Lohbeck, Madelon; Bongers, Frans; Martinez-Ramos, Miguel; Poorter, Lourens
2016-10-01
Many studies suggest that biodiversity may be particularly important for ecosystem multifunctionality, because different species with different traits can contribute to different functions. Support, however, comes mostly from experimental studies conducted at small spatial scales in low-diversity systems. Here, we test whether different species contribute to different ecosystem functions that are important for carbon cycling in a high-diversity human-modified tropical forest landscape in Southern Mexico. We quantified aboveground standing biomass, primary productivity, litter production, and wood decomposition at the landscape level, and evaluated the extent to which tree species contribute to these ecosystem functions. We used simulations to tease apart the effects of species richness, species dominance and species functional traits on ecosystem functions. We found that dominance was more important than species traits in determining a species' contribution to ecosystem functions. As a consequence of the high dominance in human-modified landscapes, the same small subset of species mattered across different functions. In human-modified landscapes in the tropics, biodiversity may play a limited role for ecosystem multifunctionality due to the potentially large effect of species dominance on biogeochemical functions. However, given the spatial and temporal turnover in species dominance, biodiversity may be critically important for the maintenance and resilience of ecosystem functions. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Locally rare species influence grassland ecosystem multifunctionality
Manning, Peter; Prati, Daniel; Gossner, Martin M.; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H.; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E. Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C.; Rillig, Matthias C.; Schaefer, H. Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A.; Solly, Emily F.; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N.; Weisser, Wolfgang W.; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric
2016-01-01
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. PMID:27114572
Locally rare species influence grassland ecosystem multifunctionality.
Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric
2016-05-19
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. © 2016 The Author(s).
Application of the new keystone-species concept to prairie dogs: How well does it work?
Kotliar, N.B.
2000-01-01
It has been suggested that the keystone-species concept should be dropped from ecology and conservation, primarily because the concept is poorly defined. This prompted Power et al. (1996) to refine the definition: keystone species have large effects on community structure or ecosystem function (i.e., high overall importance), and this effect should be large relative to abundance (i.e., high community importance). Using prairie dogs (Cynomys spp.) as an example, I review operational and conceptual difficulties encountered in applying this definition. As applied to prairie dogs, the implicit assumption that overall importance is a linear function of abundance is invalid. In addition, community importance is sensitive to abundance levels, the definition of community, and sampling scale. These problems arise largely from the equation for community importance, as used in conjunction with removal experiments at single abundance levels. I suggest that we shift from the current emphasis on the dualism between keystone and nonkeystone species and instead examine how overall and community importance vary (1) with abundance, (2) across spatial and temporal scales, and (3) under diverse ecological conditions. In addition, I propose that a third criterion be incorporated into the definition: keystone species perform roles not performed by other species or processes. Examination of how these factors vary among populations of keystone species should help identify the factors contributing to, or limiting, keystone-level functions, thereby increasing the usefulness of the keystone-species concept in ecology and conservation. Although the quantitative framework of Power et al. falls short of being fully operational, my conceptual guidelines may improve the usefulness of the keystone-species concept. Careful attention to the factors that limit keystone function will help avoid misplaced emphasis on keystone species at the expense of other species.
Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem.
Verón, Santiago R; Paruelo, José M; Oesterheld, Martín
2011-02-01
Degradation processes often lead to species loss. Such losses would impact on ecosystem functioning depending on the extinction order and the functional and structural aspects of species. For the Patagonian arid steppe, we used a simulation model to study the effects of species loss on the rate and variability (i.e. stability) of transpiration as a key attribute of ecosystem functioning. We addressed (1) the differences between the overgrazing extinction order and other potential orders, and (2) the role of biomass abundance, biomass distribution, and functional diversity on the effect of species loss due to overgrazing. We considered a community composed of ten species which were assigned an order of extinction due to overgrazing based on their preference by livestock. We performed four model simulations to test for overgrazing effects through different combinations of species loss, and reductions of biomass and functional diversity. In general, transpiration rate and variability were positively associated to species richness and remained fairly constant until half the species were lost by overgrazing. The extinction order by overgrazing was the most conservative of all possible orders. The amount of biomass was more important than functional diversity in accounting for the impacts of species richness on transpiration. Our results suggest that, to prevent Patagonian steppes from shifting to stable, low-production systems (by overgrazing), maintaining community biomass is more important than preserving species richness or species functional diversity.
Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.
2012-01-01
1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new experimental evidence illustrating the importance of the spatial pattern of organisms on ecosystem functioning. They also indicate that species richness is not the only biotic driver of multifunctionality, and that particular combinations of community attributes may be required to maximize it.
Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd.
Ali, M; Saeed, S; Sajjad, A
2016-10-01
In the context of global biodiversity decline, it is imperative to understand the different aspects of bee communities for sustaining the vital ecosystem service of pollination. Bee species can be assigned to functional groups (average difference among species in functionally related traits) on the basis of complementarity (trait variations exhibited by individual organisms) in their behavior but is not yet known which functional group trait is most important for seed set. In this study, first, the functional groups of bees were made based on their five selected traits (pollen deposition, visitation rate, stay time, visiting time of the day, body size) and then related to the seed set of obligate cross-pollinated Luffa gourd (Luffa aegyptiaca). We found that bee diversity and abundance differed significantly among the studied plots, but only the bee species richness was positively related to the seed set. Functional group diversity in terms of pollen deposition explained even more of the variance in seed set (r 2 = 0.74) than did the species richness (r 2 = 0.53) making it the most important trait of bee species for predicting the crop reproductive success.
Grossman, Jake J; Cavender-Bares, Jeannine; Hobbie, Sarah E; Reich, Peter B; Montgomery, Rebecca A
2017-10-01
Over the last two decades, empirical work has established that higher biodiversity can lead to greater primary productivity; however, the importance of different aspects of biodiversity in contributing to such relationships is rarely elucidated. We assessed the relative importance of species richness, phylogenetic diversity, functional diversity, and identity of neighbors for stem growth 3 yr after seedling establishment in a tree diversity experiment in eastern Minnesota. Generally, we found that community-weighted means of key functional traits (including mycorrhizal association, leaf nitrogen and calcium, and waterlogging tolerance) as well as species richness were strong, independent predictors of stem biomass growth. More phylogenetically diverse communities did not consistently produce more biomass than expected, and the trait values or diversity of individual functional traits better predicted biomass production than did a multidimensional functional diversity metric. Furthermore, functional traits and species richness best predicted growth at the whole-plot level (12 m 2 ), whereas neighborhood composition best predicted growth at the focal tree level (0.25 m 2 ). The observed effects of biodiversity on growth appear strongly driven by positive complementary effects rather than by species-specific selection effects, suggesting that synergistic species' interactions rather than the influence of a few important species may drive overyielding. © 2017 by the Ecological Society of America.
Linking biodiversity to ecosystem function: Implications for conservation ecology
Schwartz, M.W.; Brigham, C.A.; Hoeksema, J.D.; Lyons, K.G.; Mills, M.H.; van Mantgem, P.
2000-01-01
We evaluate the empirical and theoretical support for the hypothesis that a large proportion of native species richness is required to maximize ecosystem stability and sustain function. This assessment is important for conservation strategies because sustenance of ecosystem functions has been used as an argument for the conservation of species. If ecosystem functions are sustained at relatively low species richness, then arguing for the conservation of ecosystem function, no matter how important in its own right, does not strongly argue for the conservation of species. Additionally, for this to be a strong conservation argument the link between species diversity and ecosystem functions of value to the human community must be clear. We review the empirical literature to quantify the support for two hypotheses: (1) species richness is positively correlated with ecosystem function, and (2) ecosystem functions do not saturate at low species richness relative to the observed or experimental diversity. Few empirical studies demonstrate improved function at high levels of species richness. Second, we analyze recent theoretical models in order to estimate the level of species richness required to maintain ecosystem function. Again we find that, within a single trophic level, most mathematical models predict saturation of ecosystem function at a low proportion of local species richness. We also analyze a theoretical model linking species number to ecosystem stability. This model predicts that species richness beyond the first few species does not typically increase ecosystem stability. One reason that high species richness may not contribute significantly to function or stability is that most communities are characterized by strong dominance such that a few species provide the vast majority of the community biomass. Rapid turnover of species may rescue the concept that diversity leads to maximum function and stability. The role of turnover in ecosystem function and stability has not been investigated. Despite the recent rush to embrace the linkage between biodiversity and ecosystem function, we find little support for the hypothesis that there is a strong dependence of ecosystem function on the full complement of diversity within sites. Given this observation, the conservation community should take a cautious view of endorsing this linkage as a model to promote conservation goals.
Using abiotic variables to predict importance of sites for species representation.
Albuquerque, Fabio; Beier, Paul
2015-10-01
In systematic conservation planning, species distribution data for all sites in a planning area are used to prioritize each site in terms of the site's importance toward meeting the goal of species representation. But comprehensive species data are not available in most planning areas and would be expensive to acquire. As a shortcut, ecologists use surrogates, such as occurrences of birds or another well-surveyed taxon, or land types defined from remotely sensed data, in the hope that sites that represent the surrogates also represent biodiversity. Unfortunately, surrogates have not performed reliably. We propose a new type of surrogate, predicted importance, that can be developed from species data for a q% subset of sites. With species data from this subset of sites, importance can be modeled as a function of abiotic variables available at no charge for all terrestrial areas on Earth. Predicted importance can then be used as a surrogate to prioritize all sites. We tested this surrogate with 8 sets of species data. For each data set, we used a q% subset of sites to model importance as a function of abiotic variables, used the resulting function to predict importance for all sites, and evaluated the number of species in the sites with highest predicted importance. Sites with the highest predicted importance represented species efficiently for all data sets when q = 25% and for 7 of 8 data sets when q = 20%. Predicted importance requires less survey effort than direct selection for species representation and meets representation goals well compared with other surrogates currently in use. This less expensive surrogate may be useful in those areas of the world that need it most, namely tropical regions with the highest biodiversity, greatest biodiversity loss, most severe lack of inventory data, and poorly developed protected area networks. © 2015 Society for Conservation Biology.
Functional traits and root morphology of alpine plants
Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian
2011-01-01
Background and Aims Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. Methods In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Key Results Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. Conclusions The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level. PMID:21795278
Philpott, Stacy M; Pardee, Gabriella L; Gonthier, David J
2012-05-01
Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.
Fattorini, Simone
2006-08-01
Any method of identifying hotspots should take into account the effect of area on species richness. I examined the importance of the species-area relationship in determining tenebrionid (Coleoptera: Tenebrionidae) hotspots on the Aegean Islands (Greece). Thirty-two islands and 170 taxa (species and subspecies) were included in this study. I tested several species-area relationship models with linear and nonlinear regressions, including power exponential, negative exponential, logistic, Gompertz, Weibull, Lomolino, and He-Legendre functions. Islands with positive residuals were identified as hotspots. I also analyzed the values of the C parameter of the power function and the simple species-area ratios. Species richness was significantly correlated with island area for all models. The power function model was the most convenient one. Most functions, however identified certain islands as hotspots. The importance of endemics in insular biotas should be evaluated carefully because they are of high conservation concern. The simple use of the species-area relationship can be problematic when areas with no endemics are included. Therefore the importance of endemics should be evaluated according to different methods, such as percentages, to take into account different levels of endemism and different kinds of "endemics" (e.g., endemic to single islands vs. endemic to the archipelago). Because the species-area relationship is a key pattern in ecology, my findings can be applied at broader scales.
NASA Astrophysics Data System (ADS)
Wohlgemuth, Daniel; Solan, Martin; Godbold, Jasmin A.
2016-12-01
The ecological consequences of species loss are widely studied, but represent an end point of environmental forcing that is not always realised. Changes in species evenness and the rank order of dominant species are more widespread responses to directional forcing. However, despite the repercussions for ecosystem functioning such changes have received little attention. Here, we experimentally assess how the rearrangement of species dominance structure within specific levels of evenness, rather than changes in species richness and composition, affect invertebrate particle reworking and burrow ventilation behaviour - important moderators of microbial-mediated remineralisation processes in benthic environments - and associated levels of sediment nutrient release. We find that the most dominant species exert a disproportionate influence on functioning at low levels of evenness, but that changes in biomass distribution and a change in emphasis in species-environmental interactions become more important in governing system functionality as evenness increases. Our study highlights the need to consider the functional significance of alterations to community attributes, rather than to solely focus on the attainment of particular levels of diversity when safeguarding biodiversity and ecosystems that provide essential services to society.
Forest restoration, biodiversity and ecosystem functioning.
Aerts, Raf; Honnay, Olivier
2011-11-24
Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.
Incorporating surrogate species and seascape connectivity to improve marine conservation outcomes.
Olds, Andrew D; Connolly, Rod M; Pitt, Kylie A; Maxwell, Paul S; Aswani, Shankar; Albert, Simon
2014-08-01
Conservation focuses on maintaining biodiversity and ecosystem functioning, but gaps in our knowledge of species biology and ecological processes often impede progress. For this reason, focal species and habitats are used as surrogates for multispecies conservation, but species-based approaches are not widely adopted in marine ecosystems. Reserves in the Solomon Islands were designed on the basis of local ecological knowledge to conserve bumphead parrotfish (Bolbometopon muricatum) and to protect food security and ecosystem functioning. Bumphead parrotfish are an iconic threatened species and may be a useful surrogate for multispecies conservation. They move across tropical seascapes throughout their life history, in a pattern of habitat use that is shared with many other species. We examined their value as a conservation surrogate and assessed the importance of seascape connectivity (i.e., the physical connectedness of patches in the seascape) among reefs, mangroves, and seagrass to marine reserve performance. Reserves were designed for bumphead parrotfish, but also enhanced the abundance of other species. Integration of local ecological knowledge and seascape connectivity enhanced the abundance of 17 other harvested fish species in local reserves. This result has important implications for ecosystem functioning and local villagers because many of these species perform important ecological processes and provide the foundation for extensive subsistence fisheries. Our findings suggest greater success in maintaining and restoring marine ecosystems may be achieved when they are managed to conserve surrogate species and preserve functional seascape connections. © 2014 Society for Conservation Biology.
Species richness and trophic diversity increase decomposition in a co-evolved food web.
Baiser, Benjamin; Ardeshiri, Roxanne S; Ellison, Aaron M
2011-01-01
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.
Species Richness and Trophic Diversity Increase Decomposition in a Co-Evolved Food Web
Baiser, Benjamin; Ardeshiri, Roxanne S.; Ellison, Aaron M.
2011-01-01
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators — larvae of the pitcher-plant mosquito — indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species. PMID:21673992
NASA Astrophysics Data System (ADS)
Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd
2017-01-01
Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.
Underappreciated species in ecology: "ugly fish" in the northwest Atlantic Ocean.
Link, Jason S
2007-10-01
Species shifts and replacements are common in ecological studies. Observations thereof serve as the impetus for many ecological endeavors. Many of the species now known to dominate ecosystem functioning were largely ignored until studies of those underappreciated species elucidated their critical roles. Recognizing the potential importance of underappreciated species has implications for functional redundancies in ecosystems and should alter our approach to long-term monitoring. One example of an applied ecological system containing species shifts, underappreciated species, and potential changes in functional redundancies is the topic of fisheries. The demersal component of many fish communities usually consists of high-profile and commercially valuable species that are targets of fisheries, plus a diverse group of lesser known species that have minimal commercial value and focus. Yet ecologically these traditionally nontargeted species are often a major biomass sink in marine ecosystems and can also be critical in the functioning of bentho-demersal food webs. I examined the biomass trajectories of several species of skates, cottids, lophiids, anarhichadids, zooarcids, and similar species in the northeast U.S. Atlantic ecosystem to determine whether their relative abundance has changed across the past four decades. Distribution and stomach contents of these species were also evaluated over time to further elucidate the relative importance of these species. Landings of these underappreciated bentho-demersal fish were also examined in comparison to those species that historically have been commercially targeted. Of particular emphasis was the evaluation of evidence for sequential stock depletion and the ramifications for functional redundancy for this ecosystem. Results indicate that some of these fish species are now the dominant piscivores, benthivores, and scavengers in this ecosystem. These formerly under-studied species generally have either maintained a consistent population size or have increased in abundance (and expanded in distribution) over the past several decades. Nontraditionally targeted fish species are an often overlooked but important component of bentho-demersal fish communities. Implications for the energy flow and resilience specifically for future fisheries and generally for harvesting biological resources are significant, remaining critical issues for the world's ecosystems.
Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W
2016-09-01
Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.
Chalmandrier, L; Münkemüller, T; Lavergne, S; Thuiller, W
2015-01-01
Different assembly processes drive the spatial structure of meta-communities (beta-diversity). Recently, functional and phylogenetic diversities have been suggested as indicators of these assembly processes. Assuming that diversity is a good proxy for niche overlap, high beta-diversity along environmental gradients should be the result of environmental filtering while low beta-diversity should stem from competitive interactions. So far, studies trying to disentangle the relative importance of these assembly processes have provided mixed results. One reason for this may be that these studies often rely on a single measure of diversity and thus implicitly make a choice on how they account for species relative abundances and how species similarities are captured by functional traits or phylogeny. Here, we tested the effect of gradually scaling the importance of dominance (the weight given to dominant vs. rare species) and species similarity (the weight given to small vs. large similarities) on resulting beta-diversity patterns of an alpine plant meta-community. To this end, we combined recent extensions of the Hill numbers framework with Pagel's phylogenetic tree transformation approach. We included functional (based on the leaf-height-seed spectrum) and phylogenetic facets of beta-diversity in our analysis and explicitly accounted for effects of environmental and spatial covariates. We found that functional beta-diversity, was high when the same weight was given to dominant vs. rare species and to large vs. small species' similarities. In contrast, phylogenetic beta-diversity was low when greater weight was given to dominant species and small species' similarities. Those results suggested that different environments along the gradients filtered different species according to their functional traits, while, the same competitive lineages dominated communities across the gradients. Our results highlight that functional vs. phylogenetic facets, presence-absence vs. abundance structure and different weights of species' dissimilarity provide complementary and important information on the drivers of meta-community structure. By utilizing the full extent of information provided by the flexible frameworks of Hill numbers and Pagel's tree transformation, we propose a new approach to disentangle the patterns resulting from different assembly processes.
Si, Xingfeng; Cadotte, Marc W; Zhao, Yuhao; Zhou, Haonan; Zeng, Di; Li, Jiaqi; Jin, Tinghao; Ren, Peng; Wang, Yanping; Ding, Ping; Tingley, Morgan W
2018-06-26
Incorporating imperfect detection when estimating species richness has become commonplace in the past decade. However, the question of how imperfect detection of species affects estimates of functional and phylogenetic community structure remains untested. We used long-term counts of breeding bird species that were detected at least once on islands in a land-bridge island system, and employed multi-species occupancy models to assess the effects of imperfect detection of species on estimates of bird diversity and community structure by incorporating species traits and phylogenies. Our results showed that taxonomic, functional, and phylogenetic diversity were all underestimated significantly as a result of species' imperfect detection, with taxonomic diversity showing the greatest bias. The functional and phylogenetic structure calculated from observed communities were both more clustered than those from the detection-corrected communities due to missed distinct species. The discrepancy between observed and estimated diversity differed according to the measure of biodiversity employed. Our study demonstrates the importance of accounting for species' imperfect detection in biodiversity studies, especially for functional and phylogenetic community ecology, and when attempting to infer community assembly processes. With datasets that allow for detection-corrected community structure, we can better estimate diversity and infer the underlying mechanisms that structure community assembly, and thus make reliable management decisions for the conservation of biodiversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R
2016-01-01
Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.
Fagan, Matthew E.; Willig, Michael R.
2016-01-01
Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338
Structure and functioning of dryland ecosystems in a changing world.
Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2016-11-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.
Structure and functioning of dryland ecosystems in a changing world
Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2017-01-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303
Long-term functional changes in an estuarine fish assemblage.
Baptista, J; Martinho, F; Nyitrai, D; Pardal, M A; Dolbeth, M
2015-08-15
The functional diversity of the fish assemblages of the Mondego estuary was studied for a discontinuous 30-year period (1988-2012). During this time, hydrological changes occurred due to man-induced alterations and weather extremes. These changes led to alterations in the structure and function of the fish community. Species richness and functional richness decreased over time and the fish community started to explore new micro-habitats and food resources. Before severe hydrological changes, the community was dominated by pelagic, detritivorous and species with wider salinity ranges. After, the community became dominated by demersal, benthic, piscivorous and marine species. During a drought, omnivorous became increasingly important, reflecting greater possibilities of using available feeding resources. We have also found an increase in sub-tropical species throughout the years, which might be related to gradual temperature increases at a global scale. This study also confirmed estuaries as extremely important for restocking several commercial species. Copyright © 2015 Elsevier Ltd. All rights reserved.
1983-06-01
large species lists into single numerical expressions. Species diversity is usually - defined as a function of the number of species (i.e. species...1958, Lloyd and Ghelardi 1964, Pielou 1969). The primary motivation * for calculating species diversity indices based on richness or abundance is...diversity was an intrinsic property in ecological processes and an important factor in defining ecosystem structure and function (McArthur 1955
Phylogenetic and functional diversity in large carnivore assemblages
Dalerum, F.
2013-01-01
Large terrestrial carnivores are important ecological components and prominent flagship species, but are often extinction prone owing to a combination of biological traits and high levels of human persecution. This study combines phylogenetic and functional diversity evaluations of global and continental large carnivore assemblages to provide a framework for conservation prioritization both between and within assemblages. Species-rich assemblages of large carnivores simultaneously had high phylogenetic and functional diversity, but species contributions to phylogenetic and functional diversity components were not positively correlated. The results further provide ecological justification for the largest carnivore species as a focus for conservation action, and suggests that range contraction is a likely cause of diminishing carnivore ecosystem function. This study highlights that preserving species-rich carnivore assemblages will capture both high phylogenetic and functional diversity, but that prioritizing species within assemblages will involve trade-offs between optimizing contemporary ecosystem function versus the evolutionary potential for future ecosystem performance. PMID:23576787
NASA Astrophysics Data System (ADS)
Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.
2017-12-01
Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future modelling and experiments.
Rare species contribute disproportionately to the functional structure of species assemblages.
Leitão, Rafael P; Zuanon, Jansen; Villéger, Sébastien; Williams, Stephen E; Baraloto, Christopher; Fortunel, Claire; Mendonça, Fernando P; Mouillot, David
2016-04-13
There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions. © 2016 The Author(s).
Rare species contribute disproportionately to the functional structure of species assemblages
Zuanon, Jansen; Williams, Stephen E.; Baraloto, Christopher; Mendonça, Fernando P.
2016-01-01
There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions. PMID:27053754
Functional-diversity indices can be driven by methodological choices and species richness.
Poos, Mark S; Walker, Steven C; Jackson, Donald A
2009-02-01
Functional diversity is an important concept in community ecology because it captures information on functional traits absent in measures of species diversity. One popular method of measuring functional diversity is the dendrogram-based method, FD. To calculate FD, a variety of methodological choices are required, and it has been debated about whether biological conclusions are sensitive to such choices. We studied the probability that conclusions regarding FD were sensitive, and that patterns in sensitivity were related to alpha and beta components of species richness. We developed a randomization procedure that iteratively calculated FD by assigning species into two assemblages and calculating the probability that the community with higher FD varied across methods. We found evidence of sensitivity in all five communities we examined, ranging from a probability of sensitivity of 0 (no sensitivity) to 0.976 (almost completely sensitive). Variations in these probabilities were driven by differences in alpha diversity between assemblages and not by beta diversity. Importantly, FD was most sensitive when it was most useful (i.e., when differences in alpha diversity were low). We demonstrate that trends in functional-diversity analyses can be largely driven by methodological choices or species richness, rather than functional trait information alone.
Anthony, Kenneth R N; Connolly, Sean R
2004-11-01
The physiological responses of organisms to resources and environmental conditions are important determinants of niche boundaries. In previous work, functional relationships between organism energetics and environment have been limited to energy intakes. However, energetic costs of maintenance may also depend on the supply of resources. In many mixotrophic organisms, two such resource types are light and particle concentration (turbidity). Using two coral species with contrasting abundances along light and turbidity gradients (Acropora valida and Turbinaria mesenterina), we incorporate the dual resource-stressor roles of these variables by calibrating functional responses of energy costs (respiration and loss of organic carbon) as well as energy intake (photosynthesis and particle feeding). This allows us to characterize physiological niche boundaries along light and turbidity gradients, identify species-specific differences in these boundaries, and assess the sensitivity of these differences to interspecific differences in particular functional response parameters. The turbidity-light niche of T. mesenterina was substantially larger than that of A. valida, consistent with its broader ecological distribution. As expected, the responses of photosynthesis, heterotrophic capacity, respiration, and organic carbon loss to light and turbidity varied between species. Niche boundaries were highly sensitive to the functional responses of energy costs to light and turbidity. Moreover, the study species' niche differences were almost entirely attributable to species-specific differences in one functional response: that of respiration to turbidity. These results demonstrate that functional responses of energy-loss processes are important determinants of species-specific physiological limits to growth, and thereby of niche differences in reef corals. Given that many resources can stress organisms when supply rates are high, we propose that the functional responses of energy losses will prove to be important determinants of niche differences in other systems as well.
Bird Responses to Lowland Rainforest Conversion in Sumatran Smallholder Landscapes, Indonesia
Clough, Yann; Toledo-Hernandez, Manuel; Arlettaz, Raphael; Mulyani, Yeni A.; Tscharntke, Teja
2016-01-01
Rapid land-use change in the tropics causes dramatic losses in biodiversity and associated functions. In Sumatra, Indonesia, lowland rainforest has mainly been transformed by smallholders into oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) monocultures, interspersed with jungle rubber (rubber agroforests) and a few forest remnants. In two regions of the Jambi province, we conducted point counts in 32 plots of four different land-use types (lowland rainforest, jungle rubber, rubber plantation and oil palm plantation) as well as in 16 nearby homegardens, representing a small-scale, traditional agricultural system. We analysed total bird abundance and bird abundance in feeding guilds, as well as species richness per point count visit, per plot, and per land-use system, to unveil the conservation importance and functional responses of birds in the different land-use types. In total, we identified 71 species from 24 families. Across the different land-use types, abundance did not significantly differ, but both species richness per visit and per plot were reduced in plantations. Feeding guild abundances between land-use types were variable, but homegardens were dominated by omnivores and granivores, and frugivorous birds were absent from monoculture rubber and oil palm. Jungle rubber played an important role in harbouring forest bird species and frugivores. Homegardens turned out to be of minor importance for conserving birds due to their low sizes, although collectively, they are used by many bird species. Changes in functional composition with land-use conversion may affect important ecosystem functions such as biological pest control, pollination, and seed dispersal. In conclusion, maintaining forest cover, including degraded forest and jungle rubber, is of utmost importance to the conservation of functional and taxonomic bird diversity. PMID:27224063
Bird Responses to Lowland Rainforest Conversion in Sumatran Smallholder Landscapes, Indonesia.
Prabowo, Walesa Edho; Darras, Kevin; Clough, Yann; Toledo-Hernandez, Manuel; Arlettaz, Raphael; Mulyani, Yeni A; Tscharntke, Teja
2016-01-01
Rapid land-use change in the tropics causes dramatic losses in biodiversity and associated functions. In Sumatra, Indonesia, lowland rainforest has mainly been transformed by smallholders into oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) monocultures, interspersed with jungle rubber (rubber agroforests) and a few forest remnants. In two regions of the Jambi province, we conducted point counts in 32 plots of four different land-use types (lowland rainforest, jungle rubber, rubber plantation and oil palm plantation) as well as in 16 nearby homegardens, representing a small-scale, traditional agricultural system. We analysed total bird abundance and bird abundance in feeding guilds, as well as species richness per point count visit, per plot, and per land-use system, to unveil the conservation importance and functional responses of birds in the different land-use types. In total, we identified 71 species from 24 families. Across the different land-use types, abundance did not significantly differ, but both species richness per visit and per plot were reduced in plantations. Feeding guild abundances between land-use types were variable, but homegardens were dominated by omnivores and granivores, and frugivorous birds were absent from monoculture rubber and oil palm. Jungle rubber played an important role in harbouring forest bird species and frugivores. Homegardens turned out to be of minor importance for conserving birds due to their low sizes, although collectively, they are used by many bird species. Changes in functional composition with land-use conversion may affect important ecosystem functions such as biological pest control, pollination, and seed dispersal. In conclusion, maintaining forest cover, including degraded forest and jungle rubber, is of utmost importance to the conservation of functional and taxonomic bird diversity.
Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats
Lefcheck, Jonathan S.; Byrnes, Jarrett E. K.; Isbell, Forest; Gamfeldt, Lars; Griffin, John N.; Eisenhauer, Nico; Hensel, Marc J. S.; Hector, Andy; Cardinale, Bradley J.; Duffy, J. Emmett
2015-01-01
The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups. PMID:25907115
Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.
Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett
2015-04-24
The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.
Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried
2014-08-01
To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to 'classical' hotspots based on species richness (SR) only. Global. SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale.
Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried
2014-01-01
Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale. PMID:25071413
Loss of functionally unique species may gradually undermine ecosystems
O'Gorman, Eoin J.; Yearsley, Jon M.; Crowe, Tasman P.; Emmerson, Mark C.; Jacob, Ute; Petchey, Owen L.
2011-01-01
Functionally unique species contribute to the functional diversity of natural systems, often enhancing ecosystem functioning. An abundance of weakly interacting species increases stability in natural systems, suggesting that loss of weakly linked species may reduce stability. Any link between the functional uniqueness of a species and the strength of its interactions in a food web could therefore have simultaneous effects on ecosystem functioning and stability. Here, we analyse patterns in 213 real food webs and show that highly unique species consistently tend to have the weakest mean interaction strength per unit biomass in the system. This relationship is not a simple consequence of the interdependence of both measures on body size and appears to be driven by the empirical pattern of size structuring in aquatic systems and the trophic position of each species in the web. Food web resolution also has an important effect, with aggregation of species into higher taxonomic groups producing a much weaker relationship. Food webs with fewer unique and less weakly interacting species also show significantly greater variability in their levels of primary production. Thus, the loss of highly unique, weakly interacting species may eventually lead to dramatic state changes and unpredictable levels of ecosystem functioning. PMID:21106593
Divergent environmental filters drive functional segregation of European peatlands
NASA Astrophysics Data System (ADS)
Robroek, B.; Jassey, V.; Bragazza, L.; Buttler, A.
2015-12-01
Plant communities are largely shaped by prevailing climatic conditions. As a result, environmental change is expected to alter the (functional) composition in plant communities. Because plants, and particularly the composition of plant species, play an important role in driving ecosystem processes, it is crucial that we improve our understanding on which environmental factors are most important in shaping plant communities. Here we presnt the results for a cross-Eurpean study, were we assessed the role of environmnetal conditions on plant community composition in 56 peatlands. We show that plant species richness and diversity are relatively stable across the main environmental gradients. Nevertheless, we observe large changes in the plant community structure. In other words, species turnover increased with increasing differences in environmental viariables. Such turnover in the community composition is largely associated to gradients temperature and precipitation, whilst nutrients -often reported as major driver for changes in peatland ecosystems- were only important at the end of the gradient of current deposition levels in Europe. Using a combination of species distribution modelling and species co-occurence patterns, we identified two spatially non-exclusive groups of plant species. Species within a distinct group responded similarly to bioclimatic variables and nutrient deposition levels, whilst between group response was mirrored. These results suggest that these two groups of plants are subjected to divergent environmental filters. Additionally, European peatlands aggregate into two distinct clusters based on plant functional trait composition. Each cluster was dominated by plant species from either one of the two co-response groups. Overall, our results demonstrate that environmental change results in a gradual replacement of plant species from two divergent groups, consequently affecting the functional trait composition in peatlands.
Species Pool Functional Diversity Plays a Hidden Role in Generating β-Diversity.
Patrick, Christopher J; Brown, Bryan L
2018-05-01
Functional trait diversity is used as a way to infer mechanistic processes that drive community assembly. While functional diversity within communities is often viewed as a response variable, here we present and test a framework for how functional diversity among taxa in the regional species pool drives the assembly of communities among habitats. We predicted that species pool functional diversity should work with environmental heterogeneity to drive β-diversity. We tested these predictions by modeling empirical patterns in invertebrate communities from 570 streams in 52 watersheds. Our analysis of the field data provided strong support for the inclusion of both functional diversity and environmental heterogeneity in the models, and our predictions were supported when the community was analyzed all together. However, analyses within individual functional feeding guilds revealed strong context dependency in the relative importance of functional diversity, γ-richness, and environmental heterogeneity to β-diversity. We interpret the results to mean that functional diversity can play an important role in driving β-diversity; however, within guilds the nature of interspecific interactions and species pool size complicate the relationship. Future research should test this conceptual model across different ecosystems and in experimental settings using metacommunity mesocosms to enhance our understanding of the role that functional variation plays in generating spatial biodiversity patterns.
Wolfi, Amelia A; Zavaleta, Erika S
2015-01-01
While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized diversity losses, several recent experiments have employed nested, realistic designs and found that realistic species losses had larger consequences than random losses for ecosystem functioning. Progressive, realistic, biodiversity losses are generally strongly nested, but this nestedness is a potentially confounding effect. Here, we address whether nonrandom trait loss or degree of nestedness drives the relationship between diversity and productivity in a realistic biodiversity-loss experiment. We isolated the effect of nestedness through post hoc analyses of data from an experimental biodiversity manipulation in a California serpentine grassland. We found that the order in which plant traits are lost as diversity declines influences the diversity-productivity relationship more than the degree of nestedness does. Understanding the relationship between the expected order of species loss and functional traits is becoming increasingly important in the face of ongoing biodiversity loss worldwide. Our findings illustrate the importance of species composition and the order of species loss, rather than nestedness per se, for understanding the mechanisms underlying the effects of realistic species losses on ecosystem functioning.
Plant Comparative and Functional Genomics
Yang, Xiaohan; Leebens-Mack, Jim; Chen, Feng; ...
2015-01-01
Plants form the foundation for our global ecosystem and are essential for environmental and human health. An increasing number of available plant genomes and tractable experimental systems, comparative and functional plant genomics research is greatly expanding our knowledge of the molecular basis of economically and nutritionally important traits in crop plants. Inferences drawn from comparative genomics are motivating experimental investigations of gene function and gene interactions. In this special issue aims to highlight recent advances made in comparative and functional genomics research in plants. Nine original research articles in this special issue cover five important topics: (1) transcription factor genemore » families relevant to abiotic stress tolerance; (2) plant secondary metabolism; (3) transcriptomebased markers for quantitative trait locus; (4) epigenetic modifications in plant-microbe interactions; and (5) computational prediction of protein-protein interactions. Finally, we studied the plant species in these articles which include model species as well as nonmodel plant species of economic importance (e.g., food crops and medicinal plants).« less
Plant Comparative and Functional Genomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaohan; Leebens-Mack, Jim; Chen, Feng
Plants form the foundation for our global ecosystem and are essential for environmental and human health. An increasing number of available plant genomes and tractable experimental systems, comparative and functional plant genomics research is greatly expanding our knowledge of the molecular basis of economically and nutritionally important traits in crop plants. Inferences drawn from comparative genomics are motivating experimental investigations of gene function and gene interactions. In this special issue aims to highlight recent advances made in comparative and functional genomics research in plants. Nine original research articles in this special issue cover five important topics: (1) transcription factor genemore » families relevant to abiotic stress tolerance; (2) plant secondary metabolism; (3) transcriptomebased markers for quantitative trait locus; (4) epigenetic modifications in plant-microbe interactions; and (5) computational prediction of protein-protein interactions. Finally, we studied the plant species in these articles which include model species as well as nonmodel plant species of economic importance (e.g., food crops and medicinal plants).« less
Karlson, Agnes M. L.; Niemand, Clarisse; Savage, Candida; Pilditch, Conrad A
2016-01-01
Accumulating evidence shows that increased biodiversity has a positive effect on ecosystem functioning, but the mechanisms that underpin this positive relationship are contentious. Complete extinctions of regional species pools are comparatively rare whereas compositional changes and reductions in abundance and biomass are common, although seldom the focus of biodiversity-ecosystem functioning studies. We use natural, small-scale patchiness in the density of two species of large bivalves with contrasting feeding modes (the suspension-feeding Austrovenus stutchburyi and deposit-feeding Macomona liliana) to examine their influence on the uptake of nitrogen from macroalgae detritus (i.e. measure of ecosystem function and food web efficiency) by other infauna in a 10-d laboratory isotope-tracer experiment. We predicted that densities of these key bivalve species and functional group diversity (calculated as Shannons H, a density-independent measure of community composition) of the intact infaunal community will be critical factors explaining variance in macroalgal per capita uptake rates by the community members and hence determine total uptake by the community. Results show that only two species, M. liliana and a large orbiniid polychaete (Scoloplos cylindrifer) dominated macroalgal nitrogen taken up by the whole community due to their large biomass. However, their densities were mostly not important or negatively influenced per capita uptake by other species. Instead, the density of a head-down deposit-feeder (the capitellid Heteromastus filiformis), scavengers (mainly nemertines and nereids) and species and functional group diversity, best explained per capita uptake rates in community members. Our results demonstrate the importance of species identity, density and large body size for ecosystem functioning and highlight the complex interactions underlying loss of ecological functions with declining biodiversity and compositional changes. PMID:27414032
Erich Kyle Dodson; David W. Peterson
2010-01-01
Maintaining understory plant species diversity is an important management goal as forest restoration and fuel reduction treatments are applied extensively to dry coniferous forests of western North America. However, understory diversity is a function of both local species richness (number of species in a sample unit) and community heterogeneity (beta diversity) at...
Pinho, Pedro; Correia, Otília; Lecoq, Miguel; Munzi, Silvana; Vasconcelos, Sasha; Gonçalves, Paula; Rebelo, Rui; Antunes, Cristina; Silva, Patrícia; Freitas, Catarina; Lopes, Nuno; Santos-Reis, Margarida; Branquinho, Cristina
2016-05-01
Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas. Copyright © 2016 Elsevier Inc. All rights reserved.
Melliger, Ramona Laila; Braschler, Brigitte; Rusterholz, Hans-Peter; Baur, Bruno
2018-01-01
Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species' response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important.
Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks
Pilskog, Hanne Eik; Birkemoe, Tone; Framstad, Erik; Sverdrup-Thygeson, Anne
2016-01-01
One of the largest threats to biodiversity is land use change and habitat loss. Hollow oaks (Quercus spp. L.) are well-defined patches that are hotspots for biodiversity and red-listed species, but they are often rare and fragmented in the landscape. We investigated the effect of patch size, habitat quality, and isolation on functional groups and red-listed saproxylic beetles in hollow oaks (n = 40) in Norway. The groups were defined by host tree association, trophic grouping, and red-listed status. Habitat quality, represented by tree form was most important in explaining species richness for most groups. Patch size, represented by circumference and amount of dead branches, was most important in explaining abundance. Isolation, that is single oaks compared with oaks in groups, had a negative effect on the abundance of beetles feeding both on wood and fungi (xylomycethopagous), as well as on species associated with broadleaved trees (oak semi-specialists), but did not affect species richness. This indicates that at this scale and in this landscape, isolated oaks are as species rich and valuable for conservation as other oaks, although some functional groups may be more vulnerable to isolation than others. The red-listed species only responded to patch size, indicating that oaks with large circumference and many dead branches are especially important for red-listed species and for conservation. PMID:26945089
Iturrate-Garcia, Maitane; O'Brien, Michael J; Khitun, Olga; Abiven, Samuel; Niklaus, Pascal A; Schaepman-Strub, Gabriela
2016-11-01
Plant communities are coupled with abiotic factors, as species diversity and community composition both respond to and influence climate and soil characteristics. Interactions between vegetation and abiotic factors depend on plant functional types (PFT) as different growth forms will have differential responses to and effects on site characteristics. However, despite the importance of different PFT for community assembly and ecosystem functioning, research has mainly focused on vascular plants. Here, we established a set of observational plots in two contrasting habitats in northeastern Siberia in order to assess the relationship between species diversity and community composition with soil variables, as well as the relationship between vegetation cover and species diversity for two PFT (nonvascular and vascular). We found that nonvascular species diversity decreased with soil acidity and moisture and, to a lesser extent, with soil temperature and active layer thickness. In contrast, no such correlation was found for vascular species diversity. Differences in community composition were found mainly along soil acidity and moisture gradients. However, the proportion of variation in composition explained by the measured soil variables was much lower for nonvascular than for vascular species when considering the PFT separately. We also found different relationships between vegetation cover and species diversity according the PFT and habitat. In support of niche differentiation theory, species diversity and community composition were related to edaphic factors. The distinct relationships found for nonvascular and vascular species suggest the importance of considering multiple PFT when assessing species diversity and composition and their interaction with edaphic factors. Synthesis : Identifying vegetation responses to edaphic factors is a first step toward a better understanding of vegetation-soil feedbacks under climate change. Our results suggest that incorporating differential responses of PFT is important for predicting vegetation shifts, primary productivity, and in turn, ecosystem functioning in a changing climate.
Do understorey or overstorey traits drive tree encroachment on a drained raised bog?
Jagodziński, A M; Horodecki, P; Rawlik, K; Dyderski, M K
2017-07-01
One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features - overstorey or understorey vegetation - are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering. The study was conducted in the 'Zielone Bagna' nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied. Understorey vegetation traits affected tree seedling density (up to 0.5-m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings. Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Melliger, Ramona Laila; Rusterholz, Hans-Peter; Baur, Bruno
2018-01-01
Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species’ response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important. PMID:29920553
Trait space of rare plants in a fire-dependent ecosystem.
Ames, Gregory M; Wall, Wade A; Hohmann, Matthew G; Wright, Justin P
2017-08-01
The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait-based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co-occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue-chemistry traits differed significantly between rare and common, co-occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Functional Evolution of a cis-Regulatory Module
Palsson, Arnar; Alekseeva, Elena; Bergman, Casey M; Nathan, Janaki; Kreitman, Martin
2005-01-01
Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules. PMID:15757364
Schuldt, Andreas; Baruffol, Martin; Bruelheide, Helge; Chen, Simon; Chi, Xiulian; Wall, Marcus; Assmann, Thorsten
2014-09-01
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom-up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top-down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.
Zhao Xiaoying; Ren Jizhou
2007-01-01
The leguminous Caragana species are important components of vegetation in the semi-arid Loess-gully region, China. These shrub species are important for maintaining the dynamics and function of the ecosystem in the region. They are potential plant resources for restoration of degraded ecosystems. The germination responses to temperatures in two...
Parasitism and the Biodiversity-Functioning Relationship.
Frainer, André; McKie, Brendan G; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D
2018-04-01
Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions - parasitism - has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite-host interactions should be incorporated into the BD-EF framework. Copyright © 2018 Elsevier Ltd. All rights reserved.
Response of bird communities to natural disturbance
Michael P. Guilfoyle; Wylie C. Barrow; Paul B. Hamel; James S. Wakeley; Sammy L. King; Teny J. Antrobus
2000-01-01
In addition to providing numerous important ecological functions, bottomland hardwoods provide important habitat for many wildlife species (Harris 1989), particularly many forest interior birds (Hamel and others 1996). National monitoring efforts showed nationwide declines for many forest bird species, including forest-dependent neotropical migrants (Johnston and Hagan...
Rare Species Support Vulnerable Functions in High-Diversity Ecosystems
Mouillot, David; Bellwood, David R.; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C. E. Timothy; Renaud, Julien; Thuiller, Wilfried
2013-01-01
Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning. PMID:23723735
Rare species support vulnerable functions in high-diversity ecosystems.
Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried
2013-01-01
Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning.
Human land use promotes the abundance and diversity of exotic species on caribbean islands.
Jesse, Wendy A M; Behm, Jocelyn E; Helmus, Matthew R; Ellers, Jacintha
2018-05-31
Human land use causes major changes in species abundance and composition, yet native and exotic species can exhibit different responses to land use change. Native populations generally decline in human-impacted habitats while exotic species often benefit. In this study, we assessed the effects of human land use on exotic and native reptile diversity, including functional diversity, which relates to the range of habitat use strategies in biotic communities. We surveyed 114 reptile communities from localities that varied in habitat structure and human impact level on two Caribbean islands, and calculated species richness, overall abundance and evenness for every plot. Functional diversity indices were calculated using published trait data, which enabled us to detect signs of trait filtering associated with impacted habitats. Our results show that environmental variation among sampling plots was explained by two PCA ordination axes related to habitat structure (i.e. forest or non-forest) and human impact level (i.e. addition of man-made constructions such as roads and buildings). Several diversity indices were significantly correlated with the two PCA axes, but exotic and native species showed opposing responses. Native species reached the highest abundance in forests, while exotic species were absent in this habitat. Human impact was associated with an increase in exotic abundance and species richness, while native species showed no significant associations. Functional diversity was highest in non-forested environments on both islands, and further increased on St. Martin with the establishment of functionally unique exotic species in non-forested habitat. Habitat structure, rather than human impact, proved to be an important agent for environmental filtering of traits, causing divergent functional trait values across forested and non-forested environments. Our results illustrate the importance of considering various elements of land use when studying its impact on species diversity and the establishment and spread of exotic species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Plant Functional Diversity and Species Diversity in the Mongolian Steppe
Liu, Guofang; Xie, Xiufang; Ye, Duo; Ye, Xuehua; Tuvshintogtokh, Indree; Mandakh, Bayart; Huang, Zhenying; Dong, Ming
2013-01-01
Background The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated. Methodology/Principal Findings In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity. Conclusions/Significance These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought. PMID:24116233
Schirmel, Jens; Gerlach, Rebekka; Buhk, Constanze
2017-08-17
Seminatural grasslands provide habitats for various species and are important for biodiversity conservation. The understanding of the diverse responses of species and traits to different grassland management methods is therefore urgently needed. We disentangled the role of grassland management (fertilization and irrigation), vegetation structure (biomass, sward height) and plant quality (protein and fiber content) for Orthoptera communities in lowland hay meadows in Germany. We found vegetation structure to be the most important environmental category in explaining community structure of Orthoptera (species richness, total individuals, functional diversity and species composition). Intensively used meadows (fertilized, irrigated, high plant biomass) were characterized by assemblages with few species, low functional diversity, and low conservation value. Thereby, the relatively moderate fertilizer inputs in our study system of up to ∼75 kg N/ha/year reduced functional diversity of Orthoptera, while this negative effect of fertilization was not detectable when solely considering taxonomic aspects. We found strong support for a prominent role of plant quality in shaping Orthoptera communities and especially the trait composition. Our findings demonstrate the usefulness of considering both taxonomic and functional components (functional diversity) in biodiversity research and we suggest a stronger involvement of plant quality measures in Orthoptera studies. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Gingold, Ruth; Moens, Tom; Rocha-Olivares, Axayácatl
2013-01-01
Biodiversity has diminished over the past decades with climate change being among the main responsible factors. One consequence of climate change is the increase in sea surface temperature, which, together with long exposure periods in intertidal areas, may exceed the tolerance level of benthic organisms. Benthic communities may suffer structural changes due to the loss of species or functional groups, putting ecological services at risk. In sandy beaches, free-living marine nematodes usually are the most abundant and diverse group of intertidal meiofauna, playing an important role in the benthic food web. While apparently many functionally similar nematode species co-exist temporally and spatially, experimental results on selected bacterivore species suggest no functional overlap, but rather an idiosyncratic contribution to ecosystem functioning. However, we hypothesize that functional redundancy is more likely to observe when taking into account the entire diversity of natural assemblages. We conducted a microcosm experiment with two natural communities to assess their stress response to elevated temperature. The two communities differed in diversity (high [HD] vs. low [LD]) and environmental origin (harsh vs. moderate conditions). We assessed their stress resistance to the experimental treatment in terms of species and diversity changes, and their function in terms of abundance, biomass, and trophic diversity. According to the Insurance Hypothesis, we hypothesized that the HD community would cope better with the stressful treatment due to species functional overlap, whereas the LD community functioning would benefit from species better adapted to harsh conditions. Our results indicate no evidence of functional redundancy in the studied nematofaunal communities. The species loss was more prominent and size specific in the HD; large predators and omnivores were lost, which may have important consequences for the benthic food web. Yet, we found evidence for alternative diversity-ecosystem functioning relationships, such as the Rivets and the Idiosyncrasy Model.
Street trees reduce the negative effects of urbanization on birds.
Pena, João Carlos de Castro; Martello, Felipe; Ribeiro, Milton Cezar; Armitage, Richard A; Young, Robert J; Rodrigues, Marcos
2017-01-01
The effects of streets on biodiversity is an important aspect of urban ecology, but it has been neglected worldwide. Several vegetation attributes (e.g. street tree density and diversity) have important effects on biodiversity and ecological processes. In this study, we evaluated the influences of urban vegetation-represented by characteristics of street trees (canopy size, proportion of native tree species and tree species richness)-and characteristics of the landscape (distance to parks and vegetation quantity), and human impacts (human population size and exposure to noise) on taxonomic data and functional diversity indices of the bird community inhabiting streets. The study area was the southern region of Belo Horizonte (Minas Gerais, Brazil), a largely urbanized city in the understudied Neotropical region. Bird data were collected on 60 point count locations distributed across the streets of the landscape. We used a series of competing GLM models (using Akaike's information criterion for small sample sizes) to assess the relative contribution of the different sets of variables to explain the observed patterns. Seventy-three bird species were observed exploiting the streets: native species were the most abundant and frequent throughout this landscape. The bird community's functional richness and Rao's Quadratic Entropy presented values lower than 0.5. Therefore, this landscape was favoring few functional traits. Exposure to noise was the most limiting factor for this bird community. However, the average size of arboreal patches and, especially the characteristics of street trees, were able to reduce the negative effects of noise on the bird community. These results show the importance of adequately planning the urban afforestation process: increasing tree species richness, preserving large trees and planting more native trees species in the streets are management practices that will increase bird species richness, abundance and community functional aspects and consequently improve human wellbeing and quality of life.
Houadria, Mickal; Blüthgen, Nico; Salas-Lopez, Alex; Schmitt, Mona-Isabel; Arndt, Johanna; Schneider, Eric; Orivel, Jérôme; Menzel, Florian
2016-01-01
The diversity-stability relationship has been under intense scrutiny for the past decades, and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast to relatively well-studied interannual and seasonal asynchrony, few studies investigate the role of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of diurnal and nocturnal ant communities in four tropical rain forest sites. We analyzed how it was influenced by species richness, functional performance, and circadian asynchrony. In two neotropical sites, species richness and functional redundancy were lower at night. In contrast, these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony between species was pronounced in the neotropical sites, and increased circadian functional redundancy. In general, species richness positively affected functional redundancy, but the effect size depended on the temporal and spatial breadth of the species with highest functional performance. Our analysis shows that high levels of trophic performance were only reached through the presence of such high-performing species, but not by even contributions of multiple, less-efficient species. Thus, these species can increase current functional performance, but reduce overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem properties of the very same habitat can markedly differ in terms of species richness and functional redundancy. Consequently, like the need to study multiple ecosystem functions, multiple periods of the circadian cycle need to be assessed in order to fully understand the diversity-stability relationship in an ecosystem.
Liu, Yun-Hua; Zhang, Meiping; Wu, Chengcang; Huang, James J; Zhang, Hong-Bin
2014-01-01
Knowledge of how a genome is structured and organized from its constituent elements is crucial to understanding its biology and evolution. Here, we report the genome structuring and organization pattern as revealed by systems analysis of the sequences of three model species, Arabidopsis, rice and yeast, at the whole-genome and chromosome levels. We found that all fundamental function elements (FFE) constituting the genomes, including genes (GEN), DNA transposable elements (DTE), retrotransposable elements (RTE), simple sequence repeats (SSR), and (or) low complexity repeats (LCR), are structured in a nonrandom and correlative manner, thus leading to a hypothesis that the DNA of the species is structured as a linear "jigsaw puzzle". Furthermore, we showed that different FFE differ in their importance in the formation and evolution of the DNA jigsaw puzzle structure between species. DTE and RTE play more important roles than GEN, LCR, and SSR in Arabidopsis, whereas GEN and RTE play more important roles than LCR, SSR, and DTE in rice. The genes having multiple recognized functions play more important roles than those having single functions. These results provide useful knowledge necessary for better understanding genome biology and evolution of the species and for effective molecular breeding of rice.
Adsorption of metals on carbon nanotubes (CNTs) has important applications in sensors, membranes, and water treatment. The adsorptive capacity of multiwall CNTs for copper species in water depends on the type of functional group present on their surface. The alcohol (COOH) and ac...
USDA-ARS?s Scientific Manuscript database
The Asian longhorned beetle (Anoplophora glabripennis; AGLAB) is a globally significant invasive species capable of inflicting severe feeding damage on many important orchard, ornamental and forest trees. Genome sequencing, annotation, gene expression assays, and functional and comparative genomic s...
Regeneration responses in partially-harvested riparian management zones in northern Minnesota
Douglas N. Kastendick; Brian J. Palik; Eric K. Zenner; Randy K. Kolka; Charles R. Blinn; Joshua J. Kragthorpe
2014-01-01
Trees serve important functions in riparian areas. Guidelines often suggest how riparian forests should be managed to sustain functions, including tree retention and increasing the component of conifers and later-successional species. While regeneration of early successional species is not discouraged, there is uncertainty about the ability to regenerate the latter...
