding for ATP 1a/b and ATP 2a/b in germinating seeds, seedlings, roots, leaves, stems, flowers and cell suspension culture using elongation factor 1alpha (EF-1alpha) for the first time as a positive control. Both mRNAs were transcribed at levels comparable to EF-1alpha in all plant tissues investigated which were more than two days old, and in cell suspension culture. In addition, the mRNA coding for ATP 1a/b was found in two day old germinating seeds. The abundant transcription of ATP 1a/b and ATP 2a/b is in line with their many entries in dbEST, and indicates essential roles for these novel peroxidases.

  12. A Role for the ATP7A Copper-transporting ATPase in Macrophage Bactericidal Activity*

    PubMed Central

    White, Carine; Lee, Jaekwon; Kambe, Taiho; Fritsche, Kevin; Petris, Michael J.

    2009-01-01

    Copper is an essential micronutrient that is necessary for healthy immune function. This requirement is underscored by an increased susceptibility to bacterial infection in copper-deficient animals; however, a molecular understanding of its importance in immune defense is unknown. In this study, we investigated the effect of proinflammatory agents on copper homeostasis in RAW264.7 macrophages. Interferon-γ was found to increase expression of the high affinity copper importer, CTR1, and stimulate copper uptake. This was accompanied by copper-stimulated trafficking of the ATP7A copper exporter from the Golgi to vesicles that partially overlapped with phagosomal compartments. Silencing of ATP7A expression attenuated bacterial killing, suggesting a role for ATP7A-dependent copper transport in the bactericidal activity of macrophages. Significantly, a copper-sensitive mutant of Escherichia coli lacking the CopA copper-transporting ATPase was hypersensitive to killing by RAW264.7 macrophages, and this phenotype was dependent on ATP7A expression. Collectively, these data suggest that copper-transporting ATPases, CopA and ATP7A, in both bacteria and macrophage are unique determinants of bacteria survival and identify an unexpected role for copper at the host-pathogen interface. PMID:19808669

  13. Regulation of Na(+)/K(+)-ATPase by nuclear respiratory factor 1: implication in the tight coupling of neuronal activity, energy generation, and energy consumption.

    PubMed

    Johar, Kaid; Priya, Anusha; Wong-Riley, Margaret T T

    2012-11-23

    NRF-1 regulates mediators of neuronal activity and energy generation. NRF-1 transcriptionally regulates Na(+)/K(+)-ATPase subunits α1 and β1. NRF-1 functionally regulates mediators of energy consumption in neurons. NRF-1 mediates the tight coupling of neuronal activity, energy generation, and energy consumption at the molecular level. Energy generation and energy consumption are tightly coupled to neuronal activity at the cellular level. Na(+)/K(+)-ATPase, a major energy-consuming enzyme, is well expressed in neurons rich in cytochrome c oxidase, an important enzyme of the energy-generating machinery, and glutamatergic receptors that are mediators of neuronal activity. The present study sought to test our hypothesis that the coupling extends to the molecular level, whereby Na(+)/K(+)-ATPase subunits are regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), found recently by our laboratory to regulate all cytochrome c oxidase subunit genes and some NMDA and AMPA receptor subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutational analysis, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Atp1a1 and Atp1b1 genes but not of the Atp1a3 gene in neurons. The transcripts of Atp1a1 and Atp1b1 subunit genes were up-regulated by KCl and down-regulated by tetrodotoxin. Atp1b1 is positively regulated by NRF-1, and silencing of NRF-1 with small interference RNA blocked the up-regulation of Atp1b1 induced by KCl, whereas overexpression of NRF-1 rescued these transcripts from being suppressed by tetrodotoxin. On the other hand, Atp1a1 is negatively regulated by NRF-1. The binding sites of NRF-1 on Atp1a1 and Atp1b1 are conserved among mice, rats, and humans. Thus, NRF-1 regulates key Na(+)/K(+)-ATPase subunits and plays an important role in mediating the tight coupling between energy consumption, energy generation, and neuronal activity at the molecular level.

  14. Cross-bridge blocker BTS permits direct measurement of SR Ca2+ pump ATP utilization in toadfish swimbladder muscle fibers.

    PubMed

    Young, Iain S; Harwood, Claire L; Rome, Lawrence C

    2003-10-01

    Because the major processes involved in muscle contraction require rapid utilization of ATP, measurement of ATP utilization can provide important insights into the mechanisms of contraction. It is necessary, however, to differentiate between the contribution made by cross-bridges and that of the sarcoplasmic reticulum (SR) Ca2+ pumps. Specific and potent SR Ca2+ pump blockers have been used in skinned fibers to permit direct measurement of cross-bridge ATP utilization. Up to now, there was no analogous cross-bridge blocker. Recently, N-benzyl-p-toluene sulfonamide (BTS) was found to suppress force generation at micromolar concentrations. We tested whether BTS could be used to block cross-bridge ATP utilization, thereby permitting direct measurement of SR Ca2+ pump ATP utilization in saponin-skinned fibers. At 25 microM, BTS virtually eliminates force and cross-bridge ATP utilization (both <4% of control value). By taking advantage of the toadfish swimbladder muscle's unique right shift in its force-Ca2+ concentration ([Ca2+]) relationship, we measured SR Ca2+ pump ATP utilization in the presence and absence of BTS. At 25 microM, BTS had no effect on SR pump ATP utilization. Hence, we used BTS to make some of the first direct measurements of ATP utilization of intact SR over a physiological range of [Ca2+]at 15 degrees C. Curve fits to SR Ca2+ pump ATP utilization vs. pCa indicate that they have much lower Hill coefficients (1.49) than that describing cross-bridge force generation vs. pCa (approximately 5). Furthermore, we found that BTS also effectively eliminates force generation in bundles of intact swimbladder muscle, suggesting that it will be an important tool for studying integrated SR function during normal motor behavior.

  15. The Structural Basis of ATP as an Allosteric Modulator

    PubMed Central

    Wang, Qi; Shen, Qiancheng; Li, Shuai; Nussinov, Ruth; Zhang, Jian

    2014-01-01

    Adenosine-5’-triphosphate (ATP) is generally regarded as a substrate for energy currency and protein modification. Recent findings uncovered the allosteric function of ATP in cellular signal transduction but little is understood about this critical behavior of ATP. Through extensive analysis of ATP in solution and proteins, we found that the free ATP can exist in the compact and extended conformations in solution, and the two different conformational characteristics may be responsible for ATP to exert distinct biological functions: ATP molecules adopt both compact and extended conformations in the allosteric binding sites but conserve extended conformations in the substrate binding sites. Nudged elastic band simulations unveiled the distinct dynamic processes of ATP binding to the corresponding allosteric and substrate binding sites of uridine monophosphate kinase, and suggested that in solution ATP preferentially binds to the substrate binding sites of proteins. When the ATP molecules occupy the allosteric binding sites, the allosteric trigger from ATP to fuel allosteric communication between allosteric and functional sites is stemmed mainly from the triphosphate part of ATP, with a small number from the adenine part of ATP. Taken together, our results provide overall understanding of ATP allosteric functions responsible for regulation in biological systems. PMID:25211773

  16. A 37-year-old Menkes disease patient-Residual ATP7A activity and early copper administration as key factors in beneficial treatment.

    PubMed

    Tümer, Z; Petris, M; Zhu, S; Mercer, J; Bukrinski, J; Bilz, S; Baerlocher, K; Horn, N; Møller, L B

    2017-11-01

    Menkes disease (MD) is a lethal disorder characterized by severe neurological symptoms and connective tissue abnormalities; and results from malfunctioning of cuproenzymes, which cannot receive copper due to a defective intracellular copper transporting protein, ATP7A. Early parenteral copper-histidine supplementation may modify disease progression substantially but beneficial effects of long-term treatment have been recorded in only a few patients. Here we report on the eldest surviving MD patient (37 years) receiving early-onset and long-term copper treatment. He has few neurological symptoms without connective tissue disturbances; and a missense ATP7A variant, p.(Pro852Leu), which results in impaired protein trafficking while the copper transport function is spared. These findings suggest that some cuproenzymes maintain their function when sufficient copper is provided to the cells; and underline the importance of early initiated copper treatment, efficiency of which is likely to be dependent on the mutant ATP7A function. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The Role of Light-Dark Regulation of the Chloroplast ATP Synthase.

    PubMed

    Kohzuma, Kaori; Froehlich, John E; Davis, Geoffry A; Temple, Joshua A; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A; Kramer, David M

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se . Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented. Significance Statement: We uncover an unexpected role for thioredoxin modulation of the chloroplast ATP synthase in regulating the dark-stability of the photosynthetic apparatus, most likely by controlling thylakoid membrane transport of proteins and ions.

  18. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    PubMed Central

    Kohzuma, Kaori; Froehlich, John E.; Davis, Geoffry A.; Temple, Joshua A.; Minhas, Deepika; Dhingra, Amit; Cruz, Jeffrey A.; Kramer, David M.

    2017-01-01

    The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf) and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat)-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP per se. Instead, ATP synthase redox regulation may be impacting a number of cellular processes such as (1) the accumulation of chloroplast proteins and/or ions or (2) the responses of photosynthesis to rapid changes in light intensity. A model highlighting the complex interplay between ATP synthase regulation and pmf in maintaining various chloroplast functions in the dark is presented. Significance Statement: We uncover an unexpected role for thioredoxin modulation of the chloroplast ATP synthase in regulating the dark-stability of the photosynthetic apparatus, most likely by controlling thylakoid membrane transport of proteins and ions. PMID:28791032

  19. Molecular and functional characterization of seven Na+/K+-ATPase β subunit paralogs in Senegalese sole (Solea senegalensis Kaup, 1858).

    PubMed

    Armesto, Paula; Infante, Carlos; Cousin, Xavier; Ponce, Marian; Manchado, Manuel

    2015-04-01

    In the present work, seven genes encoding Na(+),K(+)-ATPase (NKA) β-subunits in the teleost Solea senegalensis are described for the first time. Sequence analysis of the predicted polypeptides revealed a high degree of conservation with those of other vertebrate species and maintenance of important motifs involved in structure and function. Phylogenetic analysis clustered the seven genes into four main clades: β1 (atp1b1a and atp1b1b), β2 (atp1b2a and atp1b2b), β3 (atp1b3a and atp1b3b) and β4 (atp1b4). In juveniles, all paralogous transcripts were detected in the nine tissues examined albeit with different expression patterns. The most ubiquitous expressed gene was atp1b1a whereas atp1b1b was mainly detected in osmoregulatory organs (gill, kidney and intestine), and atp1b2a, atp1b2b, atp1b3a, atp1b3b and atp1b4 in brain. An expression analysis in three brain regions and pituitary revealed that β1-type transcripts were more abundant in pituitary than the other β paralogs with slight differences between brain regions. Quantification of mRNA abundance in gills after a salinity challenge showed an activation of atp1b1a and atp1b1b at high salinity water (60 ppt) and atp1b3a and atp1b3b in response to low salinity (5 ppt). Transcriptional analysis during larval development showed specific expression patterns for each paralog. Moreover, no differences in the expression profiles between larvae cultivated at 10 and 35 ppt were observed except for atp1b4 with higher mRNA levels at 10 than 35 ppt at 18 days post hatch. Whole-mount in situ hybridization analysis revealed that atp1b1b was mainly localized in gut, pronephric tubule, gill, otic vesicle, and chordacentrum of newly hatched larvae. All these data suggest distinct roles of NKA β subunits in tissues, during development and osmoregulation with β1 subunits involved in the adaptation to hyperosmotic conditions and β3 subunits to hypoosmotic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. ATP-dependent chromatin remodeling in T cells.

    PubMed

    Wurster, Andrea L; Pazin, Michael J

    2012-02-01

    One of the best studied systems for mammalian chromatin remodeling is transcriptional regulation during T cell development. The variety of these studies have led to important findings in T cell gene regulation and cell fate determination. Importantly, these findings have also advanced our knowledge of the function of remodeling enzymes in mammalian gene regulation. First we briefly present biochemical and cell-free analysis of 3 types of ATP dependent remodeling enzymes (SWI/SNF, Mi2, and ISWI) to construct an intellectual framework to understand how these enzymes might be working. Second, we compare and contrast the function of these enzymes during early (thymic) and late (peripheral) T cell development. Finally, we examine some of the gaps in our present understanding.

  1. ATP and Mg2+ Promote the Reversible Oligomerization and Aggregation of Chloroplast 2-Cys Peroxiredoxin*

    PubMed Central

    Aran, Martín; Ferrero, Diego; Wolosiuk, Alejandro; Mora-García, Santiago; Wolosiuk, Ricardo A.

    2011-01-01

    2-Cys peroxiredoxins (2-Cys Prxs) are ubiquitous peroxidases with important roles in cellular antioxidant defense and hydrogen peroxide-mediated signaling. Post-translational modifications of conserved cysteines cause the transition from low to high molecular weight oligomers, triggering the functional change from peroxidase to molecular chaperone. However, it remains unclear how non-covalent interactions of 2-Cys Prx with metabolites modulate the quaternary structure. Here, we disclose that ATP and Mg2+ (ATP/Mg) promote the self-polymerization of chloroplast 2-Cys Prx (polypeptide 23.5 kDa) into soluble higher order assemblies (>2 MDa) that proceed to insoluble aggregates beyond 5 mm ATP. Remarkably, the withdrawal of ATP or Mg2+ brings soluble oligomers and insoluble aggregates back to the native conformation without compromising the associated functions. As confirmed by transmission electron microscopy, ATP/Mg drive the toroid-like decamers (diameter 13 nm) to the formation of large sphere-like particles (diameter ∼30 nm). Circular dichroism studies on ATP-labeled 2-Cys Prx reveal that ATP/Mg enhance the proportion of β-sheets with the concurrent decrease in the content of α-helices. In line with this observation, the formation of insoluble aggregates is strongly prevented by 2,2,2-trifluoroethanol, a cosolvent employed to induce α-helical conformations. We further find that the response of self-polymerization to ATP/Mg departs abruptly from that of the associated peroxidase and chaperone activities when two highly conserved residues, Arg129 and Arg152, are mutated. Collectively, our data uncover that non-covalent interactions of ATP/Mg with 2-Cys Prx modulate dynamically the quaternary structure, thereby coupling the non-redox chemistry of cell energy with redox transformations at cysteine residues. PMID:21525006

  2. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration.

    PubMed

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D; Maryon, Edward B; Kaplan, Jack H; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-09-17

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  3. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations.

    PubMed

    Xu, Junnan; Song, Dan; Bai, Qiufang; Zhou, Lijun; Cai, Liping; Hertz, Leif; Peng, Liang

    2014-01-13

    This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+) after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+-dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations.

  4. Crystallization of the c14-rotor of the chloroplast ATP synthase reveals that it contains pigments

    PubMed Central

    Varco-Merth, Benjamin; Fromme, Raimund; Wang, Meitian; Fromme, Petra

    2012-01-01

    The ATP synthase is one of the most important enzymes on earth as it couples the transmembrane electrochemical potential of protons to the synthesis of ATP from ADP and inorganic phosphate, providing the main ATP source of almost all higher life on earth. During ATP synthesis, stepwise protonation of a conserved carboxylate on each protein subunit of an oligomeric ring of 10–15 c-subunits is commonly thought to drive rotation of the rotor moiety (c10–14γε) relative to stator moiety (α3β3δab2). Here we report the isolation and crystallization of the c14-ring of subunit c from the spinach chloroplast enzyme diffracting as far as 2.8 Å. Though ATP synthase was not previously known to contain any pigments, the crystals of the c-subunit possessed a strong yellow color. The pigment analysis revealed that they contain 1 chlorophyll and 2 carotenoids, thereby showing for the first time that the chloroplast ATP synthase contains cofactors, leading to the question of the possible roles of the functions of the pigments in the chloroplast ATP synthase. PMID:18515064

  5. ATP-dependent chromatin remodeling in T cells

    PubMed Central

    Wurster, Andrea L.; Pazin, Michael J.

    2012-01-01

    One of the best studied systems for mammalian chromatin remodeling is transcriptional regulation during T cell development. The variety of these studies have led to important findings in T cell gene regulation and cell fate determination. Importantly, these findings have also advanced our knowledge of the function of remodeling enzymes in mammalian gene regulation. In this review, first we briefly present biochemical/cell-free analysis of 3 types of ATP dependent remodeling enzymes (SWI/SNF, Mi2, and ISWI), to construct an intellectual framework to understand how these enzymes might be working. Second, we compare and contrast the function of these enzymes, during early (thymic) and late (peripheral) T cell development. Finally, we examine some of the gaps in our present understanding. PMID:21999456

  6. The Reverse Gyrase from Pyrobaculum calidifontis, a Novel Extremely Thermophilic DNA Topoisomerase Endowed with DNA Unwinding and Annealing Activities*

    PubMed Central

    Jamroze, Anmbreen; Perugino, Giuseppe; Valenti, Anna; Rashid, Naeem; Rossi, Mosè; Akhtar, Muhammad; Ciaramella, Maria

    2014-01-01

    Reverse gyrase is a DNA topoisomerase specific for hyperthermophilic bacteria and archaea. It catalyzes the peculiar ATP-dependent DNA-positive supercoiling reaction and might be involved in the physiological adaptation to high growth temperature. Reverse gyrase comprises an N-terminal ATPase and a C-terminal topoisomerase domain, which cooperate in enzyme activity, but details of its mechanism of action are still not clear. We present here a functional characterization of PcalRG, a novel reverse gyrase from the archaeon Pyrobaculum calidifontis. PcalRG is the most robust and processive reverse gyrase known to date; it is active over a wide range of conditions, including temperature, ionic strength, and ATP concentration. Moreover, it holds a strong ATP-inhibited DNA cleavage activity. Most important, PcalRG is able to induce ATP-dependent unwinding of synthetic Holliday junctions and ATP-stimulated annealing of unconstrained single-stranded oligonucleotides. Combined DNA unwinding and annealing activities are typical of certain helicases, but until now were shown for no other reverse gyrase. Our results suggest for the first time that a reverse gyrase shares not only structural but also functional features with evolutionary conserved helicase-topoisomerase complexes involved in genome stability. PMID:24347172

  7. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity.

    PubMed

    Groen, Annemiek; Romero, Marta Rodriguez; Kunne, Cindy; Hoosdally, Sarah J; Dixon, Peter H; Wooding, Carol; Williamson, Catherine; Seppen, Jurgen; Van den Oever, Karin; Mok, Kam S; Paulusma, Coen C; Linton, Kenneth J; Oude Elferink, Ronald P J

    2011-11-01

    Progressive familial intrahepatic cholestasis can be caused by mutations in ABCB4 or ATP8B1; each encodes a protein that translocates phospholipids, but in opposite directions. ABCB4 flops phosphatidylcholine from the inner to the outer leaflet, where it is extracted by bile salts. ATP8B1, in complex with the accessory protein CDC50A, flips phosphatidylserine in the reverse direction. Abcb4(-/-) mice lack biliary secretion of phosphatidylcholine, whereas Atp8b1-deficient mice have increased excretion of phosphatidylserine into bile. Each system is thought to have a role protecting the canalicular membrane from bile salts. To investigate the relationship between the mechanisms of ABCB4 and ATP8B1, we expressed the transporters separately and together in cultured cells and studied viability and phospholipid transport. We also created mice with disruptions in ABCB4 and ATP8B1 (double knockouts) and studied bile formation and hepatic damage in mice fed bile salts. Overexpression of ABCB4 was toxic to HEK293T cells; the toxicity was counteracted by coexpression of the ATP8B1-CDC50A complex. In Atp8b1-deficient mice, bile salts induced extraction of phosphatidylserine and ectoenzymes from the canalicular membrane; this process was not observed in the double-knockout mice. ATP8B1 is required for hepatocyte function, particularly in the presence of ABCB4. This is most likely because the phosphatidylserine flippase complex of ATP8B1-CDC50A counteracts the destabilization of the membrane that occurs when ABCB4 flops phosphatidylcholine. Lipid asymmetry is therefore important for the integrity of the canalicular membrane; ABCB4 and ATP8B1 cooperate to protect hepatocytes from bile salts. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Secreted adenosine triphosphate from Aggregatibacter actinomycetemcomitans triggers chemokine response.

    PubMed

    Ding, Q; Quah, S Y; Tan, K S

    2016-10-01

    Extracellular ATP (eATP) is an important intercellular signaling molecule secreted by activated immune cells or released by damaged cells. In mammalian cells, a rapid increase of ATP concentration in the extracellular space sends a danger signal, which alerts the immune system of an impending danger, resulting in recruitment and priming of phagocytes. Recent studies show that bacteria also release ATP into the extracellular milieu, suggesting a potential role for eATP in host-microbe interactions. It is currently unknown if any oral bacteria release eATP. As eATP triggers and amplifies innate immunity and inflammation, we hypothesized that eATP secreted from periodontal bacteria may contribute to inflammation in periodontitis. The aims of this study were to determine if periodontal bacteria secrete ATP, and to determine the function of bacterially derived eATP as an inducer of inflammation. Our results showed that Aggregatibacter actinomycetemcomitans, but not Porphyromonas gingivalis, Prevotella intermedia, or Fusobacterium nucleatum, secreted ATP into the culture supernatant. Exposure of periodontal fibroblasts to filter sterilized culture supernatant of A. actinomycetemcomitans induced chemokine expression in an eATP-dependent manner. This occurred independently of cyclic adenosine monophosphate and phospholipase C, suggesting that ionotrophic P2X receptor is involved in sensing of bacterial eATP. Silencing of P2X7 receptor in periodontal fibroblasts led to a significant reduction in bacterial eATP-induced chemokine response. Furthermore, bacterial eATP served as a potent chemoattractant for neutrophils and monocytes. Collectively, our findings provide evidence for secreted ATP of A. actinomycetemcomitans as a novel virulence factor contributing to inflammation during periodontal disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation.

    PubMed

    Mhashal, Anil R; Choudhury, Chandan Kumar; Roy, Sudip

    2016-03-01

    Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state.

  10. Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1.

    PubMed

    Kellner, Julian N; Reinstein, Jochen; Meinhart, Anton

    2015-03-11

    RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1's enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an 'open' to a 'closed'-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function.

    PubMed

    Simpson, Brent W; Owens, Tristan W; Orabella, Matthew J; Davis, Rebecca M; May, Janine M; Trauger, Sunia A; Kahne, Daniel; Ruiz, Natividad

    2016-10-18

    The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB 2 FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB 2 FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. Lipopolysaccharide (LPS) is synthesized at the cytoplasmic membrane of Gram-negative bacteria and transported across several compartments to the cell surface, where it forms a barrier that protects these organisms from antibiotics. The LptB 2 FG proteins form an ATP-binding cassette (ABC) transporter that uses energy from ATP hydrolysis in the cytoplasm to facilitate extraction of LPS from the outer face of the cytoplasmic membrane prior to transport to the cell surface. How ATP hydrolysis is coupled with LPS release from the membrane is not understood. We have identified residues at the interface between the ATPase and the transmembrane domains of this heteromeric ABC complex that are important for LPS transport, some of which coordinate ATPase activity with LPS release. Copyright © 2016 Simpson et al.

  12. The F0F1-ATP Synthase Complex Contains Novel Subunits and Is Essential for Procyclic Trypanosoma brucei

    PubMed Central

    Zíková, Alena; Schnaufer, Achim; Dalley, Rachel A.; Panigrahi, Aswini K.; Stuart, Kenneth D.

    2009-01-01

    The mitochondrial F0F1 ATP synthase is an essential multi-subunit protein complex in the vast majority of eukaryotes but little is known about its composition and role in Trypanosoma brucei, an early diverged eukaryotic pathogen. We purified the F0F1 ATP synthase by a combination of affinity purification, immunoprecipitation and blue-native gel electrophoresis and characterized its composition and function. We identified 22 proteins of which five are related to F1 subunits, three to F0 subunits, and 14 which have no obvious homology to proteins outside the kinetoplastids. RNAi silencing of expression of the F1 α subunit or either of the two novel proteins showed that they are each essential for the viability of procyclic (insect stage) cells and are important for the structural integrity of the F0F1-ATP synthase complex. We also observed a dramatic decrease in ATP production by oxidative phosphorylation after silencing expression of each of these proteins while substrate phosphorylation was not severely affected. Our procyclic T. brucei cells were sensitive to the ATP synthase inhibitor oligomycin even in the presence of glucose contrary to earlier reports. Hence, the two novel proteins appear essential for the structural organization of the functional complex and regulation of mitochondrial energy generation in these organisms is more complicated than previously thought. PMID:19436713

  13. Extracellular nucleotide signaling in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, Gary

    Over the life of this funded project, our research group identified and characterized two key receptor proteins in plants; one mediating the innate immunity response to chitin and the other elucidating the key receptor for extracellular ATP. In the case of chitin recognition, we recently described the quaternary structure of this receptor, shedding light on how the receptor functions. Perhaps more importantly, we demonstrated that all plants have the ability to recognize both chitin oligomers and lipochitooligosacchardes, fundamentally changing how the community views the evolution of these systems and strategies that might be used, for example, to extend symbiotic nitrogenmore » fixation to non-legumes. Our discovery of DORN1 opens a new chapter in plant physiology documenting conclusively that eATP is an important extracellular signal in plants, as it is in animals. At this point, we cannot predict just how far reaching this discovery may prove to be but we are convinced that eATP signaling is fundamental to plant growth and development and, hence, we believe that the future will be very exciting for the study of DORN1 and its overall function in plants.« less

  14. ATP-Binding Cassette Proteins: Towards a Computational View of Mechanism

    NASA Astrophysics Data System (ADS)

    Liao, Jielou

    2004-03-01

    Many large machine proteins can generate mechanical force and undergo large-scale conformational changes (LSCC) to perform varying biological tasks in living cells by utilizing ATP. Important examples include ATP-binding cassette (ABC) transporters. They are membrane proteins that couple ATP binding and hydrolysis to the translocation of substrates across membranes [1]. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated, a coarse-grained ATP-dependent harmonic network model (HNM) [2,3] is applied to the ABC protein, BtuCD. This protein machine transports vitamin B12 across membranes. The analysis shows that subunits of the protein move against each other in a concerted manner. The lowest-frequency modes of the BtuCD protein are found to link the functionally critical domains, and are suggested to be responsible for large-scale ATP-coupled conformational changes. [1] K. P. Locher, A. T. Lee and D. C. Rees. Science 296, 1091-1098 (2002). [2] Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophys. J. 80, 505-515(2002); M. M Tirion, Phys. Rev. Lett. 77, 1905-1908 (1996). [3] J. -L. Liao and D. N. Beratan, 2003, to be published.

  15. Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition

    PubMed Central

    Percival, Justin M.; Siegel, Michael P.; Knowels, Gary; Marcinek, David J.

    2013-01-01

    Given the crucial roles for mitochondria in ATP energy supply, Ca2+ handling and cell death, mitochondrial dysfunction has long been suspected to be an important pathogenic feature in Duchenne muscular dystrophy (DMD). Despite this foresight, mitochondrial function in dystrophin-deficient muscles has remained poorly defined and unknown in vivo. Here, we used the mdx mouse model of DMD and non-invasive spectroscopy to determine the impact of dystrophin-deficiency on skeletal muscle mitochondrial localization and oxidative phosphorylation function in vivo. Mdx mitochondria exhibited significant uncoupling of oxidative phosphorylation (reduced P/O) and a reduction in maximal ATP synthesis capacity that together decreased intramuscular ATP levels. Uncoupling was not driven by increased UCP3 or ANT1 expression. Dystrophin was required to maintain subsarcolemmal mitochondria (SSM) pool density, implicating it in the spatial control of mitochondrial localization. Given that nitric oxide-cGMP pathways regulate mitochondria and that sildenafil-mediated phosphodiesterase 5 inhibition ameliorates dystrophic pathology, we tested whether sildenafil's benefits result from decreased mitochondrial dysfunction in mdx mice. Unexpectedly, sildenafil treatment did not affect mitochondrial content or oxidative phosphorylation defects in mdx mice. Rather, PDE5 inhibition decreased resting levels of ATP, phosphocreatine and myoglobin, suggesting that sildenafil improves dystrophic pathology through other mechanisms. Overall, these data indicate that dystrophin-deficiency disrupts SSM localization, promotes mitochondrial inefficiency and restricts maximal mitochondrial ATP-generating capacity. Together these defects decrease intramuscular ATP and the ability of mdx muscle mitochondria to meet ATP demand. These findings further understanding of how mitochondrial bioenergetic dysfunction contributes to disease pathogenesis in dystrophin-deficient skeletal muscle in vivo. PMID:23049075

  16. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice

    PubMed Central

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer’s disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD. PMID:27834780

  17. Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice.

    PubMed

    Gauba, Esha; Guo, Lan; Du, Heng

    2017-01-01

    Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.

  18. Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.

    PubMed

    Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth; Magness, Ronald R

    2016-10-01

    Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays key roles in ATP-induced endothelial nitric oxide synthase activation and nitric oxide production. Little is known regarding the partitioning of Cx proteins to caveolar domains or their dynamics with ATP treatment. We observed that Cx43-mediated gap junction function with ATP stimulation is associated with Cx43 repartitioning between the noncaveolar and caveolar domains. Compared with UAECs from nonpregnant (NP) ewes, levels of ATP, PGI2, cAMP, NOx, and cGMP were 2-fold higher (P<0.05) in pregnant UAECs. In pregnant UAECs, ATP increased Lucifer yellow dye transfer, a response abrogated by Gap27, but not Gap 26, indicating involvement of Cx43, but not Cx37. Confocal microscopy revealed domain partitioning of Cx43 and caveolin-1. In pregnant UAECs, LC/MS/MS analysis revealed only Cx43 in the caveolar domain. In contrast, Cx37 was located only in the noncaveolar pool. Western analysis revealed that ATP increased Cx43 distribution (1.7-fold; P=0.013) to the caveolar domain, but had no effect on Cx37. These data demonstrate rapid ATP-stimulated repartitioning of Cx43 to the caveolae, where endothelial nitric oxide synthase resides and plays an important role in nitric oxide-mediated increasing uterine blood flow during pregnancy. © 2016 American Heart Association, Inc.

  19. Evidence that Na+/H+ exchanger 1 is an ATP-binding protein.

    PubMed

    Shimada-Shimizu, Naoko; Hisamitsu, Takashi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2013-03-01

    Na(+)/H(+) exchanger (NHE) 1 is a member of the solute carrier superfamily, which regulates intracellular ionic homeostasis. NHE1 is known to require cellular ATP for its activity, despite there being no requirement for energy input from ATP hydrolysis. In this study, we investigated whether NHE1 is an ATP-binding protein. We designed a baculovirus vector carrying both epitope-tagged NHE1 and its cytosolic subunit CHP1, and expressed the functional NHE1-CHP1 complex on the surface of Sf9 insect cells. Using the purified complex protein consisting of NHE1 and CHP1 from Sf9 cells, we examined a photoaffinity labeling reaction with 8-azido-ATP-biotin. UV irradiation promoted the incorporation of 8-azido-ATP into NHE1, but not into CHP1, with an apparent Kd of 29.1 µM in the presence of Mg(2+). The nonlabeled nucleotides ATP, GTP, TTP and CTP all inhibited this crosslinking. However, ATP had the strongest inhibitory effect, with an apparent inhibition constant (IC50) for ATP of 2.2 mM, close to the ATP concentration giving the half-maximal activation of NHE1 activity. Importantly, crosslinking was more strongly inhibited by ATP than by ADP, suggesting that ATP is dissociated from NHE1 upon ATP hydrolysis. Limited proteolysis with thrombin and deletion mutant analysis revealed that the 8-azido-ATP-binding site is within the C-terminal cytoplasmic domain of NHE1. Equilibrium dialysis with NHE1-derived peptides provided evidence that ATP directly binds to the proximal cytoplasmic region (Gly542-Pro598), which is critical for ATP-dependent regulation of NHE1. These findings suggest that NHE1 is an ATP-binding transporter. Thus, ATP may serve as a direct activator of NHE1. © 2013 The Authors Journal compilation © 2013 FEBS.

  20. Principles and properties of ion flow in P2X receptors

    PubMed Central

    Samways, Damien S. K.; Li, Zhiyuan; Egan, Terrance M.

    2014-01-01

    P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate. PMID:24550775

  1. Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery

    NASA Astrophysics Data System (ADS)

    Sato, Takato; Ohnuki, Jun; Takano, Mitsunori

    2017-12-01

    A protein molecule is a dielectric substance, so the binding of a ligand is expected to induce dielectric response in the protein molecule, considering that ligands are charged or polar in general. We previously reported that binding of adenosine triphosphate (ATP) to molecular motor myosin actually induces such a dielectric response in myosin due to the net negative charge of ATP. By this dielectric response, referred to as "dielectric allostery," spatially separated two regions in myosin, the ATP-binding region and the actin-binding region, are allosterically coupled. In this study, from the statistically stringent analyses of the extensive molecular dynamics simulation data obtained in the ATP-free and the ATP-bound states, we show that there exists the dielectric allostery that transmits the signal of ATP binding toward the distant lever-arm region. The ATP-binding-induced electrostatic potential change observed on the surface of the main domain induced a movement of the converter subdomain from which the lever arm extends. The dielectric response was found to be caused by an underlying large-scale concerted rearrangement of the electrostatic bond network, in which highly conserved charged/polar residues are involved. Our study suggests the importance of the dielectric property for molecular machines in exerting their function.

  2. Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: relationship to TBT-induced decreases in NK function.

    PubMed

    Dudimah, Fred D; Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M

    2007-01-01

    The purpose of this study was to investigate the role that tributyltin (TBT)-induced decreases in ATP levels may play in TBT-induced decreases in the tumor lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes that act as an initial immune defense against tumor cells and virally infected cells. TBT is an environmental contaminant that has been detected in human blood, which has been shown to interfere with ATP synthesis. Previous studies have shown that TBT is able to decrease very significantly the lytic function of NK cells. In this study NK cells were exposed to various concentrations of TBT and to two other compounds that interfere with ATP synthesis (rotenone a complex I inhibitor and oligomycin an ATP synthase inhibitor) for various lengths of time before determining the levels of ATP and lytic function. Exposures of NK cells to 10, 25, 50 and 100 nm TBT did not significantly reduce ATP levels after 24 h. However, these same exposures caused significant decreases in cytotoxic function. Studies of brief 1 h exposures to a range of TBT, rotenone and oligomycin concentrations followed by 24 h, 48 h and 6 day periods in compound-free media prior to assaying for ATP levels or cytotoxic function showed that each of the compounds caused persistent decreases in ATP levels and lytic function of NK cells. Exposures to 0.05-5 microm rotenone or oligomycin for 1 h reduced ATP levels by 20-25% but did not have any measurable effect on the ability of NK cells to lyse tumor cells. ATP levels were also decreased by about 20-25% after 24 h or 48 h exposures to rotenone or oligomycin (0.5 microm ), and the lytic function was decreased by about 50%. The results suggest that TBT-induced decreases in ATP levels were not responsible for the loss of cytotoxic function seen at 1 h and 24 h. However, TBT-induced decreases of NK-ATP levels may be at least in part responsible for losses of NK-cytotoxic function seen after 48 h and 6 day exposures. Copyright 2006 John Wiley & Sons, Ltd.

  3. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    PubMed

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  4. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    PubMed Central

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  5. Unexpected Role of the Copper Transporter ATP7A in PDGF-Induced Vascular Smooth Muscle Cell Migration

    PubMed Central

    Ashino, Takashi; Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; Chen, Gin-Fu; Wang, Huan; Huo, Yuqing; Finney, Lydia; Vogt, Stefan; McKinney, Ronald D.; Maryon, Edward B.; Kaplan, Jack H.; Ushio-Fukai, Masuko; Fukai, Tohru

    2010-01-01

    Rationale Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1, but also by the copper exporter ATP7A (Menke ATPase) whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. Objective To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Methods and Results Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A siRNA or CTR siRNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor pro-lysyl oxidase (Pro-LOX) in lipid raft fraction as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based X-ray fluorescence microscopy at neointimal VSMCs in wire injury model. Conclusions These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis. PMID:20671235

  6. Proteomic analysis reveals the important roles of alpha-5-collagen and ATP5β during skin ulceration syndrome progression of sea cucumber Apostichopus japonicus.

    PubMed

    Zhao, Zelong; Jiang, Jingwei; Pan, Yongjia; Sun, Hongjuan; Guan, Xiaoyan; Gao, Shan; Chen, Zhong; Dong, Ying; Zhou, Zunchun

    2018-03-20

    Apostichopus japonicus is one of the most important aquaculture species in China. Skin ulceration syndrome (SUS) of sea cucumber is a common and serious disease affected the development of A. japonicus culture industry. To better understand the response mechanisms of A. japonicus during SUS progression, the protein variations in the body wall of A. japonicus at different stages of SUS were investigated by a comparative proteomic approach based on isobaric tags for relative and absolute quantification. A total of 1449 proteins were identified from the samples at different SUS stages. Among these proteins, 145 proteins were differentially expressed in the SUS-related samples compared to those of healthy A. japonicus. These differentially expressed proteins involved a wide range of functions. Among these differentially expressed proteins, only two proteins, alpha-5-collagen and an unknown function protein, were differentially expressed during the whole progression of SUS compared with healthy A. japonicus. In addition, ATP synthase subunit beta (ATP5β) interacted with a variety of proteins with different functions during the SUS progression. These results implied that alpha-5-collagen and ATP5β could play important roles during the SUS progression of A. japonicus. Our study provided a new sight to understand the molecular responses of sea cucumber during the SUS progression and accumulated data for the prevention of SUS in sea cucumber aquaculture. The current study aimed to reveal how the body wall of Apostichopus japonicus response to skin ulceration syndrome (SUS). To the best of our knowledge, this is the first proteomic study analyzing the differences in protein profile of sea cucumber during the whole SUS progression. By analyzing the expression differences of the proteome via isobaric labeling-based quantitative proteomic, we identified some proteins which may play important roles during the SUS progression. According to the enrichment analyses of these proteins based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, a draft view of how the sea cucumber affected by SUS has been drawn. The common and unique differentially expressed proteins by Venn analysis showed that alpha-5-collagen was down-regulated at all stages of SUS, which had the potential as a target component for the host-directed SUS therapy. In addition, ATP5β, a subunit of mitochondrial ATP synthase, interacting with a variety of proteins with different functions during the SUS progression. This result illustrated that energy production and metabolism could play an important role in the formation of skin ulceration and resistance to pathogens in sea cucumber. The results of this study will be helpful for researchers to gain insights into the complex molecular mechanism of SUS in sea cucumber. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Impaired muscle efficiency but preserved peripheral hemodynamics and mitochondrial function with advancing age: Evidence from exercise in the young, old, and oldest-old.

    PubMed

    Layec, Gwenael; Trinity, Joel D; Hart, Corey R; Le Fur, Yann; Zhao, Jia; Reese, Van; Jeong, Eun-Kee; Richardson, Russell S

    2018-03-23

    Muscle weakness in the elderly has been linked to recurrent falls and morbidity, therefore, elucidating the mechanisms contributing to the loss of muscle function and mobility with advancing age is critical. To this aim, we comprehensively examined skeletal muscle metabolic function and hemodynamics in 11 young (23±2 yrs), 11 old (68±2 yrs), and 10 oldest-old (84±2 yrs) physical activity-matched subjects. Specifically, oxidative stress markers, mitochondrial function and the ATP cost of contraction as well as peripheral hemodynamics were assessed during dynamic plantar flexion exercise at 40% of maximal work rate (WRmax). Both the PCr recovery time constant and the peak rate of mitochondrial ATP synthesis were not significantly different between groups. In contrast, the ATP cost of dynamic contractions (young: 1.5±1.0, old: 3.4±2.1, oldest-old: 6.1±3.6 mM.min-1.W-1) and systemic markers of oxidative stress were signficantly increased with age, with the ATP cost of contraction being negatively correlated with WRmax (r=0.59, P<0.05). End-of-exercise blood flow per Watt rose significantly with increasing age (young: 37±20, old: 82±68, oldest-old: 154±93 ml.min-1.W-1). These findings suggest that the progressive deterioration of muscle contractile efficiency with advancing age may play an important role in the decline in skeletal muscle functional capacity in the elderly.

  8. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and KATP channel function.

    PubMed

    Wang, Xinrui; Fitts, Robert H

    2017-08-01

    Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the β-adrenergic receptor agonist dose-response curve rightward compared with controls by reducing β 1 -adrenergic receptor responsiveness and that, at the high activation rate, myocytes from trained animals showed higher K ATP channel function. Copyright © 2017 the American Physiological Society.

  9. Role of Arg228 in the phosphorylation of galactokinase: the mechanism of GHMP kinases by quantum mechanics/molecular mechanics studies.

    PubMed

    Huang, Meilan; Li, Xiaozhou; Zou, Jian-Wei; Timson, David J

    2013-07-16

    GHMP kinases are a group of structurally related small molecule kinases. They have been found in all kingdoms of life and are mostly responsible for catalyzing the ATP-dependent phosphorylation of intermediary metabolites. Although the GHMP kinases are of clinical, pharmaceutical, and biotechnological importance, the mechanism of GHMP kinases is controversial. A catalytic base mechanism was suggested for mevalonate kinase that has a structural feature of the γ-phosphate of ATP close to an aspartate residue; however, for one GHMP family member, homoserine kinase, where the residue acting as general base is absent, a direct phosphorylation mechanism was suggested. Furthermore, it was proposed by some authors that all the GHMP kinases function by a similar mechanism. This controversy in mechanism has limited our ability to exploit these enzymes as drug targets and in biotechnology. Here the phosphorylation reaction mechanism of the human galactokinase, a member of the GHMP kinase family, was investigated using molecular dynamics simulations and density functional theory-based quantum mechanics/molecular mechanics calculations (B3LYP-D/AMBER99). The reaction coordinates were localized by potential energy scan using an adiabatic mapping method. Our results indicate that a highly conserved Glu174 captures Arg105 in the proximity of the α-phosphate of ATP, forming a H-bond network; therefore, the mobility of ATP in the large oxyanion hole is restricted. Arg228 functions to stabilize the negative charge developed at the β,γ-bridging oxygen of the ATP during bond cleavage. The reaction occurs via a direct phosphorylation mechanism, and the Asp186 in the proximity of ATP does not directly participate in the reaction pathway. Because Arg228 is not conserved among GHMP kinases, reagents which form interactions with Arg228, and therefore can interrupt its function in phosphorylation, may be developed into potential selective inhibitors for galactokinase.

  10. The role of purinergic signaling on deformation induced injury and repair responses of alveolar epithelial cells.

    PubMed

    Belete, Hewan A; Hubmayr, Rolf D; Wang, Shaohua; Singh, Raman-Deep

    2011-01-01

    Cell wounding is an important driver of the innate immune response of ventilator-injured lungs. We had previously shown that the majority of wounded alveolus resident cells repair and survive deformation induced insults. This is important insofar as wounded and repaired cells may contribute to injurious deformation responses commonly referred to as biotrauma. The central hypothesis of this communication states that extracellular adenosine-5' triphosphate (ATP) promotes the repair of wounded alveolus resident cells by a P2Y2-Receptor dependent mechanism. Using primary type 1 alveolar epithelial rat cell models subjected to micropuncture injury and/or deforming stress we show that 1) stretch causes a dose dependent increase in cell injury and ATP media concentrations; 2) enzymatic depletion of extracellular ATP reduces the probability of stretch induced wound repair; 3) enriching extracellular ATP concentrations facilitates wound repair; 4) purinergic effects on cell repair are mediated by ATP and not by one of its metabolites; and 5) ATP mediated cell salvage depends at least in part on P2Y2-R activation. While rescuing cells from wounding induced death may seem appealing, it is possible that survivors of membrane wounding become governors of a sustained pro-inflammatory state and thereby perpetuate and worsen organ function in the early stages of lung injury syndromes. Means to uncouple P2Y2-R mediated cytoprotection from P2Y2-R mediated inflammation and to test the preclinical efficacy of such an undertaking deserve to be explored.

  11. Resolving the negative potential side (n-side) water-accessible proton pathway of F-type ATP synthase by molecular dynamics simulations.

    PubMed

    Gohlke, Holger; Schlieper, Daniel; Groth, Georg

    2012-10-19

    The rotation of F(1)F(o)-ATP synthase is powered by the proton motive force across the energy-transducing membrane. The protein complex functions like a turbine; the proton flow drives the rotation of the c-ring of the transmembrane F(o) domain, which is coupled to the ATP-producing F(1) domain. The hairpin-structured c-protomers transport the protons by reversible protonation/deprotonation of a conserved Asp/Glu at the outer transmembrane helix (TMH). An open question is the proton transfer pathway through the membrane at atomic resolution. The protons are thought to be transferred via two half-channels to and from the conserved cAsp/Glu in the middle of the membrane. By molecular dynamics simulations of c-ring structures in a lipid bilayer, we mapped a water channel as one of the half-channels. We also analyzed the suppressor mutant cP24D/E61G in which the functional carboxylate is shifted to the inner TMH of the c-protomers. Current models concentrating on the "locked" and "open" conformations of the conserved carboxylate side chain are unable to explain the molecular function of this mutant. Our molecular dynamics simulations revealed an extended water channel with additional water molecules bridging the distance of the outer to the inner TMH. We suggest that the geometry of the water channel is an important feature for the molecular function of the membrane part of F(1)F(o)-ATP synthase. The inclination of the proton pathway isolates the two half-channels and may contribute to a favorable clockwise rotation in ATP synthesis mode.

  12. ATP during early bladder stretch is important for urgency in detrusor overactivity patients.

    PubMed

    Cheng, Y; Mansfield, K J; Allen, W; Chess-Williams, R; Burcher, E; Moore, K H

    2014-01-01

    ATP is an important mediator of urgency in women with detrusor overactivity (DO). In order to understand how different degrees of bladder stretch elicited ATP release in DO patients compared with controls, sequential aliquots were collected during cystometry and ATP release was measured at each degree of bladder filling, in female patients with DO and controls. In both DO and control groups, ATP release was induced during bladder filling, suggesting that stretch stimulated further ATP release. However, the luminal ATP concentrations were already high at early filling stage (200 mL), which was even greater than those at the later filling stages (400 mL and maximum cystometric capacity, MCC), indicating that a substantial ATP release has been induced during early filling (200 mL) in both DO and controls. In DO, ATP release at 200 mL was significantly higher in those with low first desire to void (FDV) (≤ 200 mL) than in those with higher FDV (> 200 mL); this may suggest that ATP release at early stretch may play an important role in urgency (early sensation) in DO. ATP concentrations remained unchanged after voiding, suggesting that voiding did not further induce ATP release into intraluminal fluid.

  13. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy

    PubMed Central

    Cheng, Yuanhua; Hogarth, Kaley A.; O'Sullivan, M. Lynne; Regnier, Michael

    2015-01-01

    Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca2+ sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. PMID:26497964

  14. 2-Deoxyadenosine triphosphate restores the contractile function of cardiac myofibril from adult dogs with naturally occurring dilated cardiomyopathy.

    PubMed

    Cheng, Yuanhua; Hogarth, Kaley A; O'Sullivan, M Lynne; Regnier, Michael; Pyle, W Glen

    2016-01-01

    Dilated cardiomyopathy (DCM) is a major type of heart failure resulting from loss of systolic function. Naturally occurring canine DCM is a widely accepted experimental paradigm for studying human DCM. 2-Deoxyadenosine triphosphate (dATP) can be used by myosin and is a superior energy substrate over ATP for cross-bridge formation and increased systolic function. The objective of this study was to evaluate the beneficial effect of dATP on contractile function of cardiac myofibrils from dogs with naturally occurring DCM. We measured actomyosin NTPase activity and contraction/relaxation properties of isolated myofibrils from nonfailing (NF) and DCM canine hearts. NTPase assays indicated replacement of ATP with dATP significantly increased myofilament activity in both NF and DCM samples. dATP significantly improved maximal tension of DCM myofibrils to the NF sample level. dATP also restored Ca(2+) sensitivity of tension that was reduced in DCM samples. Similarly, dATP increased the kinetics of contractile activation (kACT), with no impact on the rate of cross-bridge tension redevelopment (kTR). Thus, the activation kinetics (kACT/kTR) that were reduced in DCM samples were restored for dATP to NF sample levels. dATP had little effect on relaxation. The rate of early slow-phase relaxation was slightly reduced with dATP, but its duration was not, nor was the fast-phase relaxation or times to 50 and 90% relaxation. Our findings suggest that myosin utilization of dATP improves cardiac myofibril contractile properties of naturally occurring DCM canine samples, restoring them to NF levels, without compromising relaxation. This suggests elevation of cardiac dATP is a promising approach for the treatment of DCM. Copyright © 2016 the American Physiological Society.

  15. Elevated uric acid and adenosine triphosphate concentrations in bronchoalveolar lavage fluid of eosinophilic pneumonia.

    PubMed

    Kobayashi, Takehito; Nakagome, Kazuyuki; Noguchi, Toru; Kobayashi, Kiyoko; Ueda, Yutaka; Soma, Tomoyuki; Ikebuchi, Kenji; Nakamoto, Hidetomo; Nagata, Makoto

    2017-09-01

    Recent evidence has suggested that the innate immune response may play a role in the development of eosinophilic airway inflammation. We previously reported that uric acid (UA) and adenosine triphosphate (ATP), two important damage-associated molecular pattern molecules (DAMPs), activate eosinophil functions, suggesting that these molecules may be involved in the development of eosinophilic airway inflammation. The objective of this study was to measure the concentrations of DAMPs including UA and ATP in the bronchoalveolar lavage fluid (BALF) of patients with eosinophilic pneumonia (EP). BAL was performed in patients with EP including acute and chronic eosinophilic pneumonia, and in patients with hypersensitivity pneumonia, and sarcoidosis. UA, ATP, and cytokine concentrations in the BALF were then measured. The UA concentration was increased in the BALF of EP patients. UA concentrations correlated with eosinophil numbers, and with eosinophil-derived neurotoxin and interleukin (IL)-5 concentrations. Furthermore, the ATP concentration was increased in the BALF of EP patients and ATP concentrations correlated with UA concentrations. Moreover, IL-33 was increased in EP patients and IL-33 concentrations correlated with UA and ATP concentrations. The UA and ATP concentration was increased in the BALF of EP patients. UA concentrations correlated with eosinophil numbers, and with ATP and IL-33 concentrations. Our findings suggest that DAMPs such as UA and ATP play a role in the pathogenesis of EP. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  16. Kinetic mechanism of the dimeric ATP sulfurylase from plants

    PubMed Central

    Ravilious, Geoffrey E.; Herrmann, Jonathan; Goo Lee, Soon; Westfall, Corey S.; Jez, Joseph M.

    2013-01-01

    In plants, sulfur must be obtained from the environment and assimilated into usable forms for metabolism. ATP sulfurylase catalyses the thermodynamically unfavourable formation of a mixed phosphosulfate anhydride in APS (adenosine 5′-phosphosulfate) from ATP and sulfate as the first committed step of sulfur assimilation in plants. In contrast to the multi-functional, allosterically regulated ATP sulfurylases from bacteria, fungi and mammals, the plant enzyme functions as a mono-functional, non-allosteric homodimer. Owing to these differences, here we examine the kinetic mechanism of soybean ATP sulfurylase [GmATPS1 (Glycine max (soybean) ATP sulfurylase isoform 1)]. For the forward reaction (APS synthesis), initial velocity methods indicate a single-displacement mechanism. Dead-end inhibition studies with chlorate showed competitive inhibition versus sulfate and non-competitive inhibition versus APS. Initial velocity studies of the reverse reaction (ATP synthesis) demonstrate a sequential mechanism with global fitting analysis suggesting an ordered binding of substrates. ITC (isothermal titration calorimetry) showed tight binding of APS to GmATPS1. In contrast, binding of PPi (pyrophosphate) to GmATPS1 was not detected, although titration of the E•APS complex with PPi in the absence of magnesium displayed ternary complex formation. These results suggest a kinetic mechanism in which ATP and APS are the first substrates bound in the forward and reverse reactions, respectively. PMID:23789618

  17. Role of connexin43 hemichannels in mechanical stress-induced ATP release in human periodontal ligament cells.

    PubMed

    Luckprom, P; Kanjanamekanant, K; Pavasant, P

    2011-10-01

    Our previous studies showed that mechanical stress could induce ATP release in human periodontal ligament (HPDL) cells. By signaling through P2 purinergic receptors, ATP increased the expression and the synthesis of osteopontin and RANKL. In this study, the mechanism of stress-induced ATP release was investigated. Continuous compressive forces were applied on cultured HPDL cells. The ATP released was measured using luciferin-luciferase bioluminescence. The expression of gap-junction proteins was examined using RT-PCR and western blot analysis. The opening of hemichannels was demonstrated by cellular uptake of a fluorescent dye, 5(6)-carboxyfluorescein, which is known to penetrate hemichannels. Intracellular signal transduction was investigated using inhibitors and antagonists. Mechanical stress induced the release of ATP into the culture medium, which was attenuated by carbenoxolone, a nonspecific gap-junction inhibitor. Addition of meclofenamic acid sodium salt, a connexin43 inhibitor, inhibited ATP release by mechanical stress. Knockdown of connexin43 expression by small interfering RNA reduced the amount of ATP released by mechanical stress, suggesting the role of connexin43 hemichannels. In addition, intracellular Ca(2+) blockers could also inhibit mechanical stress-induced ATP release and the opening of the gap junction. Our study demonstrated the involvement of gap-junction hemichannels, especially connexin43, in the stress-induced ATP-release mechanism. Furthermore, this mechanism may be regulated by the intracellular Ca(2+) signaling pathway. These results suggest an important role of gap-junction hemichannels in the function and behavior of HPDL cells. © 2011 John Wiley & Sons A/S.

  18. Effects of ultraviolet B irradiation, proinflammatory cytokines and raised extracellular calcium concentration on the expression of ATP2A2 and ATP2C1.

    PubMed

    Mayuzumi, N; Ikeda, S; Kawada, H; Fan, P S; Ogawa, H

    2005-04-01

    Darier disease (DD) and Hailey-Hailey disease (HHD) are autosomal dominantly inherited skin disorders that histologically share the characteristics of suprabasal separation and acantholysis of epidermal keratinocytes. Various mutations in the DD gene (ATP2A2) and the HHD gene (ATP2C1) (respectively encoding the calcium pumps of the sarco/endoplasmic reticulum and the Golgi apparatus) have recently been described in multiple families with DD and HHD. Mutations in ATP2A2 or ATP2C1 have been suggested as causing the conditions via the mechanism of haploinsufficiency. Ultraviolet (UV) B irradiation is thought to be an aggravating factor in both diseases. To examine the effects of various stimuli on ATP2A2 and ATP2C1 mRNA expression, and to examine the role of calcium pumps during keratinocyte differentiation. The effects of UVB irradiation, of UVB-inducible inflammatory cytokines produced by keratinocytes and of high-calcium medium (1.8 mmol L(-1) as opposed to 0.08 mmol L(-1) Ca2+) on ATP2A2 and ATP2C1 mRNA expression were quantified in cultured normal human keratinocytes using reverse transcription-polymerase chain reaction. Expression of ATP2A2 and ATP2C1 mRNA was suppressed immediately after exposure to UVB irradiation, and modulation of mRNA expression was achieved in keratinocytes cultured with proinflammatory cytokines. The mRNA expression of both genes was increased significantly after the shift to high extracellular Ca2+ concentration. The results suggest that modulation of ATP2A2 and ATP2C1 mRNA expression by UV or cytokines might contribute to the clinical presentations unique to DD and HHD, and that the controlled expression of these genes plays an important role in keratinocyte homeostasis, function and differentiation.

  19. Exocytosis of ATP From Astrocytes Modulates Phasic and Tonic Inhibition in the Neocortex

    PubMed Central

    Rasooli-Nejad, Seyed; Andrew, Jemma; Haydon, Philip G.; Pankratov, Yuriy

    2014-01-01

    Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca2+-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca2+-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using “sniff-cell” approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca2+ via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca2+ in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca2+-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of ATP from astrocytes in the neocortex. PMID:24409095

  20. Increased adenosine triphosphate production by peripheral blood CD4+ cells in patients with hematologic malignancies treated with stem cell mobilization agents.

    PubMed

    Manga, Kiran; Serban, Geo; Schwartz, Joseph; Slotky, Ronit; Patel, Nita; Fan, Jianshe; Bai, Xiaolin; Chari, Ajai; Savage, David; Suciu-Foca, Nicole; Colovai, Adriana I

    2010-07-01

    Hematopoietic stem cell (HSC) transplantation is an important therapeutic option for patients with hematologic malignancies. To explore the immunomodulatory effects of HSC mobilization agents, we studied the function and phenotype of CD4(+) T cells from 16 adult patients with hematologic malignancies undergoing HSC mobilization treatment for autologous transplantation. Immune cell function was determined using the Immuknow (Cylex) assay by measuring the amount of adenosine triphosphate (ATP) produced by CD4(+) cells from whole blood. ATP activity measured in G-CSF-treated patients was significantly higher than that measured in healthy individuals or "nonmobilized" patients. In patients treated with G-CSF, CD4(+) T cells were predominantly CD25(low)FOXP3(low), consistent with an activated phenotype. However, T-cell depletion did not abrogate ATP production in blood samples from G-CSF-treated patients, indicating that CD4(+) myeloid cells contributed to the increased ATP levels observed in these patients. There was a significant correlation between ATP activity and patient survival, suggesting that efficient activation of CD4(+) cells during mobilization treatment predicts a low risk of disease relapse. Monitoring immune cell reactivity using the Immuknow assay may assist in the clinical management of patients with hematologic malignancies and optimization of HSC mobilization protocols. Copyright 2010 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  1. AMP-activated protein kinase, stress responses and cardiovascular diseases

    PubMed Central

    WANG, Shaobin; SONG, Ping; ZOU, Ming-Hui

    2012-01-01

    AMPK (AMP-activated protein kinase) is one of the key players in maintaining intracellular homoeostasis. AMPK is well known as an energy sensor and can be activated by increased intracellular AMP levels. Generally, the activation of AMPK turns on catabolic pathways that generate ATP, while inhibiting cell proliferation and biosynthetic processes that consume ATP. In recent years, intensive investigations on the regulation and the function of AMPK indicates that AMPK not only functions as an intracellular energy sensor and regulator, but is also a general stress sensor that is important in maintaining intracellular homoeostasis during many kinds of stress challenges. In the present paper, we will review recent literature showing that AMPK functions far beyond its proposed energy sensor and regulator function. AMPK regulates ROS (reactive oxygen species)/redox balance, autophagy, cell proliferation, cell apoptosis, cellular polarity, mitochondrial function and genotoxic response, either directly or indirectly via numerous downstream pathways under physiological and pathological conditions. PMID:22390198

  2. Bcl-2 Family Members and Functional Electron Transport Chain Regulate Oxygen Deprivation-Induced Cell Death

    PubMed Central

    McClintock, David S.; Santore, Matthew T.; Lee, Vivian Y.; Brunelle, Joslyn; Budinger, G. R. Scott; Zong, Wei-Xing; Thompson, Craig B.; Hay, Nissim; Chandel, Navdeep S.

    2002-01-01

    The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax−/− bak−/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation. PMID:11739725

  3. Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain.

    PubMed

    Thomzig, Achim; Laube, Gregor; Prüss, Harald; Veh, Rüdiger W

    2005-04-11

    K-ATP channels consist of two structurally different subunits: a pore-forming subunit of the Kir6.0-family (Kir6.1 or Kir6.2) and a sulfonylurea receptor (SUR1, SUR2, SUR2A, SUR2B) with regulatory activity. The functional diversity of K-ATP channels in brain is broad and of fundamental importance for neuronal activity. Here, using immunocytochemistry with monospecific antibodies against the Kir6.1 and Kir6.2 subunits, we analyze the regional and cellular distribution of both proteins in the adult rat brain. We find Kir6.2 to be widely expressed in all brain regions, suggesting that the Kir6.2 subunit forms the pore of the K-ATP channels in most neurons, presumably protecting the cells during cellular stress conditions such as hypoglycemia or ischemia. Especially in hypothalamic nuclei, in particular the ventromedial and arcuate nucleus, neurons display Kir6.2 immunoreactivity only, suggesting that Kir6.2 is the pore-forming subunit of the K-ATP channels in the glucose-responsive neurons of the hypothalamus. In contrast, Kir6.1-like immunolabeling is restricted to astrocytes (Thomzig et al. [2001] Mol Cell Neurosci 18:671-690) in most areas of the rat brain and very weak or absent in neurons. Only in distinct nuclei or neuronal subpopulations is a moderate or even strong Kir6.1 staining detected. The biological functions of these K-ATP channels still need to be elucidated. Copyright 2005 Wiley-Liss, Inc.

  4. Clinical and molecular aspects of distal renal tubular acidosis in children.

    PubMed

    Besouw, Martine T P; Bienias, Marc; Walsh, Patrick; Kleta, Robert; Van't Hoff, William G; Ashton, Emma; Jenkins, Lucy; Bockenhauer, Detlef

    2017-06-01

    Distal renal tubular acidosis (dRTA) is characterized by hyperchloraemic metabolic acidosis, hypokalaemia, hypercalciuria and nephrocalcinosis. It is due to reduced urinary acidification by the α-intercalated cells in the collecting duct and can be caused by mutations in genes that encode subunits of the vacuolar H + -ATPase (ATP6V1B1, ATP6V0A4) or the anion exchanger 1 (SLC4A1). Treatment with alkali is the mainstay of therapy. This study is an analysis of clinical data from a long-term follow-up of 24 children with dRTA in a single centre, including a genetic analysis. Of the 24 children included in the study, genetic diagnosis was confirmed in 19 patients, with six children having mutations in ATP6V1B1, ten in ATP6V0A4 and three in SLC4A1; molecular diagnosis was not available for five children. Five novel mutations were detected (2 in ATP6V1B1 and 3 in ATP6V0A4). Two-thirds of patients presented with features of proximal tubular dysfunction leading to an erroneous diagnosis of renal Fanconi syndrome. The proximal tubulopathy disappeared after resolution of acidosis, indicating the importance of following proximal tubular function to establish the correct diagnosis. Growth retardation with a height below -2 standard deviation score was found in ten patients at presentation, but persisted in only three of these children once established on alkali treatment. Sensorineural hearing loss was found in five of the six patients with an ATP6V1B1 mutation. Only one patient with an ATP6V0A4 mutation had sensorineural hearing loss during childhood. Nine children developed medullary cysts, but without apparent clinical consequences. Cyst development in this cohort was not correlated with age at therapy onset, molecular diagnosis, growth parameters or renal function. In general, the prognosis of dRTA is good in children treated with alkali.

  5. Functional role for mouse cerebellar NO/cGMP/KATP pathway in ethanol-induced ataxia.

    PubMed

    Saeed Dar, M

    2014-01-01

    We have previously shown that brain adenosine A1 receptors and nitric oxide (NO) play an important role in ethanol (EtOH)-induced cerebellar ataxia (EICA) through glutamate/NO/cGMP pathway. I now report possible modulation of EICA by the cerebellar NO/cGMP/K(ATP) pathway. EICA was evaluated by Rotorod in CD-1 male mice. All drugs (K(ATP) activators pinacidil, 0.05, 0.1, 0.5 nmol; minoxidil, 0.01, 0.1, 1.0 pmol; antagonists glipizide/glibenclamide, 0.01, 0.05, 0.1 nmol; NO donor l-arginine, 20 nmol; NOS inhibitors [iNOS] inhibitor L-NAME, 50 nmol; glutamate, 1.5 nmol; adenosine A1 receptor agonist N(6) -cyclohexyladenosine [CHA], 6, 12 pmol; antagonist DPCPX, 0.1 or 0.4 nmol) were given by direct intracerebellar microinfusion via stereotaxically implanted guide cannulas, except EtOH (2 g/kg, i.p.). Pinacidil and minoxidil dose-dependently accentuated, whereas glipizide and glibenclamide markedly attenuated EICA, indicating tonic participation of K(ATP) channels. Glipizide abolished the pinacidil potentiation of EICA, which confirmed both drugs acted via K(ATP) channels. A possible link between K(ATP) channels and glutamate/NO pathway was suggested when (i) CHA (12 pmol) totally abolished l-arginine-induced attenuation of EICA; (ii) L-NAME abolished l-arginine-induced attenuation of EICA associated with further increase in EICA; and (iii) the combined l-arginine and glutamate infusion virtually abolished EICA. Also, whereas CHA abolished glibenclamide-induced attenuation and potentiated pinacidil/minoxidil-induced accentuation of EICA, the effects of DPCPX were just the opposite to those of CHA. The results with CHA therefore suggest a functional link between K(ATP) and A1 receptors and between K(ATP) and glutamate/NO and as an extension may involve participation of NO/cGMP/K(ATP) pathway in EICA. Copyright © 2013 by the Research Society on Alcoholism.

  6. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.

    PubMed

    Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas

    2012-01-01

    Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast.

    PubMed

    Kwon, Young-Yon; Lee, Sung-Keun; Lee, Cheol-Koo

    2017-04-01

    Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.

  8. The Role of Purinergic Signaling on Deformation Induced Injury and Repair Responses of Alveolar Epithelial Cells

    PubMed Central

    Belete, Hewan A.; Hubmayr, Rolf D.; Wang, Shaohua; Singh, Raman-Deep

    2011-01-01

    Cell wounding is an important driver of the innate immune response of ventilator-injured lungs. We had previously shown that the majority of wounded alveolus resident cells repair and survive deformation induced insults. This is important insofar as wounded and repaired cells may contribute to injurious deformation responses commonly referred to as biotrauma. The central hypothesis of this communication states that extracellular adenosine-5′ triphosphate (ATP) promotes the repair of wounded alveolus resident cells by a P2Y2-Receptor dependent mechanism. Using primary type 1 alveolar epithelial rat cell models subjected to micropuncture injury and/or deforming stress we show that 1) stretch causes a dose dependent increase in cell injury and ATP media concentrations; 2) enzymatic depletion of extracellular ATP reduces the probability of stretch induced wound repair; 3) enriching extracellular ATP concentrations facilitates wound repair; 4) purinergic effects on cell repair are mediated by ATP and not by one of its metabolites; and 5) ATP mediated cell salvage depends at least in part on P2Y2-R activation. While rescuing cells from wounding induced death may seem appealing, it is possible that survivors of membrane wounding become governors of a sustained pro-inflammatory state and thereby perpetuate and worsen organ function in the early stages of lung injury syndromes. Means to uncouple P2Y2-R mediated cytoprotection from P2Y2-R mediated inflammation and to test the preclinical efficacy of such an undertaking deserve to be explored. PMID:22087324

  9. Contribution of extracellular ATP on the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation.

    PubMed

    Kita, Toshiyuki; Arakaki, Naokatu

    2015-01-01

    Cell-surface F1F0-ATP synthase was involved in the cell signaling mediating various biological functions. Recently, we found that cell-surface F1F0-ATP synthase plays a role on intracellular triacylglycerol accumulation in adipocytes, and yet, the underlying mechanisms remained largely unknown. In this study, we investigated the role of extracellular ATP on the intracellular triacylglycerol accumulation. We demonstrated that significant amounts of ATP were produced extracellularly by cultured 3T3-L1 adipocytes and that the antibodies against α and β subunits of F1F0-ATP synthase inhibited the extracellular ATP production. Piceatannol, a F1F0-ATP synthase inhibitor, and apyrase, an enzyme which degrades extracellular ATP, suppressed triacylglycerol accumulation. The selective P2Y1 receptor antagonist MRS2500 significantly inhibited triacylglycerol accumulation, whereas the selective P2X receptor antagonist NF279 has less effect. The present results indicate that cell-surface F1F0-ATP synthase on adipocytes is functional in extracellular ATP production and that the extracellular ATP produced contributes, at least in part, to the cell-surface F1F0-ATP synthase-mediated intracellular triacylglycerol accumulation in adipocytes through P2Y1 receptor.

  10. Emodin Inhibits ATP-Induced Proliferation and Migration by Suppressing P2Y Receptors in Human Lung Adenocarcinoma Cells.

    PubMed

    Wang, Xia; Li, Long; Guan, Ruijuan; Zhu, Danian; Song, Nana; Shen, Linlin

    2017-01-01

    Extracellular ATP performs multiple important functions via activation of P2 receptors on the cell surface. P2Y receptors play critical roles in ATP evoked response in human lung adenocarcinoma cells (A549 cells). Emodin is an anthraquinone derivative originally isolated from Chinese rhubarb, possesses anticancer properties. In this study we examined the inhibiting effects of emodin on proliferation, migration and epithelial-mesenchymal transition (EMT) by suppressing P2Y receptors-dependent Ca2+ increase and nuclear factor-κB (NF-KB) signaling in A549 cells. A549 cells were pretreated with emodin before stimulation with ATP for the indicated time. Then, intracellular Ca2+ concentration ([Ca2+]i) was measured by Fluo-8/AM staining. Cell proliferation and cell cycle progression were tested by CCK8 assay and flow cytometry In addition, wound healing and western blot were performed to determine cell migration and related protein levels (Bcl-2, Bax, claudin-1, NF-κB). Emodin blunted ATP/UTP-induced increase of [Ca2+]i and cell proliferation concentration-dependently Meanwhile, it decreased ATP-induced cells accumulation in the S phase. Furthermore, emodin altered protein abundance of Bcl-2, Bax and claudin-1 and attenuated EMT caused by ATP. Such ATP-induced cellular reactions were also inhibited by a nonselective P2Y receptors antagonist, suramin, in a similar way to emodin. Besides, emodin could inhibit activation of NF-κB, thus suppressed ATP-induced proliferation, migration and EMT. Our results demonstrated that emodin inhibits ATP-induced proliferation, migration, EMT by suppressing P2Y receptors-mediated [Ca2+]i increase and NF-κB signaling in A549 cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2.

    PubMed

    Fortner, C N; Breyer, R M; Paul, R J

    2001-08-01

    Substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of constricted mouse tracheal smooth muscle. Relaxation to either SP or ATP is blocked by indomethacin, but the specific eicosanoid(s) involved have not been definitively identified. SP and ATP are reported to release PGE2 from airway epithelium in other species, suggesting PGE2 as a likely mediator in epithelium-dependent airway relaxation. Using mice homozygous for a gene-targeted deletion of the EP2 receptor [EP2(-/-)], one of the PGE2 receptors, we tested the hypothesis that PGE2 is the primary mediator of relaxation to SP or ATP. Relaxation in response to SP or ATP was significantly reduced in tracheas from EP2(-/-) mice. There were no differences between EP2(-/-) and wild-type tracheas in their physical dimensions, contraction to ACh, or relaxation to isoproterenol, thus ruling out any general alterations of smooth muscle function. There were also no differences between EP2(-/-) and wild-type tracheas in basal or stimulated PGE2 production. Exogenous PGE2 produced significantly less relaxation in EP2(-/-) tracheas compared with the wild type. Taken together, this experimental evidence supports the following two conclusions: EP2 receptors are of primary importance in airway relaxation to PGE2 and relaxation to SP or ATP is mediated through PGE2 acting on EP2 receptors.

  12. A Structure-Function Study of RecA: The Structural Basis for ATP Specificity in the Strand Exchange Reaction

    NASA Astrophysics Data System (ADS)

    Gegner, Julie; Spruill, Natalie; Plesniak, Leigh A.

    1999-11-01

    The terms "structure" and "function" can assume a variety of meanings. In biochemistry, the "structure" of a protein can refer to its sequence of amino acids, the three-dimensional arrangement of atoms within a subunit, or the arrangement of subunits into a larger oligomeric or filamentous state. Likewise, the function of biological macromolecules can be examined at many levels. The function of a protein can be described by its role in an organism's survival or by a chemical reaction that it promotes. We have designed a three-part biochemical laboratory experiment that characterizes the structure and function of the Escherichia coli RecA protein. The first part examines the importance of RecA in the survival of bacteria that have been exposed to UV light. This is the broadest view of function of the enzyme. Second, the students use an in vitro assay of RecA whereby the protein promotes homologous recombination. Because RecA functions not catalytically, but rather stoichiometrically, in this recombination reaction, the oligomeric state of RecA in complex with DNA must also be discussed. Finally, through molecular modeling of X-ray crystallographic structures, students identify functionally important features of the ATP cofactor binding site of RecA.

  13. [Mg2+, ATP-dependent plasma membrane calcium pump of smooth muscle cells. I. Structural organization and properties].

    PubMed

    Veklich, T O; Mazur, Iu Iu; Kosterin, S O

    2015-01-01

    Tight control of cytoplasm Ca2+ concentration is essential in cell functioning. Changing of Ca2+ concentration is thorough in smooth muscle cells, because it determines relaxation/constraint process. One of key proteins which control Ca2+ concentration in cytoplasm is Mg2+, ATP-dependent plasma membrane calcium pump. Thus, it is important to find compoumds which allowed one to change Mg2+, ATP-dependent plasma membrane calcium pump activity, as long as this topic is of current interest in biochemical research which regards energy and pharmacomechanical coupling mechanism of muscle excitation and contraction. In this article we generalized literatute and own data about properties of smooth muscle cell plasma membrane Ca(2+)-pump. Stuctural oganization, kinetical properties and molecular biology are considered.

  14. Ribose in the heart.

    PubMed

    Herrick, James; St Cyr, John

    2008-01-01

    Every cell needs energy, i.e., adenosine triphosphate (ATP), to carry out its function. Decreased oxygen levels, decreased blood flow, and other stressful conditions can drastically effect the intracellular concentrations of these energy compounds. Skeletal muscle, unlike the heart, can address this drop in ATP by employing the myokinase reaction, ultimately producing ATP with a subsequent elevation in adenosine monophosphate (AMP). Ribose, a naturally occurring 5-carbon monosaccharide, is a key component of RNA, DNA (which has deoxyribose), acetyl coenzyme A, and ATP. Each cell produces its own ribose, involved in the pentose phosphate pathway (PPP), to aid in ATP production. States of ischemia and/or hypoxia can severely lower levels of cellular energy compounds in the heart, with an associated compromise in cellular processes, ultimately reflected in altered function. Ribose appears to provide a solution to the problem in replenishing the depressed ATP levels and improving functional status of patients afflicted with cardiovascular diseases.

  15. Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter.

    PubMed

    Wu, T; Dai, M; Shi, X R; Jiang, Z G; Nuttall, A L

    2011-07-01

    The cochlear lateral wall generates the endocochlear potential (EP), which creates a driving force for the hair cell transduction current and is essential for normal hearing. Blood flow at the cochlear lateral wall is critically important for maintaining the EP. The vulnerability of the EP to hypoxia suggests that the blood flow in the cochlear lateral wall is dynamically and precisely regulated to meet the changing metabolic needs of the cochlear lateral wall. It has been reported that ATP, an important extracellular signaling molecule, plays an essential role in regulating cochlear blood flow. However, the cellular mechanism underlying ATP-induced regional blood flow changes has not been investigated. In the current study, we demonstrate that 1) the P2X4 receptor is expressed in endothelial cells (ECs) of spiral ligament (SL) capillaries. 2) ATP elicits a characteristic current through P2X4 on ECs in a dose-dependent manner (EC(50) = 0.16 mM). The ATP current has a reversal potential at ∼0 mV; is inhibited by 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD), LaCl(3), pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (PPADS), and extracellular acidosis; and is less sensitive to α,β-methyleneadenosine 5'-triphosphate (α,β-MeATP) and 2'- and 3'-O-(4-benzoyl-benzoyl) adenosine 5'-triphosphate (BzATP). 3) ATP elicits a transient increase of intracellular Ca(2+) in ECs. 4) In accordance with the above in vitro findings, perilymphatic ATP (1 mM) caused dilation in SL capillaries in vivo by 11.5%. N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME), a nonselective inhibitor of nitric oxide synthase, or 5-BDBD, the specific P2X4 inhibitor, significantly blocked the dilation. These findings support our hypothesis that extracellular ATP regulates cochlear lateral blood flow through P2X4 activation in ECs.

  16. Cancer-Associated Mutants of RNA Helicase DDX3X Are Defective in RNA-Stimulated ATP Hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epling, Leslie B.; Grace, Christy R.; Lowe, Brandon R.

    The DEAD-box RNA helicase DDX3X is frequently mutated in pediatric medulloblastoma. We dissect how these mutants affect DDX3X function with structural, biochemical, and genetic experiments. We identify an N-terminal extension (“ATP-binding loop”, ABL) that is critical for the stimulation of ATP hydrolysis by RNA. We present crystal structures suggesting that the ABL interacts dynamically with ATP and confirming that the interaction occurs in solution by NMR chemical shift perturbation and isothermal titration calorimetry. DEAD-box helicases require interaction between two conserved RecA-like helicase domains, D1 and D2 for function. We use NMR chemical shift perturbation to show that DDX3X interacts specificallymore » with double-stranded RNA through its D1 domain, with contact mediated by residues G302 and G325. Mutants of these residues, G302V and G325E, are associated with pediatric medulloblastoma. These mutants are defective in RNA-stimulated ATP hydrolysis. We show that DDX3X complements the growth defect in a ded1 temperature-sensitive strain of Schizosaccharomyces pombe, but the cancer-associated mutants G302V and G325E do not complement and exhibit protein expression defects. In conclusion, taken together, our results suggest that impaired translation of important mRNA targets by mutant DDX3X represents a key step in the development of medulloblastoma.« less

  17. Cancer-Associated Mutants of RNA Helicase DDX3X Are Defective in RNA-Stimulated ATP Hydrolysis

    DOE PAGES

    Epling, Leslie B.; Grace, Christy R.; Lowe, Brandon R.; ...

    2015-02-25

    The DEAD-box RNA helicase DDX3X is frequently mutated in pediatric medulloblastoma. We dissect how these mutants affect DDX3X function with structural, biochemical, and genetic experiments. We identify an N-terminal extension (“ATP-binding loop”, ABL) that is critical for the stimulation of ATP hydrolysis by RNA. We present crystal structures suggesting that the ABL interacts dynamically with ATP and confirming that the interaction occurs in solution by NMR chemical shift perturbation and isothermal titration calorimetry. DEAD-box helicases require interaction between two conserved RecA-like helicase domains, D1 and D2 for function. We use NMR chemical shift perturbation to show that DDX3X interacts specificallymore » with double-stranded RNA through its D1 domain, with contact mediated by residues G302 and G325. Mutants of these residues, G302V and G325E, are associated with pediatric medulloblastoma. These mutants are defective in RNA-stimulated ATP hydrolysis. We show that DDX3X complements the growth defect in a ded1 temperature-sensitive strain of Schizosaccharomyces pombe, but the cancer-associated mutants G302V and G325E do not complement and exhibit protein expression defects. In conclusion, taken together, our results suggest that impaired translation of important mRNA targets by mutant DDX3X represents a key step in the development of medulloblastoma.« less

  18. Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex.

    PubMed

    Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2011-06-01

    The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.

  19. Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex

    PubMed Central

    Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2011-01-01

    The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion. PMID:21546912

  20. Monte Carlo modeling of single-molecule cytoplasmic dynein.

    PubMed

    Singh, Manoranjan P; Mallik, Roop; Gross, Steven P; Yu, Clare C

    2005-08-23

    Molecular motors are responsible for active transport and organization in the cell, underlying an enormous number of crucial biological processes. Dynein is more complicated in its structure and function than other motors. Recent experiments have found that, unlike other motors, dynein can take different size steps along microtubules depending on load and ATP concentration. We use Monte Carlo simulations to model the molecular motor function of cytoplasmic dynein at the single-molecule level. The theory relates dynein's enzymatic properties to its mechanical force production. Our simulations reproduce the main features of recent single-molecule experiments that found a discrete distribution of dynein step sizes, depending on load and ATP concentration. The model reproduces the large steps found experimentally under high ATP and no load by assuming that the ATP binding affinities at the secondary sites decrease as the number of ATP bound to these sites increases. Additionally, to capture the essential features of the step-size distribution at very low ATP concentration and no load, the ATP hydrolysis of the primary site must be dramatically reduced when none of the secondary sites have ATP bound to them. We make testable predictions that should guide future experiments related to dynein function.

  1. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration.

    PubMed

    Ishizaki, Eisuke; Fukumoto, Masanori; Puro, Donald G

    2009-05-15

    The essential task of the circulatory system is to match blood flow to local metabolic demand. However, much remains to be learned about this process. To better understand how local perfusion is regulated, we focused on the functional organization of the retinal microvasculature, which is particularly well adapted for the local control of perfusion. Here, we assessed the distribution and regulation of functional K(ATP) channels whose activation mediates the hyperpolarization induced by adenosine. Using microvascular complexes freshly isolated from the rat retina, we found a topographical heterogeneity in the distribution of functional K(ATP) channels; capillaries generate most of the K(ATP) current. The initiation of K(ATP)-induced responses in the capillaries supports the concept that the regulation of retinal perfusion is highly decentralized. Additional study revealed that microvascular K(ATP) channels are redox sensitive, with oxidants increasing their activity. Furthermore, the oxidant-mediated activation of these channels is driven by the polyamine spermine, whose catabolism produces oxidants. In addition, our observation that spermine-dependent oxidation occurs predominately in the capillaries accounts for why they generate most of the K(ATP) current detected in retinal microvascular complexes. Here, we also analysed retinal microvessels of streptozotocin-injected rats. We found that soon after the onset of diabetes, an increase in spermine-dependent oxidation at proximal microvascular sites boosts their K(ATP) current and thereby virtually eliminates the topographical heterogeneity of functional K(ATP) channels. We conclude that spermine-dependent oxidation is a previously unrecognized mechanism by which this polyamine modulates ion channels; in addition to a physiological role, spermine-dependent oxidation may also contribute to microvascular dysfunction in the diabetic retina.

  2. Comparison of mechanistic transport cycle models of ABC exporters.

    PubMed

    Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas

    2018-04-01

    ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Structural dynamics of Casein Kinase I (CKI) from malarial parasite Plasmodium falciparum (Isolate 3D7): Insights from theoretical modelling and molecular simulations.

    PubMed

    Dehury, Budheswar; Behera, Santosh Kumar; Mahapatra, Namita

    2017-01-01

    The protein kinases (PKs), belonging to serine/threonine kinase (STKs), are important drug targets for a wide spectrum of diseases in human. Among protein kinases, the Casein Kinases (CKs) are vastly expanded in various organisms, where, the malarial parasite Plasmodium falciparum possesses a single member i.e., PfCKI, which can phosphorylate various proteins in parasite extracts in vitro condition. But, the structure-function relationship of PfCKI and dynamics of ATP binding is yet to be understood. Henceforth, an attempt was made to study the dynamics, stability, and ATP binding mechanisms of PfCKI through computational modelling, docking, molecular dynamics (MD) simulations, and MM/PBSA binding free energy estimation. Bi-lobed catalytic domain of PfCKI shares a high degree of secondary structure topology with CKI domains of rice, human, and mouse indicating co-evolution of these kinases. Molecular docking study revealed that ATP binds to the active site where the glycine-rich ATP-binding motif (G16-X-G18-X-X-G21) along with few conserved residues plays a crucial role maintaining stability of the complex. Structural superposition of PfCKI with close structural homologs depicted that the location and length of important loops are different, indicating the dynamic properties of these loops among CKIs, which is consistent with principal component analysis (PCA). PCA displayed that the overall global motion of ATP-bound form is comparatively higher than that of apo form. The present study provides insights into the structural features of PfCKI, which could contribute towards further understanding of related protein structures, dynamics of catalysis and phosphorylation mechanism in these important STKs from malarial parasite in near future. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Adenosine triphosphate postconditioning is associated with better preserved global and regional cardiac function during myocardial ischemia and reperfusion: a speckle tracking imaging-based echocardiologic study.

    PubMed

    Ren, Min; Liu, Yujie; Zhao, Huiya; Dong, Shixia; Jiang, Zhonghui; Li, Keting; Tian, Jiawei

    2016-10-01

    Effects of ischemic postconditioning (IPostC) and adenosine triphosphate (ATP)-mediated pharmacologic postconditioning (ATP-PPostC) on cardiac function were evaluated by speckle tracking imaging (STI)-based echocardiography. A myocardial I/R model was induced in rabbits by reversible ligation of the left ventricular branch of coronary artery. Rabbits were randomized into three groups: ischemia and reperfusion (IR) (no further intervention), IPostC, and ATP-PPostC groups. Cardiac function was evaluated by conventional and STI-based echocardiography. Myocardial necrosis, apoptosis, and myocardial mRNAs of apoptosis-related proteins (Bcl-2 and Bax) were evaluated. Speckle tracking imaging (STI)-based echocardiography revealed that IPostC and ATP-PPostC were associated with better preserved global and regional cardiac function, as indicated by significantly increased GLSrsys, GLSrd, GLSsys, SrLsys, SrLd, and SLsys in both groups (all P<.5). Subsequent pathologic studies indicate that the percentage of necrotic myocardium and permillage of apoptotic cells were significantly lower in the IPostC and ATP-PPostC groups than in the IR group (all P<.05). Moreover, both IPostC and ATP-PPostC were associated with increased Bcl-2 mRNA levels and reduced Bax mRNA levels. IPostC and ATP-PPostC may exert cardioprotective functions by better preservation of cardiac function during the I/R process and at least partly via attenuation of myocardial apoptosis. © 2016 John Wiley & Sons Ltd.

  5. Implication of the Purinergic System in Alcohol Use Disorders

    PubMed Central

    Asatryan, Liana; Nam, Hyung Wook; Lee, Moonnoh R.; Thakkar, Mahesh M.; Dar, M. Saeed; Davies, Daryl L.; Choi, Doo-Sup

    2010-01-01

    In the central nervous system, adenosine and ATP play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems such as GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, ENT1 (equilibrative nucleoside transporter type 1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-VTA has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e. GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders. PMID:21223299

  6. Free and ATP-bound structures of Ap4A hydrolase from Aquifex aeolicus V5.

    PubMed

    Jeyakanthan, Jeyaraman; Kanaujia, Shankar Prasad; Nishida, Yuya; Nakagawa, Noriko; Praveen, Surendran; Shinkai, Akeo; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Sekar, Kanagaraj

    2010-02-01

    Asymmetric diadenosine tetraphosphate (Ap(4)A) hydrolases degrade the metabolite Ap(4)A back into ATP and AMP. The three-dimensional crystal structure of Ap(4)A hydrolase (16 kDa) from Aquifex aeolicus has been determined in free and ATP-bound forms at 1.8 and 1.95 A resolution, respectively. The overall three-dimensional crystal structure of the enzyme shows an alphabetaalpha-sandwich architecture with a characteristic loop adjacent to the catalytic site of the protein molecule. The ATP molecule is bound in the primary active site and the adenine moiety of the nucleotide binds in a ring-stacking arrangement equivalent to that observed in the X-ray structure of Ap(4)A hydrolase from Caenorhabditis elegans. Binding of ATP in the active site induces local conformational changes which may have important implications in the mechanism of substrate recognition in this class of enzymes. Furthermore, two invariant water molecules have been identified and their possible structural and/or functional roles are discussed. In addition, modelling of the substrate molecule at the primary active site of the enzyme suggests a possible path for entry and/or exit of the substrate and/or product molecule.

  7. Unidirectional regulation of the F1FO-ATP synthase nanomotor by the ζ pawl-ratchet inhibitor protein of Paracoccus denitrificans and related α-proteobacteria.

    PubMed

    Zarco-Zavala, Mariel; Mendoza-Hoffmann, Francisco; García-Trejo, José J

    2018-06-07

    The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF 1 subunits, prevent the wasteful CCW F 1 F O -ATPase activity by blocking γ rotation at the α DP /β DP /γ interface of the F 1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F 1 -ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF 1 , it also binds to the α DP /β DP /γ interface of the F 1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the α DP /β DP /γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F 1 F O -ATPase rotation without affecting the CW-F 1 F O -ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as an unidirectional pawl-ratchet PdF 1 F O -ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is an useful model that mimics mitochondrial IF 1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF 1 ) of this unique ATP synthase nanomotor, essential for life. Copyright © 2018. Published by Elsevier B.V.

  8. REVIEWS OF TOPICAL PROBLEMS Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor

    NASA Astrophysics Data System (ADS)

    Romanovsky, Yurii M.; Tikhonov, Alexander N.

    2010-12-01

    The free energy released upon the enzymatic hydrolysis of adenosine triphosphate (ATP) is the main source of energy for the functioning of the living cell and all multicellular organisms. The overwhelming majority of ATP molecules are formed by proton ATP synthases, which are the smallest macromolecular electric motors in Nature. This paper reviews the modern concepts of the molecular structure and functioning of the proton ATP synthase, and real-time biophysical experiments on the rotation of the 'rotor' of this macromolecular motor. Some mathematical models describing the operation of this nanosized macromolecular machine are described.

  9. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system. © 2013 The British Pharmacological Society.

  10. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury.

    PubMed

    Hasan, Djo; Blankman, Paul; Nieman, Gary F

    2017-09-01

    Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.

  11. Deep insights into the mode of ATP-binding mechanism in Zebrafish cyclin-dependent protein kinase-like 1 (zCDKL1): A molecular dynamics approach.

    PubMed

    Rout, Ajaya Kumar; Dehury, Budheswar; Maharana, Jitendra; Nayak, Chirasmita; Baisvar, Vishwamitra Singh; Behera, Bijay Kumar; Das, Basanta Kumar

    2018-05-01

    In eukaryotes, the serine/threonine kinases (STKs) belonging to cyclin-dependent protein kinases (CDKs) play significant role in control of cell division and curb transcription in response to several extra and intra-cellular signals indispensable for enzymatic activity. The zebrafish cyclin-dependent protein kinase-like 1 protein (zCDKL1) shares a high degree of sequence and structural similarity with mammalian orthologs and express in brain, ovary, testis, and low levels in other tissues. Regardless of its importance in the developmental process, the structure, function and mode of ATP recognition have not been investigated yet due to lack of experimental data. Henceforth, to gain atomistic insights in to the structural dynamics and mode of ATP binding, a series of computational techniques involving theoretical modeling, docking, molecular dynamics (MD) simulations and MM/PBSA binding free energies were employed. The modeled bi-lobed zCDKL1 shares a high degree of secondary structure topology with human orthologs where ATP prefers to lie in the central cavity of the bi-lobed catalytic domain enclosed by strong hydrogen bonding, electrostatic and hydrophobic contacts. Long range MD simulation portrayed that catalytic domain of zCDKL1 to be highly rigid in nature as compared to the complex (zCDKL1-ATP) form. Comparative analysis with its orthologs revealed that conserved amino acids i.e., Ile10, Gly11, Glu12, Val18, Arg31, Phe80, Glu 130, Cys143 and Asp144 were crucial for ATP binding mechanism, which needs further investigation for legitimacy. MM/PBSA method revealed that van der Waals, electrostatic and polar solvation energy mostly contributes towards negative free energy. The implications of ATP binding mechanism inferred through these structural bioinformatics approaches will help in understanding the catalytic mechanisms of important STKs in eukaryotic system. Copyright © 2018. Published by Elsevier Inc.

  12. "Host tissue damage" signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes.

    PubMed

    Kaufmann, Andreas; Musset, Boris; Limberg, Sven H; Renigunta, Vijay; Sus, Rainer; Dalpke, Alexander H; Heeg, Klaus M; Robaye, Bernard; Hanley, Peter J

    2005-09-16

    The activation of Toll-like receptors (TLRs) by lipopolysaccharide or other ligands evokes a proinflammatory immune response, which is not only capable of clearing invading pathogens but can also inflict damage to host tissues. It is therefore important to prevent an overshoot of the TLR-induced response where necessary, and here we show that extracellular ATP is capable of doing this in human monocytes. Using reverse transcription-PCR, we showed that monocytes express P2Y(1), P2Y(2), P2Y(4), P2Y(11), and P2Y(13) receptors, as well as several P2X receptors. To elucidate the function of these receptors, we first studied Ca(2+) signaling in single cells. ATP or UTP induced a biphasic increase in cytosolic Ca(2+), which corresponded to internal Ca(2+) release followed by activation of store-operated Ca(2+) entry. The evoked Ca(2+) signals stimulated Ca(2+)-activated K(+) channels, producing transient membrane hyperpolarization. In addition, ATP promoted cytoskeleton reorganization and cell migration; however, unlike chemoattractants, the migration was non-directional and further analysis showed that ATP did not activate Akt, essential for sensing gradients. When TLR2, TLR4, or TLR2/6 were stimulated with their respective ligands, ATPgammaS profoundly inhibited secretion of proinflammatory cytokines (tumor necrosis factor-alpha and monocyte chemoattractant protein-1) but increased the production of interleukin-10, an anti-inflammatory cytokine. In radioimmune assays, we found that ATP (or ATPgammaS) strongly increased cAMP levels, and, moreover, the TLR-response was inhibited by forskolin, whereas UTP neither increased cAMP nor inhibited the TLR-response. Thus, our data suggest that ATP promotes non-directional migration and, importantly, acts as a "host tissue damage" signal via the G(s) protein-coupled P2Y(11) receptor and increased cAMP to negatively regulate TLR signaling.

  13. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines.

    PubMed

    Friel, Claire T; Howard, Jonathon

    2012-12-01

    The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines.

  14. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    PubMed

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  15. Failure of the Cystic Fibrosis Transmembrane Conductance Regulator to Conduct ATP

    NASA Astrophysics Data System (ADS)

    Reddy, M. M.; Quinton, P. M.; Haws, C.; Wine, J. J.; Grygorczyk, R.; Tabcharani, J. A.; Hanrahan, J. W.; Gunderson, K. L.; Kopito, R. R.

    1996-03-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is chloride ion channel regulated by protein kinase A and adenosine triphosphate (ATP). Loss of CFTR-mediated chloride ion conductance from the apical plasma membrane of epithelial cells is a primary physiological lesion in cystic fibrosis. CFTR has also been suggested to function as an ATP channel, although the size of the ATP anion is much larger than the estimated size of the CFTR pore. ATP was not conducted through CFTR in intact organs, polarized human lung cell lines, stably transfected mammalian cell lines, or planar lipid bilayers reconstituted with CFTR protein. These findings suggest that ATP permeation through the CFTR is unlikely to contribute to the normal function of CFTR or to the pathogenesis of cystic fibrosis.

  16. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Luttik, Marijke A H; Akeroyd, Michiel; Benjamin, Kirsten R; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2014-10-21

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy (ATP) costs for product formation from sugar must be minimized. Here, we focus on an important ATP-requiring process in baker's yeast (Saccharomyces cerevisiae): synthesis of cytosolic acetyl coenzyme A, a key precursor for many industrially important products, ranging from biofuels to fragrances. We demonstrate that pyruvate dehydrogenase from the bacterium Enterococcus faecalis, a huge enzyme complex with a size similar to that of a ribosome, can be functionally expressed and assembled in the cytosol of baker's yeast. Moreover, we show that this ATP-independent mechanism for cytosolic acetyl-CoA synthesis can entirely replace the ATP-costly native yeast pathway. This work provides metabolic engineers with a new option to optimize the performance of baker's yeast as a "cell factory" for sustainable production of fuels and chemicals. Copyright © 2014 Kozak et al.

  17. Application of the principle of linked functions to ATP-driven ion pumps: kinetics of activation by ATP.

    PubMed Central

    Reynolds, J A; Johnson, E A; Tanford, C

    1985-01-01

    If a ligand binds with unequal affinity to two distinct states of a protein, then the equilibrium between the two states becomes a function of the concentration of the ligand. A necessary consequence is that the ligand must also affect the forward and/or reverse rate constants for transition between the two states. For an enzyme or transport protein with such a transition as a slow step in the catalytic cycle, the overall rate also becomes a function of ligand concentration. These conclusions are independent of whether or not the ligand is a direct participant in the reaction. If it is a direct participant, then the kinetic effect arising from the principle of linked functions is distinct from the direct catalytic effect. These principles suffice to account for the biphasic response of the hydrolytic activity of ATP-driven ion pumps to the concentration of ATP, without the need to invoke more than one ATP binding site per catalytic center. PMID:2987939

  18. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.

    PubMed

    Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna; Denton, Jerod S; Boodhansingh, Kara E; DeLeon, Diva D; Stanley, Charles A; Shyng, Show-Ling

    2016-10-14

    ATP-sensitive potassium (K ATP ) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of K ATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by K ATP channel openers. Cross-linking experiments showed that K ATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the K ATP channel opener diazoxide. Our study expands the list of K ATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons

    PubMed Central

    Duggett, Natalie A.; Griffiths, Lisa A.; Flatters, Sarah J.L.

    2017-01-01

    Abstract Painful neuropathy is the major dose-limiting side effect of paclitaxel chemotherapy. Mitochondrial dysfunction and adenosine triphosphate (ATP) deficit have previously been shown in peripheral nerves of paclitaxel-treated rats, but the effects of paclitaxel in the dorsal root ganglia (DRGs) have not been explored. The aim of this study was to determine the bioenergetic status of DRG neurons following paclitaxel exposure in vitro and in vivo. Utilising isolated DRG neurons, we measured respiratory function under basal conditions and at maximal capacity, glycolytic function, and Adenosine diphosphate (ADP)/ATP levels at 3 key behavioural timepoints; prior to pain onset (day 7), peak pain severity and pain resolution. At day 7, maximal respiration and spare reserve capacity were significantly decreased in DRG neurons from paclitaxel-treated rats. This was accompanied by decreased basal ATP levels and unaltered ADP levels. At peak pain severity, respiratory function was unaltered, yet glycolytic function was significantly increased. Reduced ATP and unaltered ADP levels were also observed at the peak pain timepoint. All these effects in DRG neurons had dissipated by the pain resolution timepoint. None of these paclitaxel-evoked changes could be replicated from in vitro paclitaxel exposure to naive DRG neurons, demonstrating the impact of in vivo exposure and the importance of in vivo models. These data demonstrate the nature of mitochondrial dysfunction evoked by in vivo paclitaxel in the DRG for the first time. Furthermore, we have identified paclitaxel-evoked changes in the bioenergetics of DRG neurons, which result in a persistent energy deficit that is causal to the development and maintenance of paclitaxel-induced pain. PMID:28541258

  20. ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells

    PubMed Central

    Song, Shanshan; Jacobson, Krista N.; McDermott, Kimberly M.; Reddy, Sekhar P.; Cress, Anne E.; Tang, Haiyang; Dudek, Steven M.; Black, Stephen M.; Garcia, Joe G. N.; Makino, Ayako

    2015-01-01

    Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca2+ signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca2+] ([Ca2+]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca2+ eliminated the plateau phase increase of [Ca2+]cyt in lung cancer cells, indicating that the plateau phase of [Ca2+]cyt increase is due to Ca2+ influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca2+ or chelating intracellular Ca2+ with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca2+]cyt through Ca2+ influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression. PMID:26491047

  1. Mechanism of the αβ Conformational Change in F1-ATPase after ATP Hydrolysis: Free-Energy Simulations

    PubMed Central

    Ito, Yuko; Ikeguchi, Mitsunori

    2015-01-01

    One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase. PMID:25564855

  2. Nuclear-encoded mitochondrial complex I gene expression is restored to normal levels by inhibition of unedited ATP9 transgene expression in Arabidopsis thaliana.

    PubMed

    Busi, María V; Gómez-Casati, Diego F; Perales, Mariano; Araya, Alejandro; Zabaleta, Eduardo

    2006-01-01

    Mitochondria play an important role during sporogenesis in plants. The steady state levels of the nuclear-encoded mitochondrial complex I (nCI), PSST, TYKY and NADHBP transcripts increase in flowers of male-sterile plants with impairment of mitochondrial function generated by the expression of the unedited version of ATP9 (u-ATP9). This suggests a nuclear control of nCI genes in response to the mitochondrial flaw. To evaluate this hypothesis, transgenic plants carrying the GUS reporter gene, under the control of the PSST, TYKY and NADHBP promoters, were constructed. We present evidence that suppression by antisense strategy of the expression of u-ATP9 restores the normal levels of three nCI transcripts, indicating that the increase in PSST, TYKY and NADHBP in plants with a mitochondrial flaw occurs at the transcriptional level. The data presented here support the hypothesis that a mitochondrial dysfunction triggers a retrograde signaling which induce some nuclear-encoded mitochondrial genes. Moreover, these results demonstrate that this is a valuable experimental model for studying nucleus-mitochondria cross-talk events.

  3. ATP6V1H regulates the growth and differentiation of bone marrow stromal cells.

    PubMed

    Li, Lin; Yang, Shaoqing; Zhang, Yanli; Ji, Dongrui; Jin, Zuolin; Duan, Xiaohong

    2018-05-18

    ATP6V1H encodes subunit H of vacuolar ATPase (V-ATPase) and may regulate osteoclastic function. The deficiency of ATP6V1H caused bone loss in human, mouse and zebrafish. In this report, we identified the mechanisms by which ATP6V1H regulates proliferation and differentiation of bone marrow stromal cells (BMSCs). We found that ATP6V1H was expressed in BMSCs, andAtp6v1h +/- BMSCs exhibited the lower proliferation rate, cell cycle arrest and reduced osteogenic differentiation capacity, as well as the increased adipogenic potentials. Histologic analysis confirmed less bone formation and more fatty degeneration in Atp6v1h +/- mice in the different age groups. Q-PCR analysis revealed that loss of ATP6V1H function downregulated the mRNA level of TGF-β1 receptor, and its binding molecule, subunit β of adaptor protein complex 2 (AP-2), suggesting ATP6V1H regulates the proliferation and differentiation of BMSCs by interacting with TGF-β receptor I and AP-2 complex. Copyright © 2018. Published by Elsevier Inc.

  4. A Transient Rise in Free Mg2+ Ions Released from ATP-Mg Hydrolysis Contributes to Mitotic Chromosome Condensation.

    PubMed

    Maeshima, Kazuhiro; Matsuda, Tomoki; Shindo, Yutaka; Imamura, Hiromi; Tamura, Sachiko; Imai, Ryosuke; Kawakami, Syoji; Nagashima, Ryosuke; Soga, Tomoyoshi; Noji, Hiroyuki; Oka, Kotaro; Nagai, Takeharu

    2018-02-05

    For cell division, negatively charged chromatin, in which nucleosome fibers (10 nm fibers) are irregularly folded [1-5], must be condensed into chromosomes and segregated. While condensin and other proteins are critical for organizing chromatin into the appropriate chromosome shape [6-17], free divalent cations such as Mg 2+ and Ca 2+ , which condense chromatin or chromosomes in vitro [18-28], have long been considered important, especially for local condensation, because the nucleosome fiber has a net negative charge and is by itself stretched like "beads on a string" by electrostatic repulsion. For further folding, other positively charged factors are required to decrease the charge and repulsion [29]. However, technical limitations to measure intracellular free divalent cations, but not total cations [30], especially Mg 2+ , have prevented us from elucidating their function. Here, we developed a Förster resonance energy transfer (FRET)-based Mg 2+ indicator that monitors free Mg 2+ dynamics throughout the cell cycle. By combining this indicator with Ca 2+ [31] and adenosine triphosphate (ATP) [32] indicators, we demonstrate that the levels of free Mg 2+ , but not Ca 2+ , increase during mitosis. The Mg 2+ increase is coupled with a decrease in ATP, which is normally bound to Mg 2+ in the cell [33]. ATP inhibited Mg 2+ -dependent chromatin condensation in vitro. Chelating Mg 2+ induced mitotic cell arrest and chromosome decondensation, while ATP reduction had the opposite effect. Our results suggest that ATP-bound Mg 2+ is released by ATP hydrolysis and contributes to mitotic chromosome condensation with increased rigidity, suggesting a novel regulatory mechanism for higher-order chromatin organization by the intracellular Mg 2+ -ATP balance. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Mechanical loading stimulates ecto-ATPase activity in human tendon cells.

    PubMed

    Tsuzaki, M; Bynum, D; Almekinders, L; Faber, J; Banes, A J

    2005-09-01

    Response to external stimuli such as mechanical signals is critical for normal function of cells, especially when subjected to repetitive motion. Tenocytes receive mechanical stimuli from the load-bearing matrix as tension, compression, and shear stress during tendon gliding. Overloading a tendon by high strain, shear, or repetitive motion can cause matrix damage. Injury may induce cytokine expression, matrix metalloproteinase (MMP) expression and activation resulting in loss of biomechanical properties. These changes may result in tendinosis or tendinopathy. Alternatively, an immediate effector molecule may exist that acts in a signal-dampening pathway. Adenosine 5'-triphosphate (ATP) is a candidate signal blocker of mechanical stimuli. ATP suppresses load-inducible inflammatory genes in human tendon cells in vitro. ATP and other extracellular nucleotide signaling are regulated efficiently by two distinct mechanisms: purinoceptors via specific receptor-ligand binding and ecto-nucleotidases via the hydrolysis of specific nucleotide substrates. ATP is released from tendon cells by mechanical loading or by uridine 5'-triphosphate (UTP) stimulation. We hypothesized that mechanical loading might stimulate ecto-ATPase activity. Human tendon cells of surface epitenon (TSC) and internal compartment (TIF) were cyclically stretched (1 Hz, 0.035 strain, 2 h) with or without ATP. Aliquots of the supernatant fluids were collected at various time points, and ATP concentration (ATP) was determined by a luciferin-luciferase bioluminescence assay. Total RNA was isolated from TSC and TIF (three patients) and mRNA expression for ecto-nucleotidase was analyzed by RT-PCR. Human tendon cells secreted ATP in vitro (0.5-1 nM). Exogenous ATP was hydrolyzed within minutes. Mechanical load stimulated ATPase activity. ATP was hydrolyzed in mechanically loaded cultures at a significantly greater rate compared to no load controls. Tenocytes (TSC and TIF) expressed ecto-nucleotidase mRNA (ENTPD3 and ENPP1, ENPP2). These data suggest that motion may release ATP from tendon cells in vivo, where ecto-ATPase may also be activated to hydrolyze ATP quickly. Ecto-ATPase may act as a co-modulator in ATP load-signal modulation by regulating the half-life of extracellular purine nucleotides. The extracellular ATP/ATPase system may be important for tendon homeostasis by protecting tendon cells from responding to excessive load signals and activating injurious pathways. Copyright 2005 Wiley-Liss, Inc

  6. A dual-function fluorescent probe for monitoring the degrees of hypoxia in living cells via the imaging of nitroreductase and adenosine triphosphate.

    PubMed

    Fang, Yu; Shi, Wen; Hu, Yiming; Li, Xiaohua; Ma, Huimin

    2018-05-24

    A new dual-function fluorescent probe is developed for detecting nitroreductase (NTR) and adenosine triphosphate (ATP) with different responses. Imaging application of the probe reveals that intracellular NTR and ATP display an adverse changing trend during a hypoxic process and ATP can serve as a new sign for cell hypoxia.

  7. Non-equilibrium steady states in supramolecular polymerization

    NASA Astrophysics Data System (ADS)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  8. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9) associated with early-onset parkinsonism.

    PubMed

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.

  9. Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset Parkinsonism

    PubMed Central

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J.

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism. PMID:22768177

  10. A Mechanism of Intracellular P2X Receptor Activation*

    PubMed Central

    Sivaramakrishnan, Venketesh; Fountain, Samuel J.

    2012-01-01

    P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2XAR knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen. PMID:22736763

  11. Glial hemichannels and their involvement in aging and neurodegenerative diseases.

    PubMed

    Orellana, Juan A; von Bernhardi, Rommy; Giaume, Christian; Sáez, Juan C

    2012-01-26

    During the last two decades, it became increasingly evident that glial cells accomplish a more important role in brain function than previously thought. Glial cells express pannexins and connexins, which are member subunits of two protein families that form membrane channels termed hemichannels. These channels communicate intra- and extracellular compartments and allow the release of autocrine/paracrine signaling molecules [e.g., adenosine triphosphate (ATP), glutamate, nicotinamide adenine dinucleotide, and prostaglandin E2] to the extracellular milieu, as well as the uptake of small molecules (e.g., glucose). An increasing body of evidence has situated glial hemichannels as potential regulators of the beginning and maintenance of homeostatic imbalances observed in diverse brain diseases. Here, we review and discuss the current evidence about the possible role of glial hemichannels on neurodegenerative diseases. A subthreshold pathological threatening condition leads to microglial activation, which keeps active defense and restores the normal function of the central nervous system. However, if the stimulus is deleterious, microglial cells and the endothelium become overactivated, both releasing bioactive molecules (e.g., glutamate, cytokines, prostaglandins, and ATP), which increase the activity of glial hemichannels, reducing the astroglial neuroprotective functions, and further reducing neuronal viability. Because ATP and glutamate are released via glial hemichannels in neurodegenerative conditions, it is expected that they contribute to neurotoxicity. More importantly, toxic molecules released via glial hemichannels could increase the Ca2+ entry in neurons also via neuronal hemichannels, leading to neuronal death. Therefore, blockade of hemichannels expressed by glial cells and/or neurons during neuroinflammation might prevent neurodegeneration.

  12. The Essentials of Protein Import in the Degenerate Mitochondrion of Entamoeba histolytica

    PubMed Central

    Dolezal, Pavel; Dagley, Michael J.; Kono, Maya; Wolynec, Peter; Likić, Vladimir A.; Foo, Jung Hock; Sedinová, Miroslava; Tachezy, Jan; Bachmann, Anna; Bruchhaus, Iris; Lithgow, Trevor

    2010-01-01

    Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica. PMID:20333239

  13. A novel two-nucleotide deletion in the ATP7A gene associated with delayed infantile onset of Menkes disease.

    PubMed

    Wada, Takahito; Haddad, Marie Reine; Yi, Ling; Murakami, Tomomi; Sasaki, Akiko; Shimbo, Hiroko; Kodama, Hiroko; Osaka, Hitoshi; Kaler, Stephen G

    2014-04-01

    Determining the relationship between clinical phenotype and genotype in genetic diseases is important in clinical practice. In general, frameshift mutations are expected to produce premature termination codons, leading to production of mutant transcripts destined for degradation by nonsense-mediated decay. In X-linked recessive diseases, male patients with frameshift mutations typically have a severe or even lethal phenotype. We report a case of a 17-month-old boy with Menkes disease (NIM #309400), an X-linked recessive copper metabolism disorder caused by mutations in the ATP7A copper transporter gene. He exhibited an unexpectedly late onset and experienced milder symptoms. His genomic DNA showed a de novo two-nucleotide deletion in exon 4 of ATP7A, predicting a translational frameshift and premature stop codon, and a classic severe phenotype. Characterization of his ATP7A mRNA showed no abnormal splicing. We speculate that translation reinitiation could occur downstream to the premature termination codon and produce a partially functional ATP7A protein. Study of the child's fibroblasts found no evidence of translation reinitiation; however, the possibility remains that this phenomenon occurred in neural tissues and influenced the clinical phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Diverse Functional Properties of Wilson Disease ATP7B Variants

    PubMed Central

    Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana

    2012-01-01

    BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481

  15. Mechanisms for the control of local tissue blood flow during thermal interventions: influence of temperature‐dependent ATP release from human blood and endothelial cells

    PubMed Central

    Chiesa, Scott T.; Trangmar, Steven J.; Ali, Leena; Lotlikar, Makrand D.; González‐Alonso, José

    2017-01-01

    New Findings What is the central question of this study? Skin and muscle blood flow increases with heating and decreases with cooling, but the temperature‐sensitive mechanisms underlying these responses are not fully elucidated. What is the main finding and its importance? We found that local tissue hyperaemia was related to elevations in ATP release from erythrocytes. Increasing intravascular ATP augmented skin and tissue perfusion to levels equal or above thermal hyperaemia. ATP release from isolated erythrocytes was altered by heating and cooling. Our findings suggest that erythrocytes are involved in thermal regulation of blood flow via modulation of ATP release. Local tissue perfusion changes with alterations in temperature during heating and cooling, but the thermosensitivity of the vascular ATP signalling mechanisms for control of blood flow during thermal interventions remains unknown. Here, we tested the hypotheses that the release of the vasodilator mediator ATP from human erythrocytes, but not from endothelial cells or other blood constituents, is sensitive to both increases and reductions in temperature and that increasing intravascular ATP availability with ATP infusion would potentiate thermal hyperaemia in limb tissues. We first measured blood temperature, brachial artery blood flow and plasma [ATP] during passive arm heating and cooling in healthy men and found that they increased by 3.0 ± 1.2°C, 105 ± 25 ml min−1 °C−1 and twofold, respectively, (all P < 0.05) with heating, but decreased or remained unchanged with cooling. In additional men, infusion of ATP into the brachial artery increased skin and deep tissue perfusion to levels equal or above thermal hyperaemia. In isolated erythrocyte samples exposed to different temperatures, ATP release increased 1.9‐fold from 33 to 39°C (P < 0.05) and declined by ∼50% at 20°C (P < 0.05), but no changes were observed in cultured human endothelial cells, plasma or serum samples. In conclusion, increases in plasma [ATP] and skin and deep tissue perfusion with limb heating are associated with elevations in ATP release from erythrocytes, but not from endothelial cells or other blood constituents. Erythrocyte ATP release is also sensitive to temperature reductions, suggesting that erythrocytes may function as thermal sensors and ATP signalling generators for control of tissue perfusion during thermal interventions. PMID:27859767

  16. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+.

    PubMed

    Li, Mufeng; Silberberg, Shai D; Swartz, Kenton J

    2013-09-03

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.

  17. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+

    PubMed Central

    Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.

    2013-01-01

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888

  18. Purinergic regulation of cholangiocyte secretion: identification of a novel role for P2X receptors.

    PubMed

    Doctor, R Brian; Matzakos, Thomas; McWilliams, Ryan; Johnson, Sylene; Feranchak, Andrew P; Fitz, J Gregory

    2005-04-01

    The P2X family of ligand-gated cation channels is comprised of seven distinct isoforms activated by binding of extracellular purines. Although originally identified in neurons, there is increasing evidence for expression of P2X receptors in epithelia as well. Because ATP is released by both hepatocytes and cholangiocytes, these studies were performed to evaluate whether P2X receptors are present in cholangiocytes and contribute to local regulation of biliary secretion and bile formation. RT-PCR of cDNA from cultured normal rat cholangiocytes detected transcripts for P2X receptors 2, 3, 4, and 6; products from P2X3 and P2X4 were robust and always detectable. In cholangiocyte lysates, P2X4 protein was readily detected, and immunohistochemical staining of intact rat liver revealed P2X4 protein concentrated in intrahepatic bile ducts. To assess the functional significance of P2X4, isolated Mz-ChA-1 cells were exposed to the P2X4-preferring agonist 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP), which activated inward currents of -18.2 + 3.0 pA/pF. In cholangiocyte monolayers, BzATP but not P2X3 agonists elicited robust Cl(-) secretory responses (short-circuit current) when applied to either the apical (DeltaI(sc) 22.1 +/- 3.3 microA) or basolateral (18.5 +/- 1.6 microA) chamber, with half-maximal stimulation at approximately 10 microM and approximately 1 microM, respectively. The response to BzATP was unaffected by suramin (not significant) and was inhibited by Cu(2+) (P < 0.01). These studies provide molecular and biochemical evidence for the presence of P2X receptors in cholangiocytes. Functional studies indicate that P2X4 is likely the primary isoform involved, representing a novel and functionally important component of the purinergic signaling complex modulating biliary secretion.