USDA-ARS?s Scientific Manuscript database
There are approximately 55,000 described Acari species, accounting for almost half of all known Arachnida species, but total estimated Acari diversity is reckoned to be far greater. One important source of currently hidden Acari diversity is cryptic speciation, which poses challenges to taxonomists ...
NASA Astrophysics Data System (ADS)
Turner, Phillip J.; Campbell, Lisa M.; Van Dover, Cindy L.
2017-07-01
The apparent prevalence of rare species (rarity) in the deep sea is a concern for environmental management and conservation of biodiversity. Rare species are often considered at risk of extinction and, in terrestrial and shallow water environments, have been shown to play key roles within an ecosystem. In the deep-sea environment, current research focuses primarily on abundant species and deep-sea stakeholders are questioning the importance of rare species in ecosystem functioning. This study asks whether deep-sea stakeholders (primarily scientists) view rare-species research as a priority in guiding environmental management. Delphi methodology (i.e., an iterative survey approach) was used to understand views about whether or not 'deep-sea scientists should allocate more resources to research on rare species in the deep sea, even if this means less resources might be available for abundant-species research.' Results suggest little consensus regarding the prioritization of resources for rare-species research. From Survey 1 to Survey 3, the average participant response shifted toward a view that rare-species research is not a priority if it comes at a cost to research on abundant species. Participants pointed to the need for a balanced approach and highlighted knowledge gaps about even the most fundamental questions, including whether rare species are truly 'rare' or simply under-sampled. Participants emphasized the lack of basic biological knowledge for rare and abundant species, particularly abundant meio- and microscopic species, as well as uncertainty in the roles rare and abundant species play in ecosystem processes. Approaches that jointly consider the role of rare and abundant species in ecosystem functioning (e.g., biological trait analysis) may help to clarify the extent to which rare species need to be incorporated into deep-sea environment management in order to maintain ecosystem functioning.
Volf, Martin; Redmond, Conor; Albert, Ágnes J; Le Bagousse-Pinguet, Yoann; Biella, Paolo; Götzenberger, Lars; Hrázský, Záboj; Janeček, Štěpán; Klimešová, Jitka; Lepš, Jan; Šebelíková, Lenka; Vlasatá, Tereza; de Bello, Francesco
2016-04-01
The functional structures of communities respond to environmental changes by both species replacement (turnover) and within-species variation (intraspecific trait variability; ITV). Evidence is lacking on the relative importance of these two components, particularly in response to both short- and long-term environmental disturbance. We hypothesized that such short- and long-term perturbations would induce changes in community functional structure primarily via ITV and turnover, respectively. To test this we applied an experimental design across long-term mown and abandoned meadows, with each plot containing a further level of short-term management treatments: mowing, grazing and abandonment. Within each plot, species composition and trait values [height, shoot biomass, and specific leaf area (SLA)] were recorded on up to five individuals per species. Positive covariations between the contribution of species turnover and ITV occurred for height and shoot biomass in response to both short- and long-term management, indicating that species turnover and intraspecific adjustments selected for similar trait values. Positive covariations also occurred for SLA, but only in response to long-term management. The contributions of turnover and ITV changed depending on both the trait and management trajectory. As expected, communities responded to short-term disturbances mostly through changes in intraspecific trait variability, particularly for height and biomass. Interestingly, for SLA they responded to long-term disturbances by both species turnover and intraspecific adjustments. These findings highlight the importance of both ITV and species turnover in adjusting grassland functional trait response to environmental perturbation, and show that the response is trait specific and affected by disturbance regime history.
Valverde-Barrantes, Oscar J; Smemo, Kurt A; Feinstein, Larry M; Kershner, Mark W; Blackwood, Christopher B
2018-03-01
Functional differences between trees with arbuscular (AM) or ectomycorrhizal (ECM) partnerships influence important ecological processes including nutrient cycling, community assembly, and biomass allocation patterns. Although most broadleaf temperate forests show both mycorrhizal types, relatively few studies have addressed functional difference among coexisting mycorrhizal tree species. The maintenance of ECM associations usually requires higher C investment than AM, leading to (A) lower root biomass and (B) more conservative root trait syndromes in ECM tree species compared to AM species. Here we quantified the representation and trait syndromes of 14 canopy tree species associated with either AM or ECM fungi in a natural forest community. Our results showed that, whereas species root abundance was proportional to basal area, some ECM tree roots were largely under-represented (up to ~ 33%). Most of the under-representation was due to lower than expected root abundance of Quercus rubra and Fagus grandifolia. Functional root traits in tree species were similar, with the exception of higher tissue density in ECM species. Moreover, closely related AM and ECM exhibited similar traits, suggesting inherited trait syndrome from a common ancestor. Thus, we found little evidence of divergent functional root trait syndromes between mycorrhizal types. Cores dominated by ECM species influenced trait distribution at the community level, but not total biomass, suggesting that mycorrhizal affiliation may have a stronger effect on the spatial distribution of traits but not on biomass stocks. Our results present an important step toward relating belowground carbon dynamics to species traits, including mycorrhizal type, in broadleaf temperate forests.
Lefcheck, Jonathan S; Duffy, J Emmett
2015-11-01
The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.
He, Dong; Chen, Yongfa; Zhao, Kangning; Cornelissen, J H C; Chu, Chengjin
2018-02-03
How functional traits vary with environmental conditions is of fundamental importance in trait-based community ecology. However, how intraspecific variability in functional traits is connected to species distribution is not well understood. This study investigated inter- and intraspecific variation of a key functional trait, i.e. specific leaf area (leaf area per unit dry mass; SLA), in relation to soil factors and tested if trait variation is more closely associated with specific environmental regimes for low-variability species than for high-variability species. In a subtropical evergreen forest plot (50 ha, southern China), 106 700 leaves from 5335 individuals of 207 woody species were intensively collected, with 30 individuals sampled for most species to ensure a sufficient sample size representative of intraspecific variability. Soil conditions for each plant were estimated by kriging from more than 1700 observational soil locations across the plot. Intra- and interspecific variation in SLA were separately related to environmental factors. Based on the species-specific variation of SLA, species were categorized into three groups: low-, intermediate- and high-intraspecific variability. Intraspecific habitat ranges and the strength of SLA-habitat relationships were compared among these three groups. Interspecific variation in SLA overrides the intraspecific variation (77 % vs. 8 %). Total soil nitrogen (TN, positively) and total organic carbon (TOC, negatively) are the most important explanatory factors for SLA variation at both intra- and interspecific levels. SLA, both within and between species, decreases with decreasing soil nitrogen availability. As predicted, species with low intraspecific variability in SLA have narrower habitat ranges with respect to soil TOC and TN and show a stronger SLA-habitat association than high-variability species. For woody plants low SLA is a phenotypic and probably adaptive response to nitrogen stress, which drives the predominance of species with ever-decreasing SLA towards less fertile habitats. Intraspecific variability in SLA is positively connected to species' niche breadth, suggesting that low-variability species may play a more deterministic role in structuring plant assemblages than high-variability species. This study highlights the importance of quantifying intraspecific trait variation to improve our understanding of species distributions across a vegetated landscape. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Climate-driven changes in functional biogeography of Arctic marine fish communities
Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V.; Fossheim, Maria; Aschan, Michaela M.
2017-01-01
Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. PMID:29087943
Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P
2015-07-01
Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature. © 2015 John Wiley & Sons Ltd/CNRS.
Protein-protein interaction network-based detection of functionally similar proteins within species.
Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli
2012-07-01
Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.
J.S. Kominoski; C.M. Pringle; B.A. Ball; M.A. Bradford; D.C. Coleman; D.B. Hall; M.D. Hunter
2007-01-01
Since species loss is predicted to be nonrandom, it is important to understand the manner in which those species that we anticipate losing interact with other species to affect ecosystem function. We tested whether litter species diversity, measured as richness and composition, affects breakdown dynamics in a detritus-based stream. Using full-factorial analyses of...
Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E.; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen
2015-01-01
Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao’s index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production. PMID:26295345
Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen
2015-01-01
Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao's index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production.
Rychtecká, Terezie; Lanta, Vojtěch; Weiterová, Iva; Lepš, Jan
2014-08-01
Biodiversity-ecosystem functioning experiments (BEF) typically manipulate sown species richness and composition of experimental communities to study ecosystem functioning as a response to changes in diversity. If sown species richness is taken as a measure of diversity and aboveground biomass production as a measure of community functioning, then this relationship is usually found to be positive. The sown species richness can be considered the equivalent of a local species pool in natural communities. However, in addition to species richness, realized diversity is also an important community diversity component. Realized diversity is affected by environmental filtering and biotic interactions operating within a community. As both sown species richness and the realized diversity in BEF studies (as well as local species pool vs observed realized richness in natural communities) can differ markedly, so can their effects on the community functioning. We tested this assumption using two data sets: data from a short-term pot experiment and data from the long-term Jena biodiversity plot experiment. We considered three possible predictors of community functioning (aboveground biomass production): sown species richness, realized diversity (defined as inverse of Simpson dominance index), and survivor species richness. Sown species richness affected biomass production positively in all cases. Realized diversity as well as survivor species richness had positive effects on biomass in approximately half of cases. When realized diversity or survivor species richness was tested together with sown species richness, their partial effects were none or negative. Our results suggest that we can expect positive diversity-productivity relationship when the local species pool size is the decisive factor determining realized observed diversity; in other cases, the shape of the diversity-functioning relationship may be quite opposite.
Loewen, Charlie J G; Vinebrooke, Rolf D
2016-10-01
Species diversity is often an implicit source of biological insurance for communities against the impacts of novel perturbations, such as the introduction of an invasive species. High environmental heterogeneity (e.g., a mountainous gradient) is expected to beget greater regional species diversity and variation in functional traits related to environmental tolerances. Thus, heterogeneous metacommunities are expected to provide more tolerant colonists that buffer stressed local communities in the absence of dispersal limitation. We tested the hypothesis that importation of a regional zooplankton pool assembled from a diverse array of lakes and ponds lessens the impacts of a novel predator on local species-poor alpine communities by increasing response diversity (i.e., diversity of tolerances to environmental change) as mediated by variation in functional traits related to predator evasion. We also tested whether impacts varied with temperature, as warming may modify (e.g., dampen or amplify) invasion effects. An eight-week factorial experiment ([fishless vs. introduced Oncorhynchus mykiss (rainbow trout)] × [ambient temperature vs. heated] × [local vs. local + regional species pool]) was conducted using 32 1,000-L mesocosms. Associations between experimental treatments and species functional traits were tested by R-mode linked to Q-mode (RLQ) and fourth-corner analyses. Although the introduced predator suppressed local species richness and community biomass, colonization by several montane zooplankters reversed these negative effects, resulting in increased species diversity and production. Invasion resistance was unaffected by higher temperatures, which failed to elicit any significance impacts on the community. We discovered that the smaller body sizes of imported species drove functional overcompensation (i.e., increased production) in invaded communities. The observed ecological surprise showed how regionally sourced biodiversity from a highly heterogeneous landscape can offset, and even reverse, the local negative impacts of an invasive species. Further, prey body size was found to be a key species trait mediating the ecological impacts of the aquatic invasive predator. Our study highlights the novel application of a functional approach to understanding the impacts of biological invasions, using species traits that pertain directly to potential responses to exotic species. © 2016 by the Ecological Society of America.
Loss of Mitochondrial Function Impairs Lysosomes.
Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc
2016-05-06
Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Functional traits help to explain half-century long shifts in pollinator distributions.
Aguirre-Gutiérrez, Jesús; Kissling, W Daniel; Carvalheiro, Luísa G; WallisDeVries, Michiel F; Franzén, Markus; Biesmeijer, Jacobus C
2016-04-15
Changes in climate and land use can have important impacts on biodiversity. Species respond to such environmental modifications by adapting to new conditions or by shifting their geographic distributions towards more suitable areas. The latter might be constrained by species' functional traits that influence their ability to move, reproduce or establish. Here, we show that functional traits related to dispersal, reproduction, habitat use and diet have influenced how three pollinator groups (bees, butterflies and hoverflies) responded to changes in climate and land-use in the Netherlands since 1950. Across the three pollinator groups, we found pronounced areal range expansions (>53%) and modelled range shifts towards the north (all taxa: 17-22 km), west (bees: 14 km) and east (butterflies: 11 km). The importance of specific functional traits for explaining distributional changes varied among pollinator groups. Larval diet preferences (i.e. carnivorous vs. herbivorous/detritivorous and nitrogen values of host plants, respectively) were important for hoverflies and butterflies, adult body size for hoverflies, and flight period length for all groups. Moreover, interactions among multiple traits were important to explain species' geographic range shifts, suggesting that taxon-specific multi-trait analyses are needed to predict how global change will affect biodiversity and ecosystem services.
The non-linear relationship between body size and function in parrotfishes
NASA Astrophysics Data System (ADS)
Lokrantz, J.; Nyström, M.; Thyresson, M.; Johansson, C.
2008-12-01
Parrotfishes are a group of herbivores that play an important functional role in structuring benthic communities on coral reefs. Increasingly, these fish are being targeted by fishermen, and resultant declines in biomass and abundance may have severe consequences for the dynamics and regeneration of coral reefs. However, the impact of overfishing extends beyond declining fish stocks. It can also lead to demographic changes within species populations where mean body size is reduced. The effect of reduced mean body size on population dynamics is well described in literature but virtually no information exists on how this may influence important ecological functions. The study investigated how one important function, scraping (i.e., the capacity to remove algae and open up bare substratum for coral larval settlement), by three common species of parrotfishes ( Scarus niger, Chlorurus sordidus, and Chlorurus strongylocephalus) on coral reefs at Zanzibar (Tanzania) was influenced by the size of individual fishes. There was a non-linear relationship between body size and scraping function for all species examined, and impact through scraping was also found to increase markedly when fish reached a size of 15 20 cm. Thus, coral reefs which have a high abundance and biomass of parrotfish may nonetheless be functionally impaired if dominated by small-sized individuals. Reductions in mean body size within parrotfish populations could, therefore, have functional impacts on coral reefs that previously have been overlooked.
William J. Matthews; A. Maria Miller-Lemke; Melvin L. Warren; Donna Cobb; Jeffery G. Stewart; Betty Crump; Frances P. Gelwick
2004-01-01
Abstract - Fish play diverse and important roles in stream ecosystems, but details about ecosystem effects are poorly known for many freshwater fish species. A requisite first step to understanding functional roles of individual species is information on their trophic ecology in the context of particular environmental settings. Stomach contents were...
Ford, Adriana E. S.; Smart, Simon M.; Henrys, Peter A.; Ashmore, Mike R.
2016-01-01
Atmospheric nitrogen (N) deposition has had detrimental effects on species composition in a range of sensitive habitats, although N deposition can also increase agricultural productivity and carbon storage, and favours a few species considered of importance for conservation. Conservation targets are multiple, and increasingly incorporate services derived from nature as well as concepts of intrinsic value. Priorities vary. How then should changes in a set of species caused by drivers such as N deposition be assessed? We used a novel combination of qualitative semi-structured interviews and quantitative ranking to elucidate the views of conservation professionals specialising in grasslands, heathlands and mires. Although conservation management goals are varied, terrestrial habitat quality is mainly assessed by these specialists on the basis of plant species, since these are readily observed. The presence and abundance of plant species that are scarce, or have important functional roles, emerged as important criteria for judging overall habitat quality. However, species defined as ‘positive indicator-species’ (not particularly scarce, but distinctive for the habitat) were considered particularly important. Scarce species are by definition not always found, and the presence of functionally important species is not a sufficient indicator of site quality. Habitat quality as assessed by the key informants was rank-correlated with the number of positive indicator-species present at a site for seven of the nine habitat classes assessed. Other metrics such as species-richness or a metric of scarcity were inconsistently or not correlated with the specialists’ assessments. We recommend that metrics of habitat quality used to assess N pollution impacts are based on the occurrence of, or habitat-suitability for, distinctive species. Metrics of this type are likely to be widely applicable for assessing habitat change in response to different drivers. The novel combined qualitative and quantitative approach taken to elucidate the priorities of conservation professionals could be usefully applied in other contexts. PMID:27557277
Cachera, Marie; Le Loc'h, François
2017-08-01
The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, Peter; Varghese, Philip; Goldstein, David
We extend a variance reduced discrete velocity method developed at UT Austin [1, 2] to gas mixtures with large mass ratios and flows with trace species. The mixture is stored as a collection of independent velocity distribution functions, each with a unique grid in velocity space. Different collision types (A-A, A-B, B-B, etc.) are treated independently, and the variance reduction scheme is formulated with different equilibrium functions for each separate collision type. The individual treatment of species enables increased focus on species important to the physics of the flow, even if the important species are present in trace amounts. Themore » method is verified through comparisons to Direct Simulation Monte Carlo computations and the computational workload per time step is investigated for the variance reduced method.« less
Wang, Ruili; Yu, Guirui; He, Nianpeng; Wang, Qiufeng; Zhao, Ning; Xu, Zhiwei; Ge, Jianping
2015-01-01
To explore the latitudinal variation of stomatal traits from species to community level and their linkage with net primary productivity (NPP), we investigated leaf stomatal density (SDL) and stomatal length (SLL) across 760 species from nine forest ecosystems in eastern China, and calculated the community-level SD (SDC) and SL (SLC) through species-specific leaf area index (LAI). Our results showed that latitudinal variation in species-level SDL and SLL was minimal, but community-level SDC and SLC decreased clearly with increasing latitude. The relationship between SD and SL was negative across species and different plant functional types (PFTs), but positive at the community level. Furthermore, community-level SDC correlated positively with forest NPP, and explained 51% of the variation in NPP. These findings indicate that the trade-off by regulating SDL and SLL may be an important strategy for plant individuals to adapt to environmental changes, and temperature acts as the main factor influencing community-level stomatal traits through alteration of species composition. Importantly, our findings provide new insight into the relationship between plant traits and ecosystem function. PMID:26403303
High frequency of functional extinctions in ecological networks.
Säterberg, Torbjörn; Sellman, Stefan; Ebenman, Bo
2013-07-25
Intensified exploitation of natural populations and habitats has led to increased mortality rates and decreased abundances of many species. There is a growing concern that this might cause critical abundance thresholds of species to be crossed, with extinction cascades and state shifts in ecosystems as a consequence. When increased mortality rate and decreased abundance of a given species lead to extinction of other species, this species can be characterized as functionally extinct even though it still exists. Although such functional extinctions have been observed in some ecosystems, their frequency is largely unknown. Here we use a new modelling approach to explore the frequency and pattern of functional extinctions in ecological networks. Specifically, we analytically derive critical abundance thresholds of species by increasing their mortality rates until an extinction occurs in the network. Applying this approach on natural and theoretical food webs, we show that the species most likely to go extinct first is not the one whose mortality rate is increased but instead another species. Indeed, up to 80% of all first extinctions are of another species, suggesting that a species' ecological functionality is often lost before its own existence is threatened. Furthermore, we find that large-bodied species at the top of the food chains can only be exposed to small increases in mortality rate and small decreases in abundance before going functionally extinct compared to small-bodied species lower in the food chains. These results illustrate the potential importance of functional extinctions in ecological networks and lend strong support to arguments advocating a more community-oriented approach in conservation biology, with target levels for populations based on ecological functionality rather than on mere persistence.
Functionally specialised birds respond flexibly to seasonal changes in fruit availability.
Bender, Irene M A; Kissling, W Daniel; Böhning-Gaese, Katrin; Hensen, Isabell; Kühn, Ingolf; Wiegand, Thorsten; Dehling, D Matthias; Schleuning, Matthias
2017-07-01
Interactions between resource and consumer species result in complex ecological networks. The overall structure of these networks is often stable in space and time, but little is known about the temporal stability of the functional roles of consumer species in these networks. We used a trait-based approach to investigate whether consumers (frugivorous birds) show similar degrees of functional specialisation on resources (plants) in ecological networks across seasons. We additionally tested whether closely related bird species have similar degrees of functional specialisation and whether birds that are functionally specialised on specific resource types within a season are flexible in switching to other resource types in other seasons. We analysed four seasonal replicates of two species-rich plant-frugivore networks from the tropical Andes. To quantify fruit preferences of frugivorous birds, we projected their interactions with plants into a multidimensional plant trait space. To measure functional specialisation of birds, we calculated a species' functional niche breadth (the extent of seasonal plant trait space utilised by a particular bird) and functional originality (the extent to which a bird species' fruit preference functionally differs from those of other species in a seasonal network). We additionally calculated functional flexibility, i.e. the ability of bird species to change their fruit preference across seasons in response to variation in plant resources. Functional specialisation of bird species varied more among species than across seasons, and phylogenetically similar bird species showed similar degrees of functional niche breadth (phylogenetic signal λ = 0·81) and functional originality (λ = 0·89). Additionally, we found that birds with high functional flexibility across seasons had narrow functional niche breadth and high functional originality per season, suggesting that birds that are seasonally specialised on particular resources are most flexible in switching to other fruit resources across seasons. The high flexibility of functionally specialised bird species to switch seasonally to other resources challenges the view that consumer species rely on functionally similar resources throughout the year. This flexibility of consumer species may be an important, but widely neglected mechanism that could potentially stabilise consumer-resource networks in response to human disturbance and environmental change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Fish extinctions alter nutrient recycling in tropical freshwaters.
McIntyre, Peter B; Jones, Laura E; Flecker, Alexander S; Vanni, Michael J
2007-03-13
There is increasing evidence that species extinctions jeopardize the functioning of ecosystems. Overfishing and other human influences are reducing the diversity and abundance of fish worldwide, but the ecosystem-level consequences of these changes have not been assessed quantitatively. Recycling of nutrients is one important ecosystem process that is directly influenced by fish. Fish species vary widely in the rates at which they excrete nitrogen and phosphorus; thus, altering fish communities could affect nutrient recycling. Here, we use extensive field data on nutrient recycling rates and population sizes of fish species in a Neotropical river and Lake Tanganyika, Africa, to evaluate the effects of simulated extinctions on nutrient recycling. In both of these species-rich ecosystems, recycling was dominated by relatively few species, but contributions of individual species differed between nitrogen and phosphorus. Alternative extinction scenarios produced widely divergent patterns. Loss of the species targeted by fishermen led to faster declines in nutrient recycling than extinctions in order of rarity, body size, or trophic position. However, when surviving species were allowed to increase after extinctions, these compensatory responses had strong moderating effects even after losing many species. Our results underscore the complexity of predicting the consequences of extinctions from species-rich animal communities. Nevertheless, the importance of exploited species in nutrient recycling suggests that overfishing could have particularly detrimental effects on ecosystem functioning.
Climate-driven changes in functional biogeography of Arctic marine fish communities.
Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M
2017-11-14
Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.
Kunstler, Georges; Lavergne, Sébastien; Courbaud, Benoît; Thuiller, Wilfried; Vieilledent, Ghislain; Zimmermann, Niklaus E; Kattge, Jens; Coomes, David A
2012-08-01
The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of species on a hierarchy of competitive ability. Using growth data, we estimated 275 interaction coefficients between tree species in the French mountains. We show that interaction strengths are mainly driven by trait hierarchy and not by functional or phylogenetic similarity. On the basis of this result, we thus propose that functional and phylogenetic convergence in local tree community might be due to competition-sorting species with different competitive abilities and not only environmental filtering as commonly assumed. We then show a functional and phylogenetic convergence of forest structure with increasing plot age, which supports this view. © 2012 Blackwell Publishing Ltd/CNRS.
Wilby, Andrew; Orwin, Kate H
2013-08-01
Changes in predator species richness can have important consequences for ecosystem functioning at multiple trophic levels, but these effects are variable and depend on the ecological context in addition to the properties of predators themselves. Here, we report an experimental study to test how species identity, community attributes, and community structure at the herbivore level moderate the effects of predator richness on ecosystem functioning. Using mesocosms containing predatory insects and aphid prey, we independently manipulated species richness at both predator and herbivore trophic levels. Community structure was also manipulated by changing the distribution of herbivore species across two plant species. Predator species richness and herbivore species richness were found to negatively interact to influence predator biomass accumulation, an effect which is hypothesised to be due to the breakdown of functional complementarity among predators in species-rich herbivore assemblages. The strength of predator suppression of herbivore biomass decreased as herbivore species richness and distribution across host plants increased, and positive predator richness effects on herbivore biomass suppression were only observed in herbivore assemblages of relatively low productivity. In summary, the study shows that the species richness, productivity and host plant distribution of prey communities can all moderate the general influence of predators and the emergence of predator species richness effects on ecosystem functioning.
S.F. Fitzsimmons; K.M. Collins; J. Westbrook; T.M. Saielli; M.D. Brinckman
2017-01-01
American chestnut (Castanea dentata) was once a foundational species in much of its native range, especially in the Appalachian Mountains of the eastern United States. Unfortunately, the species was driven to functional extinction by the accidental importation of an exotic fungal pathogen (Cryphonectria parasitica), the causal...
De Meester, N; Gingold, R; Rigaux, A; Derycke, S; Moens, T
2016-10-01
Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and ecosystem functioning. The role of cryptic (morphologically identical but genetically distinct) species in this biodiversity-ecosystem functioning link is unclear and has not yet been formally tested. We tested if there is a differential effect of four cryptic species of the bacterivorous nematode Litoditis marina on the decomposition process of macroalgae. Bacterivorous nematodes can stimulate or slow down bacterial activity and modify the bacterial assemblage composition. Moreover, we tested if interspecific interactions among the four cryptic species influence the decomposition process. A laboratory experiment with both mono- and multispecific nematode cultures was conducted, and loss of organic matter and the activity of two key extracellular enzymes for the degradation of phytodetritus were assessed. L. marina mainly influenced qualitative aspects of the decomposition process rather than its overall rate: an effect of the nematodes on the enzymatic activities became manifest, although no clear nematode effect on bulk organic matter weight loss was found. We also demonstrated that species-specific effects on the decomposition process existed. Combining the four cryptic species resulted in high competition, with one dominant species, but without complete exclusion of other species. These interspecific interactions translated into different effects on the decomposition process. The species-specific differences indicated that each cryptic species may play an important and distinct role in ecosystem functioning. Functional differences may result in coexistence among very similar species.
Sydenham, Markus A K; Moe, Stein R; Stanescu-Yadav, Diana N; Totland, Ørjan; Eldegard, Katrine
2016-02-01
Anthropogenic landscape elements, such as roadsides, hedgerows, field edges, and power line clearings, can be managed to provide important habitats for wild bees. However, the effects of habitat improvement schemes in power line clearings on components of diversity are poorly studied. We conducted a large-scale experiment to test the effects of different management practices on the species, phylogenetic, and functional diversity of wild bees in power line clearings (n = 19 sites across southeastern Norway) and explored whether any treatment effects were modified by the environmental context. At each site, we conducted the following treatments: (1) Cut: all trees cut and left to decay in the clearing; (2) Cut + Remove: all trees cut and removed from the plot; and (3) Uncut: uncleared. The site-specific environmental context (i.e., elevation and floral diversity) influenced the species, phylogenetic, and functional diversity within bee species assemblages. The largest number of species was found in the Cut + Remove treatment in plots with a high forb species richness, indicating that the outcome of management practices depends on the environmental context. Clearing of treatment plots with many forb species also appeared to alter the phylogenetic composition of bee species assemblages, that is, more closely related species were found in the Cut and the Cut + Remove plots than in the Uncut plots. Synthesis and applications: Our experimental simulation of management practices in power line clearings influenced the species, phylogenetic, and functional diversity of bee species assemblages. Frequent clearing and removal of the woody debris at low elevations with a high forb species richness can increase the value of power line clearings for solitary bees. It is therefore important for managers to consider the environmental context when designing habitat improvement schemes for solitary bees.
Functional traits predict relationship between plant abundance dynamic and long-term climate warming
Soudzilovskaia, Nadejda A.; Elumeeva, Tatiana G.; Onipchenko, Vladimir G.; Shidakov, Islam I.; Salpagarova, Fatima S.; Khubiev, Anzor B.; Tekeev, Dzhamal K.; Cornelissen, Johannes H. C.
2013-01-01
Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year’s shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400
Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S
2010-10-07
PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out to dissect the PHB gene function. The conserved gene evolution indicated that the study in the model species can be translated to human and mammalian studies.
Street trees reduce the negative effects of urbanization on birds
2017-01-01
The effects of streets on biodiversity is an important aspect of urban ecology, but it has been neglected worldwide. Several vegetation attributes (e.g. street tree density and diversity) have important effects on biodiversity and ecological processes. In this study, we evaluated the influences of urban vegetation—represented by characteristics of street trees (canopy size, proportion of native tree species and tree species richness)—and characteristics of the landscape (distance to parks and vegetation quantity), and human impacts (human population size and exposure to noise) on taxonomic data and functional diversity indices of the bird community inhabiting streets. The study area was the southern region of Belo Horizonte (Minas Gerais, Brazil), a largely urbanized city in the understudied Neotropical region. Bird data were collected on 60 point count locations distributed across the streets of the landscape. We used a series of competing GLM models (using Akaike's information criterion for small sample sizes) to assess the relative contribution of the different sets of variables to explain the observed patterns. Seventy-three bird species were observed exploiting the streets: native species were the most abundant and frequent throughout this landscape. The bird community's functional richness and Rao's Quadratic Entropy presented values lower than 0.5. Therefore, this landscape was favoring few functional traits. Exposure to noise was the most limiting factor for this bird community. However, the average size of arboreal patches and, especially the characteristics of street trees, were able to reduce the negative effects of noise on the bird community. These results show the importance of adequately planning the urban afforestation process: increasing tree species richness, preserving large trees and planting more native trees species in the streets are management practices that will increase bird species richness, abundance and community functional aspects and consequently improve human wellbeing and quality of life. PMID:28333989
Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine
2016-01-01
Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee species assemblages in forested landscapes.
Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R
2018-02-01
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Izzo, Thiago J.; Vaz-de-Mello, Fernando Z.
2017-01-01
The Pantanal is one of the world’s largest tropical wetland areas and harbors high mammal biomass. There is no formal list of dung beetle species, and studies on their functional roles have never being carried out in Pantanal. In this study, we identified dung beetle species occurring in the north Pantanal region (Poconé sub-region, Brazil) and studied their functional organization, by measuring morphological, behavioral and phenological traits. We collected 25,278 individuals belonging to 17 genera and 35 species. We identified eight functional groups in the habitat: Noturnal Telecoprids, Diurnal Telecoprids, Nesting Endocoprids, Small Nonrollers, Nocturnal Nester Paracoprids, Big Nesters Paracoprids, Non Nesters Paracoprids and Diurnal Nesters Paracoprids. The functional groups were defined mostly by two reproductive traits and two niche differentiation traits related to the use of fecal resources. This high diversification of both species and functional roles shows the importance of the group in a habitat with strong variation in availability of habitat and resources. PMID:29134142
Hoeinghaus, David J; Agostinho, Angelo A; Gomes, Luiz C; Pelicice, Fernando M; Okada, Edson K; Latini, João D; Kashiwaqui, Elaine A L; Winemiller, Kirk O
2009-10-01
Applying the ecosystem services concept to conservation initiatives or in managing ecosystem services requires understanding how environmental impacts affect the ecology of key species or functional groups providing the services. We examined effects of river impoundments, one of the leading threats to freshwater biodiversity, on an important ecosystem service provided by large tropical rivers (i.e., artisanal fisheries). The societal and economic importance of this ecosystem service in developing countries may provide leverage to advance conservation agendas where future impoundments are being considered. We assessed impoundment effects on the energetic costs of fisheries production (embodied energy) and commercial market value of the artisanal fishery of the Paraná River, Brazil, before and after formation of Itaipu Reservoir. High-value migratory species that dominated the fishery before the impoundment was built constituted a minor component of the contemporary fishery that is based heavily on reservoir-adapted introduced species. Cascading effects of river impoundment resulted in a mismatch between embodied energy and market value: energetic costs of fisheries production increased, whereas market value decreased. This was partially attributable to changes in species functional composition but also strongly linked to species identities that affected market value as a result of consumer preferences even when species were functionally similar. Similar trends are expected in other large tropical rivers following impoundment. In addition to identifying consequences of a common anthropogenic impact on an important ecosystem service, our assessment provides insight into the sustainability of fisheries production in tropical rivers and priorities for regional biodiversity conservation.
Hao, Guang-You; Goldstein, Guillermo; Sack, Lawren; Holbrook, N Michele; Liu, Zhi-Hui; Wang, Ai-Ying; Harrison, Rhett D; Su, Zhi-Hui; Cao, Kun-Fang
2011-11-01
Woody hemiepiphytic species (Hs) are important components of tropical rain forests, and they have been hypothesized to differ from non-hemiepiphytic tree species (NHs) in adaptations relating to water relations and carbon economy; but few studies have been conducted comparing ecophysiological traits between the two growth forms especially in an evolutionary context. Using common-garden plants of the genus Ficus, functional traits related to plant hydraulics and carbon economy were compared for seven NHs and seven Hs in their adult terrestrial "tree-like" growth phase. We used phylogenetically independent contrasts to test the hypothesis that differences in water availability selected for contrasting suites of traits in Hs and NHs, driving evolutionary correlations among functional traits including hydraulic conductivity and photosynthetic traits. Species of the two growth forms differed in functional traits; Hs had substantially lower xylem hydraulic conductivity and stomatal conductance, and higher instantaneous photosynthetic water use efficiency. Leaf morphological and structural traits also differed strikingly between the two growth forms. The Hs had significantly smaller leaves, higher leaf mass per area (LMA), and smaller xylem vessel lumen diameters. Across all the species, hydraulic conductivity was positively correlated with leaf gas exchange indicating high degrees of hydraulic-photosynthetic coordination. More importantly, these correlations were supported by correlations implemented on phylogenetic independent contrasts, suggesting that most trait correlations arose through repeated convergent evolution rather than as a result of chance events in the deep nodes of the lineage. Vatiation in xylem hydraulic conductivity was also centrally associated with a suite of other functional traits related to carbon economy and growth, such as LMA, water use efficiency, leaf nutrient concentration, and photosynthetic nutrient use efficiency, indicating important physiological constraints or trade-offs among functional traits. Shifts in this trait cluster apparently related to the adaptation to drought-prone canopy growth during the early life cycle of Hs and clearly affected ecophysiology of the later terrestrial stage of these species. Evolutionary flexibility in hydraulics and associated traits might be one basis for the hyper-diversification of Ficus species in tropical rain forests.
Plant species richness and functional traits affect community stability after a flood event.
Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D
2016-05-19
Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. © 2016 The Author(s).
Plant species richness and functional traits affect community stability after a flood event
Fischer, Felícia M.; Wright, Alexandra J.; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W.; Pillar, Valério D.
2016-01-01
Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578
Biogeographical disparity in the functional diversity and redundancy of corals.
McWilliam, Mike; Hoogenboom, Mia O; Baird, Andrew H; Kuo, Chao-Yang; Madin, Joshua S; Hughes, Terry P
2018-03-20
Corals are major contributors to a range of key ecosystem functions on tropical reefs, including calcification, photosynthesis, nutrient cycling, and the provision of habitat structure. The abundance of corals is declining at multiple scales, and the species composition of assemblages is responding to escalating human pressures, including anthropogenic global warming. An urgent challenge is to understand the functional consequences of these shifts in abundance and composition in different biogeographical contexts. While global patterns of coral species richness are well known, the biogeography of coral functions in provinces and domains with high and low redundancy is poorly understood. Here, we quantify the functional traits of all currently recognized zooxanthellate coral species ( n = 821) in both the Indo-Pacific and Atlantic domains to examine the relationships between species richness and the diversity and redundancy of functional trait space. We find that trait diversity is remarkably conserved (>75% of the global total) along latitudinal and longitudinal gradients in species richness, falling away only in species-poor provinces ( n < 200), such as the Persian Gulf (52% of the global total), Hawaii (37%), the Caribbean (26%), and the East-Pacific (20%), where redundancy is also diminished. In the more species-poor provinces, large and ecologically important areas of trait space are empty, or occupied by just a few, highly distinctive species. These striking biogeographical differences in redundancy could affect the resilience of critical reef functions and highlight the vulnerability of relatively depauperate, peripheral locations, which are often a low priority for targeted conservation efforts.
Limiting similarity and functional diversity along environmental gradients
Schwilk, D.W.; Ackerly, D.D.
2005-01-01
Recent developments in community models emphasize the importance of incorporating stochastic processes (e.g. ecological drift) in models of niche-structured community assembly. We constructed a finite, spatially explicit, lottery model to simulate the distribution of species in a one-dimensional landscape with an underlying gradient in environmental conditions. Our framework combines the potential for ecological drift with environmentally-mediated competition for space in a heterogeneous environment. We examined the influence of niche breadth, dispersal distances, community size (total number of individuals) and the breadth of the environmental gradient on levels of species and functional trait diversity (i.e. differences in niche optima). Three novel results emerge from this model: (1) niche differences between adjacent species (e.g. limiting similarity) increase in smaller communities, because of the interaction of competitive effects and finite population sizes; (2) immigration from a regional species pool, stochasticity and niche-assembly generate a bimodal distribution of species residence times ('transient' and 'resident') under a heterogeneous environment; and (3) the magnitude of environmental heterogeneity has a U-shaped effect on diversity, because of shifts in species richness of resident vs. transient species. These predictions illustrate the potential importance of stochastic (although not necessarily neutral) processes in community assembly. ??2005 Blackwell Publishing Ltd/CNRS.
Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M
2014-04-01
Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. © 2013 Society for Conservation Biology.
Swenson, Nathan G; Enquist, Brian J
2009-08-01
Species diversity is promoted and maintained by ecological and evolutionary processes operating on species attributes through space and time. The degree to which variability in species function regulates distribution and promotes coexistence of species has been debated. Previous work has attempted to quantify the relative importance of species function by using phylogenetic relatedness as a proxy for functional similarity. The key assumption of this approach is that function is phylogenetically conserved. If this assumption is supported, then the phylogenetic dispersion in a community should mirror the functional dispersion. Here we quantify functional trait dispersion along several key axes of tree life-history variation and on multiple spatial scales in a Neotropical dry-forest community. We next compare these results to previously reported patterns of phylogenetic dispersion in this same forest. We find that, at small spatial scales, coexisting species are typically more functionally clustered than expected, but traits related to adult and regeneration niches are overdispersed. This outcome was repeated when the analyses were stratified by size class. Some of the trait dispersion results stand in contrast to the previously reported phylogenetic dispersion results. In order to address this inconsistency we examined the strength of phylogenetic signal in traits at different depths in the phylogeny. We argue that: (1) while phylogenetic relatedness may be a good general multivariate proxy for ecological similarity, it may have a reduced capacity to depict the functional mechanisms behind species coexistence when coexisting species simultaneously converge and diverge in function; and (2) the previously used metric of phylogenetic signal provided erroneous inferences about trait dispersion when married with patterns of phylogenetic dispersion.
Soliveres, Santiago; Maestre, Fernando T; Bowker, Matthew A; Torices, Rubén; Quero, José L; García-Gómez, Miguel; Cabrera, Omar; Cea, Alex; Coaguila, Daniel; Eldridge, David J; Espinosa, Carlos I; Hemmings, Frank; Monerris, Jorge J; Tighe, Matthew; Delgado-Baquerizo, Manuel; Escolar, Cristina; García-Palacios, Pablo; Gozalo, Beatriz; Ochoa, Victoria; Blones, Julio; Derak, Mchich; Ghiloufi, Wahida; Gutiérrez, Julio R; Hernández, Rosa M; Noumi, Zouhaier
2014-08-20
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of -and interrelationships among- these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants' height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants.
Soliveres, Santiago; Maestre, Fernando T.; Bowker, Matthew A.; Torices, Rubén; Quero, José L.; García-Gómez, Miguel; Cabrera, Omar; Cea, Alex; Coaguila, Daniel; Eldridge, David J.; Espinosa, Carlos I.; Hemmings, Frank; Monerris, Jorge J.; Tighe, Matthew; Delgado-Baquerizo, Manuel; Escolar, Cristina; García-Palacios, Pablo; Gozalo, Beatriz; Ochoa, Victoria; Blones, Julio; Derak, Mchich; Ghiloufi, Wahida; Gutiérrez, Julio R.; Hernández, Rosa M.; Noumi, Zouhaier
2015-01-01
Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of –and interrelationships among– these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modeling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants’ height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: 1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and 2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants. PMID:25914604
Butterfield, Bradley J.; Wood, Troy E.
2015-01-01
Efforts to improve the diversity of seed 18 resources for important restoration species has become a high priority for land managers in many parts of the world. Relationships between functional trait values and the environment from which seed sources are collected can provide important insights into patterns of local adaptation and guidelines for seed transfer. However, little is known about which functional traits exhibit genetic differentiation across populations of restoration species and thus may contribute to local adaptation. Here, we report the results of a common garden experiment aimed at assessing genetic (including ploidy level) and environmental regulation of several functional traits among populations of Bouteloua gracilis, a dominant C4 grass and the most highly utilized restoration species across much of the Colorado Plateau. We found that leaf size and specific leaf area (SLA) varied significantly among populations, and were strongly correlated with the source population environment from which seeds were collected. However, variation in ploidy level had no significant effect on functional traits. Leaves of plants grown from commercial seed releases were significantly larger and had lower SLA than those from natural populations, a result that is concordant with the overall relation between climate and these two functional traits. We suggest that the patterns of functional trait variation shown here may extend to other grass species in the western USA, and may serve as useful proxies for more extensive genecology research. Furthermore, we argue that care should be taken to develop commercial seed lines with functional trait values that match those of natural populations occupying climates similar to target restoration sites.
An experimental analysis of granivory in a desert ecosystem: Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.H.
1987-03-01
Controlled, replicated experiments are revealing the network of interactions that determine structure, dynamics, and energy transfer in a desert community that is functionally interconnected by the consumption of seeds (granivory). This community includes seed-eating rodents, ants, and birds, seed-producing annual and perennial plants, and other kinds of organisms that interact with these. The experiments entail removal of important species or functional groups of granivores or plants and supplementation of seed resources. The results demonstrate a large number of direct and indirect interactions that have important effects on the abundance of species and functional groups, the structure of the community, andmore » the dynamics of energy flow. The results suggest that networks of interaction are structured with sufficient overlap in resource requirements and interconnections through indirect pathways that community- and ecosystem-level processes, such as energy flow, are relatively insensitive to major perturbations in the abundance of particular species or functional groups. This preliminary finding has important implications for understanding the response of ecosystems to natural and human-caused perturbations, for the management of agricultural and other human-modified ecosystems, and for the design of perturbation-resistant networks for acquisition and distribution of human resources such energy and information. 44 refs.« less
Brousseau, Louise; Tinaut, Alexandra; Duret, Caroline; Lang, Tiange; Garnier-Gere, Pauline; Scotti, Ivan
2014-03-27
The Amazonian rainforest is predicted to suffer from ongoing environmental changes. Despite the need to evaluate the impact of such changes on tree genetic diversity, we almost entirely lack genomic resources. In this study, we analysed the transcriptome of four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola michelii) with contrasting ecological features, belonging to four widespread botanical families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene functional annotation and marker discovery. Mismatch identification takes into account single-base quality values as well as the likelihood of false variants as a function of contig depth and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390 (for Eperua falcata) contigs were assembled. Organs varied in the numbers of unigenes they apparently express, with higher number in roots. Patterns of gene expression were similar across species, with metabolism of aromatic compounds standing out as an overrepresented gene function. Transcripts corresponding to several gene functions were found to be over- or underrepresented in each organ. We identified between 4434 (for Symphonia globulifera) and 9076 (for Virola surinamensis) well-supported mismatches. The resulting overall mismatch density was comprised between 0.89 (S. globulifera) and 1.05 (V. surinamensis) mismatches/100 bp in variation-containing contigs. The relative representation of gene functions in the four transcriptomes suggests that secondary metabolism may be particularly important in tropical trees. The differential representation of transcripts among tissues suggests differential gene expression, which opens the way to functional studies in these non-model, ecologically important species. We found substantial amounts of mismatches in the four species. These newly identified putative variants are a first step towards acquiring much needed genomic resources for tropical tree species.
Sipos, J; Hodecek, J; Kuras, T; Dolny, A
2017-08-01
Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.
Identifying functional groups for response to disturbance in an abandoned pasture
NASA Astrophysics Data System (ADS)
Lavorel, Sandra; Touzard, Blaise; Lebreton, Jean-Dominique; Clément, Bernard
1998-06-01
In an abandoned pasture in Brittany, we compared artificial small-scale disturbances to natural disturbances by wild boar and undisturbed vegetation. We developed a multivariate statistical approach which analyses how species biological attributes explain the response of community composition to disturbances. This technique, which reconciles the inductive and deductive approaches for functional classifications, identifies groups of species with similar responses to disturbance and characterizes their biological profiles. After 5 months of recolonization, artificial disturbances had a greater species richness than undisturbed vegetation as a result of recruitment of new species without the exclusion of pre-existing matrix species. Species morphology, described by canopy structure, canopy height and lateral spread, explained a large part (16 %) of community response to disturbance. Regeneration strategies, described by life history, seed mass, dispersal agent, dormancy and the existence of vegetative multiplication, explained a smaller part of community response to disturbance (8 %). Artificial disturbances were characterized by therophyte and compact rosettes with moderately dormant seeds, including a number of Asteraceae and other early successional species. Natural disturbances were colonized by leafy guerrilla species without seed dormancy. Few species were tightly related to undisturbed vegetation and were essentially grasses with a phalanx rosette morphology. The functional classification obtained is consistent with the classification of the community into fugitives, regenerators and persistors. These groups are structured according to Grubb's model for temperate grasslands, with regenerators and persistors in the matrix and fugitives taking advantage of gaps open by small-scale disturbances. The conjunction of functional diversity and species diversity within functional groups is the key to resilience to disturbance, an important ecosystem function.
Darwell, C T; Cook, J M
2017-02-01
A key debate in ecology centres on the relative importance of niche and neutral processes in determining patterns of community assembly with particular focus on whether ecologically similar species with similar functional traits are able to coexist. Meanwhile, molecular studies are increasingly revealing morphologically indistinguishable cryptic species with presumably similar ecological roles. Determining the geographic distribution of such cryptic species provides opportunities to contrast predictions of niche vs. neutral models. Discovery of sympatric cryptic species increases alpha diversity and supports neutral models, while documentation of allopatric/parapatric cryptic species increases beta diversity and supports niche models. We tested these predictions using morphological and molecular data, coupled with environmental niche modelling analyses, of a fig wasp community along its 2700-km latitudinal range. Molecular methods increased previous species diversity estimates from eight to eleven species, revealing morphologically cryptic species in each of the four wasp genera studied. Congeneric species pairs that were differentiated by a key morphological functional trait (ovipositor length) coexisted sympatrically over large areas. In contrast, morphologically similar species, with similar ovipositor lengths, typically showed parapatric ranges with very little overlap. Despite parapatric ranges, environmental niche models of cryptic congeneric pairs indicate large regions of potential sympatry, suggesting that competitive processes are important in determining the distributions of ecologically similar species. Niche processes appear to structure this insect community, and cryptic diversity may typically contribute mostly to beta rather than alpha diversity. © 2016 John Wiley & Sons Ltd.
Contrasting species and functional beta diversity in montane ant assemblages.
Bishop, Tom R; Robertson, Mark P; van Rensburg, Berndt J; Parr, Catherine L
2015-09-01
Beta diversity describes the variation in species composition between sites and can be used to infer why different species occupy different parts of the globe. It can be viewed in a number of ways. First, it can be partitioned into two distinct patterns: turnover and nestedness. Second, it can be investigated from either a species identity or a functional-trait point of view. We aim to document for the first time how these two aspects of beta diversity vary in response to a large environmental gradient. Maloti-Drakensberg Mountains, southern Africa. We sampled ant assemblages along an extensive elevational gradient (900-3000 m a.s.l.) twice yearly for 7 years, and collected functional-trait information related to the species' dietary and habitat-structure preferences. We used recently developed methods to partition species and functional beta diversity into their turnover and nestedness components. A series of null models were used to test whether the observed beta diversity patterns differed from random expectations. Species beta diversity was driven by turnover, but functional beta diversity was composed of both turnover and nestedness patterns at different parts of the gradient. Null models revealed that deterministic processes were likely to be responsible for the species patterns but that the functional changes were indistinguishable from stochasticity. Different ant species are found with increasing elevation, but they tend to represent an increasingly nested subset of the available functional strategies. This finding is unique and narrows down the list of possible factors that control ant existence across elevation. We conclude that diet and habitat preferences have little role in structuring ant assemblages in montane environments and that some other factor must be driving the non-random patterns of species turnover. This finding also highlights the importance of distinguishing between different kinds of beta diversity.
Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye
2016-11-18
Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.
Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye
2016-01-01
Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2011-01-01
Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.
Parent, Christine E; Crespi, Bernard J
2006-11-01
Species richness on island or islandlike systems is a function of colonization, within-island speciation, and extinction. Here we evaluate the relative importance of the first two of these processes as a function of the biogeographical and ecological attributes of islands using the Galápagos endemic land snails of the genus Bulimulus, the most species-rich radiation of these islands. Species in this clade have colonized almost all major islands and are found in five of the six described vegetation zones. We use molecular phylogenetics (based on COI and ITS 1 sequence data) to infer the diversification patterns of extant species of Bulimulus, and multiple regression to investigate the causes of variation among islands in species richness. Maximum-likelihood, Bayesian, and maximum-parsimony analyses yield well-resolved trees with similar topologies. The phylogeny obtained supports the progression rule hypothesis, with species found on older emerged islands connecting at deeper nodes. For all but two island species assemblages we find support for only one or two colonization events, indicating that within-island speciation has an important role in the formation of species on these islands. Even though speciation through colonization is not common, island insularity (distance to nearest major island) is a significant predictor of species richness resulting from interisland colonization alone. However, island insularity has no effect on the overall bulimulid species richness per island. Habitat diversity (measured as plant species diversity), island elevation, and island area, all of which are indirect measures of niche space, are strong predictors of overall bulimulid land snail species richness. Island age is also an important independent predictor of overall species richness, with older islands harboring more species than younger islands. Taken together, our results demonstrate that the diversification of Galápagos bulimulid land snails has been driven by a combination of geographic factors (island age, size, and location), which affect colonization patterns, and ecological factors, such as plant species diversity, that foster within-island speciation.
Gossner, Martin M.; Grass, Ingo; Arnstadt, Tobias; Hofrichter, Martin; Floren, Andreas; Linsenmair, Karl Eduard; Weisser, Wolfgang W.; Steffan-Dewenter, Ingolf
2017-01-01
The specialization of ecological networks provides important insights into possible consequences of biodiversity loss for ecosystem functioning. However, mostly mutualistic and antagonistic interactions of living organisms have been studied, whereas detritivore networks and their successional changes are largely unexplored. We studied the interactions of saproxylic (deadwood-dependent) beetles with their dead host trees. In a large-scale experiment, 764 logs of 13 tree species were exposed to analyse network structure of three trophic groups of saproxylic beetles over 3 successional years. We found remarkably high specialization of deadwood-feeding xylophages and lower specialization of fungivorous and predatory species. During deadwood succession, community composition, network specialization and network robustness changed differently for the functional groups. To reveal potential drivers of network specialization, we linked species' functional traits to their network roles, and tested for trait matching between plant (i.e. chemical compounds) and beetle (i.e. body size) traits. We found that both plant and animal traits are major drivers of species specialization, and that trait matching can be more important in explaining interactions than neutral processes reflecting species abundance distributions. High network specialization in the early successional stage and decreasing network robustness during succession indicate vulnerability of detritivore networks to reduced tree species diversity and beetle extinctions, with unknown consequences for wood decomposition and nutrient cycling. PMID:28469020
Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H C
2015-08-18
In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation.
Pan, Xu; Song, Yao-Bin; Liu, Guo-Fang; Hu, Yu-Kun; Ye, Xue-Hua; Cornwell, William K.; Prinzing, Andreas; Dong, Ming; Cornelissen, Johannes H.C.
2015-01-01
In arid zones, strong solar radiation has important consequences for ecosystem processes. To better understand carbon and nutrient dynamics, it is important to know the contribution of solar radiation to leaf litter decomposition of different arid-zone species. Here we investigated: (1) whether such contribution varies among plant species at given irradiance regime, (2) whether interspecific variation in such contribution correlates with interspecific variation in the decomposition rate under shade; and (3) whether this correlation can be explained by leaf traits. We conducted a factorial experiment to determine the effects of solar radiation and environmental moisture for the mass loss and the decomposition constant k-values of 13 species litters collected in Northern China. The contribution of solar radiation to leaf litter decomposition varied significantly among species. Solar radiation accelerated decomposition in particular in the species that already decompose quickly under shade. Functional traits, notably specific leaf area, might predict the interspecific variation in that contribution. Our results provide the first empirical evidence for how the effect of solar radiation on decomposition varies among multiple species. Thus, the effect of solar radiation on the carbon flux between biosphere and atmosphere may depend on the species composition of the vegetation. PMID:26282711
Parkinson, John E; Baumgarten, Sebastian; Michell, Craig T; Baums, Iliana B; LaJeunesse, Todd C; Voolstra, Christian R
2016-02-11
Reef-building corals depend on symbiotic mutualisms with photosynthetic dinoflagellates in the genus Symbiodinium. This large microalgal group comprises many highly divergent lineages ("Clades A-I") and hundreds of undescribed species. Given their ecological importance, efforts have turned to genomic approaches to characterize the functional ecology of Symbiodinium. To date, investigators have only compared gene expression between representatives from separate clades-the equivalent of contrasting genera or families in other dinoflagellate groups-making it impossible to distinguish between clade-level and species-level functional differences. Here, we examined the transcriptomes of four species within one Symbiodinium clade (Clade B) at ∼20,000 orthologous genes, as well as multiple isoclonal cell lines within species (i.e., cultured strains). These species span two major adaptive radiations within Clade B, each encompassing both host-specialized and ecologically cryptic taxa. Species-specific expression differences were consistently enriched for photosynthesis-related genes, likely reflecting selection pressures driving niche diversification. Transcriptional variation among strains involved fatty acid metabolism and biosynthesis pathways. Such differences among individuals are potentially a major source of physiological variation, contributing to the functional diversity of coral holobionts composed of unique host-symbiont genotype pairings. Our findings expand the genomic resources available for this important symbiont group and emphasize the power of comparative transcriptomics as a method for studying speciation processes and interindividual variation in nonmodel organisms. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D
2017-08-01
Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with degree of soil disturbance. There were moderately divergent responses to disturbance between functional feeding groups. Disturbance was most strongly correlated with compositional differences of herbivores within beetles and nematodes and humus feeders within termites. Our results suggest that consideration of the impact of different forms of disturbance on species and functional composition, rather than on net numbers of species, is important when assessing the impacts of disturbance on biodiversity. © 2016 Society for Conservation Biology.