  19. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling

    PubMed Central

    Torigoe, Sharon E; Patel, Ashok; Khuong, Mai T; Bowman, Gregory D; Kadonaga, James T

    2013-01-01

    Chromatin assembly involves the combined action of ATP-dependent motor proteins and histone chaperones. Because motor proteins in chromatin assembly also function as chromatin remodeling factors, we investigated the relationship between ATP-driven chromatin assembly and chromatin remodeling in the generation of periodic nucleosome arrays. We found that chromatin remodeling-defective Chd1 motor proteins are able to catalyze ATP-dependent chromatin assembly. The resulting nucleosomes are not, however, spaced in periodic arrays. Wild-type Chd1, but not chromatin remodeling-defective Chd1, can catalyze the conversion of randomly-distributed nucleosomes into periodic arrays. These results reveal a functional distinction between ATP-dependent nucleosome assembly and chromatin remodeling, and suggest a model for chromatin assembly in which randomly-distributed nucleosomes are formed by the nucleosome assembly function of Chd1, and then regularly-spaced nucleosome arrays are generated by the chromatin remodeling activity of Chd1. These findings uncover an unforeseen level of specificity in the role of motor proteins in chromatin assembly. DOI: http://dx.doi.org/10.7554/eLife.00863.001 PMID:23986862

  20. The T1048I mutation in ATP7A gene causes an unusual Menkes disease presentation

    PubMed Central

    2012-01-01

    Background The ATP7A gene encodes the ATP7A protein, which is a trans-Golgi network copper transporter expressed in the brain and other organs. Mutations in this gene cause disorders of copper metabolism, such as Menkes disease. Here we describe the novel and unusual mutation (p.T1048I) in the ATP7A gene of a child with Menkes disease. The mutation affects a conserved DKTGT1048 phosphorylation motif that is involved in the catalytic activity of ATP7A. We also describe the clinical course and the response to copper treatment in this patient. Case presentation An 11-month-old male Caucasian infant was studied because of hypotonia, ataxia and global developmental delay. The patient presented low levels of serum copper and ceruloplasmin, and was shown to be hemizygous for the p.T1048I mutation in ATP7A. The diagnosis was confirmed when the patient was 18 months old, and treatment with copper-histidinate (Cu-His) was started immediately. The patient showed some neurological improvement and he is currently 8 years old. Because the p.T1048I mutation affects its catalytic site, we expected a complete loss of functional ATP7A and a classical Menkes disease presentation. However, the clinical course of the patient was mild, and he responded to Cu-His treatment, which suggests that this mutation leads to partial conservation of the activity of ATP7A. Conclusion This case emphasizes the important correlation between genotype and phenotype in patients with Menkes disease. The prognosis in Menkes disease is associated with early detection, early initiation of treatment and with the preservation of some ATP7A activity, which is necessary for Cu-His treatment response. The description of this new mutation and the response of the patient to Cu-His treatment will contribute to the growing body of knowledge about treatment response in Menkes disease. PMID:22992316

  1. High-altitude adaptation of Tibetan chicken from MT-COI and ATP-6 perspective.

    PubMed

    Zhao, Xiaoling; Wu, Nan; Zhu, Qing; Gaur, Uma; Gu, Ting; Li, Diyan

    2016-09-01

    The problem of hypoxia adaptation in high altitudes is an unsolved brainteaser in the field of life sciences. As one of the best chicken breeds with adaptability to highland environment, the Tibetan chicken, is genetically different from lowland chicken breeds. In order to gain a better understanding of the mechanism of hypoxic adaptability in high altitude, in the present study, we focused on the MT-COI together with ATP-6 gene to explore the regulatory mechanisms for hypoxia adaptability in Tibet chicken. Here, we sequenced MT-COI of 29 Tibetan chickens and 30 Chinese domestic chickens and ATP-6 gene of 28 Tibetan chickens and 29 Chinese domestic chickens. In MT-COI gene, 9 single nucleotide polymorphisms (SNPs) were detected though none of these was a missense mutation, confirming the fact that MT-COI gene is a largely conservative sequence. In ATP-6 gene, 6 single nucleotide polymorphisms (SNPs) were detected and we found a missense mutation (m.9441G > A) in the ATP-6 gene of Tibetan chicken resulting in an amino acid substitution. Due to the critical role of ATP-6 gene in the proton translocation and energy metabolism, we speculated the possibility of this mutation playing an important role in easier energy conversion and metabolism in Tibetan chickens than Chinese domestic chickens so as to better adapt to the harsh environment of the high-altitude areas. The Median-joining profile also suggested that haplotype Ha2 has the ancestral position to the other haplotypes and has significant relationship with high-altitude adaptation in ATP-6 gene. Therefore, we considered that the polymorphism (m.9441G > A) in the ATP-6 gene may affect the specific functions of ATP-6 enzyme relating to high-altitude adaptation of Tibetan chicken and MT-COI gene is a largely conservative sequence.

  2. A novel inositol phosphate selectively inhibits vasoconstriction evoked by the sympathetic co-transmitters neuropeptide Y (NPY) and adenosine triphosphate (ATP).

    PubMed

    Wahlestedt, C; Reis, D J; Yoo, H; Adamsson, M; Andersson, D; Edvinsson, L

    1992-08-31

    Postganglionic sympathetic nerves release norepinephrine (NE) as their primary neurotransmitter at vascular and other targets. However, much evidence supports involvement of additional messengers, co-transmitters, which are co-released with NE upon sympathetic nerve stimulation and thereby contribute to their actions, e.g., vasoconstriction. Two such putative co-transmitters, neuropeptide Y (NPY) and adenosine triphosphate (ATP) have been of particular interest since they fulfill several neurotransmitter criteria. Importantly, hitherto it has been difficult to antagonize vasoconstriction evoked by either NPY or ATP with agents that are devoid of intrinsic activity. The present study describes the ability of a novel inositol phosphate, D-myo-inositol 1,2,6-trisphosphate (Ins[1,2,6]P3; PP-56) to in vitro potently block vasoconstrictor responses elicited by NPY and ATP, but not by NE, as studied in guinea-pig isolated basilar artery. The action of Ins[1,2,6]P3 does not seem to occur through antagonism at NPY- or ATP-receptor recognition sites, labeled by 125I-peptide YY and 35S-gamma-ATP, respectively, in membranes of rat cultured vena cava vascular smooth muscle cells. However, it does involve inhibition of the influx of Ca2+ induced by either co-transmitter in these same vena cava cells. It is proposed that Ins[1,2,6]P3 may be a useful functional antagonist of non-adrenergic component(s) of the vasoconstrictor response to sympathetic nerve stimulation.

  3. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle.

    PubMed

    Jih, Kang-Yang; Hwang, Tzyh-Chang

    2013-03-12

    Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR's responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770's effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent "reentry" mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR.

  4. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle

    PubMed Central

    Jih, Kang-Yang; Hwang, Tzyh-Chang

    2013-01-01

    Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR’s responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770’s effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent “reentry” mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR. PMID:23440202

  5. Mice deficient in H+-ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear

    PubMed Central

    Lorente-Cánovas, Beatriz; Ingham, Neil; Norgett, Elizabeth E.; Golder, Zoe J.; Karet Frankl, Fiona E.; Steel, Karen P.

    2013-01-01

    SUMMARY Mutations in the ATP6V0A4 gene lead to autosomal recessive distal renal tubular acidosis in patients, who often show sensorineural hearing impairment. A first Atp6v0a4 knockout mouse model that recapitulates the loss of H+-ATPase function seen in humans has been generated and recently reported (Norgett et al., 2012). Here, we present the first detailed analysis of the structure and function of the auditory system in Atp6v0a4−/− knockout mice. Measurements of the auditory brainstem response (ABR) showed significantly elevated thresholds in homozygous mutant mice, which indicate severe hearing impairment. Heterozygote thresholds were normal. Analysis of paint-filled inner ears and sections from E16.5 embryos revealed a marked expansion of cochlear and endolymphatic ducts in Atp6v0a4−/− mice. A regulatory link between Atp6v0a4, Foxi1 and Pds has been reported and we found that the endolymphatic sac of Atp6v0a4−/− mice expresses both Foxi1 and Pds, which suggests a downstream position of Atp6v0a4. These mutants also showed a lack of endocochlear potential, suggesting a functional defect of the stria vascularis on the lateral wall of the cochlear duct. However, the main K+ channels involved in the generation of endocochlear potential, Kcnj10 and Kcnq1, are strongly expressed in Atp6v0a4−/− mice. Our results lead to a better understanding of the role of this proton pump in hearing function. PMID:23065636

  6. The Contribution of Red Blood Cell Dynamics to Intrinsic Viscosity and Functional ATP Release

    NASA Astrophysics Data System (ADS)

    Forsyth, Alison; Abkarian, Manouk; Wan, Jiandi; Stone, Howard

    2010-11-01

    In shear flow, red blood cells (RBCs) exhibit a variety of behaviors such as rouleaux formation, tumbling, swinging, and tank-treading. The physiological consequences of these dynamic behaviors are not understood. In vivo, ATP is known to signal vasodilation; however, to our knowledge, no one has deciphered the relevance of RBC microrheology to the functional release of ATP. Previously, we correlated RBC deformation and ATP release in microfluidic constrictions (Wan et al., 2008). In this work, a cone-plate rheometer is used to shear a low hematocrit solution of RBCs at varying viscosity ratios (λ) between the inner cytoplasmic hemoglobin and the outer medium, to determine the intrinsic viscosity of the suspension. Further, using a luciferin-luciferase enzymatic reaction, we report the relative ATP release at varying shear rates. Results indicate that for λ = 1.6, 3.8 and 11.1, ATP release is constant up to 500 s-1, which suggests that the tumbling-tanktreading transition does not alter ATP release in pure shear. For lower viscosity ratios, λ = 1.6 and 3.8, at 500 s-1 a change in slope occurs in the intrinsic viscosity data and is marked by an increase in ATP release. Based on microfluidic observations, this simultaneous change in viscosity and ATP release occurs within the tank-treading regime.

  7. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Feng; Stanevich, Vitali; Wlodarchak, Nathan

    Proper activation of protein phosphatase 2A (PP2A) catalytic subunit is central for the complex PP2A regulation and is crucial for broad aspects of cellular function. The crystal structure of PP2A bound to PP2A phosphatase activator (PTPA) and ATPγS reveals that PTPA makes broad contacts with the structural elements surrounding the PP2A active site and the adenine moiety of ATP. PTPA-binding stabilizes the protein fold of apo-PP2A required for activation, and orients ATP phosphoryl groups to bind directly to the PP2A active site. This allows ATP to modulate the metal-binding preferences of the PP2A active site and utilize the PP2A activemore » site for ATP hydrolysis. In vitro, ATP selectively and drastically enhances binding of endogenous catalytic metal ions, which requires ATP hydrolysis and is crucial for acquisition of pSer/Thr-specific phosphatase activity. Furthermore, both PP2A- and ATP-binding are required for PTPA function in cell proliferation and survival. Our results suggest novel mechanisms of PTPA in PP2A activation with structural economy and a unique ATP-binding pocket that could potentially serve as a specific therapeutic target.« less

  8. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, M. E.; Altenberg, G. A.

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we usedmore » luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.« less

  9. ATP-dependent paracrine communication between enteric neurons and glia in a primary cell culture derived from embryonic mice.

    PubMed

    Gomes, P; Chevalier, J; Boesmans, W; Roosen, L; van den Abbeel, V; Neunlist, M; Tack, J; Vanden Berghe, P

    2009-08-01

    The importance of dynamic interactions between glia and neurons is increasingly recognized, both in the central and enteric nervous system. However, apart from their protective role, little is known about enteric neuro-glia interaction. The aim was to investigate neuro-glia intercellular communication in a mouse culture model using optical techniques. Complete embryonic (E13) guts were enzymatically dissociated, seeded on coverslips and studied with immunohistochemistry and Ca(2+)-imaging. Putative progenitor-like cells (expressing both PGP9.5 and S-100) differentiated over approximately 5 days into glia or neurons expressing typical cell-specific markers. The glia-neuron ratio could be manipulated by specific supplements (N2, G5). Neurons and glia were functionally identified both by their Ca(2+)-response to either depolarization (high K(+)) or lysophosphatidic acid and by the expression of typical markers. Neurons responded to ACh, DMPP, 5-HT, ATP and electrical stimulation, while glia responded to ATP and ADPbetas. Inhibition of glial responses by MRS2179 suggests involvement of P2Y1 receptors. Neuronal stimulation also caused delayed glial responses, which were reduced by suramin and by exogenous apyrases that catalyse nucleotide breakdown. Conversely, glial responses were enhanced by ARL-67156, an ecto-ATPase inhibitor. In this mouse enteric co-culture, functional glia and neurons can be easily monitored using optical techniques. Glial cells can be activated directly by ATP or ADPbetas. Activation of neuronal cells (DMPP, K(+)) causes secondary responses in glial cells, which can be modulated by tuning ATP and ADP breakdown. This strongly supports the involvement of paracrine purinergic communication between enteric neurons and glia.

  10. Phosphate release coupled to rotary motion of F1-ATPase

    PubMed Central

    Okazaki, Kei-ichi; Hummer, Gerhard

    2013-01-01

    F1-ATPase, the catalytic domain of ATP synthase, synthesizes most of the ATP in living organisms. Running in reverse powered by ATP hydrolysis, this hexameric ring-shaped molecular motor formed by three αβ-dimers creates torque on its central γ-subunit. This reverse operation enables detailed explorations of the mechanochemical coupling mechanisms in experiment and simulation. Here, we use molecular dynamics simulations to construct a first atomistic conformation of the intermediate state following the 40° substep of rotary motion, and to study the timing and molecular mechanism of inorganic phosphate (Pi) release coupled to the rotation. In response to torque-driven rotation of the γ-subunit in the hydrolysis direction, the nucleotide-free αβE interface forming the “empty” E site loosens and singly charged Pi readily escapes to the P loop. By contrast, the interface stays closed with doubly charged Pi. The γ-rotation tightens the ATP-bound αβTP interface, as required for hydrolysis. The calculated rate for the outward release of doubly charged Pi from the αβE interface 120° after ATP hydrolysis closely matches the ∼1-ms functional timescale. Conversely, Pi release from the ADP-bound αβDP interface postulated in earlier models would occur through a kinetically infeasible inward-directed pathway. Our simulations help reconcile conflicting interpretations of single-molecule experiments and crystallographic studies by clarifying the timing of Pi exit, its pathway and kinetics, associated changes in Pi protonation, and changes of the F1-ATPase structure in the 40° substep. Important elements of the molecular mechanism of Pi release emerging from our simulations appear to be conserved in myosin despite the different functional motions. PMID:24062450

  11. Mi2, an auto-antigen for dermatomyositis, is an ATP-dependent nucleosome remodeling factor.

    PubMed

    Wang, H B; Zhang, Y

    2001-06-15

    Dynamic changes in chromatin structure play an important role in transcription regulation. Recent studies have revealed two mechanisms that alter chromatin structure. One involves ATP-dependent chromatin remodeling, and the other involves acetylation of the core histone tails. We have previously purified and characterized a multi-subunit protein complex, NuRD, which possesses both nucleosome remodeling and histone deacetylase activities. Despite extensive biochemical characterization of the complex, little is known about the functions of its individual components. In this study, we focused on Mi2, a component of the NuRD complex. We found that, similar to the native NuRD complex, recombinant Mi2 is a DNA-dependent, nucleosome-stimulated ATPase. Kinetic analysis of the ATP hydrolysis reaction indicated that the differential stimulation of the Mi2 ATPase by DNA and nucleosomes were primarily due to their differential effects on the turnover number of the reaction. Furthermore, we demonstrated that recombinant Mi2 is an efficient nucleosome remodeling factor when compared to that of the native NuRD complex. Our results define the biochemical function of Mi2 and set the stage for understanding the mechanism of nucleosome remodeling in a defined reconstituted system.

  12. Mi2, an auto-antigen for dermatomyositis, is an ATP-dependent nucleosome remodeling factor

    PubMed Central

    Wang, Heng-Bin; Zhang, Yi

    2001-01-01

    Dynamic changes in chromatin structure play an important role in transcription regulation. Recent studies have revealed two mechanisms that alter chromatin structure. One involves ATP-dependent chromatin remodeling, and the other involves acetylation of the core histone tails. We have previously purified and characterized a multi-subunit protein complex, NuRD, which possesses both nucleosome remodeling and histone deacetylase activities. Despite extensive biochemical characterization of the complex, little is known about the functions of its individual components. In this study, we focused on Mi2, a component of the NuRD complex. We found that, similar to the native NuRD complex, recombinant Mi2 is a DNA-dependent, nucleosome-stimulated ATPase. Kinetic analysis of the ATP hydrolysis reaction indicated that the differential stimulation of the Mi2 ATPase by DNA and nucleosomes were primarily due to their differential effects on the turnover number of the reaction. Furthermore, we demonstrated that recombinant Mi2 is an efficient nucleosome remodeling factor when compared to that of the native NuRD complex. Our results define the biochemical function of Mi2 and set the stage for understanding the mechanism of nucleosome remodeling in a defined reconstituted system. PMID:11410659

  13. KATP Channel Mutations and Neonatal Diabetes.

    PubMed

    Shimomura, Kenju; Maejima, Yuko

    2017-09-15

    Since the discovery of the K ATP channel in 1983, numerous studies have revealed its physiological functions. The K ATP channel is expressed in various organs, including the pancreas, brain and skeletal muscles. It functions as a "metabolic sensor" that converts the metabolic status to electrical activity. In pancreatic beta-cells, the K ATP channel regulates the secretion of insulin by sensing a change in the blood glucose level and thus maintains glucose homeostasis. In 2004, heterozygous gain-of-function mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the K ATP channel, were found to cause neonatal diabetes. In some mutations, diabetes is accompanied by severe neurological symptoms [developmental delay, epilepsy, neonatal diabetes (DEND) syndrome]. This review focuses on mutations of Kir6.2, the pore-forming subunit and sulfonylurea receptor (SUR) 1, the regulatory subunit of the K ATP channel, which cause neonatal diabetes/DEND syndrome and also discusses the findings of the pathological mechanisms that are associated with neonatal diabetes, and its neurological features.

  14. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  15. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology. PMID:20103563

  16. Alpha lipoic acid protects the heart against myocardial post ischemia-reperfusion arrhythmias via KATP channel activation in isolated rat hearts.

    PubMed

    Dudek, Magdalena; Knutelska, Joanna; Bednarski, Marek; Nowiński, Leszek; Zygmunt, Małgorzata; Bilska-Wilkosz, Anna; Iciek, Małgorzata; Otto, Monika; Żytka, Iwona; Sapa, Jacek; Włodek, Lidia; Filipek, Barbara

    2014-06-01

    The cardiovascular effects of alpha lipoic acid were evaluated in isolated rat hearts exposed to ischemia-reperfusion injury in vitro. Alpha-lipoic acid raised the level of sulfane sulfur playing an important role in the release of hydrogen sulfide. H2S was shown to prevent the post-reperfusion arrhythmias and to protect the cardiomyocytes from death caused by hypoxia. The activation of potassium ATP-sensitive channels (K(ATP) channels) is one of the most important mechanisms of action of hydrogen sulfide in the cardiovascular system. The aim of this study was to investigate whether alpha lipoic acid can prevent the occurrence of post-reperfusion arrhythmias in vitro using a Langendorff model of ischemia-reperfusion in rats affecting the K(ATP) channels. Alpha lipoic acid significantly improved post-reperfusion cardiac function (reducing incidence of arrhythmias), especially in a dose of 10(-7)M. These cardiovascular effects of this compound on the measured parameters were reversed by glibenclamide, a selective K(ATP) blocker. Alpha lipoic acid increased the level of sulfane sulfur in the hearts. This may suggest that the positive effects caused by alpha lipoic acid in the cardiovascular system are not only related to its strong antioxidant activity, and the influence on the activity of such enzymes as aldehyde dehydrogenase 2, as previously suggested, but this compound can affect K(ATP) channels. It is possible that this indirect effect of alpha lipoic acid is connected with changes in the release of sulfane sulfur and hydrogen sulfide. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Atp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior.

    PubMed

    Sugimoto, H; Ikeda, K; Kawakami, K

    2018-06-01

    Atp1a3 is the Na-pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3-deficient heterozygous mice (Atp1a3 +/- ) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3 +/- and compared the rank and hierarchy structure between Atp1a3 +/- and wild-type mice within a housing cage using the round-robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3 +/- than wild-type mice, and Atp1a3 +/- approached Atp1a3 +/- mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3 +/- group than in the wild-type group, while no difference was observed in the mixed-genotype housing condition. (3) Hierarchy formation was not different between Atp1a3 +/- and wild type. (4) Atp1a3 +/- showed a lower rank in the mixed-genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3 +/- showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase.

    PubMed

    Townley, Robert; Shapiro, Lawrence

    2007-03-23

    The 5'-AMP (adenosine monophosphate)-activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 A resolution for ATP- and AMP-bound forms of a core alphabetagamma adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the gamma subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.

  19. Snapshots of the maltose transporter during ATP hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, Michael L.; Chen, Jue

    2011-12-05

    ATP-binding cassette transporters are powered by ATP, but the mechanism by which these transporters hydrolyze ATP is unclear. In this study, four crystal structures of the full-length wild-type maltose transporter, stabilized by adenosine 5{prime}-({beta},{gamma}-imido)triphosphate or ADP in conjunction with phosphate analogs BeF{sub 3}{sup -}, VO{sub 4}{sup 3-}, or AlF{sub 4}{sup -}, were determined to 2.2- to 2.4-{angstrom} resolution. These structures led to the assignment of two enzymatic states during ATP hydrolysis and demonstrate specific functional roles of highly conserved residues in the nucleotide-binding domain, suggesting that ATP-binding cassette transporters catalyze ATP hydrolysis via a general base mechanism.

  20. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA*

    PubMed Central

    Wigington, Callie P.; Morris, Kevin J.; Newman, Laura E.; Corbett, Anita H.

    2016-01-01

    Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function. PMID:27563065

  1. Analysis of DNA-binding sites on Mhr1, a yeast mitochondrial ATP-independent homologous pairing protein.

    PubMed

    Masuda, Tokiha; Ling, Feng; Shibata, Takehiko; Mikawa, Tsutomu

    2010-03-01

    The Mhr1 protein is necessary for mtDNA homologous recombination in Saccharomyces cerevisiae. Homologous pairing (HP) is an essential reaction during homologous recombination, and is generally catalyzed by the RecA/Rad51 family of proteins in an ATP-dependent manner. Mhr1 catalyzes HP through a mechanism similar, at the DNA level, to that of the RecA/Rad51 proteins, but without utilizing ATP. However, it has no sequence homology with the RecA/Rad51 family proteins or with other ATP-independent HP proteins, and exhibits different requirements for DNA topology. We are interested in the structural features of the functional domains of Mhr1. In this study, we employed the native fluorescence of Mhr1's Trp residues to examine the energy transfer from the Trp residues to etheno-modified ssDNA bound to Mhr1. Our results showed that two of the seven Trp residues (Trp71 and Trp165) are spatially close to the bound DNA. A systematic analysis of mutant Mhr1 proteins revealed that Asp69 is involved in Mg(2+)-dependent DNA binding, and that multiple Lys and Arg residues located around Trp71 and Trp165 are involved in the DNA-binding activity of Mhr1. In addition, in vivo complementation analyses showed that a region around Trp165 is important for the maintenance of mtDNA. On the basis of these results, we discuss the function of the region surrounding Trp165.

  2. Role of the Intracellular Nucleoside Transporter ENT3 in Transmitter and High K+ Stimulation of Astrocytic ATP Release Investigated Using siRNA Against ENT3

    PubMed Central

    Song, Dan; Xu, Junnan; Bai, Qiufang; Cai, Liping; Hertz, Leif

    2014-01-01

    This study investigates the role of the intracellular adenosine transporter equilibrative nucleoside transporter 3 (ENT3) in stimulated release of the gliotransmitter adenosine triphosphate (ATP) from astrocytes. Within the past 20 years, our understanding of the importance of astrocytic handling of adenosine, its phosphorylation to ATP, and release of astrocytic ATP as an important transmitter has become greatly expanded. A recent demonstration that the mainly intracellular nucleoside transporter ENT3 shows much higher expression in freshly isolated astrocytes than in a corresponding neuronal preparation leads to the suggestion that it was important for the synthesis of gliotransmitter ATP from adenosine. This would be consistent with a previously noted delay in transmitter release of ATP in astrocytes but not in neurons. The present study has confirmed and quantitated stimulated ATP release in response to glutamate, adenosine, or an elevated K+ concentration from well-differentiated astrocyte cultures, measured by a luciferin–luciferase reaction. It showed that the stimulated ATP release was abolished by downregulation of ENT3 with small interfering RNA (siRNA), regardless of the stimulus. The concept that transmitter ATP in mature astrocytes is synthesized directly from adenosine prior to release is supported by the postnatal development of the expression of the vesicular transporter SLC17A9 in astrocytes. In neurons, this transporter carries ATP into synaptic vesicles, but in astrocytes, its expression is pronounced only in immature cells and shows a rapid decline during the first 3 postnatal weeks so that it has almost disappeared at the end of the third week in well-differentiated astrocytes, where its role has probably been taken over by ENT3. PMID:25298788

  3. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis.

    PubMed

    Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La

    2013-01-01

    Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  4. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    PubMed Central

    Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La

    2013-01-01

    Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration. PMID:23986700

  5. Inhibition of Connexin 43 Hemichannel-Mediated ATP Release Attenuates Early Inflammation During the Foreign Body Response

    PubMed Central

    Calder, Bennett W.; Rhett, Joshua Matthew; Bainbridge, Heather; Fann, Stephen A.; Gourdie, Robert G.

    2015-01-01

    Background: In the last 50 years, the use of medical implants has increased dramatically. Failure of implanted devices and biomaterials is a significant source of morbidity and increasing healthcare expenditures. An important cause of implant failure is the host inflammatory response. Recent evidence implicates extracellular ATP as an important inflammatory signaling molecule. A major pathway for release of cytoplasmic ATP into the extracellular space is through connexin hemichannels, which are the unpaired constituents of gap junction intercellular channels. Blockade of hemichannels of the connexin 43 (Cx43) isoform has been shown to reduce inflammation and improve healing. We have developed a Cx43 mimetic peptide (JM2) that targets the microtubule-binding domain of Cx43. The following report investigates the role of the Cx43 microtubule-binding domain in extracellular ATP release by Cx43 hemichannels and how this impacts early inflammatory events of the foreign body reaction. Methods: In vitro Cx43 hemichannel-mediated ATP release by cultured human microvascular endothelial cells subjected to hypocalcemic and normocalcemic conditions was measured after application of JM2 and the known hemichannel blocker, flufenamic acid. A submuscular silicone implant model was used to investigate in vivo ATP signaling during the early foreign body response. Implants were coated with control pluronic vehicle or pluronic carrying JM2, ATP, JM2+ATP, or known hemichannel blockers and harvested at 24 h for analysis. Results: JM2 significantly inhibited connexin hemichannel-mediated ATP release from cultured endothelial cells. Importantly, the early inflammatory response to submuscular silicone implants was inhibited by JM2. The reduction in inflammation by JM2 was reversed by the addition of exogenous ATP to the pluronic vehicle. Conclusions: These data indicate that ATP released through Cx43 hemichannels into the vasculature is an important signal driving the early inflammatory response to implanted devices. A vital aspect of this work is that it demonstrates that targeted molecular therapeutics, such as JM2, provide the capacity to regulate inflammation in a clinically relevant system. PMID:25760687

  6. Inhibition of connexin 43 hemichannel-mediated ATP release attenuates early inflammation during the foreign body response.

    PubMed

    Calder, Bennett W; Matthew Rhett, Joshua; Bainbridge, Heather; Fann, Stephen A; Gourdie, Robert G; Yost, Michael J

    2015-06-01

    In the last 50 years, the use of medical implants has increased dramatically. Failure of implanted devices and biomaterials is a significant source of morbidity and increasing healthcare expenditures. An important cause of implant failure is the host inflammatory response. Recent evidence implicates extracellular ATP as an important inflammatory signaling molecule. A major pathway for release of cytoplasmic ATP into the extracellular space is through connexin hemichannels, which are the unpaired constituents of gap junction intercellular channels. Blockade of hemichannels of the connexin 43 (Cx43) isoform has been shown to reduce inflammation and improve healing. We have developed a Cx43 mimetic peptide (JM2) that targets the microtubule-binding domain of Cx43. The following report investigates the role of the Cx43 microtubule-binding domain in extracellular ATP release by Cx43 hemichannels and how this impacts early inflammatory events of the foreign body reaction. In vitro Cx43 hemichannel-mediated ATP release by cultured human microvascular endothelial cells subjected to hypocalcemic and normocalcemic conditions was measured after application of JM2 and the known hemichannel blocker, flufenamic acid. A submuscular silicone implant model was used to investigate in vivo ATP signaling during the early foreign body response. Implants were coated with control pluronic vehicle or pluronic carrying JM2, ATP, JM2+ATP, or known hemichannel blockers and harvested at 24 h for analysis. JM2 significantly inhibited connexin hemichannel-mediated ATP release from cultured endothelial cells. Importantly, the early inflammatory response to submuscular silicone implants was inhibited by JM2. The reduction in inflammation by JM2 was reversed by the addition of exogenous ATP to the pluronic vehicle. These data indicate that ATP released through Cx43 hemichannels into the vasculature is an important signal driving the early inflammatory response to implanted devices. A vital aspect of this work is that it demonstrates that targeted molecular therapeutics, such as JM2, provide the capacity to regulate inflammation in a clinically relevant system.

  7. Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms.

    PubMed

    Moon, Younghye; Balke, Jordan E; Madorma, Derik; Siegel, Michael P; Knowels, Gary; Brouckaert, Peter; Buys, Emmanuel S; Marcinek, David J; Percival, Justin M

    2017-06-10

    Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle. GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 -/- muscle. Functional analyses of GC1 -/- muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 -/- muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure. GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics. These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.

  8. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition.

    PubMed

    Trotta, Andrew P; Gelles, Jesse D; Serasinghe, Madhavika N; Loi, Patrick; Arbiser, Jack L; Chipuk, Jerry E

    2017-07-14

    The mitochondrial network is a major site of ATP production through the coupled integration of the electron transport chain (ETC) with oxidative phosphorylation. In melanoma arising from the V600E mutation in the kinase v-RAF murine sarcoma viral oncogene homolog B (BRAF V600E ), oncogenic signaling enhances glucose-dependent metabolism while reducing mitochondrial ATP production. Likewise, when BRAF V600E is pharmacologically inhibited by targeted therapies ( e.g. PLX-4032/vemurafenib), glucose metabolism is reduced, and cells increase mitochondrial ATP production to sustain survival. Therefore, collateral inhibition of oncogenic signaling and mitochondrial respiration may help enhance the therapeutic benefit of targeted therapies. Honokiol (HKL) is a well tolerated small molecule that disrupts mitochondrial function; however, its underlying mechanisms and potential utility with targeted anticancer therapies remain unknown. Using wild-type BRAF and BRAF V600E melanoma model systems, we demonstrate here that HKL administration rapidly reduces mitochondrial respiration by broadly inhibiting ETC complexes I, II, and V, resulting in decreased ATP levels. The subsequent energetic crisis induced two cellular responses involving cyclin-dependent kinases (CDKs). First, loss of CDK1-mediated phosphorylation of the mitochondrial division GTPase dynamin-related protein 1 promoted mitochondrial fusion, thus coupling mitochondrial energetic status and morphology. Second, HKL decreased CDK2 activity, leading to G 1 cell cycle arrest. Importantly, although pharmacological inhibition of oncogenic MAPK signaling increased ETC activity, co-treatment with HKL ablated this response and vastly enhanced the rate of apoptosis. Collectively, these findings integrate HKL action with mitochondrial respiration and shape and substantiate a pro-survival role of mitochondrial function in melanoma cells after oncogenic MAPK inhibition.

  9. Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance.

    PubMed

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie; Molina-Carrion, Marjorie; Joya-Galeana, Joaquin; Bowen, Benjamin P; Garduno-Garcia, Jose de Jesus; Abdul-Ghani, Muhammad; Richardson, Arlan; DeFronzo, Ralph A; Mandarino, Lawrence; Van Remmen, Holly; Musi, Nicolas

    2011-08-01

    Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria.

  10. [Atp6ap2/ (Pro) renin Receptor is Required for Laminar Formation during Retinal Development in Mice].

    PubMed

    Kanda, Atsuhiro

    2015-11-01

    (Pro) renin receptor [(P) RR], a key molecule for tissue renin-angiotensin system, was originally identified as Atp6ap2, an accessory subunit for vacuolar H(+)-ATPase that is a multi-subunit proton pump involved in fundamental cellular physiology. In this study, to elucidate the physiological functions of Atp6ap2/ (P) RR during retinal development in mammals, we used Cre-LoxP system to generate photoreceptor-specific conditional knock-out (CKO) mice, and revealed a critical role of Atp6ap2/(P) RR in photoreceptor development. Deletion of photoreceptor Atp6ap2/ (P) RR did not affect retinal cell differentiation, but led to laminar disorganization in the photoreceptor layer with dysfunction of photoreceptors. Cell adhesion and polarity molecules, all of which were co-localized with Atp6ap2 at the apical edge of the developing retina, were dispersed together with mislocalization of retinal progenitors apart from the apical surface in Atp6ap2 conditional knockout mice. Among these molecules, co-immunoprecipitation using retinal homogenates and Atp6ap2/(P) RR-transfected cells showed that Atp6ap2/(P) RR interacted with partitioning defective 3 homolog (Par3) protein, known to play a pivotal role in planar cell polarity in the Par-atypical protein kinase C system. Atp6ap2 interacted with Par3 protein that plays a pivotal role in planar cell polarity. Our data provide a novel function of Atp6ap2 required as a cell polarity determinant for retinal laminar formation.

  11. Clusterin (Apolipoprotein J), a Molecular Chaperone That Facilitates Degradation of the Copper-ATPases ATP7A and ATP7B*

    PubMed Central

    Materia, Stephanie; Cater, Michael A.; Klomp, Leo W. J.; Mercer, Julian F. B.; La Fontaine, Sharon

    2011-01-01

    The copper-transporting P1B-type ATPases (Cu-ATPases) ATP7A and ATP7B are key regulators of physiological copper levels. They function to maintain intracellular copper homeostasis by delivering copper to secretory compartments and by trafficking toward the cell periphery to export excess copper. Mutations in the genes encoding ATP7A and ATP7B lead to copper deficiency and toxicity disorders, Menkes and Wilson diseases, respectively. This report describes the interaction between the Cu-ATPases and clusterin and demonstrates a chaperone-like role for clusterin in facilitating their degradation. Clusterin interacted with both ATP7A and ATP7B in mammalian cells. This interaction increased under conditions of oxidative stress and with mutations in ATP7B that led to its misfolding and mislocalization. A Wilson disease patient mutation (G85V) led to enhanced ATP7B turnover, which was further exacerbated when cells overexpressed clusterin. We demonstrated that clusterin-facilitated degradation of mutant ATP7B is likely to involve the lysosomal pathway. The knockdown and overexpression of clusterin increased and decreased, respectively, the Cu-ATPase-mediated copper export capacity of cells. These results highlight a new role for intracellular clusterin in mediating Cu-ATPase quality control and hence in the normal maintenance of copper homeostasis, and in promoting cell survival in the context of disease. Based on our findings, it is possible that variations in clusterin expression and function could contribute to the variable clinical expression of Menkes and Wilson diseases. PMID:21242307

  12. Sirt1 carboxyl-domain is an ATP-repressible domain that is transferrable to other proteins

    PubMed Central

    Kang, Hyeog; Oka, Shinichi; Lee, Duck-Yeon; Park, Junhong; Aponte, Angel M.; Jung, Young-Sang; Bitterman, Jacob; Zhai, Peiyong; He, Yi; Kooshapur, Hamed; Ghirlando, Rodolfo; Tjandra, Nico; Lee, Sean B.; Kim, Myung K.; Sadoshima, Junichi; Chung, Jay H.

    2017-01-01

    Sirt1 is an NAD+-dependent protein deacetylase that regulates many physiological functions, including stress resistance, adipogenesis, cell senescence and energy production. Sirt1 can be activated by energy deprivation, but the mechanism is poorly understood. Here, we report that Sirt1 is negatively regulated by ATP, which binds to the C-terminal domain (CTD) of Sirt1. ATP suppresses Sirt1 activity by impairing the CTD's ability to bind to the deacetylase domain as well as its ability to function as the substrate recruitment site. ATP, but not NAD+, causes a conformational shift to a less compact structure. Mutations that prevent ATP binding increase Sirt1's ability to promote stress resistance and inhibit adipogenesis under high-ATP conditions. Interestingly, the CTD can be attached to other proteins, thereby converting them into energy-regulated proteins. These discoveries provide insight into how extreme energy deprivation can impact Sirt1 activity and underscore the complex nature of Sirt1 structure and regulation. PMID:28504272

  13. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation

    PubMed Central

    Teixeira, Felipe K.; Sanchez, Carlos G.; Hurd, Thomas R.; Seifert, Jessica R. K.; Czech, Benjamin; Preall, Jonathan B.; Hannon, Gregory J.; Lehmann, Ruth

    2015-01-01

    The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used1,2. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation. PMID:25915123

  14. Involvement of ectodomain Leu 214 in ATP binding and channel desensitization of the P2X4 receptor.

    PubMed

    Zhang, Longmei; Xu, Huijuan; Jie, Yanling; Gao, Chao; Chen, Wanjuan; Yin, Shikui; Samways, Damien S K; Li, Zhiyuan

    2014-05-13

    P2X receptors are trimeric ATP-gated cation permeable ion channels. When ATP binds, the extracellular head and dorsal fin domains are predicted to move closer to each other. However, there are scant functional data corroborating the role of the dorsal fin in ligand binding. Here using site-directed mutagenesis and electrophysiology, we show that a dorsal fin leucine, L214, contributes to ATP binding. Mutant receptors containing a single substitution of alanine, serine, glutamic acid, or phenylalanine at L214 of the rat P2X4 receptor exhibited markedly reduced sensitivities to ATP. Mutation of other dorsal fin side chains, S216, T223, and D224, did not significantly alter ATP sensitivity. Exposure of L214C to sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) or (2-aminoethyl) methanethiosulfonate hydrobromide in the absence of ATP blocked responses evoked by subsequent ATP application. In contrast, when MTSES(-) was applied in the presence of ATP, no current inhibition was observed. Furthermore, L214A also slightly reduced the inhibitory effect of the antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP, and the blockade was more rapidly reversible after washout. Certain L214 mutants also showed effects on current desensitization in the continued presence of ATP. L214I exhibited an accelerated current decline, whereas L214M exhibited a slower rate. Taken together, these data reveal that position L214 participates in both ATP binding and conformational changes accompanying channel opening and desensitization, providing compelling evidence that the dorsal fin domain indeed has functional properties that are similar to those previously reported for the body domains.

  15. Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake.

    PubMed

    Yildiz, Ozkan; Kalthoff, Christoph; Raunser, Stefan; Kühlbrandt, Werner

    2007-01-24

    A binary complex of the ammonia channel Amt1 from Methanococcus jannaschii and its cognate P(II) signalling protein GlnK1 has been produced and characterized. Complex formation is prevented specifically by the effector molecules Mg-ATP and 2-ketoglutarate. Single-particle electron microscopy of the complex shows that GlnK1 binds on the cytoplasmic side of Amt1. Three high-resolution X-ray structures of GlnK1 indicate that the functionally important T-loop has an extended, flexible conformation in the absence of Mg-ATP, but assumes a compact, tightly folded conformation upon Mg-ATP binding, which in turn creates a 2-ketoglutarate-binding site. We propose a regulatory mechanism by which nitrogen uptake is controlled by the binding of both effector molecules to GlnK1. At normal effector levels, a 2-ketoglutarate molecule binding at the apex of the compact T-loop would prevent complex formation, ensuring uninhibited ammonia uptake. At low levels of Mg-ATP, the extended loops would seal the ammonia channels in the complex. Binding of both effector molecules to P(II) signalling proteins may thus represent an effective feedback mechanism for regulating ammonium uptake through the membrane.

  16. Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia-reperfusion.

    PubMed

    Kovacs, Krisztina; Toth, Ambrus; Deres, Peter; Kalai, Tamas; Hideg, Kalman; Gallyas, Ferenc; Sumegi, Balazs

    2006-02-14

    Poly(ADP-ribose) polymerase (PARP) inhibitors protect hearts from ischemia-reperfusion (IR)-induced damages by limiting nicotinamide adenine dinucleotide (NAD+) and ATP depletion, and by other, not yet elucidated mechanisms. Our preliminary data suggested that PARP catalyzed ADP-ribosylations may affect signaling pathways in cardiomyocytes. To clarify this possibility, we studied the effect of a well-characterized (4-hydroxyquinazoline) and a novel (carboxaminobenzimidazol-derivative) PARP inhibitor on the activation of phosphatidylinositol-3-kinase (PI3-kinase)/Akt pathway in Langendorff-perfused hearts. PARP inhibitors promoted the restoration of myocardial energy metabolism (assessed by 31P nuclear magnetic resonance spectroscopy) and cardiac function compared to untreated hearts. PARP inhibitors also attenuated the infarct size and reduced the IR-induced lipid peroxidation, protein oxidation and total peroxide concentration. Moreover, PARP inhibitors facilitated Akt phosphorylation and activation, as well as the phosphorylation of its downstream target glycogen synthase kinase-3beta (GSK-3beta) in normoxia and, more robustly, during IR. Blocking PI3-kinase by wortmannin or LY294002 reduced the PARP inhibitor-elicited robust Akt and GSK-3beta phosphorylation upon ischemia-reperfusion, and significantly diminished the recovery of ATP and creatine phosphate showing the importance of Akt activation in the recovery of energy metabolism. In addition, inhibition of PI3-kinase/Akt pathway decreased the protective effect of PARP inhibitors on infarct size and the recovery of heart functions. All these data suggest that contrary to the original view, which considered preservation of NAD+ and consequently ATP pools as the exclusive underlying mechanism for the cytoprotective effect of PARP inhibitors, the activation of PI3-kinase/Akt pathway and related processes are at least equally important in the cardioprotective effects of PARP inhibitors during ischemia-reperfusion.

  17. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation.

    PubMed

    Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun

    2017-05-01

    Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.

  18. Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET.

    PubMed

    Sikor, Martin; Mapa, Koyeli; von Voithenberg, Lena Voith; Mokranjac, Dejana; Lamb, Don C

    2013-05-29

    The numerous functions of the important class of molecular chaperones, heat shock proteins 70 (Hsp70), rely on cycles of intricate conformational changes driven by ATP-hydrolysis and regulated by cochaperones and substrates. Here, we used Förster resonance energy transfer to study the conformational dynamics of individual molecules of Ssc1, a mitochondrial Hsp70, in real time. The intrinsic dynamics of the substrate-binding domain of Ssc1 was observed to be uncoupled from the dynamic interactions between substrate- and nucleotide-binding domains. Analysis of the fluctuations in the interdomain separation revealed frequent transitions to a nucleotide-free state. The nucleotide-exchange factor Mge1 did not induce ADP release, as expected, but rather facilitated binding of ATP. These results indicate that the conformational cycle of Ssc1 is more elaborate than previously thought and provide insight into how the Hsp70s can perform a wide variety of functions.

  19. Primitive ATP-activated P2X receptors: discovery, function and pharmacology

    PubMed Central

    Fountain, Samuel J.

    2013-01-01

    Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context. PMID:24367292

  20. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells.

    PubMed

    Ramalho-Santos, João; Varum, Sandra; Amaral, Sandra; Mota, Paula C; Sousa, Ana Paula; Amaral, Alexandra

    2009-01-01

    Mitochondria are multitasking organelles involved in ATP synthesis, reactive oxygen species (ROS) production, calcium signalling and apoptosis; and mitochondrial defects are known to cause physiological dysfunction, including infertility. The goal of this review was to identify and discuss common themes in mitochondrial function related to mammalian reproduction. The scientific literature was searched for studies reporting on the several aspects of mitochondrial activity in mammalian testis, sperm, oocytes, early embryos and embryonic stem cells. ATP synthesis and ROS production are the most discussed aspects of mitochondrial function. Metabolic shifts from mitochondria-produced ATP to glycolysis occur at several stages, notably during gametogenesis and early embryo development, either reflecting developmental switches or substrate availability. The exact role of sperm mitochondria is especially controversial. Mitochondria-generated ROS function in signalling but are mostly described when produced under pathological conditions. Mitochondria-based calcium signalling is primarily important in embryo activation and embryonic stem cell differentiation. Besides pathologically triggered apoptosis, mitochondria participate in apoptotic events related to the regulation of spermatogonial cell number, as well as gamete, embryo and embryonic stem cell quality. Interestingly, data from knock-out (KO) mice is not always straightforward in terms of expected phenotypes. Finally, recent data suggests that mitochondrial activity can modulate embryonic stem cell pluripotency as well as differentiation into distinct cellular fates. Mitochondria-based events regulate different aspects of reproductive function, but these are not uniform throughout the several systems reviewed. Low mitochondrial activity seems a feature of 'stemness', being described in spermatogonia, early embryo, inner cell mass cells and embryonic stem cells.

  1. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.

    1992-01-01

    Halobacterium saccharovorum synthesized ATP in response to a pH shift from 8 to 6.2. Synthesis was inhibited by carbonyl cyanide m-chloro-phenylhydrazone, dicyclohexylcarbodiimide, and azide. Nitrate, an inhibitor of the membrane-bound ATPase previously isolated from this organism, did not inhibit ATP synthesis. N-Ethymaleimide, which also inhibited this ATPase, stimulated the production of ATP. These observations suggested that H. saccharovorum synthesized and hydrolysed ATP using different enzymes and that the vacuolar-like ATPase activity previously described in H. saccharovorum was an ATPase whose function is yet to be identified.

  2. Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging

    PubMed Central

    Yaginuma, Hideyuki; Kawai, Shinnosuke; Tabata, Kazuhito V.; Tomiyama, Keisuke; Kakizuka, Akira; Komatsuzaki, Tamiki; Noji, Hiroyuki; Imamura, Hiromi

    2014-01-01

    Recent advances in quantitative single-cell analysis revealed large diversity in gene expression levels between individual cells, which could affect the physiology and/or fate of each cell. In contrast, for most metabolites, the concentrations were only measureable as ensemble averages of many cells. In living cells, adenosine triphosphate (ATP) is a critically important metabolite that powers many intracellular reactions. Quantitative measurement of the absolute ATP concentration in individual cells has not been achieved because of the lack of reliable methods. In this study, we developed a new genetically-encoded ratiometric fluorescent ATP indicator “QUEEN”, which is composed of a single circularly-permuted fluorescent protein and a bacterial ATP binding protein. Unlike previous FRET-based indicators, QUEEN was apparently insensitive to bacteria growth rate changes. Importantly, intracellular ATP concentrations of numbers of bacterial cells calculated from QUEEN fluorescence were almost equal to those from firefly luciferase assay. Thus, QUEEN is suitable for quantifying the absolute ATP concentration inside bacteria cells. Finally, we found that, even for a genetically-identical Escherichia coli cell population, absolute concentrations of intracellular ATP were significantly diverse between individual cells from the same culture, by imaging QUEEN signals from single cells. PMID:25283467

  3. The conformational dynamics of the mitochondrial Hsp70 chaperone.

    PubMed

    Mapa, Koyeli; Sikor, Martin; Kudryavtsev, Volodymyr; Waegemann, Karin; Kalinin, Stanislav; Seidel, Claus A M; Neupert, Walter; Lamb, Don C; Mokranjac, Dejana

    2010-04-09

    Heat shock proteins 70 (Hsp70) represent a ubiquitous and conserved family of molecular chaperones involved in a plethora of cellular processes. The dynamics of their ATP hydrolysis-driven and cochaperone-regulated conformational cycle are poorly understood. We used fluorescence spectroscopy to analyze, in real time and at single-molecule resolution, the effects of nucleotides and cochaperones on the conformation of Ssc1, a mitochondrial member of the family. We report that the conformation of its ADP state is unexpectedly heterogeneous, in contrast to a uniform ATP state. Substrates are actively involved in determining the conformation of Ssc1. The J protein Mdj1 does not interact transiently with the chaperone, as generally believed, but rather is released slowly upon ATP hydrolysis. Analysis of the major bacterial Hsp70 revealed important differences between highly homologous members of the family, possibly explaining tuning of Hsp70 chaperones to meet specific functions in different organisms and cellular compartments. 2010 Elsevier Inc. All rights reserved.

  4. Extracellular nucleotide and nucleoside signaling in vascular and blood disease

    PubMed Central

    Idzko, Marco; Ferrari, Davide; Riegel, Ann-Kathrin

    2014-01-01

    Nucleotides and nucleosides—such as adenosine triphosphate (ATP) and adenosine—are famous for their intracellular roles as building blocks for the genetic code or cellular energy currencies. In contrast, their function in the extracellular space is different. Here, they are primarily known as signaling molecules via activation of purinergic receptors, classified as P1 receptors for adenosine or P2 receptors for ATP. Because extracellular ATP is rapidly converted to adenosine by ectonucleotidase, nucleotide-phosphohydrolysis is important for controlling the balance between P2 and P1 signaling. Gene-targeted mice for P1, P2 receptors, or ectonucleotidase exhibit only very mild phenotypic manifestations at baseline. However, they demonstrate alterations in disease susceptibilities when exposed to a variety of vascular or blood diseases. Examples of phenotypic manifestations include vascular barrier dysfunction, graft-vs-host disease, platelet activation, ischemia, and reperfusion injury or sickle cell disease. Many of these studies highlight that purinergic signaling events can be targeted therapeutically. PMID:25001468

  5. Astilbe thunbergii reduces postprandial hyperglycemia in a type 2 diabetes rat model via pancreatic alpha-amylase inhibition by highly condensed procyanidins.

    PubMed

    Kato, Eisuke; Kushibiki, Natsuka; Inagaki, Yosuke; Kurokawa, Mihoko; Kawabata, Jun

    2017-09-01

    Type 2 diabetes mellitus (T2DM) is a common global health problem. Prevention of this disease is an important task, and functional food supplements are considered an effective method. We found potent pancreatic α-amylase inhibition in Astilbe thunbergii root extract (AT) and confirmed that AT treatment in a T2DM rat model reduces post-starch administration blood glucose levels. Activity-guided isolation revealed procyanidin (AT-P) as the α-amylase inhibitory component with IC 50  = 1.7 μg/mL against porcine pancreatic α-amylase. Structure analysis of AT-P revealed it is a B-type procyanidin comprised of four types of flavan-3-ols, some with a galloyl group, and catechin attached as the terminal unit. The abundant AT-P content and its comparable α-amylase inhibition to acarbose, the anti-diabetic medicine, suggest that AT is a promising food supplement for diabetes prevention.

  6. Catalytic and transport cycles of ABC exporters.

    PubMed

    Al-Shawi, Marwan K

    2011-09-07

    ABC (ATP-binding cassette) transporters are arguably the most important family of ATP-driven transporters in biology. Despite considerable effort and advances in determining the structures and physiology of these transporters, their fundamental molecular mechanisms remain elusive and highly controversial. How does ATP hydrolysis by ABC transporters drive their transport function? Part of the problem in answering this question appears to be a perceived need to formulate a universal mechanism. Although it has been generally hoped and assumed that the whole superfamily of ABC transporters would exhibit similar conserved mechanisms, this is proving not to be the case. Structural considerations alone suggest that there are three overall types of coupling mechanisms related to ABC exporters, small ABC importers and large ABC importers. Biochemical and biophysical characterization leads us to the conclusion that, even within these three classes, the catalytic and transport mechanisms are not fully conserved, but continue to evolve. ABC transporters also exhibit unusual characteristics not observed in other primary transporters, such as uncoupled basal ATPase activity, that severely complicate mechanistic studies by established methods. In this chapter, I review these issues as related to ABC exporters in particular. A consensus view has emerged that ABC exporters follow alternating-access switch transport mechanisms. However, some biochemical data suggest that alternating catalytic site transport mechanisms are more appropriate for fully symmetrical ABC exporters. Heterodimeric and asymmetrical ABC exporters appear to conform to simple alternating-access-type mechanisms.

  7. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  8. Piezo1 regulates mechanotransductive release of ATP from human RBCs.

    PubMed

    Cinar, Eyup; Zhou, Sitong; DeCourcey, James; Wang, Yixuan; Waugh, Richard E; Wan, Jiandi

    2015-09-22

    Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced calcium (Ca(2+)) influx. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca(2+) influx decrease significantly. Remarkably, a critical extracellular Ca(2+) concentration is required to trigger significant ATP release, but membrane-associated ATP pools in RBCs also contribute to the release of ATP. Our results show how Piezo1 channels are likely to function in normal RBCs and suggest a previously unidentified mechanotransductive pathway in ATP release. Thus, we anticipate that the study will impact broadly on the research of red cells, cellular mechanosensing, and clinical studies related to red cell disorders and vascular disease.

  9. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds.

    PubMed

    Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu

    2012-02-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.

  10. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits

    PubMed Central

    Schultheis, Patrick J.; Fleming, Sheila M.; Clippinger, Amy K.; Lewis, Jada; Tsunemi, Taiji; Giasson, Benoit; Dickson, Dennis W.; Mazzulli, Joseph R.; Bardgett, Mark E.; Haik, Kristi L.; Ekhator, Osunde; Chava, Anil Kumar; Howard, John; Gannon, Matt; Hoffman, Elizabeth; Chen, Yinhuai; Prasad, Vikram; Linn, Stephen C.; Tamargo, Rafael J.; Westbroek, Wendy; Sidransky, Ellen; Krainc, Dimitri; Shull, Gary E.

    2013-01-01

    Mutations in ATP13A2 (PARK9), encoding a lysosomal P-type ATPase, are associated with both Kufor–Rakeb syndrome (KRS) and neuronal ceroid lipofuscinosis (NCL). KRS has recently been classified as a rare genetic form of Parkinson's disease (PD), whereas NCL is a lysosomal storage disorder. Although the transport activity of ATP13A2 has not been defined, in vitro studies show that its loss compromises lysosomal function, which in turn is thought to cause neuronal degeneration. To understand the role of ATP13A2 dysfunction in disease, we disrupted its gene in mice. Atp13a2−/− and Atp13a2+/+ mice were tested behaviorally to assess sensorimotor and cognitive function at multiple ages. In the brain, lipofuscin accumulation, α-synuclein aggregation and dopaminergic pathology were measured. Behaviorally, Atp13a2−/− mice displayed late-onset sensorimotor deficits. Accelerated deposition of autofluorescent storage material (lipofuscin) was observed in the cerebellum and in neurons of the hippocampus and the cortex of Atp13a2−/− mice. Immunoblot analysis showed increased insoluble α-synuclein in the hippocampus, but not in the cortex or cerebellum. There was no change in the number of dopaminergic neurons in the substantia nigra or in striatal dopamine levels in aged Atp13a2−/− mice. These results show that the loss of Atp13a2 causes sensorimotor impairments, α-synuclein accumulation as occurs in PD and related synucleinopathies, and accumulation of lipofuscin deposits characteristic of NCL, thus providing the first direct demonstration that null mutations in Atp13a2 can cause pathological features of both diseases in the same organism. PMID:23393156

  11. [P4-ATP-ase Atp8b1/FIC1: structural properties and (patho)physiological functions].

    PubMed

    Korneenko, T V; Pestov, N B; Okkelman, I A; Modyanov, N N; Shakhparonov, M I

    2015-01-01

    P4-ATP-ases comprise an interesting family among P-type ATP-ases, since they are thought to play a major role in the transfer of phospholipids such as phosphatydylserine from the outer leaflet to the inner leaflet. Isoforms of P4-ATP-ases are partially interchangeable but peculiarities of tissue-specific expression of their genes, intracellular localization of proteins, as well as regulatory pathways lead to the fact that, on the organismal level, serious pathologies may develop in the presence of structural abnormalities in certain isoforms. Among P4-ATP-ases a special place is occupied by ATP8B1, for which several mutations are known that lead to serious hereditary diseases: two forms of congenital cholestasis (PFIC1 or Byler disease and benign recurrent intrahepatic cholestasis) with extraliver symptoms such as sensorineural hearing loss. The physiological function of the Atp8b1/FIC1 protein is known in general outline: it is responsible for transport of certain phospholipids (phosphatydylserine, cardiolipin) for the outer monolayer of the plasma membrane to the inner one. It is well known that perturbation of membrane asymmetry, caused by the lack of Atp8B1 activity, leads to death of hairy cells of the inner ear, dysfunction of bile acid transport in liver-cells that causes cirrhosis. It is also probable that insufficient activity of Atp8b1/FIC1 increases susceptibility to bacterial pneumonia.Regulatory pathways of Atp8b1/FIC1 activity in vivo remain to be insufficiently studied and this opens novel perspectives for research in this field that may allow better understanding of molecular processes behind the development of certain pathologies and to reveal novel therapeutical targets.

  12. Reduction in Reactive Oxygen Species Production by Mitochondria From Elderly Subjects With Normal and Impaired Glucose Tolerance

    PubMed Central

    Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie; Molina-Carrion, Marjorie; Joya-Galeana, Joaquin; Bowen, Benjamin P.; de Jesus Garduno-Garcia, Jose; Abdul-Ghani, Muhammad; Richardson, Arlan; DeFronzo, Ralph A.; Mandarino, Lawrence; Van Remmen, Holly; Musi, Nicolas

    2011-01-01

    OBJECTIVE Aging increases the risk of developing impaired glucose tolerance (IGT) and type 2 diabetes. It has been proposed that increased reactive oxygen species (ROS) generation by dysfunctional mitochondria could play a role in the pathogenesis of these metabolic abnormalities. We examined whether aging per se (in subjects with normal glucose tolerance [NGT]) impairs mitochondrial function and how this relates to ROS generation, whether older subjects with IGT have a further worsening of mitochondrial function (lower ATP production and elevated ROS generation), and whether exercise reverses age-related changes in mitochondrial function. RESEARCH DESIGN AND METHODS Mitochondrial ATP and ROS production were measured in muscle from younger individuals with NGT, older individuals with NGT, and older individuals with IGT. Measurements were performed before and after 16 weeks of aerobic exercise. RESULTS ATP synthesis was lower in older subjects with NGT and older subjects with IGT versus younger subjects. Notably, mitochondria from older subjects (with NGT and IGT) displayed reduced ROS production versus the younger group. ATP and ROS production were similar between older groups. Exercise increased ATP synthesis in the three groups. Mitochondrial ROS production also increased after training. Proteomic analysis revealed downregulation of several electron transport chain proteins with aging, and this was reversed by exercise. CONCLUSIONS Old mitochondria from subjects with NGT and IGT display mitochondrial dysfunction as manifested by reduced ATP production but not with respect to increased ROS production. When adjusted to age, the development of IGT in elderly individuals does not involve changes in mitochondrial ATP and ROS production. Lastly, exercise reverses the mitochondrial phenotype (proteome and function) of old mitochondria. PMID:21677280

  13. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish.

    PubMed

    Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D

    2015-11-01

    Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish

    PubMed Central

    Gokey, Jason J.; Dasgupta, Agnik; Amack, Jeffrey D.

    2015-01-01

    Asymmetric fluid flows generated by motile cilia in a transient ‘organ of asymmetry’ are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H+-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer’s vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures—neuromasts and olfactory placodes—suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. PMID:26254189

  15. A highly active ATP-insensitive K+ import pathway in plant mitochondria.

    PubMed

    Ruy, Fernando; Vercesi, Anibal E; Andrade, Paula B M; Bianconi, M Lucia; Chaimovich, Hernan; Kowaltowski, Alicia J

    2004-04-01

    We describe here a regulated and highly active K+ uptake pathway in potato (Solanum tuberosum), tomato (Lycopersicon esculentum), and maize (Zea mays) mitochondria. K+ transport was not inhibited by ATP, NADH, or thiol reagents, which regulate ATP-sensitive K+ channels previously described in plant and mammalian mitochondria. However, K+ uptake was completely prevented by quinine, a broad spectrum K+ channel inhibitor. Increased K+ uptake in plants leads to mitochondrial swelling, respiratory stimulation, heat release, and the prevention of reactive oxygen species formation. This newly described ATP-insensitive K+ import pathway is potentially involved in metabolism regulation and prevention of oxidative stress.