Alpha-synuclein: relating metals to structure, function and inhibition.
McDowall, J S; Brown, D R
2016-04-01
Alpha-synuclein has long been studied due to its involvement in the progression of Parkinson's disease (PD), a common neurodegenerative disorder, although a consensus on the exact function of this protein is elusive. This protein shows remarkable structural plasticity and this property is important for both correct cellular function and pathological progression of PD. Formation of intracellular oligomeric species within the substantia nigra correlates with disease progression and it has been proposed that formation of a partially folded intermediate is key to the initiation of the fibrillisation process. Many factors can influence changes in the structure of alpha-synuclein such as disease mutations and interaction with metals and neurotransmitters. High concentrations of both dopamine and metals are present in the substantia nigra making this an ideal location for both the structural alteration of alpha-synuclein and the production of toxic oxygen species. The recent proposal that alpha-synuclein is a ferrireductase is important as it can possibly catalyse the formation of such reactive species and as a result exacerbate neurodegeneration.
7 CFR 625.16 - Violations and remedies.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Violations and remedies. 625.16 Section 625.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... necessary to protect important listed species, candidate species, and forest ecosystem functions and values...
7 CFR 625.16 - Violations and remedies.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Violations and remedies. 625.16 Section 625.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... necessary to protect important listed species, candidate species, and forest ecosystem functions and values...
7 CFR 625.16 - Violations and remedies.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Violations and remedies. 625.16 Section 625.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... necessary to protect important listed species, candidate species, and forest ecosystem functions and values...
Plant diversity and plant identity influence Fusarium communities in soil
USDA-ARS?s Scientific Manuscript database
Fusarium communities play important functional roles in soil and in-planta as pathogens, endophytes, and saprotrophs. This study tests how rhizosphere Fusarium communities may vary according to plant species, differences in species richness of the surrounding plant community, and soil physiochemical...
Plant functional traits predict green roof ecosystem services.
Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke
2015-02-17
Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.
Ludwig, A; Belfiore, N M; Pitra, C; Svirsky, V; Jenneckens, I
2001-07-01
Sturgeon (order Acipenserformes) provide an ideal taxonomic context for examination of genome duplication events. Multiple levels of ploidy exist among these fish. In a novel microsatellite approach, data from 962 fish from 20 sturgeon species were used for analysis of ploidy in sturgeon. Allele numbers in a sample of individuals were assessed at six microsatellite loci. Species with approximately 120 chromosomes are classified as functional diploid species, species with approximately 250 chromosomes as functional tetraploid species, and with approximately 500 chromosomes as functional octaploids. A molecular phylogeny of the sturgeon was determined on the basis of sequences of the entire mitochondrial cytochrome b gene. By mapping the estimated levels of ploidy on this proposed phylogeny we demonstrate that (I) polyploidization events independently occurred in the acipenseriform radiation; (II) the process of functional genome reduction is nearly finished in species with approximately 120 chromosomes and more active in species with approximately 250 chromosomes and approximately 500 chromosomes; and (III) species with approximately 250 and approximately 500 chromosomes arose more recently than those with approximately 120 chromosomes. These results suggest that gene silencing, chromosomal rearrangements, and transposition events played an important role in the acipenseriform genome formation. Furthermore, this phylogeny is broadly consistent with previous hypotheses but reveals a highly supported oceanic (Atlantic-Pacific) subdivision within the Acipenser/Huso complex.
Ludwig, A; Belfiore, N M; Pitra, C; Svirsky, V; Jenneckens, I
2001-01-01
Sturgeon (order Acipenserformes) provide an ideal taxonomic context for examination of genome duplication events. Multiple levels of ploidy exist among these fish. In a novel microsatellite approach, data from 962 fish from 20 sturgeon species were used for analysis of ploidy in sturgeon. Allele numbers in a sample of individuals were assessed at six microsatellite loci. Species with approximately 120 chromosomes are classified as functional diploid species, species with approximately 250 chromosomes as functional tetraploid species, and with approximately 500 chromosomes as functional octaploids. A molecular phylogeny of the sturgeon was determined on the basis of sequences of the entire mitochondrial cytochrome b gene. By mapping the estimated levels of ploidy on this proposed phylogeny we demonstrate that (I) polyploidization events independently occurred in the acipenseriform radiation; (II) the process of functional genome reduction is nearly finished in species with approximately 120 chromosomes and more active in species with approximately 250 chromosomes and approximately 500 chromosomes; and (III) species with approximately 250 and approximately 500 chromosomes arose more recently than those with approximately 120 chromosomes. These results suggest that gene silencing, chromosomal rearrangements, and transposition events played an important role in the acipenseriform genome formation. Furthermore, this phylogeny is broadly consistent with previous hypotheses but reveals a highly supported oceanic (Atlantic-Pacific) subdivision within the Acipenser/Huso complex. PMID:11454768
Plant functional traits and diversity in sand dune ecosystems across different biogeographic regions
NASA Astrophysics Data System (ADS)
Mahdavi, P.; Bergmeier, E.
2016-07-01
Plant species of a functional group respond similarly to environmental pressures and may be expected to act similarly on ecosystem processes and habitat properties. However, feasibility and applicability of functional groups in ecosystems across very different climatic regions have not yet been studied. In our approach we specified the functional groups in sand dune ecosystems of the Mediterranean, Hyrcanian and Irano-Turanian phytogeographic regions. We examined whether functional groups are more influenced by region or rather by habitat characteristics, and identified trait syndromes associated with common habitat types in sand dunes (mobile dunes, stabilized dunes, salt marshes, semi-wet sands, disturbed habitats). A database of 14 traits, 309 species and 314 relevés was examined and trait-species, trait-plot and species-plot matrices were built. Cluster analysis revealed similar plant functional groups in sand dune ecosystems across regions of very different species composition and climate. Specifically, our study showed that plant traits in sand dune ecosystems are grouped reflecting habitat affiliation rather than region and species pool. Environmental factors and constraints such as sand mobility, soil salinity, water availability, nutrient status and disturbance are more important for the occurrence and distribution of plant functional groups than regional belonging. Each habitat is shown to be equipped with specific functional groups and can be described by specific sets of traits. In restoration ecology the completeness of functional groups and traits in a site may serve as a guideline for maintaining or restoring the habitat.
Ronald E. Masters
2007-01-01
Shortleaf pine, by virtue of its wide distribution and occurrence in many forest types in eastern North America, is an important species that provides high habitat value for many wildlife species. Shortleaf pine functions as a structural habitat element in both mixed oak-pine forests and in pine-grassland woodlands. It also adds diversity throughout all stages of plant...
Krashevska, Valentyna; Klarner, Bernhard; Widyastuti, Rahayu; Maraun, Mark; Scheu, Stefan
2016-01-01
Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs.
Influence of predator density on nonindependent effects of multiple predator species.
Griffen, Blaine D; Williamson, Tucker
2008-02-01
Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.
Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains
NASA Astrophysics Data System (ADS)
Tuanmu, Mao-Ning; Viña, Andrés; Winkler, Julie A.; Li, Yu; Xu, Weihua; Ouyang, Zhiyun; Liu, Jianguo
2013-03-01
Climate change is threatening global ecosystems through its impact on the survival of individual species and their ecological functions. Despite the important role of understorey plants in forest ecosystems, climate impact assessments on understorey plants and their role in supporting wildlife habitat are scarce in the literature. Here we assess climate-change impacts on understorey bamboo species with an emphasis on their ecological function as a food resource for endangered giant pandas (Ailuropoda melanoleuca). An ensemble of bamboo distribution projections associated with multiple climate-change projections and bamboo dispersal scenarios indicates a substantial reduction in the distributional ranges of three dominant bamboo species in the Qinling Mountains, China during the twenty-first century. As these three species comprise almost the entire diet of the panda population in the region, the projected changes in bamboo distribution suggest a potential shortage of food for this population, unless alternative food sources become available. Although the projections were developed under unavoidable simplifying assumptions and uncertainties, they indicate potential challenges for panda conservation and underscore the importance of incorporating interspecific interactions into climate-change impact assessments and associated conservation planning.
da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina
2015-01-01
Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution and functional organization of Scarabaeinae beetles. We conclude that functional diversity may be used as a complementary approach to traditional measures, and that community deconstruction allows sufficient disentangling of responses of different trait-based groups. PMID:25822150
Functional roles affect diversity-succession relationships for boreal beetles.
Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim
2013-01-01
Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.
Contrasting Ecosystem-Effects of Morphologically Similar Copepods
Matthews, Blake; Hausch, Stephen; Winter, Christian; Suttle, Curtis A.; Shurin, Jonathan B.
2011-01-01
Organisms alter the biotic and abiotic conditions of ecosystems. They can modulate the availability of resources to other species (ecosystem engineering) and shape selection pressures on other organisms (niche construction). Very little is known about how the engineering effects of organisms vary among and within species, and, as a result, the ecosystem consequences of species diversification and phenotypic evolution are poorly understood. Here, using a common gardening experiment, we test whether morphologically similar species and populations of Diaptomidae copepods (Leptodiaptomus ashlandi, Hesperodiaptomus franciscanus, Skistodiaptomus oregonensis) have similar or different effects on the structure and function of freshwater ecosystems. We found that copepod species had contrasting effects on algal biomass, ammonium concentrations, and sedimentation rates, and that copepod populations had contrasting effects on prokaryote abundance, sedimentation rates, and gross primary productivity. The average size of ecosystem-effect contrasts between species was similar to those between populations, and was comparable to those between fish species and populations measured in previous common gardening experiments. Our results suggest that subtle morphological variation among and within species can cause multifarious and divergent ecosystem-effects. We conclude that using morphological trait variation to assess the functional similarity of organisms may underestimate the importance of species and population diversity for ecosystem functioning. PMID:22140432
Frank, Hannah K; Frishkoff, Luke O; Mendenhall, Chase D; Daily, Gretchen C; Hadly, Elizabeth A
2017-08-01
If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.
Clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint?
Krabbenhoft, Trevor J; Turner, Thomas F
2014-01-01
Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change.
Zhang, Yong; Prins, Herbert H. T.; Versluijs, Martijn; Wessels, Rick; Cao, Lei; de Boer, Willem Frederik
2016-01-01
When differently sized species feed on the same resources, interference competition may occur, which may negatively affect their food intake rate. It is expected that competition between species also alters behaviour and feeding patch selection. To assess these changes in behaviour and patch selection, we applied an experimental approach using captive birds of three differently sized Anatidae species: wigeon (Anas penelope) (~600 g), swan goose (Anser cygnoides) (~2700 g) and bean goose (Anser fabalis) (~3200 g). We quantified the functional response for each species and then recorded their behaviour and patch selection with and without potential competitors, using different species combinations. Our results showed that all three species acquired the highest nitrogen intake at relatively tall swards (6, 9 cm) when foraging in single species flocks in the functional response experiment. Goose species were offered foraging patches differing in sward height with and without competitors, and we tested for the effect of competition on foraging behaviour. The mean percentage of time spent feeding and being vigilant did not change under competition for all species. However, all species utilized strategies that increased their peck rate on patches across different sward heights, resulting in the same instantaneous and nitrogen intake rate. Our results suggest that variation in peck rate over different swards height permits Anatidae herbivores to compensate for the loss of intake under competition, illustrating the importance of behavioural plasticity in heterogeneous environments when competing with other species for resources. PMID:27727315
Farré-Armengol, Gerard; Filella, Iolanda; Llusià, Joan; Peñuelas, Josep
2017-07-13
β-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory. The ubiquity and high relative abundance of β-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers. We compiled abundant evidence from published studies that supports β-ocimene as a generalist attractant of a wide spectrum of pollinators. We found no studies testing behavioural responses of pollinators to β-ocimene, that could directly demonstrate or deny the function of β-ocimene in pollinator attraction; but several case studies support that the emissions of β-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction. Furthermore, important β-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. We thus conclude that β-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission. Experimental behavioural studies on pure β-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here.
Quantitative metabolite profiling of edible onion species by NMR and HPLC-MS.
Soininen, Tuula H; Jukarainen, Niko; Auriola, Seppo O K; Julkunen-Tiitto, Riitta; Karjalainen, Reijo; Vepsäläinen, Jouko J
2014-12-15
Allium genus is a treasure trove of valuable bioactive compounds with potentially therapeutically important properties. This work utilises HPLC-MS and a constrained total-line-shape (CTLS) approach applied to (1)H NMR spectra to quantify metabolites present in onion species to reveal important inter-species differences. Extensive differences were detected between the sugar concentrations in onion species. Yellow onion contained the highest and red onion the lowest amounts of amino acids. The main flavonol-glucosides were quercetin 3,4'-diglucoside and quercetin 4'-glucoside. In general, the levels of flavonols were, higher in yellow onions than in red onions, and garlic and leek contained a lower amount of flavonols than the other Allium species. Our results highlight how (1)H NMR together with HPLC-MS can be useful in the quantification and the identification of the most abundant metabolites, representing an efficient means to pinpoint important functional food ingredients from Allium species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Impact of spatial organization on a novel auxotrophic interaction among soil microbes.
Jiang, Xue; Zerfaß, Christian; Feng, Song; Eichmann, Ruth; Asally, Munehiro; Schäfer, Patrick; Soyer, Orkun S
2018-06-01
A key prerequisite to achieve a deeper understanding of microbial communities and to engineer synthetic ones is to identify the individual metabolic interactions among key species and how these interactions are affected by different environmental factors. Deciphering the physiological basis of species-species and species-environment interactions in spatially organized environments requires reductionist approaches using ecologically and functionally relevant species. To this end, we focus here on a defined system to study the metabolic interactions in a spatial context among the plant-beneficial endophytic fungus Serendipita indica, and the soil-dwelling model bacterium Bacillus subtilis. Focusing on the growth dynamics of S. indica under defined conditions, we identified an auxotrophy in this organism for thiamine, which is a key co-factor for essential reactions in the central carbon metabolism. We found that S. indica growth is restored in thiamine-free media, when co-cultured with B. subtilis. The success of this auxotrophic interaction, however, was dependent on the spatial and temporal organization of the system; the beneficial impact of B. subtilis was only visible when its inoculation was separated from that of S. indica either in time or space. These findings describe a key auxotrophic interaction in the soil among organisms that are shown to be important for plant ecosystem functioning, and point to the potential importance of spatial and temporal organization for the success of auxotrophic interactions. These points can be particularly important for engineering of minimal functional synthetic communities as plant seed treatments and for vertical farming under defined conditions.
Effects of loss of lateral hydrological connectivity on fish functional diversity.
Liu, Xueqin; Wang, Hongzhu
2018-05-26
Loss of lateral hydrological connectivity (LHC) is a major cause of biodiversity decline in river floodplains, yet little is known about its effects on aquatic functional diversity in these ecosystems. We quantified functional alpha and beta diversity of fish assemblages in Yangtze River floodplain lakes, and explored their responses to loss of LHC using generalized linear mixed models. Functional richness was much lower in river disconnected lakes where functional evenness and divergence were higher. LHC was the most important factor shaping fish diversity patterns in this region. The predicted reduction due to loss of LHC was higher in functional richness (0.47-0.82) than in taxonomic richness (0.32) of all species assemblages in contrast to non-migratory species assemblages. It seemed that functional strategies were highly unevenly distributed between migratory and non-migratory fishes in the floodplain. Taxonomic beta diversity was much higher than functional beta diversity. The former was contributed mainly by spatial turnover component (73.6-83.8%) suggesting that dissimilarity among fish assemblages was largely induced by species replacement, while the latter was induced by nestedness-resultant component (70.7-86.0%) indicating a stronger role of function loss without replacement. Both taxonomic and functional beta diversity were higher in disconnected lakes, where they were significantly correlated with fishing activity and water quality. Our study determined for the first time the effects of loss of LHC on fish functional diversity in large river floodplains. We highlight the serious decline of fish functional richness in a large floodplain, and functional diversity remained highly vulnerable to loss of LHC even in such a species rich ecosystem. Our results provide important implications regarding biodiversity conservation and LHC restoration in large river floodplains. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
More than just orphans: are taxonomically-restricted genes important in evolution?
Khalturin, Konstantin; Hemmrich, Georg; Fraune, Sebastian; Augustin, René; Bosch, Thomas C G
2009-09-01
Comparative genome analyses indicate that every taxonomic group so far studied contains 10-20% of genes that lack recognizable homologs in other species. Do such 'orphan' or 'taxonomically-restricted' genes comprise spurious, non-functional ORFs, or does their presence reflect important evolutionary processes? Recent studies in basal metazoans such as Nematostella, Acropora and Hydra have shed light on the function of these genes, and now indicate that they are involved in important species-specific adaptive processes. Here we focus on evidence from Hydra suggesting that taxonomically-restricted genes play a role in the creation of phylum-specific novelties such as cnidocytes, in the generation of morphological diversity, and in the innate defence system. We propose that taxon-specific genes drive morphological specification, enabling organisms to adapt to changing conditions.
Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages
Aguirre, Luis F.; Montaño-Centellas, Flavia A.; Gavilanez, M. Mercedes; Stevens, Richard D.
2016-01-01
Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems. PMID:27384441
Taxonomic and Phylogenetic Determinants of Functional Composition of Bolivian Bat Assemblages.
Aguirre, Luis F; Montaño-Centellas, Flavia A; Gavilanez, M Mercedes; Stevens, Richard D
2016-01-01
Understanding diversity patterns and the potential mechanisms driving them is a fundamental goal in ecology. Examination of different dimensions of biodiversity can provide insights into the relative importance of different processes acting upon biotas to shape communities. Unfortunately, patterns of diversity are still poorly understood in hyper-diverse tropical countries. Here, we assess spatial variation of taxonomic, functional and phylogenetic diversity of bat assemblages in one of the least studied Neotropical countries, Bolivia, and determine whether changes in biodiversity are explained by the replacement of species or functional groups, or by differences in richness (i.e., gain or loss of species or functional groups). Further, we evaluate the contribution of phylogenetic and taxonomic changes in the resulting patterns of functional diversity of bats. Using well-sampled assemblages from published studies we examine noctilionoid bats at ten study sites across five ecoregions in Bolivia. Bat assemblages differed from each other in all dimensions of biodiversity considered; however, diversity patterns for each dimension were likely structured by different mechanisms. Within ecoregions, differences were largely explained by species richness, suggesting that the gain or loss of species or functional groups (as opposed to replacement) was driving dissimilarity patterns. Overall, our results suggest that whereas evolutionary processes (i.e., historical connection and dispersal routes across Bolivia) create a template of diversity patterns across the country, ecological mechanisms modify these templates, decoupling the observed patterns of functional, taxonomic and phylogenetic diversity in Bolivian bats. Our results suggests that elevation represents an important source of variability among diversity patterns for each dimension of diversity considered. Further, we found that neither phylogenetic nor taxonomic diversity can fully account for patterns of functional diversity, highlighting the need for examining different dimensions of biodiversity of bats in hyperdiverse ecosystems.
Wragg, Peter D; Johnson, Steven D
2011-09-01
Transitions from wind pollination to insect pollination were pivotal to the radiation of land plants, yet only a handful are known and the trait shifts required are poorly understood. We tested the hypothesis that a transition to insect pollination took place in the ancestrally wind-pollinated sedges (Cyperaceae) and that floral traits modified during this transition have functional significance. We paired putatively insect-pollinated Cyperus obtusiflorus and Cyperus sphaerocephalus with related, co-flowering, co-occurring wind-pollinated species, and compared pairs in terms of pollination mode and functional roles of floral traits. Experimentally excluding insects reduced seed set by 56-89% in putatively insect-pollinated species but not in intermingled wind-pollinated species. The pollen of putatively insect-pollinated species was less motile in a wind tunnel than that of wind-pollinated species. Bees, beetles and flies preferred inflorescences, and color-matched white or yellow models, of putatively insect-pollinated species over inflorescences, or color-matched brown models, of wind-pollinated species. Floral scents of putatively insect-pollinated species were chemically consistent with those of other insect-pollinated plants, and attracted pollinators; wind-pollinated species were unscented. These results show that a transition from wind pollination to insect pollination occurred in sedges and shed new light on the function of traits involved in this important transition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Wiryani, Erry; Murningsih; Jumari
2018-05-01
One important factor affecting sustainability of spring is composition of vegetation around it. “Sendang Kalimah Toyyibah” is one of many springs in Semarang with intensive utilization. Vulnerability of spring can be monitored by dominant vegetation species indicated by vegetation importance value indices, especially for tree. This research aimed to study the variation of tree species around “Sendang Kalimah Toyyibah”, to analyze the importance value index of tree species and to analyze the implication of tree species which had dominant importance value index on “Sendang Kalimah Toyyibah” spring. Data collection was conducted via line transect with the length of 200 m on 4 directions which were defined based on the stream direction and the spring as the central point. Each transect has 4 observation plots occupying 20 x 20 m2. Data collection was including tree species, abundance, presence frequency and basal area of tree. Data analysis was conducted for vegetation importance value index. The result showed that around “Sendang Kalimah Toyyibah” there were 28 tree species inwhich the abundance was dominated by Mahogany (33 individuals stands), Albizia (31 stands), Coffee (20 stands), Coconut (18 stands), Mangosteen (16 stands) and Banana (16 stands). Vegetation importance value index around “Sendang Kalimah Toyyibah” was dominated by the above 7 treeswith important values (IV) respectively species including Mahogany (28,97%), Albizia (26,70%), Mangosteen (23,47%), Java Black Bamboo (22,18%), Coffee (19,23%), Coconut (17,98%) and Durian (16,41%). Cumulatively, these 7 treesspecieses dominated the importance value of tree around “Sendang Kalimah Toyyibah” which was 154,95%. These dominant species had represented the ecosystem function in infiltration, filtration and absorption of water which were required for spring ecosystem sustainability.
Pescador, David S.; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m–2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes. PMID:25774532
Pescador, David S; de Bello, Francesco; Valladares, Fernando; Escudero, Adrián
2015-01-01
Assessing changes in plant functional traits along gradients is useful for understanding the assembly of communities and their response to global and local environmental drivers. However, these changes may reflect the effects of species composition (i.e. composition turnover), species abundance (i.e. species interaction), and intra-specific trait variability (i.e. species plasticity). In order to determine the relevance of the latter, trait variation can be assessed under minimal effects of composition turnover. Nine sampling sites were established along an altitudinal gradient in a Mediterranean high mountain grassland community with low composition turnover (Madrid, Spain; 1940 m-2419 m). Nine functional traits were also measured for ten individuals of around ten plant species at each site, for a total of eleven species across all sites. The relative importance of different sources of variability (within/between site and intra-/inter-specific functional diversity) and trait variation at species and community level along the considered gradients were explored. We found a weak individual species response to altitude and other environmental variables although in some cases, individuals were smaller and leaves were thicker at higher elevations. This lack of species response was most likely due to greater within- than between-site species variation. At the community level, inter-specific functional diversity was generally greater than the intra-specific component except for traits linked to leaf element content (leaf carbon content, leaf nitrogen content, δ13C and δ15N). Inter-specific functional diversity decreased with lower altitude for four leaf traits (specific leaf area, leaf dry matter content, δ13C and δ15N), suggesting trait convergence between species at lower elevations, where water shortage may have a stronger environmental filtering effect than colder temperatures at higher altitudes. Our results suggest that, within a vegetation type encompassing various environmental gradients, both, changes in species abundance and intra-specific trait variability adjust for the community functional response to environmental changes.
NASA Astrophysics Data System (ADS)
Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.
2016-01-01
Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.
Performance of dryland and wetland plant species on extensive green roofs.
MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T
2011-04-01
Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can influence green roof functions.
Performance of dryland and wetland plant species on extensive green roofs
MacIvor, J. Scott; Ranalli, Melissa A.; Lundholm, Jeremy T.
2011-01-01
Background and Aims Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Methods Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Key Results Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Conclusions Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can influence green roof functions. PMID:21292676
Jiang, Mingxi; Deng, Hongbing; Cai, Qinghua
2002-11-01
Due to the importance of riparian zone in maintaining and protecting regional biodiversity, more and more ecologists paid their attentions to riparian zone, and had been aware of the important effects of riparian zone in basic study and practical management. In this study, forty sampling belts (10 m x 100 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia area were selected to investigate the riparian vegetation and rare plants. Fourteen species of rare plants were found in riparian zone, accounting for 42.4% of total rare plant species in Shennongjia area. The main distribution range of the fourteen rare plant species was the mixed evergreen and deciduous broadleaved forest at elevation of 1200-1800 m, where species diversity of plant community was the maximum at the moderate elevation. Fourteen rare plant species could be divided into three groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation group. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out the important function of riparian zone on rare plant species protection.
Castillo, Jessica A; Epps, Clinton W; Jeffress, Mackenzie R; Ray, Chris; Rodhouse, Thomas J; Schwalm, Donelle
2016-09-01
Landscape connectivity is essential for maintaining viable populations, particularly for species restricted to fragmented habitats or naturally arrayed in metapopulations and facing rapid climate change. The importance of assessing both structural connectivity (physical distribution of favorable habitat patches) and functional connectivity (how species move among habitat patches) for managing such species is well understood. However, the degree to which functional connectivity for a species varies among landscapes, and the resulting implications for conservation, have rarely been assessed. We used a landscape genetics approach to evaluate resistance to gene flow and, thus, to determine how landscape and climate-related variables influence gene flow for American pikas (Ochotona princeps) in eight federally managed sites in the western United States. We used empirically derived, individual-based landscape resistance models in conjunction with predictive occupancy models to generate patch-based network models describing functional landscape connectivity. Metareplication across landscapes enabled identification of limiting factors for dispersal that would not otherwise have been apparent. Despite the cool microclimates characteristic of pika habitat, south-facing aspects consistently represented higher resistance to movement, supporting the previous hypothesis that exposure to relatively high temperatures may limit dispersal in American pikas. We found that other barriers to dispersal included areas with a high degree of topographic relief, such as cliffs and ravines, as well as streams and distances greater than 1-4 km depending on the site. Using the empirically derived network models of habitat patch connectivity, we identified habitat patches that were likely disproportionately important for maintaining functional connectivity, areas in which habitat appeared fragmented, and locations that could be targeted for management actions to improve functional connectivity. We concluded that climate change, besides influencing patch occupancy as predicted by other studies, may alter landscape resistance for pikas, thereby influencing functional connectivity through multiple pathways simultaneously. Spatial autocorrelation among genotypes varied across study sites and was largest where habitat was most dispersed, suggesting that dispersal distances increased with habitat fragmentation, up to a point. This study demonstrates how landscape features linked to climate can affect functional connectivity for species with naturally fragmented distributions, and reinforces the importance of replicating studies across landscapes. © 2016 by the Ecological Society of America.
Yamaura, Yuichi; Royle, J. Andrew; Kuboi, Kouji; Tada, Tsuneo; Ikeno, Susumu; Makino, Shun'ichi
2011-01-01
1. In large-scale field surveys, a binary recording of each species' detection or nondetection has been increasingly adopted for its simplicity and low cost. Because of the importance of abundance in many studies, it is desirable to obtain inferences about abundance at species-, functional group-, and community-levels from such binary data. 2. We developed a novel hierarchical multi-species abundance model based on species-level detection/nondetection data. The model accounts for the existence of undetected species, and variability in abundance and detectability among species. Species-level detection/nondetection is linked to species- level abundance via a detection model that accommodates the expectation that probability of detection (at least one individuals is detected) increases with local abundance of the species. We applied this model to a 9-year dataset composed of the detection/nondetection of forest birds, at a single post-fire site (from 7 to 15 years after fire) in a montane area of central Japan. The model allocated undetected species into one of the predefined functional groups by assuming a prior distribution on individual group membership. 3. The results suggest that 15–20 species were missed in each year, and that species richness of communities and functional groups did not change with post-fire forest succession. Overall abundance of birds and abundance of functional groups tended to increase over time, although only in the winter, while decreases in detectabilities were observed in several species. 4. Synthesis and applications. Understanding and prediction of large-scale biodiversity dynamics partly hinge on how we can use data effectively. Our hierarchical model for detection/nondetection data estimates abundance in space/time at species-, functional group-, and community-levels while accounting for undetected individuals and species. It also permits comparison of multiple communities by many types of abundance-based diversity and similarity measures under imperfect detection.
Incubation period and immune function: A comparative field study among coexisting birds
Palacios, M.G.; Martin, T.E.
2006-01-01
Developmental periods are integral components of life history strategies that can have important fitness consequences and vary enormously among organisms. However, the selection pressures and mechanisms causing variation in length of developmental periods are poorly understood. Particularly puzzling are prolonged developmental periods, because their selective advantage is unclear. Here we tested the hypotheses that immune function is stronger in species that are attacked at a higher rate by parasites and that prolonged embryonic development allows the development of this stronger immune system. Through a comparative field study among 12 coexisting passerine bird species, we show that species with higher blood parasite prevalence mounted stronger cellular immune responses than species with lower prevalence. These results provide support for the hypothesis that species facing greater selection pressure from parasites invest more in immune function. However, species with longer incubation periods mounted weaker cellular immune responses than species with shorter periods. Therefore, cellular immune responses do not support the hypothesis that longer development time enhances immunocompentence. Future studies should assess other components of the immune system and test alternative causes of variation in incubation periods among bird species. ?? Springer-Verlag 2005.
Functional requirements driving the gene duplication in 12 Drosophila species.
Zhong, Yan; Jia, Yanxiao; Gao, Yang; Tian, Dacheng; Yang, Sihai; Zhang, Xiaohui
2013-08-15
Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.
Chai, Yongfu; Yue, Ming; Wang, Mao; Xu, Jinshi; Liu, Xiao; Zhang, Ruichang; Wan, Pengcheng
2016-03-01
In forest succession, the ecological strategies of the dominant species that are based on functional traits are important in the determination of both the mechanisms and the potential directions of succession. Thirty-one plots were established in the Loess Plateau region of northern Shaanxi in China. Fifteen leaf traits were measured for the 31 dominant species that represented the six stages of succession, and the traits included four that were related to morphology, seven to stoichiometry and four to physiological ecology. The species from the different successional stages had different patterns of distribution of the traits, and different key traits predicted the turnover of the species during succession. The ash and the cellulose contents were key regulatory factors of species turnover in the early successional communities, and the trait niche forces in sugar and leaf dry mass content might become more important with the progression of succession. When only the three herb stages were considered, a progressive replacement of the ruderal by the competitive-ruderal species occurred in the intermediate stages of succession, which was followed by the stress-tolerant-competitive or the competitive-stress tolerant-ruderal strategists late in the succession. Thus, the different species that occurred in the different stages of succession shared different trait-based ecological strategies. Additionally, these differences occurred concomitantly with a shift toward competitive-stress tolerant-ruderal strategies.
Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo
2017-01-01
Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.
Remigi, P.; Faye, A.; Kane, A.; Deruaz, M.; Thioulouse, J.; Cissoko, M.; Prin, Y.; Galiana, A.; Dreyfus, B.; Duponnois, R.
2008-01-01
The response of microbial functional diversity as well as its resistance to stress or disturbances caused by the introduction of an exotic tree species, Acacia holosericea, ectomycorrhized or not with Pisolithus albus, was examined. The results show that this ectomycorrhizal fungus promotes drastically the growth of this fast-growing tree species in field conditions after 7 years of plantation. Compared to the crop soil surrounding the A. holosericea plantation, this exotic tree species, associated or not with the ectomycorrhizal symbiont, induced strong modifications in soil microbial functionalities (assessed by measuring the patterns of in situ catabolic potential of microbial communities) and reduced soil resistance in response to increasing stress or disturbance (salinity, temperature, and freeze-thaw and wet-dry cycles). In addition, A. holosericea strongly modified the structure of arbuscular mycorrhizal fungus communities. These results show clearly that exotic plants may be responsible for important changes in soil microbiota affecting the structure and functions of microbial communities. PMID:18203858
Biodiversity and ecosystem functioning in dynamic landscapes
Brose, Ulrich; Hillebrand, Helmut
2016-01-01
The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships in dynamic communities of real-world landscapes. PMID:27114570
Gonçalves, Fernando; Bovendorp, Ricardo S; Beca, Gabrielle; Bello, Carolina; Costa-Pereira, Raul; Muylaert, Renata L; Rodarte, Raisa R; Villar, Nacho; Souza, Rafael; Graipel, Maurício E; Cherem, Jorge J; Faria, Deborah; Baumgarten, Julio; Alvarez, Martín R; Vieira, Emerson M; Cáceres, Nilton; Pardini, Renata; Leite, Yuri L R; Costa, Leonora P; Mello, Marco A R; Fischer, Erich; Passos, Fernando C; Varzinczak, Luiz H; Prevedello, Jayme A; Cruz-Neto, Ariovaldo P; Carvalho, Fernando; Percequillo, Alexandre R; Paviolo, Agustin; Nava, Alessandra; Duarte, José M B; de la Sancha, Noé U; Bernard, Enrico; Morato, Ronaldo G; Ribeiro, Juliana F; Becker, Rafael G; Paise, Gabriela; Tomasi, Paulo S; Vélez-Garcia, Felipe; Melo, Geruza L; Sponchiado, Jonas; Cerezer, Felipe; Barros, Marília A S; de Souza, Albérico Q S; Dos Santos, Cinthya C; Giné, Gastón A F; Kerches-Rogeri, Patricia; Weber, Marcelo M; Ambar, Guilherme; Cabrera-Martinez, Lucía V; Eriksson, Alan; Silveira, Maurício; Santos, Carolina F; Alves, Lucas; Barbier, Eder; Rezende, Gabriela C; Garbino, Guilherme S T; Rios, Élson O; Silva, Adna; Nascimento, Alexandre Túlio A; de Carvalho, Rodrigo S; Feijó, Anderson; Arrabal, Juan; Agostini, Ilaria; Lamattina, Daniela; Costa, Sebastian; Vanderhoeven, Ezequiel; de Melo, Fabiano R; de Oliveira Laroque, Plautino; Jerusalinsky, Leandro; Valença-Montenegro, Mônica M; Martins, Amely B; Ludwig, Gabriela; de Azevedo, Renata B; Anzóategui, Agustin; da Silva, Marina X; Figuerêdo Duarte Moraes, Marcela; Vogliotti, Alexandre; Gatti, Andressa; Püttker, Thomas; Barros, Camila S; Martins, Thais K; Keuroghlian, Alexine; Eaton, Donald P; Neves, Carolina L; Nardi, Marcelo S; Braga, Caryne; Gonçalves, Pablo R; Srbek-Araujo, Ana Carolina; Mendes, Poliana; de Oliveira, João A; Soares, Fábio A M; Rocha, Patrício A; Crawshaw, Peter; Ribeiro, Milton C; Galetti, Mauro
2018-02-01
Measures of traits are the basis of functional biological diversity. Numerous works consider mean species-level measures of traits while ignoring individual variance within species. However, there is a large amount of variation within species and it is increasingly apparent that it is important to consider trait variation not only between species, but also within species. Mammals are an interesting group for investigating trait-based approaches because they play diverse and important ecological functions (e.g., pollination, seed dispersal, predation, grazing) that are correlated with functional traits. Here we compile a data set comprising morphological and life history information of 279 mammal species from 39,850 individuals of 388 populations ranging from -5.83 to -29.75 decimal degrees of latitude and -34.82 to -56.73 decimal degrees of longitude in the Atlantic forest of South America. We present trait information from 16,840 individuals of 181 species of non-volant mammals (Rodentia, Didelphimorphia, Carnivora, Primates, Cingulata, Artiodactyla, Pilosa, Lagomorpha, Perissodactyla) and from 23,010 individuals of 98 species of volant mammals (Chiroptera). The traits reported include body mass, age, sex, reproductive stage, as well as the geographic coordinates of sampling for all taxa. Moreover, we gathered information on forearm length for bats and body length and tail length for rodents and marsupials. No copyright restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data. © 2018 by the Ecological Society of America.
[Diversity of arbuscular mycorrhizal fungi in special habitats: a review].
Li, Su-Mei; Wang, Yin-Qiao; Liu, Run-Jin
2013-11-01
Arbuscular mycorrhizal fungi (AMF) are one of the important components in ecosystems, which not only have the diversity in genetics, species composition, and function, but also have the diversity in distribution and habitat. AMF infect plant root, form mycorrhiza, and nourish as obligate biotroph symbiont, with strong ecological adaptability. They not only distribute in forest, prairie, and farm land, but also distribute in the special habitats with less plant species diversity, such as commercial greenhouse soil, saline-alkali soil, mining pollution land, petroleum-contaminated land, pesticide-polluted soil, desert, dry land, wetland, marsh, plateau, volcanic, cooler, and arctic tundra, composing a unique community structure and playing an important irreplaceable role in the physiological and ecological functions. This paper summarized the species diversity and mycorrhizal morphological features of AMF in special habitats, aimed to provide essential information for the further studies on the AMF in these special habitats and extreme environments.
NASA Astrophysics Data System (ADS)
Whitehouse, G. A.; Aydin, K.
2016-02-01
Evidence of climate impacts on Arctic marine ecosystems is accumulating and Arctic marine ecosystems face additional pressures that may accompany increasing human activities due to improved access following reductions in sea ice cover. Thus, there is growing demand for information on how Arctic ecosystems may respond to potential disturbance. We explore the response of the eastern Chukchi Sea food web to mortality based perturbations using the dynamic food web modeling framework, Ecopath with Ecosim. We generated thousands of ecosystems by drawing random sets of model parameters from informative prior distributions and only retained those ecosystems that resulted in plausible, numerically stable configurations (no extinctions or population growth without limit). To perturb the systems, we increased mortality rates for selected functional groups then ran the retained models forward 50 years to examine how the biomass of other functional groups responded, and evaluated the resilience of the food web as the time for all functional groups to return to within 10 percent of their starting biomass. Ecologically important species were identified as those species (or functional groups of species) for whom changes in mortality had the greatest effect on the remainder of the food web. We also report on how a selection of ecosystem scale properties were affected by selected perturbations, including mean biomass longevity, the distribution of biomass across trophic levels, and a selection of dimensionless biomass ratios. These perturbations simulate a range of potential impacts that mortality events may have on the food web of the eastern Chukchi Sea, and indicate the directional response of other species and functional groups to these simulated events. This information will be of value to decision makers and resource managers developing guidelines for commercial and industrial development in the eastern Chukchi Sea.
Housing is positively associated with invasive exotic plant species richness in New England, USA
Gregorio I. Gavier-Pizarro; Volker C. Radeloff; Susan I. Stewart; Cynthia D. Huebner; Nicholas S. Keuler
2010-01-01
Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating...
Krashevska, Valentyna; Klarner, Bernhard; Widyastuti, Rahayu; Maraun, Mark; Scheu, Stefan
2016-01-01
Large areas of tropical rainforest are being converted to agricultural and plantation land uses, but little is known of biodiversity and ecological functioning under these replacement land uses. We investigated the effects of conversion of rainforest into jungle rubber, intensive rubber and oil palm plantations on testate amoebae, diverse and functionally important protists in litter and soil. Living testate amoebae species richness, density and biomass were all lower in replacement land uses than in rainforest, with the impact being more pronounced in litter than in soil. Similar abundances of species of high and low trophic level in rainforest suggest that trophic interactions are more balanced, with a high number of functionally redundant species, than in rubber and oil palm. In contrast, plantations had a low density of high trophic level species indicating losses of functions. This was particularly so in oil palm plantations. In addition, the relative density of species with siliceous shells was >50% lower in the litter layer of oil palm and rubber compared to rainforest and jungle rubber. This difference suggests that rainforest conversion changes biogenic silicon pools and increases silicon losses. Overall, the lower species richness, density and biomass in plantations than in rainforest, and the changes in the functional composition of the testate amoebae community, indicate detrimental effects of rainforest conversion on the structure and functioning of microbial food webs. PMID:27463805
Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco
2017-05-01
Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized by specific trait assemblages. The study also provides details on the environmental conditions that influence arthropod diversity and gives new perspectives on how the design of green roofs can be improved to increase their ecological value. Furthermore, the study highlights the importance of integrating green roofs in planning policies which aim to enhance urban habitat connectivity. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Transitions and coexistence along a grazing gradient in the Eurasian steppe
NASA Astrophysics Data System (ADS)
Ren, Haiyan; Taube, Friedelm; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin
2017-04-01
Ecological resilience theory has often been applied to explain species coexistence and range condition assessment of various community states and to explicate the dynamics of ecosystems. Grazing is a primary disturbance that can alter rangeland resilience by causing hard-to-reverse transitions in grasslands. Yet, how grazing affects the coexistence of plant functional group (PFG) and transition remains unclear. We conducted a six-year grazing experiment in a typical steppe of Inner Mongolia, using seven grazing intensities (0, 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 sheep/ hectare) and two grazing systems (i.e. a continuous annual grazing as in the traditional grazing system, and a mixed grazing system combining grazing and haymaking), to examine grazing effects on plant functional group shifts and species coexistence in the semi-arid grassland system. Our results indicate that the relative richness of dominant bunchgrasses and forbs had a compensatory coexistence at all grazing intensities, and the richness of rhizomatous grasses fluctuated but was persistent. The relative productivity of dominant bunchgrasses and rhizomatous grasses had compensatory interactions with grazing intensity and grazing system. Dominant bunchgrasses and rhizomatous grasses resist grazing effects by using their dominant species functional traits: high specific leaf area and low leaf nitrogen content. Our results suggest that: 1. Stabilizing mechanisms beyond grazing management are more important in determining plant functional group coexistence and ecological resilience. 2. Plant functional group composition is more important in influencing ecosystem functioning than diversity. 3. Ecosystem resilience at a given level is related to the biomass of dominant PFG, which is determined by a balanced shift between dominant species biomass. The relatively even ecosystem resilience along the grazing gradient is attributed to the compensatory interactions of dominant species in their biomass variations. Community stability may rely on constantly regulating internal PFGs composition to maintain functional stability in grassland ecosystems. In the semi-arid grassland system, environmental factors mediate grazing effects on PFG transition, leading to homogeneous grassland dominated by bunchgrass.
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.
Shifts in coral-assemblage composition do not ensure persistence of reef functionality.
Alvarez-Filip, Lorenzo; Carricart-Ganivet, Juan P; Horta-Puga, Guillermo; Iglesias-Prieto, Roberto
2013-12-12
Coral communities are changing rapidly worldwide through loss of coral cover and shifts in species composition. Although many reef-building corals are likely to decline, some weedy opportunistic species might increase in abundance. Here we explore whether the reshuffling of species can maintain ecosystem integrity and functioning. Using four common Caribbean reef-building coral genera we modeled rates of reef construction and complexity. We show that shifting coral assemblages result in rapid losses in coral-community calcification and reef rugosity that are independent of changes in the total abundance of reef corals. These losses are considerably higher than those recently attributed to climate change. Dominance patterns of coral assemblages seem to be the most important driver of the functioning of coral reefs and thus, the future of these ecosystems might depend not only on reductions of local and global stressors, but also on the maintenance of keystone coral species.
Olsen, Siri L; Töpper, Joachim P; Skarpaas, Olav; Vandvik, Vigdis; Klanderud, Kari
2016-05-01
Biotic interactions are often ignored in assessments of climate change impacts. However, climate-related changes in species interactions, often mediated through increased dominance of certain species or functional groups, may have important implications for how species respond to climate warming and altered precipitation patterns. We examined how a dominant plant functional group affected the population dynamics of four co-occurring forb species by experimentally removing graminoids in seminatural grasslands. Specifically, we explored how the interaction between dominants and subordinates varied with climate by replicating the removal experiment across a climate grid consisting of 12 field sites spanning broad-scale temperature and precipitation gradients in southern Norway. Biotic interactions affected population growth rates of all study species, and the net outcome of interactions between dominants and subordinates switched from facilitation to competition with increasing temperature along the temperature gradient. The impacts of competitive interactions on subordinates in the warmer sites could primarily be attributed to reduced plant survival. Whereas the response to dominant removal varied with temperature, there was no overall effect of precipitation on the balance between competition and facilitation. Our findings suggest that global warming may increase the relative importance of competitive interactions in seminatural grasslands across a wide range of precipitation levels, thereby favouring highly competitive dominant species over subordinate species. As a result, seminatural grasslands may become increasingly dependent on disturbance (i.e. traditional management such as grazing and mowing) to maintain viable populations of subordinate species and thereby biodiversity under future climates. Our study highlights the importance of population-level studies replicated under different climatic conditions for understanding the underlying mechanisms of climate change impacts on plants. © 2016 John Wiley & Sons Ltd.
Habitat diversity and ecosystem multifunctionality—The importance of direct and indirect effects
Alsterberg, Christian; Roger, Fabian; Sundbäck, Kristina; Juhanson, Jaanis; Hulth, Stefan; Hallin, Sara; Gamfeldt, Lars
2017-01-01
Ecosystems worldwide are facing habitat homogenization due to human activities. Although it is commonly proposed that such habitat homogenization can have negative repercussions for ecosystem functioning, this question has yet to receive explicit scientific attention. We expand on the framework for evaluating the functional consequences of biodiversity loss by scaling up from the level of species to the level of the entire habitats. Just as species diversity generally fosters ecosystem functioning through positive interspecies interactions, we hypothesize that different habitats within ecosystems can facilitate each other through structural complementarity and through exchange of material and energy across habitats. We show that experimental ecosystems comprised of a diversity of habitats show higher levels of multiple ecosystem functions than ecosystems with low habitat diversity. Our results demonstrate that the effect of habitat diversity on multifunctionality varies with season; it has direct effects on ecosystem functioning in summer and indirect effects, via changes in species diversity, in autumn, but no effect in spring. We propose that joint consideration of habitat diversity and species diversity will prove valuable for both environmental management and basic research. PMID:28246634
NASA Astrophysics Data System (ADS)
Silva-Júnior, C. A. B.; Mérigot, B.; Lucena-Frédou, F.; Ferreira, B. P.; Coxey, M. S.; Rezende, S. M.; Frédou, T.
2017-11-01
Environmental changes and human activities may have strong impacts on biodiversity and ecosystem functioning. While biodiversity is traditionally based on species richness and composition, there is a growing concern to take into account functional diversity to assess and manage species communities. In spite of their economic importance, functional diversity quantified by a traits-based approach is still poorly documented in tropical estuaries. In this study, the functional diversity of fishes was investigated within four estuaries in Pernambuco state, northeast of Brazil. These areas are subject to different levels of human impact (e.g. mangrove deforestation, shrimp farming, fishing etc.) and environmental conditions. Fishes were collected during 34 scientific surveys. A total of 122 species were identified and 12 functional traits were quantified describing two main functions: food acquisition and locomotion. Fish abundance and functional dissimilarities data were combined into a multivariate analysis, the Double Principal Coordinate Analysis, to identify the functional typology of fish assemblages according to the estuary. Results showed that Itapissuma, the largest estuary with a wider mangrove forest area, differs from the other three estuaries, showing higher mean values per samples of species richness S and quadratic entropy Q. Similarly, it presented a different functional typology (the first two axes of the DPCoA account for 68.7% of total inertia, while those of a traditional PCA based solely on species abundances provided only 17.4%). Conversely, Suape, Sirinhaém, and to a lower extent Rio Formoso, showed more similarity in their diversity. This result was attributed to their predominantly marine influenced hydrological features, and similar levels of species abundances and in morphological traits. Overall, this study, combining diversity indices and a recent multivariate analysis to access species contribution to functional typology, allows to deepen diversity assessment by providing additional information regarding the functional pattern of fish assemblages.
Rudolf, Volker H W; Rasmussen, Nick L
2013-05-01
A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because functional roles are dynamic and will change with shifts in the stage structure of the species. In general this emphasizes the importance of accounting for functional diversity below the species level to predict how natural and anthropogenic changes alter the functioning of natural ecosystems.
Masukagami, Y; De Souza, D P; Dayalan, S; Bowen, C; O'Callaghan, S; Kouremenos, K; Nijagal, B; Tull, D; Tivendale, K A; Markham, P F; McConville, M J; Browning, G F; Sansom, F M
2017-01-01
Mycoplasmas are simple, but successful parasites that have the smallest genome of any free-living cell and are thought to have a highly streamlined cellular metabolism. Here, we have undertaken a detailed metabolomic analysis of two species, Mycoplasma bovis and Mycoplasma gallisepticum , which cause economically important diseases in cattle and poultry, respectively. Untargeted gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry analyses of mycoplasma metabolite extracts revealed significant differences in the steady-state levels of many metabolites in central carbon metabolism, while 13 C stable isotope labeling studies revealed marked differences in carbon source utilization. These data were mapped onto in silico metabolic networks predicted from genome wide annotations. The analyses elucidated distinct differences, including a clear difference in glucose utilization, with a marked decrease in glucose uptake and glycolysis in M. bovis compared to M. gallisepticum , which may reflect differing host nutrient availabilities. The 13 C-labeling patterns also revealed several functional metabolic pathways that were previously unannotated in these species, allowing us to assign putative enzyme functions to the products of a number of genes of unknown function, especially in M. bovis . This study demonstrates the considerable potential of metabolomic analyses to assist in characterizing significant differences in the metabolism of different bacterial species and in improving genome annotation. IMPORTANCE Mycoplasmas are pathogenic bacteria that cause serious chronic infections in production animals, resulting in considerable losses worldwide, as well as causing disease in humans. These bacteria have extremely reduced genomes and are thought to have limited metabolic flexibility, even though they are highly successful persistent parasites in a diverse number of species. The extent to which different Mycoplasma species are capable of catabolizing host carbon sources and nutrients, or synthesizing essential metabolites, remains poorly defined. We have used advanced metabolomic techniques to identify metabolic pathways that are active in two species of Mycoplasma that infect distinct hosts (poultry and cattle). We show that these species exhibit marked differences in metabolite steady-state levels and carbon source utilization. This information has been used to functionally characterize previously unknown genes in the genomes of these pathogens. These species-specific differences are likely to reflect important differences in host nutrient levels and pathogenic mechanisms.
Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong
2018-02-01
Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.
Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara
2014-07-01
Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.
Toward a loss of functional diversity in stream fish assemblages under climate change.
Buisson, Laëtitia; Grenouillet, Gaël; Villéger, Sébastien; Canal, Julie; Laffaille, Pascal
2013-02-01
The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes. In this study, two functional indices (originality and uniqueness) were first measured for 35 fish species occurring in French streams. They were then combined to projections of range shifts in response to climate change derived from species distribution models. We set out to investigate: (1) the relationship between the degrees of originality and uniqueness of fish species, and their projected response to future climate change; and (2) the consequences of individual responses of species for the functional diversity of fish assemblages. After accounting for phylogenetic relatedness among species, we have demonstrated that the two indices used measure two complementary facets of the position of fish species in a functional space. We have also rejected the hypothesis that the most original and/or less redundant species would necessarily experience the greatest declines in habitat suitability as a result of climate change. However, individual species range shifts could lead simultaneously both to a severe decline in the functional diversity of fish assemblages, and to an increase in the functional similarity among assemblages, supporting the hypothesis that disturbance favors communities with combination of common traits and biotic homogenization as well. Our findings therefore emphasize the importance of going beyond the simple taxonomic description of diversity to provide a better assessment of the likely future effects of environmental changes on biodiversity, thus helping to design more effective conservation and management measures. © 2012 Blackwell Publishing Ltd.
Ecological drivers of shark distributions along a tropical coastline.
Yates, Peter M; Heupel, Michelle R; Tobin, Andrew J; Simpfendorfer, Colin A
2015-01-01
As coastal species experience increasing anthropogenic pressures there is a growing need to characterise the ecological drivers of their abundance and habitat use, and understand how they may respond to changes in their environment. Accordingly, fishery-independent surveys were undertaken to investigate shark abundance along approximately 400 km of the tropical east coast of Australia. Generalised linear models were used to identify ecological drivers of the abundance of immature blacktip Carcharhinus tilstoni/Carcharhinus limbatus, pigeye Carcharhinus amboinensis, and scalloped hammerhead Sphyrna lewini sharks. Results indicated general and species-specific patterns in abundance that were characterised by a range of abiotic and biotic variables. Relationships with turbidity and salinity were similar across multiple species, highlighting the importance of these variables in the functioning of communal shark nurseries. In particular, turbid environments were especially important for all species at typical oceanic salinities. Mangrove proximity, depth, and water temperature were also important; however, their influence varied between species. Ecological drivers may promote spatial diversity in habitat use along environmentally heterogeneous coastlines and may therefore have important implications for population resilience.