  16. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    PubMed Central

    Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan

    2016-01-01

    ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy. PMID:26747866

  17. Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes.

    PubMed

    Hao, Weilong; Palmer, Jeffrey D

    2009-09-29

    The mitochondrial genomes of flowering plants possess a promiscuous proclivity for taking up sequences from the chloroplast genome. All characterized chloroplast integrants exist apart from native mitochondrial genes, and only a few, involving chloroplast tRNA genes that have functionally supplanted their mitochondrial counterparts, appear to be of functional consequence. We developed a novel computational approach to search for homologous recombination (gene conversion) in a large number of sequences and applied it to 22 mitochondrial and chloroplast gene pairs, which last shared common ancestry some 2 billion years ago. We found evidence of recurrent conversion of short patches of mitochondrial genes by chloroplast homologs during angiosperm evolution, but no evidence of gene conversion in the opposite direction. All 9 putative conversion events involve the atp1/atpA gene encoding the alpha subunit of ATP synthase, which is unusually well conserved between the 2 organelles and the only shared gene that is widely sequenced across plant mitochondria. Moreover, all conversions were limited to the 2 regions of greatest nucleotide and amino acid conservation of atp1/atpA. These observations probably reflect constraints operating on both the occurrence and fixation of recombination between ancient homologs. These findings indicate that recombination between anciently related sequences is more frequent than previously appreciated and creates functional mitochondrial genes of chimeric origin. These results also have implications for the widespread use of mitochondrial atp1 in phylogeny reconstruction.

  18. What do magnetic resonance-based measurements of Pi→ATP flux tell us about skeletal muscle metabolism?

    PubMed

    Kemp, Graham J; Brindle, Kevin M

    2012-08-01

    Magnetic resonance spectroscopy (MRS) methods offer a potentially valuable window into cellular metabolism. Measurement of flux between inorganic phosphate (Pi) and ATP using (31)P MRS magnetization transfer has been used in resting muscle to assess what is claimed to be mitochondrial ATP synthesis and has been particularly popular in the study of insulin effects and insulin resistance. However, the measured Pi→ATP flux in resting skeletal muscle is far higher than the true rate of oxidative ATP synthesis, being dominated by a glycolytically mediated Pi↔ATP exchange reaction that is unrelated to mitochondrial function. Furthermore, even if measured accurately, the ATP production rate in resting muscle has no simple relationship to mitochondrial capacity as measured either ex vivo or in vivo. We summarize the published measurements of Pi→ATP flux, concentrating on work relevant to diabetes and insulin, relate it to current understanding of the physiology of mitochondrial ATP synthesis and glycolytic Pi↔ATP exchange, and discuss some possible implications of recently reported correlations between Pi→ATP flux and other physiological measures.

  19. Mitochondrial flashes regulate ATP homeostasis in the heart

    PubMed Central

    Wang, Xianhua; Zhang, Xing; Wu, Di; Huang, Zhanglong; Hou, Tingting; Jian, Chongshu; Yu, Peng; Lu, Fujian; Zhang, Rufeng; Sun, Tao; Li, Jinghang; Qi, Wenfeng; Wang, Yanru; Gao, Feng; Cheng, Heping

    2017-01-01

    The maintenance of a constant ATP level (‘set-point’) is a vital homeostatic function shared by eukaryotic cells. In particular, mammalian myocardium exquisitely safeguards its ATP set-point despite 10-fold fluctuations in cardiac workload. However, the exact mechanisms underlying this regulation of ATP homeostasis remain elusive. Here we show mitochondrial flashes (mitoflashes), recently discovered dynamic activity of mitochondria, play an essential role for the auto-regulation of ATP set-point in the heart. Specifically, mitoflashes negatively regulate ATP production in isolated respiring mitochondria and, their activity waxes and wanes to counteract the ATP supply-demand imbalance caused by superfluous substrate and altered workload in cardiomyocytes. Moreover, manipulating mitoflash activity is sufficient to inversely shift the otherwise stable ATP set-point. Mechanistically, the Bcl-xL-regulated proton leakage through F1Fo-ATP synthase appears to mediate the coupling between mitoflash production and ATP set-point regulation. These findings indicate mitoflashes appear to constitute a digital auto-regulator for ATP homeostasis in the heart. DOI: http://dx.doi.org/10.7554/eLife.23908.001 PMID:28692422

  20. Mechanism of nucleotide sensing in group II chaperonins.

    PubMed

    Pereira, Jose H; Ralston, Corie Y; Douglas, Nicholai R; Kumar, Ramya; Lopez, Tom; McAndrew, Ryan P; Knee, Kelly M; King, Jonathan A; Frydman, Judith; Adams, Paul D

    2012-02-01

    Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160-169. We propose that Lys-161 functions as an ATP sensor and that 160-169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.

  1. The role of the urothelium and ATP in mediating detrusor smooth muscle contractility.

    PubMed

    Santoso, Aneira Gracia Hidayat; Sonarno, Ika Ariyani Bte; Arsad, Noor Aishah Bte; Liang, Willmann

    2010-11-01

    To examine the contractility of urothelium-intact (+UE) and urothelium-denuded (-UE) rat detrusor strips under adenosine triphosphate (ATP) treatment. Purinergic signaling exists in the bladder but both the inhibitory effect of ATP on detrusor contractions and the function of urothelial ATP are not established. Detrusor strips were obtained from bladders of young adult rats. Isometric tension from both transverse and longitudinal contractions was measured using a myograph. The muscarinic agonist carbachol (CCh) was used to induce contractions, which were under the influences of different concentrations of ATP. In both +UE and -UE strips, 1 mM ATP suppressed CCh-induced contractions. In longitudinal contractions, ATP added to the inhibitory effect of urothelium on CCh responses. Removal of the urothelium, but with exogenous ATP added, recovered the CCh responses to the same level as in +UE strips with no added ATP. Transverse contractions were less susceptible to ATP in the presence of urothelium. We showed that the urothelium and ATP suppressed CCh-induced contractions to a similar extent. The findings suggest an inhibitory role of urothelial ATP in mediating detrusor smooth muscle contractility, which may be impaired in diseased bladders. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Astrocytes Increase ATP Exocytosis Mediated Calcium Signaling in Response to Microgroove Structures

    PubMed Central

    Singh, Ajay V.; Raymond, Michael; Pace, Fabiano; Certo, Anthony; Zuidema, Jonathan M.; McKay, Christopher A.; Gilbert, Ryan J.; Lu, X. Lucas; Wan, Leo Q.

    2015-01-01

    Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell–substrate interactions, and may benefit the optimization of scaffold design for CNS healing. PMID:25597401

  3. [Effects of +Gx load on energy metabolism of brain tissue in rats].

    PubMed

    Wu, Bin; Xie, Bao-sheng; You, Guang-xing; Liu, Xing-hua; Lu, Sheng-qiang; Huang, Wei-fen

    2002-12-01

    Objective. To observe the changes of energy metabolism of brain tissue in rats under +Gx loads, and to explore its possible role in changes of brain function and work efficiency induced by +Gx stress. Method. Forty-five male Wistar rats were randomly divided into control, +5 Gx, +10 Gx, +15 Gx and +20 Gx group. Each group was exposed to the corresponding G value for 3 min. After that, cortical adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid (LA) content, lactate dehydrogenase (LDH) activity were measured. Result. Compared with the control group, the cortical (LA) content increased significantly after +5 Gx, +10 Gx, +15 Gx and +20 Gx exposure (P<0.01). Cortical ADP content and ratio of ADP/AMP and AMP/ATP increased significantly after +10 Gx, +15 Gx and +20 Gx exposure (P<0.01), whereas ATP content, energy charge and LDH activity decreased significantly (P<0.05 or 0.01). Cortical AMP content increased significantly after +15 Gx and +20 Gx exposure (P<0.05 and 0.01). Conclusion. It is suggested that +Gx load can result in obvious depression of brain energy metabolism, which could be an important reason for the change of brain function and work efficiency induced by +Gx stress.

  4. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1

    PubMed Central

    Elnatan, Daniel; Betegon, Miguel; Liu, Yanxin; Ramelot, Theresa; Kennedy, Michael A; Agard, David A

    2017-01-01

    Hsp90 is a homodimeric ATP-dependent molecular chaperone that remodels its substrate ‘client’ proteins, facilitating their folding and activating them for biological function. Despite decades of research, the mechanism connecting ATP hydrolysis and chaperone function remains elusive. Particularly puzzling has been the apparent lack of cooperativity in hydrolysis of the ATP in each protomer. A crystal structure of the mitochondrial Hsp90, TRAP1, revealed that the catalytically active state is closed in a highly strained asymmetric conformation. This asymmetry, unobserved in other Hsp90 homologs, is due to buckling of one of the protomers and is most pronounced at the broadly conserved client-binding region. Here, we show that rather than being cooperative or independent, ATP hydrolysis on the two protomers is sequential and deterministic. Moreover, dimer asymmetry sets up differential hydrolysis rates for each protomer, such that the buckled conformation favors ATP hydrolysis. Remarkably, after the first hydrolysis, the dimer undergoes a flip in the asymmetry while remaining in a closed state for the second hydrolysis. From these results, we propose a model where direct coupling of ATP hydrolysis and conformational flipping rearranges client-binding sites, providing a paradigm of how energy from ATP hydrolysis can be used for client remodeling. DOI: http://dx.doi.org/10.7554/eLife.25235.001 PMID:28742020

  5. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins.

    PubMed

    Lee, Andre; Vastermark, Ake; Saier, Milton H

    2014-08-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg(2+) transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca(2+) and Mg(2+) transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels. © 2014 The Authors.

  6. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins

    PubMed Central

    Lee, Andre; Vastermark, Ake

    2014-01-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg2+ transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca2+ and Mg2+ transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels. PMID:24869855

  7. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme*

    PubMed Central

    Bonnemaison, Mathilde L.; Bäck, Nils; Duffy, Megan E.; Ralle, Martina; Mains, Richard E.; Eipper, Betty A.

    2015-01-01

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. PMID:26170456

  8. Isotopic Studies on Structure-function Relationships of Nucleic Acids and Enzymes. Three Year Progress Report, May 1972 -- October 1975

    DOE R&D Accomplishments Database

    Boyer, P. D.

    1975-01-01

    The most important accomplishments and major contributions are tabulated with citations to published work. The more important unpublished contributions deal with the early events in ATP formation by chloroplasts, energy linkage in reaction steps of oxidative phosphorylation, molecular integrity of parental DNA, bound pyrophosphate and {sup 18}O-exchanges by inorganic pyrophosphatase, and glutamine synthetase exchanges and mechanisms. These are being prepared for publication. (JSR)

  9. Extracellular ATP is Differentially Metabolized on Papillary Thyroid Carcinoma Cells Surface in Comparison to Normal Cells.

    PubMed

    Bertoni, Ana Paula Santin; de Campos, Rafael Paschoal; Tsao, Marisa; Braganhol, Elizandra; Furlanetto, Tania Weber; Wink, Márcia Rosângela

    2018-02-17

    The incidence of differentiated thyroid cancer has been increasing. Nevertheless, its molecular mechanisms are not well understood. In recent years, extracellular nucleotides and nucleosides have emerged as important modulators of tumor microenvironment. Extracellular ATP is mainly hydrolyzed by NTPDase1/CD39 and NTPDase2/CD39L1, generating AMP, which is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, a possible promoter of tumor growth and metastasis. There are no studies evaluating the expression and functionality of these ectonucleotidases on normal or tumor-derived thyroid cells. Thus, we investigated the ability of thyroid cancer cells to hydrolyze extracellular ATP generating adenosine, and the expression of ecto-enzymes, as compared to normal cells. We found that normal thyroid derived cells presented a higher ability to hydrolyze ATP and higher mRNA levels for ENTDP1-2, when compared to papillary thyroid carcinoma (PTC) derived cells, which had a higher ability to hydrolyze AMP and expressed CD73 mRNA and protein at higher levels. In addition, adenosine induced an increase in proliferation and migration in PTC derived cells, whose effect was blocked by APCP, a non-hydrolysable ADP analogue, which is an inhibitor of CD73. Taken together, these results showed that thyroid follicular cells have a functional purinergic signaling. The higher expression of CD73 in PTC derived cells might favor the accumulation of extracellular adenosine in the tumor microenvironment, which could promote tumor progression. Therefore, as already shown for other tumors, the purinergic signaling should be considered a potential target for thyroid cancer management and treatment.

  10. Adenosine triphosphate as a molecular mediator of the vascular response to injury.

    PubMed

    Guth, Christy M; Luo, Weifung; Jolayemi, Olukemi; Chadalavada, Kalyan S; Komalavilas, Padmini; Cheung-Flynn, Joyce; Brophy, Colleen M

    2017-08-01

    Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation. A subfailure stretch rat aorta model was used to determine the effect of stretch injury on release of ATP and vasomotor responses. Stretch-injured tissues were treated with apyrase, the P2X7R antagonist, A438079, or the p38 MAPK inhibitor, SB203580, and subsequent contractile forces were measured using a muscle bath. An exogenous ATP (eATP) injury model was developed and the experiment repeated. Change in p38 MAPK phosphorylation after stretch and eATP tissue injury was determined using Western blotting. Noninjured tissue was incubated in the p38 MAPK activator, anisomycin, and subsequent contractile function and p38 MAPK phosphorylation were analyzed. Stretch injury was associated with release of ATP. Contractile function was decreased in tissue subjected to subfailure stretch, eATP, and anisomycin. Contractile function was restored by apyrase, P2X7R antagonism, and p38-MAPK inhibition. Stretch, eATP, and anisomycin-injured tissue demonstrated increased phosphorylation of p38 MAPK. Taken together, these data suggest that the vascular response to stretch injury is associated with release of ATP and activation of the P2X7R/P38 MAPK pathway, resulting in contractile dysfunction. Modulation of this pathway in vein grafts after harvest and before implantation may reduce the vascular response to injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Lipidomic and metabolic changes in the P4-type ATPase ATP10D deficient C57BL/6J wild type mice upon rescue of ATP10D function.

    PubMed

    Sigruener, Alexander; Wolfrum, Christian; Boettcher, Alfred; Kopf, Thomas; Liebisch, Gerhard; Orsó, Evelyn; Schmitz, Gerd

    2017-01-01

    Sequence variants near the human gene for P4-type ATPase, class V, type 10D (ATP10D) were shown to significantly associate with circulating hexosylceramide d18:1/16:0 and d18:1/24:1 levels, obesity, insulin resistance, plasma high density lipoprotein (HDL), coronary stenotic index and intracranial atherosclerotic index. In mice Atp10d is associated with HDL modulation and C57BL/6 mice expressing a truncated, non-functional form of ATP10D easily develop obesity and insulin resistance on high-fat diet. We analyzed metabolic differences of ATP10D deficient C57BL/6J wild type and ATP10D transgenic C57BL/6J BAC129 mice. ATP10D transgenic mice gain 25% less weight on high-fat diet concomitant with a reduced increase in fat cell mass but independent of adipocyte size change. ATP10D transgenic mice also had 26% lower triacylglycerol levels with approximately 76% bound to very low density lipoprotein while in ATP10D deficient wild type mice 57% are bound to low density lipoprotein. Furthermore increased oxygen consumption and CO2 production, 38% lower glucose and 69% lower insulin levels and better insulin sensitivity were observed in ATP10D transgenic mice. Besides decreased hexosylceramide species levels were detected. Part of these effects may be due to reduced hepatic stearoyl-CoA desaturase 1 (SCD1) expression in ATP10D transgenic mice, which was reflected by altered fatty acid and lipid species patterns. There was a significant decrease in the hepatic 18:1 to 18:0 free fatty acid ratio in transgenic mice. The ratio of 16:1 to 16:0 was not significantly different. Interestingly both ratios were significantly reduced in plasma total fatty acids. In summary we found that ATP10D reduces high-fat diet induced obesity and improves insulin sensitivity. ATP10D transgenic mice showed altered hepatic expression of lipid-metabolism associated genes, including Scd1, along with changes in hepatic and plasma lipid species and plasma lipoprotein pattern.

  12. Impaired P2X1 Receptor-Mediated Adhesion in Eosinophils from Asthmatic Patients.

    PubMed

    Wright, Adam; Mahaut-Smith, Martyn; Symon, Fiona; Sylvius, Nicolas; Ran, Shaun; Bafadhel, Mona; Muessel, Michelle; Bradding, Peter; Wardlaw, Andrew; Vial, Catherine

    2016-06-15

    Eosinophils play an important role in the pathogenesis of asthma and can be activated by extracellular nucleotides released following cell damage or inflammation. For example, increased ATP concentrations were reported in bronchoalveolar lavage fluids of asthmatic patients. Although eosinophils are known to express several subtypes of P2 receptors for extracellular nucleotides, their function and contribution to asthma remain unclear. In this article, we show that transcripts for P2X1, P2X4, and P2X5 receptors were expressed in healthy and asthmatic eosinophils. The P2X receptor agonist α,β-methylene ATP (α,β-meATP; 10 μM) evoked rapidly activating and desensitizing inward currents (peak 18 ± 3 pA/pF at -60 mV) in healthy eosinophils, typical of P2X1 homomeric receptors, which were abolished by the selective P2X1 antagonist NF449 (1 μM) (3 ± 2 pA/pF). α,β-meATP-evoked currents were smaller in eosinophils from asthmatic patients (8 ± 2 versus 27 ± 5 pA/pF for healthy) but were enhanced following treatment with a high concentration of the nucleotidase apyrase (17 ± 5 pA/pF for 10 IU/ml and 11 ± 3 pA/pF for 0.32 IU/ml), indicating that the channels are partially desensitized by extracellular nucleotides. α,β-meATP (10 μM) increased the expression of CD11b activated form in eosinophils from healthy, but not asthmatic, donors (143 ± 21% and 108 ± 11% of control response, respectively). Furthermore, α,β-meATP increased healthy (18 ± 2% compared with control 10 ± 1%) but not asthmatic (13 ± 1% versus 10 ± 0% for control) eosinophil adhesion. Healthy human eosinophils express functional P2X1 receptors whose activation leads to eosinophil αMβ2 integrin-dependent adhesion. P2X1 responses are constitutively reduced in asthmatic compared with healthy eosinophils, probably as the result of an increase in extracellular nucleotide concentration. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58*

    PubMed Central

    Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.

    2015-01-01

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925

  14. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans*

    PubMed Central

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W. V.; Sivaraman, J.

    2015-01-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase. PMID:26370083

  15. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson's Disease.

    PubMed

    Nakano, Masaki; Imamura, Hiromi; Sasaoka, Norio; Yamamoto, Masamichi; Uemura, Norihito; Shudo, Toshiyuki; Fuchigami, Tomohiro; Takahashi, Ryosuke; Kakizuka, Akira

    2017-08-01

    Parkinson's disease is assumed to be caused by mitochondrial dysfunction in the affected dopaminergic neurons in the brain. We have recently created small chemicals, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption. By contrast, agonistic ligands of ERRs (estrogen receptor-related receptors) are expected to raise cellular ATP levels via enhancing ATP production. Here, we show that esculetin functions as an ERR agonist, and its addition to culture media enhances glycolysis and mitochondrial respiration, leading to elevated cellular ATP levels. Subsequently, we show the neuroprotective efficacies of KUSs, esculetin, and GSK4716 (an ERRγ agonist) against cell death in Parkinson's disease models. In the surviving neurons, ATP levels and expression levels of α-synuclein and CHOP (an ER stress-mediated cell death executor) were all rectified. We propose that maintenance of ATP levels, by inhibiting ATP consumption or enhancing ATP production, or both, would be a promising therapeutic strategy for Parkinson's disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Identification of a new Mpl-interacting protein, Atp5d.

    PubMed

    Liu, Hongyan; Zhao, Zhenhu; Zhong, Yuxu; Shan, Yajun; Sun, Xiaohong; Mao, Bingzhi; Cong, Yuwen

    2014-06-01

    Thrombopoietin (TPO) can regulate hematopoiesis and megakaryopoiesis via activation of its receptor, c-Mpl, and multiple downstream signal transduction pathways. Using the cytoplasmic domain of Mpl as bait, we performed yeast two-hybrid screening, and found that the protein Atp5d might associate with Mpl. Atp5d is known as the δ subunit of mitochondrial ATP synthase, but little is known about the function of dissociative Atp5d. The interaction between Mpl and Atp5d was confirmed by the yeast two-hybrid system, mammalian two-hybrid assay, pull-down experiment, and co-immunoprecipitation study in vivo and in vitro. An additional immunofluorescence assay showed that the two proteins can colocalize along the plasma membrane in the cytoplasm. Using the yeast two-hybrid system, we tested a series of cytoplasmic truncated mutations for their ability to bind Atp5d and found an association between Atp5d and the Aa98-113 domain of Mpl. The dissociation of Atp5d from Mpl after TPO stimulation suggests that Atp5d may be a new component of TPO signaling.

  17. Inhibition of ATP Synthase by Chlorinated Adenosine Analogue

    PubMed Central

    Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the substrate, ADP, are known in tight binding (αdpβdp) and loose binding (αtpβtp) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the αtpβtp state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (αdpβdp) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF3 −. Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase. PMID:19477165

  18. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins

    NASA Astrophysics Data System (ADS)

    Namdeo, S.; Onck, P. R.

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  19. Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins.

    PubMed

    Namdeo, S; Onck, P R

    2016-10-01

    Flagella are hair-like projections from the surface of eukaryotic cells, and they play an important role in many cellular functions, such as cell-motility. The beating of flagella is enabled by their internal architecture, the axoneme, and is powered by a dense distribution of motor proteins, dyneins. The dyneins deliver the required mechanical work through the hydrolysis of ATP. Although the dynein-ATP cycle, the axoneme microstructure, and the flagellar-beating kinematics are well studied, their integration into a coherent picture of ATP-powered flagellar beating is still lacking. Here we show that a time-delayed negative-work-based switching mechanism is able to convert the individual sliding action of hundreds of dyneins into a regular overall beating pattern leading to propulsion. We developed a computational model based on a minimal representation of the axoneme consisting of two representative doublet microtubules connected by nexin links. The relative sliding of the microtubules is incorporated by modeling two groups of ATP-powered dyneins, each responsible for sliding in opposite directions. A time-delayed switching mechanism is postulated, which is key in converting the local individual sliding action of multiple dyneins into global beating. Our results demonstrate that an overall nonreciprocal beating pattern can emerge with time due to the spatial and temporal coordination of the individual dyneins. These findings provide insights in the fundamental working mechanism of axonemal dyneins and could possibly open new research directions in the field of flagellar motility.

  20. Functional reconstitution of an ATP-driven Ca sup 2+ -transport system from the plasma membrane of Commelina communis L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graef, P.; Weiler, E.W.

    1990-10-01

    The protein(s) that constitute(s) the ATP-driven Ca{sup 2+}-translocator of plasma membrane enriched vesicles obtained by aqueous two-phase partitioning from leaves of Commelina communis L. has/have been solubilized and reincorporated into tightly sealed liposomes. The reconstituted Ca{sup 2+}-transport system was studied using ATP-driven {sup 45}Ca{sup 2+} import into the proteoliposomes as a measure of activity. The detergent, 3- ((3-cholamidopropyl) dimethylammonio) -1-propane-sulfonate proved to be the most suitable and was used at 10 millimolar concentration, i.e. just above its critical micellar concentration. The presence of additional phospholipid and ATP improved the solubilization and/or reconstitution. The characteristics of the reconstituted system were similarmore » to those of the plasma membrane-bound activity, including the apparent K{sub m} for Ca{sup 2+} inhibition by relatively high levels of vanadate and lacking response to added calmodulin. The reconstituted transport system was very strongly inhibited by erythrosine B and had a low apparent K{sub m} for ATP levels of the Ca{sup 2+}-ionophore A 23187 instantaneously discharged 90% of the Ca{sup 2+} associated with the vesicles, proving that it had been accumulated in the intravesicular volume in soluble, freely exchangeable form. Ca{sup 2+}-transport in the reconstituted system was thus primary active, through a Ca{sup 2+}-translocating ATPase.« less

  1. An ATP-dependent ligase with substrate flexibility involved in assembly of the peptidyl nucleoside antibiotic polyoxin.

    PubMed

    Gong, Rong; Qi, Jianzhao; Wu, Pan; Cai, You-Sheng; Ma, Hongmin; Liu, Yang; Duan, He; Wang, Meng; Deng, Zixin; Price, Neil P J; Chen, Wenqing

    2018-04-27

    Polyoxin (POL) is an unusual peptidyl nucleoside antibiotic, in which peptidyl moiety and nucleoside skeleton are linked by an amide bond. However, their biosynthesis remains poorly understood. Here, we report the deciphering of PolG as an ATP-dependent ligase responsible for the assembly of POL. A polG mutant is capable of accumulating multiple intermediates, including the peptidyl moiety (carbamoylpolyoxamic acid, CPOAA) and the nucleosides skeletons (POL-C and the previously overlooked thymine POL-C). We further demonstrated that PolG employs an ATP-dependent mechanism for amide bond formation, and that the generation of the hybrid nucleoside antibiotic, POL-N, is also governed by PolG. Finally, we determined that the deduced ATP-binding sites are functionally essential for PolG, and that they are highly conserved in a number of related ATP-dependent ligases. These insights have allowed us proposed a catalytic mechanism for the assembly of peptidyl nucleoside antibiotic via an acyl-phosphate intermediate, and have opened the way for the combinatorial biosynthesis/pathway engineering of this group of nucleoside antibiotics. Importance POL is well known for its remarkable antifungal bioactivities and unusual structural features. Actually, elucidation of the POL assembly logic not only provides the enzymatic basis for further biosynthetic understanding of related peptidyl nucleoside antibiotics, but also contributes to the rational generation of more hybrid nucleoside antibiotics via synthetic biology strategy. Copyright © 2018 American Society for Microbiology.

  2. The Na/K-ATPase is obligatory for membrane anchorage of retinoschisin, the protein involved in the pathogenesis of X-linked juvenile retinoschisis.

    PubMed

    Friedrich, Ulrike; Stöhr, Heidi; Hilfinger, Daniela; Loenhardt, Thomas; Schachner, Melitta; Langmann, Thomas; Weber, Bernhard H F

    2011-03-15

    Mutations in the RS1 gene that encodes the discoidin domain containing retinoschisin cause X-linked juvenile retinoschisis (XLRS), a common macular degeneration in males. Disorganization of retinal layers and electroretinogram abnormalities are hallmarks of the disease and are also found in mice deficient for the orthologous murine protein, indicating that retinoschisin is important for the maintenance of retinal cell integrity. Upon secretion, retinoschisin associates with plasma membranes of photoreceptor and bipolar cells, although the components by which the protein is linked to membranes in vivo are still unclear. Here, we show that retinoschisin fails to bind to phospholipids or unilamellar lipid vesicles. A recent proteomic approach identified the Na/K-ATPase subunits ATP1A3 and ATP1B2 as binding partners of retinoschisin. We analyzed mice deficient for retinoschisin (Rs1h(-/Y)) and ATP1B2 (Atp1b2(-/-)) to characterize the role of Na/K-ATPase interaction in the organization of retinoschisin on cellular membranes. We demonstrate that both the Na/K-ATPase and retinoschisin are significantly reduced in Atp1b2(-/-) retinas, suggesting that retinoschisin membrane association is severely impaired in the absence of ATP1A3 and ATP1B2 subunits. Conversely, the presence of ATP1A3 and ATP1B2 are obligatory for binding of exogenously applied retinoschisin to crude membranes. Also, co-expression of ATP1A3 and ATP1B2 is required for retinoschisin binding to intact Hek293 cells. Taken together, our data support a predominant role of Na/K-ATPase in anchoring retinoschisin to retinal cell surfaces. Furthermore, altered localization of ATP1A3 and ATP1B2 is a notable consequence of retinoschisin deficiency and thus may be an important downstream aspect of cellular pathology in XLRS.

  3. From cyanobacteria to plants: conservation of PII functions during plastid evolution.

    PubMed

    Chellamuthu, Vasuki Ranjani; Alva, Vikram; Forchhammer, Karl

    2013-02-01

    This article reviews the current state-of-the-art concerning the functions of the signal processing protein PII in cyanobacteria and plants, with a special focus on evolutionary aspects. We start out with a general introduction to PII proteins, their distribution, and their evolution. We also discuss PII-like proteins and domains, in particular, the similarity between ATP-phosphoribosyltransferase (ATP-PRT) and its PII-like domain and the complex between N-acetyl-L-glutamate kinase (NAGK) and its PII activator protein from oxygenic phototrophs. The structural basis of the function of PII as an ATP/ADP/2-oxoglutarate signal processor is described for Synechococcus elongatus PII. In both cyanobacteria and plants, a major target of PII regulation is NAGK, which catalyzes the committed step of arginine biosynthesis. The common principles of NAGK regulation by PII are outlined. Based on the observation that PII proteins from cyanobacteria and plants can functionally replace each other, the hypothesis that PII-dependent NAGK control was under selective pressure during the evolution of plastids of Chloroplastida and Rhodophyta is tested by bioinformatics approaches. It is noteworthy that two lineages of heterokont algae, diatoms and brown algae, also possess NAGK, albeit lacking PII; their NAGK however appears to have descended from an alphaproteobacterium and not from a cyanobacterium as in plants. We end this article by coming to the conclusion that during the evolution of plastids, PII lost its function in coordinating gene expression through the PipX-NtcA network but preserved its role in nitrogen (arginine) storage metabolism, and subsequently took over the fine-tuned regulation of carbon (fatty acid) storage metabolism, which is important in certain developmental stages of plants.

  4. Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells.

    PubMed

    Weber, Heike; Jonas, Ludwig; Wakileh, Michael; Krüger, Burkhard

    2014-03-01

    The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.

  5. Molecular mechanisms underlying deoxy‐ADP.Pi activation of pre‐powerstroke myosin

    PubMed Central

    Nowakowski, Sarah G.

    2017-01-01

    Abstract Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2‐deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross‐bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross‐bridge formation and reveal a potential mechanism that may underlie dATP‐induced improvements in cardiac function. PMID:28097776

  6. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine

    PubMed Central

    Laver, Derek R; Lenz, Gerlinde K E; Lamb, Graham D

    2001-01-01

    Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With ‘resting’ calcium (100 nm cytoplasmic and 1 mm luminal), RyRs had an open probability (Po) of ∼0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with Po at saturation (Pmax) ∼0.33 and Ka (concentration for half-maximal activation) ∼0.36 mm and with a Hill coefficient (nH) of ∼1.8 in RyRs when Pmax < 0.5 and ∼4 when Pmax > 0.5. AMP was a much weaker agonist (Pmax∼0.09) and adenosine was weaker still (Pmax∼0.01–0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with nH∼1 and Ki∼0.06 mm at [ATP] < 0.5 mm, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mm. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mm for ATP, AMP and adenosine, respectively. Importantly, IMP (≤ 8 mm) had no inhibitory effect whatsoever on ATP-activated RyRs. Mean open (τo) and closed (τc) dwell-times were more closely related to Po than to the nucleotide species or individual RyRs. At Po < 0.2, RyR regulation occurred via changes in τc, whereas at higher Po this also occurred via changes in τo. The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. The results also show how deleterious adenosine accumulation is to the function of RyRs in skeletal muscle and, by comparison with voltage sensor-controlled Ca2+ release, indicate that voltage sensor activation requires ATP binding to the RyR to be effective. PMID:11744753

  7. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape

    NASA Technical Reports Server (NTRS)

    Sims, J. R.; Karp, S.; Ingber, D. E.

    1992-01-01

    Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).

  8. Dual functional extracellular recording using a light-addressable potentiometric sensor for bitter signal transduction.

    PubMed

    Du, Liping; Wang, Jian; Chen, Wei; Zhao, Luhang; Wu, Chunsheng; Wang, Ping

    2018-08-31

    This paper presents a dual functional extracellular recording biosensor based on a light-addressable potentiometric sensor (LAPS). The design and fabrication of this biosensor make it possible to record both extracellular membrane potential changes and ATP release from a single taste bud cell for the first time. For detecting ATP release, LAPS chip was functionalized with ATP-sensitive DNA aptamer by covalent immobilization. Taste bud cells isolated from rat were cultured on LAPS surface. When the desired single taste bud cell was illuminated by modulated light, ATP release from single taste bud cells can be measured by recording the shifts of bias voltage-photocurrent curves (I-V curves) when the LAPS chip is working in discrete mode. On the other hand, extracellular membrane potential changes can be monitored by recording the fluctuation of LAPS photocurrent when the LAPS chip is working in continuous mode. The results show this biosensor can effectively record the enhancive effect of the bitter substance and inhibitory effect of the carbenoxolone (CBX) on the extracellular membrane potential changes and ATP release of single taste bud cells. In addition, the inhibitory effect of CBX also confirms LAPS extracellular recordings are originated from bitter signal transduction. It is proved this biosensor is suitable for extracellular recording of ATP release and membrane potential changes of single taste bud cells. It is suggested this biosensor could be applied to investigating taste signal transduction at the single-cell level as well as applied to other types of cells which have similar functions to taste bud cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Energy Capture and Use in Plants and Bacteria. Final Technical Report

    DOE R&D Accomplishments Database

    Boyer, P. D.

    1993-12-31

    The project has centered on elucidation of the mechanism of ATP synthase. The metabolic importance of ATP and the complexity of the ATP synthase have made the problem particularly important and challenging. The development of the binding change mechanism depended upon our recognition of features that were novel in bioenergetics and indeed to the field of enzymology. One important feature of mechanism is that the principal way that energy input from transmembrane proton movement is coupled to ATP formation is to drive conformational changes that cause the release of ATP readily formed and tightly bound at a catalytic site. Another is that three equivalent catalytic sites on the enzyme show strong catalytic cooperativity as they proceed sequentially through different conformations. A more speculative features is that this cooperativity and energy coupling involve a rotational movement of minor subunits relative to the catalytic subunits. During this period these studies have extended and clarified aspects of the synthase mechanism. During assessments of interactions of Mg{sup 2+} and ADP with the synthase we recognized unexpectedly that whether ADP and P{sub i}, or their complexes with Mg{sup 2+} served as substrates for ATP formation by photophosphorylation was not known. Our studies showed that MgADP and free P{sub i} act as substrates.

  10. Chemomechanical coupling in hexameric protein-protein interfaces harness energy within V–type ATPases

    PubMed Central

    Singharoy, Abhishek; Chipot, Christophe; Moradi, Mahmoud

    2017-01-01

    ATP synthase is the most prominent bioenergetic macromolecular motor in all life-forms, utilizing the proton gradient across the cell membrane to fuel the synthesis of ATP. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, the precise molecular mechanism whereby vacuolar (V–type) ATP synthase fulfills its biological function remains largely fragmentary. Recently, crystallographers provided the first high-resolution view of ATP activity in Enterococcus hirae V1–ATPase. Employing a combination of transition-path sampling and high-performance free-energy methods, the sequence of conformational transitions involved in a functional cycle accompanying ATP hydrolysis has been investigated in unprecedented detail over an aggregate simulation time of 65 μs. Our simulated pathways reveal that the chemical energy produced by ATP hydrolysis is harnessed via the concerted motion of the protein–protein interfaces in the V1-ring, and is nearly entirely consumed in the rotation of the central stalk. Surprisingly, in an ATPase devoid of a central stalk, the interfaces of this ring are perfectly designed for inducing ATP hydrolysis. Yet, in a complete V1-ATPase, the mechanical property of the central stalk is a key determinant of the rate of ATP turnover. The simulations further unveil a sequence of events, whereby unbinding of the hydrolysis product (ADP+Pi) is followed by ATP uptake, which, in turn, leads to the torque generation step and rotation of the center stalk. Molecular trajectories also bring to light multiple intermediates, two of which have been isolated in independent crystallography experiments. PMID:27936329

  11. Chemomechanical Coupling in Hexameric Protein-Protein Interfaces Harnesses Energy within V-Type ATPases.

    PubMed

    Singharoy, Abhishek; Chipot, Christophe; Moradi, Mahmoud; Schulten, Klaus

    2017-01-11

    ATP synthase is the most prominent bioenergetic macromolecular motor in all life forms, utilizing the proton gradient across the cell membrane to fuel the synthesis of ATP. Notwithstanding the wealth of available biochemical and structural information inferred from years of experiments, the precise molecular mechanism whereby vacuolar (V-type) ATP synthase fulfills its biological function remains largely fragmentary. Recently, crystallographers provided the first high-resolution view of ATP activity in Enterococcus hirae V 1 -ATPase. Employing a combination of transition-path sampling and high-performance free-energy methods, the sequence of conformational transitions involved in a functional cycle accompanying ATP hydrolysis has been investigated in unprecedented detail over an aggregate simulation time of 65 μs. Our simulated pathways reveal that the chemical energy produced by ATP hydrolysis is harnessed via the concerted motion of the protein-protein interfaces in the V 1 -ring, and is nearly entirely consumed in the rotation of the central stalk. Surprisingly, in an ATPase devoid of a central stalk, the interfaces of this ring are perfectly designed for inducing ATP hydrolysis. However, in a complete V 1 -ATPase, the mechanical property of the central stalk is a key determinant of the rate of ATP turnover. The simulations further unveil a sequence of events, whereby unbinding of the hydrolysis product (ADP + P i ) is followed by ATP uptake, which, in turn, leads to the torque generation step and rotation of the center stalk. Molecular trajectories also bring to light multiple intermediates, two of which have been isolated in independent crystallography experiments.

  12. 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase.

    PubMed

    Bunney, T D; van Walraven, H S; de Boer, A H

    2001-03-27

    Mitochondrial and chloroplast ATP synthases are key enzymes in plant metabolism, providing cells with ATP, the universal energy currency. ATP synthases use a transmembrane electrochemical proton gradient to drive synthesis of ATP. The enzyme complexes function as miniature rotary engines, ensuring energy coupling with very high efficiency. Although our understanding of the structure and functioning of the synthase has made enormous progress in recent years, our understanding of regulatory mechanisms is still rather preliminary. Here we report a role for 14-3-3 proteins in the regulation of ATP synthases. These 14-3-3 proteins are highly conserved phosphoserine/phosphothreonine-binding proteins that regulate a wide range of enzymes in plants, animals, and yeast. Recently, the presence of 14-3-3 proteins in chloroplasts was illustrated, and we show here that plant mitochondria harbor 14-3-3s within the inner mitochondrial-membrane compartment. There, the 14-3-3 proteins were found to be associated with the ATP synthases, in a phosphorylation-dependent manner, through direct interaction with the F(1) beta-subunit. The activity of the ATP synthases in both organelles is drastically reduced by recombinant 14-3-3. The rapid reduction in chloroplast ATPase activity during dark adaptation was prevented by a phosphopeptide containing the 14-3-3 interaction motif, demonstrating a role for endogenous 14-3-3 in the down-regulation of the CF(o)F(1) activity. We conclude that regulation of the ATP synthases by 14-3-3 represents a mechanism for plant adaptation to environmental changes such as light/dark transitions, anoxia in roots, and fluctuations in nutrient supply.

  13. ATP-dependent molecular chaperones in plastids--More complex than expected.

    PubMed

    Trösch, Raphael; Mühlhaus, Timo; Schroda, Michael; Willmund, Felix

    2015-09-01

    Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia

    PubMed Central

    Smedemark-Margulies, Niklas; Brownstein, Catherine A.; Vargas, Sigella; Tembulkar, Sahil K.; Towne, Meghan C.; Shi, Jiahai; Gonzalez-Cuevas, Elisa; Liu, Kevin X.; Bilguvar, Kaya; Kleiman, Robin J.; Han, Min-Joon; Torres, Alcy; Berry, Gerard T.; Yu, Timothy W.; Beggs, Alan H.; Agrawal, Pankaj B.; Gonzalez-Heydrich, Joseph

    2016-01-01

    We describe a child with onset of command auditory hallucinations and behavioral regression at 6 yr of age in the context of longer standing selective mutism, aggression, and mild motor delays. His genetic evaluation included chromosomal microarray analysis and whole-exome sequencing. Sequencing revealed a previously unreported heterozygous de novo mutation c.385G>A in ATP1A3, predicted to result in a p.V129M amino acid change. This gene codes for a neuron-specific isoform of the catalytic α-subunit of the ATP-dependent transmembrane sodium–potassium pump. Heterozygous mutations in this gene have been reported as causing both sporadic and inherited forms of alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism. We discuss the literature on phenotypes associated with known variants in ATP1A3, examine past functional studies of the role of ATP1A3 in neuronal function, and describe a novel clinical presentation associated with mutation of this gene. PMID:27626066

  15. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    PubMed

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an antagonist used to block P2X7 receptors, which reduced basal CBF by 85%. Additionally, increasing extracellular ATP levels (0.1-100 μm) increased CBF, maintaining a sustained response that was suppressed in the presence of carbenoxolone. We also show that high levels of ATP (1 mm), associated with inflammatory conditions, lowered basal CBF by reducing [Ca 2+ ] i and hemichannel functionality. In summary, we provide evidence indicating that airway epithelium ATP release is the molecular autocrine mechanism regulating basal ciliary activity and is also the mediator of the ciliary response to chemical stimulation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  16. ATP-induced changes in rat skeletal muscle contractility.

    PubMed

    Gabdrakhmanov, A I; Khayrullin, A E; Grishin, C H; Ziganshin, A U

    2015-01-01

    Extracellular purine compounds, adenosine triphosphate (ATP) and adenosine, are involved in regulation of many cell functions, engaging in rapid and long-term cellular processes. The nucleotides, including ATP, exert their extracellular effects by influencing membrane P2 receptors. ATP outside of the cell rapidly is metabolized by the ecto-enzyme system to produce adenosine, which acts on separate adenosine (P1) receptors. Since adenosine and ATP often are functional antagonists, ATP degradation not only limits its effect, but also brings new ligand with different, often opposing, properties. Great variety and widespread of P2 and adenosine receptors in the body emphasize the important physiological and pathophysiological significance of these receptors, and make them very attractive as targets for potential drug action.The existence of several subtypes of P2 and adenosine receptors has been shown in the skeletal muscles. ATP as a co-transmitter is densely packed together with classical neurotransmitters in the presynaptic vesicles of vertebral motor units but until recently ATP was refused to have its own functional role there and was recognized only as a source of adenosine. However, on the eve of the third millennium there appeared data that ATP, released from the nerve ending and acting on presynaptic P2 receptors, suppresses subsequent quantum release of acetylcholine. The final product of its degradation, adenosine, performs a similar inhibitory effect acting on presynaptic adenosine receptors.Despite the fact that the mechanisms of presynaptic inhibitory action of ATP and other purines were studied earlier, the object of those studies was usually neuromuscular synapse of cold-blooded animals. The few studies, in which experiments were carried out on preparations of warm-blooded animals, described the basic effects of purines. These often were guided by the convenience of preparation of the synapses of the diaphragm. We think that those results cannot be considered as typical effects of ATP and other purines on skeletal muscles and could not be extrapolated to all warm-blooded animals. Furthermore the role of ATP and its derivatives in the accumulation of vertebrate muscular effort has not been investigated.It is known that in physiological conditions vertebrates may mobilize only up to a third of the maximum muscle force. Why the two-thirds of muscular strength are not used normally but may be used at stress, remains unknown.It is known that the body's adaptive response to stress is a change in the activity of the endocrine system. The leading role in this is given to catechol amines and glucocorticoids, mobilized in significant quantities in blood under stress.We have found previously that incubation of frog sartorius muscle with hydrocortisone resulted in a decrease of contraction amplitude. However, when hydrocortisone was used in combination with ATP, its inhibitory effect on contractile responses disappeared. It is interesting that hydrocortisone had no effect on the inhibitory effect of adenosine. In the following experiments, assessing the effect of hydrocortisone on rat soleus muscle, it was established that hydrocortisone and purines had similar inhibitory effect. When ATP and hydrocortisone were given together the same oppression occurred. To study the effects of ATP and adenosine on contraction parameters of rat skeletal muscle and assess the impact of the catechol amines on these processes. Contractions of rat soleus muscles were recorded isometrically by mechanical sensor Linton FSG-01 (UK) according to standard procedures. The average of muscle parameters received within 30 seconds (30 responses) was treated as one result. Amplitude and time characteristics of the curve reductions were estimated. During all experiments standard Krebs solution flowed through the bath continuously to which agents were added at necessary concentrations. All experimental animals were maintained and prepared for dissection under the European Convention for the Protection of Vertebrate Animals used in scientific experiments. All agents used in the study were supplied by Sigma Chemical Company Ltd. (UK), Tocris Cookson and Research Biochemicals International (USA). The concentration of 100 μM for adenosine is close to saturation [1], and for its predecessor ATP this concentration is created after the passage of a pulse through the synapse [2]. We used this concentration of purines to study the mechanism of action of adenosine and ATP on neuromuscular synapse.The effect of adenosine was partially inhibited in the presence of 100 μM 8-SPT, an antagonist of adenosine receptors. The contraction force of "fast" and "slow" rat skeletal muscles was raised by half in the presence of norepinephrine. In the presence of norepinephrine adenosine exerted its effect fully, but ATP by half reduced its depressor effect on the contraction force of both muscles. 1. Norepinephrine increases half times of the reduction of "fast" and "slow" skeletal muscle.2. In the presence of norepinephrine, inhibitory effect of adenosine on contraction force is maintained.3. Inhibitory effect of ATP on contraction force of studied skeletal muscles becomes twice less pronounced in the presence of norepinephrine.We think that reduction of ATP depressive effect on the skeletal muscle by norepinephrine may be an adaptive response to acute stress.

  17. Digoxin and Adenosine Triphosphate Enhance the Functional Properties of Tissue-Engineered Cartilage

    PubMed Central

    Makris, Eleftherios A.; Huang, Brian J.; Hu, Jerry C.; Chen-Izu, Ye

    2015-01-01

    Toward developing engineered cartilage for the treatment of cartilage defects, achieving relevant functional properties before implantation remains a significant challenge. Various chemical and mechanical stimuli have been used to enhance the functional properties of engineered musculoskeletal tissues. Recently, Ca2+-modulating agents have been used to enhance matrix synthesis and biomechanical properties of engineered cartilage. The objective of this study was to determine whether other known Ca2+ modulators, digoxin and adenosine triphosphate (ATP), can be employed as novel stimuli to increase collagen synthesis and functional properties of engineered cartilage. Neocartilage constructs were formed by scaffold-free self-assembling of primary bovine articular chondrocytes. Digoxin, ATP, or both agents were added to the culture medium for 1 h/day on days 10–14. After 4 weeks of culture, neocartilage properties were assessed for gross morphology, biochemical composition, and biomechanical properties. Digoxin and ATP were found to increase neocartilage collagen content by 52–110% over untreated controls, while maintaining proteoglycan content near native tissue values. Furthermore, digoxin and ATP increased the tensile modulus by 280% and 180%, respectively, while the application of both agents increased the modulus by 380%. The trends in tensile properties were found to correlate with the amount of collagen cross-linking. Live Ca2+ imaging experiments revealed that both digoxin and ATP were able to increase Ca2+ oscillations in monolayer-cultured chondrocytes. This study provides a novel approach toward directing neocartilage maturation and enhancing its functional properties using novel Ca2+ modulators. PMID:25473799

  18. Systems biology approach to transplant tolerance: proof of concept experiments using RNA interference (RNAi) to knock down hub genes in Jurkat and HeLa cells in vitro.

    PubMed

    Lwin, Wint Wah; Park, Ken; Wauson, Matthew; Gao, Qin; Finn, Patricia W; Perkins, David; Khanna, Ajai

    2012-07-01

    Systems biology is gaining importance in studying complex systems such as the functional interconnections of human genes [1]. To investigate the molecular interactions involved in T cell immune responses, we used databases of physical gene-gene interactions to constructed molecular interaction networks (interconnections) with R language algorithms. This helped to identify highly interconnected "hub" genes AT(1)P5C1, IL6ST, PRKCZ, MYC, FOS, JUN, and MAPK1. We hypothesized that suppression of these hub genes in the gene network would result in significant phenotypic effects on T cells and examined this in vitro. The molecular interaction networks were then analyzed and visualized with Cytoscape. Jurkat and HeLa cells were transfected with siRNA for the selected hub genes. Cell proliferation was measured using ATP luminescence and BrdU labeling, which were measured 36, 72, and 96 h after activation. Following T cell stimulation, we found a significant decrease in ATP production (P < 0.05) when the hub genes ATP5C1 and PRKCZ were knocked down using siRNA transfection, whereas no difference in ATP production was observed in siRNA transfected HeLa cells. However, HeLa cells showed a significant (P < 0.05) decrease in cell proliferation when the genes MAPK1, IL6ST, ATP5C1, JUN, and FOS were knocked down. In both Jurkat and HeLa cells, targeted gene knockdown using siRNA showed decreased cell proliferation and ATP production in both Jurkat and HeLa cells. However, Jurkat T cells and HELA cells use different hub genes to regulate activation responses. This experiment provides proof of principle of applying siRNA knockdown of T cell hub genes to evaluate their proliferative capacity and ATP production. This novel concept outlines a systems biology approach to identify hub genes for targeted therapeutics. Published by Elsevier Inc.

  19. High-Resolution Structure and Mechanism of an F/V-Hybrid Rotor Ring in a Na+-coupled ATP Synthase

    PubMed Central

    Matthies, Doreen; Zhou, Wenchang; Klyszejko, Adriana L.; Anselmi, Claudio; Yildiz, Özkan; Brandt, Karsten; Müller, Volker; Faraldo-Gómez, José D.; Meier, Thomas

    2014-01-01

    All rotary ATPases catalyze the interconversion of ATP and ADP-Pi through a mechanism that is coupled to the transmembrane flow of H+ or Na+. Physiologically, however, F/A-type enzymes specialize in ATP synthesis driven by downhill ion diffusion, while eukaryotic V-type ATPases function as ion pumps. To begin to rationalize the molecular basis for this functional differentiation, we solved the crystal structure of the Na+-driven membrane rotor of the Acetobacterium woodii ATP synthase, at 2.1 Å resolution. Unlike known structures, this rotor ring is a 9:1 heteromer of F- and V-type c-subunits, and therefore features a hybrid configuration of ion-binding sites along its circumference. Molecular and kinetic simulations are used to dissect the mechanisms of Na+ recognition and rotation of this c-ring, and to explain the functional implications of the V-type c-subunit. These structural and mechanistic insights indicate an evolutionary path between synthases and pumps involving adaptations in the rotor ring. PMID:25381992

  20. Dynamic structural states of ClpB involved in its disaggregation function.

    PubMed

    Uchihashi, Takayuki; Watanabe, Yo-Hei; Nakazaki, Yosuke; Yamasaki, Takashi; Watanabe, Hiroki; Maruno, Takahiro; Ishii, Kentaro; Uchiyama, Susumu; Song, Chihong; Murata, Kazuyoshi; Iino, Ryota; Ando, Toshio

    2018-06-01

    The ATP-dependent bacterial protein disaggregation machine, ClpB belonging to the AAA+ superfamily, refolds toxic protein aggregates into the native state in cooperation with the cognate Hsp70 partner. The ring-shaped hexamers of ClpB unfold and thread its protein substrate through the central pore. However, their function-related structural dynamics has remained elusive. Here we directly visualize ClpB using high-speed atomic force microscopy (HS-AFM) to gain a mechanistic insight into its disaggregation function. The HS-AFM movies demonstrate massive conformational changes of the hexameric ring during ATP hydrolysis, from a round ring to a spiral and even to a pair of twisted half-spirals. HS-AFM observations of Walker-motif mutants unveil crucial roles of ATP binding and hydrolysis in the oligomer formation and structural dynamics. Furthermore, repressed and hyperactive mutations result in significantly different oligomeric forms. These results provide a comprehensive view for the ATP-driven oligomeric-state transitions that enable ClpB to disentangle protein aggregates.

  1. ATP can be dispensable for prespliceosome formation in yeast

    PubMed Central

    Perriman, Rhonda; Ares, Manuel

    2000-01-01

    The first ATP-dependent step in pre-mRNA splicing involves the stable binding of U2 snRNP to form the prespliceosome. We show that a prespliceosome-like complex forms in the absence of ATP in yeast extracts lacking the U2 suppressor protein CUS2. These complexes display the same pre-mRNA and U snRNA requirements as authentic prespliceosomes and can be chased through the splicing pathway, indicating that they are a functional intermediate in the spliceosome assembly pathway. ATP-independent prespliceosome-like complexes are also observed in extracts containing a mutant U2 snRNA. Loss of CUS2 does not bypass the role of PRP5, an RNA helicase family member required for ATP-dependent prespliceosome formation. Genetic interactions between CUS2 and a heat-sensitive prp5 allele parallel those observed between CUS2 and U2, and suggest that CUS2 mediates functional interactions between U2 RNA and PRP5. We propose that CUS2 enforces ATP dependence during formation of the prespliceosome by brokering an interaction between PRP5 and the U2 snRNP that depends on correct U2 RNA structure. PMID:10640279

  2. Evidence that the novobiocin-sensitive ATP-binding site of the heat shock protein 90 (hsp90) is necessary for its autophosphorylation.

    PubMed

    Langer, T; Schlatter, H; Fasold, H

    2002-01-01

    The 90kDa heat shock protein (Hsp90) is one of the most abundant protein and essential for all eukaryotic cells. Many proteins require the interaction with Hsp90 for proper function. Upon heat stress the expression level of Hsp90 is even enhanced. It is assumed, that under these conditions Hsp90 is required to protect other proteins from aggregation. One property of Hsp90 is its ability to undergo autophosphorylation. The N-terminal domain of Hsp90 has been shown to contain an unusual ATP-binding site. A well-known inhibitor of Hsp90 function is geldanamycin binding to the N-terminal ATP-binding site with high affinity. Recently it was shown that Hsp90 possesses a second ATP-binding site in the C-terminal region, which can be competed with novobiocin. Autophosphorylation of Hsp90 was analysed by incubation with gamma(32)P-ATP. Addition of geldanamycin did not interfere with the capability for autophosphorylation, while novobiocin indeed did. These results suggest that the C-terminal ATP-binding site is required for autophosphorylation of Hsp90.

  3. Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family

    PubMed Central

    Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha

    2012-01-01

    Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728

  4. Kinetics of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 ATPase.

    PubMed

    Rögner, M; Gräber, P

    1986-09-01

    The rate of ATP hydrolysis catalyzed by isolated TF1 and reconstituted TF0F1 was measured as a function of the ATP concentration in the presence of inhibitors [ADP, Pi and 3'-O-(1-naphthoyl)ATP]. ATP hydrolysis can be described by Michaelis-Menten kinetics with Km(TF1) = 390 microM and Km (TF0F1) = 180 microM. The inhibition constants are for ADP Ki(TF1) = 20 microM and Ki(TF0F1) = 100 microM, for 3'-O-(1-naphthoyl)ATP Ki(TF1) = 150 microM and Ki(TF0F1) = 3 microM, and for Pi Ki(TF1) = 60 mM. From these results it is concluded that upon binding of TF0 to TF1 the mechanism of ATP hydrolysis catalyzed by TF1 is not changed qualitatively; however, the kinetic constants differ quantitatively.

  5. Real-time observation of the conformational dynamics of mitochondrial Hsp70 by spFRET

    PubMed Central

    Sikor, Martin; Mapa, Koyeli; von Voithenberg, Lena Voith; Mokranjac, Dejana; Lamb, Don C

    2013-01-01

    The numerous functions of the important class of molecular chaperones, heat shock proteins 70 (Hsp70), rely on cycles of intricate conformational changes driven by ATP-hydrolysis and regulated by cochaperones and substrates. Here, we used Förster resonance energy transfer to study the conformational dynamics of individual molecules of Ssc1, a mitochondrial Hsp70, in real time. The intrinsic dynamics of the substrate-binding domain of Ssc1 was observed to be uncoupled from the dynamic interactions between substrate- and nucleotide-binding domains. Analysis of the fluctuations in the interdomain separation revealed frequent transitions to a nucleotide-free state. The nucleotide-exchange factor Mge1 did not induce ADP release, as expected, but rather facilitated binding of ATP. These results indicate that the conformational cycle of Ssc1 is more elaborate than previously thought and provide insight into how the Hsp70s can perform a wide variety of functions. PMID:23624933

  6. Localization and function of ATP-sensitive potassium channels in human skeletal muscle.

    PubMed

    Nielsen, Jens Jung; Kristensen, Michael; Hellsten, Ylva; Bangsbo, Jens; Juel, Carsten

    2003-02-01

    The present study investigated the localization of ATP-sensitive K+ (KATP) channels in human skeletal muscle and the functional importance of these channels for human muscle K+ distribution at rest and during muscle activity. Membrane fractionation based on the giant vesicle technique or the sucrose-gradient technique in combination with Western blotting demonstrated that the KATP channels are mainly located in the sarcolemma. This localization was confirmed by immunohistochemical measurements. With the microdialysis technique, it was demonstrated that local application of the KATP channel inhibitor glibenclamide reduced (P < 0.05) interstitial K+ at rest from approximately 4.5 to 4.0 mM, whereas the concentration in the control leg remained constant. Glibenclamide had no effect on the interstitial K+ accumulation during knee-extensor exercise at a power output of 60 W. In contrast to in vitro conditions, the present study demonstrated that under in vivo conditions the KATP channels are active at rest and contribute to the accumulation of interstitial K+.

  7. Problem areas in the use of the firefly luciferase assay for bacterial detection

    NASA Technical Reports Server (NTRS)

    Picciolo, G. L.; Chappelle, E. W.; Knust, E. A.; Tuttle, S. A.; Curtis, C. A.

    1975-01-01

    By purifying the firefly luciferase extract and adding all necessary chemicals but ATP in excess, an assay for ATP was performed by measuring the amount of light produced when a sample containing soluble ATP is added to the luciferase reaction mixture. Instrumentation, applications, and basic characteristics of the luciferase assay are presented. Effect of the growth medium and length of time grown in this medium on ATP per viable E. coli values is shown in graphic form, along with an ATP concentration curve showing relative light units versus ATP injected. Reagent functions and concentration methods are explored. Efforts to develop a fast automatable system to detect the presence of bacteria in biological fluids, especially urine, resulted in the optimization of procedures for use with different types of samples.