Ecological Drivers of Shark Distributions along a Tropical Coastline
Yates, Peter M.; Heupel, Michelle R.; Tobin, Andrew J.; Simpfendorfer, Colin A.
2015-01-01
As coastal species experience increasing anthropogenic pressures there is a growing need to characterise the ecological drivers of their abundance and habitat use, and understand how they may respond to changes in their environment. Accordingly, fishery-independent surveys were undertaken to investigate shark abundance along approximately 400 km of the tropical east coast of Australia. Generalised linear models were used to identify ecological drivers of the abundance of immature blacktip Carcharhinus tilstoni/Carcharhinus limbatus, pigeye Carcharhinus amboinensis, and scalloped hammerhead Sphyrna lewini sharks. Results indicated general and species-specific patterns in abundance that were characterised by a range of abiotic and biotic variables. Relationships with turbidity and salinity were similar across multiple species, highlighting the importance of these variables in the functioning of communal shark nurseries. In particular, turbid environments were especially important for all species at typical oceanic salinities. Mangrove proximity, depth, and water temperature were also important; however, their influence varied between species. Ecological drivers may promote spatial diversity in habitat use along environmentally heterogeneous coastlines and may therefore have important implications for population resilience. PMID:25853657
Wartime scars or reservoirs of biodiversity? The value of bomb crater ponds in aquatic conservation
Vad, Csaba F.; Péntek, Attila L.; Cozma, Nastasia J.; Földi, Angéla; Tóth, Adrienn; Tóth, Bence; Böde, NóraA.; Móra, Arnold; Ptacnik, Robert; Ács, Éva; Zsuga, Katalin; Horváth, Zsófia
2017-01-01
Considering the ongoing loss of aquatic habitats, anthropogenic ponds are gaining importance as substitute habitats. It is therefore important to assess their functioning in comparison to their natural precursors. Here we assess the biodiversity value of sodic bomb crater ponds by comparing their gamma diversity to that of natural reference habitats, astatic soda pans, and assess their importance on the landscape level by studying alpha and beta diversity. We studied aquatic organisms ranging from algae to vertebrates in a dense cluster of 54 sodic bomb crater ponds in Central Europe. Despite the overall small area of the pond cluster, gamma diversity was comparable to that found in surveys of natural habitats that encompassed much wider spatial and temporal scales. We also found a considerable number of species shared with reference habitats, indicating that these anthropogenic habitats function as important refuge sites for several species that are associated with the endangered soda pans. Moreover, we found a number of regionally or worldwide rare species. Among the components of beta diversity, species replacement dominated community assembly. Individual ponds contributed similarly to beta diversity in terms of replacement, being equally important for maintaining high gamma diversity and emphasising the role of the pond network rather than individual ponds. This pattern was seen in all studied groups. Bomb crater ponds therefore acted as important contributors to aquatic biodiversity. Considering the tremendous losses of ponds throughout Europe, anthropogenic ponds should be taken into consideration in nature conservation, especially when occurring in pond networks. PMID:28529346
Ordonez, Alejandro; Svenning, Jens-Christian
2017-02-23
Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.
NASA Astrophysics Data System (ADS)
Pitacco, Valentina; Crocetta, Fabio; Orlando-Bonaca, Martina; Mavrič, Borut; Lipej, Lovrenc
2017-11-01
The stony coral Cladocora caespitosa (Linnaeus, 1767) is an important Mediterranean habitat builder, whose survival is now being threatened by human activities and possibly natural events such as mass mortality and bleaching. We characterized the mollusc assemblage associated with colonies in the Gulf of Trieste (northern Adriatic Sea) and then tested whether the number of mollusc species increases in relation with colony size, following a Species-Area Relationship (SAR) model. At least 62 taxa were found in association with coral colonies, with bivalves constituting the dominant group. More than half of the 3034 specimens encountered were juveniles. Mollusc taxa richness increased with increasing C. caespitosa colony size according to the power-function model, whilst the analyses of trophic and functional groups supports the hypothesis of at least two factors underlying SAR (area per se and habitat diversity). Our results confirmed the importance of C. caespitosa for benthic communities, indicating that larger colonies support higher biodiversity, and suggesting that C. caespitosa is the most important habit builder among Mediterranean cnidarians, having also an influential function as a natural nursery ground. These results underline the necessity of new investigations aimed at filling gaps in our knowledge and planning new measures to protect the species.
Lepš, Jan; Májeková, Maria; Vítová, Alena; Doležal, Jiří; de Bello, Francesco
2018-02-01
The loss of biodiversity is thought to have adverse effects on multiple ecosystem functions, including the decline of community stability. Decreased diversity reduces the strength of the portfolio effect, a mechanism stabilizing community temporal fluctuations. Community stability is also expected to decrease with greater variability in individual species populations and with synchrony of their fluctuations. In semi-natural meadows, eutrophication is one of the most important drivers of diversity decline; it is expected to increase species fluctuations and synchrony among them, all effects leading to lower community stability. With a 16-year time series of biomass data from a temperate species-rich meadow with fertilization and removal of the dominant species, we assessed population biomass temporal (co)variation under different management types and competition intensity, and in relation to species functional traits and to species diversity. Whereas the effect of dominant removal was relatively small (with a tendency toward lower stability), fertilization markedly decreased community stability (i.e., increased coefficient of variation in the total biomass) and species diversity. On average, the fluctuations of individual populations were mutually independent, with a slight tendency toward synchrony in unfertilized plots, and a tendency toward compensatory dynamics in fertilized plots and no effects of removal. The marked decrease of synchrony with fertilization, contrary to the majority of the results reported previously, follows the predictions of increased compensatory dynamics with increased asymmetric competition for light in a more productive environment. Synchrony increased also with species functional similarity stressing the importance of shared ecological strategies in driving similar species responses to weather fluctuations. As expected, the decrease of temporal stability of total biomass was mainly related to the decrease of species richness, with its effect remaining significant also after accounting for fertilization. The weakening of the portfolio effect with species richness decline is a crucial driver of community destabilization. However, the positive effect of species richness on temporal stability of total biomass was not due to increased compensatory dynamics, since synchrony increased with species richness. This shows that the negative effect of eutrophication on community stability does not operate through increasing synchrony, but through the reduction of diversity. © 2017 by the Ecological Society of America.
Intraguild predation reduces redundancy of predator species in multiple predator assemblage.
Griffen, Blaine D; Byers, James E
2006-07-01
1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.
Frainer, André; McKie, Brendan G; Malmqvist, Björn
2014-03-01
Despite ample experimental evidence indicating that biodiversity might be an important driver of ecosystem processes, its role in the functioning of real ecosystems remains unclear. In particular, the understanding of which aspects of biodiversity are most important for ecosystem functioning, their importance relative to other biotic and abiotic drivers, and the circumstances under which biodiversity is most likely to influence functioning in nature, is limited. We conducted a field study that focussed on a guild of insect detritivores in streams, in which we quantified variation in the process of leaf decomposition across two habitats (riffles and pools) and two seasons (autumn and spring). The study was conducted in six streams, and the same locations were sampled in the two seasons. With the aid of structural equations modelling, we assessed spatiotemporal variation in the roles of three key biotic drivers in this process: functional diversity, quantified based on a species trait matrix, consumer density and biomass. Our models also accounted for variability related to different litter resources, and other sources of biotic and abiotic variability among streams. All three of our focal biotic drivers influenced leaf decomposition, but none was important in all habitats and seasons. Functional diversity had contrasting effects on decomposition between habitats and seasons. A positive relationship was observed in pool habitats in spring, associated with high trait dispersion, whereas a negative relationship was observed in riffle habitats during autumn. Our results demonstrate that functional biodiversity can be as significant for functioning in natural ecosystems as other important biotic drivers. In particular, variation in the role of functional diversity between seasons highlights the importance of fluctuations in the relative abundances of traits for ecosystem process rates in real ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Characterising Wetland Properties in Relation to the Abundance of an Invasive Species
NASA Astrophysics Data System (ADS)
Yanosik, L. E.; McEnroe, N. A.
2008-12-01
Purple loosestrife (Lythrum salicaria) is a colorful but aggressive invasive species found at the Goodyear Swamp Sanctuary in Upstate New York. Flowering from June to September allows a large number of seeds to spread quickly throughout the growing season. This invasive species can alter can alter a wetland's functional properties by impacting the hydrology and soil properties. These modified properties are of concern to wetland scientists and wetland managers as the characterisation of wetland condition becomes more important. Control or eradication of purple loosestrife within the Goodyear Swamp has become regionally important and is carried out by a U.S. Department of Agriculture approved leaf-eating beetle Galerucella calmariensis. A study to investigate the environmental conditions in which purple loosestrife has propagated and changed the native flora of Goodyear Swamp was developed. The aim was to characterize the soil physiochemical properties and hydrological conditions under which the species occurs. These data are relevant to be able to highlight the wetland conditions under which purple loosestrife might invade and to be able to compare treated and untreated wetlands. We highlight key differences in wetland functional properties caused by the invasion of this species.
Species richness accelerates marine ecosystem restoration in the Coral Triangle.
Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R
2017-11-07
Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.
Angelini, Christine; Silliman, Brian R
2014-01-01
Facilitation cascades arise where primary foundation species facilitate secondary (dependent) foundation species, and collectively, they increase habitat complexity and quality to enhance biodiversity. Whether such phenomena occur in nonmarine systems and if secondary foundation species enhance food web structure (e.g., support novel feeding guilds) and ecosystem function (e.g., provide nursery for juveniles) remain unclear. Here we report on field experiments designed to test whether trees improve epiphyte survival and epiphytes secondarily increase the number and diversity of adult and juvenile invertebrates in a potential live oak-Tillandsia usneoides (Spanish moss) facilitation cascade. Our results reveal that trees reduce physical stress to facilitate Tillandsia, which, in turn, reduces desiccation and predation stress to facilitate invertebrates. In experimental removals, invertebrate total density, juvenile density, species richness and H' diversity were 16, 60, 1.7, and 1.5 times higher, and feeding guild richness and H' were 5 and 11 times greater in Tillandsia-colonized relative to Tillandsia-removal limb plots. Tillandsia enhanced communities similarly in a survey across the southeastern United States. These findings reveal that a facilitation cascade organizes this widespread terrestrial assemblage and expand the role of secondary foundation species as drivers of trophic structure and ecosystem function. We conceptualize the relationship between foundation species' structural attributes and associated species abundance and composition in a Foundation Species-Biodiversity (FSB) model. Importantly, the FSB predicts that, where secondary foundation species form expansive and functionally distinct structures that increase habitat availability and complexity within primary foundation species, they generate and maintain hot spots of biodiversity and trophic interactions.
Constanze Buhk; Martin Alt; Manuel J. Steinbauer; Carl Beierkuhnlein; Steve Warren; Anke Jentsch
2017-01-01
The prevention of biodiversity loss in agricultural landscapes to protect ecosystem stability and functions is of major importance to stabilize overall diversity. Intense agriculture leads to a loss in species richness and homogenization of species pools, but the processes behind are poorly understood due to a lack of systematic case studies: The specific...
Habitat preferences of baleen whales in a mid-latitude habitat
NASA Astrophysics Data System (ADS)
Prieto, Rui; Tobeña, Marta; Silva, Mónica A.
2017-07-01
Understanding the dynamics of baleen whale distribution is essential to predict how environmental changes can affect their ecology and, in turn, ecosystem functioning. Recent work showed that mid-latitude habitats along migratory routes may play an important role on the feeding ecology of baleen whales. This study aimed to investigate the function of a mid-latitude habitat for blue (Balaenoptera musculus), fin (Balaenoptera physalus) and sei (Balaenoptera borealis) whales occurring in sympatry during spring and summer months and to what extent their environmental niches overlap. We addressed those questions by developing environmental niche models (ENM) for each species and then making pairwise comparisons of niche overlap and relative habitat patch importance among the three species. ENMs were created using sightings from the Azorean Fisheries Observer Program from May to November, between 2004 and 2009, and a set of 18 predictor environmental variables. We then assessed monthly (April-July) overlap among ENMs using a modified Hellinger's distance metric (I). Results show that the habitat niches of blue and fin whales are strongly influenced by primary productivity and sea surface temperature and are highly dynamic both spatially and temporally due to the oceanography of the region. Niche overlap analyses show that blue and fin whale environmental niches are similar and that the suitable habitats for the two species have high degree of spatial coincidence. These results in combination suggest that this habitat may function as a mid-latitude feeding ground to both species while conditions are adequate. The sei whale model, on the other hand, did not include variables considered to be proxies for prey distribution and little environmental niche overlap was found between this species and the other two. We argue that these results suggest that the region holds little importance as a foraging habitat for the sei whale.
Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F
2016-08-01
Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.
Biodiversity promotes primary productivity and growing season lengthening at the landscape scale
Niklaus, Pascal A.
2017-01-01
Experiments have shown positive biodiversity-ecosystem functioning (BEF) relationships in small plots with model communities established from species pools typically comprising few dozen species. Whether patterns found can be extrapolated to complex, nonexperimental, real-world landscapes that provide ecosystem services to humans remains unclear. Here, we combine species inventories from a large-scale network of 447 1-km2 plots with remotely sensed indices of primary productivity (years 2000–2015). We show that landscape-scale productivity and its temporal stability increase with the diversity of plants and other taxa. Effects of biodiversity indicators on productivity were comparable in size to effects of other important drivers related to climate, topography, and land cover. These effects occurred in plots that integrated different ecosystem types (i.e., metaecosystems) and were consistent over vast environmental and altitudinal gradients. The BEF relations we report are as strong or even exceed the ones found in small-scale experiments, despite different community assembly processes and a species pool comprising nearly 2,000 vascular plant species. Growing season length increased progressively over the observation period, and this shift was accelerated in more diverse plots, suggesting that a large species pool is important for adaption to climate change. Our study further implies that abiotic global-change drivers may mediate ecosystem functioning through biodiversity changes. PMID:28874547
Ahumada, Jorge A; Silva, Carlos E F; Gajapersad, Krisna; Hallam, Chris; Hurtado, Johanna; Martin, Emanuel; McWilliam, Alex; Mugerwa, Badru; O'Brien, Tim; Rovero, Francesco; Sheil, Douglas; Spironello, Wilson R; Winarni, Nurul; Andelman, Sandy J
2011-09-27
Terrestrial mammals are a key component of tropical forest communities as indicators of ecosystem health and providers of important ecosystem services. However, there is little quantitative information about how they change with local, regional and global threats. In this paper, the first standardized pantropical forest terrestrial mammal community study, we examine several aspects of terrestrial mammal species and community diversity (species richness, species diversity, evenness, dominance, functional diversity and community structure) at seven sites around the globe using a single standardized camera trapping methodology approach. The sites-located in Uganda, Tanzania, Indonesia, Lao PDR, Suriname, Brazil and Costa Rica-are surrounded by different landscape configurations, from continuous forests to highly fragmented forests. We obtained more than 51 000 images and detected 105 species of mammals with a total sampling effort of 12 687 camera trap days. We find that mammal communities from highly fragmented sites have lower species richness, species diversity, functional diversity and higher dominance when compared with sites in partially fragmented and continuous forest. We emphasize the importance of standardized camera trapping approaches for obtaining baselines for monitoring forest mammal communities so as to adequately understand the effect of global, regional and local threats and appropriately inform conservation actions.
Introduced birds incompletely replace seed dispersal by a native frugivore
Pejchar, Liba
2015-01-01
The widespread loss of native species and the introduction of non-native species has important consequences for island ecosystems. Non-native species may or may not functionally replace the role of native species in ecological processes such as seed dispersal. Although the majority of Hawaii's native plants require bird-mediated seed dispersal, only one native frugivore, Omao (Myadestes obscurus), persists in sufficient numbers to fill this functional role. Omao are restricted to less than half their original range, but two introduced frugivores are abundant throughout Hawaii. Given large-scale extinctions on islands, it is important to understand whether introduced birds serve as functional replacements or whether the absence of native frugivores alters plant communities. To assess seed dispersal by native and introduced birds, seed rain, vegetation characteristics, bird diet, density and habitat use were measured at three sites with Omao and three sites without Omao on Hawaii Island. The diet of native and introduced birds overlapped substantially, but Omao dispersed a variety of native species (n = 6) relatively evenly. In contrast, introduced birds dispersed an invasive species and fewer native species (n = 4), and >90 % of seeds dispersed by introduced birds were from two ubiquitous small-seeded species. Seed rain was significantly greater and more species rich at sites with Omao. These findings suggest that patterns of seed dispersal are altered following the local extinction of a native island frugivore. To more directly evaluate the relative roles of native and introduced frugivores in ecological processes, future studies could include reintroducing Omao to a suitable habitat within its historic range, or novel introductions to nearby islands where closely related species are now extinct. In an era of widespread extinction and invasion of island ecosystems, understanding the consequences of novel animal assemblages for processes like seed dispersal will be critical for maintaining diverse and self-regenerating plant communities. PMID:26139183
NASA Astrophysics Data System (ADS)
Rombouts, Isabelle; Beaugrand, Grégory; Dauvin, Jean-Claude
2012-03-01
Climate-induced changes in the distribution of species are likely to affect the functioning and diversity of marine ecosystems. Therefore, in economic and ecological important areas, such as the English Channel, projections of the future distributions of key species under changing environmental conditions are urgently needed. Ecological Niche Models (ENMs) have been applied successfully to determine potential distributions of species based on the information of the environmental niche of a species (sensu Hutchinson). In this study, the niches of two commercially exploited benthic species, Pecten maximus and Glycymeris glycymeris, and two ecologically important species, Abra alba and Ophelia borealis were derived using four contemporary hydrographic variables, i.e. sea surface temperature, sea surface salinity, water depth and sediment type. Consequently, using these ecological envelopes, the Non-Parametric Probalistic Ecological Niche model (NPPEN) was applied to calculate contemporary probabilities of occurrence for each species in the North East Atlantic and to predict potential re-distributions under the climate change scenario A2 for two time periods 2050-2059 and 2090-2099. Results show general northern displacements of the four benthic species from the English Channel into the North Sea and southern Norwegian coast. The projections mostly indicate a reduction of suitable habitat for benthic species with a notable disappearance of their distributions in the English Channel, except for A. alba. However, interpretations should be treated with caution since many uncertainties and assumptions are attached to ecological niche models in general. Furthermore, opening up potential habitats for benthic species does not necessarily imply that the species will actually occupy these sites in the future. The displacement and colonisation success of species are a function of many other non-climatic factors such as species life histories, dispersal abilities, adaptability and community interactions.
Verheijen, Lieneke M; Aerts, Rien; Bönisch, Gerhard; Kattge, Jens; Van Bodegom, Peter M
2016-01-01
Plant functional types (PFTs) aggregate the variety of plant species into a small number of functionally different classes. We examined to what extent plant traits, which reflect species' functional adaptations, can capture functional differences between predefined PFTs and which traits optimally describe these differences. We applied Gaussian kernel density estimation to determine probability density functions for individual PFTs in an n-dimensional trait space and compared predicted PFTs with observed PFTs. All possible combinations of 1-6 traits from a database with 18 different traits (total of 18 287 species) were tested. A variety of trait sets had approximately similar performance, and 4-5 traits were sufficient to classify up to 85% of the species into PFTs correctly, whereas this was 80% for a bioclimatically defined tree PFT classification. Well-performing trait sets included combinations of correlated traits that are considered functionally redundant within a single plant strategy. This analysis quantitatively demonstrates how structural differences between PFTs are reflected in functional differences described by particular traits. Differentiation between PFTs is possible despite large overlap in plant strategies and traits, showing that PFTs are differently positioned in multidimensional trait space. This study therefore provides the foundation for important applications for predictive ecology. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The invasibility of marine algal assemblages: role of functional diversity and identity.
Arenas, Francisco; Sánchez, Iñigo; Hawkins, Stephen J; Jenkins, Stuart R
2006-11-01
The emergence of the biodiversity-ecosystem functioning debate in the last decade has renewed interest in understanding why some communities are more easily invaded than others and how the impact of invasion on recipient communities and ecosystems varies. To date most of the research on invasibility has focused on taxonomic diversity, i.e., species richness. However, functional diversity of the communities should be more relevant for the resistance of the community to invasions, as the extent of functional differences among the species in an assemblage is a major determinant of ecosystem processes. Although coastal marine habitats are among the most heavily invaded ecosystems, studies on community invasibility and vulnerability in these habitats are scarce. We carried out a manipulative field experiment in tide pools of the rocky intertidal to test the hypothesis that increasing functional richness reduces the susceptibility of macroalgal communities to invasion. We selected a priori four functional groups on the basis of previous knowledge of local species characteristics: encrusting, turf, subcanopy, and canopy species. Synthetic assemblages containing one, two, three, or four different functional groups of seaweeds were created, and invasion by native species was monitored over an eight-month period. Cover and resource availability in the assemblages with only one functional group showed different patterns in the use of space and light, confirming true functional differences among our groups. Experimental results showed that the identity of functional groups was more important than functional richness in determining the ability of macroalgal communities to resist invasion and that resistance to invasion was resource-mediated.
Individual-based analyses reveal limited functional overlap in a coral reef fish community.
Brandl, Simon J; Bellwood, David R
2014-05-01
Detailed knowledge of a species' functional niche is crucial for the study of ecological communities and processes. The extent of niche overlap, functional redundancy and functional complementarity is of particular importance if we are to understand ecosystem processes and their vulnerability to disturbances. Coral reefs are among the most threatened marine systems, and anthropogenic activity is changing the functional composition of reefs. The loss of herbivorous fishes is particularly concerning as the removal of algae is crucial for the growth and survival of corals. Yet, the foraging patterns of the various herbivorous fish species are poorly understood. Using a multidimensional framework, we present novel individual-based analyses of species' realized functional niches, which we apply to a herbivorous coral reef fish community. In calculating niche volumes for 21 species, based on their microhabitat utilization patterns during foraging, and computing functional overlaps, we provide a measurement of functional redundancy or complementarity. Complementarity is the inverse of redundancy and is defined as less than 50% overlap in niche volumes. The analyses reveal extensive complementarity with an average functional overlap of just 15.2%. Furthermore, the analyses divide herbivorous reef fishes into two broad groups. The first group (predominantly surgeonfishes and parrotfishes) comprises species feeding on exposed surfaces and predominantly open reef matrix or sandy substrata, resulting in small niche volumes and extensive complementarity. In contrast, the second group consists of species (predominantly rabbitfishes) that feed over a wider range of microhabitats, penetrating the reef matrix to exploit concealed surfaces of various substratum types. These species show high variation among individuals, leading to large niche volumes, more overlap and less complementarity. These results may have crucial consequences for our understanding of herbivorous processes on coral reefs, as algal removal appears to depend strongly on species-specific microhabitat utilization patterns of herbivores. Furthermore, the results emphasize the capacity of the individual-based analyses to reveal variation in the functional niches of species, even in high-diversity systems such as coral reefs, demonstrating its potential applicability to other high-diversity ecosystems. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Villéger, Sébastien; Ramos Miranda, Julia; Flores Hernández, Domingo; Mouillot, David
2010-09-01
Human activities have strong impacts on ecosystem functioning through their effect on abiotic factors and on biodiversity. There is also growing evidence that species functional traits link changes in species composition and shifts in ecosystem processes. Hence, it appears to be of utmost importance to quantify modifications in the functional structure of species communities after human disturbance in addition to changes in taxonomic structure. Despite this fact, there is still little consensus on the actual impacts of human-mediated habitat alteration on the components of biodiversity, which include species functional traits. Therefore, we studied changes in taxonomic diversity (richness and evenness), in functional diversity, and in functional specialization of estuarine fish communities facing drastic environmental and habitat alterations. The Terminos Lagoon (Gulf of Mexico) is a tropical estuary of primary concern for its biodiversity, its habitats, and its resource supply, which have been severely impacted by human activities. Fish communities were sampled in four zones of the Terminos Lagoon 18 years apart (1980 and 1998). Two functions performed by fish (food acquisition and locomotion) were studied through the measurement of 16 functional traits. Functional diversity of fish communities was quantified using three independent components: richness, evenness, and divergence. Additionally, we measured the degree of functional specialization in fish communities. We used a null model to compare the functional and the taxonomic structure of fish communities between 1980 and 1998. Among the four largest zones studied, three did not show strong functional changes. In the northern part of the lagoon, we found an increase in fish richness but a significant decrease of functional divergence and functional specialization. We explain this result by a decline of specialized species (i.e., those with particular combinations of traits), while newly occurring species are redundant with those already present. The species that decreased in abundance have functional traits linked to seagrass habitats that regressed consecutively to increasing eutrophication. The paradox found in our study highlights the need for a multifaceted approach in the assessment of biodiversity changes in communities under pressure.
Liebergesell, Mario; Stahl, Ulrike; Freiberg, Martin; Welk, Erik; Kattge, Jens; Cornelissen, J. Hans C.; Peñuelas, Josep
2016-01-01
Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis) and the functional richness index (FRic). Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning. PMID:26848836
Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern
2014-01-01
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales. PMID:25058307
NASA Astrophysics Data System (ADS)
Corrales, X.; Ofir, E.; Coll, M.; Goren, M.; Edelist, D.; Heymans, J. J.; Gal, G.
2017-06-01
The ecosystems of the Israeli Mediterranean coast have undergone significant changes in recent decades mainly due to species invasions and fishing. In order to characterize the structure and functioning of the marine continental shelf of the Israeli Mediterranean coast and assess temporal changes, we developed a food web model representing two time periods: 1990-1994 and 2008-2012. The 1990-1994 and 2008-2012 food web models were composed of 39 and 41 functional groups, respectively. Functional groups ranged from primary producers to top predators, and included six and eight alien functional groups, respectively, encompassing several crustacean and fish species. Input data included local surveys and fishery statistics, published data on stomach content analyses, and the application of empirical equations to estimate consumption and production rates. Results of the competitive interactions between alien and native species and changes in trophic flows between food web components highlight the increasing impact of alien species over time. Fishing had noticeable impacts in both time periods and played an important role in the ecosystem. Despite different productivity rates and other environmental differences, the Israeli marine ecosystem shared common structural and functional traits with other Mediterranean marine ecosystems. This is the first attempt to study the ecosystem of the Levant region using mass-balance models and to integrate such a large amount of alien species into food web analyses.
Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress.
Fernandes, Isabel; Pascoal, Cláudia; Cássio, Fernanda
2011-08-01
Studies investigating the impacts of biodiversity loss on ecosystem processes have often reached different conclusions, probably because insufficient attention has been paid to some aspects including (1) which biodiversity measure (e.g., species number, species identity or trait) better explains ecosystem functioning, (2) the mechanisms underpinning biodiversity effects, and (3) how can environmental context modulates biodiversity effects. Here, we investigated how species number (one to three species) and traits of aquatic fungal decomposers (by replacement of a functional type from an unpolluted site by another from a metal-polluted site) affect fungal production (biomass accumulation) and plant litter decomposition in the presence and absence of metal stress. To examine the putative mechanisms that explain biodiversity effects, we determined the contribution of each fungal species to the total biomass produced in multicultures by real-time PCR. In the absence of metal, positive diversity effects were observed for fungal production and leaf decomposition as a result of species complementarity. Metal stress decreased diversity effects on leaf decomposition in assemblages containing the functional type from the unpolluted site, probably due to competitive interactions between fungi. However, dominance effect maintained positive diversity effects under metal stress in assemblages containing the functional type from the metal-polluted site. These findings emphasize the importance of intraspecific diversity in modulating diversity effects under metal stress, providing evidence that trait-based diversity measures should be incorporated when examining biodiversity effects.
Villéger, Sébastien; Mason, Norman W H; Mouillot, David
2008-08-01
Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification and for the classification of existing functional diversity indices. This decomposition has the potential to shed light on the role of biodiversity on ecosystem functioning and on the influence of biotic and abiotic filters on the structure of species communities. Finally, we propose a general framework for applying these three functional diversity indices.
USDA-ARS?s Scientific Manuscript database
All plants, including crop species, harbor a community of fungal endophyte species, however, we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the...
Challenges of Avian Conservation on Non-Federal Forests in the Pacific Northwest
Joseph B. Buchanan
2005-01-01
Conservation of species associated with mature forest habitats remains an important objective for non-federal lands in the Pacific Northwest. With few exceptions, state forest practices rules, a Washington state pilot landscape planning program, and federal Habitat Conservation Plans provide little functional habitat for species, like the Pileated Woodpecker (Dryocopus...
USDA-ARS?s Scientific Manuscript database
Eriophyoidea are minute phytophagous mites with great economic importance and great invasive potential. In spite of their impact on ecosystem functions, the knowledge of eriophyoid mites fauna in Arctic is lacking. Until now, only eight eriophyoid mite species were known from this region. Svalbard a...
USDA-ARS?s Scientific Manuscript database
Genome wide analysis of orthologous clusters is an important component of comparative genomics studies. Identifying the overlap among orthologous clusters can enable us to elucidate the function and evolution of proteins across multiple species. Here, we report a web platform named OrthoVenn that i...
Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy; Boege, Karina; Del-Val, Ek
2017-01-01
Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.
Foster, William A; Snaddon, Jake L; Turner, Edgar C; Fayle, Tom M; Cockerill, Timothy D; Ellwood, M D Farnon; Broad, Gavin R; Chung, Arthur Y C; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M
2011-11-27
The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy
2017-01-01
Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning. PMID:28560101
Foster, William A.; Snaddon, Jake L.; Turner, Edgar C.; Fayle, Tom M.; Cockerill, Timothy D.; Ellwood, M. D. Farnon; Broad, Gavin R.; Chung, Arthur Y. C.; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M.
2011-01-01
The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape. PMID:22006968
de Frutos, Ángel; Navarro, Teresa; Pueyo, Yolanda; Alados, Concepción L.
2015-01-01
Predicting the capacity of ecosystems to absorb impacts from disturbance events (resilience), including land-use intensification and landscape fragmentation, is challenging in the face of global change. Little is known about the impacts of fragmentation on ecosystem functioning from a multi-dimensional perspective (multiple traits). This study used 58 500-m linear transects to quantify changes in the functional composition and resilience of vascular plant communities in response to an increase in landscape fragmentation in 18 natural scrubland fragments embedded within a matrix of abandoned crop fields in Cabo de Gata-Níjar Natural Park, Almería, Spain. Changes in functional community composition were measured using functional diversity indices (functional richness and functional dispersion) that were based on 12 plant traits. Resilience was evaluated using the functional redundancy and response diversity from the perspective of plant dispersal, which is important, particularly, in fragmented landscapes. Scrubland fragmentation was measured using the Integral Index of Connectivity (IIC). The functional richness of the plant communities was higher in the most fragmented scrubland. Conversely, the functional dispersion (i.e., spread) of trait values among species in the functional trait space was lower at the most fragmented sites; consequently, the ecological tolerance of the vegetation to scrubland fragmentation decreased. Classifying the plant species into four functional groups indicated that fragmentation favoured an increase in functional redundancy in the ‘short basal annual forbs and perennial forbs’ group, most of which are species adapted to degraded soils. An assessment based on the traits associated with plant dispersal indicated that the resilience of ‘woody plants’, an important component in the Mediterranean scrubland, and habitat fragmentation were negatively correlated; however, the correlation was positive in the ‘short basal annual forbs and perennial forbs’ and the ‘grasses’ groups. PMID:25790432
Benchimol, Maíra; Peres, Carlos A
2014-03-01
Understanding the main drivers of species extinction in human-modified landscapes has gained paramount importance in proposing sound conservation strategies. Primates play a crucial role in maintaining the integrity of forest ecosystem functions and represent the best studied order of tropical terrestrial vertebrates, yet primate species diverge widely in their responses to forest habitat disturbance and fragmentation. Here, we present a robust quantitative review on the synergistic effects of habitat fragmentation on Neotropical forest primates to pinpoint the drivers of species extinction across a wide range of forest patches from Mexico to Argentina. Presence-absence data on 19 primate functional groups were compiled from 705 forest patches and 55 adjacent continuous forest sites, which were nested within 61 landscapes investigated by 96 studies. Forest patches were defined in terms of their size, surrounding matrix and level of hunting pressure on primates, and each functional group was classified according to seven life-history traits. Generalized linear mixed models showed that patch size, forest cover, level of hunting pressure, home range size and trophic status were the main predictors of species persistence within forest isolates for all functional groups pooled together. However, patterns of local extinction varied greatly across taxa, with Alouatta and Callicebus moloch showing the highest occupancy rates even within tiny forest patches, whereas Brachyteles and Leontopithecus occupied fewer than 50% of sites, even in relatively large forest tracts. Our results uncover the main predictors of platyrrhine primate species extinction, highlighting the importance of considering the history of anthropogenic disturbances, the structure of landscapes, and species life-history attributes in predicting primate persistence in Neotropical forest patches. We suggest that large-scale conservation planning of fragmented forest landscapes should prioritize and set-aside large, well-connected and strictly protected forest reserves to maximize species persistence across the entire spectrum of primate life-history. © 2013 Wiley Periodicals, Inc.
tRNA travels from the cytoplasm to organelles
Rubio, Mary Anne T.; Hopper, Anita K.
2011-01-01
Transfer RNAs (tRNAs) encoded by the nuclear genome are surprisingly dynamic. Although tRNAs function in protein synthesis occurring on cytoplasmic ribosomes, tRNAs can transit from the cytoplasm to the nucleus and then again return to the cytoplasm by a process known as the tRNA retrograde process. Subsets of the cytoplasmic tRNAs are also imported into mitochondria and function in mitochondrial protein synthesis. The numbers of tRNA species that are imported into mitchondria differ among organisms, ranging from just a few to the entire set needed to decode mitochondrially encoded mRNAs. For some tRNAs, import is dependent on the mitochondrial protein import machinery, whereas the majority of tRNA mitochondrial import is independent of this machinery. Although cytoplasmic proteins and proteins located on the mitochondrial surface participating in the tRNA import process have been described for several organisms, the identity of these proteins differ among organisms. Likewise, the tRNA determinants required for mitochondrial import differ among tRNA species and organisms. Here, we present an overview and discuss the current state of knowledge regarding the mechanisms involved in the tRNA retrograde process and continue with an overview of tRNA import into mitochondria. Finally, we highlight areas of future research to understand the function and regulation of movement of tRNAs between the cytoplasm and organelles. PMID:21976284
Foraging traits modulate stingless bee community disassembly under forest loss.
Lichtenberg, Elinor M; Mendenhall, Chase D; Brosi, Berry
2017-10-01
Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community processes in analyses and suggests that land use change may disassemble bee communities via different mechanisms in temperate and tropical areas. Our results further suggest that community processes, such as competition, can be important regulators of community disassembly under land use change. A better understanding of community disassembly processes is critical for conserving and restoring pollinator communities and the ecosystem services and functions they provide. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Predicting species' range limits from functional traits for the tree flora of North America.
Stahl, Ulrike; Reu, Björn; Wirth, Christian
2014-09-23
Using functional traits to explain species' range limits is a promising approach in functional biogeography. It replaces the idiosyncrasy of species-specific climate ranges with a generic trait-based predictive framework. In addition, it has the potential to shed light on specific filter mechanisms creating large-scale vegetation patterns. However, its application to a continental flora, spanning large climate gradients, has been hampered by a lack of trait data. Here, we explore whether five key plant functional traits (seed mass, wood density, specific leaf area (SLA), maximum height, and longevity of a tree)--indicative of life history, mechanical, and physiological adaptations--explain the climate ranges of 250 North American tree species distributed from the boreal to the subtropics. Although the relationship between traits and the median climate across a species range is weak, quantile regressions revealed strong effects on range limits. Wood density and seed mass were strongly related to the lower but not upper temperature range limits of species. Maximum height affects the species range limits in both dry and humid climates, whereas SLA and longevity do not show clear relationships. These results allow the definition and delineation of climatic "no-go areas" for North American tree species based on key traits. As some of these key traits serve as important parameters in recent vegetation models, the implementation of trait-based climatic constraints has the potential to predict both range shifts and ecosystem consequences on a more functional basis. Moreover, for future trait-based vegetation models our results provide a benchmark for model evaluation.
NASA Astrophysics Data System (ADS)
Potter, T.; Bowman, W. D.
2016-12-01
Despite the known importance of soil microbes and their influence on soil processes, a mechanistic understanding is still needed to predict how plants and soil microbes interact at scales that are relevant to community and ecosystem-scale processes. Closely related plant species have similar traits aboveground, but we don't know whether this is also true for belowground traits that affect soil microbial community structure and function. Determining how tightly plant phylogeny and plant functional traits are linked to soil microbial communities is a useful approach for discovering plant-microbe associations that are generalizable across plant species (a limitation of studies that employ a single or few plant species). Using this approach, we conducted a greenhouse study with seven congeneric grasses (genus Poa) and their native soils to examine whether plants' influences on microbial community structure were consistent with plant phylogenetic relatedness and/or plant functional traits. Seeds of each Poa species were planted in native soil (from the seed source population) as well as a homogenized soil from all seven populations. Additionally, a nitrogen treatment was added to address how an environmental change (such as nitrogen deposition) alters plant-microbe associations. Rhizosphere community composition of bacteria and fungi was obtained via marker gene sequencing to compare community composition across plant species. Patterns in plant-microbe associations across plant species reveal plant control on nutrient cycling via plant species' influence on microbial community structure. These results determine if we are ready to generalize about plant-microbe interactions at the genus level, an important stepping-stone to applying knowledge of plant-microbe interactions to larger ecological scales.
Pigot, Alex L; Trisos, Christopher H; Tobias, Joseph A
2016-01-13
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. © 2016 The Author(s).
Pigot, Alex L.; Trisos, Christopher H.; Tobias, Joseph A.
2016-01-01
Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. PMID:26740616
Martínez, Luisa M; Fernández-Ocaña, Ana; Rey, Pedro J; Salido, Teresa; Amil-Ruiz, Francisco; Manzaneda, Antonio J
2018-06-08
Some polyploid species show enhanced physiological tolerance to drought compared with their progenitors. However, very few studies have examined the consistency of physiological drought response between genetically differentiated natural polyploid populations, which is key to evaluation of the importance of adaptive evolution after polyploidization in those systems where drought exerts a selective pressure. A comparative functional approach was used to investigate differentiation of drought-tolerance-related traits in the Brachypodium species complex, a model system for grass polyploid adaptive speciation and functional genomics that comprises three closely related annual species: the two diploid parents, B. distachyon and B. stacei, and the allotetraploid derived from them, B. hybridum. Differentiation of drought-tolerance-related traits between ten genetically distinct B. hybridum populations and its ecological correlates was further analysed. The functional drought response is overall well differentiated between Brachypodium species. Brachypodium hybridum allotetraploids showed a transgressive expression pattern in leaf phytohormone content in response to drought. In contrast, other B. hybridum physiological traits correlated to B. stacei ones. Particularly, proline and water content were the traits that best discriminated these species from B. distachyon under drought. After polyploid formation and/or colonization, B. hybridum populations have adaptively diverged physiologically and genetically in response to variations in aridity.
Bitar, Mainá; Boroni, Mariana; Macedo, Andréa M.; Machado, Carlos R.; Franco, Glória R.
2013-01-01
The spliced leader (SL) is a gene that generates a functional ncRNA that is composed of two regions: an intronic region of unknown function (SLi) and an exonic region (SLe), which is transferred to the 5′ end of independent transcripts yielding mature mRNAs, in a process known as spliced leader trans-splicing (SLTS). The best described function for SLTS is to solve polycistronic transcripts into monocistronic units, specifically in Trypanosomatids. In other metazoans, it is speculated that the SLe addition could lead to increased mRNA stability, differential recruitment of the translational machinery, modification of the 5′ region or a combination of these effects. Although important aspects of this mechanism have been revealed, several features remain to be elucidated. We have analyzed 157 SLe sequences from 148 species from seven phyla and found a high degree of conservation among the sequences of species from the same phylum, although no considerable similarity seems to exist between sequences of species from different phyla. When analyzing case studies, we found evidence that a given SLe will always be related to a given set of transcripts in different species from the same phylum, and therefore, different SLe sequences from the same species would regulate different sets of transcripts. In addition, we have observed distinct transcript categories to be preferential targets for the SLe addition in different phyla. This work sheds light into crucial and controversial aspects of the SLTS mechanism. It represents a comprehensive study concerning various species and different characteristics of this important post-transcriptional regulatory mechanism. PMID:24130571
2017-01-01
The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB) and carbon (C). Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB), coarse root belowground biomass (BGB), and total biomass (TB). We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree’s TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling. PMID:29023553
Understanding the value of plant diversity for ecosystem functioning through niche theory
Isbell, Forest; Purves, Drew W.; Loreau, Michel
2016-01-01
Biodiversity experiments have generated robust empirical results supporting the hypothesis that ecosystems function better when they contain more species. Given that ecosystems provide services that are valued by humans, this inevitably suggests that the loss of species from natural ecosystems could diminish their value. This raises two important questions. First, will experimental results translate into the real world, where species are being lost at an alarming rate? And second, what are the benefits and pitfalls of such valuation exercises? We argue that the empirical results obtained in experiments are entirely consistent with well-established theories of species coexistence. We then examine the current body of work through the lens of niche theory and highlight where closer links with theory could open up opportunities for future research. We argue that niche theory predicts that diversity–functioning relationships are likely to be stronger (and require more species) in the field than in simplified experimental settings. However, we caution that while many of the biological processes that promote coexistence can also generate diversity–function relationships, there is no simple mapping between the two. This implies that valuation exercises need to proceed with care. PMID:27928043
Understanding the value of plant diversity for ecosystem functioning through niche theory.
Turnbull, Lindsay A; Isbell, Forest; Purves, Drew W; Loreau, Michel; Hector, Andy
2016-12-14
Biodiversity experiments have generated robust empirical results supporting the hypothesis that ecosystems function better when they contain more species. Given that ecosystems provide services that are valued by humans, this inevitably suggests that the loss of species from natural ecosystems could diminish their value. This raises two important questions. First, will experimental results translate into the real world, where species are being lost at an alarming rate? And second, what are the benefits and pitfalls of such valuation exercises? We argue that the empirical results obtained in experiments are entirely consistent with well-established theories of species coexistence. We then examine the current body of work through the lens of niche theory and highlight where closer links with theory could open up opportunities for future research. We argue that niche theory predicts that diversity-functioning relationships are likely to be stronger (and require more species) in the field than in simplified experimental settings. However, we caution that while many of the biological processes that promote coexistence can also generate diversity-function relationships, there is no simple mapping between the two. This implies that valuation exercises need to proceed with care. © 2016 The Author(s).
Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A
2018-04-01
Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.
Méndez, Verónica; Wood, Jamie R; Butler, Simon J
2018-05-01
Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater proportion of variance in native and exotic community characteristics than the number of habitat types present. Resource diversity and provenance should be explicitly accounted for when characterizing landscape structure and change as they offer additional mechanistic understanding of the links between environmental filtering and community structure. Manipulating resource diversity through the design and implementation of management actions could prove a powerful tool for the delivery of conservation objectives, be they to protect native species, control exotic species, or maintain ecosystem service provision.
β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan
López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto
2013-01-01
Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and correlates that are not apparent when focusing on overall woody plant diversity, and that have important implications for ecological theory and biodiversity conservation. PMID:24040014
NASA Astrophysics Data System (ADS)
Still, C. J.; Griffith, D.; Edwards, E.; Forrestel, E.; Lehmann, C.; Anderson, M.; Craine, J.; Pau, S.; Osborne, C.
2014-12-01
Variation in plant species traits, such as photosynthetic and hydraulic properties, can indicate vulnerability or resilience to climate change, and feed back to broad-scale spatial and temporal patterns in biogeochemistry, demographics, and biogeography. Yet, predicting how vegetation will respond to future environmental changes is severely limited by the inability of our models to represent species-level trait variation in processes and properties, as current generation process-based models are mostly based on the generalized and abstracted concept of plant functional types (PFTs) which were originally developed for hydrological modeling. For example, there are close to 11,000 grass species, but most vegetation models have only a single C4 grass and one or two C3 grass PFTs. However, while species trait databases are expanding rapidly, they have been produced mostly from unstructured research, with a focus on easily researched traits that are not necessarily the most important for determining plant function. Additionally, implementing realistic species-level trait variation in models is challenging. Combining related and ecologically similar species in these models might ameliorate this limitation. Here we argue for an intermediate, lineage-based approach to PFTs, which draws upon recent advances in gene sequencing and phylogenetic modeling, and where trait complex variations and anatomical features are constrained by a shared evolutionary history. We provide an example of this approach with grass lineages that vary in photosynthetic pathway (C3 or C4) and other functional and structural traits. We use machine learning approaches and geospatial databases to infer the most important environmental controls and climate niche variation for the distribution of grass lineages, and utilize a rapidly expanding grass trait database to demonstrate examples of lineage-based grass PFTs. For example, grasses in the Andropogoneae are typically tall species that dominate wet and seasonally burned ecosystems, whereas Chloridoideae grasses are associated with semi-arid regions. These two C4 lineages are expected to respond quite differently to climate change, but are often modelled as a single PFT.
Resetarits, William J; Pintar, Matthew R
2016-12-01
Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional equivalence. © 2016 by the Ecological Society of America.
Mapping functional connectivity
Peter Vogt; Joseph R. Ferrari; Todd R. Lookingbill; Robert H. Gardner; Kurt H. Riitters; Katarzyna Ostapowicz
2009-01-01
An objective and reliable assessment of wildlife movement is important in theoretical and applied ecology. The identification and mapping of landscape elements that may enhance functional connectivity is usually a subjective process based on visual interpretations of species movement patterns. New methods based on mathematical morphology provide a generic, flexible,...
Functional diversity of aquatic ciliates.
Weisse, Thomas
2017-10-01
This paper first reviews the concept of functional diversity in general terms and then applies it to free-living aquatic ciliates. Ciliates are extremely versatile organisms and display an enormous functional diversity as key elements of pelagic food webs, acting as predators of bacteria, algae, other protists and even some metazoans. Planktonic ciliates are important food for zooplankton, and mixotrophic and functionally autotrophic species may significantly contribute to primary production in the ocean and in lakes. The co-occurrence of many ciliate species in seemingly homogenous environments indicates a wide range of their ecological niches. Variation in space and time may foster co-occurrence and prevent violating the competitive exclusion principle among ciliates using the same resources. Considering that many ciliates may be dormant and/or rare in many habitats, ciliate species diversity must be higher than can be deduced from simple sampling techniques; molecular methods of identification clearly point to this hidden diversity. From a functional point of view, the question is how much of this diversity represents redundancy. A key challenge for future research is to link the ecophysiological performance of naturally co-occurring ciliates to their functional genes. To this end, more experimental research is needed with with functionally different species. Copyright © 2017 The Author. Published by Elsevier GmbH.. All rights reserved.
Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer; Grøndahl, Carsten; Bertelsen, Mads F; Guise, Sylvain De; Sonne, Christian; Dietz, Rune; Levin, Milton
2018-01-01
Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus maritimus), muskox (Ovibos moschatus) and reindeer (Rangifer tarandus). NK cell-like activity for all three species was most effective against the mouse lymphoma cell line YAC-1, compared to the human leukemia cell line K562; NK cell response displayed the characteristic increase in cytotoxic activity when the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.
Rigg, Jessica L; Offord, Cathy A; Singh, Brajesh K; Anderson, Ian; Clarke, Steve; Powell, Jeff R
2016-12-01
Plant-soil feedback, the reciprocal relationship between a plant and its associated microbial communities, has been proposed to be an important driver of plant populations and community dynamics. While rarely considered, understanding how plant-soil feedback contributes to plant rarity may have implications for conservation and management of rare species. Wollemi pine (Wollemia nobilis) is a critically endangered species, of which fewer than 100 trees are known to exist in the wild. Seedling survival within the first year after germination and subsequent recruitment of Wollemi pine is limited in the wild. We used a plant-soil feedback approach to investigate the functional effect of species-specific differences previously observed in the microbial communities underneath adult Wollemi pine and a neighboring species, coachwood (Ceratopetalum apetalum), and also whether additional variation in microbial communities in the wild could impact seedling growth. There was no evidence for seedling growth being affected by tree species associated with soil inocula, suggesting that plant-soil feedbacks are not limiting recruitment in the natural population. However, there was evidence of fungal, but not bacterial, community variation impacting seedling growth independently of plant-soil feedbacks. Chemical (pH) and physical (porosity) soil characteristics were identified as potential drivers of the functional outcomes of these fungal communities. The empirical approach described here may provide opportunities to identify the importance of soil microbes to conservation efforts targeting other rare plant species and is also relevant to understanding the importance of soil microbes and plant-soil feedbacks for plant community dynamics more broadly. © 2016 by the Ecological Society of America.
Hua, Fangyuan; Yong, Ding Li; Janra, Muhammad Nazri; Fitri, Liza M; Prawiradilaga, Dewi; Sieving, Kathryn E
2016-12-01
In birds and mammals, mobbing calls constitute an important form of social information that can attract numerous sympatric species to localized mobbing aggregations. While such a response is thought to reduce the future predation risk for responding species, there is surprisingly little empirical evidence to support this hypothesis. One way to test the link between predation risk reduction and mobbing attraction involves testing the relationship between species' attraction to mobbing calls and the functional traits that define their vulnerability to predation risk. Two important traits known to influence prey vulnerability include relative prey-to-predator body size ratio and the overlap in space use between predator and prey; in combination, these measures strongly influence prey accessibility, and therefore their vulnerability, to predators. Here, we combine community surveys with behavioral experiments of a diverse bird assemblage in the lowland rainforest of Sumatra to test whether the functional traits of body mass (representing body size) and foraging height (representing space use) can predict species' attraction to heterospecific mobbing calls. At four forest sites along a gradient of forest degradation, we characterized the resident bird communities using point count and mist-netting surveys, and determined the species groups attracted to standardized playbacks of mobbing calls produced by five resident bird species of roughly similar body size and foraging height. We found that (1) a large, diverse subcommunity of bird species was attracted to the mobbing calls and (2) responding species (especially the most vigorous respondents) tended to be (a) small (b) mid-storey foragers (c) with similar trait values as the species producing the mobbing calls. Our findings from the relatively lesser known bird assemblages of tropical Asia add to the growing evidence for the ubiquity of heterospecific information networks in animal communities, and provide empirical support for the long-standing hypothesis that predation risk reduction is a major benefit of mobbing information networks.
Quero, José L; Maestre, Fernando T; Ochoa, Victoria; García-Gómez, Miguel; Delgado-Baquerizo, Manuel
2013-11-01
One of the most important changes taking place in drylands worldwide is the increase of the cover and dominance of shrubs in areas formerly devoid of them (shrub encroachment). A large body of research has evaluated the causes and consequences of shrub encroachment for both ecosystem structure and functioning. However, there are virtually no studies evaluating how shrub encroachment affects the ability of ecosystems to maintain multiple functions and services simultaneously (multifunctionality). We aimed to do so by gathering data from ten ecosystem functions linked to the maintenance of primary production and nutrient cycling and storage (organic C, activity of β-glucosidase, pentoses, hexoses, total N, total available N, amino acids, proteins, available inorganic P and phosphatase activity), and summarizing them in a multifunctionality index ( M ). We assessed how climate, species richness, anthropic factors (distance to the nearest town, sandy and asphalted road, and human population in the nearest town at several historical periods) and encroachment by sprouting shrubs impacted both the functions in isolation and M along a regional (ca. 350 km) gradient in Mediterranean grasslands and shrublands dominated by a non-sprouting shrub. Values of M were higher in those grasslands and shrublands containing sprouting shrubs (43% and 62%, respectively). A similar response was found when analyzing the different functions in isolation, as encroachment by sprouting shrubs increased functions by 2%-80% compared to unencroached areas. Encroachment was the main driver of changes in M along the regional gradient evaluated, followed by anthropic factors and species richness. Climate had little effects on M in comparison to the other factors studied. Similar responses were observed when evaluating the functions in isolation. Overall, our results showed that M was higher at sites with higher sprouting shrub cover, longer distance to roads and higher perennial plant species richness. Our study is the first documenting that ecosystem multifunctionality in shrublands is enhanced by encroaching shrubs differing in size and leaf attributes. Our findings reinforce the idea that encroachment effects on ecosystem functioning cannot be generalized, and that are largely dependent on the traits of the encroaching shrub relative to those of the species being replaced.
NASA Astrophysics Data System (ADS)
Mosepele, K.; Mosepele, B.; Bokhutlo, T.; Amutenya, K.
The species assemblage and community structure of four lagoons was assessed through time series data collected between 2001 and 2005 in the Okavango Delta. The main aim of this study was to evaluate the importance of lagoons as fish habitats in the Delta. Therefore, this study assessed the importance of these habitats through determining fish species diversity, composition, relative abundance, and community structure between the lagoons. Forty six species belonging to 11 families and five orders were collected over the study period. Main results showed that Cichlidae was the most important family and had the highest species richness in the lagoons. Significant differences ( p < 0.05) were observed in species richness, faunal composition, and diversity among some of the lagoons. Moreover, there were also variations in species composition, and also significant differences in mean length and weight of some selected fish species in the four lagoons. This study showed that lagoons are important repositories of food fish to local communities. Moreover, a management of the fish stocks based on restricting fishing in some lagoons as protected areas is not feasible because of these significant differences in species assemblages between lagoons. Furthermore, lagoons are subject to multiple where most of the lodges are constructed, which makes subsequently makes them vulnerable to pollution. Therefore, the integrity of lagoon habitats needs to be maintained so that their ecosystem functioning (i.e. fish repositories) is maintained.
Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily
2017-04-12
Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).
Coble, Adam P; Fogel, Marilyn L; Parker, Geoffrey G
2017-10-01
In temperate deciduous forests, vertical gradients in leaf mass per area (LMA) and area-based leaf nitrogen (Narea) are strongly controlled by gradients in light availability. While there is evidence that hydrostatic constraints on leaf development may diminish LMA and Narea responses to light, inherent differences among tree species may also influence leaf developmental and morphological response to light. We investigated vertical gradients in LMA, Narea and leaf carbon isotope composition (δ13C) for three temperate deciduous species (Carpinus caroliniana Walter, Fagus grandifolia Ehrh., Liriodendron tulipifera L.) that differed in growth strategy (e.g., indeterminate and determinate growth), shade tolerance and leaf area to sapwood ratio (Al:As). Leaves were sampled across a broad range of light conditions within three vertical layers of tree crowns to maximize variation in light availability at each height and to minimize collinearity between light and height. All species displayed similar responses to light with respect to Narea and δ13C, but not for LMA. Light was more important for gradients in LMA for the shade-tolerant (C. caroliniana) and -intolerant (L. tulipifera) species with indeterminate growth, and height (e.g., hydrostatic gradients) and light were equally important for the shade-tolerant (F. grandifolia) species with determinate growth. Fagus grandifolia had a higher morphological plasticity in response to light, which may offer a competitive advantage in occupying a broader range of light conditions throughout the canopy. Differences in responses to light and height for the taller tree species, L. tulipifera and F. grandifolia, may be attributed to differences in growth strategy or Al:As, which may alter morphological and functional responses to light availability. While height was important in F. grandifolia, height was no more robust in predicting LMA than light in any of the species, confirming the strong role of light availability in determining LMA for temperate deciduous species. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hall, Aidan A G; Steinbauer, Martin J; Taylor, Gary S; Johnson, Scott N; Cook, James M; Riegler, Markus
2017-06-06
Parasitoids are hyperdiverse and can contain morphologically and functionally cryptic species, making them challenging to study. Parasitoid speciation can arise from specialisation on niches or diverging hosts. However, which process dominates is unclear because cospeciation across multiple parasitoid and host species has rarely been tested. Host specificity and trophic interactions of the parasitoids of psyllids (Hemiptera) remain mostly unknown, but these factors are fundamentally important for understanding of species diversity, and have important applied implications for biological control. We sampled diverse parasitoid communities from eight Eucalyptus-feeding psyllid species in the genera Cardiaspina and Spondyliaspis, and characterised their phylogenetic and trophic relationships using a novel approach that forensically linked emerging parasitoids with the presence of their DNA in post-emergence insect mummies. We also tested whether parasitoids have cospeciated with their psyllid hosts. The parasitoid communities included three Psyllaephagus morphospecies (two primary and, unexpectedly, one heteronomous hyperparasitoid that uses different host species for male and female development), and the hyperparasitoid, Coccidoctonus psyllae. However, the number of genetically delimited Psyllaephagus species was three times higher than the number of recognisable morphospecies, while the hyperparasitoid formed a single generalist species. In spite of this, cophylogenetic analysis revealed unprecedented codivergence of this hyperparasitoid with its primary parasitoid host, suggesting that this single hyperparasitoid species is possibly diverging into host-specific species. Overall, parasitoid and hyperparasitoid diversification was characterised by functional conservation of morphospecies, high host specificity and some host switching between sympatric psyllid hosts. We conclude that host specialisation, host codivergence and host switching are important factors driving the species diversity of endoparasitoid communities of specialist host herbivores. Specialisation in parasitoids can also result in heteronomous life histories that may be more common than appreciated. A host generalist strategy may be rare in endoparasitoids of specialist herbivores despite the high conservation of morphology and trophic roles, and endoparasitoid species richness is likely to be much higher than previously estimated. This also implies that the success of biological control requires detailed investigation to enable accurate identification of parasitoid-host interactions before candidate parasitoid species are selected as biological control agents for target pests.
Schink, Martin; Leipolcf, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H.
2016-01-01
Dorsal root ganglia (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 µM) or low-intensity blue-light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8−/−), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and at higher concentrations progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure. PMID:26383867
Schink, Martin; Leipold, Enrico; Schirmeyer, Jana; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H
2016-01-01
Dorsal root ganglion (DRG) neurons are important relay stations between the periphery and the central nervous system and are essential for somatosensory signaling. Reactive species are produced in a variety of physiological and pathophysiological conditions and are known to alter electric signaling. Here we studied the influence of reactive species on the electrical properties of DRG neurons from mice with the whole-cell patch-clamp method. Even mild stress induced by either low concentrations of chloramine-T (10 μM) or low-intensity blue light irradiation profoundly diminished action potential frequency but prolonged single action potentials in wild-type neurons. The impact on evoked action potentials was much smaller in neurons deficient of the tetrodotoxin (TTX)-resistant voltage-gated sodium channel NaV1.8 (NaV1.8(-/-)), the channel most important for the action potential upstroke in DRG neurons. Low concentrations of chloramine-T caused a significant reduction of NaV1.8 peak current and, at higher concentrations, progressively slowed down inactivation. Blue light had a smaller effect on amplitude but slowed down NaV1.8 channel inactivation. The observed effects were less apparent for TTX-sensitive NaV channels. NaV1.8 is an important reactive-species-sensitive component in the electrical signaling of DRG neurons, potentially giving rise to loss-of-function and gain-of-function phenomena depending on the type of reactive species and their effective concentration and time of exposure.
Julia I. Burton; Adrian Ares; Sara E. Mulford; Deanna H. Olson; Klaus J. Puettmann
2013-01-01
Concerns about climate change have generated worldwide interest in managing forests for the uptake and storage of carbon (C). Simultaneously, preserving and enhancing structural, functional, and species diversity in forests remains an important objective. Therefore, understanding tradeoffs and synergies among C storage and sequestration and diversity in managed forests...
Kevin M. Potter
2009-01-01
Forest genetic sustainability is an important component of forest health because genetic diversity and evolutionary processes allow for the adaptation of species and for the maintenance of ecosystem functionality and resilience. Phylogenetic community analyses, a set of new statistical methods for describing the evolutionary relationships among species, offer an...
Species coexistence in a changing world
Valladares, Fernando; Bastias, Cristina C.; Godoy, Oscar; Granda, Elena; Escudero, Adrián
2015-01-01
The consequences of global change for the maintenance of species diversity will depend on the sum of each species responses to the environment and on the interactions among them. A wide ecological literature supports that these species-specific responses can arise from factors related to life strategies, evolutionary history and intraspecific variation, and also from environmental variation in space and time. In the light of recent advances from coexistence theory combined with mechanistic explanations of diversity maintenance, we discuss how global change drivers can influence species coexistence. We revise the importance of both competition and facilitation for understanding coexistence in different ecosystems, address the influence of phylogenetic relatedness, functional traits, phenotypic plasticity and intraspecific variability, and discuss lessons learnt from invasion ecology. While most previous studies have focused their efforts on disentangling the mechanisms that maintain the biological diversity in species-rich ecosystems such as tropical forests, grasslands and coral reefs, we argue that much can be learnt from pauci-specific communities where functional variability within each species, together with demographic and stochastic processes becomes key to understand species interactions and eventually community responses to global change. PMID:26528323
Species coexistence in a changing world.
Valladares, Fernando; Bastias, Cristina C; Godoy, Oscar; Granda, Elena; Escudero, Adrián
2015-01-01
The consequences of global change for the maintenance of species diversity will depend on the sum of each species responses to the environment and on the interactions among them. A wide ecological literature supports that these species-specific responses can arise from factors related to life strategies, evolutionary history and intraspecific variation, and also from environmental variation in space and time. In the light of recent advances from coexistence theory combined with mechanistic explanations of diversity maintenance, we discuss how global change drivers can influence species coexistence. We revise the importance of both competition and facilitation for understanding coexistence in different ecosystems, address the influence of phylogenetic relatedness, functional traits, phenotypic plasticity and intraspecific variability, and discuss lessons learnt from invasion ecology. While most previous studies have focused their efforts on disentangling the mechanisms that maintain the biological diversity in species-rich ecosystems such as tropical forests, grasslands and coral reefs, we argue that much can be learnt from pauci-specific communities where functional variability within each species, together with demographic and stochastic processes becomes key to understand species interactions and eventually community responses to global change.
Root diversity in alpine plants: root length, tensile strength and plant age
NASA Astrophysics Data System (ADS)
Pohl, M.; Stroude, R.; Körner, C.; Buttler, A.; Rixen, C.
2009-04-01
A high diversity of plant species and functional groups is hypothesised to increase the diversity of root types and their subsequent effects for soil stability. However, even basic data on root characteristics of alpine plants are very scarce. Therefore, we determined important root characteristics of 13 plant species from different functional groups, i.e. grasses, herbs and shrubs. We excavated the whole root systems of 62 plants from a machine-graded ski slope at 2625 m a.s.l. and analysed the rooting depth, the horizontal root extension, root length and diameter. Single roots of plant species were tested for tensile strength. The age of herbs and shrubs was determined by growth-ring analysis. Root characteristics varied considerably between both plant species and functional groups. The rooting depth of different species ranged from 7.2 ± 0.97 cm to 20.5 ± 2.33 cm, but was significantly larger in the herb Geum reptans (70.8 ± 10.75 cm). The woody species Salix breviserrata reached the highest horizontal root extensions (96.8 ± 25.5 cm). Most plants had their longest roots in fine diameter classes (0.5
The Effects of Environment and Physiological Cyclicity on the Immune System of Viperinae
Kobolkuti, Lorand; Cadar, Daniel; Czirjak, Gabor; Niculae, Mihaela; Kiss, Timea; Sandru, Carmen; Spinu, Marina
2012-01-01
One of the important aspects of species' survival is connected with global climate changes, which also conditions the epidemiology of infectious diseases. Poikilotherms are exposed, as other species, to climatic influence, especially due to their physiological peculiarities such as important stages of their life cycle: hibernation, shedding, and active phase. The immune system serves as an accurate indicator of the health status and stress levels in these species. This study aimed to monitor the changes of innate (leukocyte subpopulations and total immune globulins) and adaptive immunity (in vitro leukocyte blast transformation) of two viper species, V. berus berus and V. ammodytes ammodytes, endemic in Europe and spread in different regions of Romania during their three major life cycles, hibernation, shedding, and active phase. The results indicated that seasonal variance and cycle rather than species and regional distribution influence the functionality of the immune system. PMID:22547989
Asynchrony among local communities stabilises ecosystem function of metacommunities.
Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai
2017-12-01
Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben
2018-01-10
Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.
Finlay, Barbara L; Hinz, Flora; Darlington, Richard B
2011-07-27
The pattern of individual variation in brain component structure in pigs, minks and laboratory mice is very similar to variation across species in the same components, at a reduced scale. This conserved pattern of allometric scaling resembles robotic architectures designed to be robust to changes in computing power and task demands, and may reflect the mechanism by which both growing and evolving brains defend basic sensory, motor and homeostatic functions at multiple scales. Conserved scaling rules also have implications for species-specific sensory and social communication systems, motor competencies and cognitive abilities. The role of relative changes in neuron number in the central nervous system in producing species-specific behaviour is thus highly constrained, while changes in the sensory and motor periphery, and in motivational and attentional systems increase in probability as the principal loci producing important changes in functional neuroanatomy between species. By their nature, these loci require renewed attention to development and life history in the initial organization and production of species-specific behavioural abilities.
Fournier, Bertrand; Mouly, Arnaud; Gillet, François
2016-01-01
Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754
Mass coral bleaching causes biotic homogenization of reef fish assemblages.
Richardson, Laura E; Graham, Nicholas A J; Pratchett, Morgan S; Eurich, Jacob G; Hoey, Andrew S
2018-04-06
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait-based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system-wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small-bodied, algal-farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances. © 2018 John Wiley & Sons Ltd.
Mutwil, Marek; Klie, Sebastian; Tohge, Takayuki; Giorgi, Federico M.; Wilkins, Olivia; Campbell, Malcolm M.; Fernie, Alisdair R.; Usadel, Björn; Nikoloski, Zoran; Persson, Staffan
2011-01-01
The model organism Arabidopsis thaliana is readily used in basic research due to resource availability and relative speed of data acquisition. A major goal is to transfer acquired knowledge from Arabidopsis to crop species. However, the identification of functional equivalents of well-characterized Arabidopsis genes in other plants is a nontrivial task. It is well documented that transcriptionally coordinated genes tend to be functionally related and that such relationships may be conserved across different species and even kingdoms. To exploit such relationships, we constructed whole-genome coexpression networks for Arabidopsis and six important plant crop species. The interactive networks, clustered using the HCCA algorithm, are provided under the banner PlaNet (http://aranet.mpimp-golm.mpg.de). We implemented a comparative network algorithm that estimates similarities between network structures. Thus, the platform can be used to swiftly infer similar coexpressed network vicinities within and across species and can predict the identity of functional homologs. We exemplify this using the PSA-D and chalcone synthase-related gene networks. Finally, we assessed how ontology terms are transcriptionally connected in the seven species and provide the corresponding MapMan term coexpression networks. The data support the contention that this platform will considerably improve transfer of knowledge generated in Arabidopsis to valuable crop species. PMID:21441431
Parasitism and the biodiversity-functioning relationship
Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.
2018-01-01
Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.
Functional expression of dental plaque microbiota.
Peterson, Scott N; Meissner, Tobias; Su, Andrew I; Snesrud, Erik; Ong, Ana C; Schork, Nicholas J; Bretz, Walter A
2014-01-01
Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota.
Functional expression of dental plaque microbiota
Peterson, Scott N.; Meissner, Tobias; Su, Andrew I.; Snesrud, Erik; Ong, Ana C.; Schork, Nicholas J.; Bretz, Walter A.
2014-01-01
Dental caries remains a significant public health problem and is considered pandemic worldwide. The prediction of dental caries based on profiling of microbial species involved in disease and equally important, the identification of species conferring dental health has proven more difficult than anticipated due to high interpersonal and geographical variability of dental plaque microbiota. We have used RNA-Seq to perform global gene expression analysis of dental plaque microbiota derived from 19 twin pairs that were either concordant (caries-active or caries-free) or discordant for dental caries. The transcription profiling allowed us to define a functional core microbiota consisting of nearly 60 species. Similarities in gene expression patterns allowed a preliminary assessment of the relative contribution of human genetics, environmental factors and caries phenotype on the microbiota's transcriptome. Correlation analysis of transcription allowed the identification of numerous functional networks, suggesting that inter-personal environmental variables may co-select for groups of genera and species. Analysis of functional role categories allowed the identification of dominant functions expressed by dental plaque biofilm communities, that highlight the biochemical priorities of dental plaque microbes to metabolize diverse sugars and cope with the acid and oxidative stress resulting from sugar fermentation. The wealth of data generated by deep sequencing of expressed transcripts enables a greatly expanded perspective concerning the functional expression of dental plaque microbiota. PMID:25177549
Concostrina-Zubiri, L; Huber-Sannwald, E; Martínez, I; Flores Flores, J L; Reyes-Agüero, J A; Escude, A; Belnap, J
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne
2014-01-01
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
Marine biodiversity–ecosystem functions under uncertain environmental futures
Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin
2010-01-01
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718
Habitat structure mediates biodiversity effects on ecosystem properties
Godbold, J. A.; Bulling, M. T.; Solan, M.
2011-01-01
Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. PMID:21227969
Habitat structure mediates biodiversity effects on ecosystem properties.
Godbold, J A; Bulling, M T; Solan, M
2011-08-22
Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.
Coral identity underpins architectural complexity on Caribbean reefs.
Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A
2011-09-01
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.
Marine biodiversity-ecosystem functions under uncertain environmental futures.
Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin
2010-07-12
Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.
Regional zooplankton dispersal provides spatial insurance for ecosystem function.
Symons, Celia C; Arnott, Shelley E
2013-05-01
Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.
Brian R. Lockhart; Emile S. Gardiner; Theodore D. Leininger; Kristina F. Connor; Paul B. Hamel; Nathan M. Schiff; A. Dan Wilson; Margaret S. Devall
2006-01-01
Bottomland hardwood ecosystems, important for their unique functions and values, have experienced considerable degradation since European settlement through deforestation, development, and drainage. Currently, considerable effort is underway to restore ecological functions on degraded bottomland sites. Restoration requires a better understanding of the biological...
The roles of community biomass and species pools in the regulation of plant diversity
Grace, J.B.
2001-01-01
Considerable debate has developed over the importance of community biomass and species pools in the regulation of community diversity. Attempts to explain patterns of plant diversity as a function of community biomass or productivity have been only partially successful and in general, have explained only a fraction of the observed variation in diversity. At the same time studies that have focused on the importance of species pools have led some to conclude that diversity is primarily regulated in the short term by the size of the species pool rather than by biotic interactions. In this paper, I explore how community biomass and species pools may work in combination to regulate diversity in herbaceous plant communities. To address this problem, I employ a simple model in which the dynamics of species richness are a function of aboveground community biomass and environmentally controlled gradients in species pools. Model results lead to two main predictions about the role of biomass regulation: (1) Seasonal dynamics of richness will tend to follow a regular oscillation, with richness rising to peak values during the early to middle portion of the growing season and then declining during the latter part of the season. (2.) Seasonal dieback of aboveground tissues facilitates the long-term maintenance of high levels of richness in the community. The persistence of aboveground tissues and accumulation of litter are especially important in limiting the number of species through the suppression of recruitment. Model results also lead to two main predictions about the role of species pools: (1) The height and position of peak richness relative to community biomass will be influenced by the rate at which the species pool increases as available soil resources increase. (2) Variations in nonresource environmental factors (e.g. soil pH or soil salinity) have the potential to regulate species pools in a way that is uncorrelated with aboveground biomass. Under extreme conditions, such nonresource effects can create a unimodal envelope of biomass-richness values. Available evidence from the literature provides partial support for these predictions, though additional data are needed to provide more convincing tests.
Gray, Claudia L; Lewis, Owen T; Chung, Arthur Y C; Fayle, Tom M
2015-01-01
The expansion of oil palm plantations at the expense of tropical forests is causing declines in many species and altering ecosystem functions. Maintaining forest-dependent species and processes in these landscapes may therefore limit the negative impacts of this economically important industry. Protecting riparian vegetation may be one such opportunity; forest buffer strips are commonly protected for hydrological reasons, but can also conserve functionally important taxa and the processes they support. We surveyed leaf litter ant communities within oil palm-dominated landscapes in Sabah, Malaysia, using protein baits. As the scavenging activity of ants influences important ecological characteristics such as nutrient cycling and soil structure, we quantified species-specific rates of bait removal to examine how this process may change across land uses and establish which changes in community structure underlie observed shifts in activity. Riparian reserves had similar ant species richness, community composition and scavenging rates to nearby continuous logged forest. Reserve width and vegetation structure did not affect ant species richness significantly. However, the number of foraging individuals decreased with increasing reserve width, and scavenging rate increased with vegetation complexity. Oil palm ant communities were characterized by significantly lower species richness than logged forest and riparian reserves and also by altered community composition and reduced scavenging rates. Reduced scavenging activity in oil palm was not explained by a reduction in ant species richness, nor by replacement of forest ant species by those with lower per species scavenging rates. There was also no significant effect of land use on the scavenging activity of the forest species that persisted in oil palm. Rather, changes in scavenging activity were best explained by a reduction in the mean rate of bait removal per individual ant across all species in the community. Synthesis and applications. Our results suggest that riparian reserves are comparable to areas of logged forest in terms of ant community composition and ant-mediated scavenging. Hence, in addition to protecting large continuous areas of primary and logged forest, maintaining riparian reserves is a successful strategy for conserving leaf litter ants and their scavenging activities in tropical agricultural landscapes. PMID:25678717
Scoffoni, Christine; McKown, Athena D.; Rawls, Michael; Sack, Lawren
2012-01-01
Leaf hydraulic conductance (Kleaf) is a major determinant of photosynthetic rate in well-watered and drought-stressed plants. Previous work assessed the decline of Kleaf with decreasing leaf water potential (Ψleaf), most typically using rehydration kinetics methods, and found that species varied in the shape of their vulnerability curve, and that hydraulic vulnerability correlated with other leaf functional traits and with drought sensitivity. These findings were tested and extended, using a new steady-state evaporative flux method under high irradiance, and the function for the vulnerability curve of each species was determined individually using maximum likelihood for 10 species varying strongly in drought tolerance. Additionally, the ability of excised leaves to recover in Kleaf with rehydration was assessed, and a new theoretical framework was developed to estimate how rehydration of measured leaves may affect estimation of hydraulic parameters. As hypothesized, species differed in their vulnerability function. Drought-tolerant species showed shallow linear declines and more negative Ψleaf at 80% loss of Kleaf (P80), whereas drought-sensitive species showed steeper, non-linear declines, and less negative P80. Across species, the maximum Kleaf was independent of hydraulic vulnerability. Recovery of Kleaf after 1 h rehydration of leaves dehydrated below their turgor loss point occurred only for four of 10 species. Across species without recovery, a more negative P80 correlated with the ability to maintain Kleaf through both dehydration and rehydration. These findings indicate that resistance to Kleaf decline is important not only in maintaining open stomata during the onset of drought, but also in enabling sustained function during drought recovery. PMID:22016424
Grönroos, Mira; Heino, Jani
2012-05-01
1. A fundamental question in ecology is which factors determine species richness. Here, we studied the relative importance of regional species pool and local environmental characteristics in determining local species richness (LSR). Typically, this question has been studied using whole communities or a certain taxonomic group, although including species with widely varying biological traits in the same analysis may hinder the detection of ecologically meaningful patterns. 2. We studied the question above for whole stream macroinvertebrate community and within functional feeding guilds. We defined the local scale as a riffle site and the regional scale (i.e. representing the regional species pool) as a stream. Such intermediate-sized regional scale is rarely studied in this context. 3. We sampled altogether 100 sites, ten riffles (local scale) in each of ten streams (regional scale). We used the local-regional richness regression plots to study the overall effect of regional species pool on LSR. Variation partitioning was used to determine the relative importance of regional species pool and local environmental conditions for species richness. 4. The local-regional richness relationship was mainly linear, suggesting strong species pool effects. Only one guild showed some signs of curvilinearity. However, variation partitioning showed that local environmental characteristics accounted for a larger fraction of variance in LSR than regional species pool. Also, the relative importance of the fractions differed between the whole community and guilds, as well as among guilds. 5. This study indicates that the importance of the local and regional processes may vary depending on feeding guild and trophic level. We conclude that both the size of the regional species pool and local habitat characteristics are important in determining LSR of stream macroinvertebrates. Our results are in agreement with recent large-scale studies conducted in highly different study systems and complement the previous findings by showing that the interplay of regional and local factors is also important at intermediate regional scales. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore
2016-04-01
By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and Octolasion cyaneum. Five out of these eight species are relevant for each biogeographical region with an overlap in the species. Finally, the earthworm species Ap. caliginosa (endogeic, secondary decomposer) and L. terrestris (anecic, primary decomposer) were selected as focal species. In the Mediterranean region L. terrestris may be substituted by the more relevant anecic species L. friendi. The selected focal species are recommended to be included in a standardized laboratory ERA test system based on life-history traits. Copyright © 2016 Elsevier B.V. All rights reserved.
Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.
Rodríguez-Mendoza, Clara; Pineda, Eduardo
2010-12-23
Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.
Seasonal changes in the assembly mechanisms structuring tropical fish communities.
Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M
2017-01-01
Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems. © 2016 by the Ecological Society of America.
Ecosystem services of Phragmites in North America with emphasis on habitat functions
Kiviat, Erik
2013-01-01
Phragmites australis (common reed) is widespread in North America, with native and non-native haplotypes. Many ecologists and wetland managers have considered P. australis a weed with little value to the native biota or human society. I document important ecosystem services of Phragmites including support for many common and rare species of plants and animals. This paper is based on an extensive review of the ecology and natural history literature, discussions with field workers, and observations in 13 US states and one Canadian province during the past 40 years. Phragmites sequesters nutrients, heavy metals and carbon, builds and stabilizes soils, and creates self-maintaining vegetation in urban and industrial areas where many plants do not thrive. These non-habitat ecosystem services are proportional to biomass and productivity. Phragmites was widely used by Native Americans for many purposes; the most important current direct use is for the treatment of wastes. Most of the knowledge of non-habitat ecosystem services is based on studies of P. australis haplotype M (an Old World haplotype). Phragmites also has habitat functions for many organisms. These functions depend on the characteristics of the landscape, habitat, Phragmites stand, species using Phragmites and life history element. The functions that Phragmites provides for many species are optimal at lower levels of Phragmites biomass and extent of stands. Old World Phragmites, contrary to many published statements, as well as North American native Phragmites, provide valuable ecosystem services including products for human use and habitat functions for other organisms. Phragmites stands may need management (e.g. thinning, fragmentation, containment or removal) to create or maintain suitable habitat for desired species of animals and plants.
Chorusing, synchrony, and the evolutionary functions of rhythm.
Ravignani, Andrea; Bowling, Daniel L; Fitch, W Tecumseh
2014-01-01
A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an "Evolving Signal Timing" hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our "proto-musical" primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and language.
Chorusing, synchrony, and the evolutionary functions of rhythm
Ravignani, Andrea; Bowling, Daniel L.; Fitch, W. Tecumseh
2014-01-01
A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an “Evolving Signal Timing” hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our “proto-musical” primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and language. PMID:25346705
NASA Astrophysics Data System (ADS)
Wolkovich, E. M.; Flynn, D. F. B.
2016-12-01
In recent years increasing attention has focused on plant phenology as an important indicator of the biological impacts of climate change, as many plants have shifted their leafing and flowering earlier with increasing temperatures. As data have accumulated, researchers have found a link between phenological responses to warming and plant performance and invasions. Such work suggests phenology may not only be a major impact of warming, but a critical predictor of future plant performance. Yet alongside this increasing interest in phenology, important issues remain unanswered: responses to warming for species at the same site or in the same genus vary often by weeks or more and the explanatory power of phenology for performance and invasions when analyzed across diverse datasets remains low. We propose progress can come from explicitly considering phenology within a community context and as a critical plant trait correlated with other major plant functional traits. Here, we lay out a framework for our proposal: specifically we review how we expect phenology and phenological cues of different species within a community to vary and what other functional traits are predicted to co-vary with phenological traits. Much research currently suggests phenology is a critical functional trait that is shaped strongly by the environment. Plants are expected to adjust their phenologies to avoid periods of high abiotic risk and/or high competition. Thus we may expect phenology to correlate strongly to other traits involved in mitigating risk and high competition. Results from recent meta-analyses as well as experimental and observational research from 28 species in northeastern North American temperate forests suggest that species within a community show the predicted diversified set of phenological cues. We review early work on links to other functional traits and in closing review how these correlations may in turn determine the diversity of phenological responses observed for some species and communities.
Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.
Poorter, Lourens
2009-03-01
Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.
Matterson, Kenan O.; Freeman, Christopher J.; Archer, Stephanie K.; Thacker, Robert W.
2015-01-01
Recent studies have renewed interest in sponge ecology by emphasizing the functional importance of sponges in a broad array of ecosystem services. Many critically important habitats occupied by sponges face chronic stressors that might lead to alterations in their diversity, relatedness, and functional attributes. We addressed whether proximity to human activity might be a significant factor in structuring sponge community composition, as well as potential functional roles, by monitoring sponge diversity and abundance at two structurally similar sites that vary in distance to areas of high coastal development in Bocas Del Toro, Panama. We surveyed sponge communities at each site using belt transects and differences between two sites were compared using the following variables: (1) sponge species richness, Shannon diversity, and inverse Simpson’s diversity; (2) phylogenetic diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and dissimilarity; and (5) phylogenetic and trait patterns in community structure. We observed significantly higher sponge diversity at Punta Caracol, the site most distant from human development (∼5 km). Although phylogenetic diversity was lower at Saigon Bay, the site adjacent to a large village including many houses, businesses, and an airport, the sites did not exhibit significantly different patterns of phylogenetic relatedness in species composition. However, each site had a distinct taxonomic and phylogenetic composition (beta diversity). In addition, the sponge community at Saigon included a higher relative abundance of sponges with high microbial abundance and high chlorophyll a concentration, whereas the community at Punta Caracol had a more even distribution of these traits, yielding a significant difference in functional trait diversity between sites. These results suggest that lower diversity and potentially altered community function might be associated with proximity to human populations. This study highlights the importance of evaluating functional traits and phylogenetic diversity in addition to common diversity metrics when assessing potential environmental impacts on benthic communities. PMID:26587347
Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.
2017-01-01
Environmental filtering and competitive exclusion are hypotheses frequently invoked in explaining species' environmental niches (i.e., geographic distributions). A key assumption in both hypotheses is that the functional niche (i.e., species traits) governs the environmental niche, but few studies have rigorously evaluated this assumption. Furthermore, phylogeny could be associated with these hypotheses if it is predictive of functional niche similarity via phylogenetic signal or convergent evolution, or of environmental niche similarity through phylogenetic attraction or repulsion. The objectives of this study were to investigate relationships between environmental niches, functional niches, and phylogenies of fishes of the Upper (UCRB) and Lower (LCRB) Colorado River Basins of southwestern North America. We predicted that functionally similar species would have similar environmental niches (i.e., environmental filtering) and that closely related species would be functionally similar (i.e., phylogenetic signal) and possess similar environmental niches (i.e., phylogenetic attraction). Environmental niches were quantified using environmental niche modeling, and functional similarity was determined using functional trait data. Nonnatives in the UCRB provided the only support for environmental filtering, which resulted from several warmwater nonnatives having dam number as a common predictor of their distributions, whereas several cool- and coldwater nonnatives shared mean annual air temperature as an important distributional predictor. Phylogenetic signal was supported for both natives and nonnatives in both basins. Lastly, phylogenetic attraction was only supported for native fishes in the LCRB and for nonnative fishes in the UCRB. Our results indicated that functional similarity was heavily influenced by evolutionary history, but that phylogenetic relationships and functional traits may not always predict the environmental distribution of species. However, the similarity of environmental niches among warmwater centrarchids, ictalurids, fundulids, and poeciliids in the UCRB indicated that dam removals could influence the distribution of these nonnatives simultaneously, thus providing greater conservation benefits. However, this same management strategy would have more limited effects on nonnative salmonids, catostomids, and percids with colder temperature preferences, thus necessitating other management strategies to control these species.
[Vital traits of woody species in High Andean forest edges of the Cogua Forest Reserve (Colombia)].
Montenegro, Alba Lucía; Vargas, Orlando
2008-06-01
The Cogua Forest Reserve was studied throughout eight months to detect the existence of functional species-groups associated with edge wood forest. A second goal was to determine which species were the most successful in edge areas and their particular vital traits. The regeneration and growth of the forest patches to the adjacent matrix depends on the establishment of these species and their tolerance to both habitats. Three types of High Andean edge forest were studied. Two forest patches were chosen for each of the three edge types: Chusquea scandens edge, "paramune" and old-edge; the name of the latter was given because of its advanced successional state. In each patch, the vegetation was evaluated in two 60 m transects perpendicular to the edge and along the matrix-edge-interior gradient of the forest. All woody species were identified and counted to determine their abundance. A total of nine species were chosen as representative of High Andean forest edges in the reserve, because of their high abundance in this environment, their presence in both patches of each edge type and their ability to colonize the adjacent matrix. Each species was evaluated using 20 vital attributes of individual, leaf, and reproductive traits. Six species groups were found through a Correspondence Analysis. However, all nine species have high variation and plasticity levels for the attributes, even inside the groups. This trend suggests that while they are not clearly differentiated functional groups, they probably are representing different strategies within a single functional group of great plasticity. Tibouchina grossa and Pentacalia Pulchella are found in all edge and matrix types; the other species are found in all edge types, except by Gaiadendron punctatum and Weinmannia tomentosa, absent in the Chusquea scandens edge. All nine species are important elements in the restoration of forest edges, mainly where they are more abundant, evidencing their success in the particular conditions of an edge type. Miconia ligustrina and M. squamulosa are the most relevant species in the Chusquea scandens edge and matrix; while G. punctatum, P. pulchella, W. tomentosa, W. balbisiana and especially Macleania rupestris, are more important in the paramune edge and matrix; Hedyosmum bonplandianum is more important in the edge than in the matrix regeneration, while T. grossa is the most successful edge and matrix regeneration species, because it is the most abundant and has high levels of tolerance, vegetative reproduction and litter production. These features are related with a high rate of tissue replacement, as well as a persistent seed bank with smaller and more numerous seeds, evidence of its high fecundity.
Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest
Keller, Adrienne B.; Reed, Sasha C.; Townsend, Alan R.; Cleveland, Cory C.
2013-01-01
Tropical rain forests are known for their high biological diversity, but the effects of plant diversity on important ecosystem processes in this biome remain unclear. Interspecies differences in both the demand for nutrients and in foliar and litter nutrient concentrations could drive variations in both the pool sizes and fluxes of important belowground resources, yet our understanding of the effects and importance of aboveground heterogeneity on belowground biogeochemistry is poor, especially in the species-rich forests of the wet tropics. To investigate the effects of individual tree species on belowground biogeochemical processes, we used both field and laboratory studies to examine how carbon (C), nitrogen (N), and phosphorus (P) cycles vary under nine different canopy tree species – including three legume and six non-legume species – that vary in foliar nutrient concentrations in a wet tropical forest in southwestern Costa Rica. We found significant differences in belowground C, N and P cycling under different canopy tree species: total C, N and P pools in standing litter varied by species, as did total soil and microbial C and N pools. Rates of soil extracellular acid phosphatase activity also varied significantly among species and functional groups, with higher rates of phosphatase activity under legumes. In addition, across all tree species, phosphatase activity was significantly positively correlated with litter N/P ratios, suggesting a tight coupling between relative N and P inputs and resource allocation to P acquisition. Overall, our results suggest the importance of aboveground plant community composition in promoting belowground biogeochemical heterogeneity at relatively small spatial scales.
Engineering a plant community to deliver multiple ecosystem services.
Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine
2015-06-01
The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food production in the context of the sustainable management of natural resources.
Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel
2015-01-01
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.
Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel
2015-01-01
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target. Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition. PMID:25875745
Qing Xu; Harbin Li; Jiquan Chen; Jiquan Cheng; Xiaoli Cheng; Shirong Liu; Shuqing An
2011-01-01
Determination of water sources of plant species in a community is critical for understanding the hydrological processes and their importance in ecosystem functions. Such partitioning of plant xylem water into specific sources (i.e. precipitation, groundwater) can be achieved by analyzing deuterium isotopic composition (δD) values for source waters. A subalpine dark...
Wambui Njunguna; Aaron Liston; Richard Cronn; Tia-Lynn Ashman; Nahla Bassil
2013-01-01
The cultivated strawberry is one of the youngest domesticated plants, developed in France in the 1700s from chance hybridization between two western hemisphere octoploid species. However, little is known about the evolution of the species that gave rise to this important fruit crop. Phylogenetic analysis of chloroplast genome sequences of 21 Fragaria...
Fu, Hui; Zhong, Jiayou; Yuan, Guixiang; Guo, Chunjing; Lou, Qian; Zhang, Wei; Xu, Jun; Ni, Leyi; Xie, Ping; Cao, Te
2015-01-01
Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology. PMID:26167856
Seed birth to death: dual functions of reactive oxygen species in seed physiology.
Jeevan Kumar, S P; Rajendra Prasad, S; Banerjee, Rintu; Thammineni, Chakradhar
2015-09-01
Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens. This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species. Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sex-specific evolution during the diversification of live-bearing fishes.
Culumber, Zachary W; Tobler, Michael
2017-08-01
Natural selection is often assumed to drive parallel functional diversification of the sexes. But males and females exhibit fundamental differences in their biology, and it remains largely unknown how sex differences affect macroevolutionary patterns. On microevolutionary scales, we understand how natural and sexual selection interact to give rise to sex-specific evolution during phenotypic diversification and speciation. Here we show that ignoring sex-specific patterns of functional trait evolution misrepresents the macroevolutionary adaptive landscape and evolutionary rates for 112 species of live-bearing fishes (Poeciliidae). Males and females of the same species evolve in different adaptive landscapes. Major axes of female morphology were correlated with environmental variables but not reproductive investment, while male morphological variation was primarily associated with sexual selection. Despite the importance of both natural and sexual selection in shaping sex-specific phenotypic diversification, species diversification was overwhelmingly associated with ecological divergence. Hence, the inter-predictability of mechanisms of phenotypic and species diversification may be limited in many systems. These results underscore the importance of explicitly addressing sex-specific diversification in empirical and theoretical frameworks of evolutionary radiations to elucidate the roles of different sources of selection and constraint.
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken. PMID:29161324
Patterns and determinants of plant biodiversity in non-commercial forests of eastern China.
Wu, Chuping; Vellend, Mark; Yuan, Weigao; Jiang, Bo; Liu, Jiajia; Shen, Aihua; Liu, Jinliang; Zhu, Jinru; Yu, Mingjian
2017-01-01
Non-commercial forests represent important habitats for the maintenance of biodiversity and ecosystem function in China, yet no studies have explored the patterns and determinants of plant biodiversity in these human dominated landscapes. Here we test the influence of (1) forest type (pine, mixed, and broad-leaved), (2) disturbance history, and (3) environmental factors, on tree species richness and composition in 600 study plots in eastern China. In total, we found 143 species in 53 families of woody plants, with a number of species rare and endemic in the study region. Species richness in mixed forest and broad-leaved forest was higher than that in pine forest, and was higher in forests with less disturbance. Species composition was influenced by environment factors in different ways in different forest types, with important variables including elevation, soil depth and aspect. Surprisingly, we found little effect of forest age after disturbance on species composition. Most non-commercial forests in this region are dominated by species poor pine forests and mixed young forests. As such, our results highlight the importance of broad-leaved forests for regional plant biodiversity conservation. To increase the representation of broad-leaved non-commercial forests, specific management practices such as thinning of pine trees could be undertaken.
Patterns of bird functional diversity on land-bridge island fragments.
Ding, Zhifeng; Feeley, Kenneth J; Wang, Yanping; Pakeman, Robin J; Ding, Ping
2013-07-01
The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on functional diversity remains relatively poorly understood. We conducted bird functional diversity studies on a set of 41 recently isolated land-bridge islands in the Thousand Island Lake, China. We analysed differences in bird species richness and a recently developed suite of complementary functional diversity indices (FRic, volume of functional space occupied; FEve, evenness of abundance distribution in the functional trait space; FDiv, divergence in the distribution of abundance in the trait volume) across different gradients (island area and isolation). We found no correlations between FRic and FEve or FEve and FDiv, but negative correlations between FRic and FDiv. As predicted, island area accounted for most of the variation in bird species richness, whereas isolation explained most of the variation in species evenness (decreasing species evenness with increasing isolation). Functional diversity appears to be more strongly influenced by habitat filtering as opposed to limiting similarity. More specifically, across all islands, both FRic and FEve were significantly lower than expected for randomly assembled communities, but FDiv showed no clear patterns. FRic increased with island area, FEve decreased with island area and FDiv showed no clear patterns. Our finding that FEve decreases with island area at TIL may indicate low functional stability on such islands, and as such large islands and habitat patches may deserve extra attention and/or protection. These results help to demonstrate the importance of considering the effects of fragmentation on functional diversity in habitat management and reserve design plans. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Malenke, J R; Milash, B; Miller, A W; Dearing, M D
2013-07-01
Massively parallel sequencing has enabled the creation of novel, in-depth genetic tools for nonmodel, ecologically important organisms. We present the de novo transcriptome sequencing, analysis and microarray development for a vertebrate herbivore, the woodrat (Neotoma spp.). This genus is of ecological and evolutionary interest, especially with respect to ingestion and hepatic metabolism of potentially toxic plant secondary compounds. We generated a liver transcriptome of the desert woodrat (Neotoma lepida) using the Roche 454 platform. The assembled contigs were well annotated using rodent references (99.7% annotation), and biotransformation function was reflected in the gene ontology. The transcriptome was used to develop a custom microarray (eArray, Agilent). We tested the microarray with three experiments: one across species with similar habitat (thus, dietary) niches, one across species with different habitat niches and one across populations within a species. The resulting one-colour arrays had high technical and biological quality. Probes designed from the woodrat transcriptome performed significantly better than functionally similar probes from the Norway rat (Rattus norvegicus). There were a multitude of expression differences across the woodrat treatments, many of which related to biotransformation processes and activities. The pattern and function of the differences indicate shared ecological pressures, and not merely phylogenetic distance, play an important role in shaping gene expression profiles of woodrat species and populations. The quality and functionality of the woodrat transcriptome and custom microarray suggest these tools will be valuable for expanding the scope of herbivore biology, as well as the exploration of conceptual topics in ecology. © 2013 John Wiley & Sons Ltd.
Chemokines in teleost fish species.
Alejo, Alí; Tafalla, Carolina
2011-12-01
Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.
Berry, Z Carter; Johnson, Daniel M; Reinhardt, Keith
2015-09-01
Many studies have demonstrated linkages between the occurrence of fog and ecophysiological functioning in cloud forests, but few have investigated hydraulic functioning as a determining factor that explains sharp changes in vegetation. The objective of this study was to compare the plant water status during cloud-immersed and non-immersed conditions and hydraulic vulnerability in branches and roots of species across a temperate, mountain fog ecotone. Because cloud forests are often dark, cool and very moist, we expected cloud forest species to have less drought-tolerant characteristics (i.e., lower Pe and P50-the pressures required to induce a 12 and 50% loss in hydraulic conductivity, respectively) relative to non-cloud forest species in adjacent (lower elevation) forests. Additionally, due to the ability of cloud forest species to absorb cloud-fog water, we predicted greater improvements in hydraulic functioning during fog in cloud forest species relative to non-cloud forest species. Across the cloud forest ecotone, most species measured were very resistant to losses in conductivity with branch P50 values from -4.5 to -6.0 MPa, hydraulic safety margins (Ψmin - P50) >1.5 MPa and low calculated hydraulic conductivity losses. Roots had greater vulnerabilities, with P50 values ranging from -1.4 to -2.5 MPa, leading to greater predicted losses in conductivity (∼20%). Calculated values suggested strong losses of midday leaf hydraulic conductance in three of the four species, supporting the hydraulic segmentation hypothesis. In both cloud forest and hardwood species, Ψs were greater on foggy days than sunny days, demonstrating the importance of fog periods to plant water balance across fog regimes. Thus, frequent fog did not result in systemic changes in hydraulic functioning or vulnerability to embolism across our temperate cloud forest ecotone. Finally, roots functioned with lower hydraulic conductivity than branches, suggesting that they may serve as more sensitive indicators of hydraulic functioning in these mesic, foggy ecosystems. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Geological Substrates Shape Tree Species and Trait Distributions in African Moist Forests
Fayolle, Adeline; Engelbrecht, Bettina; Freycon, Vincent; Mortier, Frédéric; Swaine, Michael; Réjou-Méchain, Maxime; Doucet, Jean-Louis; Fauvet, Nicolas; Cornu, Guillaume; Gourlet-Fleury, Sylvie
2012-01-01
Background Understanding the factors that shape the distribution of tropical tree species at large scales is a central issue in ecology, conservation and forest management. The aims of this study were to (i) assess the importance of environmental factors relative to historical factors for tree species distributions in the semi-evergreen forests of the northern Congo basin; and to (ii) identify potential mechanisms explaining distribution patterns through a trait-based approach. Methodology/Principal Findings We analyzed the distribution patterns of 31 common tree species in an area of more than 700,000 km2 spanning the borders of Cameroon, the Central African Republic, and the Republic of Congo using forest inventory data from 56,445 0.5-ha plots. Spatial variation of environmental (climate, topography and geology) and historical factors (human disturbance) were quantified from maps and satellite records. Four key functional traits (leaf phenology, shade tolerance, wood density, and maximum growth rate) were extracted from the literature. The geological substrate was of major importance for the distribution of the focal species, while climate and past human disturbances had a significant but lesser impact. Species distribution patterns were significantly related to functional traits. Species associated with sandy soils typical of sandstone and alluvium were characterized by slow growth rates, shade tolerance, evergreen leaves, and high wood density, traits allowing persistence on resource-poor soils. In contrast, fast-growing pioneer species rarely occurred on sandy soils, except for Lophira alata. Conclusions/Significance The results indicate strong environmental filtering due to differential soil resource availability across geological substrates. Additionally, long-term human disturbances in resource-rich areas may have accentuated the observed patterns of species and trait distributions. Trait differences across geological substrates imply pronounced differences in population and ecosystem processes, and call for different conservation and management strategies. PMID:22905127
Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard
2015-01-01
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.
Ballantyne, Mark; Pickering, Catherine Marina
2015-08-15
Hiking trails, which are among the most common forms of infrastructure created for nature-based tourism, can alter key ecological processes. Trails can damage plants that facilitate the establishment and growth of other species leading to changes in community and functional composition. This can be a particular concern in harsh alpine ecosystems where plant communities are often dominated by one or two keystone species that provide shelter to a suite of beneficiary species. We analysed how a hiking trail affects interspecific facilitation by a dominant trampling-sensitive nurse shrub in the highest National Park in Australia. First we assessed the effects of the trail on the abundance, size and density of the nurse shrub at different distances from the trail. We then compared species richness and composition between areas in, and out, of the nurse shrub's canopy at different distances from the trail. To better understand why some species may benefit from facilitation and any effects of the trail on the quality of facilitation we compared functional composition between quadrats using community trait weighted means calculated by combining plant composition with species functional traits (canopy height, leaf area, % dry weight of leaves and specific leaf area). The abundance, size and density of nurse shrubs was lower on the trail edges than further away, particularly on the leeward edge, where there was more bare ground and less shrub cover. There were differences in species richness, cover, composition and functional composition in and outside the nurse shrub canopy. The shrubs appeared to facilitate species with more competitive, but less stress tolerant traits (e.g. taller plants with leaves that were larger, had high specific leaf area and low dry matter content). However, despite reductions in nurse shrubs near the trail, where they do exist, they appear to provide the same 'quality' of facilitation as nurse shrubs further away. However, longer-term effects may be occurring as the loss of nurse shrubs alters the wind profile of the ridgeline and therefore succession. The use of a steel mesh walkway along the trail may facilitate the regeneration of nurse shrubs and other plants that require protection from wind. Our results highlight the importance of diversifying recreation ecology research to assess how trails affect important ecological processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ono, Katsuhiko; Akaike, Takaake; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A.; Tantillo, Dean J.; Hobbs, Adrian J.; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M.
2014-01-01
Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. In spite of its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. A particular focus of this review are the per- and poly-sulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. PMID:25229186
Symstad, A.J.; Chapin, F. S.; Wall, D.H.; Gross, K.L.; Huenneke, L.F.; Mittelbach, G.G.; Peters, Debra P.C.; Tilman, D.
2003-01-01
In a growing body of literature from a variety of ecosystems is strong evidence that various components of biodiversity have significant impacts on ecosystem functioning. However, much of this evidence comes from short-term, small-scale experiments in which communities are synthesized from relatively small species pools and conditions are highly controlled. Extrapolation of the results of such experiments to longer time scales and larger spatial scales—those of whole ecosystems—is difficult because the experiments do not incorporate natural processes such as recruitment limitation and colonization of new species. We show how long-term study of planned and accidental changes in species richness and composition suggests that the effects of biodiversity on ecosystem functioning will vary over time and space. More important, we also highlight areas of uncertainty that need to be addressed through coordinated cross-scale and cross-site research.
Genetic evidence for conserved non-coding element function across species–the ears have it
Turner, Eric E.; Cox, Timothy C.
2014-01-01
Comparison of genomic sequences from diverse vertebrate species has revealed numerous highly conserved regions that do not appear to encode proteins or functional RNAs. Often these “conserved non-coding elements,” or CNEs, can direct gene expression to specific tissues in transgenic models, demonstrating they have regulatory function. CNEs are frequently found near “developmental” genes, particularly transcription factors, implying that these elements have essential regulatory roles in development. However, actual examples demonstrating CNE regulatory functions across species have been few, and recent loss-of-function studies of several CNEs in mice have shown relatively minor effects. In this Perspectives article, we discuss new findings in “fancy” rats and Highland cattle demonstrating that function of a CNE near the Hmx1 gene is crucial for normal external ear development and when disrupted can mimic loss-of function Hmx1 coding mutations in mice and humans. These findings provide important support for conserved developmental roles of CNEs in divergent species, and reinforce the concept that CNEs should be examined systematically in the ongoing search for genetic causes of human developmental disorders in the era of genome-scale sequencing. PMID:24478720
Schittko, Conrad; Hawa, Mahmoud; Wurst, Susanne
2014-01-01
A frequent pattern emerging from biodiversity-ecosystem function studies is that functional group richness enhances ecosystem functions such as primary productivity. However, the manipulation of functional group richness goes along with major disadvantages like the transformation of functional trait data into categories or the exclusion of functional differences between organisms in the same group. In a mesocosm study we manipulated plant functional diversity based on the multi-trait Functional Diversity (FD)-approach of Petchey and Gaston by using database data of seven functional traits and information on the origin of the species in terms of being native or exotic. Along a gradient ranging from low to high FD we planted 40 randomly selected eight-species mixtures under controlled conditions. We found a significant positive linear correlation of FD with aboveground productivity and a negative correlation with invasibility of the plant communities. Based on community-weighted mean calculations for each functional trait, we figured out that the traits N-fixation and species origin, i.e. being native or exotic, played the most important role for community productivity. Our results suggest that the identification of the impact of functional trait diversity and the relative contributions of relevant traits is essential for a mechanistic understanding of the role of biodiversity for ecosystem functions such as aboveground biomass production and resistance against invasion. PMID:24897501
Multiple filters affect tree species assembly in mid-latitude forest communities.
Kubota, Y; Kusumoto, B; Shiono, T; Ulrich, W
2018-05-01
Species assembly patterns of local communities are shaped by the balance between multiple abiotic/biotic filters and dispersal that both select individuals from species pools at the regional scale. Knowledge regarding functional assembly can provide insight into the relative importance of the deterministic and stochastic processes that shape species assembly. We evaluated the hierarchical roles of the α niche and β niches by analyzing the influence of environmental filtering relative to functional traits on geographical patterns of tree species assembly in mid-latitude forests. Using forest plot datasets, we examined the α niche traits (leaf and wood traits) and β niche properties (cold/drought tolerance) of tree species, and tested non-randomness (clustering/over-dispersion) of trait assembly based on null models that assumed two types of species pools related to biogeographical regions. For most plots, species assembly patterns fell within the range of random expectation. However, particularly for cold/drought tolerance-related β niche properties, deviation from randomness was frequently found; non-random clustering was predominant in higher latitudes with harsh climates. Our findings demonstrate that both randomness and non-randomness in trait assembly emerged as a result of the α and β niches, although we suggest the potential role of dispersal processes and/or species equalization through trait similarities in generating the prevalence of randomness. Clustering of β niche traits along latitudinal climatic gradients provides clear evidence of species sorting by filtering particular traits. Our results reveal that multiple filters through functional niches and stochastic processes jointly shape geographical patterns of species assembly across mid-latitude forests.
NASA Astrophysics Data System (ADS)
Gomez, C.; Quattrini, A.; Cordes, E. E.
2016-02-01
Deep-water corals represent abundant and highly diverse taxa with important functional and structural roles. Climate change can impact these ecological roles by altering coral community composition as response to changes in temperature, seawater chemistry, and food supply among other factors. Our aim is to understand processes of community assembly by integrating species' traits and environmental information into an evolutionary context. Particularly we examined whether depth and the factors that vary with it are important mechanisms in structuring deep-sea octocoral assemblages in the Gulf of Mexico. Collections were conducted on hardbottom from 250-2500 m depth across 27 sites using remotely operated vehicles. A total of 188 colonies spanning 54 different species where sampled from which 11 morphological traits were measured. The ensuing species-by-traits matrix was used as the basis for multivariate analyses performed on three different depth categories: 250-800 m, 800-1100 m, and 1100-2500 m. Principal coordinates analyses revealed that the traits of the octocoral community in the Gulf of Mexico segregate according to depth, where the first two components explained 79.8% of the variation in species' traits. Axis type (calcified - non-calcified), polyp shape and polyp retraction were highly correlated with PCo1, while polyp density, polyp arrangement (solitary - whorls), and type of sclerites were highly correlated with PCo2. Permutation tests showed statistical differences between depths (pseudo-F2,108=4.84, p<0.01), where the shallowest assemblage differed from the deepest one. Polyp size and inter-polyp distance showed significant positive relationships with depth, with higher variability in shallower communities, which highlight the labile nature of these traits. Functional diversity was higher in the shallowest and deepest depth zones; however, there was no significant difference (F2,32=1.33 p=0.27), suggesting that a wide range of traits are important in resource use and interacting with abiotic factors at the different depths. These results highlight the importance of including functional traits when attempting to make predictions of assembly mechanisms as well as for future responses of this significant taxonomic group as climate and ocean change progress.