  8. ALTERATIONS IN BRAIN CREATINE CONCENTRATIONS UNDER LONG-TERM SOCIAL ISOLATION (EXPERIMENTAL STUDY).

    PubMed

    Koshoridze, N; Kuchukashvili, Z; Menabde, K; Lekiashvili, Sh; Koshoridze, M

    2016-02-01

    Stress represents one of the main problems of modern humanity. This study was done for understanding more clearly alterations in creatine content of the brain under psycho-emotional stress induced by long-term social isolation. It was shown that under 30 days social isolation creatine amount in the brain was arisen, while decreasing concentrations of synthesizing enzymes (AGAT, GAMT) and creatine transporter protein (CrT). Another important point was that such changes were accompanied by down-regulation of creatine kinase (CK), therefore the enzyme's concentration was lowered. In addition, it was observed that content of phosphocreatine (PCr) and ATP were also reduced, thus indicating down-regulation of energy metabolism of brain that is really a crucial point for its normal functioning. To sum up the results it can be underlined that long-term social isolation has negative influence on energy metabolism of brain; and as a result reduce ATP content, while increase of free creatine concentration, supposedly maintaining maximal balance for ATP amount, but here must be also noted that up-regulated oxidative pathways might have impact on blood brain barrier, resulting on its permeability.

  9. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    PubMed

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  10. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.

    PubMed

    Nikinmaa, M

    2001-11-15

    The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.

  11. The dynamic regulation of NAD metabolism in mitochondria

    PubMed Central

    Stein, Liana Roberts; Imai, Shin-ichiro

    2012-01-01

    Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213

  12. Effect of the Purinergic Inhibitor Oxidized ATP in a Model of Islet Allograft Rejection

    PubMed Central

    Vergani, Andrea; Fotino, Carmen; D’Addio, Francesca; Tezza, Sara; Podetta, Michele; Gatti, Francesca; Chin, Melissa; Bassi, Roberto; Molano, Ruth D.; Corradi, Domenico; Gatti, Rita; Ferrero, Maria E.; Secchi, Antonio; Grassi, Fabio; Ricordi, Camillo; Sayegh, Mohamed H.; Maffi, Paola; Pileggi, Antonello; Fiorina, Paolo

    2013-01-01

    The lymphocytic ionotropic purinergic P2X receptors (P2X1R-P2X7R, or P2XRs) sense ATP released during cell damage-activation, thus regulating T-cell activation. We aim to define the role of P2XRs during islet allograft rejection and to establish a novel anti-P2XRs strategy to achieve long-term islet allograft function. Our data demonstrate that P2X1R and P2X7R are induced in islet allograft-infiltrating cells, that only P2X7R is increasingly expressed during alloimmune response, and that P2X1R is augmented in both allogeneic and syngeneic transplantation. In vivo short-term P2X7R targeting (using periodate-oxidized ATP [oATP]) delays islet allograft rejection, reduces the frequency of Th1/Th17 cells, and induces hyporesponsiveness toward donor antigens. oATP-treated mice displayed preserved islet grafts with reduced Th1 transcripts. P2X7R targeting and rapamycin synergized in inducing long-term islet function in 80% of transplanted mice and resulted in reshaping of the recipient immune system. In vitro P2X7R targeting using oATP reduced T-cell activation and diminished Th1/Th17 cytokine production. Peripheral blood mononuclear cells obtained from long-term islet-transplanted patients showed an increased percentage of P2X7R+CD4+ T cells compared with controls. The beneficial effects of oATP treatment revealed a role for the purinergic system in islet allograft rejection, and the targeting of P2X7R is a novel strategy to induce long-term islet allograft function. PMID:23315496

  13. Genetics Home Reference: pyruvate kinase deficiency

    MedlinePlus

    ... glucose is broken down to produce adenosine triphosphate (ATP), the cell's main energy source. PKLR gene mutations ... pyruvate kinase enzyme function, causing a shortage of ATP in red blood cells and increased levels of ...

  14. Large-Scale ATP-Independent Nucleosome Unfolding by a Histone Chaperone

    PubMed Central

    Valieva, Maria E.; Armeev, Grigoriy A.; Kudryashova, Kseniya S.; Gerasimova, Nadezhda S.; Shaytan, Alexey K.; Kulaeva, Olga I.; McCullough, Laura L.; Formosa, Tim; Georgiev, Pavel G.; Kirpichnikov, Mikhail P.; Studitsky, Vasily M.; Feofanov, Alexey V.

    2017-01-01

    DNA accessibility to regulatory proteins is significantly affected by nucleosome structure and dynamics. FACT (facilitates chromatin transcription) increases the accessibility of nucleosomal DNA but the mechanism and extent of this nucleosome reorganization are unknown. We report here the effects of FACT on single nucleosomes revealed with spFRET microscopy. FACT binding results in a dramatic, ATP-independent, and reversible uncoiling of DNA that affects at least 70% of the DNA in a nucleosome. A mutated version of FACT is defective in this uncoiling, and a histone mutation that suppresses phenotypes caused by this FACT mutation in vivo restores the uncoiling activity in vitro. Thus FACT-dependent nucleosome unfolding modulates the accessibility of nucleosomal DNA, and this is an important function of FACT in vivo. PMID:27820806

  15. Short-Term Exercise Training Does Not Stimulate Skeletal Muscle ATP Synthesis in Relatives of Humans With Type 2 Diabetes

    PubMed Central

    Kacerovsky-Bielesz, Gertrud; Chmelik, Marek; Ling, Charlotte; Pokan, Rochus; Szendroedi, Julia; Farukuoye, Michaela; Kacerovsky, Michaela; Schmid, Albrecht I.; Gruber, Stephan; Wolzt, Michael; Moser, Ewald; Pacini, Giovanni; Smekal, Gerhard; Groop, Leif; Roden, Michael

    2009-01-01

    OBJECTIVE We tested the hypothesis that short-term exercise training improves hereditary insulin resistance by stimulating ATP synthesis and investigated associations with gene polymorphisms. RESEARCH DESIGN AND METHODS We studied 24 nonobese first-degree relatives of type 2 diabetic patients and 12 control subjects at rest and 48 h after three bouts of exercise. In addition to measurements of oxygen uptake and insulin sensitivity (oral glucose tolerance test), ectopic lipids and mitochondrial ATP synthesis were assessed using1H and31P magnetic resonance spectroscopy, respectively. They were genotyped for polymorphisms in genes regulating mitochondrial function, PPARGC1A (rs8192678) and NDUFB6 (rs540467). RESULTS Relatives had slightly lower (P = 0.012) insulin sensitivity than control subjects. In control subjects, ATP synthase flux rose by 18% (P = 0.0001), being 23% higher (P = 0.002) than that in relatives after exercise training. Relatives responding to exercise training with increased ATP synthesis (+19%, P = 0.009) showed improved insulin sensitivity (P = 0.009) compared with those whose insulin sensitivity did not improve. A polymorphism in the NDUFB6 gene from respiratory chain complex I related to ATP synthesis (P = 0.02) and insulin sensitivity response to exercise training (P = 0.05). ATP synthase flux correlated with O2uptake and insulin sensitivity. CONCLUSIONS The ability of short-term exercise to stimulate ATP production distinguished individuals with improved insulin sensitivity from those whose insulin sensitivity did not improve. In addition, the NDUFB6 gene polymorphism appeared to modulate this adaptation. This finding suggests that genes involved in mitochondrial function contribute to the response of ATP synthesis to exercise training. PMID:19265027

  16. Inhibition of the purinergic pathway prolongs mouse lung allograft survival.

    PubMed

    Liu, Kaifeng; Vergani, Andrea; Zhao, Picheng; Ben Nasr, Moufida; Wu, Xiao; Iken, Khadija; Jiang, Dawei; Su, Xiaofeng; Fotino, Carmen; Fiorina, Paolo; Visner, Gary A

    2014-08-01

    Lung transplantation has limited survival with current immunosuppression. ATP is released from activated T cells, which act as costimulatory molecules through binding to the purinergic receptor P2XR7. We investigated the role of blocking the ATP/purinergic pathway, primarily P2XR7, using its inhibitor oxidized ATP (oATP) in modulating rejection of mouse lung allografts. Mouse lung transplants were performed using mice with major histocompatibility complex mismatch, BALB/c to C57BL6. Recipients received suramin or oATP, and lung allografts were evaluated 15 to ≥ 60 days after transplantation. Recipients were also treated with oATP after the onset of moderate to severe rejection to determine its ability to rescue lung allografts. Outcomes measures included lung function, histology, thoracic imaging, and allo-immune responses. Blocking purinergic receptors with the nonselective inhibitor suramin or with the P2XR7-selective inhibitor oATP reduced acute rejection and prolonged lung allograft survival for ≥ 60 days with no progression in severity. There were fewer inflammatory cells within lung allografts, less rejection, and improved lung function, which was maintained over time. CD4 and CD8 T cells were reduced within lung allografts with impaired activation with prolonged impairment of CD8 responses. In vitro, oATP reduced CD8 activation of Th1 inflammatory cytokines IFN-γ and TNF-α and cytolytic machinery, granzyme B. Cotreatment with immunosuppressive agents, cyclosporine, rapamycin, or CTLA-4Ig resulted in no additive benefits, and oATP alone resulted in better outcomes than cyclosporine alone. This study illustrates a potential new pathway to target in hopes of prolonging survival of lung transplant recipients.

  17. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

    PubMed

    Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M

    2015-07-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Nucleotide-mediated relaxation in guinea-pig aorta: selective inhibition by MRS2179

    PubMed Central

    Kaiser, Robert A; Buxton, Iain L O

    2002-01-01

    The vasodilatory effects of nucleotides in the guinea-pig thoracic aorta were examined to determine the relationship between molecular expression and function of P2Y receptors. In aortic rings precontracted with norepinephrine, vasodilatory responses to purine nucleotides exhibited a rank-order of potency of 2-methylthio-ATP>ADP>ATP. Responses to UTP, but not UDP suggested a functional role for P2Y4 but not P2Y6 receptors. Aortic endothelial cells express at least four P2Y receptors; P2Y1, P2Y2, P2Y4 and P2Y6. In primary culture, these cells exhibit desensitizing transient calcium responses characteristic of P2Y1, P2Y2 and P2Y4, but not P2Y6 receptors. UDP had no effect on endothelial cell calcium. The pyrimidinergic receptor agonist UTP is capable of eliciting robust vasodilation in aortic rings and causing calcium responses in cultured guineapig aortic endothelial cells. These responses are equivalent to the maximum responses observed to ATP and ADP. Measurement of intracellular calcium release in response to ATP and 2-methylthio-ATP were similar, however only the 2-methylthio-ATP response was sensitive to the P2Y1 antagonist N6-methyl-2′-deoxyadenosine-3′,5′-bisphosphate (MRS2179). In aortic rings, vasodilatory responses to 2-methylthio-ATP, ATP and ADP were all blocked by pre-incubation of tissues with MRS2179. MRS2179 pretreatment had no effect of the ability of UTP to cause relaxation of norepinephrine responses in aortic rings or the ability of UTP to cause calcium release in aortic endothelial cells. We demonstrate robust effects of purine and pyrimidine nucleotides in guineapig aorta and provide functional and biochemical evidence that MRS2179 is a selective P2Y1 antagonist. PMID:11815389

  19. Gualou Xiebai Decoction, a Traditional Chinese Medicine, Prevents Cardiac Reperfusion Injury of Hyperlipidemia Rat via Energy Modulation.

    PubMed

    Yan, Lu-Lu; Zhang, Wei-Yang; Wei, Xiao-Hong; Yan, Li; Pan, Chun-Shui; Yu, Yang; Fan, Jing-Yu; Liu, Yu-Ying; Zhou, Hua; Han, Jing-Yan; Yao, Xin-Sheng

    2018-01-01

    Background: Gualou Xiebai Decoction (GLXB) is a classic prescription of Chinese medicine used for the treatment of cardiac problems. The present study was designed to explore the effect and mechanism of GLXB on ischemia/reperfusion (I/R) induced disorders in myocardial structure and function, focusing on the regulation of energy metabolism and the RhoA/ROCK pathway. Methods: After hyperlipidemic rat model was established by oral administration of high fat diet, the rats were treated with GLXB for 6 weeks and subjected to 30 min occlusion of the left anterior descending coronary artery (LADCA) followed by 90 min reperfusion to elicit I/R challenge. Myocardial infarct size was assessed by Evans blue-TTC staining. Myocardial blood flow (MBF) and cardiac function were evaluated. Enzyme-linked immunosorbent assay was performed to examine the content of ATP, ADP, AMP, CK, CK-MB, LDH, cTnT, cTnI, and IL-6. Double staining of F-actin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was conducted to assess myocardial apoptosis. Expressions of ATP synthase subunit δ (ATP 5D), and RhoA and ROCK were determined by Western blotting. Results: Administration with GLXB at high dose for 6 weeks protected heart against I/R-induced MBF decrease, myocardial infarction and apoptosis, ameliorated I/R-caused impairment of cardiac function and myocardial structure, restored the decrease in the ratio of ADP/ATP and AMP/ATP, and the expression of ATP 5D with inhibiting the expression of RhoA and ROCK. Conclusions: Treatment with GLXB effectively protects myocardial structure and function from I/R challenge, possibly via regulating energy metabolism involving inactivation of RhoA/ROCK signaling pathway.

  20. ATP Synthase Diseases of Mitochondrial Genetic Origin

    PubMed Central

    Dautant, Alain; Meier, Thomas; Hahn, Alexander; Tribouillard-Tanvier, Déborah; di Rago, Jean-Paul; Kucharczyk, Roza

    2018-01-01

    Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures. PMID:29670542

  1. The P2X7 receptor antagonist, oxidized adenosine triphosphate, ameliorates renal ischemia-reperfusion injury by expansion of regulatory T cells.

    PubMed

    Koo, Tai Yeon; Lee, Jae-Ghi; Yan, Ji-Jing; Jang, Joon Young; Ju, Kyung Don; Han, Miyeun; Oh, Kook-Hwan; Ahn, Curie; Yang, Jaeseok

    2017-08-01

    Extracellular adenosine triphosphate (ATP) binds to purinergic receptors and, as a danger molecule, promotes inflammatory responses. Here we tested whether periodate-oxidized ATP (oATP), a P2X7 receptor (P2X7R) antagonist can attenuate renal ischemia-reperfusion injury and clarify the related cellular mechanisms. Treatment with oATP prior to ischemia-reperfusion injury decreased blood urea nitrogen, serum creatinine, the tubular injury score, and tubular epithelial cell apoptosis after injury. The infiltration of dendritic cells, neutrophils, macrophages, CD69 + CD4 + , and CD44 + CD4 + T cells was attenuated, but renal Foxp3 + CD4 + Treg infiltration was increased by oATP. The levels of IL-6 and CCL2 were reduced in the oATP group. Additionally, oATP treatment following injury improved renal function, decreased the infiltration of innate and adaptive effector cells, and increased the renal infiltration of Foxp3 + CD4 + Tregs. Post-ischemia-reperfusion injury oATP treatment increased tubular cell proliferation and reduced renal fibrosis. oATP treatment attenuated renal functional deterioration after ischemia-reperfusion injury in RAG-1 knockout mice; however, Treg depletion using PC61 abrogated the beneficial effects of oATP in wild-type mice. Furthermore, oATP treatment after transfer of Tregs from wild-type mice improved the beneficial effects of Tregs on ischemia-reperfusion injury, but treatment after transfer of Tregs from P2X7R knockout mice did not. Renal ischemia-reperfusion injury was also attenuated in P2X7R knockout mice. Experiments using bone marrow chimeras established that P2X7R expression on hematopoietic cells rather than non-hematopoietic cells, such as tubular epithelial cells, plays a major role in ischemia-reperfusion injury. Thus, oATP attenuated acute renal damage and facilitated renal recovery in ischemia-reperfusion injury by expansion of Tregs. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. Molecular cloning and expression profile of an ATP-binding cassette (ABC) transporter gene from the hemipteran insect Nilaparvata lugens.

    PubMed

    Zha, W J; Li, S H; Zhou, L; Chen, Z J; Liu, K; Yang, G C; Hu, G; He, G C; You, A Q

    2015-03-30

    The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins that have important physiological functions in all living organisms. In insects, ABC transporters have important functions in the transport of molecules, and are also involved in insecticide resistance, metabolism, and development. In this study, the Nilaparvata lugens Stal (Hemiptera: Delphacidae) ABCG (NlABCG) gene was identified and characterized. The complete mRNA sequence of NlABCG was 2608-bp long, with an open reading frame of 2064 bp encoding a protein comprised of 687 amino acids. The conserved regions include three N-glycosylation and 34 phosphorylation sites, as well as seven transmembrane domains. The amino acid identity with the closely related species Acyrthosiphon pisum was 42.8%. Developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the NlABCG transcript was expressed at all developmental stages of N. lugens. The lowest expression of NlABCG was in the 1st instar, and levels increased with larval growth. The transcript profiles of NlABCG were analyzed in various tissues from a 5th instar nymph, and the highest expression was observed in the midgut. These results suggest that the sequence, characteristics, and expression of NlABCG are highly conserved, and basic information is provided for its functional analysis.

  3. The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts.

    PubMed

    Morris, Kevin J; Corbett, Anita H

    2018-06-15

    The polyadenosine RNA-binding protein ZC3H14 is important in RNA processing. Although ZC3H14 is ubiquitously expressed, mutation of the ZC3H14 gene causes a non-syndromic form of intellectual disability. Here, we examine the function of ZC3H14 in the brain by identifying ZC3H14-interacting proteins using unbiased mass spectrometry. Through this analysis, we identified physical interactions between ZC3H14 and multiple RNA processing factors. Notably, proteins that comprise the THO complex were amongst the most enriched proteins. We demonstrate that ZC3H14 physically interacts with THO components and that these proteins are required for proper RNA processing, as loss of ZC3H14 or THO components leads to extended bulk poly(A) tail length. Furthermore, we identified the transcripts Atp5g1 and Psd95 as shared RNA targets of ZC3H14 and the THO complex. Our data suggest that ZC3H14 and the THO complex are important for proper processing of Atp5g1 and Psd95 RNA, as depletion of ZC3H14 or THO components leads to decreased steady-state levels of each mature transcript accompanied by accumulation of Atp5g1 and Psd95 pre-mRNA in the cytoplasm. Taken together, this work provides the first unbiased identification of nuclear ZC3H14-interacting proteins from the brain and links the functions of ZC3H14 and the THO complex in the processing of RNA.

  4. The scavenger activity of the human P2X7 receptor differs from P2X7 pore function by insensitivity to antagonists, genetic variation and sodium concentration: Relevance to inflammatory brain diseases.

    PubMed

    Ou, Amber; Gu, Ben J; Wiley, James S

    2018-04-01

    Activation of P2X7 receptors is widely recognised to initiate proinflammatory responses. However P2X7 also has a dual function as a scavenger receptor which is active in the absence of ATP and plasma proteins and may be important in central nervous system (CNS) diseases. Here, we investigated both P2X7 pore formation and its phagocytic function in fresh human monocytes (as a model of microglia) by measuring ATP-induced ethidium dye uptake and fluorescent bead uptake respectively. This was studied in monocytes expressing various polymorphic variants as well as in the presence of different P2X7 antagonists and ionic media. P2X7-mediated phagocytosis was found to account for about half of Latrunculin (or Cytochalasin D)-sensitive bead engulfment by fresh human monocytes. Monocytes harbouring P2X7 Ala348Thr or Glu496Ala polymorphic variants showed increase or loss of ethidium uptake respectively, but these changes in pore formation did not always correspond to the changes in phagocytosis of YG beads. Unlike pore function, P2X7-mediated phagocytosis was not affected by three potent selective P2X7 antagonists and remained identical in Na + and K + media. Taken together, our results show that P2X7 is a scavenger receptor with important function in the CNS but its phagocytic function has features distinct from its pore function. Both P2X7 pore formation and P2X7-mediated phagocytosis should be considered in the design of new P2X7 antagonists for the treatment of CNS diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Metabolic Agents that Enhance ATP can Improve Cognitive Functioning: A Review of the Evidence for Glucose, Oxygen, Pyruvate, Creatine, and L-Carnitine

    PubMed Central

    Owen, Lauren; Sunram-Lea, Sandra I.

    2011-01-01

    Over the past four or five decades, there has been increasing interest in the neurochemical regulation of cognition. This field received considerable attention in the 1980s, with the identification of possible cognition enhancing agents or “smart drugs”. Even though many of the optimistic claims for some agents have proven premature, evidence suggests that several metabolic agents may prove to be effective in improving and preserving cognitive performance and may lead to better cognitive aging through the lifespan. Aging is characterized by a progressive deterioration in physiological functions and metabolic processes. There are a number of agents with the potential to improve metabolic activity. Research is now beginning to identify these various agents and delineate their potential usefulness for improving cognition in health and disease. This review provides a brief overview of the metabolic agents glucose, oxygen, pyruvate, creatine, and L-carnitine and their beneficial effects on cognitive function. These agents are directly responsible for generating ATP (adenosine triphosphate) the main cellular currency of energy. The brain is the most metabolically active organ in the body and as such is particularly vulnerable to disruption of energy resources. Therefore interventions that sustain adenosine triphosphate (ATP) levels may have importance for improving neuronal dysfunction and loss. Moreover, recently, it has been observed that environmental conditions and diet can affect transgenerational gene expression via epigenetic mechanisms. Metabolic agents might play a role in regulation of nutritional epigenetic effects. In summary, the reviewed metabolic agents represent a promising strategy for improving cognitive function and possibly slowing or preventing cognitive decline. PMID:22254121

  6. Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo.

    PubMed

    Guzun, Rita; Saks, Valdur

    2010-03-08

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.

  7. Identification of genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig.

    PubMed

    Komatsu, Yuuta; Sukegawa, Shin; Yamashita, Mai; Katsuda, Naoki; Tong, Bin; Ohta, Takeshi; Kose, Hiroyuki; Yamada, Takahisa

    2016-06-01

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from musculus longissimus muscle tissues of selected pigs with extreme expected breeding values at the age of 100 kg. Three upregulated genes (EEF1A2, TSG101 and TTN) and six downregulated genes (ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7) in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis confirmed difference in expression profiles of the identified genes in musculus longissimus muscle tissues between the two Landrace weanling pig groups with divergent genetic propensity for growth rate. Further, differential expression of the identified genes except for the TTN was validated by Western blot analysis. Additionally, the eight genes other than the ATP5C1 colocalized with the same chromosomal positions as QTLs that have been previously identified for growth rate traits. Finally, the changes of expression predicted from gene function suggested association of upregulation of expression of the EEF1A2, TSG101 and TTN genes and downregulation of the ATP5B, ATP5C1, COQ3, HADHA, MYH1 and MYH7 gene expression with increased growth rate. The identified genes will provide an important insight in understanding the molecular mechanism underlying growth rate in Landrace pig breed.

  8. The thermodynamic efficiency of ATP synthesis in oxidative phosphorylation.

    PubMed

    Nath, Sunil

    2016-12-01

    As the chief energy source of eukaryotic cells, it is important to determine the thermodynamic efficiency of ATP synthesis in oxidative phosphorylation (OX PHOS). Previous estimates of the thermodynamic efficiency of this vital process have ranged from Lehninger's original back-of-the-envelope calculation of 38% to the often quoted value of 55-60% in current textbooks of biochemistry, to high values of 90% from recent information theoretic considerations, and reports of realizations of close to ideal 100% efficiencies by single molecule experiments. Hence this problem has been reinvestigated from first principles. The overall thermodynamic efficiency of ATP synthesis in the mitochondrial energy transduction OX PHOS process has been found to lie between 40 and 41% from four different approaches based on a) estimation using structural and biochemical data, b) fundamental nonequilibrium thermodynamic analysis, c) novel insights arising from Nath's torsional mechanism of energy transduction and ATP synthesis, and d) the overall balance of cellular energetics. The torsional mechanism also offers an explanation for the observation of a thermodynamic efficiency approaching 100% in some experiments. Applications of the unique, molecular machine mode of functioning of F 1 F O -ATP synthase involving direct inter-conversion of chemical and mechanical energies in the design and fabrication of novel, man-made mechanochemical devices have been envisaged, and some new ways to exorcise Maxwell's demon have been proposed. It is hoped that analysis of the fundamental problem of energy transduction in OX PHOS from a fresh perspective will catalyze new avenues of research in this interdisciplinary field. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Roles of conserved arginines in ATP-binding domains of AAA+ chaperone ClpB from Thermus thermophilus.

    PubMed

    Yamasaki, Takashi; Nakazaki, Yosuke; Yoshida, Masasuke; Watanabe, Yo-hei

    2011-07-01

    ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2). Here, we investigated the roles of these arginines (Arg322, Arg323, and Arg747) of ClpB from Thermus thermophilus in the ATPase cycle and chaperone function by alanine substitution. These mutations did not affect nucleotide binding, but did inhibit the hydrolysis of the bound ATP and slow the threading of the denatured protein through the central pore of the T. thermophilus ClpB ring, which severely impaired the chaperone functions. Previously, it was demonstrated that ATP binding to the AAA-1 module induced motion of the middle domain and stabilized the ClpB hexamer. However, the arginine mutations of the AAA-1 module destabilized the ClpB hexamer, even though ATP-induced motion of the middle domain was not affected. These results indicated that the three arginines are crucial for ATP hydrolysis and chaperone activity, but not for ATP binding. In addition, the two arginines in AAA-1 and the ATP-induced motion of the middle domain independently contribute to the stabilization of the hexamer. © 2011 The Authors Journal compilation © 2011 FEBS.

  10. Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection.

    PubMed

    Ladomersky, Erik; Khan, Aslam; Shanbhag, Vinit; Cavet, Jennifer S; Chan, Jefferson; Weisman, Gary A; Petris, Michael J

    2017-09-01

    Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7a LysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7a LysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7a LysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7a LysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection. Copyright © 2017 American Society for Microbiology.

  11. The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review.

    PubMed

    Hong, Hui; Regenstein, Joe M; Luo, Yongkang

    2017-06-13

    ATP degradation is one of the most important biochemical changes in the post-mortem muscle of fish and shellfish. This process has long been recognized as an accurate way to evaluate freshness of fish and shellfish product. This review updates and condenses the overall history and recent advances in understanding the role of ATP-related compounds in post-mortem fish and shellfish muscle including a discussion of key analytical methods, their use as a freshness indicator, their roles in flavor enhancement, the factors affecting their transitions, and the possible mechanisms responsible for their impact on flavor and freshness. Moreover, some challenges and future directions for research regarding ATP-related compounds in fish and shellfish flavor and freshness are presented. With increasing consumer demands for fresh products with extended shelf life, understanding the relationships between ATP-related compounds and their involvement in the freshness and umami taste is a prerequisite for assuring the high quality of fish and shellfish.

  12. Early Effects of Prolonged Cardiac Arrest and Ischemic Postconditioning during Cardiopulmonary Resuscitation on Cardiac and Brain Mitochondrial Function in Pigs.

    PubMed

    Matsuura, Timothy R; Bartos, Jason A; Tsangaris, Adamantios; Shekar, Kadambari Chandra; Olson, Matthew D; Riess, Matthias L; Bienengraeber, Martin; Aufderheide, Tom P; Neumar, Robert W; Rees, Jennifer N; McKnite, Scott H; Dikalova, Anna E; Dikalov, Sergey I; Douglas, Hunter F; Yannopoulos, Demetris

    2017-07-01

    Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac injury. However, reperfusion with both CPR methods had limited effect on mitochondrial function in the brain, emphasizing an important physiological divergence in post-arrest recovery between those two vital organs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Identification of Residues in the Lipopolysaccharide ABC Transporter That Coordinate ATPase Activity with Extractor Function

    PubMed Central

    Simpson, Brent W.; Owens, Tristan W.; Orabella, Matthew J.; Davis, Rebecca M.; May, Janine M.; Trauger, Sunia A.

    2016-01-01

    ABSTRACT The surface of most Gram-negative bacteria is covered with lipopolysaccharide (LPS), creating a permeability barrier against toxic molecules, including many antimicrobials. To assemble LPS on their surface, Gram-negative bacteria must extract newly synthesized LPS from the inner membrane, transport it across the aqueous periplasm, and translocate it across the outer membrane. The LptA to -G proteins assemble into a transenvelope complex that transports LPS from the inner membrane to the cell surface. The Lpt system powers LPS transport from the inner membrane by using a poorly characterized ATP-binding cassette system composed of the ATPase LptB and the transmembrane domains LptFG. Here, we characterize a cluster of residues in the groove region of LptB that is important for controlling LPS transport. We also provide the first functional characterization of LptFG and identify their coupling helices that interact with the LptB groove. Substitutions at conserved residues in these coupling helices compromise both the assembly and function of the LptB2FG complex. Defects in LPS transport conferred by alterations in the LptFG coupling helices can be rescued by changing a residue in LptB that is adjacent to functionally important residues in the groove region. This suppression is achieved by increasing the ATPase activity of the LptB2FG complex. Taken together, these data identify a specific binding site in LptB for the coupling helices of LptFG that is responsible for coupling of ATP hydrolysis by LptB with LptFG function to achieve LPS extraction. PMID:27795402

  14. Synergic effects of mycoplasmal lipopeptides and extracellular ATP on activation of macrophages.

    PubMed

    Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro

    2002-07-01

    Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1 beta, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2',4'-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor kappa B inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor kappa B. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides.

  15. High-Throughput Genetic Identification of Functionally Important Regions of the Yeast DEAD-Box Protein Mss116p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, Georg; Del Campo, Mark; Turner, Kathryn G.

    The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionallymore » important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions - one the previously noted post II region in the helicase core and the other in the CTE - that may help displace or sequester the opposite RNA strand during RNA unwinding.« less

  16. Multiple roles for the Na,K-ATPase subunits, Atp1a1 and Fxyd1, during brain ventricle development

    PubMed Central

    Chang, Jessica T.; Lowery, Laura Anne; Sive, Hazel

    2012-01-01

    Formation of the vertebrate brain ventricles requires both production of cerebrospinal fluid (CSF), and its retention in the ventricles. The Na,K-ATPase is required for brain ventricle development, and we show here that this protein complex impacts three associated processes. The first requires both the alpha subunit (Atp1a1) and the regulatory subunit, Fxyd1, and leads to formation of a cohesive neuroepithelium, with continuous apical junctions. The second process leads to modulation of neuroepithelial permeability, and requires Atp1a1, which increases permeability with partial loss of function and decreases it with overexpression. In contrast, fxyd1 overexpression does not alter neuroepithelial permeability, suggesting that its activity is limited to neuroepithelium formation. RhoA regulates both neuroepithelium formation and permeability, downstream of the Na,K-ATPase. A third process, likely to be CSF production, is RhoA-independent, requiring Atp1a1, but not Fxyd1. Consistent with a role for Na,K-ATPase pump function, the inhibitor ouabain prevents neuroepithelium formation, while intracellular Na+ increases after Atp1a1 and Fxyd1 loss of function. These data include the first reported role for Fxyd1 in the developing brain, and indicate that the Na,K-ATPase regulates three aspects of brain ventricle development essential for normal function - formation of a cohesive neuroepithelium, restriction of neuroepithelial permeability, and production of CSF. PMID:22683378

  17. ATP Synthase: A Molecular Therapeutic Drug Target for Antimicrobial and Antitumor Peptides

    PubMed Central

    Ahmad, Zulfiqar; Okafor, Florence; Azim, Sofiya; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the role of ATP synthase as a molecular drug target for natural and synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features required for catalytic activity and motor functions of ATP synthase are described. Relevant details regarding the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it a potential drug target with respect to antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP synthase is known to have about twelve discrete inhibitor binding sites including peptides and other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides on the inhibition of the Escherichia coli model system through their action on ATP synthase is presented. PMID:23432591

  18. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β).

    PubMed

    Wang, Chunjiong; Geng, Bin; Cui, Qinghua; Guan, Youfei; Yang, Jichun

    2014-03-01

    Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  19. Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations.

    PubMed

    James, A M; Sheard, P W; Wei, Y H; Murphy, M P

    1999-01-01

    Mutations in the tRNA genes of mitochondrial DNA (mtDNA) cause the debilitating MELAS (mitochondrial, myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fibres) syndromes. These mtDNA mutations affect respiratory chain function, apparently without decreasing cellular ATP concentration [Moudy et al. (1995) PNAS, 92, 729-733]. To address this issue, we investigated the role of mitochondrial ATP synthesis in fibroblasts from MELAS and MERRF patients. The maximum rate of mitochondrial ATP synthesis was decreased by 60-88%, as a consequence of the decrease in the proton electrochemical potential gradient of MELAS and MERRF mitochondria. However, in quiescent fibroblasts neither ATP concentration or the ATP/ADP ratio was affected by the lowered rate of ATP synthesis. We hypothesized that the low ATP demand of quiescent fibroblasts masked the mitochondrial ATP synthesis defect and that this defect might become apparent during higher ATP use. To test this we simulated high energy demand by titrating cells with gramicidin, an ionophore that stimulates ATP hydrolysis by the plasma membrane Na+/K+-ATPase. We found a threshold gramicidin concentration in control cells at which both the ATP/ADP ratio and the plasma membrane potential decreased dramatically, due to ATP demand by the Na+/K+-ATPase outstripping mitochondrial ATP synthesis. In MELAS and MERRF fibroblasts the corresponding threshold concentrations of gramicidin were 2-20-fold lower than those for control cells. This is the first demonstration that cells containing mtDNA mutations are particularly sensitive to increased ATP demand and this has several implications for how mitochondrial dysfunction contributes to disease pathophysiology. In particular, the increased susceptibility to plasma membrane depolarization will render neurons with dysfunctional mitochondria susceptible to excitotoxic cell death.

  20. Two nuclear life cycle-regulated genes encode interchangeable subunits c of mitochondrial ATP synthase in Podospora anserina.

    PubMed

    Déquard-Chablat, Michelle; Sellem, Carole H; Golik, Pawel; Bidard, Frédérique; Martos, Alexandre; Bietenhader, Maïlis; di Rago, Jean-Paul; Sainsard-Chanet, Annie; Hermann-Le Denmat, Sylvie; Contamine, Véronique

    2011-07-01

    An F(1)F(O) ATP synthase in the inner mitochondrial membrane catalyzes the late steps of ATP production via the process of oxidative phosphorylation. A small protein subunit (subunit c or ATP9) of this enzyme shows a substantial genetic diversity, and its gene can be found in both the mitochondrion and/or nucleus. In a representative set of 26 species of fungi for which the genomes have been entirely sequenced, we found five Atp9 gene repartitions. The phylogenetic distribution of nuclear and mitochondrial Atp9 genes suggests that their evolution has included two independent transfers to the nucleus followed by several independent episodes of the loss of the mitochondrial and/or nuclear gene. Interestingly, we found that in Podospora anserina, subunit c is exclusively produced from two nuclear genes (PaAtp9-5 and PaAtp9-7), which display different expression profiles through the life cycle of the fungus. The PaAtp9-5 gene is specifically and strongly expressed in germinating ascospores, whereas PaAtp9-7 is mostly transcribed during sexual reproduction. Consistent with these observations, deletion of PaAtp9-5 is lethal, whereas PaAtp9-7 deletion strongly impairs ascospore production. The P. anserina PaAtp9-5 and PaAtp9-7 genes are therefore nonredundant. By swapping the 5' and 3' flanking regions between genes we demonstrated, however, that the PaAtp9 coding sequences are functionally interchangeable. These findings show that after transfer to the nucleus, the subunit c gene in Podospora became a key target for the modulation of cellular energy metabolism according to the requirements of the life cycle.

  1. Molecular dissection of purinergic P2X receptor channels.

    PubMed

    Stojilkovic, Stanko S; Tomic, Melanija; He, Mu-Lan; Yan, Zonghe; Koshimizu, Taka-Aki; Zemkova, Hana

    2005-06-01

    The P2X receptors (P2XRs) are a family of ATP-gated channels expressed in the plasma membrane of numerous excitable and nonexcitable cells and play important roles in control of cellular functions, such as neurotransmission, hormone secretion, transcriptional regulation, and protein synthesis. P2XRs are homomeric or heteromeric proteins, formed by assembly of at least three of seven subunits named P2X(1)-P2X(7). All subunits possess intracellular N- and C-termini, two transmembrane domains, and a relatively large extracellular ligand-binding loop. ATP binds to still an unidentified extracellular domain, leading to a sequence of conformational transitions between closed, open, and desensitized states. Removal of extracellular ATP leads to deactivation and resensitization of receptors. Activated P2XRs generate inward currents caused by Na(+) and Ca(2+) influx through the pore of channels, and thus mediate membrane depolarization and facilitation of voltage-gated calcium entry in excitable cells. No crystal structures are available for P2XRs and these receptors have no obvious similarity to other ion channels or ATP binding proteins, which limits the progress in understanding the relationship between molecular structure and conformational transitions of receptor in the presence of agonist and after its washout. We summarize here the alternative approaches in studies on molecular properties of P2XRs, including heteromerization, chimerization, mutagenesis, and biochemical studies.

  2. Assessment of different biomarkers provides valuable diagnostic standards in the evaluation of the risk of acute rejection.

    PubMed

    Zheng, Jin; Ding, Xiaoming; Tian, Xiaohui; Jin, Zhankui; Pan, Xiaoming; Yan, Hang; Feng, Xinshun; Hou, Jun; Xiang, Heli; Ren, Li; Tian, Puxun; Xue, Wujun

    2012-09-01

    Acute rejection (AR) is a strong risk factor for chronic rejection in renal transplant recipients. Accurate and timely diagnosis of AR episodes is very important for disease control and prognosis. Therefore, objectively evaluated the immune status of patients is essential in the field of post-transplantation treatment. This longitudinal study investigated the usefulness of five biomarkers, human leukocyte antigen (HLA)-G5 and sCD30 level in sera, intracellular adenosine triphosphate (iATP) release level of CD4(+) T cells, and granzyme B/perforin expression in peripheral blood mononuclear cells (PBMCs) and biopsies, to detect AR and the resolution of biomarkers in a total of 84 cases of renal transplantation. The data demonstrated that recipients with clinical or biopsy proven rejection significantly increased iATP release level of CD4(+) T cells, and elevated sCD30 but lowered HLA-G5 level in sera compared with individuals with stable graft function. Expression levels of granzyme B and perforin were also elevated in PBMCs and graft biopsies of AR patients. Taken together, we identified that upregulation of sCD30, iATP, granzyme B, perforin, and downregulation of HLA-G5 could provide valuable diagnostic standards to identify those recipients in the risk of AR. And iATP may be a better biomarker than others for predicting the graft rejection episode.

  3. Modulation of extracellular ATP content of mast cells and DRG neurons by irradiation: studies on underlying mechanism of low-level-laser therapy.

    PubMed

    Wang, Lina; Hu, Lei; Grygorczyk, Ryszard; Shen, Xueyong; Schwarz, Wolfgang

    2015-01-01

    Low-level-laser therapy (LLLT) is an effective complementary treatment, especially for anti-inflammation and wound healing in which dermis or mucus mast cells (MCs) are involved. In periphery, MCs crosstalk with neurons via purinergic signals and participate in various physiological and pathophysiological processes. Whether extracellular ATP, an important purine in purinergic signaling, of MCs and neurons could be modulated by irradiation remains unknown. In this study, effects of red-laser irradiation on extracellular ATP content of MCs and dorsal root ganglia (DRG) neurons were investigated and underlying mechanisms were explored in vitro. Our results show that irradiation led to elevation of extracellular ATP level in the human mast cell line HMC-1 in a dose-dependent manner, which was accompanied by elevation of intracellular ATP content, an indicator for ATP synthesis, together with [Ca(2+)]i elevation, a trigger signal for exocytotic ATP release. In contrast to MCs, irradiation attenuated the extracellular ATP content of neurons, which could be abolished by ARL 67156, a nonspecific ecto-ATPases inhibitor. Our results suggest that irradiation potentiates extracellular ATP of MCs by promoting ATP synthesis and release and attenuates extracellular ATP of neurons by upregulating ecto-ATPase activity. The opposite responses of these two cell types indicate complex mechanisms underlying LLLT.

  4. A taste for ATP: neurotransmission in taste buds

    PubMed Central

    Kinnamon, Sue C.; Finger, Thomas E.

    2013-01-01

    Not only is ATP a ubiquitous source of energy but it is also used widely as an intercellular signal. For example, keratinocytes release ATP in response to numerous external stimuli including pressure, heat, and chemical insult. The released ATP activates purinergic receptors on nerve fibers to generate nociceptive signals. The importance of an ATP signal in epithelial-to-neuronal signaling is nowhere more evident than in the taste system. The receptor cells of taste buds release ATP in response to appropriate stimulation by tastants and the released ATP then activates P2X2 and P2X3 receptors on the taste nerves. Genetic ablation of the relevant P2X receptors leaves an animal without the ability to taste any primary taste quality. Of interest is that release of ATP by taste receptor cells occurs in a non-vesicular fashion, apparently via gated membrane channels. Further, in keeping with the crucial role of ATP as a neurotransmitter in this system, a subset of taste cells expresses a specific ectoATPase, NTPDase2, necessary to clear extracellular ATP which otherwise will desensitize the P2X receptors on the taste nerves. The unique utilization of ATP as a key neurotransmitter in the taste system may reflect the epithelial rather than neuronal origins of the receptor cells. PMID:24385952

  5. Campylobacter jejuni adenosine triphosphate phosphoribosyltransferase is an active hexamer that is allosterically controlled by the twisting of a regulatory tail.

    PubMed

    Mittelstädt, Gerd; Moggré, Gert-Jan; Panjikar, Santosh; Nazmi, Ali Reza; Parker, Emily J

    2016-08-01

    Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme. © 2016 The Protein Society.

  6. DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase

    PubMed Central

    Erdem, Aysen L; Jaszczur, Malgorzata; Bertram, Jeffrey G; Woodgate, Roger; Cox, Michael M; Goodman, Myron F

    2014-01-01

    Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD′2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required for DNA synthesis; (3) pol V Mut function is regulated by ATP, with ATP required to bind primer/template (p/t) DNA and ATP hydrolysis triggering dissociation from the DNA. Pol V Mut formed with an ATPase-deficient RecA E38K/K72R mutant hydrolyzes ATP rapidly, establishing the DNA-dependent ATPase as an intrinsic property of pol V Mut distinct from the ATP hydrolytic activity of RecA when bound to single-stranded (ss)DNA as a nucleoprotein filament (RecA*). No similar ATPase activity or autoregulatory mechanism has previously been found for a DNA polymerase. DOI: http://dx.doi.org/10.7554/eLife.02384.001 PMID:24843026

  7. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

    PubMed

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N

    2012-05-24

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival

    PubMed Central

    Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.

    2014-01-01

    Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499

  9. [Differential gene expression profile in ischemic myocardium of Wistar rats with acute myocardial infarction: the study on gene construction, identification and function].

    PubMed

    Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo

    2008-06-18

    To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.

  10. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction.

    PubMed

    van Zutphen, Tim; Ciapaite, Jolita; Bloks, Vincent W; Ackereley, Cameron; Gerding, Albert; Jurdzinski, Angelika; de Moraes, Roberta Allgayer; Zhang, Ling; Wolters, Justina C; Bischoff, Rainer; Wanders, Ronald J; Houten, Sander M; Bronte-Tinkew, Dana; Shatseva, Tatiana; Lewis, Gary F; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M; Jonker, Johan W; Kim, Peter K; Bandsma, Robert H J

    2016-12-01

    Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy production. To investigate the involvement of these organelles in the mechanisms underlying malnutrition-induced hepatic dysfunction we developed a rat model of malnutrition. Weanling rats were placed on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Peroxisomal and mitochondrial structural features were characterized using immunofluorescence and electron microscopy. Mitochondrial function was assessed using high-resolution respirometry. A novel targeted quantitative proteomics method was applied to analyze 47 mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle and fatty acid β-oxidation pathways. Low protein diet-fed rats developed hypoalbuminemia and hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated peroxisomal dysfunction. This was followed by changes in mitochondrial ultrastructure and increased mitochondrial content. Mitochondrial function was impaired due to multiple defects affecting respiratory chain complex I and IV, pyruvate uptake and several β-oxidation enzymes, leading to strongly reduced hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial β-oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. Malnutrition leads to severe impairments in hepatic peroxisomal and mitochondrial function, and hepatic metabolic dysfunction. We discuss the potential future implications of our findings for the clinical management of malnourished children. Severe malnutrition in children is associated with metabolic disturbances that are poorly understood. In order to study this further, we developed a malnutrition animal model and found that severe malnutrition leads to an impaired function of liver mitochondria which are essential for energy production and a loss of peroxisomes, which are important for normal liver metabolic function. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine.

    PubMed

    Laver, D R; Lenz, G K; Lamb, G D

    2001-12-15

    1. Nucleotide activation of skeletal muscle ryanodine receptors (RyRs) was studied in planar lipid bilayers in order to understand RyR regulation in vivo under normal and fatigued conditions. With 'resting' calcium (100 nM cytoplasmic and 1 mM luminal), RyRs had an open probability (P(o)) of approximately 0.01 in the absence of nucleotides and magnesium. ATP reversibly activated RyRs with P(o) at saturation (P(max)) approximately 0.33 and K(a) (concentration for half-maximal activation) approximately 0.36 mM and with a Hill coefficient (n(H)) of approximately 1.8 in RyRs when P(max) < 0.5 and approximately 4 when P(max) > 0.5. 2. AMP was a much weaker agonist (P(max) approximately 0.09) and adenosine was weaker still (P(max) approximately 0.01-0.02), whereas inosine monophosphate (IMP), the normal metabolic end product of ATP hydrolysis, produced no activation at all. 3. Adenosine acted as a competitive antagonist that reversibly inhibited ATP- and AMP-activated RyRs with n(H) approximately 1 and K(i) approximately 0.06 mM at [ATP] < 0.5 mM, increasing 4-fold for each 2-fold increase in [ATP] above 0.5 mM. This is explained by the binding of a single adenosine preventing the cooperative binding of two ATP or AMP molecules, with dissociation constants of 0.4, 0.45 and 0.06 mM for ATP, AMP and adenosine, respectively. Importantly, IMP (< or = 8 mM) had no inhibitory effect whatsoever on ATP-activated RyRs. 4. Mean open (tau(o)) and closed (tau(c)) dwell-times were more closely related to P(o) than to the nucleotide species or individual RyRs. At P(o) < 0.2, RyR regulation occurred via changes in tau(c), whereas at higher P(o) this also occurred via changes in tau(o). The detailed properties of activation and competitive inhibition indicated complex channel behaviour that could be explained in terms of a model involving interactions between different subunits of the RyR homotetramer. 5. The results also show how deleterious adenosine accumulation is to the function of RyRs in skeletal muscle and, by comparison with voltage sensor-controlled Ca(2+) release, indicate that voltage sensor activation requires ATP binding to the RyR to be effective.

  12. Dynamics of the metal binding domains and regulation of the human copper transporters ATP7B and ATP7A.

    PubMed

    Yu, Corey H; Dolgova, Natalia V; Dmitriev, Oleg Y

    2017-04-01

    Copper transporters ATP7A and ATP7B regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. ATP7A and ATP7B belong to the P-type ATPases and share much of the domain architecture and the mechanism of ATP hydrolysis with the other, well-studied, enzymes of this type. A unique structural feature of the copper ATPases is the chain of six cytosolic metal-binding domains (MBDs), which are believed to be involved in copper-dependent regulation of the activity and intracellular localization of these enzymes. Although the structures of all the MBDs have been solved, the mechanism of copper-dependent regulation of ATP7B and ATP7A, the roles of individual MBDs, and the relationship between the regulatory and catalytic copper binding are still unknown. We describe the structure and dynamics of the MBDs, review the current knowledge about their functional roles and propose a mechanism of regulation of ATP7B by copper-dependent changes in the dynamics and conformation of the MBD chain. Transient interactions between the MBDs, rather than transitions between distinct static conformations are likely to form the structural basis of regulation of the ATP-dependent copper transporters in human cells. © 2016 IUBMB Life, 69(4):226-235, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  13. Medicinal Chemistry of ATP Synthase: A Potential Drug Target of Dietary Polyphenols and Amphibian Antimicrobial Peptides

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.

    2015-01-01

    In this review we discuss the inhibitory effects of dietary polyphenols and amphibian antimicrobial/antitumor peptides on ATP synthase. In the beginning general structural features highlighting catalytic and motor functions of ATP synthase will be described. Some details on the presence of ATP synthase on the surface of several animal cell types, where it is associated with multiple cellular processes making it an interesting drug target with respect to dietary polyphenols and amphibian antimicrobial peptides will also be reviewed. ATP synthase is known to have distinct polyphenol and peptide binding sites at the interface of α/β subunits. Molecular interaction of polyphenols and peptides with ATP synthase at their respective binding sites will be discussed. Binding and inhibition of other proteins or enzymes will also be covered so as to understand the therapeutic roles of both types of molecules. Lastly, the effects of polyphenols and peptides on the inhibition of Escherichia coli cell growth through their action on ATP synthase will also be presented. PMID:20586714

  14. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae).

    PubMed

    Chen, Yawei; Tan, Tianwei

    2018-05-23

    In the biosynthesis of S-adenosylmethionine (SAM) in baker's yeast ( Saccharomyces cerevisiae), ATP functions as both a precursor and a driving force. However, few published reports have dealt with the control of ATP concentration using genetic design. In this study we have adopted a new ATP regulation strategy in yeast for enhancing SAM biosynthesis, including altering NADH availability and regulating the oxygen supply. Different ATP regulation systems were designed based on the introduction of water-forming NADH oxidase, Vitreoscilla hemoglobin, and phosphite dehydrogenase in combination with overexpression of the gene SAM2. Via application of this strategy, after 28 h cultivation, the SAM titer in the yeast strain ABYSM-2 reached a maximum level close to 55 mg/L, an increase of 67% compared to the control strain. The results show that the ATP regulation strategy is a valuable tool for SAM production and might further enhance the synthesis of other ATP-driven metabolites in yeast.

  15. Minoxidil opens mitochondrial K(ATP) channels and confers cardioprotection.

    PubMed

    Sato, Toshiaki; Li, Yulong; Saito, Tomoaki; Nakaya, Haruaki

    2004-01-01

    1. ATP-sensitive potassium channel in the mitochondrial inner membrane (mitoK(ATP) channel) rather than in the sarcolemma (sarcK(ATP) channel) appears to play an important role in cardioprotection. We examined the effect of minoxidil, a potent antihypertensive agent and hair growth stimulator, on sarcK(ATP) and mitoK(ATP) channels in guinea-pig ventricular myocytes. 2. Minoxidil activated a glybenclamide-sensitive sarcK(ATP) channel current in the whole-cell recording mode with an EC(50) of 182.6 microm. Minoxidil reversibly increased the flavoprotein oxidation, an index of mitoK(ATP) channel activity, in a concentration-dependent manner. The EC(50) for mitoK(ATP) channel activation was estimated to be 7.3 microm; this value was notably approximately 25-fold lower than that for sarcK(ATP) channel activation. 3. Minoxidil (10 microm) significantly attenuated the ouabain-induced increase of mitochondrial Ca(2+) concentration, which was measured by loading cells with rhod-2 fluorescence. Furthermore, pretreatment with minoxidil (10 microm) before 20-min no-flow ischaemia significantly improved the recovery of developed tension measured after 60 min of reperfusion in coronary perfused guinea-pig ventricular muscles. These cardioprotective effects of minoxidil were completely abolished by the mitoK(ATP) channel blocker 5-hydroxydecanoate (500 microm). 4. Our results indicate that minoxidil exerts a direct cardioprotective effect on heart muscle cells, an effect mediated by the selective activation of mitoK(ATP) channels.

  16. Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation.

    PubMed

    Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika

    2017-05-11

    T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napa hyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napa hyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP] i . Depletion of [ATP] i inhibited mTORC2 dependent NFκB activation in Napa hyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napa hyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function.

  17. ATP6AP2 over-expression causes morphological alterations in the hippocampus and in hippocampus-related behaviour.

    PubMed

    Bracke, A; Schäfer, S; von Bohlen Und Halbach, V; Klempin, F; Bente, K; Bracke, K; Staar, D; van den Brandt, J; Harzsch, S; Bader, M; Wenzel, U O; Peters, J; von Bohlen Und Halbach, O

    2018-02-23

    The (pro)renin receptor [(P)RR], also known as ATP6AP2 [ATPase 6 accessory protein 2], is highly expressed in the brain. ATP6AP2 plays a role in early brain development, adult hippocampal neurogenesis and in cognitive functions. Lack of ATP6AP2 has deleterious effects, and mutations of ATP6AP2 in humans are associated with, e.g. X-linked intellectual disability. However, little is known about the effects of over-expression of ATP6AP2 in the adult brain. We hypothesized that mice over-expressing ATP6AP2 in the brain might exhibit altered neuroanatomical features and behavioural responses. To this end, we investigated heterozygous transgenic female mice and confirmed increased levels of ATP6AP2 in the brain. Our data show that over-expression of ATP6AP2 does not affect adult hippocampal neurogenesis, exercise-induced cell proliferation, or dendritic spine densities in the hippocampus. Only a reduced ventricular volume on the gross morphological level was found. However, ATP6AP2 over-expressing mice displayed altered exploratory behaviour with respect to the hole-board and novel object recognition tests. Moreover, primary adult hippocampal neural stem cells over-expressing ATP6AP2 exhibit a faster cell cycle progression and increased cell proliferation. Together, in contrast to the known deleterious effects of ATP6AP2 depletion, a moderate over-expression results in moderate behavioural changes and affects cell proliferation rate in vitro.

  18. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase.

    PubMed

    Komuro, Yasuaki; Re, Suyong; Kobayashi, Chigusa; Muneyuki, Eiro; Sugita, Yuji

    2014-09-09

    Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.

  19. Renal Atp6ap2/(Pro)renin Receptor Is Required for Normal Vacuolar H+-ATPase Function but Not for the Renin-Angiotensin System.

    PubMed

    Trepiccione, Francesco; Gerber, Simon D; Grahammer, Florian; López-Cayuqueo, Karen I; Baudrie, Véronique; Păunescu, Teodor G; Capen, Diane E; Picard, Nicolas; Alexander, R Todd; Huber, Tobias B; Chambrey, Regine; Brown, Dennis; Houillier, Pascal; Eladari, Dominique; Simons, Matias

    2016-11-01

    ATPase H + -transporting lysosomal accessory protein 2 (Atp6ap2), also known as the (pro)renin receptor, is a type 1 transmembrane protein and an accessory subunit of the vacuolar H + -ATPase (V-ATPase) that may also function within the renin-angiotensin system. However, the contribution of Atp6ap2 to renin-angiotensin-dependent functions remains unconfirmed. Using mice with an inducible conditional deletion of Atp6ap2 in mouse renal epithelial cells, we found that decreased V-ATPase expression and activity in the intercalated cells of the collecting duct impaired acid-base regulation by the kidney. In addition, these mice suffered from marked polyuria resistant to desmopressin administration. Immunoblotting revealed downregulation of the medullary Na + -K + -2Cl - cotransporter NKCC2 in these mice compared with wild-type mice, an effect accompanied by a hypotonic medullary interstitium and impaired countercurrent multiplication. This phenotype correlated with strong autophagic defects in epithelial cells of medullary tubules. Notably, cells with high accumulation of the autophagosomal substrate p62 displayed the strongest reduction of NKCC2 expression. Finally, nephron-specific Atp6ap2 depletion did not affect angiotensin II production, angiotensin II-dependent BP regulation, or sodium handling in the kidney. Taken together, our results show that nephron-specific deletion of Atp6ap2 does not affect the renin-angiotensin system but causes a combination of renal concentration defects and distal renal tubular acidosis as a result of impaired V-ATPase activity. Copyright © 2016 by the American Society of Nephrology.

  20. Patterns of control of maximum metabolic rate in humans.

    PubMed

    Hochachka, Peter W; Beatty, Cheryl L

    2003-09-01

    In this analysis, four performance phenotypes were used to compare mechanisms of control of aerobic maximum metabolic rate (MMR): (i) untrained sedentary (US) subjects, as a reference group against which to compare (ii) power trained (PT), (iii) endurance trained (ET) and (iv) high altitude adapted native (HA) subject groups. Sprinters represented the PT group; long distance runners illustrated the ET group; and Quechuas represented the HA group. Numerous recent studies have identified contributors to control on both the adenosine triphosphate (ATP) supply side and the ATP demand side of ATP turnover. Control coefficients or c(i) values were defined as fractional change in MMR/fractional change in the capacity of any given step in ATP turnover. From the best available evidence it appears that at MMR all five of the major steps in energy delivery (namely, ventilation, pulmonary diffusion, cardiac output, tissue capillary - mitochondrial O(2) transfer, and aerobic cell metabolism per se) approach an upper functional ceiling, with control strength being distributed amongst the various O(2) flux steps. On the energy demand side, the situation is somewhat simplified since at MMR approximately 90% of O(2)-based ATP synthesis is used for actomyosin (AM) and Ca(2+) ATPases; at MMR these two ATP demand rates also appear to be near an upper functional ceiling. In consequence, at MMR the control contributions or c(i) values are rather evenly divided amongst all seven major steps in ATP supply and ATP demand pathways right to the point of fatigue. Relative to US (the reference group), in PT subjects at MMR control strength shifts towards O(2) delivery steps (ventilation, pulmonary diffusion and cardiac output). In contrast in ET and HA subjects at MMR control shifts towards the energy demand steps (AM and Ca(2+) ATPases), and more control strength is focussed on tissue level ATP supply and ATP demand. One obvious advantage of the ET and HA control pattern is improved metabolite homeostasis. Another possibility is that, with some reserve capacity in the O(2) delivery steps and control focussed on ATP turnover at the tissue level, nature has designed the ideal 'endurance machine'.

  1. Control of maximum metabolic rate in humans: dependence on performance phenotypes.

    PubMed

    Hochachka, Peter W; Burelle, Yan

    2004-01-01

    Borrowing from metabolic control analysis the concept of control coefficients or ci values, defined as fractional change in MMR/fractional change in the capacity of any given step in ATP turnover, we used four performance phenotypes to compare mechanisms of control of aerobic maximum metabolic rate (MMR): (i) untrained sedentary (US) subjects, as a reference group against which to compare (ii) power trained (PT), (iii) endurance trained (ET), and (iv) high altitude adapted native (HA) subject groups. Sprinters represented the PT group; long distance runners illustrated the ET group; and Andean natives represented the HA group. Numerous recent studies have identified contributors to control on both the adenosine triphosphate (ATP) supply side and the ATP demand side of ATP turnover. From the best available evidence it appears that at MMR all five of the major steps in energy delivery (namely, ventilation, pulmonary diffusion, cardiac output, tissue capillary--mitochondrial O2 transfer, and aerobic cell metabolism per se) approach an upper functional ceiling, with control strength being distributed amongst the various O2 flux steps. On the energy demand side, the situation is somewhat simplified since at MMR approximately 90% of O2-based ATP synthesis is used for actomyosin (AM) and Ca2+ ATPases; at MMR these two ATP demand rates also appear to be near an upper functional ceiling. In consequence, at MMR the control contributions or ci values are distributed amongst all seven major steps in ATP supply and ATP demand pathways right to the point of fatigue. Relative to US (the reference group), in PT subjects at MMR control strength shifts towards O2 delivery steps (ventilation, pulmonary diffusion, and cardiac output); here physiological regulation clearly dominates MMR control. In contrast in ET and HA subjects at MMR control shifts towards the energy demand steps (AM and Ca2+ ATPases), and more control strength is focussed on tissue level ATP supply and ATP demand. One obvious advantage of the ET and HA biochemical-level control is improved metabolite homeostasis. Additionally, with some reserve capacity in the O2 delivery steps, the focussing of control on ATP turnover at the tissue level has allowed nature to improve on an 'endurance machine' design.