Amna, Amna; Opiyo, Stephen Obol
2018-01-01
Plants have a diverse endophytic microbiome that is functionally important for their growth, development, and health. In this study, the diversity and specificity of culturable endophytic fungal communities were explored in one of the most important biofuel crops, switchgrass plants (Panicum virgatum L.), which have been cultivated on a reclaimed coal-mining site for more than 20 years. The endophytic fungi were isolated from the surface-sterilized shoot (leaf and stem), root, and seed tissues of switchgrass plants and then cultured for identification. A total of 1339 fungal isolates were found and 22 operational taxonomic units (OTUs) were sequence identified by internal transcribed spacer (ITS) primers and grouped into 7 orders and 4 classes. Although a diverse range of endophytic fungi associated with switchgrass were documented, the most abundant class, order, and species were Sordariomycetes, Hypocreales, and Fusarium spp. respectively. About 86% of the isolated endophytic fungi were able to enhance the heights of the shoots; 69% could increase the shoot fresh weights; and 62% could improve the shoot dry weights after being reintroduced back into the switchgrass plants, which illustrated their functional importance. Through the Shannon Diversity Index analysis, we observed a gradation of species diversity, with shoots and roots having the similar values and seeds having a lesser value. It was observed that the switchgrass plants showing better growth performance displayed higher endophytic fungal species diversity and abundance. It was also discovered that the rhizosphere soil organic matter content was positively correlated with the fungal species diversity. All these data demonstrate the functional association of these beneficial endophytic fungi with switchgrass and their great potential in improving the switchgrass growth and biomass to benefit the biofuel industry by reducing chemical inputs and burden to the environment. PMID:29902231
Xia, Ye; Amna, Amna; Opiyo, Stephen Obol
2018-01-01
Plants have a diverse endophytic microbiome that is functionally important for their growth, development, and health. In this study, the diversity and specificity of culturable endophytic fungal communities were explored in one of the most important biofuel crops, switchgrass plants (Panicum virgatum L.), which have been cultivated on a reclaimed coal-mining site for more than 20 years. The endophytic fungi were isolated from the surface-sterilized shoot (leaf and stem), root, and seed tissues of switchgrass plants and then cultured for identification. A total of 1339 fungal isolates were found and 22 operational taxonomic units (OTUs) were sequence identified by internal transcribed spacer (ITS) primers and grouped into 7 orders and 4 classes. Although a diverse range of endophytic fungi associated with switchgrass were documented, the most abundant class, order, and species were Sordariomycetes, Hypocreales, and Fusarium spp. respectively. About 86% of the isolated endophytic fungi were able to enhance the heights of the shoots; 69% could increase the shoot fresh weights; and 62% could improve the shoot dry weights after being reintroduced back into the switchgrass plants, which illustrated their functional importance. Through the Shannon Diversity Index analysis, we observed a gradation of species diversity, with shoots and roots having the similar values and seeds having a lesser value. It was observed that the switchgrass plants showing better growth performance displayed higher endophytic fungal species diversity and abundance. It was also discovered that the rhizosphere soil organic matter content was positively correlated with the fungal species diversity. All these data demonstrate the functional association of these beneficial endophytic fungi with switchgrass and their great potential in improving the switchgrass growth and biomass to benefit the biofuel industry by reducing chemical inputs and burden to the environment.
Boyd, Charlotte; Castillo, Ramiro; Hunt, George L; Punt, André E; VanBlaricom, Glenn R; Weimerskirch, Henri; Bertrand, Sophie
2015-11-01
Understanding the ecological processes that underpin species distribution patterns is a fundamental goal in spatial ecology. However, developing predictive models of habitat use is challenging for species that forage in marine environments, as both predators and prey are often highly mobile and difficult to monitor. Consequently, few studies have developed resource selection functions for marine predators based directly on the abundance and distribution of their prey. We analysed contemporaneous data on the diving locations of two seabird species, the shallow-diving Peruvian Booby (Sula variegata) and deeper diving Guanay Cormorant (Phalacrocorax bougainvilliorum), and the abundance and depth distribution of their main prey, Peruvian anchoveta (Engraulis ringens). Based on this unique data set, we developed resource selection functions to test the hypothesis that the probability of seabird diving behaviour at a given location is a function of the relative abundance of prey in the upper water column. For both species, we show that the probability of diving behaviour is mostly explained by the distribution of prey at shallow depths. While the probability of diving behaviour increases sharply with prey abundance at relatively low levels of abundance, support for including abundance in addition to the depth distribution of prey is weak, suggesting that prey abundance was not a major factor determining the location of diving behaviour during the study period. The study thus highlights the importance of the depth distribution of prey for two species of seabird with different diving capabilities. The results complement previous research that points towards the importance of oceanographic processes that enhance the accessibility of prey to seabirds. The implications are that locations where prey is predictably found at accessible depths may be more important for surface foragers, such as seabirds, than locations where prey is predictably abundant. Analysis of the relative importance of abundance and accessibility is essential for the design and evaluation of effective management responses to reduced prey availability for seabirds and other top predators in marine systems. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Red imported fire ant impacts on upland arthropods in Southern Mississippi
Epperson, D.M.; Allen, Craig R.
2010-01-01
Red imported fire ants (Solenopsis invicta) have negative impacts on a broad array of invertebrate species. We investigated the impacts of fire ants on the upland arthropod community on 20???40 ha study sites in southern Mississippi. Study sites were sampled from 19972000 before, during, and after fire ant bait treatments to reduce fire ant populations. Fire ant abundance was assessed with bait transects on all sites, and fire ant population indices were estimated on a subset of study sites. Species richness and diversity of other ant species was also assessed from bait transects. Insect biomass and diversity was determined from light trap samples. Following treatments, fire ant abundance and population indices were significantly reduced, and ant species diversity and richness were greater on treated sites. Arthropod biomass, species diversity and species richness estimated from light trap samples were negatively correlated with fire ant abundance, but there were no observable treatment effects. Solenopsis invicta has the potential to negatively impact native arthropod communities resulting in a potential loss of both species and function.
Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.
2017-01-01
Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.
Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven?
Piccini, Irene; Nervo, Beatrice; Forshage, Mattias; Celi, Luisella; Palestrini, Claudia; Rolando, Antonio; Roslin, Tomas
2018-03-01
Rapid biodiversity loss has emphasized the need to understand how biodiversity affects the provisioning of ecological functions. Of particular interest are species and communities with versatile impacts on multiple parts of the environment, linking processes in the biosphere, lithosphere, and atmosphere to human interests in the anthroposphere (in this case, cattle farming). In this study, we examine the role of a specific group of insects - beetles feeding on cattle dung - on multiple ecological functions spanning these spheres (dung removal, soil nutrient content and greenhouse gas emissions). We ask whether the same traits which make species prone to extinction (i.e. response traits) may also affect their functional efficiency (as effect traits). To establish the link between response and effect traits, we first evaluated whether two traits (body mass and nesting strategy, the latter categorized as tunnelers or dwellers) affected the probability of a species being threatened. We then tested for a relationship between these traits and ecosystem functioning. Across Scandinavian dung beetle species, 75% of tunnelers and 30% of dwellers are classified as threatened. Hence, nesting strategy significantly affects the probability of a species being threatened, and constitutes a response trait. Effect traits varied with the ecological function investigated: density-specific dung removal was influenced by both nesting strategy and body mass, whereas methane emissions varied with body mass and nutrient recycling with nesting strategy. Our findings suggest that among Scandinavian dung beetles, nesting strategy is both a response and an effect trait, with tunnelers being more efficient in providing several ecological functions and also being more sensitive to extinction. Consequently, functionally important tunneler species have suffered disproportionate declines, and species not threatened today may be at risk of becoming so in the near future. This linkage between effect and response traits aggravates the consequences of ongoing biodiversity loss. Copyright © 2017 Elsevier B.V. All rights reserved.
Plants traditionally used to make Cantonese slow-cooked soup in China.
Liu, Yujing; Liu, Qi; Li, Ping; Xing, Deke; Hu, Huagang; Li, Lin; Hu, Xuechen; Long, Chunlin
2018-01-15
Lǎo huǒ liàng tāng (Cantonese slow-cooked soup, CSCS) is popular in Guangdong, China, and is consumed by Cantonese people worldwide as a delicious appetizer. Because CSCS serves as an important part of family healthcare, medicinal plants and plant-derived products are major components of CSCS. However, a collated record of the diverse plant species and an ethnobotanical investigation of CSCS is lacking. Because of globalization along with a renewed interest in botanical and food therapy, CSCS has attracted a growing attention in soup by industries, scientists, and consumers. This study represents the first attempt to document the plant species used for CSCS in Guangdong, China, and the associated ethnomedical function of plants, including their local names, part(s) used, flavors, nature, preparation before cooking, habitats, and conservation status. In 2014-2017, participatory approaches, open-ended conversations, and semi-structured interviews were conducted with 63 local people and 48 soup restaurant owners (111 interviews) to better understand the biocultural context of CSCS, emphasizing ethnobotanical uses of plants in Guangdong Province, China. Product samples and voucher specimens were collected for taxonomic identification. Mention Index (QI), frequency of use index (FUI), and economic index (EI) were adopted to evaluate the significance of each plant in the food supply. A total of 97 plant species belonging to 46 families and 90 genera were recorded as having been used in CSCS in the study area. Recorded menus consisted of one or several plant species, with each one used for different purposes. They were classified into 11 functions, with clearing heat being the most common medicinal function. Of the 97 species, 19 grew only in the wild, 8 species were both wild and cultivated, and 70 species were cultivated. Roots and fruits were the most commonly used plant parts in the preparation of CSCS. According to the national evaluation criteria, six of these species are listed on "China's red list" including two endangered, two critically endangered, one near-threatened, and one vulnerable species. The QI, FUI, and EI of the 97 species in the study varied between 0.09 and 1, 0.23 and 9.95, and 0.45 and 6.58, respectively. As an important part of Cantonese culture, CSCS has been popularized as a local cuisine with a healthcare function. CSCS also reflects the plant species richness and cultural diversity of Guangdong Province. Future research on the safety and efficacy of CSCS as well as on ecological and cultural conservation efforts is needed for the sustainable growth of China's botanical and medicinal plant industry.
Regan, Tracey J; Taylor, Barbara L; Thompson, Grant G; Cochrane, Jean Fitts; Ralls, Katherine; Runge, Michael C; Merrick, Richard
2013-08-01
Lack of guidance for interpreting the definitions of endangered and threatened in the U.S. Endangered Species Act (ESA) has resulted in case-by-case decision making leaving the process vulnerable to being considered arbitrary or capricious. Adopting quantitative decision rules would remedy this but requires the agency to specify the relative urgency concerning extinction events over time, cutoff risk values corresponding to different levels of protection, and the importance given to different types of listing errors. We tested the performance of 3 sets of decision rules that use alternative functions for weighting the relative urgency of future extinction events: a threshold rule set, which uses a decision rule of x% probability of extinction over y years; a concave rule set, where the relative importance of future extinction events declines exponentially over time; and a shoulder rule set that uses a sigmoid shape function, where relative importance declines slowly at first and then more rapidly. We obtained decision cutoffs by interviewing several biologists and then emulated the listing process with simulations that covered a range of extinction risks typical of ESA listing decisions. We evaluated performance of the decision rules under different data quantities and qualities on the basis of the relative importance of misclassification errors. Although there was little difference between the performance of alternative decision rules for correct listings, the distribution of misclassifications differed depending on the function used. Misclassifications for the threshold and concave listing criteria resulted in more overprotection errors, particularly as uncertainty increased, whereas errors for the shoulder listing criteria were more symmetrical. We developed and tested the framework for quantitative decision rules for listing species under the U.S. ESA. If policy values can be agreed on, use of this framework would improve the implementation of the ESA by increasing transparency and consistency. Conservation Biology © 2013 Society for Conservation Biology No claim to original US government works.
Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes.
Gibbons, John G; Rokas, Antonis
2009-03-01
Intragenic tandem repeats (ITRs) are consecutive repeats of three or more nucleotides found in coding regions. ITRs are the underlying cause of several human genetic diseases and have been associated with phenotypic variation, including pathogenesis, in several clades of the tree of life. We have examined the evolution and functional role of ITRs in 10 genomes spanning the fungal genus Aspergillus, a clade of relevance to medicine, agriculture, and industry. We identified several hundred ITRs in each of the species examined. ITR content varied extensively between species, with an average 79% of ITRs unique to a given species. For the fraction of conserved ITR regions, sequence comparisons within species and between close relatives revealed that they were highly variable. ITR-containing proteins were evolutionarily less conserved, compositionally distinct, and overrepresented for domains associated with cell-surface localization and function relative to the rest of the proteome. Furthermore, ITRs were preferentially found in proteins involved in transcription, cellular communication, and cell-type differentiation but were underrepresented in proteins involved in metabolism and energy. Importantly, although ITRs were evolutionarily labile, their functional associations appeared. To be remarkably conserved across eukaryotes. Fungal ITRs likely participate in a variety of developmental processes and cell-surface-associated functions, suggesting that their contribution to fungal lifestyle and evolution may be more general than previously assumed.
Eiserhardt, Wolf L.; Svenning, Jens-Christian; Kissling, W. Daniel; Balslev, Henrik
2011-01-01
Background The palm family occurs in all tropical and sub-tropical regions of the world. Palms are of high ecological and economical importance, and display complex spatial patterns of species distributions and diversity. Scope This review summarizes empirical evidence for factors that determine palm species distributions, community composition and species richness such as the abiotic environment (climate, soil chemistry, hydrology and topography), the biotic environment (vegetation structure and species interactions) and dispersal. The importance of contemporary vs. historical impacts of these factors and the scale at which they function is discussed. Finally a hierarchical scale framework is developed to guide predictor selection for future studies. Conclusions Determinants of palm distributions, composition and richness vary with spatial scale. For species distributions, climate appears to be important at landscape and broader scales, soil, topography and vegetation at landscape and local scales, hydrology at local scales, and dispersal at all scales. For community composition, soil appears important at regional and finer scales, hydrology, topography and vegetation at landscape and local scales, and dispersal again at all scales. For species richness, climate and dispersal appear to be important at continental to global scales, soil at landscape and broader scales, and topography at landscape and finer scales. Some scale–predictor combinations have not been studied or deserve further attention, e.g. climate on regional to finer scales, and hydrology and topography on landscape and broader scales. The importance of biotic interactions – apart from general vegetation structure effects – for the geographic ecology of palms is generally underexplored. Future studies should target scale–predictor combinations and geographic domains not studied yet. To avoid biased inference, one should ideally include at least all predictors previously found important at the spatial scale of investigation. PMID:21712297
Vegetation characteristics important to common songbirds in east Texas
Conner, Richard N.; Dickson, James G.; Locke, Brian A.; Segelquist, Charles A.
1983-01-01
Multivariate studies of breeding bird communities have used principal component analysis (PCA) or several-group (three or more groups) discriminant function analysis (DFA) to ordinate bird species on vegetational continua (Cody 1968, James 1971, Whitmore 1975). In community studies, high resolution of habitat requirements for individual species is not always possible with either PCA or several-group DFA. When habitat characteristics of several species are examined with a DFA the resultant axes optimally discriminate among all species simultaneously. Hence, the characteristics assigned to a particular species reflect in part the presence of other species in the analyses. A better resolution of each species' habitat requirements may be obtained from a two-group DFA, wherein habitats selected by a species are discriminated from all other available habitats. Analyses using two-group DFAs to compare habitat used by a species with habitat unused by the same species have the potential to provide an optimal frame of reference from which to examine habitat variables (Martinka 1972, Conner and Adkisson 1976, Whitmore 1981). Mathematically (DFA) it is possible to maximally separate two groups of multivariate observations with a single axis (Harner and whitmore 1977). A line drawn in three or n-dimensional space can easily be positioned to intersect two multivariate means (centroids). If three or more centroids for species are analyzed simultaneously, a single line can no longer intersect all centroids unless a perfectly linear relationship exists for the species being examined. The probability of such an occurrence is extremely low. Thus, a high degree of resolution can be realized when a two-group DFA is used to determine habitat parameters important to individual species. We have used two-group DFA to identify vegetation variable important to 12 common species of songbirds in East Texas.
Allergens/Antigens, toxins and polyketides of important Aspergillus species.
Bhetariya, Preetida J; Madan, Taruna; Basir, Seemi Farhat; Varma, Anupam; Usha, Sarma P
2011-04-01
The medical, agricultural and biotechnological importance of the primitive eukaryotic microorganisms, the Fungi was recognized way back in 1920. Among various groups of fungi, the Aspergillus species are studied in great detail using advances in genomics and proteomics to unravel biological and molecular mechanisms in these fungi. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Aspergillus nidulans and Aspergillus terreus are some of the important species relevant to human, agricultural and biotechnological applications. The potential of Aspergillus species to produce highly diversified complex biomolecules such as multifunctional proteins (allergens, antigens, enzymes) and polyketides is fascinating and demands greater insight into the understanding of these fungal species for application to human health. Recently a regulator gene for secondary metabolites, LaeA has been identified. Gene mining based on LaeA has facilitated new metabolites with antimicrobial activity such as emericellamides and antitumor activity such as terrequinone A from A. nidulans. Immunoproteomic approach was reported for identification of few novel allergens for A. fumigatus. In this context, the review is focused on recent developments in allergens, antigens, structural and functional diversity of the polyketide synthases that produce polyketides of pharmaceutical and biological importance. Possible antifungal drug targets for development of effective antifungal drugs and new strategies for development of molecular diagnostics are considered.
Rapid colonization of a Hawaiian restoration forest by a diverse avian community
Paxton, Eben H.; Yelenik, Stephanie G.; Borneman, Tracy E.; Rose, Eli; Camp, Richard J.; Kendall, Steve J.
2018-01-01
Deforestation of tropical forests has led to widespread loss and extirpation of forest bird species around the world, including the Hawaiian Islands which have experienced a dramatic loss of forests over the last 200–800 years. Given the important role birds play in forest ecosystem functions via seed dispersal and pollination, a bird community's response to forest restoration is an important measure of the success of such conservation actions. We evaluated the bird response to reforestation at an important bird sanctuary, Hakalau Forest National Wildlife Refuge, Hawai′i Island, using 26 years of bird count data. We show that most species from within the diverse avian community increased significantly, but species colonized the restoration forest at different rates. Distance from intact forest and time since restoration were both important predictors of colonization rate, interacting such that for most species it took more time to colonize areas farther from the intact forest. In addition, both forest cover and understory diversity helped to explain bird densities, but the effect varied among species, suggesting that different habitat requirements may help drive variation in colonization rates. This article provides the first detailed evaluation of how a diverse community of birds has responded to one of the largest, ongoing reforestation projects in Hawai′i.
Quero, José L.; Maestre, Fernando T.; Ochoa, Victoria; García-Gómez, Miguel; Delgado-Baquerizo, Manuel
2016-01-01
One of the most important changes taking place in drylands worldwide is the increase of the cover and dominance of shrubs in areas formerly devoid of them (shrub encroachment). A large body of research has evaluated the causes and consequences of shrub encroachment for both ecosystem structure and functioning. However, there are virtually no studies evaluating how shrub encroachment affects the ability of ecosystems to maintain multiple functions and services simultaneously (multifunctionality). We aimed to do so by gathering data from ten ecosystem functions linked to the maintenance of primary production and nutrient cycling and storage (organic C, activity of β-glucosidase, pentoses, hexoses, total N, total available N, amino acids, proteins, available inorganic P and phosphatase activity), and summarizing them in a multifunctionality index (M). We assessed how climate, species richness, anthropic factors (distance to the nearest town, sandy and asphalted road, and human population in the nearest town at several historical periods) and encroachment by sprouting shrubs impacted both the functions in isolation and M along a regional (ca. 350 km) gradient in Mediterranean grasslands and shrublands dominated by a non-sprouting shrub. Values of M were higher in those grasslands and shrublands containing sprouting shrubs (43% and 62%, respectively). A similar response was found when analyzing the different functions in isolation, as encroachment by sprouting shrubs increased functions by 2%–80% compared to unencroached areas. Encroachment was the main driver of changes in M along the regional gradient evaluated, followed by anthropic factors and species richness. Climate had little effects on M in comparison to the other factors studied. Similar responses were observed when evaluating the functions in isolation. Overall, our results showed that M was higher at sites with higher sprouting shrub cover, longer distance to roads and higher perennial plant species richness. Our study is the first documenting that ecosystem multifunctionality in shrublands is enhanced by encroaching shrubs differing in size and leaf attributes. Our findings reinforce the idea that encroachment effects on ecosystem functioning cannot be generalized, and that are largely dependent on the traits of the encroaching shrub relative to those of the species being replaced. PMID:27330403
A voice region in the monkey brain.
Petkov, Christopher I; Kayser, Christoph; Steudel, Thomas; Whittingstall, Kevin; Augath, Mark; Logothetis, Nikos K
2008-03-01
For vocal animals, recognizing species-specific vocalizations is important for survival and social interactions. In humans, a voice region has been identified that is sensitive to human voices and vocalizations. As this region also strongly responds to speech, it is unclear whether it is tightly associated with linguistic processing and is thus unique to humans. Using functional magnetic resonance imaging of macaque monkeys (Old World primates, Macaca mulatta) we discovered a high-level auditory region that prefers species-specific vocalizations over other vocalizations and sounds. This region not only showed sensitivity to the 'voice' of the species, but also to the vocal identify of conspecific individuals. The monkey voice region is located on the superior-temporal plane and belongs to an anterior auditory 'what' pathway. These results establish functional relationships with the human voice region and support the notion that, for different primate species, the anterior temporal regions of the brain are adapted for recognizing communication signals from conspecifics.
Tredennick, Andrew T; Adler, Peter B; Adler, Frederick R
2017-08-01
Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability. © 2017 John Wiley & Sons Ltd/CNRS.
Functional and phylogenetic structure of island bird communities.
Si, Xingfeng; Cadotte, Marc W; Zeng, Di; Baselga, Andrés; Zhao, Yuhao; Li, Jiaqi; Wu, Yiru; Wang, Siyu; Ding, Ping
2017-05-01
Biodiversity change in anthropogenically transformed habitats is often nonrandom, yet the nature and importance of the different mechanisms shaping community structure are unclear. Here, we extend the classic Theory of Island Biogeography (TIB) to account for nonrandom processes by incorporating species traits and phylogenetic relationships into a study of faunal relaxation following habitat loss and fragmentation. Two possible mechanisms can create nonrandom community patterns on fragment islands. First, small and isolated islands might consist of similar or closely related species because they are environmentally homogeneous or select for certain shared traits, such as dispersal ability. Alternatively, communities on small islands might contain more dissimilar or distantly related species than on large islands because limited space and resource availability result in greater competitive exclusion among species with high niche overlap. Breeding birds were surveyed on 36 islands and two mainland sites annually from 2010 to 2014 in the Thousand Island Lake region, China. We assessed community structure of breeding birds on these subtropical land-bridge islands by integrating species' trait and evolutionary distances. We additionally analysed habitat heterogeneity and variance in size ratios to distinguish biotic and abiotic processes of community assembly. Results showed that functional-phylogenetic diversity increased with island area, and decreased with isolation. Bird communities on the mainland were more diverse and generally less clustered than island bird communities and not different than randomly assembled communities. Bird communities on islands tend to be functionally similar and phylogenetically clustered, especially on small and isolated islands. The nonrandom decline in species diversity and change in bird community structure with island area and isolation, along with the relatively homogeneous habitats on small islands, support the environmental filtering hypothesis. Our study demonstrates the importance of integrating multiple forms of diversity for understanding the effects of habitat loss and fragmentation, and further reveals that TIB could be extended to community measures by moving beyond assumptions of species equivalency in colonisation rates and extinction susceptibilities. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Penning, David A; Dartez, Schuyler F; Moon, Brad R
2015-11-01
Snakes are important predators that have radiated throughout many ecosystems, and constriction was important in their radiation. Constrictors immobilize and kill prey by using body loops to exert pressure on their prey. Despite its importance, little is known about constriction performance or its full effects on prey. We studied the scaling of constriction performance in two species of giant pythons (Python reticulatus and Python molurus bivittatus) and propose a new mechanism of prey death by constriction. In both species, peak constriction pressure increased significantly with snake diameter. These and other constrictors can exert pressures dramatically higher than their prey's blood pressure, suggesting that constriction can stop circulatory function and perhaps kill prey rapidly by over-pressurizing the brain and disrupting neural function. We propose the latter 'red-out effect' as another possible mechanism of prey death from constriction. These effects may be important to recognize and treat properly in rare cases when constrictors injure humans. © 2015. Published by The Company of Biologists Ltd.
Moving forward with fine-root definitions and research
McCormack, M. Luke; Iversen, Colleen M.; Eissenstat, David M.
2016-08-30
Here, in the letter published in this issue of New Phytologist (pp. 310-312), 'Fine roots - functional definition expanded to crop species?' Dr. Zobel emphasizes the importance of heterogeneity within crop-root systems.
Nordell, Cameron J; Haché, Samuel; Bayne, Erin M; Sólymos, Péter; Foster, Kenneth R; Godwin, Christine M; Krikun, Richard; Pyle, Peter; Hobson, Keith A
2016-01-01
Understanding bird migration and dispersal is important to inform full life-cycle conservation planning. Stable hydrogen isotope ratios from feathers (δ2Hf) can be linked to amount-weighted long-term, growing season precipitation δ2H (δ2Hp) surfaces to create δ2Hf isoscapes for assignment to molt origin. However, transfer functions linking δ2Hp with δ2Hf are influenced by physiological and environmental processes. A better understanding of the causes and consequences of variation in δ2Hf values among individuals and species will improve the predictive ability of geographic assignment tests. We tested for effects of species, land cover, forage substrate, nest substrate, diet composition, body mass, sex, and phylogenetic relatedness on δ2Hf from individuals at least two years old of 21 songbird species captured during the same breeding season at a site in northeastern Alberta, Canada. For four species, we also tested for a year × species interaction effect on δ2Hf. A model including species as single predictor received the most support (AIC weight = 0.74) in explaining variation in δ2Hf. A species-specific variance parameter was part of all best-ranked models, suggesting variation in δ2Hf was not consistent among species. The second best-ranked model included a forage substrate × diet interaction term (AIC weight = 0.16). There was a significant year × species interaction effect on δ2Hf suggesting that interspecific differences in δ2Hf can differ among years. Our results suggest that within- and among-year interspecific variation in δ2Hf is the most important source of variance typically not being explicitly quantified in geographic assignment tests using non-specific transfer functions to convert δ2Hp into δ2Hf. However, this source of variation is consistent with the range of variation from the transfer functions most commonly being propagated in assignment tests of geographic origins for passerines breeding in North America.
Nikitkova, Anna E.; Haase, Elaine M.
2013-01-01
α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation. PMID:23144140
Nowroozi, Bryan N; Brainerd, Elizabeth L
2014-02-01
Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness. Copyright © 2013 Elsevier GmbH. All rights reserved.
Ecological consequences of invasion across the freshwater-marine transition in a warming world.
Crespo, Daniel; Solan, Martin; Leston, Sara; Pardal, Miguel A; Dolbeth, Marina
2018-02-01
The freshwater-marine transition that characterizes an estuarine system can provide multiple entry options for invading species, yet the relative importance of this gradient in determining the functional contribution of invading species has received little attention. The ecological consequences of species invasion are routinely evaluated within a freshwater versus marine context, even though many invasive species can inhabit a wide range of salinities. We investigate the functional consequences of different sizes of Corbicula fluminea -an invasive species able to adapt to a wide range of temperatures and salinity-across the freshwater-marine transition in the presence versus absence of warming. Specifically, we characterize how C. fluminea affect fluid and particle transport, important processes in mediating nutrient cycling (NH 4 -N, NO 3 -N, PO 4 -P). Results showed that sediment particle reworking (bioturbation) tends to be influenced by size and to a lesser extent, temperature and salinity; nutrient concentrations are influenced by different interactions between all variables (salinity, temperature, and size class). Our findings demonstrate the highly context-dependent nature of the ecosystem consequences of invasion and highlight the potential for species to simultaneously occupy multiple components of an ecosystem. Recognizing of this aspect of invasibility is fundamental to management and conservation efforts, particularly as freshwater and marine systems tend to be compartmentalized rather than be treated as a contiguous unit. We conclude that more comprehensive appreciation of the distribution of invasive species across adjacent habitats and different seasons is urgently needed to allow the true extent of biological introductions, and their ecological consequences, to be fully realized.
Multiple mechanisms of early plant community assembly with stochasticity driving the process.
Marteinsdóttir, Bryndís; Svavarsdóttir, Kristín; Thórhallsdóttir, Thóra Ellen
2018-01-01
Initial plant establishment is one of the most critical phases in ecosystem development, where an early suite of physical (environmental filtering), biological (seed limitation, species interactions) and stochastic factors may affect successional trajectories and rates. While functional traits are commonly used to study processes that influence plant community assembly in late successional communities, few studies have applied them to primary succession. The objective here was to determine the importance of these factors in shaping early plant community assembly on a glacial outwash plain, Skeiðarársandur, in SE Iceland using a trait based approach. We used data on vascular plant assemblages at two different spatial scales (community and neighborhood) sampled in 2005 and 2012, and compiled a dataset on seven functional traits linked to species dispersal abilities, establishment, and persistence for all species within these assemblages. Trait-based null model analyses were used to determine the processes that influenced plant community assembly from the regional species pool into local communities, and to determine if the importance of these processes in community assembly was dependent on local environment or changed with time. On the community scale, for most traits, random processes dominated the assembly from the regional species pool. However, in some communities, there was evidence of non-random assembly in relation to traits linked to species dispersal abilities, persistence, and establishment. On the neighborhood scale, assembly was mostly random. The relative importance of different processes varied spatially and temporally and the variation was linked to local soil conditions. While stochasticity dominated assembly patterns of our early successional communities, there was evidence of both seed limitation and environmental filtering. Our results indicated that as soil conditions improved, environmental constraints on assembly became weaker and the assembly became more dependent on species availability. © 2017 by the Ecological Society of America.
Hefer, Charles A; Mizrachi, Eshchar; Myburg, Alexander A; Douglas, Carl J; Mansfield, Shawn D
2015-06-01
Wood formation is a complex developmental process governed by genetic and environmental stimuli. Populus and Eucalyptus are fast-growing, high-yielding tree genera that represent ecologically and economically important species suitable for generating significant lignocellulosic biomass. Comparative analysis of the developing xylem and leaf transcriptomes of Populus trichocarpa and Eucalyptus grandis together with phylogenetic analyses identified clusters of homologous genes preferentially expressed during xylem formation in both species. A conserved set of 336 single gene pairs showed highly similar xylem preferential expression patterns, as well as evidence of high functional constraint. Individual members of multi-gene orthologous clusters known to be involved in secondary cell wall biosynthesis also showed conserved xylem expression profiles. However, species-specific expression as well as opposite (xylem versus leaf) expression patterns observed for a subset of genes suggest subtle differences in the transcriptional regulation important for xylem development in each species. Using sequence similarity and gene expression status, we identified functional homologs likely to be involved in xylem developmental and biosynthetic processes in Populus and Eucalyptus. Our study suggests that, while genes involved in secondary cell wall biosynthesis show high levels of gene expression conservation, differential regulation of some xylem development genes may give rise to unique xylem properties. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Kennedy, Gordon J; Afeworki, Mobae; Calabro, David C; Chase, Clarence E; Smiley, Randolph J
2004-06-01
Distinct hydrogen species are present in important inorganic solids such as zeolites, silicoaluminophosphates (SAPOs), mesoporous materials, amorphous silicas, and aluminas. These H species include hydrogens associated with acidic sites such as Al(OH)Si, non-framework aluminum sites, silanols, and surface functionalities. Direct and quantitative methodology to identify, measure, and monitor these hydrogen species are key to monitoring catalyst activity, optimizing synthesis conditions, tracking post-synthesis structural modifications, and in the preparation of novel catalytic materials. Many workers have developed several techniques to address these issues, including 1H MAS NMR (magic-angle spinning nuclear magnetic resonance). 1H MAS NMR offers many potential advantages over other techniques, but care is needed in recognizing experimental limitations and developing sample handling and NMR methodology to obtain quantitatively reliable data. A simplified approach is described that permits vacuum dehydration of multiple samples simultaneously and directly in the MAS rotor without the need for epoxy, flame sealing, or extensive glovebox use. We have found that careful optimization of important NMR conditions, such as magnetic field homogeneity and magic angle setting are necessary to acquire quantitative, high-resolution spectra that accurately measure the concentrations of the different hydrogen species present. Details of this 1H MAS NMR methodology with representative applications to zeolites, SAPOs, M41S, and silicas as a function of synthesis conditions and post-synthesis treatments (i.e., steaming, thermal dehydroxylation, and functionalization) are presented.
Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing
Wang, Wei; Wang, Yejun; Zhang, Qing; Qi, Yan; Guo, Dianjing
2009-01-01
Background Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. Results We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes. Conclusion The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua. PMID:19818120
Martins, Fabiane F; Beguelini, Mateus R; Puga, Cintia C I; Morielle-Versute, Eliana; Vilamaior, Patricia S L; Taboga, Sebastião R
2016-07-01
The male reproductive accessory glands (RAGs) are important organs that contribute to the secretion of different substances that composed the ejaculate. Despite this important function, their composition, anatomy and function vary widely between species. Thus, the RAGs of three species of phyllostomid bats were morphologically and ultrastructurally characterized and compared in this study. The RAGs of the three analyzed species are composed of a prostate and a pair of bulbourethral glands (BG). In all species, the prostate is composed of three well-defined regions (ventral, dorsolateral and dorsal regions). The ventral region showed an atypical epithelium (undefined) with no obvious cellular limits and a holocrine PAS-positive secretion. The dorsolateral region of Carollia perspicillata and Phyllostomus discolor showed a pseudostratified cubic morphology, and that from Glossophaga soricina had a columnar morphology endowed with cytoplasmic projections and stereocilia. The dorsal region of the three analyzed species is composed of a pseudostratified columnar epithelium endowed with stereocilia; however, G. soricina also presented cytoplasmic projections in the apical portions of the secretory cells similar to those in the dorsolateral region. The BG of the three analyzed species are composed of a pseudostratified columnar epithelium including basal and PAS-positive secretory cells. In conclusion, this study morphologically and ultrastructurally characterized the RAGs of three species of phyllostomid bats, demonstrating the presence of a novel third prostatic region in species of this family. The results also showed the absence of seminal vesicles and ampullary glands, and better characterized the holocrine pattern of the prostatic ventral region, which is unique to bats. Copyright © 2016 Elsevier GmbH. All rights reserved.
Resurrection of DNA Function In Vivo from an Extinct Genome
Pask, Andrew J.; Behringer, Richard R.; Renfree, Marilyn B.
2008-01-01
There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity. PMID:18493600
NASA Astrophysics Data System (ADS)
Redmond, Laura E.; Loewen, Charlie J. G.; Vinebrooke, Rolf D.
2018-03-01
Cumulative impacts of multiple stressors on freshwater biodiversity and ecosystem function likely increase with elevation, thereby possibly placing alpine communities at greatest risk. Here, consideration of species traits enables stressor effects on taxonomic composition to be translated into potential functional impacts. We analyzed data for 47 taxa across 137 mountain lakes and ponds spanning large latitudinal (491 km) and elevational (1,399 m) gradients in western Canada, to assess regional and local factors of the taxonomic composition and functional structure of zooplankton communities. Multivariate community analyses revealed that small body size, clonal reproduction via parthenogenesis, and lack of pigmentation were species traits associated with both introduced non-native sportfish and also environmental conditions reflecting a warmer and drier climate—namely higher water temperatures, shallower water depths, and more chemically concentrated water. Thus, historical introductions of sportfish appear to have potentially induced greater tolerance in zooplankton communities of future climatic warming, especially in previously fishless alpine lakes. Although alpine lake communities occupied a relatively small functional space (i.e., low functional diversity), they were contained within the broader regional functional structure. Therefore, our findings point to the importance of dispersal by lower montane species to the future functional stability of alpine communities.
Female preferences drive the evolution of mimetic accuracy in male sexual displays.
Coleman, Seth William; Patricelli, Gail Lisa; Coyle, Brian; Siani, Jennifer; Borgia, Gerald
2007-10-22
Males in many bird species mimic the vocalizations of other species during sexual displays, but the evolutionary and functional significance of interspecific vocal mimicry is unclear. Here we use spectrographic cross-correlation to compare mimetic calls produced by male satin bowerbirds (Ptilonorhynchus violaceus) in courtship with calls from several model species. We show that the accuracy of vocal mimicry and the number of model species mimicked are both independently related to male mating success. Multivariate analyses revealed that these mimetic traits were better predictors of male mating success than other male display traits previously shown to be important for male mating success. We suggest that preference-driven mimetic accuracy may be a widespread occurrence, and that mimetic accuracy may provide females with important information about male quality. Our findings support an alternative hypothesis to help explain a common element of male sexual displays.
Urbanisation tolerance and the loss of avian diversity.
Sol, Daniel; González-Lagos, Cesar; Moreira, Darío; Maspons, Joan; Lapiedra, Oriol
2014-08-01
Urbanisation is considered an important driver of current biodiversity loss, but the underlying causes are not fully understood. It is generally assumed that this loss reflects the fact that most organisms do not tolerate well the environmental alterations associated with urbanisation. Nevertheless, current evidence is inconclusive and the alternative that the biodiversity loss is the result of random mechanisms has never been evaluated. Analysing changes in abundance between urbanised environments and their non-urbanised surroundings of > 800 avian species from five continents, we show here that although random processes account for part of the species loss associated with urbanisation, much of the loss is associated with a lack of appropriate adaptations of most species for exploiting resources and avoiding risks of the urban environments. These findings have important conservation implications because the extinction of species with particular features should have higher impact on biodiversity and ecosystem function than a random loss. © 2014 John Wiley & Sons Ltd/CNRS.
Yee, D. A.; Juliano, S. A.
2007-01-01
The more individuals hypothesis (MIH) postulates that productivity increases species richness by increasing mean equilibrium population size, thereby reducing the probability of local extinction. We tested the MIH for invertebrates colonizing microcosms that simulated tree holes by manipulating productivity through additions of leaf or animal detritus and subsequently determining the relationships among richness, total abundance, abundance per species, and measures of productivity. We quantified productivity as the rate of microorganism protein synthesis, microorganism metabolic rate, nutrient ion concentration, and type and amount of detritus. Microcosms with animal detritus attracted more species, more individuals per species, and more total individuals than did microcosms with similar amounts of leaf detritus. Relationships between richness or abundance and productivity varied with date. Richness in June increased as a linear function of productivity, whereas the power function predicted by the MIH fit best in July. Abundance in June and July was best described by a power function of productivity, but the linear function predicted by the MIH fit best in September. Abundance per species was best described by a power function of productivity in June and July. Path analysis showed that the indirect effect of productivity through abundance on richness that is predicted by MIH was important in all months, and that direct links between productivity and richness were unnecessary. Our results support many of the predictions of the MIH, but they also suggest that the effects of abundance on richness may be more complex than expected. PMID:17401581
Trophic flexibility and the persistence of understory birds in intensively logged rainforest.
Edwards, David P; Woodcock, Paul; Newton, Rob J; Edwards, Felicity A; Andrews, David J R; Docherty, Teegan D S; Mitchell, Simon L; Ota, Takahiro; Benedick, Suzan; Bottrell, Simon H; Hamer, Keith C
2013-10-01
Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable-isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic-niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic-niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic-niche widths in degraded forest. Species with narrow trophic-niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species' trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. © 2013 Society for Conservation Biology.
Huang, Liujing; Chen, Hongfeng; Ren, Hai; Wang, Jun; Guo, Qinfeng
2013-06-01
We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of urbanization. Vegetation data and soil properties were collected from 30 400-m(2) plots at 6 study sites in urban and rural areas. The difference of plant species diversity and PFTs of remnant forests between urban and rural areas were analyzed. To discern the complex relationships, multivariate statistical analyses (e.g., canonical correspondence analysis and regression analysis) were employed. Pioneer species and stress-tolerant species can survive and vigorously establish their population dominance in the urban environment. The native herb diversity was lower in urban forests than in rural forests. Urban forests tend to prefer the species with Mesophanerophyte life form. In contrast, species in rural forests possessed Chamaephyte and Nanophanerophyte life forms and gravity/clonal growth dispersal mode. Soil pH and soil nutrients (K, Na, and TN) were positively related to herb diversity, while soil heavy metal concentrations (Cu) were negatively correlated with herb diversity. The herb plant species diversity declines and the species in the remnant forests usually have stress-tolerant functional traits in response to urbanization. The factors related to urbanization such as soil acidification, nutrient leaching, and heavy metal pollution were important in controlling the plant diversity in the forests along the urban-rural gradients. Urbanization affects the structure and functional traits of remnant subtropical evergreen broad-leaved forests.
Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas
2016-10-01
The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of maximum plant height, reflecting the importance of forest vertical stratification for diversity-carbon relationship. We therefore argue for stronger complementary effects that would be induced also by complementary light-use efficiency of tree and species growing in the understory layer.
Biodiversity enhances reef fish biomass and resistance to climate change.
Duffy, J Emmett; Lefcheck, Jonathan S; Stuart-Smith, Rick D; Navarrete, Sergio A; Edgar, Graham J
2016-05-31
Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.
Saunders, Megan; Glenn, Anthony E; Kohn, Linda M
2010-01-01
All plants, including crop species, harbor a community of fungal endophyte species, yet we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the study of functional trait variation in the host and its fungal consortium. We review studies on crop endophytes that investigate plant and fungal traits likely to be important in endophyte community processes. We focus on approaches that could speed detection of general trends in endophyte community assembly: (i) use of the ‘assembly rules’ concept to identify specific mechanisms that influence endophyte community dynamics, (ii) measurement of functional trait variation in plants and fungi to better understand endophyte community processes and plant–fungal interactions, and (iii) investigation of microbe–microbe interactions, and fungal traits that mediate them. This approach is well suited for research in agricultural systems, where pair-wise host–fungus interactions and mechanisms of fungal–fungal competition have frequently been described. Areas for consideration include the possibility that human manipulation of crop phenotype and deployment of fungal biocontrol species can significantly influence endophyte community assembly. Evaluation of endophyte assembly rules may help to fine-tune crop management strategies. PMID:25567944
Caudal autotomy and regeneration in lizards.
Clause, Amanda R; Capaldi, Elizabeth A
2006-12-01
Caudal autotomy, or the voluntary self-amputation of the tail, is an anti-predation strategy in lizards that depends on a complex array of environmental, individual, and species-specific characteristics. These factors affect both when and how often caudal autotomy is employed, as well as its overall rate of success. The potential costs of autotomy must be weighed against the benefits of this strategy. Many species have evolved specialized behavioral and physiological adaptations to minimize or compensate for any negative consequences. One of the most important steps following a successful autotomous escape involves regeneration of the lost limb. In some species, regeneration occurs rapidly; such swift regeneration illustrates the importance of an intact, functional tail in everyday experience. In lizards and other vertebrates, regeneration is a highly ordered process utilizing initial developmental programs as well as regeneration-specific mechanisms to produce the correct types and pattern of cells required to sufficiently restore the structure and function of the sacrificed tail. In this review, we discuss the behavioral and physiological features of self-amputation, with particular reference to the costs and benefits of autotomy and the basic mechanisms of regeneration. In the process, we identify how these behaviors could be used to explore the neural regulation of complex behavioral responses within a functional context. Copyright 2006 Wiley-Liss, Inc.
Aspinwall, Michael J; Lowry, David B; Taylor, Samuel H; Juenger, Thomas E; Hawkes, Christine V; Johnson, Mari-Vaughn V; Kiniry, James R; Fay, Philip A
2013-09-01
Examining intraspecific variation in growth and function in relation to climate may provide insight into physiological evolution and adaptation, and is important for predicting species responses to climate change. Under common garden conditions, we grew nine genotypes of the C₄ species Panicum virgatum originating from different temperature and precipitation environments. We hypothesized that genotype productivity, morphology and physiological traits would be correlated with climate of origin, and a suite of adaptive traits would show high broad-sense heritability (H(2)). Genotype productivity and flowering time increased and decreased, respectively, with home-climate temperature, and home-climate temperature was correlated with genotypic differences in a syndrome of morphological and physiological traits. Genotype leaf and tiller size, leaf lamina thickness, leaf mass per area (LMA) and C : N ratios increased with home-climate temperature, whereas leaf nitrogen per unit mass (Nm ) and chlorophyll (Chl) decreased with home-climate temperature. Trait variation was largely explained by genotypic differences (H(2) = 0.33-0.85). Our results provide new insight into the role of climate in driving functional trait coordination, local adaptation and genetic divergence within species. These results emphasize the importance of considering intraspecific variation in future climate change scenarios. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Biodiversity enhances reef fish biomass and resistance to climate change
Duffy, J. Emmett; Lefcheck, Jonathan S.; Navarrete, Sergio A.; Edgar, Graham J.
2016-01-01
Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey’s global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean. PMID:27185921
NASA Astrophysics Data System (ADS)
Veiga, P.; Rubal, M.; Vieira, R.; Arenas, F.; Sousa-Pinto, I.
2013-03-01
Natural assemblages are variable in space and time; therefore, quantification of their variability is imperative to identify relevant scales for investigating natural or anthropogenic processes shaping these assemblages. We studied the variability of intertidal macroalgal assemblages on the North Portuguese coast, considering three spatial scales (from metres to 10 s of kilometres) following a hierarchical design. We tested the hypotheses that (1) spatial pattern will be invariant at all the studied scales and (2) spatial variability of macroalgal assemblages obtained by using species will be consistent with that obtained using functional groups. This was done considering as univariate variables: total biomass and number of taxa as well as biomass of the most important species and functional groups and as multivariate variables the structure of macroalgal assemblages, both considering species and functional groups. Most of the univariate results confirmed the first hypothesis except for the total number of taxa and foliose macroalgae that showed significant variability at the scale of site and area, respectively. In contrast, when multivariate patterns were examined, the first hypothesis was rejected except at the scale of 10 s of kilometres. Both uni- and multivariate results indicated that variation was larger at the smallest scale, and thus, small-scale processes seem to have more effect on spatial variability patterns. Macroalgal assemblages, both considering species and functional groups as surrogate, showed consistent spatial patterns, and therefore, the second hypothesis was confirmed. Consequently, functional groups may be considered a reliable biological surrogate to study changes on macroalgal assemblages at least along the investigated Portuguese coastline.
Li, Shuai; Dong, Shikui; Zhang, Xiangfeng; Liu, Shiliang; Shi, Jianbin; Gao, Xiaoxia; Swift, David; Xu, Yudan; Shen, Hao; Yang, Mingyue; Margarida, Canhoto Coxixo Ana
2018-04-20
Temperate desert is one of the globally important biomes with unique and valuable biodiversity, which might be threatened by environmental stresses and human disturbance associated with rapid development. However, few studies have documented the spatial distribution of the multifaceted plant diversity of the temperate desert and their relationships with external impacting factors. We sampled multifaceted plant species diversity including taxonomic diversity, functional diversity and phylogenetic diversity in the Alashan Desert along Beijing-Xinjiang Expressway (G6) in Northern China to identify the key factors and process which regulate the multifaceted plant diversity of the temperate desert. We found that the dynamics of species richness, functional richness, and phylogenetic richness along the elevational gradient corresponded to the unimodal model. Species phylogenetic development shifted from aggregation to divergence, while species functional traits were the opposite along the elevational gradient. The sites at an elevation around 1200-1400 m were the key habitats for the occurrence of high plant diversity including species richness, functional richness and phylogenetic richness. There were no significant differences (p > 0.05) in plant diversity at different distances from the road (500 m, 1000 m and 1500 m) and human disturbances (the distance from the nearest human settlements). Temperature, temperature variability, precipitation, precipitation variability, soil physical and chemistry properties showed no significant effects on plant diversity. It was concluded that evolutionary history and functional traits, not environmental or anthropogenic factors were the key determinants of the pattern of multifaceted plant diversity. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen
2016-01-01
Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress. PMID:26838812
Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen
2016-02-03
Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.
Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes
Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy
2015-01-01
Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335
2010-01-01
Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family. PMID:20964856
Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species
Gomes, Elisa Couto; Silva, Albená Nunes; de Oliveira, Marta Rubino
2012-01-01
This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise. PMID:22701757
Rao, Soumya; Nandineni, Madhusudan R
2017-01-01
Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.
Factors affecting plant species composition of hedgerows: relative importance and hierarchy
NASA Astrophysics Data System (ADS)
Deckers, Bart; Hermy, Martin; Muys, Bart
2004-07-01
Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.
Rao, Soumya
2017-01-01
Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens. PMID:28846714
Melissa H Friedman; Michael G. Andreu; Wayne Zipperer; Rob J. Northrop; Amr Abd-Elrahman
2015-01-01
Natural communities near freshwater hydrological features provide important ecosystem functions and services. As human populations increase, forested landscapes become increasingly fragmented and deforested, which may result in a loss of the functions and services they provide. To investigate the current state of forested natural communities in the rapidly urbanizing...
Grassein, Fabrice; Lemauviel-Lavenant, Servane; Lavorel, Sandra; Bahn, Michael; Bardgett, Richard D.; Desclos-Theveniau, Marie; Laîné, Philippe
2015-01-01
Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species’ coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies. Methods Root uptake of NH4+ and NO3–, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions. Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+. Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits. PMID:25471096
NASA Astrophysics Data System (ADS)
Cachera, M.; Ernande, B.; Villanueva, M. C.; Lefebvre, S.
2017-02-01
Individual diet variation (i.e. diet variation among individuals) impacts intra- and inter-specific interactions. Investigating its sources and relationship with species trophic niche organization is important for understanding community structure and dynamics. Individual diet variation may increase with intra-specific phenotypic (or "individual state") variation and habitat variability, according to Optimal Foraging Theory (OFT), and with species trophic niche width, according to the Niche Variation Hypothesis (NVH). OFT proposes "proximate sources" of individual diet variation such as variations in habitat or size whereas NVH relies on "ultimate sources" related to the competitive balance between intra- and inter-specific competitions. The latter implies as a corollary that species trophic niche overlap, taken as inter-specific competition measure, decreases as species niche width and individual niche variation increase. We tested the complementary predictions of OFT and NVH in a marine fish assemblage using stomach content data and associated trophic niche metrics. The NVH predictions were tested between species of the assemblage and decomposed into a between- and a within-functional group component to assess the potential influence of species' ecological function. For most species, individual diet variation and niche overlap were consistently larger than expected. Individual diet variation increased with intra-specific variability in individual state and habitat, as expected from OFT. It also increased with species niche width but in compliance with the null expectation, thus not supporting the NVH. In contrast, species niche overlap increased significantly less than null expectation with both species niche width and individual diet variation, supporting NVH corollary. The between- and within-functional group components of the NVH relationships were consistent with those between species at the assemblage level. Changing the number of prey categories used to describe diet (from 16 to 41) did not change the results qualitatively. These results suggest that, besides proximate sources, intra-specific competition favors higher individual diet variation than expected while inter-specific competition limits the increase of individual diet variation and of species niche overlap with species niche expansion. This reveals partial trophic resource partitioning between species. Various niche metrics used in combination allow inferring competition effects on trophic niches' organization within communities.
Better Smelling Through Genetics: Mammalian Odor Perception
Keller, Andreas; Vosshall, Leslie B.
2008-01-01
SUMMARY The increasing availability of genomic and genetic tools to study olfaction—the sense of smell—has brought important new insights into how this chemosensory modality functions in different species. Newly sequenced mammalian genomes—from platypus to dog—have made it possible to infer how smell has evolved to suit the needs of a given species and how variation within a species may affect individual olfactory perception. This review will focus on recent advances in the genetics and genomics of mammalian smell, with a primary focus on rodents and humans. PMID:18938244
De Palma, Adriana; Kuhlmann, Michael; Bugter, Rob; Ferrier, Simon; Hoskins, Andrew J; Potts, Simon G; Roberts, Stuart P M; Schweiger, Oliver; Purvis, Andy
2017-12-01
Agricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more comprehensive understanding of human impacts on bee diversity across Europe, we assess multiple, complementary indices of diversity. One Thousand four hundred and forty six sites across Europe. We collated data on bee occurrence and abundance from the published literature and supplemented them with the PREDICTS database. Using Rao's Quadratic Entropy, we assessed how species, functional and phylogenetic diversity of 1,446 bee communities respond to land-use characteristics including land-use class, cropland intensity, human population density and distance to roads. We combined these models with statistically downscaled estimates of land use in 2005 to estimate and map-at a scale of approximately 1 km 2 -the losses in diversity relative to semi-natural/natural baseline (the predicted diversity of an uninhabited grid square, consisting only of semi-natural/natural vegetation). We show that-relative to the predicted local diversity in uninhabited semi-natural/natural habitat-half of all EU27 countries have lost over 10% of their average local species diversity and two-thirds of countries have lost over 5% of their average local functional and phylogenetic diversity. All diversity measures were generally lower in pasture and higher-intensity cropland than in semi-natural/natural vegetation, but facets of diversity showed less consistent responses to human population density. These differences have led to marked spatial mismatches in losses: losses in phylogenetic diversity were in some areas almost 20 percentage points (pp.) more severe than losses in species diversity, but in other areas losses were almost 40 pp. less severe. These results highlight the importance of exploring multiple measures of diversity when prioritizing and evaluating conservation actions, as species-diverse assemblages may be phylogenetically and functionally impoverished, potentially threatening pollination service provision.
Trait Variation Along a Forest Successional Gradient in Dry Tropical Forest, Florida Keys
NASA Astrophysics Data System (ADS)
Subedi, S.; Ross, M. S.