  2. ATP hydrolysis assists phosphate release and promotes reaction ordering in F1-ATPase

    PubMed Central

    Li, Chun-Biu; Ueno, Hiroshi; Watanabe, Rikiya; Noji, Hiroyuki; Komatsuzaki, Tamiki

    2015-01-01

    F1-ATPase (F1) is a rotary motor protein that can efficiently convert chemical energy to mechanical work of rotation via fine coordination of its conformational motions and reaction sequences. Compared with reactant binding and product release, the ATP hydrolysis has relatively little contributions to the torque and chemical energy generation. To scrutinize possible roles of ATP hydrolysis, we investigate the detailed statistics of the catalytic dwells from high-speed single wild-type F1 observations. Here we report a small rotation during the catalytic dwell triggered by the ATP hydrolysis that is indiscernible in previous studies. Moreover, we find in freely rotating F1 that ATP hydrolysis is followed by the release of inorganic phosphate with low synthesis rates. Finally, we propose functional roles of the ATP hydrolysis as a key to kinetically unlock the subsequent phosphate release and promote the correct reaction ordering. PMID:26678797

  3. Probing the ATP site of GRP78 with nucleotide triphosphate analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78 ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligandsmore » (ATP analogs) to a receptor (GRP78 ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78 ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg ++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg ++-dependent, as the removal of Mg ++ nearly abolished binding to GRP78 ATPase. The AMPPCP-Mg ++ structure showed evidence for the critical role of Mg ++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg ++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg ++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Altogether, our results demonstrate that GRP78 ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the beta-gamma bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.« less

  4. Probing the ATP site of GRP78 with nucleotide triphosphate analogs

    DOE PAGES

    Hughes, Scott J.; Antoshchenko, Tetyana; Chen, Yun; ...

    2016-05-04

    GRP78, a member of the ER stress protein family, can relocate to the surface of cancer cells, playing key roles in promoting cell proliferation and metastasis. GRP78 consists of two major functional domains: the ATPase and protein/peptide-binding domains. The protein/peptide-binding domain of cell-surface GRP78 has served as a novel functional receptor for delivering cytotoxic agents (e.g., a apoptosis-inducing peptide or taxol) across the cell membrane. Here, we report our study on the ATPase domain of GRP78 (GRP78 ATPase), whose potential as a transmembrane delivery system of cytotoxic agents (e.g., ATP-based nucleotide triphosphate analogs) remains unexploited. As the binding of ligandsmore » (ATP analogs) to a receptor (GRP78 ATPase) is a pre-requisite for internalization, we determined the binding affinities and modes of GRP78 ATPase for ADP, ATP and several ATP analogs using surface plasmon resonance and x-ray crystallography. The tested ATP analogs contain one of the following modifications: the nitrogen at the adenine ring 7-position to a carbon atom (7-deazaATP), the oxygen at the beta-gamma bridge position to a carbon atom (AMPPCP), or the removal of the 2'-OH group (2'-deoxyATP). We found that 7-deazaATP displays an affinity and a binding mode that resemble those of ATP regardless of magnesium ion (Mg ++) concentration, suggesting that GRP78 is tolerant to modifications at the 7-position. By comparison, AMPPCP's binding affinity was lower than ATP and Mg ++-dependent, as the removal of Mg ++ nearly abolished binding to GRP78 ATPase. The AMPPCP-Mg ++ structure showed evidence for the critical role of Mg ++ in AMPPCP binding affinity, suggesting that while GRP78 is sensitive to modifications at the β-γ bridge position, these can be tolerated in the presence of Mg ++. Furthermore, 2'-deoxyATP's binding affinity was significantly lower than those for all other nucleotides tested, even in the presence of Mg ++. The 2'-deoxyATP structure showed the conformation of the bound nucleotide flipped out of the active site, explaining the low affinity binding to GRP78 and suggesting that the 2'-OH group is essential for the high affinity binding to GRP78. Altogether, our results demonstrate that GRP78 ATPase possesses nucleotide specificity more relaxed than previously anticipated and can tolerate certain modifications to the nucleobase 7-position and, to a lesser extent, the beta-gamma bridging atom, thereby providing a possible atomic mechanism underlying the transmembrane transport of the ATP analogs.« less

  5. Deletion of a unique loop in the mycobacterial F-ATP synthase γ subunit sheds light on its inhibitory role in ATP hydrolysis-driven H(+) pumping.

    PubMed

    Hotra, Adam; Suter, Manuel; Biuković, Goran; Ragunathan, Priya; Kundu, Subhashri; Dick, Thomas; Grüber, Gerhard

    2016-05-01

    The F1 FO -ATP synthase is one of the enzymes that is essential to meet the energy requirement of both the proliferating aerobic and hypoxic dormant stages of the life cycle of mycobacteria. Most F-ATP synthases consume ATP in the α3 :β3 headpiece to drive the γ subunit, which couples ATP cleavage with proton pumping in the c ring of FO via the bottom of the γ subunit. ATPase-driven H(+) pumping is latent in mycobacteria. The presence of a unique 14 amino acid residue loop of the mycobacterial γ subunit has been described and aligned in close vicinity to the c-ring loop Priya R et al. (2013) J Bioenerg Biomembr 45, 121-129 Here, we used inverted membrane vesicles (IMVs) of fast-growing Mycobacterium smegmatis and a variety of covalent and non-covalent inhibitors to characterize the ATP hydrolysis activity of the F-ATP synthase inside IMVs. These vesicles formed a platform to investigate the function of the unique mycobaterial γ loop by deleting the respective loop-encoding sequence (γ166-179 ) in the genome of M. smegmatis. ATP hydrolysis-driven H(+) pumping was observed in IMVs containing the Δγ166-179 mutant protein but not for IMVs containing the wild-type F-ATP synthase. In addition, when compared to the wild-type enzyme, IMVs containing the Δγ166-179 mutant protein showed increased ATP cleavage and lower levels of ATP synthesis, demonstrating that the loop affects ATPase activity, ATPase-driven H(+) pumping and ATP synthesis. These results further indicate that the loop may affect coupling of ATP hydrolysis and synthesis in a different mode. © 2016 Federation of European Biochemical Societies.

  6. Integration of motor proteins - towards an ATP fueled soft actuator.

    PubMed

    Kakugo, Akira; Shikinaka, Kazuhiro; Gong, Jian Ping

    2008-09-01

    We present a soft bio-machine constructed from biological motors (actin/myosin). We have found that chemically cross-linked polymer-actin complex gel filaments can move on myosin coated surfaces with a velocity as high as that of native F-actin, by coupling to ATP hydrolysis. Additionally, it is shown that the velocity of polymer-actin complex gel depends on the species of polycations binding to the F-actins. Since the design of functional actuators of well-defined size and morphology is important, the structural behavior of polymer-actin complexes has been investigated. Our results show that the morphology and growth size of polymer-actin complex can be controlled by changes in the electrostatic interactions between F-actins and polycations. Our results indicate that bio actuators with desired shapes can be created by using a polymer-actin complex.

  7. β-Nicotinamide Adenine Dinucleotide (β-NAD) Inhibits ATP-Dependent IL-1β Release from Human Monocytic Cells.

    PubMed

    Hiller, Sebastian Daniel; Heldmann, Sarah; Richter, Katrin; Jurastow, Innokentij; Küllmar, Mira; Hecker, Andreas; Wilker, Sigrid; Fuchs-Moll, Gabriele; Manzini, Ivan; Schmalzing, Günther; Kummer, Wolfgang; Padberg, Winfried; McIntosh, J Michael; Damm, Jelena; Zakrzewicz, Anna; Grau, Veronika

    2018-04-10

    While interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1β maturation, is released from damaged cells along with β-nicotinamide adenine dinucleotide (β-NAD). Here, we tested the hypothesis that β-NAD controls ATP-signaling and, hence, IL-1β release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')- O -(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of β-NAD. IL-1β was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca 2+ -independent phospholipase A2 (iPLA2β, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous β-NAD signaled via P2Y receptors and dose-dependently (IC 50 = 15 µM) suppressed the BzATP-induced IL-1β release. Signaling involved iPLA2β, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that β-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular β-NAD that suppresses ATP-induced release of IL-1β by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.

  8. Role of protons in the pump cycle of KdpFABC investigated by time-resolved kinetic experiments.

    PubMed

    Damnjanovic, Bojana; Apell, Hans-Jürgen

    2014-05-20

    The time-resolved kinetics of the KdpFABC complex solubilized in Aminoxide WS-35 was investigated by ATP concentration jump experiments. ATP was photoreleased from its inactive precursor, caged ATP, and charge movements in the membrane domain of the KdpFABC were detected by the electrochromic dye RH421. At low ATP concentrations, the ATP binding step became rate-limiting with an apparent, pH-independent ATP binding affinity of ~70 μM. At saturating ATP concentrations, the rate-limiting step is the conformational transition (E1-P → P-E2) with a rate constant of ~1.7 s(-1) at 20 °C that was independent of K(+) concentration. This observation together with the detected fluorescence decrease indicates that K(+) (or another positive ion) is bound in the membrane domain after enzyme phosphorylation and the conformational transition to the P-E2 state. pH dependence experiments revealed different roles of H(+) in the transport mechanism. Two different functions of protons for the ion pump must be distinguished. On one hand, there are electrogenically bound "functional" protons, which are not transported but prerequisite for the performance of the ATP-driven half-cycle. On the other hand, protons bind to the transport sites, acting as weak congeners of K(+). There possibly are noncompetitively bound protons, affecting the enzyme activity and/or coupling between KdpA and KdpB subunits. Finally, the recently proposed Post-Albers model for the KdpFABC complex was supplemented with stoichiometry factors of 2 for K(+) and 3 for H(+), and additional inhibitory side reactions controlled by H(+) were introduced, which are relevant at pH <6.5 and/or in the absence of K(+).

  9. Investigation on the electrochemical interfacial properties of 2-aminothiophenol functionalized graphene oxide modified electrode

    NASA Astrophysics Data System (ADS)

    Immanuel, Susan; Aparna T., K.; Sivasubramanian, R.

    2018-04-01

    In this paper the interfacial behavior of graphene oxide and 2-aminothiophenol functionalized graphene oxide was investigated by electrochemical method. The GO was prepared by modified Hummers method and the 2-aminothiophenol was covalently attached on the surface of GO sheets. The electrochemical properties were investigated using a redox couple and the electrokinetic parameter was inferred. It was found that the ATP-GO exhibited slow kinetics compared to GO due to the increased deformation of GO sheets after ATP functionalization.

  10. The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ54-Dependent Transcription

    PubMed Central

    2012-01-01

    Summary: Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ54. We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ54 for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ54-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ54 to the bacterial cell and its unique role in regulating transcription. PMID:22933558

  11. Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    PubMed Central

    Andreoletti, Pierre; Raas, Quentin; Gondcaille, Catherine; Cherkaoui-Malki, Mustapha; Trompier, Doriane; Savary, Stéphane

    2017-01-01

    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues. PMID:28737695

  12. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Mechanical stress-induced interleukin-1beta expression through adenosine triphosphate/P2X7 receptor activation in human periodontal ligament cells.

    PubMed

    Kanjanamekanant, K; Luckprom, P; Pavasant, P

    2013-04-01

    Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.

  14. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.

    PubMed

    Sriram, M; Osipiuk, J; Freeman, B; Morimoto, R; Joachimiak, A

    1997-03-15

    The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes in protein structure as a result of calcium binding may facilitate phosphorylation. A small, but significant, movement of metal ions and sidechains could position catalytically important threonine residues for phosphorylation. The second calcium site represents a new calcium-binding motif that can play a role in the stabilization of protein structure. We discuss how the information about catalytic events in the active site could be transmitted to the peptide-binding domain.

  15. Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages

    PubMed Central

    Into, Takeshi; Fujita, Mari; Okusawa, Tsugumi; Hasebe, Akira; Morita, Manabu; Shibata, Ken-Ichiro

    2002-01-01

    Mycoplasmal lipopeptides S-(2,3-bispalmitoyloxypropyl)-CGDPKHSPKSF and S-(2,3-bispalmitoyloxypropyl)-CGNNDESNISFKEK activated a monocytic cell line, THP-1 cells, to produce tumor necrosis factor alpha. The activity of the lipopeptides was augmented by ATP in a dose-dependent manner. In addition, the level of expression of mRNAs for tumor necrosis factor alpha and interleukin-1β, -6, and -8 was also upregulated by the lipopeptides and/or extracellular ATP, but that of interleukin-10 was not. The P2X purinergic receptor antagonists pyridoxal phosphate 6-azophenyl 2′,4′-disulfonic acid and periodate-oxidized ATP suppressed the activity of ATP to augment the activation of THP-1 cells by the lipopeptides, suggesting that P2X receptors play important roles in the activity of ATP. The nuclear factor κB inhibitor dexamethasone also suppressed the activity, suggesting that the activity of ATP is dependent upon the nuclear factor κB. Thus, these results suggest that the interaction of extracellular ATP with the P2X receptors is attributed to the activity of ATP to augment the activation of THP-1 cells by mycoplasmal lipopeptides. PMID:12065499

  16. Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides.

    PubMed

    Powner, Michael B; Salt, Thomas E; Hogg, Chris; Jeffery, Glen

    2016-01-01

    Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies.

  17. Seahorse Xfe24 Extracellular Flux Analyzer-based analysis of cellular respiration in Caenorhabditis elegans

    PubMed Central

    Luz, Anthony L.; Smith, Latasha L.; Rooney, John P.

    2015-01-01

    Mitochondria are critical for their role in ATP production as well as multiple nonenergetic functions, and mitochondrial dysfunction is causal in myriad human diseases. Less well appreciated is the fact that mitochondria integrate environmental and inter- as well as intracellular signals to modulate function. Because mitochondria function in an organismal milieu, there is need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Extracellular Flux Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide (DCCD, ATP synthase inhibitor), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we describe how to obtain in vivo measurements of the fundamental parameters (basal oxygen consumption rate (OCR), ATP-linked respiration, maximal OCR, spare respiratory capacity and proton leak) of the mitochondrial respiratory chain in the model organism Caenorhabditis elegans. PMID:26523474

  18. Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels.

    PubMed

    Barr, Travis P; Albrecht, Phillip J; Hou, Quanzhi; Mongin, Alexander A; Strichartz, Gary R; Rice, Frank L

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.

  19. Simulations of the myosin II motor reveal a nucleotide-state sensing element that controls the recovery stroke.

    PubMed

    Koppole, Sampath; Smith, Jeremy C; Fischer, Stefan

    2006-08-18

    During the recovery stroke, the myosin motor is primed for the next power stroke by a 60 degree rotation of its lever arm. This reversible motion is coupled to the activation of the ATPase function of myosin through conformational changes along the relay helix, which runs from the Switch-2 loop near the ATP to the converter domain carrying the lever arm. Via a hydrogen bond between the side-chain of Asn475 on the relay helix and the Gly457/Ser456 peptide group on the Switch-2, the rotation of the converter domain is coupled to the formation of a hydrogen bond between Gly457 and gamma-phosphate that is essential for ATP hydrolysis. Here, molecular dynamics simulations of Dictyostelium discoideum myosin II in the two end conformations of the recovery stroke with different nucleotide states (ATP, ADP x Pi, ADP) reveal that the side-chain of Asn475 breaks away from Switch-2 upon ATP hydrolysis to make a hydrogen bond with Tyr573. This sensing of the nucleotide state is achieved by a small displacement of the cleaved gamma-phosphate towards Gly457 which in turn pushes Asn475 away. The sensing plays a dual role by (i) preventing the wasteful reversal of the recovery stroke while the nucleotide is in the ADP x Pi state, and (ii) decoupling the relay helix from Switch-2, thus allowing the power stroke to start upon initial binding to actin while Gly457 of Switch-2 keeps interacting with the Pi (known to be released only later after tight actin binding). A catalytically important salt bridge between Arg238 (on Switch-1) and Glu459 (on Switch-2), which covers the hydrolysis site, is seen to form rapidly when ATP is added to the pre-recovery stroke conformer and remains stable after the recovery stroke, indicating that it has a role in shaping the ATP binding site by induced fit.

  20. ATP Synthesis in the Extremely Halophilic Bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Morrison, David (Technical Monitor)

    1994-01-01

    The proton-translocating ATPases are multimeric enzymes that carry out a multitude of essential functions. Their origin and evolution represent a seminal event in the early evolution of life. Amino acid sequences of the two largest subunits from archaeal ATPases (A-ATPases), vacuolar ATPases (V-ATPases), and FOF1-ATP syntheses (FATPases) suggest these ATPases evolved from an ancestral vacuolar-like ATP syntheses. A necessary consequence of this notion is that the A-ATPases are ATP syntheses. With the possible exception of the A-ATPase from Halobacterium salinarium. no A-ATPase has been demonstrated to synthesize ATP. The evidence for this case is dubious since ATP synthesis occurs only when conditions are distinctively unphysiological. We demonstrated that ATP synthesis in H.saccharovorum is inconsistent with the operation of an A-type ATPase. In order to determine if this phenomenon was unique to H. saccharovorum, ATP synthesis was examined in various extremely halophilic bacteria with the goal of ascertaining if it resembled what occurred in a. saccharovorum, or was consistent with the operation of an A-type ATPase. A-, V-, and F-type ATPases respond singularly to certain inhibitors. Therefore, the effect of these inhibitors on ATP synthesis in several extreme halophiles was determined. Inhibitors that either blocked or collapsed proton-gradients inhibited the steady state synthesis of ATP thus verifying that synthesis took place at the expense of a proton gradient. Azide, an inhibitor of F-ATPases inhibited ATP synthesis. Since the arginine-dependent synthesis of ATP, which occurs by way of substrate-level phosphorylation, was unaffected by azide, it was unlikely that azide acted as an "uncoupler." N -ethylmaleimide and nitrate, which inhibit V- and A-ATPases, either did not inhibit ATP synthesis or resulted in higher steady-state levels of ATP. These results suggest there are two types of proton-motive ATPases in the extreme halophiles (and presumably in other Archaea). One, the V-like enzyme which, provides protons that are subsequently used for solute translocation. The other ATPase is the familiar and ubiquitous F-ATPase that functions as a reversible proton pump and is the ATP Synthase in the extreme halophiles. Thus, while the suggested evolution of the proton -translocating ATPases accounts for the relationship among these ATPases, this scheme does not account for the presence of F-ATPases in the Archaea. Discounting lateral gene transfer, perhaps an F-type ATPase evolved before the eucaryal-archaeal and bacterial bifurcation. The presence of V-type ATPases in the Bacterial Domain is consistent with this suggestion. Finally, it is of interest to note that if an F-type ATPase appeared before the bifurcation, an endosymbiotic event need not be invoked to explain the presence of F-ATPases in the Eucarya.

  1. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Effects of adenosine triphosphate (ATP) on early recovery after total knee arthroplasty (TKA): a randomized, double-blind, controlled study.

    PubMed

    Long, Gong; Zhang, Guo Qiang

    2014-12-01

    Functional exercise after total knee arthroplasty (TKA) is necessary. However, it may be a difficult and painful process for the patient. Desirable methods of relieving the patient's pain are worth exploring. Oral supplement of adenosine triphosphate (ATP) is a potential option. In the present study, we decide to investigate whether short-term administration of ATP benefits patients undergoing TKA. A total of 244 subjects were randomized to receive 120mg ATP or placebo each day for 4weeks. Significant differences in quadriceps strength, pain scores at postoperative days 7, 14, 21, and 28 and total opioid consumption were detected. It follows that oral supplement of ATP could benefit patients recovering from TKA. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.

    PubMed

    Yuan, Yang; Peng, Li; Gong-Hua, Hu; Lu, Dai; Xia-Li, Zhong; Yu, Zhou; Cai-Gao, Zhong

    2012-06-01

    This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P < 0.05). The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI) on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

  4. Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region.

    PubMed

    Pandey, Bharati; Grover, Sonam; Goyal, Sukriti; Kumari, Anchala; Singh, Aditi; Jamal, Salma; Kaur, Jagdeep; Grover, Abhinav

    2018-01-17

    The enzyme Pantothenate synthetase (PS) represents a potential drug target in Mycobacterium tuberculosis. Its X-ray crystallographic structure has demonstrated the significance and importance of conserved active site residues including His44, His47, Asn69, Gln72, Lys160 and Gln164 in substrate binding and formation of pantoyl adenylate intermediate. In the current study, molecular mechanism of decreased affinity of the enzyme for ATP caused by alanine mutations was investigated using molecular dynamics (MD) simulations and free energy calculations. A total of seven systems including wild-type + ATP, H44A + ATP, H47A + ATP, N69A + ATP, Q72A + ATP, K160A + ATP and Q164A + ATP were subjected to 50 ns MD simulations. Docking score, MM-GBSA and interaction profile analysis showed weak interactions between ATP (substrate) and PS (enzyme) in H47A and H160A mutants as compared to wild-type, leading to reduced protein catalytic activity. However, principal component analysis (PCA) and free energy landscape (FEL) analysis revealed that ATP was strongly bound to the catalytic core of the wild-type, limiting its movement to form a stable complex as compared to mutants. The study will give insight about ATP binding to the PS at the atomic level and will facilitate in designing of non-reactive analogue of pantoyl adenylate which will act as a specific inhibitor for PS.

  5. Nicotinamide pre-treatment ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia

    PubMed Central

    Shetty, Pavan K; Galeffi, Francesca; Turner, Dennis A.

    2014-01-01

    Prolonged hypoxia leads to irreversible loss of neuronal function and metabolic impairment of nicotinamide adenine dinucleotide recycling (between NAD+ and NADH) immediately after reoxygenation, resulting in NADH hyperoxidation. We test whether addition of nicotinamide (to enhance NAD+ levels) or PARP-1 inhibition (to prevent consumption of NAD+) can be effective in improving either loss of neuronal function or hyperoxidation following severe hypoxic injury in hippocampal slices. After severe, prolonged hypoxia (maintained for 3 min after spreading depression) there was hyperoxidation of NADH following reoxygenation, an increased soluble NAD+/NADH ratio, loss of neuronal field excitatory post-synaptic potential (fEPSP) and decreased ATP content. Nicotinamide incubation (5 mM) 2 hr prior to hypoxia significantly increased total NAD(H) content, improved neuronal recovery, enhanced ATP content, and prevented NADH hyperoxidation. The nicotinamide-induced increase in total soluble NAD(H) was more significant in the cytosolic compartment than within mitochondria. Prolonged incubation with PJ-34 (>1hr) led to enhanced baseline NADH fluorescence prior to hypoxia, as well as improved neuronal recovery, NADH hyperoxidation and ATP content on recovery from severe hypoxia and reoxygenation. In this acute model of severe neuronal dysfunction prolonged incubation with either nicotinamide or PJ-34 prior to hypoxia improved recovery of neuronal function, enhanced NADH reduction and ATP content, but neither treatment restored function when administered during or after prolonged hypoxia and reoxygenation. PMID:24184921

  6. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase*

    PubMed Central

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.

    2015-01-01

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  7. Origin recognition is the predominant role for DnaA-ATP in initiation of chromosome replication.

    PubMed

    Grimwade, Julia E; Rozgaja, Tania A; Gupta, Rajat; Dyson, Kyle; Rao, Prassanna; Leonard, Alan C

    2018-05-25

    In all cells, initiation of chromosome replication depends on the activity of AAA+ initiator proteins that form complexes with replication origin DNA. In bacteria, the conserved, adenosine triphosphate (ATP)-regulated initiator protein, DnaA, forms a complex with the origin, oriC, that mediates DNA strand separation and recruitment of replication machinery. Complex assembly and origin activation requires DnaA-ATP, which differs from DnaA-ADP in its ability to cooperatively bind specific low affinity sites and also to oligomerize into helical filaments. The degree to which each of these activities contributes to the DnaA-ATP requirement for initiation is not known. In this study, we compared the DnaA-ATP dependence of initiation from wild-type Escherichia coli oriC and a synthetic origin (oriCallADP), whose multiple low affinity DnaA sites bind DnaA-ATP and DnaA-ADP similarly. OriCallADP was fully occupied and unwound by DnaA-ADP in vitro, and, in vivo, oriCallADP suppressed lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, loss of preferential DnaA-ATP binding caused over-initiation and increased sensitivity to replicative stress. The findings indicate both DnaA-ATP and DnaA-ADP can perform most of the mechanical functions needed for origin activation, and suggest that a key reason for ATP-regulation of DnaA is to control replication initiation frequency.

  8. Cloning and functional analysis of P2X1b, a new variant in rat optic nerve that regulates the P2X1 receptor in a use-dependent manner.

    PubMed

    Rangel-Yescas, Gisela E; Vazquez-Cuevas, Francisco G; Garay, Edith; Arellano, Rogelio O

    2012-01-01

    P2X receptors are trimeric, ATP-gated cation channels. In mammals seven P2X subtypes have been reported (P2X1-P2X7), as well as several variants generated by alternative splicing. Variants confer to the homomeric or heteromeric channels distinct functional and/or pharmacological properties. Molecular biology, biochemical, and functional analysis by electrophysiological methods were used to identify and study a new variant of the P2X1 receptor named P2X1b. This new variant, identified in rat optic nerve, was also expressed in other tissues. P2X1b receptors lack amino acids 182 to 208 of native P2X1, a region that includes residues that are highly conserved among distinct P2X receptors. When expressed in Xenopus oocytes, P2X1b was not functional as a homomer; however, when co-expressed with P2X1, it downregulated the electrical response generated by ATP compared with that of oocytes expressing P2X1 alone, and it seemed to form heteromeric channels with a modestly enhanced ATP potency. A decrease in responses to ATP in oocytes co-expressing different ratios of P2X1b to P2X1 was completely eliminated by overnight pretreatment with apyrase. Thus, it is suggested that P2X1b regulates, through a use-dependent mechanism, the availability, in the plasma membrane, of receptor channels that can be operated by ATP.

  9. Dual recognition unit strategy improves the specificity of the adenosine triphosphate (ATP) aptamer biosensor for cerebral ATP assay.

    PubMed

    Yu, Ping; He, Xiulan; Zhang, Li; Mao, Lanqun

    2015-01-20

    Adenosine triphosphate (ATP) aptamer has been widely used as a recognition unit for biosensor development; however, its relatively poor specificity toward ATP against adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) essentially limits the application of the biosensors in real systems, especially in the complex cerebral system. In this study, for the first time, we demonstrate a dual recognition unit strategy (DRUS) to construct a highly selective and sensitive ATP biosensor by combining the recognition ability of aptamer toward A nucleobase and of polyimidazolium toward phosphate. The biosensors are constructed by first confining the polyimidazolium onto a gold surface by surface-initiated atom transfer radical polymerization (SI-ATRP), and then the aptamer onto electrode surface by electrostatic self-assembly to form dual-recognition-unit-functionalized electrodes. The constructed biosensor based on DRUS not only shows an ultrahigh sensitivity toward ATP with a detection limit down to the subattomole level but also an ultrahigh selectivity toward ATP without interference from ADP and AMP. The constructed biosensor is used for selective and sensitive sensing of the extracellular ATP in the cerebral system by combining in vivo microdialysis and can be used as a promising neurotechnology to probing cerebral ATP concentration.

  10. A lipid switch unlocks Parkinson’s disease-associated ATP13A2

    PubMed Central

    Holemans, Tine; Sørensen, Danny Mollerup; van Veen, Sarah; Martin, Shaun; Hermans, Diane; Kemmer, Gerdi Christine; Van den Haute, Chris; Baekelandt, Veerle; Günther Pomorski, Thomas; Agostinis, Patrizia; Wuytack, Frank; Palmgren, Michael; Eggermont, Jan; Vangheluwe, Peter

    2015-01-01

    ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor–Rakeb syndrome and Parkinson’s disease (PD), providing protection against α-synuclein, Mn2+, and Zn2+ toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2]. We further demonstrate that ATP13A2 accumulates in an inactive autophosphorylated state and that PA and PI(3,5)P2 stimulate the autophosphorylation of ATP13A2. In a cellular model of PD, only catalytically active ATP13A2 offers cellular protection against rotenone-induced mitochondrial stress, which relies on the availability of PA and PI(3,5)P2. Thus, the N-terminal binding of PA and PI(3,5)P2 emerges as a key to unlock the activity of ATP13A2, which may offer a therapeutic strategy to activate ATP13A2 and thereby reduce α-synuclein toxicity or mitochondrial stress in PD or related disorders. PMID:26134396

  11. Zn(II)-cyclam based chromogenic sensors for recognition of ATP in aqueous solution under physiological conditions and their application as viable staining agents for microorganism.

    PubMed

    Mahato, Prasenjit; Ghosh, Amrita; Mishra, Sanjiv K; Shrivastav, Anupama; Mishra, Sandhya; Das, Amitava

    2011-05-02

    Two chromogenic complexes, L.Zn (where L is (E)-4-((4-(1,4,8,11-tetraazacyclotetradecan-1-ylsulfonyl)phenyl)diazenyl)-N,N-dimethylaniline) and its [2]pseudorotaxane form (α-CD.L.Zn), were found to bind preferentially to adenosine triphosphate (ATP), among all other common anions and biologically important phosphate (AMP, ADP, pyrophosphate, and phosphate) ions in aqueous HEPES buffer medium of pH 7.2. Studies with live cell cultures of prokaryotic microbes revealed that binding of these two reagents to intercellular ATP, produced in situ, could be used in delineating the gram-positive and the gram-negative bacteria. More importantly, these dyes were found to be nontoxic to living microbes (eukaryotes and prokaryotes) and could be used for studying the cell growth dynamics. Binding to these two viable staining agents to intercellular ATP was also confirmed by spectroscopic studies on cell growth in the presence of different respiratory inhibitors that influence the intercellular ATP generation. © 2011 American Chemical Society

  12. Concomitant Loss of the Glyoxalase System and Glycolysis Makes the Uncultured Pathogen “Candidatus Liberibacter asiaticus” an Energy Scavenger

    PubMed Central

    Jain, Mukesh; Munoz-Bodnar, Alejandra

    2017-01-01

    ABSTRACT Methylglyoxal (MG) is a cytotoxic, nonenzymatic by-product of glycolysis that readily glycates proteins and DNA, resulting in carbonyl stress. Glyoxalase I and II (GloA and GloB) sequentially convert MG into d-lactic acid using glutathione (GSH) as a cofactor. The glyoxalase system is essential for the mitigation of MG-induced carbonyl stress, preventing subsequent cell death, and recycling GSH for maintenance of cellular redox poise. All pathogenic liberibacters identified to date are uncultured, including “Candidatus Liberibacter asiaticus,” a psyllid endosymbiont and causal agent of the severely damaging citrus disease “huanglongbing.” In silico analysis revealed the absence of gloA in “Ca. Liberibacter asiaticus” and all other pathogenic liberibacters. Both gloA and gloB are present in Liberibacter crescens, the only liberibacter that has been cultured. L. crescens GloA was functional in a heterologous host. Marker interruption of gloA in L. crescens appeared to be lethal. Key glycolytic enzymes were either missing or significantly downregulated in “Ca. Liberibacter asiaticus” compared to (cultured) L. crescens. Marker interruption of sut, a sucrose transporter gene in L. crescens, decreased its ability to take up exogenously supplied sucrose in culture. “Ca. Liberibacter asiaticus” lacks a homologous sugar transporter but has a functional ATP/ADP translocase, enabling it to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding MG generation via glycolysis, and (iii) directly importing ATP from the host cell. MG detoxification enzymes appear to be predictive of “Candidatus” status for many uncultured pathogenic and environmental bacteria. IMPORTANCE Discovered more than 100 years ago, the glyoxalase system is thought to be present across all domains of life and fundamental to cellular growth and viability. The glyoxalase system protects against carbonyl stress caused by methylglyoxal (MG), a highly reactive, mutagenic and cytotoxic compound that is nonenzymatically formed as a by-product of glycolysis. The uncultured alphaproteobacterium “Ca. Liberibacter asiaticus” is a well-adapted endosymbiont of the Asian citrus psyllid, which transmits the severely damaging citrus disease “huanglongbing.” “Ca. Liberibacter asiaticus” lacks a functional glyoxalase pathway. We report here that the bacterium is able to thrive both in psyllids and in the sugar-rich citrus phloem by (i) avoiding sucrose uptake, (ii) avoiding (significant) MG generation via glycolysis, and (iii) directly importing ATP from the host cell. We hypothesize that failure to culture “Ca. Liberibacter asiaticus” is at least partly due to its dependence on host cells for both ATP and MG detoxification. PMID:28939611

  13. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    PubMed

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  14. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    PubMed Central

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  15. Adenosine Triphosphate stimulates differentiation and mineralization in human osteoblast-like Saos-2 cells.

    PubMed

    Cutarelli, Alessandro; Marini, Mario; Tancredi, Virginia; D'Arcangelo, Giovanna; Murdocca, Michela; Frank, Claudio; Tarantino, Umberto

    2016-05-01

    In the last years adenosine triphosphate (ATP) and subsequent purinergic system activation through P2 receptors were investigated highlighting their pivotal role in bone tissue biology. In osteoblasts ATP can regulate several activities like cell proliferation, cell death, cell differentiation and matrix mineralization. Since controversial results exist, in this study we analyzed the ATP effects on differentiation and mineralization in human osteoblast-like Saos-2 cells. We showed for the first time the altered functional activity of ATP receptors. Despite that, we found that ATP can reduce cell proliferation and stimulate osteogenic differentiation mainly in the early stages of in vitro maturation as evidenced by the enhanced expression of alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2) and Osteocalcin (OC) genes and by the increased ALP activity. Moreover, we found that ATP can affect mineralization in a biphasic manner, at low concentrations ATP always increases mineral deposition while at high concentrations it always reduces mineral deposition. In conclusion, we show the osteogenic effect of ATP on both early and late stage activities like differentiation and mineralization, for the first time in human osteoblastic cells. © 2016 Japanese Society of Developmental Biologists.

  16. 31P magnetization transfer measurements of Pi→ATP flux in exercising human muscle

    PubMed Central

    Savage, David B.; Williams, Guy B.; Porter, David; Carpenter, T. Adrian; Brindle, Kevin M.; Kemp, Graham J.

    2016-01-01

    Fundamental criticisms have been made over the use of 31P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (Pi)→ATP flux (VPi-ATP) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of VPi-ATP is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure VPi-ATP in human exercising muscle for the first time. Steady-state VPi-ATP was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (VATP). We define a surplus Pi→ATP flux as the difference between VPi-ATP and VATP. The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and Pi in some systems and have been suggested to be responsible for this surplus flux. Surplus VPi-ATP did not change between rest and exercise, even though the concentrations of Pi and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus Pi→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the 31P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and Pi catalyzed by GAPDH and PGK. PMID:26744504

  17. 31P magnetization transfer measurements of Pi→ATP flux in exercising human muscle.

    PubMed

    Sleigh, Alison; Savage, David B; Williams, Guy B; Porter, David; Carpenter, T Adrian; Brindle, Kevin M; Kemp, Graham J

    2016-03-15

    Fundamental criticisms have been made over the use of (31)P magnetic resonance spectroscopy (MRS) magnetization transfer estimates of inorganic phosphate (Pi)→ATP flux (VPi-ATP) in human resting skeletal muscle for assessing mitochondrial function. Although the discrepancy in the magnitude of VPi-ATP is now acknowledged, little is known about its metabolic determinants. Here we use a novel protocol to measure VPi-ATP in human exercising muscle for the first time. Steady-state VPi-ATP was measured at rest and over a range of exercise intensities and compared with suprabasal oxidative ATP synthesis rates estimated from the initial rates of postexercise phosphocreatine resynthesis (VATP). We define a surplus Pi→ATP flux as the difference between VPi-ATP and VATP. The coupled reactions catalyzed by the glycolytic enzymes GAPDH and phosphoglycerate kinase (PGK) have been shown to catalyze measurable exchange between ATP and Pi in some systems and have been suggested to be responsible for this surplus flux. Surplus VPi-ATP did not change between rest and exercise, even though the concentrations of Pi and ADP, which are substrates for GAPDH and PGK, respectively, increased as expected. However, involvement of these enzymes is suggested by correlations between absolute and surplus Pi→ATP flux, both at rest and during exercise, and the intensity of the phosphomonoester peak in the (31)P NMR spectrum. This peak includes contributions from sugar phosphates in the glycolytic pathway, and changes in its intensity may indicate changes in downstream glycolytic intermediates, including 3-phosphoglycerate, which has been shown to influence the exchange between ATP and Pi catalyzed by GAPDH and PGK. Copyright © 2016 the American Physiological Society.

  18. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    PubMed Central

    Pankratov, Yuriy

    2017-01-01

    Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS. PMID:28845311

  19. Effects of Radiation on Proteasome Function in Prostate Cancer Cells

    DTIC Science & Technology

    2009-02-01

    Figure 3. 10% SDS-PAGE of immunoprecipitated 26S proteasome from PC3 cells extracted with ATP!S instead of ATP. From the left: not irradiated...block the transcription (DBR). Cells were treated with DBR 10 minutes after being exposed to a dose of radiation of 10Gy. The extracts were made at...inhibition. Figure 5. PC3 cells treated with DBR, an inhibitor of polymerase II. Proteins were extracted at different time points and the

  20. ATP: a vasoactive signal in the pericyte-containing microvasculature of the rat retina

    PubMed Central

    Kawamura, Hajime; Sugiyama, Tetsuya; Wu, David M; Kobayashi, Masato; Yamanishi, Shigeki; Katsumura, Kozo; Puro, Donald G

    2003-01-01

    In this study we tested the hypothesis that extracellular ATP regulates the function of the pericyte-containing retinal microvessels. Pericytes, which are more numerous in the retina than in any other tissue, are abluminally located cells that may adjust capillary perfusion by contracting and relaxing. At present, knowledge of the vasoactive molecules that regulate pericyte function is limited. Here, we focused on the actions of extracellular ATP because this nucleotide is a putative glial-to-vascular signal, as well as being a substance released by activated platelets and injured cells. In microvessels freshly isolated from the adult rat retina, we monitored ionic currents via perforated-patch pipettes, measured intracellular calcium levels with the use of fura-2, and visualized microvascular contractions with the aid of time-lapse photography. We found that ATP induced depolarizing changes in the ionic currents, increased calcium levels and caused pericytes to contract. P2X7 receptors and UTP-activated receptors mediated these effects. Consistent with ATP serving as a vasoconstrictor for the pericyte-containing microvasculature of the retina, the microvascular lumen narrowed when an adjacent pericyte contracted. In addition, the sustained activation of P2X7 receptors inhibited cell-to-cell electrotonic transmission within the microvascular networks. Thus, ATP not only affects the contractility of individual pericytes, but also appears to regulate the spatial and temporal dynamics of the vasomotor response. PMID:12876212

  1. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  2. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  3. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  4. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  5. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... device that measures the release of adenosine triphosphate (ATP) from platelets following aggregation. This measurement is made on platelet-rich plasma using a photometer and a luminescent firefly extract. Simultaneous measurements of platelet aggregation and ATP release are used to evaluate platelet function...

  6. Novel VCP modulators mitigate major pathologies of rd10, a mouse model of retinitis pigmentosa

    PubMed Central

    Ikeda, Hanako Ohashi; Sasaoka, Norio; Koike, Masaaki; Nakano, Noriko; Muraoka, Yuki; Toda, Yoshinobu; Fuchigami, Tomohiro; Shudo, Toshiyuki; Iwata, Ayana; Hori, Seiji; Yoshimura, Nagahisa; Kakizuka, Akira

    2014-01-01

    Neuroprotection may prevent or forestall the progression of incurable eye diseases, such as retinitis pigmentosa, one of the major causes of adult blindness. Decreased cellular ATP levels may contribute to the pathology of this eye disease and other neurodegenerative diseases. Here we describe small compounds (Kyoto University Substances, KUSs) that were developed to inhibit the ATPase activity of VCP (valosin-containing protein), the most abundant soluble ATPase in the cell. Surprisingly, KUSs did not significantly impair reported cellular functions of VCP but nonetheless suppressed the VCP-dependent decrease of cellular ATP levels. Moreover, KUSs, as well as exogenous ATP or ATP-producing compounds, e.g. methylpyruvate, suppressed endoplasmic reticulum stress, and demonstrably protected various types of cultured cells from death, including several types of retinal neuronal cells. We then examined their in vivo efficacies in rd10, a mouse model of retinitis pigmentosa. KUSs prevented photoreceptor cell death and preserved visual function. These results reveal an unexpected, crucial role of ATP consumption by VCP in determining cell fate in this pathological context, and point to a promising new neuroprotective strategy for currently incurable retinitis pigmentosa. PMID:25096051

  7. ABC transporters and immunity: mechanism of self-defense.

    PubMed

    Hinz, Andreas; Tampé, Robert

    2012-06-26

    The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.

  8. The role of KATP channels in cerebral ischemic stroke and diabetes

    PubMed Central

    Szeto, Vivian; Chen, Nai-hong; Sun, Hong-shuo; Feng, Zhong-ping

    2018-01-01

    ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke. PMID:29671418

  9. Extracellular Purines Promote the Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells to the Osteogenic and Adipogenic Lineages

    PubMed Central

    Zini, Roberta; Rossi, Lara; Salvestrini, Valentina; Ferrari, Davide; Manfredini, Rossella; Lemoli, Roberto M.

    2013-01-01

    Extracellular nucleotides are potent signaling molecules mediating cell-specific biological functions, mostly within the processes of tissue damage and repair and flogosis. We previously demonstrated that adenosine 5′-triphosphate (ATP) inhibits the proliferation of human bone marrow-derived mesenchymal stem cells (BM-hMSCs), while stimulating, in vitro and in vivo, their migration. Here, we investigated the effects of ATP on BM-hMSC differentiation capacity. Molecular analysis showed that ATP treatment modulated the expression of several genes governing adipogenic and osteoblastic (ie, WNT-pathway-related genes) differentiation of MSCs. Functional studies demonstrated that ATP, under specific culture conditions, stimulated adipogenesis by significantly increasing the lipid accumulation and the expression levels of the adipogenic master gene PPARγ (peroxisome proliferator-activated receptor-gamma). In addition, ATP stimulated osteogenic differentiation by promoting mineralization and expression of the osteoblast-related gene RUNX2 (runt-related transcription factor 2). Furthermore, we demonstrated that ATP stimulated adipogenesis via its triphosphate form, while osteogenic differentiation was induced by the nucleoside adenosine, resulting from ATP degradation induced by CD39 and CD73 ectonucleotidases expressed on the MSC membrane. The pharmacological profile of P2 purinergic receptors (P2Rs) suggests that adipogenic differentiation is mainly mediated by the engagement of P2Y1 and P2Y4 receptors, while stimulation of the P1R adenosine-specific subtype A2B is involved in adenosine-induced osteogenic differentiation. Thus, we provide new insights into molecular regulation of MSC differentiation. PMID:23259837

  10. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex.

    PubMed

    Su'etsugu, Masayuki; Shimuta, Toh-Ru; Ishida, Takuma; Kawakami, Hironori; Katayama, Tsutomu

    2005-02-25

    In Escherichia coli, the activity of ATP-bound DnaA protein in initiating chromosomal replication is negatively controlled in a replication-coordinated manner. The RIDA (regulatory inactivation of DnaA) system promotes DnaA-ATP hydrolysis to produce the inactivated form DnaA-ADP in a manner depending on the Hda protein and the DNA-loaded form of the beta-sliding clamp, a subunit of the replicase holoenzyme. A highly functional form of Hda was purified and shown to form a homodimer in solution, and two Hda dimers were found to associate with a single clamp molecule. Purified mutant Hda proteins were used in a staged in vitro RIDA system followed by a pull-down assay to show that Hda-clamp binding is a prerequisite for DnaA-ATP hydrolysis and that binding is mediated by an Hda N-terminal motif. Arg(168) in the AAA(+) Box VII motif of Hda plays a role in stable homodimer formation and in DnaA-ATP hydrolysis, but not in clamp binding. Furthermore, the DnaA N-terminal domain is required for the functional interaction of DnaA with the Hda-clamp complex. Single cells contain approximately 50 Hda dimers, consistent with the results of in vitro experiments. These findings and the features of AAA(+) proteins, including DnaA, suggest the following model. DnaA-ATP is hydrolyzed at a binding interface between the AAA(+) domains of DnaA and Hda; the DnaA N-terminal domain supports this interaction; and the interaction of DnaA-ATP with the Hda-clamp complex occurs in a catalytic mode.

  11. Glucose-Sensing Receptor T1R3: A New Signaling Receptor Activated by Glucose in Pancreatic β-Cells.

    PubMed

    Kojima, Itaru; Nakagawa, Yuko; Hamano, Kunihisa; Medina, Johan; Li, Longfei; Nagasawa, Masahiro

    2015-01-01

    Subunits of the sweet taste receptors T1R2 and T1R3 are expressed in pancreatic β-cells. Compared with T1R3, mRNA expression of T1R2 is considerably lower. At the protein level, expression of T1R2 is undetectable in β-cells. Accordingly, a major component of the sweet taste-sensing receptor in β-cells may be a homodimer of T1R3 rather than a heterodimer of T1R2/T1R3. Inhibition of this receptor by gurmarin or deletion of the T1R3 gene attenuates glucose-induced insulin secretion from β-cells. Hence the T1R3 homodimer functions as a glucose-sensing receptor (GSR) in pancreatic β-cells. When GSR is activated by the T1R3 agonist sucralose, elevation of intracellular ATP concentration ([ATP]i) is observed. Sucralose increases [ATP]i even in the absence of ambient glucose, indicating that sucralose increases [ATP]i not simply by activating glucokinase, a rate-limiting enzyme in the glycolytic pathway. In addition, sucralose augments elevation of [ATP]i induced by methylsuccinate, suggesting that sucralose activates mitochondrial metabolism. Nonmetabolizable 3-O-methylglucose also increases [ATP]i and knockdown of T1R3 attenuates elevation of [ATP]i induced by high concentration of glucose. Collectively, these results indicate that the T1R3 homodimer functions as a GSR; this receptor is involved in glucose-induced insulin secretion by activating glucose metabolism probably in mitochondria.

  12. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhongshan; College of Life Sciences, Sichuan University, Chengdu 610065; Biomedical Sciences Research Complex, School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane bymore » seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.« less

  13. L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria.

    PubMed

    Oyanagi, Eri; Yano, Hiromi; Kato, Yasuko; Fujita, Hirofumi; Utsumi, Kozo; Sasaki, Junzo

    2008-10-01

    Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation. Copyright (c) 2008 John Wiley & Sons, Ltd.

  14. ATP Hydrolysis Induced Conformational Changes in the Vitamin B12 Transporter BtuCD Revealed by MD Simulations

    PubMed Central

    Pan, Chao; Weng, Jingwei; Wang, Wenning

    2016-01-01

    ATP binding cassette (ABC) transporters utilize the energy of ATP hydrolysis to uni-directionally transport substrates across cell membrane. ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface of ABC transporters, whereas substrate translocation takes place at the translocation pathway between the transmembrane domains (TMDs), which is more than 30 angstroms away from the NBD dimer interface. This raises the question of how the hydrolysis energy released at NBDs is “transmitted” to trigger the conformational changes at TMDs. Using molecular dynamics (MD) simulations, we studied the post-hydrolysis state of the vitamin B12 importer BtuCD. Totally 3-μs MD trajectories demonstrate a predominantly asymmetric arrangement of the NBD dimer interface, with the ADP-bound site disrupted and the ATP-bound site preserved in most of the trajectories. TMDs response to ATP hydrolysis by separation of the L-loops and opening of the cytoplasmic gate II, indicating that hydrolysis of one ATP could facilitate substrate translocation by opening the cytoplasmic end of translocation pathway. It was also found that motions of the L-loops and the cytoplasmic gate II are coupled with each other through a contiguous interaction network involving a conserved Asn83 on the extended stretch preceding TM3 helix plus the cytoplasmic end of TM2/6/7 helix bundle. These findings entail a TMD-NBD communication mechanism for type II ABC importers. PMID:27870912

  15. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4

    PubMed Central

    Preiss, Laura; Klyszejko, Adriana L.; Hicks, David B.; Liu, Jun; Fackelmayer, Oliver J.; Yildiz, Özkan; Krulwich, Terry A.; Meier, Thomas

    2013-01-01

    The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles. PMID:23613590

  16. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  17. The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman

    PubMed Central

    Akasaka, Takeshi; Klinedinst, Susan; Ocorr, Karen; Bustamante, Erika L.; Kim, Seung K.; Bodmer, Rolf

    2006-01-01

    The homeobox transcription factor Tinman plays an important role in the initiation of heart development. Later functions of Tinman, including the target genes involved in cardiac physiology, are less well studied. We focused on the dSUR gene, which encodes an ATP-binding cassette transmembrane protein that is expressed in the heart. Mammalian SUR genes are associated with KATP (ATP-sensitive potassium) channels, which are involved in metabolic homeostasis. We provide experimental evidence that Tinman directly regulates dSUR expression in the developing heart. We identified a cis-regulatory element in the first intron of dSUR, which contains Tinman consensus binding sites and is sufficient for faithful dSUR expression in the fly’s myocardium. Site-directed mutagenesis of this element shows that these Tinman sites are critical to dSUR expression, and further genetic manipulations suggest that the GATA transcription factor Pannier is synergistically involved in cardiac-restricted dSUR expression in vivo. Physiological analysis of dSUR knock-down flies supports the idea that dSUR plays a protective role against hypoxic stress and pacing-induced heart failure. Because dSUR expression dramatically decreases with age, it is likely to be a factor involved in the cardiac aging phenotype of Drosophila. dSUR provides a model for addressing how embryonic regulators of myocardial cell commitment can contribute to the establishment and maintenance of cardiac performance. PMID:16882722

  18. Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules.

    PubMed

    Yang, Shao-Nian; Wenna, Nancy Dekki; Yu, Jia; Yang, Guang; Qiu, Hua; Yu, Lina; Juntti-Berggren, Lisa; Köhler, Martin; Berggren, Per-Olof

    2007-09-01

    beta cells rely on adenosine triphosphate-sensitive potassium (K(ATP)) channels to initiate and end glucose-stimulated insulin secretion through changes in membrane potential. These channels may also act as a constituent of the exocytotic machinery to mediate insulin release independent of their electrical function. However, the molecular mechanisms whereby the beta cell plasma membrane maintains an appropriate number of K(ATP) channels are not known. We now show that glucose increases K(ATP) current amplitude by increasing the number of K(ATP) channels in the beta cell plasma membrane. The effect was blocked by inhibition of protein kinase A (PKA) as well as by depletion of extracellular or intracellular Ca(2+). Furthermore, glucose promoted recruitment of the potassium inward rectifier 6.2 to the plasma membrane, and intracellular K(ATP) channels localized in chromogranin-positive/insulin-negative dense-core granules. Our data suggest that glucose can recruit K(ATP) channels to the beta cell plasma membrane via non-insulin-containing dense-core granules in a Ca(2+)- and PKA-dependent manner.

  19. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    PubMed

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  20. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  1. The adaptive evolution of the mammalian mitochondrial genome

    PubMed Central

    da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria João; Antunes, Agostinho

    2008-01-01

    Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906

  2. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein

    PubMed Central

    Kaltimbacher, Valérie; Bonnet, Crystel; Lecoeuvre, Gaëlle; Forster, Valérie; Sahel, José-Alain; Corral-Debrinski, Marisol

    2006-01-01

    As previously established in yeast, two sequences within mRNAs are responsible for their specific localization to the mitochondrial surface—the region coding for the mitochondrial targeting sequence and the 3′UTR. This phenomenon is conserved in human cells. Therefore, we decided to use mRNA localization as a tool to address to mitochondria, a protein that is not normally imported. For this purpose, we associated a nuclear recoded ATP6 gene with the mitochondrial targeting sequence and the 3′UTR of the nuclear SOD2 gene, which mRNA exclusively localizes to the mitochondrial surface in HeLa cells. The ATP6 gene is naturally located into the organelle and encodes a highly hydrophobic protein of the respiratory chain complex V. In this study, we demonstrated that hybrid ATP6 mRNAs, as the endogenous SOD2 mRNA, localize to the mitochondrial surface in human cells. Remarkably, fusion proteins localize to mitochondria in vivo. Indeed, ATP6 precursors synthesized in the cytoplasm were imported into mitochondria in a highly efficient way, especially when both the MTS and the 3′UTR of the SOD2 gene were associated with the re-engineered ATP6 gene. Hence, these data indicate that mRNA targeting to the mitochondrial surface represents an attractive strategy for allowing the mitochondrial import of proteins originally encoded by the mitochondrial genome without any amino acid change in the protein that could interfere with its biologic activity. PMID:16751614

  3. An ATP-gated cation channel with some P2Z-like characteristics in gastric smooth muscle cells of toad.

    PubMed Central

    Ugur, M; Drummond, R M; Zou, H; Sheng, P; Singer, J J; Walsh, J V

    1997-01-01

    1. Whole-cell and single-channel currents elicited by extracellular ATP were studied in freshly dissociated smooth muscle cells from the stomach of the toad Bufo marinus using standard patch clamp and microfluorimetric techniques. 2. This ATP-gated cation channel shares a number of pharmacological and functional properties with native rat myometrium receptors, certain native P2Z purinoceptors and the recently cloned P2X7 purinoceptor. But, unlike the last two, the ATP-gated channel does not mediate the formation of large non-specific pores. Thus, it may represent a novel member of the P2X or P2Z class. 3. Extracellular application of ATP (> or = 150 microM) elicited an inward whole-cell current at negative holding potentials that was inwardly rectifying and showed no sign of desensitization. Na+, Cs+ and, to a lesser degree, the organic cation choline served as charge carriers, but Cl- did not. Ratiometric fura-2 measurements indicated that the current is carried in part by Ca2+. The EC50 for ATP was 700 microM in solutions with a low divalent cation concentration. 4. ATP (> or = 100 microM) at the extracellular surface of cell-attached or excised patches elicited inwardly rectifying single-channel currents with a 22 pS conductance. Cl- did not serve as a charge carrier but both Na+ and Cs+ did, as did choline to a lesser extent. The mean open time of the channel was quite long, with a range in hundreds of milliseconds at a holding potential of -70 mV. 5. Mg2+ and Ca2+ decreased the magnitude of the ATP-induced whole-cell currents. Mg2+ decreased both the amplitude and the activity of ATP-activated single-channel currents. 6. ADP, UTP, P1, P5-di-adenosine pentaphosphate (AP5A), adenosine and alpha, beta-methylene ATP (alpha, beta-Me-ATP) did not induce significant whole-cell current. ATP-gamma-S and 2-methylthio ATP (2-Me-S-ATP) were significantly less effective than ATP in inducing whole-cell currents, whereas benzoylbenzoyl ATP (BzATP) was more effective. BzATP, alpha, beta-Me-ATP, ATP-gamma-S and 2-Me-S-ATP induced single-channel currents, but a higher concentration of alpha, beta-Me-ATP was required. 7. BzATP did not induce the formation of large non-specific pores, as assayed using mag-fura-2 as a high molecular mass probe. PMID:9032690

  4. Conformation of nanoconfined DNA as a function of ATP, AMP, CTP, Mg2+, and dye binding

    NASA Astrophysics Data System (ADS)

    Roushan, Maedeh; Riehn, Robert

    2014-03-01

    DNA molecules stretch in nanochannels with a channel cross-section of 100x100 nm2, thereby allowing analysis by observation of a fluorescent dye. The length and configuration of DNA can be directly observed, and the effect of different DNA-binding proteins on DNA configuration can be studied. Recently, we reported on the ability of T4 ligase to transiently manipulate DNA as a function of ATP and magnesium exposure. In this process we have extensively probed the interactions of dyes and enzyme co-factors with DNA under nanoconfinement. We find negligible effects if DNA is visualized using groove-binding dyes such as DAPI. However, if an intercalating dye (YOYO-1) is used, we find a significant shortening of the DNA in the presence of ATP that we attribute to an interaction of dye and ATP (as well as AMP and CTP). We did not record a noticeable effect due to Mg2+.

  5. Functional characterization of contractile vacuole isolated from Amoeba proteus.

    PubMed

    Nishihara, Eri; Shimmen, Teruo; Sonobe, Seiji

    2004-12-01

    Contractile vacuoles (CVs) released from cells of Amoeba proteus were used to analyze its function in vitro. When CV was transferred to a hypertonic medium, its volume decreased within 10 sec. When it was subsequently returned to its original medium, it quickly started swelling. However, it ruptured before recovering its initial volume. These results suggested that the CV membrane is semi-permeable and that the fluid is collected by the osmotic gradient in vivo. The water permeability of membrane of isolated CV was calculated from the rate of osmotic volume change to be 0.94 microm/sec . OsM. This high value suggested that CV membrane is equipped with water channel. CV contracted (or burst) quickly upon addition of 1 mM ATP. Contraction was induced by ATP, but not by other nucleotides, GTP, ITP, ADP, or the analogues of ATP, AMP-PNP and ATPgammaS. It was suggested that the contraction of isolated CV was caused by increase in the tension of its membrane by ATP.

  6. Na+ influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation

    PubMed Central

    Miao, Yong; Bhushan, Jaya; Dani, Adish; Vig, Monika

    2017-01-01

    T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napahyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napahyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP]i. Depletion of [ATP]i inhibited mTORC2 dependent NFκB activation in Napahyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napahyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function. DOI: http://dx.doi.org/10.7554/eLife.25155.001 PMID:28492364

  7. Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spero, Melanie A.; Brickner, Joshua R.; Mollet, Jordan T.