2016-12-01
In most part of South Florida tropical dry forests, the early colonized trees on disturbed uplands are mostly deciduous species cable of surviving for several years after establishment. However, trees in mature forests are generally characterized by a suite of evergreen species, most of which are completely absent in younger stands even in seedling stage. This complete transition from one functional group to another in the course of stand development suggests a distinct change in the underlying environment during the course of succession. Such change in hammock functional groups as a function of the changing environmental drivers during succession in tropical dry forests is unknown and addressing this question may help to understand which drivers of change act as filters that select for and against particular groups of species and traits. In this study, we evaluate number of important functional traits (specific leaf area, wood density, leaf d13C, leaf N:P ratio, and architectural traits such as height, crown dimensions, diameter at breast height) for woody plant species occurring along a successional gradient across three ecological scales, community, species, and individual. A significant change in the overall trait distribution across the successional gradient is found. Intraspecific trait variation within the community is increased with increase in forest age. Most of these traits have shown correlation with stand age and showed preference to a certain environment. Stand age is the most important variable explaining the distribution of community characteristics. It is found that early successional forest are mostly shaped by environmental driven processes, and as forest get older and structurally more complex, they are increasingly shaped by competitively driven processes leading to limiting similarity. This study has shown that the patterns of trait shift can be predictable and can be used to characterize habitats and stage of forest succession in dry tropical forest.
Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R
2016-12-01
There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously. © 2016 by the Ecological Society of America.
Biodiversity and Resilience of Ecosystem Functions.
Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M
2015-11-01
Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Invasive species management restores a plant-pollinator mutualism in Hawaii
Hanna, Cause; Foote, David; Kremen, Claire
2013-01-01
1.The management and removal of invasive species may give rise to unanticipated changes in plant–pollinator mutualisms because they can alter the composition and functioning of plant–pollinator interactions in a variety of ways. To utilize a functional approach for invasive species management, we examined the restoration of plant–pollinator mutualisms following the large-scale removal of an invasive nectar thief and arthropod predator, Vespula pensylvanica. 2.We reduced V. pensylvanica populations in large plots managed over multiple years to examine the response of plant–pollinator mutualisms and the fruit production of a functionally important endemic Hawaiian tree species, Metrosideros polymorpha. To integrate knowledge of the invader's behaviour and the plant's mating system, we determined the efficacy of V. pensylvanica as a pollinator of M. polymorpha and quantified the dependence of M. polymorpha on animal pollination (e.g. level of self-compatibility and pollen limitation). 3.The reduction of V. pensylvanica in managed sites, when compared to unmanaged sites, resulted in a significant increase in the visitation rates of effective bee pollinators (e.g. introduced Apis mellifera and native Hylaeus spp.) and in the fruit production of M. polymorpha. 4.Apis mellifera, following the management of V. pensylvanica, appears to be acting as a substitute pollinator for M. polymorpha, replacing extinct or threatened bird and bee species in our study system. 5.Synthesis and applications. Fruit production of the native M. polymorpha was increased after management of the invasive pollinator predator V. pensylvanica; however, the main pollinators were no longer native but introduced. This research thus demonstrates the diverse impacts of introduced species on ecological function and the ambiguous role they play in restoration. We recommend incorporating ecological function and context into invasive species management as this approach may enable conservation managers to simultaneously minimize the negative and maximize the positive impacts (e.g. taxon substitution) of introduced species. Such novel restoration approaches are needed, especially in highly degraded ecosystems.
Rolhauser, Andrés G; Pucheta, Eduardo
2017-03-01
How plant functional traits (e.g., seed mass) drive species abundance within communities remains an unsolved question. Borrowing concepts from natural selection theory, we propose that trait-abundance relationships can generally correspond to one of three modes of trait selection: directional (a rectilinear relationship, where species at one end of a trait axis are most abundant), stabilizing (an n-shaped relationship), and disruptive (a u-shaped relationship). Stabilizing selection (i.e., the functional convergence of abundant species) would result from positive density-dependent interactions (e.g., facilitation) or due to generalized trade-offs in resource acquisition/use, while disruptive selection (i.e., the divergence of abundant species) would result from negative density-dependent interactions (e.g., competition) or due to environmental heterogeneity. These selection modes can be interpreted as proxies for community-level trait-fitness functions, which establish the degree to which traits are truly "functional". We searched for selection modes in a desert annual-plant community in Argentina (which was divided into winter and summer guilds) to test the hypothesis that the relative importance of disruptive mechanisms (competition, disturbances) decreases with the increase of abiotic stress, a stabilizing agent. Average density was analyzed as a function of eight traits generally linked to resource acquisition and competitive ability (maximum plant height, leaf size, specific leaf area, specific root length), resource retention and stress tolerance (leaf dissection, leaf dry matter content, specific root volume), and regeneration (seed mass) using multiple quadratic-regression models. Trait selection was stabilizing and/or directional when the environment was harshest (winter) and disruptive and/or directional when conditions were milder (summer). Selection patterns differed between guilds for two important traits: plant height and seed mass. These results suggest that abiotic stress may drive within-community functional convergence independently of the trait considered, opposing the view that some traits may be inherently convergent while others divergent. Our quadratic model-based approach provides standardized metrics of both linear and nonlinear selection that may allow simple comparisons among communities subjected to contrasting environmental conditions. These concepts, rooted in natural selection theory, may clarify the functional link between traits and species abundance, and thus help untangle the contributions of deterministic and stochastic processes on community assembly. © 2017 by the Ecological Society of America.
Factors affecting the concordance between orthologous gene trees and species tree in bacteria.
Castillo-Ramírez, Santiago; González, Víctor
2008-10-30
As originally defined, orthologous genes implied a reflection of the history of the species. In recent years, many studies have examined the concordance between orthologous gene trees and species trees in bacteria. These studies have produced contradictory results that may have been influenced by orthologous gene misidentification and artefactual phylogenetic reconstructions. Here, using a method that allows the detection and exclusion of false positives during identification of orthologous genes, we address the question of whether putative orthologous genes within bacteria really reflect the history of the species. We identified a set of 370 orthologous genes from the bacterial order Rhizobiales. Although manifesting strong vertical signal, almost every orthologous gene had a distinct phylogeny, and the most common topology among the orthologous gene trees did not correspond with the best estimate of the species tree. However, each orthologous gene tree shared an average of 70% of its bipartitions with the best estimate of the species tree. Stochastic error related to gene size affected the concordance between the best estimated of the species tree and the orthologous gene trees, although this effect was weak and distributed unevenly among the functional categories. The nodes showing the greatest discordance were those defined by the shortest internal branches in the best estimated of the species tree. Moreover, a clear bias was evident with respect to the function of the orthologous genes, and the degree of divergence among the orthologous genes appeared to be related to their functional classification. Orthologous genes do not reflect the history of the species when taken as individual markers, but they do when taken as a whole. Stochastic error affected the concordance of orthologous genes with the species tree, albeit weakly. We conclude that two important biological causes of discordance among orthologous genes are incomplete lineage sorting and functional restriction.
Conservation of myeloid surface antigens on primate granulocytes.
Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D
1983-02-01
Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.
Slope failure as an upslope source of stream wood
Daniel Miller
2013-01-01
Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...
Softwood lumber products in the United States: substitutes, complements, or unrelated?
Rao V. Nagubadi; Daowei Zhang; Jeffrey P. Prestemon; David N. Wear
2004-01-01
This study addresses an important dimension concerning the softwood lumber trade dispute between United States and Canada-substitutability among imported and domestically produced species. We employ the restricted translog subcost function approach to study this issue based on the monthly data of US softwood products consumption and prices between Jan. 1989 and July...
Busch, D. Shallin; McElhany, Paul
2016-01-01
Ocean acidification (OA) has the potential to restructure ecosystems due to variation in species sensitivity to the projected changes in ocean carbon chemistry. Ecological models can be forced with scenarios of OA to help scientists, managers, and other stakeholders understand how ecosystems might change. We present a novel methodology for developing estimates of species sensitivity to OA that are regionally specific, and applied the method to the California Current ecosystem. To do so, we built a database of all published literature on the sensitivity of temperate species to decreased pH. This database contains 393 papers on 285 species and 89 multi-species groups from temperate waters around the world. Research on urchins and oysters and on adult life stages dominates the literature. Almost a third of the temperate species studied to date occur in the California Current. However, most laboratory experiments use control pH conditions that are too high to represent average current chemistry conditions in the portion of the California Current water column where the majority of the species live. We developed estimates of sensitivity to OA for functional groups in the ecosystem, which can represent single species or taxonomically diverse groups of hundreds of species. We based these estimates on the amount of available evidence derived from published studies on species sensitivity, how well this evidence could inform species sensitivity in the California Current ecosystem, and the agreement of the available evidence for a species/species group. This approach is similar to that taken by the Intergovernmental Panel on Climate Change to characterize certainty when summarizing scientific findings. Most functional groups (26 of 34) responded negatively to OA conditions, but when uncertainty in sensitivity was considered, only 11 groups had relationships that were consistently negative. Thus, incorporating certainty about the sensitivity of species and functional groups to OA is an important part of developing robust scenarios for ecosystem projections. PMID:27513576
Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning.
Barnes, Andrew D; Jochum, Malte; Mumme, Steffen; Haneda, Noor Farikhah; Farajallah, Achmad; Widarto, Tri Heru; Brose, Ulrich
2014-10-28
Our knowledge about land-use impacts on biodiversity and ecosystem functioning is mostly limited to single trophic levels, leaving us uncertain about whole-community biodiversity-ecosystem functioning relationships. We analyse consequences of the globally important land-use transformation from tropical forests to oil palm plantations. Species diversity, density and biomass of invertebrate communities suffer at least 45% decreases from rainforest to oil palm. Combining metabolic and food-web theory, we calculate annual energy fluxes to model impacts of land-use intensification on multitrophic ecosystem functioning. We demonstrate a 51% reduction in energy fluxes from forest to oil palm communities. Species loss clearly explains variation in energy fluxes; however, this relationship depends on land-use systems and functional feeding guilds, whereby predators are the most heavily affected. Biodiversity decline from forest to oil palm is thus accompanied by even stronger reductions in functionality, threatening to severely limit the functional resilience of communities to cope with future global changes.
Plant-Pollinator Coextinctions and the Loss of Plant Functional and Phylogenetic Diversity
Vieira, Marcos Costa; Cianciaruso, Marcus Vinicius; Almeida-Neto, Mário
2013-01-01
Plant-pollinator coextinctions are likely to become more frequent as habitat alteration and climate change continue to threaten pollinators. The consequences of the resulting collapse of plant communities will depend partly on how quickly plant functional and phylogenetic diversity decline following pollinator extinctions. We investigated the functional and phylogenetic consequences of pollinator extinctions by simulating coextinctions in seven plant-pollinator networks coupled with independent data on plant phylogeny and functional traits. Declines in plant functional diversity were slower than expected under a scenario of random extinctions, while phylogenetic diversity often decreased faster than expected by chance. Our results show that plant functional diversity was relatively robust to plant-pollinator coextinctions, despite the underlying rapid loss of evolutionary history. Thus, our study suggests the possibility of uncoupled responses of functional and phylogenetic diversity to species coextinctions, highlighting the importance of considering both dimensions of biodiversity explicitly in ecological studies and when planning for the conservation of species and interactions. PMID:24312281
Water flow and fin shape polymorphism in coral reef fishes.
Binning, Sandra A; Roche, Dominique G
2015-03-01
Water flow gradients have been linked to phenotypic differences and swimming performance across a variety of fish assemblages. However, the extent to which water motion shapes patterns of phenotypic divergence within species remains unknown. We tested the generality of the functional relationship between swimming morphology and water flow by exploring the extent of fin and body shape polymorphism in 12 widespread species from three families (Acanthuridae, Labridae, Pomacentridae) of pectoral-fin swimming (labriform) fishes living across localized wave exposure gradients. The pectoral fin shape of Labridae and Acanthuridae species was strongly related to wave exposure: individuals with more tapered, higher aspect ratio (AR) fins were found on windward reef crests, whereas individuals with rounder, lower AR fins were found on leeward, sheltered reefs. Three of seven Pomacentridae species showed similar trends, and pectoral fin shape was also strongly related to wave exposure in pomacentrids when fin aspect ratios of three species were compared across flow habitats at very small spatial scales (<100 m) along a reef profile (reef slope, crest, and back lagoon). Unlike fin shape, there were no intraspecific differences in fish body fineless ratio across habitats or depths. Contrary to our predictions, there was no pattern relating species' abundances to polymorphism across habitats (i.e., abundance was not higher at sites where morphology is better adapted to the environment). This suggests that there are behavioral and/or physiological mechanisms enabling some species to persist across flow habitats in the absence of morphological differences. We suggest that functional relationships between swimming morphology and water flow not only structure species assemblages, but are yet another important variable contributing to phenotypic differences within species. The close links between fin shape polymorphism and local water flow conditions appear to be important for understanding species' distributions as well as patterns of diversification across environmental gradients.
The function and evolution of the Aspergillus genome
Gibbons, John G.; Rokas, Antonis
2012-01-01
Species in the filamentous fungal genus Aspergillus display a wide diversity of lifestyles and are of great importance to humans. The decoding of genome sequences from a dozen species that vary widely in their degree of evolutionary affinity has galvanized studies of the function and evolution of the Aspergillus genome in clinical, industrial, and agricultural environments. Here, we synthesize recent key findings that shed light on the architecture of the Aspergillus genome, on the molecular foundations of the genus’ astounding dexterity and diversity in secondary metabolism, and on the genetic underpinnings of virulence in Aspergillus fumigatus, one of the most lethal fungal pathogens. Many of these insights dramatically expand our knowledge of fungal and microbial eukaryote genome evolution and function and argue that Aspergillus constitutes a superb model clade for the study of functional and comparative genomics. PMID:23084572
Callaghan, Bridget L; Sullivan, Regina M; Howell, Brittany; Tottenham, Nim
2014-12-01
Early-life caregiving shapes the architecture and function of the developing brain. The fact that the infant-caregiver relationship is critically important for infant functioning across all altricial species, and that the anatomical circuits supporting emotional functioning are highly preserved across different species, suggests that the results of studies examining the role of early adversity and emotional functioning should be translatable across species. Here we present findings from four different research laboratories, using three different species, which have converged on a similar finding: adversity accelerates the developmental trajectory of amygdala-prefrontal cortex (PFC) development and modifies emotional behaviors. First, a rodent model of attachment learning associated with adversity is presented showing precocial disruption of attachment learning and emergence of heightened fear learning and emotionality. Second, a model of infant-mother separation is presented in which early adversity is shown to accelerate the developmental emergence of adult-like fear retention and extinction. Third, a model of early life adversity in Rhesus monkeys is presented in which a naturally occurring variation in maternal-care (abuse) is shown to alter the functioning of emotion circuits. Finally, a human model of maternal deprivation is presented in which children born into orphanages and then adopted abroad exhibit aberrant development of emotion circuits. The convergence of these cross-species studies on early life adversity suggests that adversity targets the amygdala and PFC and has immediate impact on infant behavior with the caregiver, and emotional reactions to the world. These results provide insight into mechanisms responsible for caregiver induced mental health trajectory alterations. © 2014 Wiley Periodicals, Inc.
Intraspecific variability and reaction norms of forest understory plant species traits
Burton, Julia I.; Perakis, Steven; McKenzie, Sean C.; Lawrence, Caitlin E.; Puettmann, Klaus J.
2017-01-01
Trait-based models of ecological communities typically assume intraspecific variation in functional traits is not important, though such variation can change species trait rankings along gradients in resources and environmental conditions, and thus influence community structure and function.We examined the degree of intraspecific relative to interspecific variation, and reaction norms of 11 functional traits for 57 forest understory plant species, including: intrinsic water-use efficiency (iWUE), Δ15N, 5 leaf traits, 2 stem traits and 2 root traits along gradients in light, nitrogen, moisture and understory cover.Our results indicate that interspecific trait variation exceeded intraspecific variation by at least 50% for most, but not all traits. Intraspecific variation in Δ15N, iWUE, leaf nitrogen content and root traits was high (47-70%) compared with most leaf traits and stem traits (13-38%).Δ15N varied primarily along gradients in abiotic conditions, while light and understory cover were relatively less important. iWUE was related primarily to light transmission, reflecting increases in photosynthesis relative to stomatal conductance. Leaf traits varied mainly as a function of light availability, with some reaction norms depending on understory cover. Plant height increased with understory cover, while stem specific density was related primarily to light. Resources, environmental conditions and understory cover did not contribute strongly to the observed variation in root traits.Gradients in resources, environmental conditions and competition all appear to control intraspecific variability in most traits to some extent. However, our results suggest that species cross-over (i.e., trait rank reversals) along the gradients measured here are generally not a concern.Intraspecific variability in understory plant species traits can be considerable. However, trait data collected under a narrow range of environmental conditions appears sufficient to establish species rankings and scale between community and ecosystem levels using trait-based models. Investigators may therefore focus on obtaining a sufficient sample size within a single set of conditions rather than characterizing trait variation across entire gradients in order to optimize sampling efforts.
Unravelling the architecture of functional variability in wild populations of Polygonum viviparum L
Boucher, Florian C.; Thuiller, Wilfried; Arnoldi, Cindy; Albert, Cécile H.; Lavergne, Sébastien
2014-01-01
SUMMARY Functional variability (FV) of populations can be decomposed into three main features: the individual variability of multiple traits, the strength of correlations between those traits and the main direction of these correlations, the latter two being known as ‘phenotypic integration’. Evolutionary biology has long recognized that FV in natural populations is key to determining potential evolutionary responses, but this topic has been little studied in functional ecology. Here we focus on the arctico-alpine perennial plant species Polygonum viviparum L.. We used a comprehensive sampling of seven functional traits in 29 wild populations covering the whole environmental niche of the species. The niche of the species was captured by a temperature gradient, which separated alpine stressful habitats from species-rich, competitive sub-alpine ones. We seeked to assess the relative roles of abiotic stress and biotic interactions in shaping different aspects of functional variation within and among populations, that is, the multi-trait variability, the strength of correlations between traits, and the main directions of functional trade-offs. Populations with the highest extent of functional variability were found in the warm end of the gradient whereas populations exhibiting the strongest degree of phenotypic integration were located in sites with intermediate temperatures. This could reveal both the importance of environmental filtering and population demography in structuring FV. Interestingly, we found that the main axes of multivariate functional variation were radically different within and across population. Although the proximate causes of FV structure remain uncertain, our study presents a robust methodology for the quantitative study of functional variability in connection with species’ niches. It also opens up new perspectives for the conceptual merging of intraspecific functional patterns with community ecology. PMID:24790285
Amundsen, Per-Arne; Lafferty, Kevin D; Knudsen, Rune; Primicerio, Raul; Kristoffersen, Roar; Klemetsen, Anders; Kuris, Armand M
2013-04-01
Introduced species can alter the topology of food webs. For instance, an introduction can aid the arrival of free-living consumers using the new species as a resource, while new parasites may also arrive with the introduced species. Food-web responses to species additions can thus be far more complex than anticipated. In a subarctic pelagic food web with free-living and parasitic species, two fish species (arctic charr Salvelinus alpinus and three-spined stickleback Gasterosteus aculeatus) have known histories as deliberate introductions. The effects of these introductions on the food web were explored by comparing the current pelagic web with a heuristic reconstruction of the pre-introduction web. Extinctions caused by these introductions could not be evaluated by this approach. The introduced fish species have become important hubs in the trophic network, interacting with numerous parasites, predators and prey. In particular, five parasite species and four predatory bird species depend on the two introduced species as obligate trophic resources in the pelagic web and could therefore not have been present in the pre-introduction network. The presence of the two introduced fish species and the arrival of their associated parasites and predators increased biodiversity, mean trophic level, linkage density, and nestedness; altering both the network structure and functioning of the pelagic web. Parasites, in particular trophically transmitted species, had a prominent role in the network alterations that followed the introductions.
Amundsen, Per-Arne; Lafferty, Kevin D.; Knudsen, Rune; Primicerio, Raul; Kristoffersen, Roar; Klemetsen, Anders; Kuris, Armand M.
2012-01-01
Introduced species can alter the topology of food webs. For instance, an introduction can aid the arrival of free-living consumers using the new species as a resource, while new parasites may also arrive with the introduced species. Food-web responses to species additions can thus be far more complex than anticipated. In a subarctic pelagic food web with free-living and parasitic species, two fish species (arctic charr Salvelinus alpinus and three-spined stickleback Gasterosteus aculeatus) have known histories as deliberate introductions. The effects of these introductions on the food web were explored by comparing the current pelagic web with a heuristic reconstruction of the pre-introduction web. Extinctions caused by these introductions could not be evaluated by this approach. The introduced fish species have become important hubs in the trophic network, interacting with numerous parasites, predators and prey. In particular, five parasite species and four predatory bird species depend on the two introduced species as obligate trophic resources in the pelagic web and could therefore not have been present in the pre-introduction network. The presence of the two introduced fish species and the arrival of their associated parasites and predators increased biodiversity, mean trophic level, linkage density, and nestedness; altering both the network structure and functioning of the pelagic web. Parasites, in particular trophically transmitted species, had a prominent role in the network alterations that followed the introductions.
McCully, Alexandra L; Behringer, Megan G; Gliessman, Jennifer R; Pilipenko, Evgeny V; Mazny, Jeffrey L; Lynch, Michael; Drummond, D Allan; McKinlay, James B
2018-05-04
Microbial mutualistic cross-feeding interactions are ubiquitous and can drive important community functions. Engaging in cross-feeding undoubtedly affects the physiology and metabolism of individual species involved. However, the nature in which an individual's physiology is influenced by cross-feeding and the importance of those physiological changes for the mutualism have received little attention. We previously developed a genetically tractable coculture to study bacterial mutualisms. The coculture consists of fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris In this coculture, E. coli anaerobically ferments sugars into excreted organic acids as a carbon source for R. palustris In return, a genetically-engineered R. palustris constitutively converts N 2 into NH 4 + , providing E. coli with essential nitrogen. Using RNA-seq and proteomics, we identified transcript and protein levels that differ in each partner when grown in coculture versus monoculture. When in coculture with R. palustris , E. coli gene-expression changes resembled a nitrogen starvation response under the control of the transcriptional regulator NtrC. By genetically disrupting E. coli NtrC, we determined that a nitrogen starvation response is important for a stable coexistence, especially at low R. palustris NH 4 + excretion levels. Destabilization of the nitrogen starvation regulatory network resulted in variable growth trends and in some cases, extinction. Our results highlight that alternative physiological states can be important for survival within cooperative cross-feeding relationships. Importance Mutualistic cross-feeding between microbes within multispecies communities is widespread. Studying how mutualistic interactions influence the physiology of each species involved is important for understanding how mutualisms function and persist in both natural and applied settings. Using a bacterial mutualism consisting of Rhodopseudomonas palustris and Escherichia coli growing cooperatively through bidirectional nutrient exchange, we determined that an E. coli nitrogen starvation response is important for maintaining a stable coexistence. The lack of an E. coli nitrogen starvation response ultimately destabilized the mutualism and, in some cases, led to community collapse after serial transfers. Our findings thus inform on the potential necessity of an alternative physiological state for mutualistic coexistence with another species compared to the physiology of species grown in isolation. Copyright © 2018 American Society for Microbiology.
Different clades and traits yield similar grassland functional responses
Forrestel, Elisabeth J.; Donoghue, Michael J.; Edwards, Erika J.; Jetz, Walter; du Toit, Justin C. O.; Smith, Melinda D.
2017-01-01
Plant functional traits are viewed as key to predicting important ecosystem and community properties across resource gradients within and among biogeographic regions. Vegetation dynamics and ecosystem processes, such as aboveground net primary productivity (ANPP), are increasingly being modeled as a function of the quantitative traits of species, which are used as proxies for photosynthetic rates and nutrient and water-use efficiency. These approaches rely on an assumption that a certain trait value consistently confers a specific function or response under given environmental conditions. Here, we provide a critical test of this idea and evaluate whether the functional traits that drive the well-known relationship between precipitation and ANPP differ between systems with distinct biogeographic histories and species assemblages. Specifically, we compared grasslands spanning a broad precipitation gradient (∼200–1,000 mm/y) in North America and South Africa that differ in the relative representation and abundance of grass phylogenetic lineages. We found no significant difference between the regions in the positive relationship between annual precipitation and ANPP, yet the trait values underlying this relationship differed dramatically. Our results challenge the trait-based approach to predicting ecosystem function by demonstrating that different combinations of functional traits can act to maximize ANPP in a given environmental setting. Further, we show the importance of incorporating biogeographic and phylogenetic history in predicting community and ecosystem properties using traits. PMID:28074042
Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun
2016-01-01
Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.
Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun
2016-01-01
Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325
Effects of fire on small mammal communities in frequent-fire forests in California
Roberts, Susan L.; Kelt, Douglas A.; Van Wagtendonk, Jan W.; Miles, A. Keith; Meyer, Marc D.
2015-01-01
Fire is a natural, dynamic process that is integral to maintaining ecosystem function. The reintroduction of fire (e.g., prescribed fire, managed wildfire) is a critical management tool for protecting many frequent-fire forests against stand-replacing fires while restoring an essential ecological process. Understanding the effects of fire on forests and wildlife communities is important in natural resource planning efforts. Small mammals are key components of forest food webs and essential to ecosystem function. To investigate the relationship of fire to small mammal assemblages, we live trapped small mammals in 10 burned and 10 unburned forests over 2 years in the central Sierra Nevada, California. Small mammal abundance was higher in unburned forests, largely reflecting the greater proportion of closed-canopy species such as Glaucomys sabrinus in unburned forests. The most abundant species across the entire study area was the highly adaptable generalist species, Peromyscus maniculatus. Species diversity was similar between burned and unburned forests, but burned forests were characterized by greater habitat heterogeneity and higher small mammal species evenness. The use and reintroduction of fire to maintain a matrix of burn severities, including large patches of unburned refugia, creates a heterogeneous and resilient landscape that allows for fire-sensitive species to proliferate and, as such, may help maintain key ecological functions and diverse small mammal assemblages.
Campbell, Megan; Ganetzky, Barry
2012-03-13
Although the complexity and circuitry of nervous systems undergo evolutionary change, we lack understanding of the general principles and specific mechanisms through which it occurs. The Drosophila larval neuromuscular junction (NMJ), which has been widely used for studies of synaptic development and function, is also an excellent system for studies of synaptic evolution because the genus spans >40 Myr of evolution and the same identified synapse can be examined across the entire phylogeny. We have now characterized morphology of the NMJ on muscle 4 (NMJ4) in >20 species of Drosophila. Although there is little variation within a species, NMJ morphology and complexity vary extensively between species. We find no significant correlation between NMJ phenotypes and phylogeny for the species examined, suggesting that drift alone cannot explain the phenotypic variation and that selection likely plays an important role. However, the nature of the selective pressure is still unclear because basic parameters of synaptic function remain uniform. Whatever the mechanism, NMJ morphology is evolving rapidly in comparison with other morphological features because NMJ phenotypes differ even between several sibling species pairs. The discovery of this unexpectedly extensive divergence in NMJ morphology among Drosophila species provides unique opportunities to investigate mechanisms that regulate synaptic growth; the interrelationships between synaptic morphology, neural function, and behavior; and the evolution of nervous systems and behavior in natural populations.
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2011-01-01
The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.
Vacuum-based surface modification of organic and metallic substrates
NASA Astrophysics Data System (ADS)
Torres, Jessica
Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous-containing polymer surfaces through ion implantation of trimethyl phosphine onto PE is presented. Air exposure of the resulting P-implanted PE leads to the surface selective oxidation of phosphorous moieties. P-containing hydrocarbon films are used to model the surface chemical changes of P-containing polymers exposed to AO. Results indicate that oxidized phosphorous species protect the film from AO-induced erosion. The low temperature (<150 K) oxidation of nitrided iron surfaces exposed to oxygen reveal the formation of iron oxynitride (FexNyO z, nitrosonium ions (NO+) as well as nitrite/nitrito and nitrate type species. The production of nitrite/nitrito and nitrate species is taken as evidence for the existence of oxygen insertion chemistry into the iron nitride lattice under these low temperature oxidation conditions. Upon annealing the oxidized iron nitride surface, nitrogen desorbs exclusively as nitric oxide (NO).
Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan
2015-07-20
Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants' competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change.
Xie, Jiang-Bo; Xu, Gui-Qing; Jenerette, G. Darrel; Bai, Yong-fei; Wang, Zhong-Yuan; Li, Yan
2015-01-01
Species competitive abilities and their distributions are closely related to functional traits such as biomass allocation patterns. When we consider how nutrient supply affects competitive abilities, quantifying the apparent and true plasticity in functional traits is important because the allometric relationships among traits are universal in plants. We propose to integrate the notion of allometry and the classical reaction norm into a composite theoretical framework that quantifies the apparent and true plasticity. Combining the framework with a meta-analysis, a series of field surveys and a competition experiment, we aimed to determine the causes of the dune/interdune distribution patterns of two Haloxylon species in the Gurbantonggut Desert. We found that (1) the biomass allocation patterns of both Haloxylon species in responses to environmental conditions were apparent rather than true plasticity and (2) the allometric allocation patterns affected the plants’ competition for soil nutrient supply. A key implication of our results is that the apparent plasticity in functional traits of plants determines their response to environmental change. Without identifying the apparent and true plasticity, we would substantially overestimate the magnitude, duration and even the direction of plant responses in functional traits to climate change. PMID:26190745
Biodiversity, ecosystem functioning, and classical biological control.
Evans, Edward W
Increasing concern over worldwide loss of biodiversity has led ecologists to focus intently on how ecosystem functioning may depend on diversity. In applied entomology, there is longstanding interest in the issue, especially as regards the importance of natural enemy diversity for pest control. Here I review parallels in interest, conceptual framework, and conclusions concerning biodiversity as it affects ecosystem functioning in general and classical biological control in particular. Whereas the former focuses on implications of loss of diversity, the latter focuses on implications of increase in diversity as additional species of natural enemies are introduced to novel communities in new geographic regions for insect pest and weed control. Many field studies now demonstrate that ecosystem functioning, e.g., as reflected in primary productivity, is enhanced and stabilized over time by high diversity as the community increases in its efficiency in exploiting available resources. Similarly, there is growing field support for the generalization that increasing species and functional diversity of natural enemies leads to increasing pest suppression. Nonetheless a central concern of classical biological control in particular, as it seeks to minimize non-target effects, remains as to whether one or a few species of natural enemies can provide sufficient pest control.
Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S
2017-07-01
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities. © 2016 John Wiley & Sons Ltd.
Kengwoung-Keumo, Jean-Jacques
2016-08-01
We propose a model of two-species competition in the chemostat for a single growth-limiting, nonreproducing resource that extends that of Roy [38]. The response functions are specified to be Michaelis-Menten, and there is no predation in Roy's work. Our model generalizes Roy's model to general uptake functions. The competition is exploitative so that species compete by decreasing the common pool of resources. The model also allows allelopathic effects of one toxin-producing species, both on itself (autotoxicity) and on its nontoxic competitor (phytotoxicity). We show that a stable coexistence equilibrium exists as long as (a) there are allelopathic effects and (b) the input nutrient concentration is above a critical value. The model is reconsidered under instantaneous nutrient recycling. We further extend this work to include a zooplankton species as a fourth interacting component to study the impact of predation on the ecosystem. The zooplankton species is allowed to feed only on the two phytoplankton species which are its perfectly substitutable resources. Each of the models is analyzed for boundedness, equilibria, stability, and uniform persistence (or permanence). Each model structure fits very well with some harmful algal bloom observations where the phytoplankton assemblage can be envisioned in two compartments, toxin producing and non-toxic. The Prymnesium parvum literature, where the suppressing effects of allelochemicals are quite pronounced, is a classic example. This work advances knowledge in an area of research becoming ever more important, which is understanding the functioning of allelopathy in food webs.
Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.
Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei
2015-02-01
WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.
Kumwenda, Benjamin; Litthauer, Derek; Reva, Oleg
2014-09-25
Bacteria of genus Thermus inhabit both man-made and natural thermal environments. Several Thermus species have shown biotechnological potential such as reduction of heavy metals which is essential for eradication of heavy metal pollution; removing of organic contaminants in water; opening clogged pipes, controlling global warming among many others. Enzymes from thermophilic bacteria have exhibited higher activity and stability than synthetic or enzymes from mesophilic organisms. Using Meiothermus silvanus DSM 9946 as a reference genome, high level of coordinated rearrangements has been observed in extremely thermophilic Thermus that may imply existence of yet unknown evolutionary forces controlling adaptive re-organization of whole genomes of thermo-extremophiles. However, no remarkable differences were observed across species on distribution of functionally related genes on the chromosome suggesting constraints imposed by metabolic networks. The metabolic network exhibit evolutionary pressures similar to levels of rearrangements as measured by the cross-clustering index. Using stratigraphic analysis of donor-recipient, intensive gene exchanges were observed from Meiothermus species and some unknown sources to Thermus species confirming a well established DNA uptake mechanism as previously proposed. Global genome rearrangements were found to play an important role in the evolution of Thermus bacteria at both genomic and metabolic network levels. Relatively higher level of rearrangements was observed in extremely thermophilic Thermus strains in comparison to the thermo-tolerant Thermus scotoductus. Rearrangements did not significantly disrupt operons and functionally related genes. Thermus species appeared to have a developed capability for acquiring DNA through horizontal gene transfer as shown by the donor-recipient stratigraphic analysis.
Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia.
Shikov, Alexander N; Tsitsilin, Andrey N; Pozharitskaya, Olga N; Makarov, Valery G; Heinrich, Michael
2017-01-01
Historically Russia can be regarded as a "herbophilious" society. For centuries the multinational population of Russia has used plants in daily diet and for self-medication. The specificity of dietary uptake of medicinal plants (especially those in the unique and highly developed Russian herbal medical tradition) has remained mostly unknown in other regions. Based on 11th edition of the State Pharmacopoeia of the USSR, we selected 70 wild plant species which have been used in food by local Russian populations. Empirical searches were conducted via the Russian-wide applied online database E-library.ru, library catalogs of public libraries in St-Petersburg, the databases Scopus, Web of Science, PubMed, and search engine Google Scholar. The large majority of species included in Russian Pharmacopoeia are used as food by local population, however, aerial parts are more widely used for food. In this review, we summarize data on medicinal species published in Russia and other countries that are included in the Russian Pharmacopoeia and have being used in food for a long time. Consequently, the Russian Pharmacopoeia is an important source of information on plant species used traditionally at the interface of food and medicine. At the same time, there are the so-called "functional foods", which denotes foods that not only serves to provide nutrition but also can be a source for prevention and cure of various diseases. This review highlights the potential of wild species of Russia monographed in its pharmacopeia for further developing new functional foods and-through the lens of their incorporation into the pharmacopeia-showcases the species' importance in Russia.
Emslie, Michael J.; Cheal, Alistair J.; Johns, Kerryn A.
2014-01-01
High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year), spatially extensive (∼115,000 kms2) dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef. PMID:25140801
Emslie, Michael J; Cheal, Alistair J; Johns, Kerryn A
2014-01-01
High biodiversity ecosystems are commonly associated with complex habitats. Coral reefs are highly diverse ecosystems, but are under increasing pressure from numerous stressors, many of which reduce live coral cover and habitat complexity with concomitant effects on other organisms such as reef fishes. While previous studies have highlighted the importance of habitat complexity in structuring reef fish communities, they employed gradient or meta-analyses which lacked a controlled experimental design over broad spatial scales to explicitly separate the influence of live coral cover from overall habitat complexity. Here a natural experiment using a long term (20 year), spatially extensive (∼ 115,000 kms(2)) dataset from the Great Barrier Reef revealed the fundamental importance of overall habitat complexity for reef fishes. Reductions of both live coral cover and habitat complexity had substantial impacts on fish communities compared to relatively minor impacts after major reductions in coral cover but not habitat complexity. Where habitat complexity was substantially reduced, species abundances broadly declined and a far greater number of fish species were locally extirpated, including economically important fishes. This resulted in decreased species richness and a loss of diversity within functional groups. Our results suggest that the retention of habitat complexity following disturbances can ameliorate the impacts of coral declines on reef fishes, so preserving their capacity to perform important functional roles essential to reef resilience. These results add to a growing body of evidence about the importance of habitat complexity for reef fishes, and represent the first large-scale examination of this question on the Great Barrier Reef.
AmpuBase: a transcriptome database for eight species of apple snails (Gastropoda: Ampullariidae).
Ip, Jack C H; Mu, Huawei; Chen, Qian; Sun, Jin; Ituarte, Santiago; Heras, Horacio; Van Bocxlaer, Bert; Ganmanee, Monthon; Huang, Xin; Qiu, Jian-Wen
2018-03-05
Gastropoda, with approximately 80,000 living species, is the largest class of Mollusca. Among gastropods, apple snails (family Ampullariidae) are globally distributed in tropical and subtropical freshwater ecosystems and many species are ecologically and economically important. Ampullariids exhibit various morphological and physiological adaptations to their respective habitats, which make them ideal candidates for studying adaptation, population divergence, speciation, and larger-scale patterns of diversity, including the biogeography of native and invasive populations. The limited availability of genomic data, however, hinders in-depth ecological and evolutionary studies of these non-model organisms. Using Illumina Hiseq platforms, we sequenced 1220 million reads for seven species of apple snails. Together with the previously published RNA-Seq data of two apple snails, we conducted de novo transcriptome assembly of eight species that belong to five genera of Ampullariidae, two of which represent Old World lineages and the other three New World lineages. There were 20,730 to 35,828 unigenes with predicted open reading frames for the eight species, with N50 (shortest sequence length at 50% of the unigenes) ranging from 1320 to 1803 bp. 69.7% to 80.2% of these unigenes were functionally annotated by searching against NCBI's non-redundant, Gene Ontology database and the Kyoto Encyclopaedia of Genes and Genomes. With these data we developed AmpuBase, a relational database that features online BLAST functionality for DNA/protein sequences, keyword searching for unigenes/functional terms, and download functions for sequences and whole transcriptomes. In summary, we have generated comprehensive transcriptome data for multiple ampullariid genera and species, and created a publicly accessible database with a user-friendly interface to facilitate future basic and applied studies on ampullariids, and comparative molecular studies with other invertebrates.
Armero, Alix; Baudouin, Luc; Bocs, Stéphanie; This, Dominique
2017-01-01
The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market. In this study, we present a workflow that exploits the comparative genomics between a target species (coconut) and a reference species (oil palm) to improve the transcriptomic data, providing a proteome useful to answer functional or evolutionary questions. This workflow reduces redundancy and fragmentation, two inherent problems of transcriptomic data, while preserving the functional representation of the target species. Our approach was validated in Arabidopsis thaliana using Arabidopsis lyrata and Capsella rubella as references species. This analysis showed the high sensitivity and specificity of our strategy, relatively independent of the reference proteome. The workflow increased the length of proteins products in A. thaliana by 13%, allowing, often, to recover 100% of the protein sequence length. In addition redundancy was reduced by a factor greater than 3. In coconut, the approach generated 29,366 proteins, 1,246 of these proteins deriving from new contigs obtained with the BRANCH software. The coconut proteome presented a functional profile similar to that observed in rice and an important number of metabolic pathways related to secondary metabolism. The new sequences found with BRANCH software were enriched in functions related to biotic stress. Our strategy can be used as a complementary step to de novo transcriptome assembly to get a representative proteome of a target species. The results of the current analysis are available on the website PalmComparomics (http://palm-comparomics.southgreen.fr/).
Microbiome Composition and Function Drives Wound-Healing Impairment in the Female Genital Tract
Arnold, Kelly; Romas, Laura; Westmacott, Garrett; McCorrister, Stuart; McKinnon, Lyle R.; Cohen, Craig R.; Mackelprang, Romel; Lingappa, Jairam; Lauffenburger, Doug A.; Klatt, Nichole R.; Burgener, Adam D.
2016-01-01
The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity. PMID:27656899
Murphy, Dennis L; Fox, Meredith A; Timpano, Kiara R; Moya, Pablo R; Ren-Patterson, Renee; Andrews, Anne M; Holmes, Andrew; Lesch, Klaus-Peter; Wendland, Jens R
2008-11-01
Discovered and crystallized over sixty years ago, serotonin's important functions in the brain and body were identified over the ensuing years by neurochemical, physiological and pharmacological investigations. This 2008 M. Rapport Memorial Serotonin Review focuses on some of the most recent discoveries involving serotonin that are based on genetic methodologies. These include examples of the consequences that result from direct serotonergic gene manipulation (gene deletion or overexpression) in mice and other species; an evaluation of some phenotypes related to functional human serotonergic gene variants, particularly in SLC6A4, the serotonin transporter gene; and finally, a consideration of the pharmacogenomics of serotonergic drugs with respect to both their therapeutic actions and side effects. The serotonin transporter (SERT) has been the most comprehensively studied of the serotonin system molecular components, and will be the primary focus of this review. We provide in-depth examples of gene-based discoveries primarily related to SLC6A4 that have clarified serotonin's many important homeostatic functions in humans, non-human primates, mice and other species.
Shimokawa, Hiroaki; Satoh, Kimio
2015-05-01
Vascular-derived hydrogen peroxide (H2O2) serves as an important signaling molecule in the cardiovascular system and contributes to vascular homeostasis. H2O2 is a second messenger, transducing the oxidative signal into biological responses through posttranslational protein modification. The balance between oxidant and antioxidant systems regulates intracellular redox status, and their imbalance causes oxidative or reductive stress, leading to cellular damage in cardiovascular systems. Excessive H2O2 deteriorates vascular functions and promotes vascular disease through multiple pathways. The RhoA/Rho-kinase pathway plays an important role in various fundamental cellular functions, including production of excessive reactive oxygen species, leading to the development of cardiovascular diseases. Rho-kinase (ROCK1 and ROCK2) belongs to the family of serine/threonine kinases and is an important downstream effector of the small GTP-binding protein RhoA. Rho-kinase plays a crucial role in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. Thus, Rho-kinase inhibitors may be useful for the treatment of cardiovascular diseases in humans. In this review, we will briefly discuss the roles of vascular-derived H2O2 and review the recent progress in the translational research on the therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.
Impact of spatial organization on a novel auxotrophic interaction among soil microbes
Jiang, Xue; ZerfaB, Christian; Feng, Song; ...
2018-03-23
Here, a key prerequisite to achieve a deeper understanding of microbial communities and to engineer synthetic ones is to identify the individual metabolic interactions among key species and how these interactions are affected by different environmental factors. Deciphering the physiological basis of species–species and species–environment interactions in spatially organized environments requires reductionist approaches using ecologically and functionally relevant species. To this end, we focus here on a defined system to study the metabolic interactions in a spatial context among the plant-beneficial endophytic fungus Serendipita indica, and the soil-dwelling model bacterium Bacillus subtilis. Focusing on the growth dynamics of S. indicamore » under defined conditions, we identified an auxotrophy in this organism for thiamine, which is a key co-factor for essential reactions in the central carbon metabolism. We found that S. indica growth is restored in thiamine-free media, when co-cultured with B. subtilis. The success of this auxotrophic interaction, however, was dependent on the spatial and temporal organization of the system; the beneficial impact of B. subtilis was only visible when its inoculation was separated from that of S. indica either in time or space. These findings describe a key auxotrophic interaction in the soil among organisms that are shown to be important for plant ecosystem functioning, and point to the potential importance of spatial and temporal organization for the success of auxotrophic interactions. These points can be particularly important for engineering of minimal functional synthetic communities as plant seed treatments and for vertical farming under defined conditions.« less
Impact of spatial organization on a novel auxotrophic interaction among soil microbes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xue; ZerfaB, Christian; Feng, Song
Here, a key prerequisite to achieve a deeper understanding of microbial communities and to engineer synthetic ones is to identify the individual metabolic interactions among key species and how these interactions are affected by different environmental factors. Deciphering the physiological basis of species–species and species–environment interactions in spatially organized environments requires reductionist approaches using ecologically and functionally relevant species. To this end, we focus here on a defined system to study the metabolic interactions in a spatial context among the plant-beneficial endophytic fungus Serendipita indica, and the soil-dwelling model bacterium Bacillus subtilis. Focusing on the growth dynamics of S. indicamore » under defined conditions, we identified an auxotrophy in this organism for thiamine, which is a key co-factor for essential reactions in the central carbon metabolism. We found that S. indica growth is restored in thiamine-free media, when co-cultured with B. subtilis. The success of this auxotrophic interaction, however, was dependent on the spatial and temporal organization of the system; the beneficial impact of B. subtilis was only visible when its inoculation was separated from that of S. indica either in time or space. These findings describe a key auxotrophic interaction in the soil among organisms that are shown to be important for plant ecosystem functioning, and point to the potential importance of spatial and temporal organization for the success of auxotrophic interactions. These points can be particularly important for engineering of minimal functional synthetic communities as plant seed treatments and for vertical farming under defined conditions.« less
Sex-specific differences in transcriptome profiles of brain and muscle tissue of the tropical gar.
Cribbin, Kayla M; Quackenbush, Corey R; Taylor, Kyle; Arias-Rodriguez, Lenin; Kelley, Joanna L
2017-04-07
The tropical gar (Atractosteus tropicus) is the southernmost species of the seven extant species of gar fishes in the world. In Mexico and Central America, the species is an important food source due to its nutritional quality and low price. Despite its regional importance and increasing concerns about overexploitation and habitat degradation, basic genetic information on the tropical gar is lacking. Determining genetic information on the tropical gar is important for the sustainable management of wild populations, implementation of best practices in aquaculture settings, evolutionary studies of ancient lineages, and an understanding of sex-specific gene expression. In this study, the transcriptome of the tropical gar was sequenced and assembled de novo using tissues from three males and three females using Illumina sequencing technology. Sex-specific and highly differentially expressed transcripts in brain and muscle tissues between adult males and females were subsequently identified. The transcriptome was assembled de novo resulting in 80,611 transcripts with a contig N50 of 3,355 base pairs and over 168 kilobases in total length. Male muscle, brain, and gonad as well as female muscle and brain were included in the assembly. The assembled transcriptome was annotated to identify the putative function of expressed transcripts using Trinotate and SwissProt, a database of well-annotated proteins. The brain and muscle datasets were then aligned to the assembled transcriptome to identify transcripts that were differentially expressed between males and females. The contrast between male and female brain identified 109 transcripts from 106 genes that were significantly differentially expressed. In the muscle comparison, 82 transcripts from 80 genes were identified with evidence for significant differential expression. Almost all genes identified as differentially expressed were sex-specific. The differentially expressed transcripts were enriched for genes involved in cellular functioning, signaling, immune response, and tissue-specific functions. This study identified differentially expressed transcripts between male and female gar in muscle and brain tissue. The majority of differentially expressed transcripts had sex-specific expression. Expanding on these findings to other developmental stages, populations, and species may lead to the identification of genetic factors contributing to the skewed sex ratio seen in the tropical gar and of sex-specific differences in expression in other species. Finally, the transcriptome assembly will open future research avenues on tropical gar development, cell function, environmental resistance, and evolution in the context of other early vertebrates.
Bongers, Frans; Poorter, Lourens; Hawthorne, William D; Sheil, Douglas
2009-08-01
The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331,567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.
Tree species diversity mitigates disturbance impacts on the forest carbon cycle.
Silva Pedro, Mariana; Rammer, Werner; Seidl, Rupert
2015-03-01
Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.
Simon, J; Miller, R E; Woodrow, I E
2007-01-01
The relationships between various leaf functional traits that are important in plant growth (e.g., specific leaf area) have been investigated in recent studies; however, research in this context on plants that are highly protected by chemical defences, particularly resource-demanding nitrogen-based defence, is lacking. We collected leaves from cyanogenic (N-defended) Beilschmiedia collina B. Hyland and acyanogenic (C-defended) Beilschmiedia tooram (F. M. Bailey) B. Hyland at high- and low-soil nutrient sites in two consecutive years that varied significantly in rainfall. We then measured the relationships between chemical defence and morphological and functional leaf traits under the different environmental conditions. We found that the two species differed significantly in their resource allocation to defence as well as leaf morphology and function. The N defended species had a higher leaf nitrogen concentration, whereas the C-defended species had higher amounts of C-based chemical defences (i.e., total phenolics and condensed tannins). The C-defended species also tended to have higher force to fracture and increased leaf toughness. In B. collina, cyanogenic glycoside concentration was higher with higher rainfall, but not with higher soil nutrients. Total phenolic concentration was higher at the high soil nutrient site in B. tooram, but lower in B. collina; however, with higher rainfall an increase was found in B. tooram, while phenolics decreased in B. collina. Condensed tannin concentration decreased in both species with rainfall and nutrient availability. We conclude that chemical defence is correlated with leaf functional traits and that variation in environmental resources affects this correlation.
Neves, F S; Queiroz-Dantas, K S; da Rocha, W D; Delabie, J H C
2013-06-01
Habitat heterogeneity and complexity associated with variations in climatic conditions are important factors determining the structure of ant communities in different terrestrial ecosystems. The objective of this study was to describe the horizontal and vertical distribution patterns of the ant community associated with three adjacent habitats in a transition area between the Cerrado and Caatinga biomes at the Pandeiros River, state of Minas Gerais, Brazil. We tested the following hypotheses: (1) the richness and composition of ant species and functional group structure changes between different habitats and strata; (2) habitats with higher tree species richness and density support higher ant species richness; and (3) habitats with lower variation in canopy cover support higher ant species richness. Sampling was conducted in three adjacent habitats and at three vertical strata. Ant species richness was significantly different among vertical strata. Ant species composition was different among both habitats and vertical strata and functional group structure was divergent among habitats. Partitioning of the diversity revealed that the diversity for the three components was statistically different from the one expected by the null model; α and β 2 were higher and β 1 was lower than the values expected by chance. Tree density and variation in canopy cover negatively affected ant species richness. The occurrence of different species and the changing of functional group structures in different habitats and strata suggest an ecological-evolutionary relationship between ants and their habitats and emphasize the need to implement local conservation strategies in the ecotones between biomes.
Abiotic and biotic controls of cryptobenthic fish assemblages across a Caribbean seascape
Harborne, A.R.; Jelks, H.L.; Smith-Vaniz, W.F.; Rocha, L.A.
2012-01-01
The majority of fish studies on coral reefs consider only non-cryptic species and, despite their functional importance, data on cryptic species are scarce. This study investigates inter-habitat variation in Caribbean cryptobenthic fishes by re-analysing a comprehensive data set from 58 rotenone stations around Buck Island, U.S. Virgin Islands. Boosted regression trees were used to associate the density and diversity of non-piscivorous cryptobenthic fishes, both in the entire data set and on reef habitats alone, with 14 abiotic and biotic variables. The study also models the habitat requirements of the three commonest species. Dead coral cover was the first or second most important variable in six of the eight models constructed. For example, within the entire data set, the number of species and total fish density increased approximately linearly with increasing dead coral cover. Dead coral was also important in multivariate analyses that discriminated 10 assemblages within the entire data set. On reef habitats, the number of species and total fish density increased dramatically when dead coral exceeded ~55 %. Live coral cover was typically less important for explaining variance in fish assemblages than dead coral, but live corals were important for maintaining high fish diversity. Coral species favoured by cryptobenthic species may be particularly susceptible to mortality, but dead coral may also provide abundant food and shelter for many fishes. Piscivore density was a key variable in the final models, but typically increased with increasing cryptobenthic fish diversity and abundance, suggesting both groups of fishes are responding to the same habitat variables. The density of territorial damselfishes reduced the number of cryptobenthic fish species on reef habitats. Finally, habitats delineated by standard remote sensing techniques supported distinct cryptobenthic fish assemblages, suggesting that such maps can be used as surrogates of general patterns of cryptic fish biodiversity in conservation planning.
Philipson, Christopher D; Dent, Daisy H; O’Brien, Michael J; Chamagne, Juliette; Dzulkifli, Dzaeman; Nilus, Reuben; Philips, Sam; Reynolds, Glen; Saner, Philippe; Hector, Andy
2014-01-01
A life-history trade-off between low mortality in the dark and rapid growth in the light is one of the most widely accepted mechanisms underlying plant ecological strategies in tropical forests. Differences in plant functional traits are thought to underlie these distinct ecological strategies; however, very few studies have shown relationships between functional traits and demographic rates within a functional group. We present 8 years of growth and mortality data from saplings of 15 species of Dipterocarpaceae planted into logged-over forest in Malaysian Borneo, and the relationships between these demographic rates and four key functional traits: wood density, specific leaf area (SLA), seed mass, and leaf C:N ratio. Species-specific differences in growth rates were separated from seedling size effects by fitting nonlinear mixed-effects models, to repeated measurements taken on individuals at multiple time points. Mortality data were analyzed using binary logistic regressions in a mixed-effects models framework. Growth increased and mortality decreased with increasing light availability. Species differed in both their growth and mortality rates, yet there was little evidence for a statistical interaction between species and light for either response. There was a positive relationship between growth rate and the predicted probability of mortality regardless of light environment, suggesting that this relationship may be driven by a general trade-off between traits that maximize growth and traits that minimize mortality, rather than through differential species responses to light. Our results indicate that wood density is an important trait that indicates both the ability of species to grow and resistance to mortality, but no other trait was correlated with either growth or mortality. Therefore, the growth mortality trade-off among species of dipterocarp appears to be general in being independent of species crossovers in performance in different light environments. PMID:25478157
Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric
2017-03-01
One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Biodiversity in a complex world: consolidation and progress in functional biodiversity research.