    NADH:quinone oxidoreductase (complex I) is a bioenergetic enzyme that transfers electrons from NADH to quinone, conserving the energy of this reaction by contributing to the proton motive force. While the importance of NADH oxidation to mitochondrial aerobic respiration is well documented, the contribution of complex I to bacterial electron transport chains has been tested in only a few species. Here, we analyze the function of two phylogenetically distinct complex I isozymes in Rhodobacter sphaeroides, an alphaproteobacterium that contains well-characterized electron transport chains. We found that R. sphaeroides complex I activity is important for aerobic respiration and required for anaerobic dimethylmore » sulfoxide (DMSO) respiration (in the absence of light), photoautotrophic growth, and photoheterotrophic growth (in the absence of an external electron acceptor). Our data also provide insight into the functions of the phylogenetically distinct R. sphaeroides complex I enzymes (complex I A and complex I E) in maintaining a cellular redox state during photoheterotrophic growth. We propose that the function of each isozyme during photoheterotrophic growth is either NADH synthesis (complex I A) or NADH oxidation (complex I E). The canonical alphaproteobacterial complex I isozyme (complex I A) was also shown to be important for routing electrons to nitrogenase-mediated H 2 production, while the horizontally acquired enzyme (complex I E) was dispensable in this process. Unlike the singular role of complex I in mitochondria, we predict that the phylogenetically distinct complex I enzymes found across bacterial species have evolved to enhance the functions of their respective electron transport chains. Cells use a proton motive force (PMF), NADH, and ATP to support numerous processes. In mitochondria, complex I uses NADH oxidation to generate a PMF, which can drive ATP synthesis. This study analyzed the function of complex I in bacteria, which contain more-diverse and more-flexible electron transport chains than mitochondria. We tested complex I function in Rhodobacter sphaeroides, a bacterium predicted to encode two phylogenetically distinct complex I isozymes. R. sphaeroides cells lacking both isozymes had growth defects during all tested modes of growth, illustrating the important function of this enzyme under diverse conditions. We conclude that the two isozymes are not functionally redundant and predict that phylogenetically distinct complex I enzymes have evolved to support the diverse lifestyles of bacteria.« less

  8. Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes

    DOE PAGES

    Spero, Melanie A.; Brickner, Joshua R.; Mollet, Jordan T.; ...

    2016-02-01

    NADH:quinone oxidoreductase (complex I) is a bioenergetic enzyme that transfers electrons from NADH to quinone, conserving the energy of this reaction by contributing to the proton motive force. While the importance of NADH oxidation to mitochondrial aerobic respiration is well documented, the contribution of complex I to bacterial electron transport chains has been tested in only a few species. Here, we analyze the function of two phylogenetically distinct complex I isozymes in Rhodobacter sphaeroides, an alphaproteobacterium that contains well-characterized electron transport chains. We found that R. sphaeroides complex I activity is important for aerobic respiration and required for anaerobic dimethylmore » sulfoxide (DMSO) respiration (in the absence of light), photoautotrophic growth, and photoheterotrophic growth (in the absence of an external electron acceptor). Our data also provide insight into the functions of the phylogenetically distinct R. sphaeroides complex I enzymes (complex I A and complex I E) in maintaining a cellular redox state during photoheterotrophic growth. We propose that the function of each isozyme during photoheterotrophic growth is either NADH synthesis (complex I A) or NADH oxidation (complex I E). The canonical alphaproteobacterial complex I isozyme (complex I A) was also shown to be important for routing electrons to nitrogenase-mediated H 2 production, while the horizontally acquired enzyme (complex I E) was dispensable in this process. Unlike the singular role of complex I in mitochondria, we predict that the phylogenetically distinct complex I enzymes found across bacterial species have evolved to enhance the functions of their respective electron transport chains. Cells use a proton motive force (PMF), NADH, and ATP to support numerous processes. In mitochondria, complex I uses NADH oxidation to generate a PMF, which can drive ATP synthesis. This study analyzed the function of complex I in bacteria, which contain more-diverse and more-flexible electron transport chains than mitochondria. We tested complex I function in Rhodobacter sphaeroides, a bacterium predicted to encode two phylogenetically distinct complex I isozymes. R. sphaeroides cells lacking both isozymes had growth defects during all tested modes of growth, illustrating the important function of this enzyme under diverse conditions. We conclude that the two isozymes are not functionally redundant and predict that phylogenetically distinct complex I enzymes have evolved to support the diverse lifestyles of bacteria.« less

  9. Metabolic functions of AMPK: aspects of structure and of natural mutations in the regulatory gamma subunits.

    PubMed

    Moffat, Cynthia; Harper, Mary Ellen

    2010-10-01

    AMP-activated protein kinase, AMPK, is widely accepted as the master regulator of energy levels within the cell. Responding quickly to changing energy demands, AMPK works to restore levels of ATP during times of cellular stress by promoting ATP producing catabolic pathways and inhibiting ATP consuming anabolic ones. As a heterotrimeric protein complex, AMPK's subunits each act in unique and crucial ways to control AMPK function and its localization within the cell. Research in the last decade has identified and begun to characterize the impact of naturally occurring mutations in the gamma regulatory subunits. Mutations in the γ2 subunit have implications for cardiac function and disease, while the R225W mutation in the γ3 subunit have implications for skeletal muscle fuel metabolism and resistance to fatigue. Research focused on structure-function aspects of AMPK regulatory subunits will lead to a better understanding of the roles of AMPK in health and disease.

  10. MLH1 mutations differentially affect meiotic functions in Saccharomyces cerevisiae.

    PubMed Central

    Hoffmann, Eva R; Shcherbakova, Polina V; Kunkel, Thomas A; Borts, Rhona H

    2003-01-01

    To test whether missense mutations in the cancer susceptibility gene MLH1 adversely affect meiosis, we examined 14 yeast MLH1 mutations for effects on meiotic DNA transactions and gamete viability in the yeast Saccharomyces cerevisiae. Mutations analogous to those associated with hereditary nonpolyposis colorectal cancer (HNPCC) or those that reduce Mlh1p interactions with ATP or DNA all impair replicative mismatch repair as measured by increased mutation rates. However, their effects on meiotic heteroduplex repair, crossing over, chromosome segregation, and gametogenesis vary from complete loss of meiotic functions to no meiotic defect, and mutants defective in one meiotic process are not necessarily defective in others. DNA binding and ATP binding but not ATP hydrolysis are required for meiotic crossing over. The results reveal clear separation of different Mlh1p functions in mitosis and meiosis, and they suggest that some, but not all, MLH1 mutations may be a source of human infertility. PMID:12618391

  11. Characterisation of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in Mycobacterium tuberculosis.

    PubMed

    Munshi, Tulika; Gupta, Antima; Evangelopoulos, Dimitrios; Guzman, Juan David; Gibbons, Simon; Keep, Nicholas H; Bhakta, Sanjib

    2013-01-01

    ATP-dependent Mur ligases (Mur synthetases) play essential roles in the biosynthesis of cell wall peptidoglycan (PG) as they catalyze the ligation of key amino acid residues to the stem peptide at the expense of ATP hydrolysis, thus representing potential targets for antibacterial drug discovery. In this study we characterized the division/cell wall (dcw) operon and identified a promoter driving the co-transcription of mur synthetases along with key cell division genes such as ftsQ and ftsW. Furthermore, we have extended our previous investigations of MurE to MurC, MurD and MurF synthetases from Mycobacterium tuberculosis. Functional analyses of the pure recombinant enzymes revealed that the presence of divalent cations is an absolute requirement for their activities. We also observed that higher concentrations of ATP and UDP-sugar substrates were inhibitory for the activities of all Mur synthetases suggesting stringent control of the cytoplasmic steps of the peptidoglycan biosynthetic pathway. In line with the previous findings on the regulation of mycobacterial MurD and corynebacterial MurC synthetases via phosphorylation, we found that all of the Mur synthetases interacted with the Ser/Thr protein kinases, PknA and PknB. In addition, we critically analyzed the interaction network of all of the Mur synthetases with proteins involved in cell division and cell wall PG biosynthesis to re-evaluate the importance of these key enzymes as novel therapeutic targets in anti-tubercular drug discovery.

  12. Characterisation of ATP-Dependent Mur Ligases Involved in the Biogenesis of Cell Wall Peptidoglycan in Mycobacterium tuberculosis

    PubMed Central

    Munshi, Tulika; Gupta, Antima; Evangelopoulos, Dimitrios; Guzman, Juan David; Gibbons, Simon; Keep, Nicholas H.; Bhakta, Sanjib

    2013-01-01

    ATP-dependent Mur ligases (Mur synthetases) play essential roles in the biosynthesis of cell wall peptidoglycan (PG) as they catalyze the ligation of key amino acid residues to the stem peptide at the expense of ATP hydrolysis, thus representing potential targets for antibacterial drug discovery. In this study we characterized the division/cell wall (dcw) operon and identified a promoter driving the co-transcription of mur synthetases along with key cell division genes such as ftsQ and ftsW. Furthermore, we have extended our previous investigations of MurE to MurC, MurD and MurF synthetases from Mycobacterium tuberculosis. Functional analyses of the pure recombinant enzymes revealed that the presence of divalent cations is an absolute requirement for their activities. We also observed that higher concentrations of ATP and UDP-sugar substrates were inhibitory for the activities of all Mur synthetases suggesting stringent control of the cytoplasmic steps of the peptidoglycan biosynthetic pathway. In line with the previous findings on the regulation of mycobacterial MurD and corynebacterial MurC synthetases via phosphorylation, we found that all of the Mur synthetases interacted with the Ser/Thr protein kinases, PknA and PknB. In addition, we critically analyzed the interaction network of all of the Mur synthetases with proteins involved in cell division and cell wall PG biosynthesis to re-evaluate the importance of these key enzymes as novel therapeutic targets in anti-tubercular drug discovery. PMID:23555903

  13. Regulation of Cl^- Channels in Normal and Cystic Fibrosis Airway Epithelial Cells by Extracellular ATP

    NASA Astrophysics Data System (ADS)

    Stutts, M. J.; Chinet, T. C.; Mason, S. J.; Fullton, J. M.; Clarke, L. L.; Boucher, R. C.

    1992-03-01

    The rate of Cl^- secretion by human airway epithelium is determined, in part, by apical cell membrane Cl^- conductance. In cystic fibrosis airway epithelia, defective regulation of Cl^- conductance decreases the capability to secrete Cl^-. Here we report that extracytosolic ATP in the luminal bath of cultured human airway epithelia increased transepithelial Cl^- secretion and apical membrane Cl^- permeability. Single-channel studies in excised membrane patches revealed that ATP increased the open probability of outward rectifying Cl^- channels. The latter effect occurs through a receptor mechanism that requires no identified soluble second messengers and is insensitive to probes of G protein function. These results demonstrate a mode of regulation of anion channels by binding ATP at the extracellular surface. Regulation of Cl^- conductance by external ATP is preserved in cystic fibrosis airway epithelia.

  14. A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population.

    PubMed

    Herrera, Victoria L; Pasion, Khristine A; Moran, Ann Marie; Zaninello, Roberta; Ortu, Maria Francesca; Fresu, Giovanni; Piras, Daniela Antonella; Argiolas, Giuseppe; Troffa, Chiara; Glorioso, Valeria; Masala, Wanda; Glorioso, Nicola; Ruiz-Opazo, Nelson

    2015-01-01

    Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5'-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28-0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/- male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/- mice showed significantly lower blood pressure (P < 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the kidney thereby decreasing sodium-associated risk for hypertension and sodium-induced endothelial stiffness and dysfunction. Altogether, data support ATP1A1 as a hypertension susceptibility gene in a male Sardinian population, and mandate further investigation of its involvement in hypertension in the general population.

  15. A Functional 12T-Insertion Polymorphism in the ATP1A1 Promoter Confers Decreased Susceptibility to Hypertension in a Male Sardinian Population

    PubMed Central

    Herrera, Victoria L.; Pasion, Khristine A.; Moran, Ann Marie; Zaninello, Roberta; Ortu, Maria Francesca; Fresu, Giovanni; Piras, Daniela Antonella; Argiolas, Giuseppe; Troffa, Chiara; Glorioso, Valeria; Masala, Wanda; Glorioso, Nicola; Ruiz-Opazo, Nelson

    2015-01-01

    Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5’-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28–0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/− male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/− mice showed significantly lower blood pressure (P < 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the kidney thereby decreasing sodium-associated risk for hypertension and sodium-induced endothelial stiffness and dysfunction. Altogether, data support ATP1A1 as a hypertension susceptibility gene in a male Sardinian population, and mandate further investigation of its involvement in hypertension in the general population. PMID:25615575

  16. Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels

    PubMed Central

    Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608

  17. Role of connexin 32 hemichannels in the release of ATP from peripheral nerves.

    PubMed

    Nualart-Marti, Anna; del Molino, Ezequiel Mas; Grandes, Xènia; Bahima, Laia; Martin-Satué, Mireia; Puchal, Rafel; Fasciani, Ilaria; González-Nieto, Daniel; Ziganshin, Bulat; Llobet, Artur; Barrio, Luis C; Solsona, Carles

    2013-12-01

    Extracellular purines elicit strong signals in the nervous system. Adenosine-5'-triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration-evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X-linked form of Charcot-Marie-Tooth disease, suggesting that purinergic-mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. Copyright © 2013 Wiley Periodicals, Inc.

  18. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae.

    PubMed

    Zhang, Rong; Shao, Ming; Han, Xu; Wang, Chuan; Li, Yong; Hu, Bin; Pang, Daiwen; Xie, Zhixiong

    2017-01-01

    Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δ atp1 , Δ atp2 , Δ atp14 , and Δ atp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S -adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.

  19. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae

    PubMed Central

    Zhang, Rong; Shao, Ming; Han, Xu; Wang, Chuan; Li, Yong; Hu, Bin; Pang, Daiwen; Xie, Zhixiong

    2017-01-01

    Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications. PMID:28579774

  20. Tracking protons from respiratory chain complexes to ATP synthase c-subunit: The critical role of serine and threonine residues.

    PubMed

    Panfoli, Isabella; Ponassi, Marco; Ravera, Silvia; Calzia, Daniela; Beitia, Maider; Morelli, Alessandro; Rosano, Camillo

    2017-01-22

    F 1 F o -ATP synthase is a multisubunit enzyme responsible for the synthesis of ATP. Among its multiple subunits (8 in E. coli, 17 in yeast S. cerevisiae, 16 in vertebrates), two subunits a and c are known to play a central role controlling the H + flow through the inner mitochondrial membrane which allows the subsequent synthesis of ATP, but the pathway followed by H + within the two proteins is still a matter of debate. In fact, even though the structure of ATP synthase is now well defined, the molecular mechanisms determining the function of both F 1 and F O domains are still largely unknown. In this study, we propose a pathway for proton migration along the ATP synthase by hydrogen-bonded chain mechanism, with a key role of serine and threonine residues, by X-ray diffraction data on the subunit a of E. coli Fo. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cardiac Metabolism in Heart Failure - Implications beyond ATP production

    PubMed Central

    Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale

    2013-01-01

    The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714

  2. Tracking protons from respiratory chain complexes to ATP synthase c-subunit: The critical role of serine and threonine residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panfoli, Isabella; Ponassi, Marco; Ravera, Silvia

    F{sub 1}F{sub o}-ATP synthase is a multisubunit enzyme responsible for the synthesis of ATP. Among its multiple subunits (8 in E. coli, 17 in yeast S. cerevisiae, 16 in vertebrates), two subunits a and c are known to play a central role controlling the H{sup +} flow through the inner mitochondrial membrane which allows the subsequent synthesis of ATP, but the pathway followed by H{sup +} within the two proteins is still a matter of debate. In fact, even though the structure of ATP synthase is now well defined, the molecular mechanisms determining the function of both F{sub 1} andmore » F{sub O} domains are still largely unknown. In this study, we propose a pathway for proton migration along the ATP synthase by hydrogen-bonded chain mechanism, with a key role of serine and threonine residues, by X-ray diffraction data on the subunit a of E. coli Fo.« less

  3. Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse

    PubMed Central

    Vargas, Julie C.; Xu, Hongmei; Groen, Annamiek; Paulusma, Coen C.; Grenert, James P.; Pawlikowska, Ludmila; Sen, Saunak; Elferink, Ronald P. J. Oude; Bull, Laura N.

    2010-01-01

    Background Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. Methodology/Principal Findings We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. Conclusions/Significance Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease. PMID:20126555

  4. Introducing the human Leigh syndrome mutation T9176G into Saccharomyces cerevisiae mitochondrial DNA leads to severe defects in the incorporation of Atp6p into the ATP synthase and in the mitochondrial morphology.

    PubMed

    Kucharczyk, Roza; Salin, Bénédicte; di Rago, J-P

    2009-08-01

    The Leigh syndrome is a severe neurological disorder that has been associated with mutations affecting the mitochondrial energy transducing system. One of these mutations, T9176G, has been localized in the mitochondrial ATP6 gene encoding the Atp6p (or a) subunit of the ATP synthase. This mutation converts a highly conserved leucine residue into arginine within a presumed trans-membrane alpha-helical segment, at position 217 of Atp6p. The T9176G mutation was previously shown to severely reduce the rate of mitochondrial ATP production in cultured human cells containing high loads of this mutation. However, the underlying mechanism responsible for the impaired ATP production is still unknown. To better understand how T9176G affects the ATP synthase, we have created and analyzed the properties of a yeast strain bearing an equivalent of this mutation. We show that incorporation of Atp6p within the ATP synthase was almost completely prevented in the modified yeast. Based on previous partial biochemical characterization of human T9176G cells, it is likely that this mutation similarly affects the human ATP synthase instead of causing a block in the rotary mechanism of this enzyme as it had been suggested. Interestingly, the T9176G yeast exhibits important anomalies in mitochondrial morphology, an observation which indicates that the pathogenicity of T9176G may not be limited to a bioenergetic deficiency.

  5. Nucleoside pyrophosphatase activity associated with pig kidney alkaline phosphatase

    PubMed Central

    Wass, Milica; Butterworth, P. J.

    1971-01-01

    1. A study was made of the hydrolysis, at pH9.0, of ATP and ADP catalysed by pig kidney alkaline phosphatase. Both of these nucleoside pyrophosphates are substrates for the enzyme; Km values are 4×10−5m for ATP and 6.3×10−5m for ADP. Vmax. for ADP is approximately double that of ATP. 2. Above 0.1mm approximately, both ATP and ADP are inhibitory, but the inhibition is reversible by the addition of Mg2+ ions to form MgATP2− or MgADP− complexes. The complexes, besides being non-inhibitory, are also substrates for the enzyme with Km values identical with those of the respective free nucleotides. 3. Mg2+ ions are inhibitory when present in excess of ATP or ADP. The degree of inhibition is greater with ATP as substrate, but with both ATP and ADP a mixed competitive–non-competitive type of inhibition is observed. 4. It is suggested that under normal conditions the enzyme is inhibited by cellular concentrations of ATP plus ADP but that an increase in the concentration of Mg2+ ions stimulates activity by relieving nucleoside pyrophosphate inhibition. The properties may be of importance in the regulation of the transport of bivalent cations. PMID:4331861

  6. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  7. Biallelic Mutations in ATP5F1D , which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oláhová, Monika; Yoon, Wan Hee; Thompson, Kyle

    ATP synthase, H + transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F 1F O ATP synthase andmore » subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.« less

  8. Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder.

    PubMed

    Oláhová, Monika; Yoon, Wan Hee; Thompson, Kyle; Jangam, Sharayu; Fernandez, Liliana; Davidson, Jean M; Kyle, Jennifer E; Grove, Megan E; Fisk, Dianna G; Kohler, Jennefer N; Holmes, Matthew; Dries, Annika M; Huang, Yong; Zhao, Chunli; Contrepois, Kévin; Zappala, Zachary; Frésard, Laure; Waggott, Daryl; Zink, Erika M; Kim, Young-Mo; Heyman, Heino M; Stratton, Kelly G; Webb-Robertson, Bobbie-Jo M; Snyder, Michael; Merker, Jason D; Montgomery, Stephen B; Fisher, Paul G; Feichtinger, René G; Mayr, Johannes A; Hall, Julie; Barbosa, Ines A; Simpson, Michael A; Deshpande, Charu; Waters, Katrina M; Koeller, David M; Metz, Thomas O; Morris, Andrew A; Schelley, Susan; Cowan, Tina; Friederich, Marisa W; McFarland, Robert; Van Hove, Johan L K; Enns, Gregory M; Yamamoto, Shinya; Ashley, Euan A; Wangler, Michael F; Taylor, Robert W; Bellen, Hugo J; Bernstein, Jonathan A; Wheeler, Matthew T

    2018-03-01

    ATP synthase, H + transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F 1 F O ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Biallelic Mutations in ATP5F1D , which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder

    DOE PAGES

    Oláhová, Monika; Yoon, Wan Hee; Thompson, Kyle; ...

    2018-02-22

    ATP synthase, H + transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F 1F O ATP synthase andmore » subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.« less

  10. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nucleotide binding properties of bovine brain uncoating ATPase.

    PubMed

    Gao, B; Emoto, Y; Greene, L; Eisenberg, E

    1993-04-25

    Many functions of the 70-kDa heat-shock proteins (hsp70s) appear to be regulated by bound nucleotide. In this study we examined the nucleotide binding properties of purified bovine brain uncoating ATPase, one of the constitutively expressed members of the hsp70 family. We found that uncoating ATPase purified by ATP-agarose column chromatography retained one ADP molecule bound per enzyme molecule which could not be removed by extensive dialysis. Since this bound ADP exchanged rapidly with free ADP or ATP, the inability to remove the bound nucleotide was not due to slow dissociation but rather to strong binding of the nucleotide to the uncoating ATPase. In confirmation of this view, equilibrium dialysis experiments suggested that the dissociation constants for both ADP and ATP were less than 0.1 microM. Schmid et al. (Schmid, S. L., Braell, W. A., and Rothman, J. E. (1985) J. Biol. Chem 260, 10057-10062) suggested that the uncoating ATPase had two sites for bound nucleotide, one specific for ATP and one binding both ATP and ATP analogues but not ADP. In contrast, we found that enzyme with bound ADP did not bind further adenosine 5'-(beta,gamma-imino)triphosphate or dATP, nor did more than one ATP molecule bind per enzyme even in 200 microM free ATP. These results strongly suggest that the enzyme has only one binding site for nucleotide. During steady-state ATP hydrolysis, 85% of the bound nucleotide at this site was determined to be ATP and 15% ADP; this is consistent with the rate of ADP release determined in the exchange experiments noted above, where ADP release was found to be six times faster than the overall rate of ATP hydrolysis.

  12. Defining the pathogenesis of the human Atp12p W94R mutation using a Saccharomyces cerevisiae yeast model.

    PubMed

    Meulemans, Ann; Seneca, Sara; Pribyl, Thomas; Smet, Joel; Alderweirldt, Valerie; Waeytens, Anouk; Lissens, Willy; Van Coster, Rudy; De Meirleir, Linda; di Rago, Jean-Paul; Gatti, Domenico L; Ackerman, Sharon H

    2010-02-05

    Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F(1)) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120-124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Deltaatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Deltaatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Deltaatp12 but not in the background of Deltaatp12Deltafmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.

  13. Acute effects of febuxostat, a nonpurine selective inhibitor of xanthine oxidase, in pacing induced heart failure.

    PubMed

    Hou, Mingxiao; Hu, Qingsong; Chen, Yingjie; Zhao, Lin; Zhang, Jianyi; Bache, Robert J

    2006-11-01

    We investigated whether xanthine oxidase inhibition with febuxostat enhances left ventricular (LV) function and improves myocardial high energy phosphates (HEP) in dogs with pacing-induced heart failure (CHF). Febuxostat (2.2 mg/kg over 10 minutes followed by 0.06 mg/kg/min) caused no change of LV function or myocardial oxygen consumption (MVO2) at rest or during treadmill exercise in normal dogs. In dogs with CHF, febuxostat increased LV dP/dtmax at rest and during heavy exercise (P < 0.05), indicating improved LV function with no change of MVO2. Myocardial adenosine triphosphate (ATP) and phosphocreatine (PCr) were examined using 31P nuclear magnetic resonance spectroscopy in the open chest state. In normal dogs, febuxostat increased PCr/ATP during basal conditions and during high workload produced by dobutamine + dopamine (P < 0.05). PCr/ATP was decreased in animals with CHF; in these animals, febuxostat (given after completing basal and high workload measurements with vehicle) tended to increase PCr/ATP during basal conditions with no effect during catecholamine stimulation. Thus, febuxostat improved LV performance in awake dogs with CHF, but caused only a trend toward increased PCr/ATP in the open chest state. It is possible that the antecedent high workload condition prior to drug administration blunted the effect of febuxostat on HEP in the CHF animals. Alternatively, beneficial effects of febuxostat on LV performance in the failing heart may not involve HEP.

  14. Increased degradation of ATP is driven by memory regulatory T cells in kidney transplantation tolerance.

    PubMed

    Durand, Maxim; Dubois, Florian; Dejou, Cécile; Durand, Eugénie; Danger, Richard; Chesneau, Mélanie; Brosseau, Carole; Guerif, Pierrick; Soulillou, Jean-Paul; Degauque, Nicolas; Eliaou, Jean-François; Giral, Magali; Bonnefoy, Nathalie; Brouard, Sophie

    2018-05-01

    Regulatory T cells were recently proposed as the central actor in operational tolerance after renal transplantation. Tolerant patients harbor increased FoxP3hi memory Treg frequency and increased demethylation in the Foxp3 Treg-specific demethylated region when compared to stable kidney recipients and exhibit greater memory Treg suppressive capacities and higher expression of the ectonucleotidase CD39. However, in this particular and unique situation the mechanisms of action of Tregs were not identified. Thus, we analyzed the ability of memory Tregs to degrade extracellular ATP in tolerant patients, healthy volunteers, and patients with stable graft function under immunosuppression and determined the role of immunosuppressive drugs on this process. The conserved proportion of memory Tregs leads to the establishment of a pro-tolerogenic balance in operationally tolerant patients. Memory Tregs in tolerant patients display normal capacity to degrade extracellular ATP/ADP. In contrast, memory Tregs from patients with stable graft function do not have this ability. Finally, in vitro, immunosuppressive drugs may favor the lower proportion of memory Tregs in stable patients, but they have no effect on CD39-dependent ATP degradation and do not explain memory Treg lack of extracellular ATP/ADP degradation ability. Thus, intrinsic active regulatory mechanisms may act long after immunosuppressive drug arrest in operationally tolerant patients and may contribute to kidney allograft tolerance via the maintenance of CD39 Treg function. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenhagen, Jason Alan

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activatedmore » a G{sub q}-type protein to initiate ATP release from HUVECs. Ca 2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca 2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K + and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized CdS monocrystals. Aggregates of nanospheres were bathed in imaging solution, and ATP bioluminescence was monitored to investigated the release kinetics of the nanosphere drug delivery systems. Addition of disulfide bond-cleaving molecules induced uncapping of the nanospheres and subsequently, the release of ATP. Increasing the concentration of the uncapping molecule decreased the temporal maximum and increased the magnitude of release of encapsulated ATP from the nanospheres. Furthermore, the release kinetics from the nanospheres varied with the size of the particle aggregates.« less

  16. Diadenosine tetraphosphate-gating of cardiac K(ATP) channels requires intact actin cytoskeleton.

    PubMed

    Jovanović, S; Jovanović, A

    2001-09-01

    Diadenosine polyphosphates (ApnA) have been recently discovered in the heart, and their levels found to be regulated by ischemia. These signaling molecules are believed to regulate cellular processes that alarm a cell to metabolic stress. In particular, changes in cardiac diadenosine polyphosphates (ApnA) levels may contribute to the regulation of ATP-sensitive K+ (K(ATP)) channel activity, an ion channel that couples the cellular metabolic state with membrane excitability. A feature of myocardial ischemia is the disruption of the actin cytoskeleton which critically regulates the behavior of K(ATP) channels. Whether the integrity of actin microfilaments regulates the interaction of ApnA with K(ATP) channels is not known. The inside-out configuration of the patch-clamp technique was applied to cardiomyocytes isolated from guinea-pig heart. Following patch excision, the prototype dinucleotide, diadenosine tetraphosphate (Ap4A), inhibited K(ATP) channel opening. Treatment of the internal side of membrane patches with either cytochalasin B or DNase I, disrupters of the actin cytoskeleton, prevented Ap4A-induced inhibition of K(ATP) channel opening. Application of purified actin to DNase-treated membrane patches restored the ability of Ap4A to close K(ATP) channels. This study shows that inhibition of cardiac K(ATP) channel by Ap4A, a putative alarmone, requires intact subsarcolemmal actin network. Such interaction between K(ATP) channels, the cardiomyocyte cytoskeleton and intracellular Ap4A could affect different channel-dependent functions.

  17. Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus1

    PubMed Central

    Frenguelli, Bruno G; Wigmore, Geoffrey; Llaudet, Enrique; Dale, Nicholas

    2007-01-01

    Abstract Adenosine is well known to be released during cerebral metabolic stress and is believed to be neuroprotective. ATP release under similar circumstances has been much less studied. We have now used biosensors to measure and compare in real time the release of ATP and adenosine during in vitro ischaemia in hippocampal slices. ATP release only occurred following the anoxic depolarisation, whereas adenosine release was apparent almost immediately after the onset of ischaemia. ATP release required extracellular Ca2+. By contrast adenosine release was enhanced by removal of extracellular Ca2+, whilst TTX had no effect on either ATP release or adenosine release. Blockade of ionotropic glutamate receptors substantially enhanced ATP release, but had only a modest effect on adenosine release. Carbenoxolone, an inhibitor of gap junction hemichannels, also greatly enhanced ischaemic ATP release, but had little effect on adenosine release. The ecto-ATPase inhibitor ARL 67156, whilst modestly enhancing the ATP signal detected during ischaemia, had no effect on adenosine release. Adenosine release during ischaemia was reduced by pre-treament with homosysteine thiolactone suggesting an intracellular origin. Adenosine transport inhibitors did not inhibit adenosine release, but instead they caused a twofold increase of release. Our data suggest that ATP and adenosine release during ischaemia are for the most part independent processes with distinct underlying mechanisms. These two purines will consequently confer temporally distinct influences on neuronal and glial function in the ischaemic brain. PMID:17459147

  18. Cyclic electron flow is redox-controlled but independent of state transition.

    PubMed

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  19. Transcriptome-based identification of ABC transporters in the western tarnished plant bug lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic cle...

  20. Ca2+ Entry is Required for Mechanical Stimulation-induced ATP Release from Astrocyte

    PubMed Central

    Lee, Jaekwang; Chun, Ye-Eun; Han, Kyung-Seok; Lee, Jungmoo; Woo, Dong Ho

    2015-01-01

    Astrocytes and neurons are inseparable partners in the brain. Neurotransmitters released from neurons activate corresponding G protein-coupled receptors (GPCR) expressed in astrocytes, resulting in release of gliotransmitters such as glutamate, D-serine, and ATP. These gliotransmitters in turn influence neuronal excitability and synaptic activities. Among these gliotransmitters, ATP regulates the level of network excitability and is critically involved in sleep homeostasis and astrocytic Ca2+ oscillations. ATP is known to be released from astrocytes by Ca2+-dependent manner. However, the precise source of Ca2+, whether it is Ca2+ entry from outside of cell or from the intracellular store, is still not clear yet. Here, we performed sniffer patch to detect ATP release from astrocyte by using various stimulation. We found that ATP was not released from astrocyte when Ca2+ was released from intracellular stores by activation of Gαq-coupled GPCR including PAR1, P2YR, and B2R. More importantly, mechanical stimulation (MS)-induced ATP release from astrocyte was eliminated when external Ca2+ was omitted. Our results suggest that Ca2+ entry, but not release from intracellular Ca2+ store, is critical for MS-induced ATP release from astrocyte. PMID:25792866

  1. Responses of Rat P2X2 Receptors to Ultrashort Pulses of ATP Provide Insights into ATP Binding and Channel Gating

    PubMed Central

    Moffatt, Luciano; Hume, Richard I.

    2007-01-01

    To gain insight into the way that P2X2 receptors localized at synapses might function, we explored the properties of outside-out patches containing many of these channels as ATP was very rapidly applied and removed. Using a new method to calibrate the speed of exchange of solution over intact patches, we were able to reliably produce applications of ATP lasting <200 μs. For all concentrations of ATP, there was a delay of at least 80 μs between the time when ATP arrived at the receptor and the first detectable flow of inward current. In response to 200-μs pulses of ATP, the time constant of the rising phase of the current was ∼600 μs. Thus, most channel openings occurred when no free ATP was present. The current deactivated with a time constant of ∼60 ms. The amplitude of the peak response to a brief pulse of a saturating concentration of ATP was ∼70% of that obtained during a long application of the same concentration of ATP. Thus, ATP leaves fully liganded channels without producing an opening at least 30% of the time. Extensive kinetic modeling revealed three different schemes that fit the data well, a sequential model and two allosteric models. To account for the delay in opening at saturating ATP, it was necessary to incorporate an intermediate closed state into all three schemes. These kinetic properties indicate that responses to ATP at synapses that use homomeric P2X2 receptors would be expected to greatly outlast the duration of the synaptic ATP transient produced by a single presynaptic spike. Like NMDA receptors, P2X2 receptors provide the potential for complex patterns of synaptic integration over a time scale of hundreds of milliseconds. PMID:17664346

  2. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration

    PubMed Central

    Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A.W.; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M.; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J.; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G.; Humeau, Yann; Schenck, Annette; Herault, Yann

    2015-01-01

    ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. PMID:26376863

  3. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration.

    PubMed

    Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A W; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G; Humeau, Yann; Schenck, Annette; Herault, Yann

    2015-12-01

    ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. © The Author 2015. Published by Oxford University Press.

  4. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert,H.; Hill, C.

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, therebymore » providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.« less

  5. Three-Dimensional Structures Reveal Multiple ADP/ATP Binding Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Simmons; C Magee; D Smith

    The creation of synthetic enzymes with predefined functions represents a major challenge in future synthetic biology applications. Here, we describe six structures of de novo proteins that have been determined using protein crystallography to address how simple enzymes perform catalysis. Three structures are of a protein, DX, selected for its stability and ability to tightly bind ATP. Despite the addition of ATP to the crystallization conditions, the presence of a bound but distorted ATP was found only under excess ATP conditions, with ADP being present under equimolar conditions or when crystallized for a prolonged period of time. A bound ADPmore » cofactor was evident when Asp was substituted for Val at residue 65, but ATP in a linear configuration is present when Phe was substituted for Tyr at residue 43. These new structures complement previously determined structures of DX and the protein with the Phe 43 to Tyr substitution [Simmons, C. R., et al. (2009) ACS Chem. Biol. 4, 649-658] and together demonstrate the multiple ADP/ATP binding modes from which a model emerges in which the DX protein binds ATP in a configuration that represents a transitional state for the catalysis of ATP to ADP through a slow, metal-free reaction capable of multiple turnovers. This unusual observation suggests that design-free methods can be used to generate novel protein scaffolds that are tailor-made for catalysis.« less

  6. Brain synaptosomes display a diadenosine tetraphosphate (Ap4A)-mediated Ca2+ influx distinct from ATP-mediated influx.

    PubMed

    Pivorun, E B; Nordone, A

    1996-06-01

    Studies undertaken to compare the effects of Ap4A and ATP on altering intrasynaptosomal Ca2+ levels from deermouse brain reveal that both ligands induce a rapid influx of extracellular Ca2+. The Ca2+ profile elicited by 167 microM Ap4A is "spike-like" (half-time for decline to baseline, 19.1 +/- 1.2 sec), in contrast to the gradual decline observed with ATP (104.0 +/- 7.4 sec). DIDS (4-4'-diisothiocyano-2,2'-disulfonic acid stilbene) and suramin preincubation alter only the ATP-induced Ca2+ profile. Cross-desensitization studies indicate that prior application of ATP does not significantly affect the Ca2+ influx elicited by Ap4A, and that prior application of Ap4A does not affect the Ca2+ influx elicited by ATP. These results demonstrate that extracellular Ap4A and ATP elicit distinct intrasynaptosomal Ca2+ influx profiles, and suggest that these two nucleotides may be interacting with distinct purinoceptor subclasses or purinoceptor-effector complexes. Subjecting the synaptosomes simultaneously to depolarization and Ap4A, or to depolarization and ATP, induces an additive effect on Ca2+ influx. Preincubation with verapamil negates the effects of depolarization without modifying the ligand-elicited Ca2+ fluxes. These results indicate the presence of Ap4A and ATP ligand-gated channels that may function as modulators of neuronal activity.

  7. Activation of an ATP-dependent K(+) conductance in Xenopus oocytes by expression of adenylate kinase cloned from renal proximal tubules.

    PubMed

    Brochiero, E; Coady, M J; Klein, H; Laprade, R; Lapointe, J Y

    2001-02-09

    In rabbit proximal convoluted tubules, an ATP-sensitive K(+) (K(ATP)) channel has been shown to be involved in membrane cross-talk, i.e. the coupling (most likely mediated through intracellular ATP) between transepithelial Na(+) transport and basolateral K(+) conductance. This K(+) conductance is inhibited by taurine. We sought to isolate this K(+) channel by expression cloning in Xenopus oocytes. Injection of renal cortex mRNA into oocytes induced a K(+) conductance, largely inhibited by extracellular Ba(2+) and intracellular taurine. Using this functional test, we isolated from our proximal tubule cDNA library a unique clone, which induced a large K(+) current which was Ba(2+)-, taurine- and glibenclamide-sensitive. Surprisingly, this clone is not a K(+) channel but an adenylate kinase protein (AK3), known to convert NTP+AMP into NDP+ADP (N could be G, I or A). AK3 expression resulted in a large ATP decrease and activation of the whole-cell currents including a previously unknown, endogenous K(+) current. To verify whether ATP decrease was responsible for the current activation, we demonstrated that inhibition of glycolysis greatly reduces oocyte ATP levels and increases an inwardly rectifying K(+) current. The possible involvement of AK in the K(ATP) channel's regulation provides a means of explaining their observed activity in cytosolic environments characterized by high ATP concentrations.

  8. Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein

    PubMed Central

    O’Mara, Megan L.; Mark, Alan E.

    2014-01-01

    ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg2+ with each NBD indicates that the coordination of ATP and Mg2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations. PMID:24632881

  9. ATP Binding to p97/VCP D1 Domain Regulates Selective Recruitment of Adaptors to Its Proximal N-Domain

    PubMed Central

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell. PMID:23226521

  10. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    PubMed

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  11. Mechanism of unpinning spirals by a series of stimuli

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Hong

    2014-06-01

    Antitachycardia pacing (ATP) is widely used to terminate tachycardia before it proceeds to lethal fibrillation. The important prerequisite for successful ATP is unpinning of the spirals anchored to the obstacle by a series of stimuli. Here, to understand the mechanism of unpinning spirals by ATP, we propose a theoretical explanation based on a nonlinear eikonal relation and a kinematical model. The theoretical results are quantitatively consistent with the numerical simulations in both weak and high excitabilities.

  12. Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions.

    PubMed

    Miyake, Chikahiro

    2010-12-01

    An electron flow in addition to the major electron sinks in C(3) plants [both photosynthetic carbon reduction (PCR) and photorespiratory carbon oxidation (PCO) cycles] is termed an alternative electron flow (AEF) and functions in the chloroplasts of leaves. The water-water cycle (WWC; Mehler-ascorbate peroxidase pathway) and cyclic electron flow around PSI (CEF-PSI) have been studied as the main AEFs in chloroplasts and are proposed to play a physiologically important role in both the regulation of photosynthesis and the alleviation of photoinhibition. In the present review, I discuss the molecular mechanisms of both AEFs and their functions in vivo. To determine their physiological function, accurate measurement of the electron flux of AEFs in vivo are required. Methods to assay electron flux in CEF-PSI have been developed recently and their problematic points are discussed. The common physiological function of both the WWC and CEF-PSI is the supply of ATP to drive net CO(2) assimilation. The requirement for ATP depends on the activities of both PCR and PCO cycles, and changes in both WWC and CEF-PSI were compared with the data obtained in intact leaves. Furthermore, the fact that CEF-PSI cannot function independently has been demonstrated. I propose a model for the regulation of CEF-PSI by WWC, in which WWC is indispensable as an electron sink for the expression of CEF-PSI activity.

  13. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    PubMed Central

    Hughes, Samantha J; Tanner, Julian A; Hindley, Alison D; Miller, Andrew D; Gould, Ian R

    2003-01-01

    Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common feature of oligomeric aminoacyl-tRNA synthetases, and may play an important functional role. We suggest a manner in which catalytic efficiency could be improved by LysU operating in an alternating sites mechanism. PMID:12787471

  14. Functional Properties of Five Dictyostelium discoideum P2X Receptors*

    PubMed Central

    Baines, Abigail; Parkinson, Katie; Sim, Joan A.; Bragg, Laricia; Thompson, Christopher R. L.; North, R. Alan

    2013-01-01

    The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors. PMID:23740252

  15. Functional properties of five Dictyostelium discoideum P2X receptors.

    PubMed

    Baines, Abigail; Parkinson, Katie; Sim, Joan A; Bragg, Laricia; Thompson, Christopher R L; North, R Alan

    2013-07-19

    The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors.

  16. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?

    PubMed Central

    du Plessis, Stefan S; Agarwal, Ashok; Mohanty, Gayatri; van der Linde, Michelle

    2015-01-01

    Spermatozoa are highly specialized cells. Adenosine triphosphate (ATP), which provides the energy for supporting the key functions of the spermatozoa, is formed by 2 metabolic pathways, namely glycolysis and oxidative phosphorylation (OXPHOS). It is produced in the mitochondria through OXPHOS as well as in the head and principal piece of the flagellum through glycolysis. However, there is a great discrepancy as to which method of ATP production is primarily utilized by the spermatozoa for successful fertilization. Mitochondrial respiration is considered to be a more efficient metabolic process for ATP synthesis in comparison to glycolysis. However, studies have shown that the diffusion potential of ATP from the mitochondria to the distal end of the flagellum is not sufficient to support sperm motility, suggesting that glycolysis in the tail region is the preferred pathway for energy production. It is suggested by many investigators that although glycolysis forms the major source of ATP along the flagellum, energy required for sperm motility is mainly produced during mitochondrial respiration. Nevertheless, some studies have shown that when glycolysis is inhibited, proper functioning and motility of spermatozoa remains intact although it is unclear whether such motility can be sustained for prolonged periods of time, or is sufficiently vigorous to achieve optimal fertilization. The purpose of this article is to provide an overview of mammalian sperm energy metabolism and identify the preferred metabolic pathway for ATP generation which forms the basis of energy production in human spermatozoa during fertilization. PMID:25475660

  17. Cardioprotective effect of diadenosine tetraphosphate (AP4A) preservation in hypothermic storage and its relation with mitochondrial ATP-sensitive potassium channels.

    PubMed

    Ahmet, I; Sawa, Y; Nishimura, M; Kitakaze, M; Matsuda, H

    2000-01-15

    The preconditioning effect of diadenosine tetraphosphate (AP4A) was reported in ischemia/reperfused hearts, but its effect in heart preservation was unknown. According to the possible role of mitochondrial ATP-sensitive potassium channel (mK(ATP) channel) in the effect of ischemic preconditioning, the contribution of mK(ATP) channel to the effect of AP4A was tested. Isolated rat hearts were arrested and preserved by Eurocollin's (EC) solution at 4 degrees C for 8 hr. AP4A (80 microM) or AP4A with the 5-hydroxydecanoic acid (100 microM), a selective inhibitor of the mK(ATP) channel, was added into the EC solution. The preischemic and postischemic cardiac functions were evaluated on a buffer-perfused Langendorff apparatus before storage and after 20 min of reperfusion. AP4A administration improved the recovery of poststorage cardiac functions (the rate-pressure production, left ventricular systolic pressure, heart rate, coronary flow rate, and derivative of left ventricular systolic pressure; P<0.05) and reduced the leakage of lactate dehydrate and creatine kinase during reperfusion, compared with EC alone. Those effects of AP4A were completely reversed by 5-hydroxydecanoic acid administration in combination subjects. AP4A administration protects the heart through opening of the mK(ATP) channel during hypothermic preservation. Thus, addition of AP4A into cardioplegia may be a novel method of ischemic preconditioning in the transplantation context.

  18. Loss of the clock protein PER2 shortens the erythrocyte life span in mice.

    PubMed

    Sun, Qi; Zhao, Yue; Yang, Yunxia; Yang, Xiao; Li, Minghui; Xu, Xi; Wen, Dan; Wang, Junsong; Zhang, Jianfa

    2017-07-28

    Cell proliferation and release from the bone marrow have been demonstrated to be controlled by circadian rhythms in both humans and mice. However, it is unclear whether local circadian clocks in the bone marrow influence physiological functions and life span of erythrocytes. Here, we report that loss of the clock gene Per2 significantly decreased erythrocyte life span. Mice deficient in Per2 were more susceptible to acute stresses in the erythrocytes, becoming severely anemic upon phenylhydrazine, osmotic, and H 2 O 2 challenges. 1 H NMR-based metabolomics analysis revealed that the Per2 depletion causes significant changes in metabolic profiles of erythrocytes, including increased lactate and decreased ATP levels compared with wild-type mice. The lower ATP levels were associated with hyperfunction of Na + /K + -ATPase activity in Per2 -null erythrocytes, and inhibition of Na + /K + -ATPase activity by ouabain efficiently rescued ATP levels. Per2 -null mice displayed increased levels of Na + /K + -ATPase α1 (ATP1A1) in the erythrocyte membrane, and transfection of Per2 cDNA into the erythroleukemic cell line TF-1 inhibited Atp1a1 expression. Furthermore, we observed that PER2 regulates Atp1a1 transcription through interacting with trans-acting transcription factor 1 (SP1). Our findings reveal that Per2 function in the bone marrow is required for the regulation of life span in circulating erythrocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?

    PubMed

    du Plessis, Stefan S; Agarwal, Ashok; Mohanty, Gayatri; van der Linde, Michelle

    2015-01-01

    Spermatozoa are highly specialized cells. Adenosine triphosphate (ATP), which provides the energy for supporting the key functions of the spermatozoa, is formed by 2 metabolic pathways, namely glycolysis and oxidative phosphorylation (OXPHOS). It is produced in the mitochondria through OXPHOS as well as in the head and principal piece of the flagellum through glycolysis. However, there is a great discrepancy as to which method of ATP production is primarily utilized by the spermatozoa for successful fertilization. Mitochondrial respiration is considered to be a more efficient metabolic process for ATP synthesis in comparison to glycolysis. However, studies have shown that the diffusion potential of ATP from the mitochondria to the distal end of the flagellum is not sufficient to support sperm motility, suggesting that glycolysis in the tail region is the preferred pathway for energy production. It is suggested by many investigators that although glycolysis forms the major source of ATP along the flagellum, energy required for sperm motility is mainly produced during mitochondrial respiration. Nevertheless, some studies have shown that when glycolysis is inhibited, proper functioning and motility of spermatozoa remains intact although it is unclear whether such motility can be sustained for prolonged periods of time, or is sufficiently vigorous to achieve optimal fertilization. The purpose of this article is to provide an overview of mammalian sperm energy metabolism and identify the preferred metabolic pathway for ATP generation which forms the basis of energy production in human spermatozoa during fertilization.

  20. Protective Effect of Bendavia (SS-31) Against Oxygen/Glucose-Deprivation Stress-Induced Mitochondrial Damage in Human Brain Microvascular Endothelial Cells.

    PubMed

    Imai, Takahiko; Mishiro, Keisuke; Takagi, Toshinori; Isono, Aoi; Nagasawa, Hideko; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Mitochondria play a key role in cell survival by perfoming functions such as adenosine tri-phosphate (ATP) synthesis, regulation of apoptotic cell death, calcium storage. Hypoxic conditions induce mitochondrial dysfunction, which leads to endothelial injury in cerebral ischemia. Functional disorders include the following: collapse of mitochondrial membrane potential, reduction of ATP synthesis, and generation of reactive oxygen species (ROS). Bendavia, a novel tetra-peptide, has been reported to restrict the uncoupling of the mitochondrial membrane chain, protect the synthesis of ATP, and inhibit ROS generation. In the present study, we investigated whether bendavia protects mitochondria under hypoxic and starved conditions by using human brain microvascular endothelial cells (HBMVECs). After pre-treatment with bendavia, we exposed HBMVECs to oxygen glucose deprivation (OGD) for 6 h. We then assessed cell viability, the level of caspase-3/7 activity, ROS generation, mitochondrial membrane potential, ATP contents, and the number of mitochondria. Bendavia recovered cell viability and reduced the caspase-3/7 activity induced by OGDinduced damage. Bendavia also recovered mitochondrial functions. These results suggest that bendavia protects mitochondrial function against OGD-induced injury and inhibits apoptosis in HBMVECs. Consequently, our findings indicate that bendavia might become the new therapeutic drug of choice to target mitochondria in case of cerebral ischemia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart

    PubMed Central

    Power, Amelia; Pearson, Nicholas; Pham, Toan; Cheung, Carlos; Phillips, Anthony; Hickey, Anthony

    2014-01-01

    Abstract Heart failure is a common cause of death with hyperthermia, and the exact cause of hyperthermic heart failure appears elusive. We hypothesize that the energy supply (ATP) of the heart may become impaired due to increased inner‐mitochondrial membrane permeability and inefficient oxidative phosphorylation (OXPHOS). Therefore, we assessed isolated working heart and mitochondrial function. Ex vivo working rat hearts were perfused between 37 and 43.5°C and showed break points in all functional parameters at ~40.5°C. Mitochondrial high‐resolution respirometry coupled to fluorometry was employed to determine the effects of hyperthermia on OXPHOS and mitochondrial membrane potential (ΔΨ) in vitro using a comprehensive metabolic substrate complement with isolated mitochondria. Relative to 37 and 40°C, 43°C elevated Leak O2 flux and depressed OXPHOS O2 flux and ∆Ψ. Measurement of steady‐state ATP production from mitochondria revealed decreased ATP synthesis capacity, and a negative steady‐state P:O ratio at 43°C. This approach offers a more powerful analysis of the effects of temperature on OXPHOS that cannot be measured using simple measures such as the traditional respiratory control ratio (RCR) or P:O ratio, which, respectively, can only approach 1 or 0 with inner‐membrane failure. At 40°C there was only a slight enhancement of the Leak O2 flux and this did not significantly affect ATP production rate. Therefore, during mild hyperthermia (40°C) there is no enhancement of ATP supply by mitochondria, to accompany increasing cardiac energy demands, while between this and critical hyperthermia (43°C), mitochondria become net consumers of ATP. This consumption may contribute to cardiac failure or permanent damage during severe hyperthermia. PMID:25263202

  2. KATP Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis.

    PubMed

    Vidal-Taboada, José M; Pugliese, Marco; Salvadó, Maria; Gámez, Josep; Mahy, Nicole; Rodríguez, Manuel J

    2018-02-28

    The ATP-sensitive potassium (K ATP ) channel directly regulates the microglia-mediated inflammatory response following CNS injury. To determine the putative role of the K ATP channel in amyotrophic lateral sclerosis (ALS) pathology, we investigated whether ALS induces changes in K ATP channel expression in the spinal cord and motor cortex. We also characterized new functional variants of human ABCC8, ABCC9, KCNJ8, and KCNJ11 genes encoding for the K ATP channel and analyzed their association with ALS risk, rate of progression, and survival in a Spanish ALS cohort. The expression of ABCC8 and KCNJ8 genes was enhanced in the spinal cord of ALS samples, and KCNJ11 increased in motor cortex of ALS samples, as determined by real-time polymerase chain reaction. We then sequenced the exons and regulatory regions of K ATP channel genes from a subset of 28 ALS patients and identified 50 new genetic variants. For the case-control association analysis, we genotyped five selected polymorphisms with predicted functional relevance in 185 Spanish ALS (134 spinal ALS and 51 bulbar ALS) patients and 493 controls. We found that bulbar ALS patients presenting the G/G genotype of the rs4148646 variant of ABCC8 and the T/T genotype of the rs5219 variant of KCNJ11 survived longer than other ALS patients presenting other genotypes. Also, the C/C genotype of the rs4148642 variant of ABCC8 and the T/C genotype of the rs148416760 variant of ABCC9 modified the progression rate in spinal ALS patients. Our results suggest that the K ATP channel plays a role in the pathophysiological mechanisms of ALS.

  3. Copper Transporter ATP7A Protects Against Endothelial Dysfunction in Type 1 Diabetic Mice by Regulating Extracellular Superoxide Dismutase

    PubMed Central

    Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-01-01

    Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884

  4. Treatment of heterotopic ossification through remote ATP hydrolysis.

    PubMed

    Peterson, Jonathan R; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E; Agarwal, Shailesh; Buchman, Steven R; Cederna, Paul S; Xi, Chuanwu; Morris, Michael D; Herndon, David N; Xiao, Wenzhong; Tompkins, Ronald G; Krebsbach, Paul H; Wang, Stewart C; Levi, Benjamin

    2014-09-24

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein-mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3',5'-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury-exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. Copyright © 2014, American Association for the Advancement of Science.

  5. Faithful transcription initiation from a mitochondrial promoter in transgenic plastids

    PubMed Central

    Bohne, Alexandra-Viola; Ruf, Stephanie; Börner, Thomas; Bock, Ralph

    2007-01-01

    The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5′ ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5′ untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed. PMID:17959651

  6. Oxidative phosphorylation. The relation between the specific binding of trimethlytin and triethyltin to mitochondria and their effects on various mitochondrial functions

    PubMed Central

    Aldridge, W. N.; Street, B. W.

    1971-01-01

    1. A binding site (site 1) is present in mitochondria with affinity for trimethyltin and triethyltin adequate for a site to which they could be attached when the processes of energy conservation are inhibited. 2. The quantitative relationships between the binding of trimethyltin and triethyltin to site 1 and their effects on various mitochondrial functions have been examined. 3. ATP synthesis linked to the oxidation of pyruvate, succinate and intramitochondrial substrate, ATP synthesis and oxygen uptake (succinate or pyruvate as substrate) stimulated by uncoupling agents are all inhibited by trimethyltin and triethyltin; when inhibition is less than 50% the ratio (percentage inhibition)/(percentage of binding site 1 complexed) is approx. 10:1. 4. ATP synthesis linked to the oxidation of reduced cytochrome c (ascorbate+NNN′N′-tetramethyl-p-phenylenediamine), ATP hydrolysis and oxygen uptake in the presence of low concentrations of trimethyltin and triethyltin approach zero activity as the proportion of binding site 1 complexed approaches 100%. 5. Possible interpretations of these findings are discussed with reference to published arrangements for coupling of electron transport to ATP synthesis and also to our present knowledge of the chemical and biological specificity of trialkyltin compounds. PMID:5126473

  7. Dietary Tocotrienol/γ-Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    PubMed Central

    Schloesser, Anke; Esatbeyoglu, Tuba; Piegholdt, Stefanie; Dose, Janina; Ikuta, Naoko; Okamoto, Hinako; Ishida, Yoshiyuki; Terao, Keiji; Matsugo, Seiichi; Rimbach, Gerald

    2015-01-01

    Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3), may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD) on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM). Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice. PMID:26301044

  8. Inhibitory effect of protopine on K(ATP) channel subunits expressed in HEK-293 cells.

    PubMed

    Jiang, Bo; Cao, Kun; Wang, Rui

    2004-12-15

    Protopine is an isoquinoline alkaloid purified from Corydalis tubers and other families of medicinal plants. The purpose of the present study was to investigate the effects of protopine on K(ATP) channels and big conductance (BKCa) channels. Protopine concentration-dependently inhibited K(ATP) channel currents in human embryonic kidney cells (HEK-293) which were cotransfected with Kir6.1 and sulfonylurea receptor 1 (SUR1) subunits, but not that with Kir6.1 cDNA transfection alone. At 25 muM, protopine reversibly decreased Kir6.1/SUR1 currents densities from -17.4+/-3 to -13.2+/-2.4 pA/pF at -60 mV (n=5, P<0.05). The heterologously expressed mSlo-encoded BK(Ca) channel currents in HEK-293 cells were not affected by protopine (25 muM), although iberiotoxin (100 nM) significantly inhibited the expressed BK(Ca) currents (n=5, P<0.05). In summary, protopine selectively inhibited K(ATP) channels by targeting on SUR1 subunit. This discovery may help design specific agents to selectively modulate the function of Kir6.1/SUR1 channel complex and facilitate the understanding of the structure-function relationship of specific subtype of K(ATP) channels.

  9. Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function

    NASA Astrophysics Data System (ADS)

    Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Parameswaran, Harikrishnan; Wellman, Tyler J.; Martinez, Nuria; Allen, Philip G.; Frey, Urs; Suki, Béla

    2015-10-01

    Cells can be exposed to irregular mechanical fluctuations, such as those arising from changes in blood pressure. Here, we report that ATP production, assessed through changes in mitochondrial membrane potential, is downregulated in vascular smooth muscle cells in culture exposed to monotonous stretch cycles when compared with cells exposed to a variable cyclic stretch that incorporates physiological levels of cycle-by-cycle variability in stretch amplitude. Variable stretch enhances ATP production by increasing the expression of ATP synthase’s catalytic domain, cytochrome c oxidase and its tyrosine phosphorylation, mitofusins and PGC-1α. Such a fluctuation-driven mechanotransduction mechanism is mediated by motor proteins and by the enhancement of microtubule-, actin- and mitochondrial-network complexity. We also show that, in aorta rings isolated from rats, monotonous stretch downregulates--whereas variable stretch maintains--physiological vessel-wall contractility through mitochondrial ATP production. Our results have implications for ATP-dependent and mechanosensitive intracellular processes.

  10. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP

    PubMed Central

    Cockayne, Debra A; Dunn, Philip M; Zhong, Yu; Rong, Weifang; Hamilton, Sara G; Knight, Gillian E; Ruan, Huai-Zhen; Ma, Bei; Yip, Ping; Nunn, Philip; McMahon, Stephen B; Burnstock, Geoffrey; Ford, Anthony PDW

    2005-01-01

    Extracellular ATP plays a role in nociceptive signalling and sensory regulation of visceral function through ionotropic receptors variably composed of P2X2 and P2X3 subunits. P2X2 and P2X3 subunits can form homomultimeric P2X2, homomultimeric P2X3, or heteromultimeric P2X2/3 receptors. However, the relative contribution of these receptor subtypes to afferent functions of ATP in vivo is poorly understood. Here we describe null mutant mice lacking the P2X2 receptor subunit (P2X2−/−) and double mutant mice lacking both P2X2 and P2X3 subunits (P2X2/P2X3Dbl−/−), and compare these with previously characterized P2X3−/− mice. In patch-clamp studies, nodose, coeliac and superior cervical ganglia (SCG) neurones from wild-type mice responded to ATP with sustained inward currents, while dorsal root ganglia (DRG) neurones gave predominantly transient currents. Sensory neurones from P2X2−/− mice responded to ATP with only transient inward currents, while sympathetic neurones had barely detectable responses. Neurones from P2X2/P2X3Dbl−/− mice had minimal to no response to ATP. These data indicate that P2X receptors on sensory and sympathetic ganglion neurones involve almost exclusively P2X2 and P2X3 subunits. P2X2−/− and P2X2/P2X3Dbl−/− mice had reduced pain-related behaviours in response to intraplantar injection of formalin. Significantly, P2X3−/−, P2X2−/−, and P2X2/P2X3Dbl−/− mice had reduced urinary bladder reflexes and decreased pelvic afferent nerve activity in response to bladder distension. No deficits in a wide variety of CNS behavioural tests were observed in P2X2−/− mice. Taken together, these data extend our findings for P2X3−/− mice, and reveal an important contribution of heteromeric P2X2/3 receptors to nociceptive responses and mechanosensory transduction within the urinary bladder. PMID:15961431

  11. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes.

    PubMed

    Taruno, Akiyuki; Vingtdeux, Valérie; Ohmoto, Makoto; Ma, Zhongming; Dvoryanchikov, Gennady; Li, Ang; Adrien, Leslie; Zhao, Haitian; Leung, Sze; Abernethy, Maria; Koppel, Jeremy; Davies, Peter; Civan, Mortimer M; Chaudhari, Nirupa; Matsumoto, Ichiro; Hellekant, Göran; Tordoff, Michael G; Marambaud, Philippe; Foskett, J Kevin

    2013-03-14

    Recognition of sweet, bitter and umami tastes requires the non-vesicular release from taste bud cells of ATP, which acts as a neurotransmitter to activate afferent neural gustatory pathways. However, how ATP is released to fulfil this function is not fully understood. Here we show that calcium homeostasis modulator 1 (CALHM1), a voltage-gated ion channel, is indispensable for taste-stimuli-evoked ATP release from sweet-, bitter- and umami-sensing taste bud cells. Calhm1 knockout mice have severely impaired perceptions of sweet, bitter and umami compounds, whereas their recognition of sour and salty tastes remains mostly normal. Calhm1 deficiency affects taste perception without interfering with taste cell development or integrity. CALHM1 is expressed specifically in sweet/bitter/umami-sensing type II taste bud cells. Its heterologous expression induces a novel ATP permeability that releases ATP from cells in response to manipulations that activate the CALHM1 ion channel. Knockout of Calhm1 strongly reduces voltage-gated currents in type II cells and taste-evoked ATP release from taste buds without affecting the excitability of taste cells by taste stimuli. Thus, CALHM1 is a voltage-gated ATP-release channel required for sweet, bitter and umami taste perception.

  12. The function of mitochondrial F(O)F(1) ATP-synthase from the whiteleg shrimp Litopenaeus vannamei muscle during hypoxia.

    PubMed

    Martinez-Cruz, O; Calderon de la Barca, A M; Uribe-Carvajal, S; Muhlia-Almazan, A

    2012-08-01

    The effect of hypoxia and re-oxygenation on the mitochondrial complex F(O)F(1)-ATP synthase was investigated in the whiteleg shrimp Litopenaeus vannamei. A 660 kDa protein complex isolated from mitochondria of the shrimp muscle was identified as the ATP synthase complex. After 10h at hypoxia (1.5-2.0 mg oxygen/L), the concentration of L-lactate in plasma increased significantly, but the ATP amount and the concentration of ATPβ protein remained unaffected. Nevertheless, an increase of 70% in the ATPase activity was detected, suggesting that the enzyme may be regulated at a post-translational level. Thus, during hypoxia shrimp are able to maintain ATP amounts probably by using some other energy sources as phosphoarginine when an acute lack of energy occurs. During re-oxygenation, the ATPase activity decreased significantly and the ATP production continued via the electron transport chain and oxidative phosphorylation. The results obtained showed that shrimp faces hypoxia partially by hydrolyzing the ATP through the reaction catalyzed by the mitochondrial ATPase which increases its activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Chaperones of F[subscript 1]-ATPase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludlam, Anthony; Brunzelle, Joseph; Pribyl, Thomas

    2009-09-25

    Mitochondrial F{sub 1}-ATPase contains a hexamer of alternating {alpha} and {beta} subunits. The assembly of this structure requires two specialized chaperones, Atp11p and Atp12p, that bind transiently to {beta} and {alpha}. In the absence of Atp11p and Atp12p, the hexamer is not formed, and {alpha} and {beta} precipitate as large insoluble aggregates. An early model for the mechanism of chaperone-mediated F{sub 1} assembly (Wang, Z. G., Sheluho, D., Gatti, D. L., and Ackerman, S. H. (2000) EMBO J. 19, 1486--1493) hypothesized that the chaperones themselves look very much like the {alpha} and {beta} subunits, and proposed an exchange of Atp11pmore » for {alpha} and of Atp12p for {beta}; the driving force for the exchange was expected to be a higher affinity of {alpha} and {beta} for each other than for the respective chaperone partners. One important feature of this model was the prediction that as long as Atp11p is bound to {beta} and Atp12p is bound to {alpha}, the two F{sub 1} subunits cannot interact at either the catalytic site or the noncatalytic site interface. Here we present the structures of Atp11p from Candida glabrata and Atp12p from Paracoccus denitrificans, and we show that some features of the Wang model are correct, namely that binding of the chaperones to {alpha} and {beta} prevents further interactions between these F1 subunits. However, Atp11p and Atp12p do not resemble {alpha} or {beta}, and it is instead the F{sub 1} {gamma} subunit that initiates the release of the chaperones from {alpha} and {beta} and their further assembly into the mature complex.« less

  14. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum

    PubMed Central

    Ferguson, Scott A.; Cook, Gregory M.; Montgomery, Martin G.; Leslie, Andrew G. W.

    2016-01-01

    The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a “down” state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an “up” state, where the α-helices, devoid of ATP, enter the α3β3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme’s hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3β3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the βE-catalytic site is in the usual “open” conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. PMID:27621435

  15. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    PubMed

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  16. A novel mutation m.8561C>G in MT-ATP6/8 causing a mitochondrial syndrome with ataxia, peripheral neuropathy, diabetes mellitus, and hypergonadotropic hypogonadism.

    PubMed

    Kytövuori, Laura; Lipponen, Joonas; Rusanen, Harri; Komulainen, Tuomas; Martikainen, Mika H; Majamaa, Kari

    2016-11-01

    Defects in the respiratory chain or mitochondrial ATP synthase (complex V) result in mitochondrial dysfunction that is an important cause of inherited neurological disease. Two of the subunits of complex V are encoded by MT-ATP6 and MT-ATP8 in the mitochondrial genome. Pathogenic mutations in MT-ATP6 are associated with the Leigh syndrome, the syndrome of neuropathy, ataxia, and retinitis pigmentosa (NARP), as well as with non-classical phenotypes, while MT-ATP8 is less frequently mutated in patients with mitochondrial disease. We investigated two adult siblings presenting with features of cerebellar ataxia, peripheral neuropathy, diabetes mellitus, sensorineural hearing impairment, and hypergonadotropic hypogonadism. As the phenotype was suggestive of mitochondrial disease, mitochondrial DNA was sequenced and a novel heteroplasmic mutation m.8561C>G in the overlapping region of the MT-ATP6 and MT-ATP8 was found. The mutation changed amino acids in both subunits. Mutation heteroplasmy correlated with the disease phenotype in five family members. An additional assembly intermediate of complex V and increased amount of subcomplex F 1 were observed in myoblasts of the two patients, but the total amount of complex V was unaffected. Furthermore, intracellular ATP concentration was lower in patient myoblasts indicating defective energy production. We suggest that the m.8561C>G mutation in MT-ATP6/8 is pathogenic, leads biochemically to impaired assembly and decreased ATP production of complex V, and results clinically in a phenotype with the core features of cerebellar ataxia, peripheral neuropathy, diabetes mellitus, and hypergonadotropic hypogonadism.

  17. Application of the Principles of Systems Biology and Wiener’s Cybernetics for Analysis of Regulation of Energy Fluxes in Muscle Cells in Vivo

    PubMed Central

    Guzun, Rita; Saks, Valdur

    2010-01-01

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells. PMID:20479996

  18. ATP hydrolysis is critical for induction of conformational changes in GroEL that expose hydrophobic surfaces.

    PubMed

    Gorovits, B M; Ybarra, J; Horowitz, P M

    1997-03-14

    The degree of hydrophobic exposure in the molecular chaperone GroEL during its cycle of ATP hydrolysis was analyzed using 1,1'-bis(4-anilino)naphthalene-5,5'disulfonic acid (bisANS), a hydrophobic probe, whose fluorescence is highly sensitive to the environment. In the presence of 10 mM MgCl2 and 10 mM KCl the addition of ATP, but not ADP or AMP-PNP, resulted in a time-dependent, linear increase in the bisANS fluorescence. The rate of the increase in the bisANS fluorescence depended on the concentrations of both GroEL and the probe. The effect could be substantially inhibited by addition of excess ADP or by converting ATP to ADP using hexokinase, showing that the increase in the bisANS fluorescence was correlated with ATP hydrolysis. The rate of ATP hydrolysis catalyzed by GroEL was uncompetitively inhibited in the presence of bisANS. This uncompetitive inhibition suggests that the probe can interact with the GroEL-ATP complex. The inability of the nonhydrolyzable ATP analog, AMP-PNP, to cause a similar effect is explained by the interaction of bisANS with a transient conformational state of GroEL formed consequent to ATP hydrolysis. It is suggested that this short lived hydrophobic exposure reflects a conformational shift in GroEL that results from electrostatic repulsion between the bound products of ATP hydrolysis, and it plays an important role in the mechanism of the chaperonin cycle.

  19. A catalytic and dual recycling amplification ATP sensor based on target-driven allosteric structure switching of aptamer beacons.

    PubMed

    Peng, Ying; Li, Daxiu; Yuan, Ruo; Xiang, Yun

    2018-05-15

    Abnormal concentrations of ATP are associated with many diseases and cancers, and quantitative detection of ATP is thus of great importance for disease diagnosis and prognosis. In the present work, we report a new dual recycling amplification sensor integrated with catalytic hairpin assembly (CHA) to achieve high sensitivity for fluorescent detection of ATP. The association of the target ATP with the aptamer beacons causes the allosteric structure switching of the aptamer beacons to expose the toehold regions, which hybridize with and unfold the fluorescently quenched hairpin signal probes (HP1) to recycle the target ATP and to trigger CHA between HP1 and the secondary hairpin probes (HP2) to form HP1/HP2 duplexes. Due to the recycling amplification, the presence of ATP leads to the formation of many HP1/HP2 duplexes, generating dramatically amplified fluorescent signals for sensitive detection of ATP. Under optimal experimental conditions, our sensor linearly responds to ATP in the range from 25 to 600nM with a calculated detection limit of 8.2nM. Furthermore, the sensor shows a high selectivity and can also be used to detect ATP in human serums to realize its application for real samples. With the distinct advantage of significant signal amplification without the involvement of any nanomaterial and enzyme, the developed sensor thus holds great potential for simple and sensitive detection of different small molecules and proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. RapA, SWI/SNF subunit of Escherichia coli RNA polymerase promotes the release of nascent RNA from transcription complexes

    PubMed Central

    Yawn, Brandon; Zhang, Lin; Mura, Cameron; Sukhodolets, Maxim V.

    2009-01-01

    RapA, a prokaryotic member of the SWI/SNF protein superfamily, is an integral part of the RNA polymerase transcription complex. RapA’s function and catalytic mechanism have been linked to nucleic acid remodeling. In this work we show that mutations in the interface between RapA’s SWI/SNF and double-stranded nucleic acid-binding domains significantly alter ATP hydrolysis in purified RapA. The effects of individual mutations on ATP hydrolysis loosely correlated with RapA’s nucleic acid-remodeling activity, indicating that the interaction between these domains may be important for the RapA-mediated remodeling of nonproductive transcription complexes. In this study we introduced a model system for in vitro transcription of a full-length E. coli gene (slyD). To study the function of RapA, we fractionated and identified in vitro transcription reaction intermediates in the presence or absence of RapA. These experiments demonstrated that RapA contributes to the formation of free RNA species during in vitro transcription. This work further refines our models for RapA function in vivo and establishes a new role in RNA management for a representative of the SWI/SNF protein superfamily. PMID:19580329

  1. Allosteric Inhibition of Human Ribonucleotide Reductase by dATP Entails the Stabilization of a Hexamer

    PubMed Central

    2015-01-01

    Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (β) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α6 is assembled from dimers (α2) without a previously proposed tetramer intermediate (α4). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α6 can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α6 were further examined by SAXS in the presence of the β subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the β subunit to the active site of α. PMID:26727048

  2. Serotonergic regulation of distention-induced ATP release from the urothelium.

    PubMed

    Matsumoto-Miyai, Kazumasa; Yamada, Erika; Shinzawa, Eriko; Koyama, Yoshihisa; Shimada, Shoichi; Yoshizumi, Masaru; Kawatani, Masahito

    2016-04-01

    Serotonin [5-hydroxytryptamine (5-HT)] is involved in both motor and sensory functions in hollow organs, especially in the gastrointestinal tract. However, the involvement of 5-HT in visceral sensation of the urinary bladder remains unknown. Because distention-induced ATP release from the urothelium plays an essential role in visceral sensation of the urinary bladder, we investigated the regulation of urothelial ATP release by the 5-HT signaling system. RT-PCR and immunohistochemical analyses of the urothelium revealed specific expression of 5-HT 1D and 5-HT 4 receptors. The addition of 5-HT did not affect urothelial ATP release without bladder distention, but it significantly reduced distention-induced ATP release by physiological pressure during urine storage (5 cmH 2 O). The inhibitory effect of 5-HT on distention-elicited ATP release was blocked by preincubation with the 5-HT 1B/1D antagonist GR-127935 but not by the 5-HT 4 antagonist SB-204070. mRNA encoding tryptophan hydroxylase 1 was detected in the urinary bladder by nested RT-PCR amplification, and l-tryptophan or the selective serotonin reuptake inhibitor citalopram also inhibited ATP release, indicating that 5-HT is endogenously synthesized and released in the urinary bladder. The addition of GR-127935 significantly enhanced the distention-elicited ATP release 40 min after distention, whereas SB-204070 reduced the amount of ATP release 20 min after distention. These data suggest that 5-HT 4 facilitates the distention-induced ATP release at an earlier stage, whereas 5-HT 1D inhibits ATP release at a later stage. The net inhibitory effect of 5-HT indicates that the action of 5-HT on the urothelium is mediated predominantly by 5-HT 1D . Copyright © 2016 the American Physiological Society.

  3. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, M.E.; Keegstra, K.; Froehlich, J.E.

    Protein import into chloroplasts is an energy-requiring process mediated by a pertinacious import apparatus. Although previous work has shown that low levels of ATP or GTP can support precursor binding, the role of GTP during the import process remains unclear. Specifically, it is unknown whether GTP plays a separate role from ATP during the early stages of protein import and whether GTP has any role in the later stages of transport. The authors investigated the role of GTP during the various stages of protein import into chloroplasts by using purified GTP analogs and an in vitro import assay. GTP, GDP,more » the nonhydrolyzable analog GMP-PNP, and the slowly hydrolyzable analogs guanosine 5{prime}-O-(2-thiodiphosphate) and guanosine 5{prime}-O-(3-thiotriphosphate) were used in this study. Chromatographically purified 5{prime}-guanylyl-imido-diphosphate and guanosine 5{prime}-O-(3-thiotriphosphate) were found to inhibit the formation of early-import intermediates, even in the presence of ATP. The authors also observed that GTP does not play a role during the translocation of precursors from the intermediate state. They conclude that GTP hydrolysis influences events leading to the formation of early-import intermediates, but not subsequent steps such as precursor translocation.« less

  5. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is notmore » involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.« less

  6. Deficiency of ATP6V1H Causes Bone Loss by Inhibiting Bone Resorption and Bone Formation through the TGF-β1 Pathway

    PubMed Central

    Duan, Xiaohong; Liu, Jin; Zheng, Xueni; Wang, Zhe; Zhang, Yanli; Hao, Ying; Yang, Tielin; Deng, Hongwen

    2016-01-01

    Vacuolar-type H +-ATPase (V-ATPase) is a highly conserved, ancient enzyme that couples the energy of ATP hydrolysis to proton transport across vesicular and plasma membranes of eukaryotic cells. Previously reported mutations of various V-ATPase subunits are associated with increased bone density. We now show that haploinsufficiency for the H subunit of the V1 domain (ATP6V1H) is associated with osteoporosis in humans and mice. A genome-wide SNP array analysis of 1625 Han Chinese found that 4 of 15 tag SNPs (26.7%) within ATP6V1H were significantly associated with low spine bone mineral density. Atp6v1h+/- knockout mice generated by the CRISPR/Cas9 technique had decreased bone remodeling and a net bone matrix loss. Atp6v1h+/- osteoclasts showed impaired bone formation and increased bone resorption. The increased intracellular pH of Atp6v1h+/- osteoclasts downregulated TGF-β1 activation, thereby reducing induction of osteoblast formation but the bone mineralization was not altered. However, bone formation was reduced more than bone resorption. Our data provide evidence that partial loss of ATP6V1H function results in osteoporosis/osteopenia. We propose that defective osteoclast formation triggers impaired bone formation by altering bone remodeling. In the future, ATP6V1H might, therefore, serve as a target for the therapy of osteoporosis. PMID:27924156

  7. Evaluation of the metabolism of high energy phosphates in patients with Chagas' disease.

    PubMed

    Leme, Ana Maria Betim Paes; Salemi, Vera Maria Cury; Parga, José Rodrigues; Ianni, Bárbara Maria; Mady, Charles; Weiss, Robert G; Kalil-Filho, Roberto

    2010-08-01

    Abnormalities in myocardial metabolism have been observed in patients with heart failure of different etiologies. Magnetic resonance spectroscopy (MRS) with phosphorus-31 is a noninvasive technique that allows detection of myocardial metabolic changes. To determine the resting metabolism of high-energy phosphates in patients with Chagas' disease (CD) by MRS with phosphorus-31. We studied 39 patients with CD, 23 with preserved ventricular function (PF Group) and 16 with ventricular dysfunction (VD Group), assessed by Doppler echocardiography. MRS of the anterosseptal region was performed in 39 patients and 8 normal subjects (C Group) through a Phillips 1.5 Tesla device, obtaining the phosphocreatine/beta-adenosine triphosphate myocardial ratio (PCr/β-ATP). The levels of cardiac PCr/β-ATP were reduced in VD Group in relation to PF Group, and the latter presented reduced levels compared to C Group (VD Group: 0.89 ± 0.31 vs PF Group: 1.47 ± 0.34 vs C Group: 1.88 ± 0.08, p < 0.001). A correlation was found between left ventricular ejection fraction and PCr/β-ATP in 39 patients (r = 0.64, p < 0.001). Patients under functional class I (n = 22) presented PCr/β-ATP of 1.45 ± 0.35, and those in functional classes II and III (n = 17), PCr/β-ATP of 0.94 ± 0.36 (p < 0.001). The 31-phosphorus MRS was able to detect non-invasively changes in the rest energy metabolism of patients with Chagas' disease, with and without systolic dysfunction. These changes were related to the severity of heart impairment.

  8. Oxidative phosphorylation. Halide-dependent and halide-independent effects of triorganotin and trioganolead compounds on mitochondrial functions.

    PubMed Central

    Aldridge, W N; Street, B W; Skilleter, D N

    1977-01-01

    1. Each of five triorganotin and five triorganolead compounds was shown to perturb mithochondrial functions in three different ways. One is dependent and two are independent of Cl- in the medium. 2. Structure-activity relationships for the three interactions are described, and compounds suitable as tools for the separate study of each process are defined. 3. In a Cl- -containing medium trimethyltin, triethyltin, trimethyl-lead, triethyl-lead and tri-n-propyl-lead all produce the same maximum rate of ATP hydrolysis and O2 uptake; this rate is much less than that produced by uncoupling agents such as 2,4-dinitrophenol. 4. Increase in ATP hydrolysis and O2 uptake are measures on energy ultilization when triogranotin and triorganolead compounds bring about an exchange of external C1- for intramitochondrial OH- ions. Possible rate-limiting steps in this process are discussed. 5. In a C1- -containing medium ATP synthesis linked to the oxidation of beta-hydroxybutyrate or reduced cytochrone c is less inhibited by triethyltin or triethyl-lead than is ATP synthesis linked to the oxidation of succinate, pyruvate or L-glutamate. 6. The inhibition of ATP synthesis linked to the oxidation of both beta-hydroxybutyrate and reduced cytochrome c consists of two processes: one is a limited uncoupling and is C1- -dependent and the other is a C1- -independent inhibition of the energy-conservation system. 7. The different sensitivities to inhibition by triethyltin of mitochondrial functions involving the oxidation of beta-hydroxybutyrate and succinate are compared and discussed. PMID:24436

  9. ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses

    PubMed Central

    Cheung, Ming-Yan; Li, Xiaorong; Miao, Rui; Fong, Yu-Hang; Li, Kwan-Pok; Yung, Yuk-Lin; Yu, Mei-Hui; Wong, Kam-Bo; Lam, Hon-Ming

    2016-01-01

    G proteins are involved in almost all aspects of the cellular regulatory pathways through their ability to bind and hydrolyze GTP. The YchF subfamily, interestingly, possesses the unique ability to bind both ATP and GTP, and is possibly an ancestral form of G proteins based on phylogenetic studies and is present in all kingdoms of life. However, the biological significance of such a relaxed ligand specificity has long eluded researchers. Here, we have elucidated the different conformational changes caused by the binding of a YchF homolog in rice (OsYchF1) to ATP versus GTP by X-ray crystallography. Furthermore, by comparing the 3D relationships of the ligand position and the various amino acid residues at the binding sites in the crystal structures of the apo-bound and ligand-bound versions, a mechanism for the protein’s ability to bind both ligands is revealed. Mutation of the noncanonical G4 motif of the OsYchF1 to the canonical sequence for GTP specificity precludes the binding/hydrolysis of ATP and prevents OsYchF1 from functioning as a negative regulator of plant-defense responses, while retaining its ability to bind/hydrolyze GTP and its function as a negative regulator of abiotic stress responses, demonstrating the specific role of ATP-binding/hydrolysis in disease resistance. This discovery will have a significant impact on our understanding of the structure–function relationships of the YchF subfamily of G proteins in all kingdoms of life. PMID:26912459

  10. Purinergic and cholinergic components of bladder contractility and flow.

    PubMed

    Theobald, R J

    1995-01-01

    The role of ATP as a neurotransmitter/neuromodulator in the urinary tract has been the subject of much study, particularly whether ATP has a functional role in producing urine flow. Recent studies suggested significant species variation, specifically a variation between cat and other species. This study was performed to determine the in vivo response of cat urinary bladder to pelvic nerve stimulation (PNS) and to the exogenous administration of cholinergic and purinergic agents. In anesthetized cats, bladder contractions and fluid expulsion was measured in response to PNS and to the exogenous administration of cholinergic and purinergic agents. Fluid was instilled into the bladder and any fluid expelled by bladder contractions induced by PNS or exogenous agents was collected in a beaker. The volume was measured in a graduated cylinder and recorded. PNS, carbachol and APPCP produced sustained contractions with significant expulsion of fluid. ATP, ACh and hypogastric nerve stimulation did not produce any significant expulsion of fluid. Atropine, a cholinergic antagonist, inhibited PNS contractions and fluid expulsion with no effect on purinergic actions. There was a significant relationship between the magnitude of the contraction, duration of the contractions and volume of fluid expelled. The data and information from other studies, strongly suggests a functional role for ATP as a cotransmitter in the lower urinary tract different from ACh's role. ATP stimulation of a specific purinergic receptor plays a role in initiation of bladder contractions and perhaps in the initiation of urine flow from the bladder. ACh's role is functionally different and appears to be more involved in maintenance of contractile activity and flow.

  11. ATP monitoring technology for microbial growth control in potable water systems

    NASA Astrophysics Data System (ADS)

    Whalen, Patrick A.; Whalen, Philip J.; Cairns, James E.

    2006-05-01

    ATP (Adenosine Triphosphate) is the primary energy transfer molecule present in all living biological cells on Earth. ATP cannot be produced or maintained by anything but a living organism, and as such, its measurement is a direct indication of biological activity. The main advantage of ATP as a biological indicator is the speed of the analysis - from collecting the sample to obtaining the result, only minutes are required. The technology to measure ATP is already widely utilized to verify disinfection efficacy in the food industry and is also commonly applied in industrial water processes such as cooling water systems to monitor microbial growth and biocide applications. Research has indicated that ATP measurement technology can also play a key role in such important industries as potable water distribution and biological wastewater treatment. As will be detailed in this paper, LuminUltra Technologies has developed and applied ATP measurement technologies designed for any water type, and as such can provide a method to rapidly and accurately determine the level of biological activity in drinking water supplies. Because of its speed and specificity to biological activity, ATP measurement can play a key role in defending against failing drinking water quality, including those encountered during routine operation and also bioterrorism.

  12. The JH2 domain and SH2-JH2 linker regulate JAK2 activity: A detailed kinetic analysis of wild type and V617F mutant kinase domains.

    PubMed

    Sanz Sanz, Arturo; Niranjan, Yashavanthi; Hammarén, Henrik; Ungureanu, Daniela; Ruijtenbeek, Rob; Touw, Ivo P; Silvennoinen, Olli; Hilhorst, Riet

    2014-10-01

    JAK2 tyrosine kinase regulates many cellular functions. Its activity is controlled by the pseudokinase (JH2) domain by still poorly understood mechanisms. The V617F mutation in the pseudokinase domain activates JAK2 and causes myeloproliferative neoplasms. We conducted a detailed kinetic analysis of recombinant JAK2 tyrosine kinase domain (JH1) and wild-type and V617F tandem kinase (JH1JH2) domains using peptide microarrays to define the functions of the kinase domains. The results show that i) JAK2 follows a random Bi-Bi reaction mechanism ii) JH2 domain restrains the activity of the JH1 domain by reducing the affinity for ATP and ATP competitive inhibitors iii) V617F decreases affinity for ATP but increases catalytic activity compared to wild-type and iv) the SH2-JH2 linker region participates in controlling activity by reducing the affinity for ATP. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. PPAR-γ Regulates Carnitine Homeostasis and Mitochondrial Function in a Lamb Model of Increased Pulmonary Blood Flow

    PubMed Central

    Rafikov, Ruslan; Kumar, Sanjiv; Hou, Yali; Oishi, Peter E.; Datar, Sanjeev A.; Raff, Gary; Fineman, Jeffrey R.; Black, Stephen M.

    2012-01-01

    Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. Methods and Results siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Conclusion Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow. PMID:22962578

  14. Localization of NK1 receptors and roles of substance-P in subepithelial fibroblasts of rat intestinal villi.

    PubMed

    Furuya, Sonoko; Furuya, Kishio; Shigemoto, Ryuichi; Sokabe, Masahiro

    2010-11-01

    Subepithelial fibroblasts of the intestinal villi, which form a contractile cellular network beneath the epithelium, are in close contact with epithelial cells, nerve varicosities, capillaries, smooth muscles and immune cells, and secrete extracellular matrix molecules, growth factors and cytokines, etc. Cultured subepithelial fibroblasts of the rat duodenal villi display various receptors such as endothelins, ATP, substance-P and bradykinin, and release ATP in response to mechanical stimulation. In this study, the presence of functional NK1 receptors (NK1R) was pharmacologically confirmed in primary culture by Ca(2+) measurement, and the effects of substance-P were measured in an acute preparation of epithelium-free duodenal villi from 2- to 3-week-old rats using a two-photon laser microscope. Substance-P elicited an increase in the intracellular Ca(2+) concentration and contraction of the subepithelial fibroblasts in culture and the isolated villi. The localization of NK1R and substance-P in the villi was examined by light and electron microscopic immunohistochemistry. NK1R-like immunoreactivity was intensely localized on the plasma membrane of villous subepithelial fibroblasts in 10-day- to 4-week-old rats and mice and was decreased or absent in adulthood. The pericryptal fibroblasts of the small and large intestine were NK1R immuno-negative. These villous subepithelial fibroblasts form synapse-like structures with both substance-P-immunopositive and -immunonegative nerve varicosities. Here, we propose that the mutual interaction between villous subepithelial fibroblasts and afferent neurons via substance-P and ATP plays important roles in the maturation of the structure and function of the small intestine.

  15. The role of transporters in supplying energy to plant plastids.

    PubMed

    Flügge, Ulf-Ingo; Häusler, Rainer E; Ludewig, Frank; Gierth, Markus

    2011-04-01

    The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.

  16. A non-equilibrium thermodynamics model of reconstituted Ca(2+)-ATPase.

    PubMed

    Waldeck, A R; van Dam, K; Berden, J; Kuchel, P W

    1998-01-01

    A non-equilibrium thermodynamics (NET) model describing the action of completely coupled or 'slipping' reconstituted Ca(2+)-ATPase is presented. Variation of the coupling stoichiometries with the magnitude of the electrochemical gradients, as the ATPase hydrolyzes ATP, is an indication of molecular slip. However, the Ca2+ and H+ membrane-leak conductances may also be a function of their respective gradients. Such non-ohmic leak typically yields 'flow-force' relationships that are similar to those that are obtained when the pump slips; hence, caution needs to be exercised when interpreting data of Ca(2+)-ATPase-mediated fluxes that display a non-linear dependence on the electrochemical proton (delta mu H) and/or calcium gradients (delta mu Ca). To address this issue, three experimentally verifiable relationships differentiating between membrane leak and enzymic slip were derived. First, by measuring delta mu H as a function of the rate of ATP hydrolysis by the enzyme. Second, by measuring the overall 'efficiency' of the pump as a function of delta mu H. Third, by measuring the proton ejection rate by the pump as a function of its ATP hydrolysis rate.

  17. OXP1/YKL215c encodes an ATP-dependent 5-oxoprolinase in Saccharomyces cerevisiae: functional characterization, domain structure and identification of actin-like ATP-binding motifs in eukaryotic 5-oxoprolinases.

    PubMed

    Kumar, Akhilesh; Bachhawat, Anand Kumar

    2010-06-01

    OXP1/YKL215c, an uncharacterized ORF of Saccharomyces cerevisiae, encodes a functional ATP-dependent 5-oxoprolinase of 1286 amino acids. The yeast 5-oxoprolinase activity was demonstrated in vivo by utilization of 5-oxoproline as a source of glutamate and OTC, a 5-oxoproline sulfur analogue, as a source of sulfur in cells overexpressing OXP1. In vitro characterization by expression and purification of the recombinant protein in S. cerevisiae revealed that the enzyme exists and functions as a dimer, and has a K(m) of 159 microM and a V(max) of 3.5 nmol h(-1) microg(-1) protein. The enzyme was found to be functionally separable in two distinct domains. An 'actin-like ATPase motif' could be identified in 5-oxprolinases, and mutation of key residues within this motif led to complete loss in ATPase and 5-oxoprolinase activity of the enzyme. The results are discussed in the light of the previously postulated truncated gamma-glutamyl cycle of yeasts.

  18. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.

    PubMed

    Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel

    2017-06-27

    Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.

  19. Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum

    PubMed Central

    Livermore, Thomas Miles; Chubb, Jonathan Robert; Saiardi, Adolfo

    2016-01-01

    Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP. PMID:26755590

  20. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus.

    PubMed

    Zoraghi, Roya; See, Raymond H; Gong, Huansheng; Lian, Tian; Swayze, Rick; Finlay, B Brett; Brunham, Robert C; McMaster, William R; Reiner, Neil E

    2010-09-07

    Novel antimicrobial targets are urgently needed to overcome rising antibiotic resistance of important human pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Here we report the essentiality and kinetic properties of MRSA pyruvate kinase (PK). Targetron-mediated gene disruption demonstrated PK is essential for S. aureus growth and survival, suggesting that this protein may be a potential drug target. The presence of the pfk (6-phosphofructokinase)-pyk operon in MRSA252, and the nonessential nature of PFK shown by targetron, further emphasized the essential role of PK in cell viability. The importance of PK in bacterial growth was confirmed by showing that its enzymatic activity peaked during the logarithmic phase of S. aureus growth. PK from Staphylococcus and several other species of bacteria have an extra C-terminal domain (CT) containing a phosphoenolpyruvate (PEP) binding motif. To elucidate the possible structure and function of this sequence, the quaternary structures and kinetic properties of the full-length MRSA PK and truncated MRSA PK lacking the CT domain were characterized. Our results showed that (1) MRSA PK is an allosteric enzyme with homotetramer architecture activated by AMP or ribose 5-phosphate (R5P), but not by fructose 1,6-bisphosphate (FBP), which suggests a different mode of allosteric regulation when compared with human isozymes, (2) the CT domain is not required for the tetramerization of the enzyme; homotetramerization occurred in a truncated PK lacking the domain, (3) truncated enzyme exhibited high affinity toward both PEP and ADP and exhibited hyperbolic kinetics toward PEP in the presence of activators (AMP and R5P) consistent with kinetic properties of full-length enzyme, indicating that the CT domain is not required for substrate binding or allosteric regulation observed in the holoenzyme, (4) the kinetic efficiency (k(cat)/S(0.5)) of truncated enzyme was decreased by 24- and 16-fold, in ligand-free state, toward PEP and ADP, respectively, but was restored by 3-fold in AMP-bound state, suggesting that the sequence containing the CT domain (Gly(473)-Leu(585)) plays a substantial role in enzyme activity and comformational stability, and (5) full-length MRSA PK activity was stimulated at low concentrations of ATP (e.g., 1 mM) and inhibited by inorganic phosphate and high concentrations of FBP (10 mM) and ATP (e.g., >2.5 mM), whereas for truncated enzyme, stimulation at low concentrations of ATP was lost. These findings suggest that the CT domain is involved in maintaining the specificity of allosteric regulation of MRSA PK by AMP, R5P, and ATP. The CT extension also encodes a protein domain with homology to enzyme I of the Escherichia coli sugar-PTS system, suggesting that MRSA PK may also exert an important regulatory role in sugar transport metabolism. These findings yield new insights into MRSA PK function and mode of allosteric regulation which may aid in the development of clinically important drugs targeting this enzyme and further define the role of the extra C-terminal domain in modulating the enzyme's activity.

  1. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds.

    PubMed

    Schultze, Nadin; Wanka, Heike; Zwicker, Paula; Lindequist, Ulrike; Haertel, Beate

    2017-02-15

    The immune system is an important target of various xenobiotics, which may lead to severe adverse effects including immunosuppression or inappropriate immunostimulation. Mitochondrial toxicity is one possibility by which xenobiotics exert their toxic effects in cells or organs. In this study, we investigated the impact of three natural compounds, cyclosporine A (CsA), deoxynivalenol (DON) and cannabidiol (CBD) on mitochondrial functions in the THP-1 monocytic cell line. The cells were exposed for 24h to two different concentrations (IC 10 and IC 50 determined by MTT) of each compound. The cells showed concentration-dependent elevated intracellular reactive oxygen species (iROS) and induction of apoptosis (except DON) in response to the three test compounds. Mitochondrial functions were characterized by using bioenergetics profiling experiments. In THP-1 monocytes, the IC 50 of CsA decreased basal and maximal respiration as well as ATP production with an impact on spare capacity indicating a mitochondrial dysfunction. Similar reaction patterns were observed following CBD exposure. The basal respiration level and ATP-production decreased in the THP-1 cells exposed to the IC 50 of DON with no major impact on mitochondrial function. In conclusion, impaired mitochondrial function was accompanied by elevated iROS and apoptosis level in a monocytic cell line exposed to CsA and CBD. Mitochondrial dysfunction may be one explanation for the cytotoxicity of CBD and CsA also in other in immune cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. A multifunctional probe based on the use of labeled aptamer and magnetic nanoparticles for fluorometric determination of adenosine 5'-triphosphate.

    PubMed

    Liu, Xiaojie; Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli

    2018-04-02

    A multifunctional fluorescent probe is synthesized for the determination of adenosine 5'-triphosphate (ATP). The 6-carboxyfluorescein-labeled aptamer (FAM-aptamer) was bound to the surface of magnetite nanoparticles coated with polydopamine (Fe 3 O 4 @PDA) by π-π stacking interaction to form the multifunctional probe. The probe has three functions including recognition, magnetic separation, and yielding a fluorescent signal. In the presence of ATP, FAM-aptamer on the surface of the probe binds to ATP and returns to the solution. Thus, the fluorescence of the supernatant is enhanced and can be related to the concentration of ATP. Fluorescence intensities were measured at excitation/emission wavelengths of 494/526 nm. Response is linear in the 0.1-100 μM ATP concentration range, and the detection limit is 89 nM. The probe was applied to the quantitation of ATP in spiked human urine and serum samples, with recoveries ranging between 94.8 and 102%. Graphical abstract A multifunctional fluorescent probe based on the use of FAM-aptamer and Fe 3 O 4 @PDA is described for the determination of ATP in spiked human urine and serum samples. FAM-aptamer: 6-carboxyfluorescein-labeled aptamer; Fe 3 O 4 @PDA: magnetite nanoparticles coated with polydopamine. ATP: adenosine 5'-triphosphate.

  3. ATP Synthase Repression in Tobacco Restricts Photosynthetic Electron Transport, CO2 Assimilation, and Plant Growth by Overacidification of the Thylakoid Lumen[OA

    PubMed Central

    Rott, Markus; Martins, Nádia F.; Thiele, Wolfram; Lein, Wolfgang; Bock, Ralph; Kramer, David M.; Schöttler, Mark A.

    2011-01-01

    Tobacco (Nicotiana tabacum) plants strictly adjust the contents of both ATP synthase and cytochrome b6f complex to the metabolic demand for ATP and NADPH. While the cytochrome b6f complex catalyzes the rate-limiting step of photosynthetic electron flux and thereby controls assimilation, the functional significance of the ATP synthase adjustment is unknown. Here, we reduced ATP synthase accumulation by an antisense approach directed against the essential nuclear-encoded γ-subunit (AtpC) and by the introduction of point mutations into the translation initiation codon of the plastid-encoded atpB gene (encoding the essential β-subunit) via chloroplast transformation. Both strategies yielded transformants with ATP synthase contents ranging from 100 to <10% of wild-type levels. While the accumulation of the components of the linear electron transport chain was largely unaltered, linear electron flux was strongly inhibited due to decreased rates of plastoquinol reoxidation at the cytochrome b6f complex (photosynthetic control). Also, nonphotochemical quenching was triggered at very low light intensities, strongly reducing the quantum efficiency of CO2 fixation. We show evidence that this is due to an increased steady state proton motive force, resulting in strong lumen overacidification, which in turn represses photosynthesis due to photosynthetic control and dissipation of excitation energy in the antenna bed. PMID:21278125

  4. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues

    PubMed Central

    Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean

    2015-01-01

    ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970

  5. Copper accumulation in senescent cells: Interplay between copper transporters and impaired autophagy.

    PubMed

    Masaldan, Shashank; Clatworthy, Sharnel A S; Gamell, Cristina; Smith, Zoe M; Francis, Paul S; Denoyer, Delphine; Meggyesy, Peter M; Fontaine, Sharon La; Cater, Michael A

    2018-06-01

    Cellular senescence is characterized by irreversible growth arrest incurred through either replicative exhaustion or by pro-oncogenic cellular stressors (radioactivity, oxidative stress, oncogenic activation). The enrichment of senescent cells in tissues with age has been associated with tissue dyshomeostasis and age-related pathologies including cancers, neurodegenerative disorders (e.g. Alzheimer's, Parkinson's, etc.) and metabolic disorders (e.g. diabetes). We identified copper accumulation as being a universal feature of senescent cells [mouse embryonic fibroblasts (MEF), human prostate epithelial cells and human diploid fibroblasts] in vitro. Elevated copper in senescent MEFs was accompanied by elevated levels of high-affinity copper uptake protein 1 (Ctr1), diminished levels of copper-transporting ATPase 1 (Atp7a) (copper export) and enhanced antioxidant defence reflected by elevated levels of glutathione (GSH), superoxide dismutase 1 (SOD1) and glutaredoxin 1 (Grx1). The levels of intracellular copper were further increased in senescent MEFs cultured in copper supplemented medium and in senescent Mottled Brindled (Mo br ) MEFs lacking functional Atp7a. Finally, we demonstrated that the restoration/preservation of autophagic-lysosomal degradation in senescent MEFs following rapamycin treatment correlated with attenuation of copper accumulation in these cells despite a further decrease in Atp7a levels. This study for the first time establishes a link between Atp7a and the autophagic-lysosomal pathway, and a requirement for both to effect efficient copper export. Such a connection between cellular autophagy and copper homeostasis is significant, as both have emerged as important facets of age-associated degenerative disease. Copyright © 2018. Published by Elsevier B.V.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Honglin; Peng, Xiaohui; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026

    This study examined recombinant wild-type human phosphoribosylpyrophosphate synthetase 1 (wt-PRS1, EC 2.7.6.1) and the point mutant Asn114Ser PRS1 (N114S-Mutant) in cells of a patient with primary gout. Dynamic light-scattering and sedimentation velocity experiments indicated that the monomeric wt-PRS1 in solution was assembled into hexamers after adding the substrate ATP. However, this ATP-induced aggregation effect was not observed with N114S-Mutant, which has a 50% higher enzymatic activity than that of wt-PRS1. Synchrotron radiation circular dichroism spectroscopy revealed that the point mutation causes an increase of {alpha}-helix content and a decrease of turn content. Examination of the crystal structure of wt-PRS1 indicatedmore » that 12 hydrogen bonds formed by 6 pairs of N114 and D139 have an important role in stabilizing the hexamer. We suggest that the substitution of S114 for N114 in N114S-Mutant leads to the rupture of 12 hydrogen bonds and breakage of the PO{sub 4}{sup 3-} allosteric site where PO{sub 4}{sup 3-} functions as a fixer of the ATP-binding loop. Therefore, we consider that formation of the hexamer as the structural basis of the ADP allosteric inhibition is greatly weakened by the N114S mutation, and that alteration of the ATP-binding loop conformation is the key factor in the increased activity of N114S-Mutant. These two factors could be responsible for the high level of activity of N114S-Mutant in this patient.« less

  7. Control of Mitochondrial pH by Uncoupling Protein 4 in Astrocytes Promotes Neuronal Survival*

    PubMed Central

    Perreten Lambert, Hélène; Zenger, Manuel; Azarias, Guillaume; Chatton, Jean-Yves; Magistretti, Pierre J.; Lengacher, Sylvain

    2014-01-01

    Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival. PMID:25237189

  8. Promotion of endocytosis efficiency through an ATP-independent mechanism at rat calyx of Held terminals.

    PubMed

    Yue, Hai-Yuan; Bieberich, Erhard; Xu, Jianhua

    2017-08-01

    At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca 2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  9. Ecto-domain phosphorylation promotes functional recovery from spinal cord injury

    PubMed Central

    Suehiro, Kenji; Nakamura, Yuka; Xu, Shuai; Uda, Youichi; Matsumura, Takafumi; Yamaguchi, Yoshiaki; Okamura, Hitoshi; Yamashita, Toshihide; Takei, Yoshinori

    2014-01-01

    Inhibition of Nogo-66 receptor (NgR) can promote recovery following spinal cord injury. The ecto-domain of NgR can be phosphorylated by protein kinase A (PKA), which blocks activation of the receptor. Here, we found that infusion of PKA plus ATP into the damaged spinal cord can promote recovery of locomotor function. While significant elongation of cortical-spinal axons was not detectable even in the rats showing enhanced recovery, neuronal precursor cells were observed in the region where PKA plus ATP were directly applied. NgR1 was expressed in neural stem/progenitor cells (NSPs) derived from the adult spinal cord. Both an NgR1 antagonist NEP1-40 and ecto-domain phosphorylation of NgR1 promote neuronal cell production of the NSPs, in vitro. Thus, inhibition of NgR1 in NSPs can promote neuronal cell production, which could contribute to the enhanced recovery of locomotor function following infusion of PKA and ATP. PMID:24826969

  10. The affinity of a major Ca2+ binding site on GRP78 is differentially enhanced by ADP and ATP.

    PubMed

    Lamb, Heather K; Mee, Christopher; Xu, Weiming; Liu, Lizhi; Blond, Sylvie; Cooper, Alan; Charles, Ian G; Hawkins, Alastair R

    2006-03-31

    GRP78 is a major protein regulated by the mammalian endoplasmic reticulum stress response, and up-regulation has been shown to be important in protecting cells from challenge with cytotoxic agents. GRP78 has ATPase activity, acts as a chaperone, and interacts specifically with other proteins, such as caspases, as part of a mechanism regulating apoptosis. GRP78 is also reported to have a possible role as a Ca2+ storage protein. In order to understand the potential biological effects of Ca2+ and ATP/ADP binding on the biology of GRP78, we have determined its ligand binding properties. We show here for the first time that GRP78 can bind Ca2+, ATP, and ADP, each with a 1:1 stoichiometry, and that the binding of cation and nucleotide is cooperative. These observations do not support the hypothesis that GRP78 is a dynamic Ca2+ storage protein. Furthermore, we demonstrate that whereas Mg2+ enhances GRP78 binding to ADP and ATP to the same extent, Ca2+ shows a differential enhancement. In the presence of Ca2+, the KD for ATP is lowered approximately 11-fold, and the KD for ADP is lowered around 930-fold. The KD for Ca2+ is lowered approximately 40-fold in the presence of ATP and around 880-fold with ADP. These findings may explain the biological requirement for a nucleotide exchange factor to remove ADP from GRP78. Taken together, our data suggest that the Ca2+-binding property of GRP78 may be part of a signal transduction pathway that modulates complex interactions between GRP78, ATP/ADP, secretory proteins, and caspases, and this ultimately has important consequences for cell viability.

  11. Urinary ATP May Be a Dynamic Biomarker of Detrusor Overactivity in Women with Overactive Bladder Syndrome

    PubMed Central

    Oliveira, Olga; Ferreira, Sónia; Reis, Maria Júlia; Oliveira, José Carlos; Correia-de-Sá, Paulo

    2013-01-01

    Background Nowadays, there is a considerable bulk of evidence showing that ATP has a prominent role in the regulation of human urinary bladder function and in the pathophysiology of detrusor overactivity. ATP mediates nonadrenergic-noncholinergic detrusor contractions in overactive bladders. In vitro studies have demonstrated that uroepithelial cells and cholinergic nerves from overactive human bladder samples (OAB) release more ATP than controls. Here, we compared the urinary ATP concentration in samples collected non-invasively from OAB women with detrusor overactivity and age-matched controls. Methods Patients with neurologic diseases, history of malignancy, urinary tract infections or renal impairment (creatinine clearance <70 ml/min) were excluded. All patients completed a 3-day voiding diary, a 24 h urine collection and blood sampling to evaluate creatinine clearance. Urine samples collected during voluntary voids were immediately freeze-preserved for ATP determination by the luciferin-luciferase bioluminescence assay; for comparison purposes, samples were also tested for urinary nerve growth factor (NGF) by ELISA. Results The urinary content of ATP, but not of NGF, normalized to patients’ urine creatinine levels (ATP/Cr) or urinary volume (ATP.Vol) were significantly (P<0.05) higher in OAB women with detrusor overactivity (n = 34) than in healthy controls (n = 30). Significant differences between the two groups were still observed by boosting urinary ATP/Cr content after water intake, but these were not detected for NGF/Cr. In OAB patients, urinary ATP/Cr levels correlated inversely with mean voided volumes determined in a 3-day voiding diary. Conclusion A high area under the receiver operator characteristics (ROC) curve (0.741; 95% CI 0.62–0.86; P<0.001) is consistent with urinary ATP/Cr being a highly sensitive dynamic biomarker for assessing detrusor overactivity in women with OAB syndrome. PMID:23741373

  12. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.

  13. The adenosine triphosphate method as a quality control tool to assess 'cleanliness' of frequently touched hospital surfaces.

    PubMed

    Knape, L; Hambraeus, A; Lytsy, B

    2015-10-01

    The adenosine triphosphate (ATP) method is widely accepted as a quality control method to complement visual assessment, in the specifications of requirements, when purchasing cleaning contractors in Swedish hospitals. To examine whether the amount of biological load, as measured by ATP on frequently touched near-patient surfaces, had been reduced after an intervention; to evaluate the correlation between visual assessment and ATP levels on the same surfaces; to identify aspects of the performance of the ATP method as a tool in evaluating hospital cleanliness. A prospective intervention study in three phases was carried out in a medical ward and an intensive care unit (ICU) at a regional hospital in mid-Sweden between 2012 and 2013. Existing cleaning procedures were defined and baseline tests were sampled by visual inspection and ATP measurements of ten frequently touched surfaces in patients' rooms before and after intervention. The intervention consisted of educating nursing staff about the importance of hospital cleaning and direct feedback of ATP levels before and after cleaning. The mixed model showed a significant decrease in ATP levels after the intervention (P < 0.001). Relative light unit values were lower in the ICU. Cleanliness as judged by visual assessments improved. In the logistic regression analysis, there was a significant association between visual assessments and ATP levels. Direct feedback of ATP levels, together with education and introduction of written cleaning protocols, were effective tools to improve cleanliness. Visual assessment correlated with the level of ATP but the correlation was not absolute. The ATP method could serve as an educational tool for staff, but is not enough to assess hospital cleanliness in general as only a limited part of a large area is covered. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Energy demand and supply in human skeletal muscle.

    PubMed

    Barclay, C J

    2017-04-01

    The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min -1 during isometric contractions of various intensity to as much as 400 mM min -1 during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min -1 which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min -1 . During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min -1 over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.

  15. Interacting cytoplasmic loops of subunits a and c of Escherichia coli F1F0 ATP synthase gate H+ transport to the cytoplasm.

    PubMed

    Steed, P Ryan; Kraft, Kaitlin A; Fillingame, Robert H

    2014-11-25

    H(+)-transporting F1F0 ATP synthase catalyzes the synthesis of ATP via coupled rotary motors within F0 and F1. H(+) transport at the subunit a-c interface in transmembranous F0 drives rotation of a cylindrical c10 oligomer within the membrane, which is coupled to rotation of subunit γ within the α3β3 sector of F1 to mechanically drive ATP synthesis. F1F0 functions in a reversible manner, with ATP hydrolysis driving H(+) transport. ATP-driven H(+) transport in a select group of cysteine mutants in subunits a and c is inhibited after chelation of Ag(+) and/or Cd(+2) with the substituted sulfhydryl groups. The H(+) transport pathway mapped via these Ag(+)(Cd(+2))-sensitive Cys extends from the transmembrane helices (TMHs) of subunits a and c into cytoplasmic loops connecting the TMHs, suggesting these loop regions could be involved in gating H(+) release to the cytoplasm. Here, using select loop-region Cys from the single cytoplasmic loop of subunit c and multiple cytoplasmic loops of subunit a, we show that Cd(+2) directly inhibits passive H(+) transport mediated by F0 reconstituted in liposomes. Further, in extensions of previous studies, we show that the regions mediating passive H(+) transport can be cross-linked to each other. We conclude that the loop-regions in subunits a and c that are implicated in H(+) transport likely interact in a single structural domain, which then functions in gating H(+) release to the cytoplasm.

  16. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    PubMed

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  17. The ceramide-enriched trans-Golgi compartments reorganize together with other parts of the Golgi apparatus in response to ATP-depletion.

    PubMed

    Meisslitzer-Ruppitsch, Claudia; Röhrl, Clemens; Ranftler, Carmen; Neumüller, Josef; Vetterlein, Monika; Ellinger, Adolf; Pavelka, Margit

    2011-02-01

    In this study, the ceramide-enriched trans-Golgi compartments representing sites of synthesis of sphingomyelin and higher organized lipids were visualized in control and ATP-depleted hepatoma and endothelial cells using internalization of BODIPY-ceramide and the diaminobenzidine photooxidation method for combined light-electron microscopical exploration. Metabolic stress induced by lowering the cellular ATP-levels leads to reorganizations of the Golgi apparatus and the appearance of tubulo-glomerular bodies and networks. The results obtained with three different protocols, in which BODIPY-ceramide either was applied prior to, concomitantly with, or after ATP-depletion, revealed that the ceramide-enriched compartments reorganize together with other parts of the Golgi apparatus under these conditions. They were found closely associated with and integrated in the tubulo-glomerular bodies formed in response to ATP-depletion. This is in line with the changes of the staining patterns obtained with the Helix pomatia lectin and the GM130 and TGN46 immuno-reactions occurring in response to ATP-depletion and is confirmed by 3D electron tomography. The 3D reconstructions underlined the glomerular character of the reorganized Golgi apparatus and demonstrated continuities of ceramide positive and negative parts. Most interestingly, BODIPY-ceramide becomes concentrated in compartments of the tubulo-glomerular Golgi bodies, even though the reorganization took place before BODIPY-ceramide administration. This indicates maintained functionalities although the regular Golgi stack organization is abolished; the results provide novel insights into Golgi structure-function relationships, which might be relevant for cells affected by metabolic stress.

  18. Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin.

    PubMed

    Zhang, Shiqiang; Chen, Shen; Li, Wen; Guo, Xiangpeng; Zhao, Ping; Xu, Jianyong; Chen, Yan; Pan, Qiong; Liu, Xiaorong; Zychlinski, Daniela; Lu, Hai; Tortorella, Micky D; Schambach, Axel; Wang, Yan; Pei, Duanqing; Esteban, Miguel A

    2011-08-15

    Directed hepatocyte differentiation from human induced pluripotent stem cells (iPSCs) potentially provides a unique platform for modeling liver genetic diseases and performing drug-toxicity screening in vitro. Wilson's disease is a genetic disease caused by mutations in the ATP7B gene, whose product is a liver transporter protein responsible for coordinated copper export into bile and blood. Interestingly, the spectrum of ATP7B mutations is vast and can influence clinical presentation (a variable spectrum of hepatic and neural manifestations), though the reason is not well understood. We describe the generation of iPSCs from a Chinese patient with Wilson's disease that bears the R778L Chinese hotspot mutation in the ATP7B gene. These iPSCs were pluripotent and could be readily differentiated into hepatocyte-like cells that displayed abnormal cytoplasmic localization of mutated ATP7B and defective copper transport. Moreover, gene correction using a self-inactivating lentiviral vector that expresses codon optimized-ATP7B or treatment with the chaperone drug curcumin could reverse the functional defect in vitro. Hence, our work describes an attractive model for studying the pathogenesis of Wilson's disease that is valuable for screening compounds or gene therapy approaches aimed to correct the abnormality. In the future, once relevant safety concerns (including the stability of the mature liver-like phenotype) and technical issues for the transplantation procedure are solved, hepatocyte-like cells from similarly genetically corrected iPSCs could be an option for autologous transplantation in Wilson's disease.

  19. Ca++-sensitizing mutations in troponin, Pi, and 2-deoxyATP alter the depressive effect of acidosis on regulated thin-filament velocity

    PubMed Central

    Longyear, Thomas J.; Turner, Matthew A.; Davis, Jonathan P.; Lopez, Joseph; Biesiadecki, Brandon

    2014-01-01

    Repeated, intense contractile activity compromises the ability of skeletal muscle to generate force and velocity, resulting in fatigue. The decrease in velocity is thought to be due, in part, to the intracellular build-up of acidosis inhibiting the function of the contractile proteins myosin and troponin; however, the underlying molecular basis of this process remains poorly understood. We sought to gain novel insight into the decrease in velocity by determining whether the depressive effect of acidosis could be altered by 1) introducing Ca++-sensitizing mutations into troponin (Tn) or 2) by agents that directly affect myosin function, including inorganic phosphate (Pi) and 2-deoxy-ATP (dATP) in an in vitro motility assay. Acidosis reduced regulated thin-filament velocity (VRTF) at both maximal and submaximal Ca++ levels in a pH-dependent manner. A truncated construct of the inhibitory subunit of Tn (TnI) and a Ca++-sensitizing mutation in the Ca++-binding subunit of Tn (TnC) increased VRTF at submaximal Ca++ under acidic conditions but had no effect on VRTF at maximal Ca++ levels. In contrast, both Pi and replacement of ATP with dATP reversed much of the acidosis-induced depression of VRTF at saturating Ca++. Interestingly, despite producing similar magnitude increases in VRTF, the combined effects of Pi and dATP were additive, suggesting different underlying mechanisms of action. These findings suggest that acidosis depresses velocity by slowing the detachment rate from actin but also by possibly slowing the attachment rate. PMID:24651988

  20. ATP Dependence of Na+/H+ Exchange

    PubMed Central

    Demaurex, Nicolas; Romanek, Robert R.; Orlowski, John; Grinstein, Sergio

    1997-01-01

    We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pHi) by microfluorimetry. Na+/H+ exchange activity was measured as the Na+-driven pHi recovery from an acid load, which was imposed via the patch pipette. In Chinese hamster ovary (CHO) fibroblasts stably transfected with NHE-1, omission of ATP from the pipette solution inhibited Na+/H+ exchange. Conversely, ATP perfusion restored exchange activity in cells that had been metabolically depleted by 2-deoxy-d-glucose and oligomycin. In cells dialyzed in the presence of ATP, no “run-down” was observed even after extended periods, suggesting that the nucleotide is the only diffusible factor required for optimal NHE-1 activity. Half-maximal activation of the antiporter was obtained at ∼5 mM Mg-ATP. Submillimolar concentrations failed to sustain Na+/H+ exchange even when an ATP regenerating system was included in the pipette solution. High ATP concentrations are also known to be required for the optimal function of other cation exchangers. In the case of the Na/Ca2+ exchanger, this requirement has been attributed to an aminophospholipid translocase, or “flippase.” The involvement of this enzyme in Na+/H+ exchange was examined using fluorescent phosphatidylserine, which is actively translocated by the flippase. ATP depletion decreased the transmembrane uptake of NBD-labeled phosphatidylserine (NBD-PS), indicating that the flippase was inhibited. Diamide, an agent reported to block the flippase, was as potent as ATP depletion in reducing NBD-PS uptake. However, diamide had no effect on Na+/H+ exchange, implying that the effect of ATP is not mediated by changes in lipid distribution across the plasma membrane. K-ATP and ATPγS were as efficient as Mg-ATP in sustaining NHE-1 activity, while AMP-PNP and AMP-PCP only partially substituted for ATP. In contrast, GTPγS was ineffective. We conclude that ATP is the only soluble factor necessary for optimal activity of the NHE-1 isoform of the antiporter. Mg2+ does not appear to be essential for the stimulatory effect of ATP. We propose that two mechanisms mediate the activation of the antiporter by ATP: one requires hydrolysis and is likely an energy-dependent event. The second process does not involve hydrolysis of the γ-phosphate, excluding mediation by protein or lipid kinases. We suggest that this effect is due to binding of ATP to an as yet unidentified, nondiffusible effector that activates the antiporter. PMID:9041442

Top