Hillebrand, Helmut; Matthiessen, Birte
2009-12-01
The global decline of biodiversity caused by human domination of ecosystems worldwide is supposed to alter important process rates and state variables in these ecosystems. However, there is considerable debate on the prevalence and importance of biodiversity effects on ecosystem function (BDEF). Here, we argue that much of the debate stems from two major shortcomings. First, most studies do not directly link the traits leading to increased or decreased function to the traits needed for species coexistence and dominance. We argue that implementing a trait-based approach and broadening the perception of diversity to include trait dissimilarity or trait divergence will result in more realistic predictions on the consequences of altered biodiversity. Second, the empirical and theoretical studies do not reflect the complexity of natural ecosystems, which makes it difficult to transfer the results to natural situations of species loss. We review how different aspects of complexity (trophic structure, multifunctionality, spatial or temporal heterogeneity, and spatial population dynamics) alter our perception of BDEF. We propose future research avenues concisely testing whether acknowledging this complexity will strengthen the observed biodiversity effects. Finally, we propose that a major future task is to disentangle biodiversity effects on ecosystem function from direct changes in function due to human alterations of abiotic constraints.
How the Leopard Hides Its Spots: ASIP Mutations and Melanism in Wild Cats
Schneider, Alexsandra; David, Victor A.; Johnson, Warren E.; O'Brien, Stephen J.; Barsh, Gregory S.; Menotti-Raymond, Marilyn; Eizirik, Eduardo
2012-01-01
The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the ‘black panther’ and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism. PMID:23251368
How the leopard hides its spots: ASIP mutations and melanism in wild cats.
Schneider, Alexsandra; David, Victor A; Johnson, Warren E; O'Brien, Stephen J; Barsh, Gregory S; Menotti-Raymond, Marilyn; Eizirik, Eduardo
2012-01-01
The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the 'black panther' and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism.
Schipper, Aafke M; Belmaker, Jonathan; de Miranda, Murilo Dantas; Navarro, Laetitia M; Böhning-Gaese, Katrin; Costello, Mark J; Dornelas, Maria; Foppen, Ruud; Hortal, Joaquín; Huijbregts, Mark A J; Martín-López, Berta; Pettorelli, Nathalie; Queiroz, Cibele; Rossberg, Axel G; Santini, Luca; Schiffers, Katja; Steinmann, Zoran J N; Visconti, Piero; Rondinini, Carlo; Pereira, Henrique M
2016-12-01
Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5-year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Antisense transcription is pervasive but rarely conserved in enteric bacteria.
Raghavan, Rahul; Sloan, Daniel B; Ochman, Howard
2012-01-01
Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell's transcription machinery. IMPORTANCE Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing functionality genome-wide. Applying such an approach, we assayed all transcripts in two closely related bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, and demonstrate that, although the levels of genome-wide antisense transcription are similarly high in both bacteria, only a small fraction of asRNAs are shared across species. Moreover, the promoters associated with asRNAs show no evidence of sequence conservation between, or even within, species. These findings indicate that despite the genome-wide transcription of asRNAs, many of these transcripts are likely nonfunctional.
A new perspective on trait differences between native and invasive exotic plants.
Leffler, A Joshua; James, Jeremy J; Monaco, Thomas A; Sheley, Roger L
2014-02-01
Functional differences between native and exotic species potentially constitute one factor responsible for plant invasion. Differences in trait values between native and exotic invasive species, however, should not be considered fixed and may depend on the context of the comparison. Furthermore, the magnitude of difference between native and exotic species necessary to trigger invasion is unknown. We propose a criterion that differences in trait values between a native and exotic invasive species must be greater than differences between co-occurring natives for this difference to be ecologically meaningful and a contributing factor to plant invasion. We used a meta-analysis to quantify the difference between native and exotic invasive species for various traits examined in previous studies and compared this value to differences among native species reported in the same studies. The effect size between native and exotic invasive species was similar to the effect size between co-occurring natives except for studies conducted in the field; in most instances, our criterion was not met although overall differences between native and exotic invasive species were slightly larger than differences between natives. Consequently, trait differences may be important in certain contexts, but other mechanisms of invasion are likely more important in most cases. We suggest that using trait values as predictors of invasion will be challenging.
Analysis of Reptile Biodiversity and Ecosystem Services within ...
A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to
Zhu, Shi-Dan; Song, Juan-Juan; Li, Rong-Hua; Ye, Qing
2013-04-01
It is important to understand the ecophysiological characters of plants when exploring mechanisms underlying species substitution in the process of plant succession. In the present study, we selected 34 woody species from different stages of secondary succession in subtropical forests of southern China, and measured their hydraulic conductivity, gas exchange rates, leaf nutrients and drought-tolerance traits such as xylem resistance to cavitation, turgor loss point and carbon isotope ratio. Principal component analysis revealed that early-, mid- and late-successional species were significantly separated along axis 1, which was strongly associated with hydraulic-photosynthetic coordination. In contrast to species distributed in late-successional forest, early-successional species had the highest hydraulic conductivity, net photosynthetic rates, photosynthetic nitrogen and phosphorus use efficiencies, but had the lowest photosynthetic water-use efficiency. However, changes of the measured drought-tolerance traits of the 34 species along the succession did not demonstrate a clear trend - no significant correlations between these traits and plant successional stages were found. Moreover, the trade-off between hydraulic efficiency and safety was not identified. Taken together, our results suggested that hydraulic efficiency and photosynthetic function, rather than drought tolerance, play an important role in species distributions along plant succession in subtropical forests. © 2012 Blackwell Publishing Ltd.
Tica, D; Udovic, M; Lestan, D
2013-03-01
Remediation soil is exposed to various environmental factors over time that can affect the final success of the operation. In the present study, we assessed Pb bioaccessibility and microbial activity in industrially polluted soil (Arnoldstein, Austria) stabilized with 5% (w/w) of Slovakite and 5% (w/w) of apatite soil after exposure to two earthworm species, Lumbricus terrestris and Dendrobaena veneta, used as model environmental biotic soil factors. Stabilization resulted in reduced Pb bioaccessibility, as assessed with one-step extraction tests and six-step sequential extraction, and improved soil functioning, mirrored in reduced β-glucosidase activity in soil. Both earthworm species increased Pb bioaccessibility, thus decreasing the initial stabilization efficacy and indicating the importance of considering the long-term fate of remediated soil. The earthworm species had different effects on soil enzyme activity, which can be attributed to species-specific microbial populations in earthworm gut acting on the ingested soil. Copyright © 2012 Elsevier Ltd. All rights reserved.
Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis
2018-01-01
Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.
Kotowska, Martyna M.; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard
2015-01-01
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment. PMID:25873922
Chemical Ecology of Stingless Bees.
Leonhardt, Sara Diana
2017-04-01
Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world's tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.
Bezemer, T M; Fountain, M T; Barea, J M; Christensen, S; Dekker, S C; Duyts, H; van Hal, R; Harvey, J A; Hedlund, K; Maraun, M; Mikola, J; Mladenov, A G; Robin, C; de Ruiter, P C; Scheu, S; Setälä, H; Smilauer, P; van der Putten, W H
2010-10-01
Soils are extremely rich in biodiversity, and soil organisms play pivotal roles in supporting terrestrial life, but the role that individual plants and plant communities play in influencing the diversity and functioning of soil food webs remains highly debated. Plants, as primary producers and providers of resources to the soil food web, are of vital importance for the composition, structure, and functioning of soil communities. However, whether natural soil food webs that are completely open to immigration and emigration differ underneath individual plants remains unknown. In a biodiversity restoration experiment we first compared the soil nematode communities of 228 individual plants belonging to eight herbaceous species. We included grass, leguminous, and non-leguminous species. Each individual plant grew intermingled with other species, but all plant species had a different nematode community. Moreover, nematode communities were more similar when plant individuals were growing in the same as compared to different plant communities, and these effects were most apparent for the groups of bacterivorous, carnivorous, and omnivorous nematodes. Subsequently, we analyzed the composition, structure, and functioning of the complete soil food webs of 58 individual plants, belonging to two of the plant species, Lotus corniculatus (Fabaceae) and Plantago lanceolata (Plantaginaceae). We isolated and identified more than 150 taxa/groups of soil organisms. The soil community composition and structure of the entire food webs were influenced both by the species identity of the plant individual and the surrounding plant community. Unexpectedly, plant identity had the strongest effects on decomposing soil organisms, widely believed to be generalist feeders. In contrast, quantitative food web modeling showed that the composition of the plant community influenced nitrogen mineralization under individual plants, but that plant species identity did not affect nitrogen or carbon mineralization or food web stability. Hence, the composition and structure of entire soil food webs vary at the scale of individual plants and are strongly influenced by the species identity of the plant. However, the ecosystem functions these food webs provide are determined by the identity of the entire plant community.
Marine benthic ecological functioning over decreasing taxonomic richness
NASA Astrophysics Data System (ADS)
Törnroos, Anna; Bonsdorff, Erik; Bremner, Julie; Blomqvist, Mats; Josefson, Alf B.; Garcia, Clement; Warzocha, Jan
2015-04-01
Alterations to ecosystem function due to reductions in species richness are predicted to increase as humans continue to affect the marine environment, especially in coastal areas, which serve as the interface between land and sea. The potential functional consequences due to reductions in species diversity have attracted considerable attention recently but little is known about the consequence of such loss in natural communities. We examined how the potential for function is affected by natural reductions in taxon richness using empirical (non-simulated) coastal marine benthic macrofaunal data from the Skagerrak-Baltic Sea region (N. Europe), where taxon richness decreases 25-fold, from 151 to 6 taxa. To estimate functional changes we defined multiple traits (10 traits and 51 categories) on which trait category richness, functional diversity (FD) and number of taxa per trait category were calculated. Our results show that decrease in taxon richness leads to an overall reduction in function but functional richness remains comparatively high even at the lowest level of taxon richness. Although the taxonomic reduction was sharp, up to 96% of total taxon richness, we identified both potential thresholds in functioning and subtler changes where function was maintained along the gradient. The functional changes were not only caused by reductions in taxa per trait category, some categories were maintained or even increased. Primarily, the reduction in species richness altered trait categories related to feeding, living and movement and thus potentially could have an effect on various ecosystem processes. This highlights the importance of recognising ecosystem multifunctionality, especially at low taxonomic richness. We also found that in this system rare species (singletons) did not stand for the functional complexities and changes. Our findings were consistent with theoretical and experimental predictions and suggest that a large proportion of the information about alterations of function is found in measures such as functional diversity and number of taxa per trait category.
What is biodiversity? Stepping forward from barcoding to understanding biological differences.
Nikinmaa, Mikko
2014-10-01
This opinion paper gives personal views of the direction that cataloguing biodiversity should be going in. Although molecular taxonomy enables rapid and high throughput identification of species, it needs to be anchored to traditional taxonomy, because without information of actual biological properties of species, DNA barcoding just reports differences in selected DNA sequences, which need not have anything to do with the biological properties of the organisms, and the reasons for the development of the species. Since functional differences are the most common reason behind species differences, the future of cataloguing biodiversity and biodiversity research is, in my opinion, in trying to integrate genomic research to comparative physiology in order to be able to evaluate which functional properties have likely been important in generating biodiversity. This task is overwhelming, and requires forgetting the traditional disciplines. Further, major problems associated with the present-day treatment of genomic data are presented from my viewpoint. Copyright © 2014 Elsevier B.V. All rights reserved.
Ferris, Elliott; Abegglen, Lisa M; Schiffman, Joshua D; Gregg, Christopher
2018-03-06
The identity of most functional elements in the mammalian genome and the phenotypes they impact are unclear. Here, we perform a genome-wide comparative analysis of patterns of accelerated evolution in species with highly distinctive traits to discover candidate functional elements for clinically important phenotypes. We identify accelerated regions (ARs) in the elephant, hibernating bat, orca, dolphin, naked mole rat, and thirteen-lined ground squirrel lineages in mammalian conserved regions, uncovering ∼33,000 elements that bind hundreds of different regulatory proteins in humans and mice. ARs in the elephant, the largest land mammal, are uniquely enriched near elephant DNA damage response genes. The genomic hotspot for elephant ARs is the E3 ligase subunit of the Fanconi anemia complex, a master regulator of DNA repair. Additionally, ARs in the six species are associated with specific human clinical phenotypes that have apparent concordance with overt traits in each species. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Climate mediates hypoxic stress on fish diversity and nursery function at the land-sea interface.
Hughes, Brent B; Levey, Matthew D; Fountain, Monique C; Carlisle, Aaron B; Chavez, Francisco P; Gleason, Mary G
2015-06-30
Coastal ecosystems provide numerous important ecological services, including maintenance of biodiversity and nursery grounds for many fish species of ecological and economic importance. However, human population growth has led to increased pollution, ocean warming, hypoxia, and habitat alteration that threaten ecosystem services. In this study, we used long-term datasets of fish abundance, water quality, and climatic factors to assess the threat of hypoxia and the regulating effects of climate on fish diversity and nursery conditions in Elkhorn Slough, a highly eutrophic estuary in central California (United States), which also serves as a biodiversity hot spot and critical nursery grounds for offshore fisheries in a broader region. We found that hypoxic conditions had strong negative effects on extent of suitable fish habitat, fish species richness, and abundance of the two most common flatfish species, English sole (Parophrys vetulus) and speckled sanddab (Citharichthys stigmaeus). The estuary serves as an important nursery ground for English sole, making this species vulnerable to anthropogenic threats. We determined that estuarine hypoxia was associated with significant declines in English sole nursery habitat, with cascading effects on recruitment to the offshore adult population and fishery, indicating that human land use activities can indirectly affect offshore fisheries. Estuarine hypoxic conditions varied spatially and temporally and were alleviated by strengthening of El Niño conditions through indirect pathways, a consistent result in most estuaries across the northeast Pacific. These results demonstrate that changes to coastal land use and climate can fundamentally alter the diversity and functioning of coastal nurseries and their adjacent ocean ecosystems.
Climate mediates hypoxic stress on fish diversity and nursery function at the land–sea interface
Hughes, Brent B.; Levey, Matthew D.; Fountain, Monique C.; Carlisle, Aaron B.; Chavez, Francisco P.; Gleason, Mary G.
2015-01-01
Coastal ecosystems provide numerous important ecological services, including maintenance of biodiversity and nursery grounds for many fish species of ecological and economic importance. However, human population growth has led to increased pollution, ocean warming, hypoxia, and habitat alteration that threaten ecosystem services. In this study, we used long-term datasets of fish abundance, water quality, and climatic factors to assess the threat of hypoxia and the regulating effects of climate on fish diversity and nursery conditions in Elkhorn Slough, a highly eutrophic estuary in central California (United States), which also serves as a biodiversity hot spot and critical nursery grounds for offshore fisheries in a broader region. We found that hypoxic conditions had strong negative effects on extent of suitable fish habitat, fish species richness, and abundance of the two most common flatfish species, English sole (Parophrys vetulus) and speckled sanddab (Citharichthys stigmaeus). The estuary serves as an important nursery ground for English sole, making this species vulnerable to anthropogenic threats. We determined that estuarine hypoxia was associated with significant declines in English sole nursery habitat, with cascading effects on recruitment to the offshore adult population and fishery, indicating that human land use activities can indirectly affect offshore fisheries. Estuarine hypoxic conditions varied spatially and temporally and were alleviated by strengthening of El Niño conditions through indirect pathways, a consistent result in most estuaries across the northeast Pacific. These results demonstrate that changes to coastal land use and climate can fundamentally alter the diversity and functioning of coastal nurseries and their adjacent ocean ecosystems. PMID:26056293
2011-01-01
Background Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes. Results We examine the transfer of cellulase genes to the free-living and beetle-associated nematode Pristionchus pacificus, for which detailed phylogenetic knowledge is available, to address predictions by evolutionary theory for successful gene transfer. We used transcriptomics in seven Pristionchus species and three other related diplogastrid nematodes with a well-defined phylogenetic framework to study the evolution of ancestral cellulase genes acquired by horizontal gene transfer. We performed intra-species, inter-species and inter-genic analysis by comparing the transcriptomes of these ten species and tested for cellulase activity in each species. Species with cellulase genes in their transcriptome always exhibited cellulase activity indicating functional integration into the host's genome and biology. The phylogenetic profile of cellulase genes was congruent with the species phylogeny demonstrating gene longevity. Cellulase genes show notable turnover with elevated birth and death rates. Comparison by sequencing of three selected cellulase genes in 24 natural isolates of Pristionchus pacificus suggests these high evolutionary dynamics to be associated with copy number variations and positive selection. Conclusion We could demonstrate functional integration of acquired cellulase genes into the nematode's biology as predicted by theory. Thus, functional assimilation, remarkable gene turnover and selection might represent key features of horizontal gene transfer events in nematodes. PMID:21232122
Mayer, Werner E; Schuster, Lisa N; Bartelmes, Gabi; Dieterich, Christoph; Sommer, Ralf J
2011-01-13
Natural acquisition of novel genes from other organisms by horizontal or lateral gene transfer is well established for microorganisms. There is now growing evidence that horizontal gene transfer also plays important roles in the evolution of eukaryotes. Genome-sequencing and EST projects of plant and animal associated nematodes such as Brugia, Meloidogyne, Bursaphelenchus and Pristionchus indicate horizontal gene transfer as a key adaptation towards parasitism and pathogenicity. However, little is known about the functional activity and evolutionary longevity of genes acquired by horizontal gene transfer and the mechanisms favoring such processes. We examine the transfer of cellulase genes to the free-living and beetle-associated nematode Pristionchus pacificus, for which detailed phylogenetic knowledge is available, to address predictions by evolutionary theory for successful gene transfer. We used transcriptomics in seven Pristionchus species and three other related diplogastrid nematodes with a well-defined phylogenetic framework to study the evolution of ancestral cellulase genes acquired by horizontal gene transfer. We performed intra-species, inter-species and inter-genic analysis by comparing the transcriptomes of these ten species and tested for cellulase activity in each species. Species with cellulase genes in their transcriptome always exhibited cellulase activity indicating functional integration into the host's genome and biology. The phylogenetic profile of cellulase genes was congruent with the species phylogeny demonstrating gene longevity. Cellulase genes show notable turnover with elevated birth and death rates. Comparison by sequencing of three selected cellulase genes in 24 natural isolates of Pristionchus pacificus suggests these high evolutionary dynamics to be associated with copy number variations and positive selection. We could demonstrate functional integration of acquired cellulase genes into the nematode's biology as predicted by theory. Thus, functional assimilation, remarkable gene turnover and selection might represent key features of horizontal gene transfer events in nematodes.
NASA Astrophysics Data System (ADS)
Lasky, Jesse R.; Uriarte, María; Muscarella, Robert
2016-11-01
Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that distinct strategies for coping with seasonality underlie phenological diversity. Observed drought responses highlight the importance of non-linear community responses to climate. Community phenology exhibits scale-specific patterns highlighting the need for multi-scale approaches to community dynamics.
Blanchard, Alexandra; Charvet, Claude L.; Sauvé, Christine; Duguet, Thomas; O’Connor, Vincent; Castagnone-Sereno, Philippe; Wolstenholme, Adrian J.; Beech, Robin N.; Holden-Dye, Lindy
2018-01-01
Cholinergic agonists such as levamisole and pyrantel are widely used as anthelmintics to treat parasitic nematode infestations. These drugs elicit spastic paralysis by activating acetylcholine receptors (AChRs) expressed in nematode body wall muscles. In the model nematode Caenorhabditis elegans, genetic screens led to the identification of five genes encoding levamisole-sensitive-AChR (L-AChR) subunits: unc-38, unc-63, unc-29, lev-1 and lev-8. These subunits form a functional L-AChR when heterologously expressed in Xenopus laevis oocytes. Here we show that the majority of parasitic species that are sensitive to levamisole lack a gene orthologous to C. elegans lev-8. This raises important questions concerning the properties of the native receptor that constitutes the target for cholinergic anthelmintics. We demonstrate that the closely related ACR-8 subunit from phylogenetically distant animal and plant parasitic nematode species functionally substitutes for LEV-8 in the C. elegans L-AChR when expressed in Xenopus oocytes. The importance of ACR-8 in parasitic nematode sensitivity to cholinergic anthelmintics is reinforced by a ‘model hopping’ approach in which we demonstrate the ability of ACR-8 from the hematophagous parasitic nematode Haemonchus contortus to fully restore levamisole sensitivity, and to confer high sensitivity to pyrantel, when expressed in the body wall muscle of C. elegans lev-8 null mutants. The critical role of acr-8 to in vivo drug sensitivity is substantiated by the successful demonstration of RNAi gene silencing for Hco-acr-8 which reduced the sensitivity of H. contortus larvae to levamisole. Intriguingly, the pyrantel sensitivity remained unchanged thus providing new evidence for distinct modes of action of these important anthelmintics in parasitic species versus C. elegans. More broadly, this highlights the limits of C. elegans as a predictive model to decipher cholinergic agonist targets from parasitic nematode species and provides key molecular insight to inform the discovery of next generation anthelmintic compounds. PMID:29719008
Species turnover (β-diversity) in ectomycorrhizal fungi linked to NH4+ uptake capacity.
Kranabetter, J M; Hawkins, B J; Jones, M D; Robbins, S; Dyer, T; Li, T
2015-12-01
Ectomycorrhizal (EcM) fungal communities may be shaped by both deterministic and stochastic processes, potentially influencing ecosystem development and function. We evaluated community assembly processes for EcM fungi of Pseudotsuga menziesii among 12 sites up to 400 km apart in southwest British Columbia (Canada) by investigating species turnover (β-diversity) in relation to soil nitrogen (N) availability and physical distance. We then examined functional traits for an N-related niche by quantifying net fluxes of NH4+, NO3- and protons on excised root tips from three contrasting sites using a microelectrode ion flux measurement system. EcM fungal communities were well aligned with soil N availability and pH, with no effect of site proximity (distance-decay curve) on species assemblages. Species turnover was significant (β(1/2) = 1.48) along soil N gradients, with many more Tomentella species on high N than low N soils, in contrast to Cortinarius species. Ammonium uptake was greatest in the spring on the medium and rich sites and averaged over 190 nmol/m(2)/s for Tomentella species. The lowest uptake rates of NH4+ were by nonmycorrhizal roots of axenically grown seedlings (10 nmol/m(2)/s), followed by Cortinarius species (60 nmol/m(2)/s). EcM roots from all sites displayed only marginal uptake of nitrate (8.3 nmol/m(2)/s). These results suggest NH4+ uptake capacity is an important functional trait influencing the assembly of EcM fungal communities. The diversity of EcM fungal species across the region arguably provides critical belowground adaptations to organic and inorganic N supply that are integral to temperate rainforest ecology. © 2015 John Wiley & Sons Ltd.
Interannual bumble bee abundance is driven by indirect climate effects on floral resource phenology.
Ogilvie, Jane E; Griffin, Sean R; Gezon, Zachariah J; Inouye, Brian D; Underwood, Nora; Inouye, David W; Irwin, Rebecca E
2017-12-01
Climate change can influence consumer populations both directly, by affecting survival and reproduction, and indirectly, by altering resources. However, little is known about the relative importance of direct and indirect effects, particularly for species important to ecosystem functioning, like pollinators. We used structural equation modelling to test the importance of direct and indirect (via floral resources) climate effects on the interannual abundance of three subalpine bumble bee species. In addition, we used long-term data to examine how climate and floral resources have changed over time. Over 8 years, bee abundances were driven primarily by the indirect effects of climate on the temporal distribution of floral resources. Over 43 years, aspects of floral phenology changed in ways that indicate species-specific effects on bees. Our study suggests that climate-driven alterations in floral resource phenology can play a critical role in governing bee population responses to global change. © 2017 John Wiley & Sons Ltd/CNRS.
Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton
Yvon-Durocher, Gabriel; Allen, Andrew P.; Cellamare, Maria; Dossena, Matteo; Gaston, Kevin J.; Leitao, Maria; Montoya, José M.; Reuman, Daniel C.; Woodward, Guy; Trimmer, Mark
2015-01-01
Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities. PMID:26680314
Trade-off between taxon diversity and functional diversity in European lake ecosystems.
Grossmann, Lars; Beisser, Daniela; Bock, Christina; Chatzinotas, Antonis; Jensen, Manfred; Preisfeld, Angelika; Psenner, Roland; Rahmann, Sven; Wodniok, Sabina; Boenigk, Jens
2016-12-01
Inferring ecosystem functioning and ecosystem services through inspections of the species inventory is a major aspect of ecological field studies. Ecosystem functions are often stable despite considerable species turnover. Using metatranscriptome analyses, we analyse a thus-far unparalleled freshwater data set which comprises 21 mainland European freshwater lakes from the Sierra Nevada (Spain) to the Carpathian Mountains (Romania) and from northern Germany to the Apennines (Italy) and covers an altitudinal range from 38 m above sea level (a.s.l) to 3110 m a.s.l. The dominant taxa were Chlorophyta and streptophytic algae, Ciliophora, Bacillariophyta and Chrysophyta. Metatranscriptomics provided insights into differences in community composition and into functional diversity via the relative share of taxa to the overall read abundance of distinct functional genes on the ecosystem level. The dominant metabolic pathways in terms of the fraction of expressed sequences in the cDNA libraries were affiliated with primary metabolism, specifically oxidative phosphorylation, photosynthesis and the TCA cycle. Our analyses indicate that community composition is a good first proxy for the analysis of ecosystem functions. However, differential gene regulation modifies the relative importance of taxa in distinct pathways. Whereas taxon composition varies considerably between lakes, the relative importance of distinct metabolic pathways is much more stable, indicating that ecosystem functioning is buffered against shifts in community composition through a functional redundancy of taxa. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Saura-Mas, S; Lloret, F
2007-03-01
Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.
Logging cuts the functional importance of invertebrates in tropical rainforest
Ewers, Robert M.; Boyle, Michael J. W.; Gleave, Rosalind A.; Plowman, Nichola S.; Benedick, Suzan; Bernard, Henry; Bishop, Tom R.; Bakhtiar, Effendi Y.; Chey, Vun Khen; Chung, Arthur Y. C.; Davies, Richard G.; Edwards, David P.; Eggleton, Paul; Fayle, Tom M.; Hardwick, Stephen R.; Homathevi, Rahman; Kitching, Roger L.; Khoo, Min Sheng; Luke, Sarah H.; March, Joshua J.; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V.; Sharp, Adam C.; Snaddon, Jake L.; Stork, Nigel E.; Struebig, Matthew J.; Wearn, Oliver R.; Yusah, Kalsum M.; Turner, Edgar C.
2015-01-01
Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests. PMID:25865801
Logging cuts the functional importance of invertebrates in tropical rainforest.
Ewers, Robert M; Boyle, Michael J W; Gleave, Rosalind A; Plowman, Nichola S; Benedick, Suzan; Bernard, Henry; Bishop, Tom R; Bakhtiar, Effendi Y; Chey, Vun Khen; Chung, Arthur Y C; Davies, Richard G; Edwards, David P; Eggleton, Paul; Fayle, Tom M; Hardwick, Stephen R; Homathevi, Rahman; Kitching, Roger L; Khoo, Min Sheng; Luke, Sarah H; March, Joshua J; Nilus, Reuben; Pfeifer, Marion; Rao, Sri V; Sharp, Adam C; Snaddon, Jake L; Stork, Nigel E; Struebig, Matthew J; Wearn, Oliver R; Yusah, Kalsum M; Turner, Edgar C
2015-04-13
Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
Effects of biodiversity on ecosystem functioning: a consensus of current knowledge
Hooper, D.U.; Chapin, F. S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; Schmid, B.; SetSlS, H.; Symstad, A.J.; Vandermeer, J.; Wardle, D.A.
2005-01-01
Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1) Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts, including effects of dominant species, keystone species, ecological engineers, and interactions among species (e.g., competition, facilitation, mutualism, disease, and predation). Relative abundance alone is not always a good predictor of the ecosystem-level importance of a species, as even relatively rare species (e.g., a keystone predator) can strongly influence pathways of energy and material flows.2) Alteration of biota in ecosystems via species invasions and extinctions caused by human activities has altered ecosystem goods and services in many well-documented cases. Many of these changes are difficult, expensive, or impossible to reverse or fix with technological solutions.3) The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change.4) Some ecosystem properties are initially insensitive to species loss because (a) ecosystems may have multiple species that carry out similar functional roles, (b) some species may contribute relatively little to ecosystem properties, or (c) properties may be primarily controlled by abiotic environmental conditions.5) More species are needed to insure a stable supply of ecosystem goods and services as spatial and temporal variability increases, which typically occurs as longer time periods and larger areas are considered.We have high confidence in the following conclusions:1) Certain combinations of species are complementary in their patterns of resource use and can increase average rates of productivity and nutrient retention. At the same time, environmental conditions can influence the importance of complementarity in structuring communities. Identification of which and how many species act in a complementary way in complex communities is just beginning.2) Susceptibility to invasion by exotic species is strongly influenced by species composition and, under similar environmental conditions, generally decreases with increasing species richness. However, several other factors, such as propagule pressure, disturbance regime, and resource availability also strongly influence invasion success and often override effects of species richness in comparisons across different sites or ecosystems.3) Having a range of species that respond differently to different environmental perturbations can stabilize ecosystem process rates in response to disturbances and variation in abiotic conditions. Using practices that maintain a diversity of organisms of different functional effect and functional response types will help preserve a range of management options.Uncertainties remain and further research is necessary in the following areas:1) Further resolution of the relationships among taxonomic diversity, functional diversity, and community structure is important for identifying mechanisms of biodiversity effects.2) Multiple trophic levels are common to ecosystems but have been understudied in biodiversity/ecosystem functioning research. The response of ecosystem properties to varying composition and diversity of consumer organisms is much more complex than responses seen in experiments that vary only the diversity of primary producers.3) Theoretical work on stability has outpaced experimental work, especially field research. We need long-term experiments to be able to assess temporal stability, as well as experimental perturbations to assess response to and recovery from a variety of disturbances. Design and analysis of such experiments must account for several factors that covary with species diversity.4) Because biodiversity both responds to and influences ecosystem properties, understanding the feedbacks involved is necessary to integrate results from experimental communities with patterns seen at broader scales. Likely patterns of extinction and invasion need to be linked to different drivers of global change, the forces that structure communities, and controls on ecosystem properties for the development of effective management and conservation strategies.5) This paper focuses primarily on terrestrial systems, with some coverage of freshwater systems, because that is where most empirical and theoretical study has focused. While the fundamental principles described here should apply to marine systems, further study of that realm is necessary.Despite some uncertainties about the mechanisms and circumstances under which diversity influences ecosystem properties, incorporating diversity effects into policy and management is essential, especially in making decisions involving large temporal and spatial scales. Sacrificing those aspects of ecosystems that are difficult or impossible to reconstruct, such as diversity, simply because we are not yet certain about the extent and mechanisms by which they affect ecosystem properties, will restrict future management options even further. It is incumbent upon ecologists to communicate this need, and the values that can derive from such a perspective, to those charged with economic and policy decision-making.
Song, Houjuan; Xu, Yudan; Hao, Jing; Zhao, Bingqing; Guo, Donggang; Shao, Hongbo
2017-02-01
The maintaining mechanisms and potential ecological processes of species diversity in warm temperate- conifer-broadleaved-mixed forest are far from clear understanding. In this paper, the relative neighborhood density Ω was used to analyze the spatial distribution patterns of 34 species with ≥11 individuals in a warm- temperate-conifer-broadleaved-mixed forest, northern China. Then we used canonical correspondence analysis (CCA) and Torus-translation test (TTT) to explain the distribution of observed species. Our results show that aggregated distribution is the dominant pattern in warm-temperate natural forest and four species regular distribution at the spatial scale >30m. The aggregated percentage and intensity decline with spatial scale, abundance and size classes increasing. Rare species are aggregated more than intermediate and abundant species. These results prove sufficiently the effects existence of scale separation, self-thinning and Janzen-Connell hypothesis. In addition, functional traits (dispersal modes and shade tolerance) also have a significant influence on distribution of species. The results of CCA confirm that slope and convexity are the most important factors affecting the distribution of tree species distribution, elevation and slope of shrub species though the combination of topographic variables only explained 1% of distribution of tree species and 2% of shrub species. Most species don't have habitat preference; however 47.1% (16/34) species including absolutely dominant tree (Pinus tabulaeformis and Quercus wutaishanica) and shrub species (Rosa xanthina) and most other species with important value in the front, are strongly positively or negatively associated with at least one habitat. The valley and ridge are most distinct habitat with association of 12 species in the plot. However, high elevation slope with 257 quadrats is the most extensive habitat with only four species. Therefore, there is obvious evidence that habitat heterogeneity play an important role on shaping spatial distribution of species in warm temperate forest. Our research results provide significant evidence that dispersal limitation and habitat heterogeneity have a contribution jointly to regulating the spatial distribution pattern of species in warm-temperate-forest in China. Copyright © 2016 Elsevier B.V. All rights reserved.
The utility of transcriptomics in fish conservation.
Connon, Richard E; Jeffries, Ken M; Komoroske, Lisa M; Todgham, Anne E; Fangue, Nann A
2018-01-29
There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers. © 2018. Published by The Company of Biologists Ltd.
The evolution of grain mantles and silicate dust growth at high redshift
NASA Astrophysics Data System (ADS)
Ceccarelli, Cecilia; Viti, Serena; Balucani, Nadia; Taquet, Vianney
2018-05-01
In dense molecular clouds, interstellar grains are covered by mantles of iced molecules. The formation of the grain mantles has two important consequences: it removes species from the gas phase and promotes the synthesis of new molecules on the grain surfaces. The composition of the mantle is a strong function of the environment that the cloud belongs to. Therefore, clouds in high-zeta galaxies, where conditions - like temperature, metallicity, and cosmic ray flux - are different from those in the Milky Way, will have different grain mantles. In the last years, several authors have suggested that silicate grains might grow by accretion of silicon-bearing species on smaller seeds. This would occur simultaneously with the formation of the iced mantles and be greatly affected by its composition as a function of time. In this work, we present a numerical study of the grain mantle formation in high-zeta galaxies, and we quantitatively address the possibility of silicate growth. We find that the mantle thickness decreases with increasing redshift, from about 120 to 20 layers for z varying from 0 to 8. Furthermore, the mantle composition is also a strong function of the cloud redshift, with the relative importance of CO, CO2, ammonia, methane, and methanol highly varying with z. Finally, being Si-bearing species always a very minor component of the mantle, the formation of silicates in molecular clouds is practically impossible.
Microbiological, biochemical, and functional aspects of sugary kefir fermentation - A review.
Fiorda, Fernanda Assumpção; de Melo Pereira, Gilberto Vinicius; Thomaz-Soccol, Vanete; Rakshit, Sudip Kumar; Pagnoncelli, Maria Giovana Binder; Vandenberghe, Luciana Porto de Souza; Soccol, Carlos Ricardo
2017-09-01
Sugary kefir beverage is produce by fermenting raw sugar solution with kefir grains, the latter consisting of polysaccharide and microorganisms. This beverage, with great consumption in countries such as USA, Japan, France, and Brazil, represents a promising market to functional cultured drinks. This paper reviews the microbial diversity and interaction, kinetics, safety, and bioactivities of sugary kefir fermentation. The literature reviewed here demonstrates that sugary kefir possesses a similar microbial association relative to traditional milk kefir fermentation, especially among lactic acid bacteria and yeast species, such as Lactobacillus, Leuconostoc, Kluyveromyces, Pichia, and Saccharomyces. However, a selective pressure at species level is generally observed, as, for example, the stimulation of Saccharomyces species metabolism, leading to a high content of alcohol in the final product. This also seems to stimulate the growth of acetic acid bacteria that benefit of increased ethanol production to acetic acid metabolism. Existing reports have suggested important bioactivities associated with sugary kefir beverage consumption, such as antimicrobial, antiedematogenic, anti-inflammatory, antioxidant, cicatrizing, and healing activities. Other alternative non-dairy substrates, such as fruits, vegetables, and molasses, have also been tested for adaptation of kefir grains and production of functional beverages with distinct sensory characteristics. This diversification is of crucial importance for the production of new probiotic products to provide people with special needs (lactose intolerance) and vegan consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R.; Luke, Sarah H.; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco
2016-01-01
Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package “traitor” to facilitate assessments of missing trait data. PMID:26881747
Májeková, Maria; Paal, Taavi; Plowman, Nichola S; Bryndová, Michala; Kasari, Liis; Norberg, Anna; Weiss, Matthias; Bishop, Tom R; Luke, Sarah H; Sam, Katerina; Le Bagousse-Pinguet, Yoann; Lepš, Jan; Götzenberger, Lars; de Bello, Francesco
2016-01-01
Functional diversity (FD) is an important component of biodiversity that quantifies the difference in functional traits between organisms. However, FD studies are often limited by the availability of trait data and FD indices are sensitive to data gaps. The distribution of species abundance and trait data, and its transformation, may further affect the accuracy of indices when data is incomplete. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset (12, 59, and 8 plots containing 62, 297 and 238 species respectively). We ranked plots by FD values calculated from full datasets and then from our increasingly incomplete datasets and compared the ranking between the original and virtually reduced datasets to assess the accuracy of FD indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of FD indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. FD indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, FD values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data. Since the effect of missing trait values pool-wise or plot-wise depends on the data distribution, the method should be decided case by case. Data distribution and data transformation should be given more careful consideration when designing, analysing and interpreting FD studies, especially where trait data are missing. To this end, we provide the R package "traitor" to facilitate assessments of missing trait data.
Rooting depth distribution and nitrogen acquisition using 15N tracer, Barrow, Alaska, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colleen Iversen
Permafrost thaw and degradation may lead to altered thickness of the active soil layer and a changing distribution of plant-available nutrients throughout the soil, but little is known about the nutrient acquisition strategies of dominant tundra plant species. We conducted an 15N isotope tracer experiment to assess the vertical distribution of nutrient acquisition among three dominant species representing important plant functional types (PFTs) on the Barrow Environmental Observatory (BEO) in Barrow, Alaska. We found that vertical patterns of root distribution and nutrient acquisition varied among plant species, and that root density may not entirely explain patterns of nutrient acquisition formore » all species.« less
Conservation status of freshwater mussels in Europe: state of the art and future challenges.
Lopes-Lima, Manuel; Sousa, Ronaldo; Geist, Juergen; Aldridge, David C; Araujo, Rafael; Bergengren, Jakob; Bespalaya, Yulia; Bódis, Erika; Burlakova, Lyubov; Van Damme, Dirk; Douda, Karel; Froufe, Elsa; Georgiev, Dilian; Gumpinger, Clemens; Karatayev, Alexander; Kebapçi, Ümit; Killeen, Ian; Lajtner, Jasna; Larsen, Bjørn M; Lauceri, Rosaria; Legakis, Anastasios; Lois, Sabela; Lundberg, Stefan; Moorkens, Evelyn; Motte, Gregory; Nagel, Karl-Otto; Ondina, Paz; Outeiro, Adolfo; Paunovic, Momir; Prié, Vincent; von Proschwitz, Ted; Riccardi, Nicoletta; Rudzīte, Mudīte; Rudzītis, Māris; Scheder, Christian; Seddon, Mary; Şereflişan, Hülya; Simić, Vladica; Sokolova, Svetlana; Stoeckl, Katharina; Taskinen, Jouni; Teixeira, Amílcar; Thielen, Frankie; Trichkova, Teodora; Varandas, Simone; Vicentini, Heinrich; Zajac, Katarzyna; Zajac, Tadeusz; Zogaris, Stamatis
2017-02-01
Freshwater mussels of the Order Unionida provide important ecosystem functions and services, yet many of their populations are in decline. We comprehensively review the status of the 16 currently recognized species in Europe, collating for the first time their life-history traits, distribution, conservation status, habitat preferences, and main threats in order to suggest future management actions. In northern, central, and eastern Europe, a relatively homogeneous species composition is found in most basins. In southern Europe, despite the lower species richness, spatially restricted species make these basins a high conservation priority. Information on freshwater mussels in Europe is unevenly distributed with considerable differences in data quality and quantity among countries and species. To make conservation more effective in the future, we suggest greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity. Such an approach will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems. © 2016 Cambridge Philosophical Society.
Poulos, Helen M.; Chernoff, Barry; Fuller, Pam L.; Butman, David
2012-01-01
Predicting the future spread of non-native aquatic species continues to be a high priority for natural resource managers striving to maintain biodiversity and ecosystem function. Modeling the potential distributions of alien aquatic species through spatially explicit mapping is an increasingly important tool for risk assessment and prediction. Habitat modeling also facilitates the identification of key environmental variables influencing species distributions. We modeled the potential distribution of an aggressive invasive minnow, the red shiner (Cyprinella lutrensis), in waterways of the conterminous United States using maximum entropy (Maxent). We used inventory records from the USGS Nonindigenous Aquatic Species Database, native records for C. lutrensis from museum collections, and a geographic information system of 20 raster climatic and environmental variables to produce a map of potential red shiner habitat. Summer climatic variables were the most important environmental predictors of C. lutrensis distribution, which was consistent with the high temperature tolerance of this species. Results from this study provide insights into the locations and environmental conditions in the US that are susceptible to red shiner invasion.
Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance.
Hughes, A Randall; Stachowicz, John J
2004-06-15
Motivated by recent global reductions in biodiversity, empirical and theoretical research suggests that more species-rich systems exhibit enhanced productivity, nutrient cycling, or resistance to disturbance or invasion relative to systems with fewer species. In contrast, few data are available to assess the potential ecosystem-level importance of genetic diversity within species known to play a major functional role. Using a manipulative field experiment, we show that increasing genotypic diversity in a habitat-forming species (the seagrass Zostera marina) enhances community resistance to disturbance by grazing geese. The time required for recovery to near predisturbance densities also decreases with increasing eelgrass genotypic diversity. However, there is no effect of diversity on resilience, measured as the rate of shoot recovery after the disturbance, suggesting that more rapid recovery in diverse plots is due solely to differences in disturbance resistance. Genotypic diversity did not affect ecosystem processes in the absence of disturbance. Thus, our results suggest that genetic diversity, like species diversity, may be most important for enhancing the consistency and reliability of ecosystems by providing biological insurance against environmental change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiozawa, Yuichiro; Koitaya, Takanori; Mukai, Kozo
2015-12-21
Quantitative analysis of desorption and decomposition kinetics of formic acid (HCOOH) on Cu(111) was performed by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy, and time-resolved infrared reflection absorption spectroscopy. The activation energy for desorption is estimated to be 53–75 kJ/mol by the threshold TPD method as a function of coverage. Vibrational spectra of the first layer HCOOH at 155.3 K show that adsorbed molecules form a polymeric structure via the hydrogen bonding network. Adsorbed HCOOH molecules are dissociated gradually into monodentate formate species. The activation energy for the dissociation into monodentate formate species is estimated to be 65.0 kJ/mol atmore » a submonolayer coverage (0.26 molecules/surface Cu atom). The hydrogen bonding between adsorbed HCOOH species plays an important role in the stabilization of HCOOH on Cu(111). The monodentate formate species are stabilized at higher coverages, because of the lack of vacant sites for the bidentate formation.« less
Santos-del-Blanco, L; Climent, J; González-Martínez, S C; Pannell, J R
2012-11-01
The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.
Santos-del-Blanco, L.; Climent, J.; González-Martínez, S. C.; Pannell, J. R.
2012-01-01
Background and Aims The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Methods Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Key Results Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. Conclusions The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers. PMID:23002272
Dominguez, Eddie; Zarnowski, Robert; Sanchez, Hiram; Covelli, Antonio S; Westler, William M; Azadi, Parastoo; Nett, Jeniel; Mitchell, Aaron P; Andes, David R
2018-04-03
Candida biofilms resist the effects of available antifungal therapies. Prior studies with Candida albicans biofilms show that an extracellular matrix mannan-glucan complex (MGCx) contributes to antifungal sequestration, leading to drug resistance. Here we implement biochemical, pharmacological, and genetic approaches to explore a similar mechanism of resistance for the three most common clinically encountered non- albicans Candida species (NAC). Our findings reveal that each Candida species biofilm synthesizes a mannan-glucan complex and that the antifungal-protective function of this complex is conserved. Structural similarities extended primarily to the polysaccharide backbone (α-1,6-mannan and β-1,6-glucan). Surprisingly, biochemical analysis uncovered stark differences in the branching side chains of the MGCx among the species. Consistent with the structural analysis, similarities in the genetic control of MGCx production for each Candida species also appeared limited to the synthesis of the polysaccharide backbone. Each species appears to employ a unique subset of modification enzymes for MGCx synthesis, likely accounting for the observed side chain diversity. Our results argue for the conservation of matrix function among Candida spp. While biogenesis is preserved at the level of the mannan-glucan complex backbone, divergence emerges for construction of branching side chains. Thus, the MGCx backbone represents an ideal drug target for effective pan- Candida species biofilm therapy. IMPORTANCE Candida species, the most common fungal pathogens, frequently grow as a biofilm. These adherent communities tolerate extremely high concentrations of antifungal agents, due in large part, to a protective extracellular matrix. The present studies define the structural, functional, and genetic similarities and differences in the biofilm matrix from the four most common Candida species. Each species synthesizes an extracellular mannan-glucan complex (MGCx) which contributes to sequestration of antifungal drug, shielding the fungus from this external assault. Synthesis of a common polysaccharide backbone appears conserved. However, subtle structural differences in the branching side chains likely rely upon unique modification enzymes, which are species specific. Our findings identify MGCx backbone synthesis as a potential pan- Candida biofilm therapeutic target. Copyright © 2018 Dominguez et al.
NASA Astrophysics Data System (ADS)
Selleslagh, Jonathan; Lobry, Jérémy; N'Zigou, Aimé Roger; Bachelet, Guy; Blanchet, Hugues; Chaalali, Aurélie; Sautour, Benoît; Boët, Philippe
2012-10-01
Characterization of the structure and seasonal variability of biotic communities is essential for a better understanding of estuarine ecosystem functioning and in order to manage these highly fluctuating and naturally stressed systems. Numerous studies have investigated the role of environmental factors in controlling temporal variations in biotic communities. However, most have concluded that the explanatory power of physico-chemical variables was significant but not sufficient to explain ecological dynamics. The present study aimed to propose the importance of trophic interactions as an additional structuring factor of species seasonal variability by examining simultaneous dynamics of all estuarine biotic communities, using the oligo-mesohaline area of the Gironde estuary (SW France) as a case study. Data on the main biological groups (fish, shrimps, macrozoobenthos and plankton) sampled during a five-year period (2004-2008) at monthly intervals using a well standardized protocol, as well as data on environmental variables, were compiled here for the first time. According to species composition, the Gironde estuary is used as a nursery, feeding, resident and migratory habitat. For almost all species, strong seasonal fluctuations occurred with a succession of species, indicating an optimization of the use of the available resources over a typical year by estuarine biological communities. Multivariate analyses discriminated four seasonal groups of species with two distinctive ecological seasons. A clear shift in July indicated a biomass transfer from a "planktonic phase" to a "bentho-demersal phase", corresponding to spring and summer-autumn periods, respectively. With regard to the temporal fluctuations of dominant species of all biological groups, this study highlighted the possible influence of trophic relationships, predation in particular, on seasonal variations in species abundance, in addition to the physico-chemical influence. This study enabled us to collate important seasonal data and to discuss their integration into seasonal models of estuarine functioning and/or specific prey-predator models. In a global change context, prey abundance variations could generate changes in the temporal dynamics of their predators (and conversely), and potentially in the functioning of the whole estuarine system.
Burian, Alfred; Kainz, Martin J; Schagerl, Michael; Yasindi, Andrew
2014-06-01
1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, Brachionus plicatilis and Brachionus dimidiatus , were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δ 13 C and 1.5‰ in δ 15 N). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles <2 μm and underlined the importance of species-specific sampling of smaller plankton compartments. 4. A main difference was that the filamentous cyanobacterium Arthrospira fusiformis , which frequently forms blooms in African soda lakes, was an important food source for the larger-sized B. plicatilis (48%), whereas it was hardly ingested by B. dimidiatus . Overall, A . fusiformis was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first in situ demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria.
Burian, Alfred; Kainz, Martin J; Schagerl, Michael; Yasindi, Andrew
2014-01-01
1. The analysis of functional groups with a resolution to the individual species level is a basic requirement to better understand complex interactions in aquatic food webs. Species-specific stable isotope analyses are currently applied to analyse the trophic role of large zooplankton or fish species, but technical constraints complicate their application to smaller-sized plankton. 2. We investigated rotifer food assimilation during a short-term microzooplankton bloom in the East African soda lake Nakuru by developing a method for species-specific sampling of rotifers. 3. The two dominant rotifers, Brachionus plicatilis and Brachionus dimidiatus, were separated to single-species samples (purity >95%) and significantly differed in their isotopic values (4.1‰ in δ13C and 1.5‰ in δ15N). Bayesian mixing models indicated that isotopic differences were caused by different assimilation of filamentous cyanobacteria and particles <2 μm and underlined the importance of species-specific sampling of smaller plankton compartments. 4. A main difference was that the filamentous cyanobacterium Arthrospira fusiformis, which frequently forms blooms in African soda lakes, was an important food source for the larger-sized B. plicatilis (48%), whereas it was hardly ingested by B. dimidiatus. Overall, A. fusiformis was, relative to its biomass, assimilated to small extents, demonstrating a high grazing resistance of this species. 5. In combination with high population densities, these results demonstrate a strong potential of rotifer blooms to shape phytoplankton communities and are the first in situ demonstration of a quantitatively important direct trophic link between rotifers and filamentous cyanobacteria. PMID:25866422
Effects of early life stress on amygdala and striatal development
Fareri, Dominic S.; Tottenham, Nim
2016-01-01
Species-expected caregiving early in life is critical for the normative development and regulation of emotional behavior, the ability to effectively evaluate affective stimuli in the environment, and the ability to sustain social relationships. Severe psychosocial stressors early in life (early life stress; ELS) in the form of the absence of species expected caregiving (i.e., caregiver deprivation), can drastically impact one’s social and emotional success, leading to the onset of internalizing illness later in life. Development of the amygdala and striatum, two key regions supporting affective valuation and learning, is significantly affected by ELS, and their altered developmental trajectories have important implications for cognitive, behavioral and socioemotional development. However, an understanding of the impact of ELS on the development of functional interactions between these regions and subsequent behavioral effects is lacking. In this review, we highlight the roles of the amygdala and striatum in affective valuation and learning in maturity and across development. We discuss their function separately as well as their interaction. We highlight evidence across species characterizing how ELS induced changes in the development of the amygdala and striatum mediate subsequent behavioral changes associated with internalizing illness, positing a particular import of the effect of ELS on their interaction. PMID:27174149
2016-01-01
Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. PMID:27053744
Progeric effects of catalase inactivation in human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepke, Jay I.; Wood, Christopher S.; Terlecky, Laura J.
2008-10-01
Peroxisomes generate hydrogen peroxide, a reactive oxygen species, as part of their normal metabolism. A number of pathological situations exist in which the organelle's capacity to degrade the potentially toxic oxidant is compromised. It is the peroxidase, catalase, which largely determines the functional antioxidant capacity of the organelle, and it is this enzyme that is affected in aging, in certain diseases, and in response to exposure to specific chemical agents. To more tightly control the enzymatic activity of peroxisomal catalase and carefully document the effects of its impaired action on human cells, we employed the inhibitor 3-amino-1,2,4-triazole. We show thatmore » by chronically reducing catalase activity to approximately 38% of normal, cells respond in a dramatic manner, displaying a cascade of accelerated aging reactions. Hydrogen peroxide and related reactive oxygen species are produced, protein and DNA are oxidatively damaged, import into peroxisomes and organelle biogenesis is corrupted, and matrix metalloproteinases are hyper-secreted from cells. In addition, mitochondria are functionally impaired, losing their ability to maintain a membrane potential and synthesize reactive oxygen species themselves. These latter results suggest an important redox-regulated connection between the two organelle systems, a topic of considerable interest for future study.« less
Peters, C M; Balick, M J; Kahn, F; Anderson, A B
1989-12-01
Tropical forests dominated by only one or two tree species occupy tens of millions of hectares in Ammonia In many cases, the dominant species produce fruits, seeds, or oils of economic importance. Oligarchic (Gr. oligo = few, archic = dominated or ruled by) forests of six economic species, i. e., Euterpe oleracea, Grias peruviana, Jessenia bataua, Mauritia flexuosa, Myrciaria dubia, and Orbignya phalerata, were studied in Brazil and Peru Natural populations of these species contain from 100 to 3,000 conspecific adult trees/ha and produce up to 11.1 metric tons of fruit/hd/yr. These plant populations are utilized and occasionally managed, by rural inhabitants in the region. Periodic fruit harvests, if properly controlled have only a minimal impact on forest structure and function, yet can generate substantial economic returns Market-oriented extraction of the fruits produced by oligarchic forests appears to represent a promising alternative for reconciling the development and conservation of Amazonian forests.
Saccharomyces cerevisiae: a nomadic yeast with no niche?
Goddard, Matthew R; Greig, Duncan
2015-05-01
Different species are usually thought to have specific adaptations, which allow them to occupy different ecological niches. But recent neutral ecology theory suggests that species diversity can simply be the result of random sampling, due to finite population sizes and limited dispersal. Neutral models predict that species are not necessarily adapted to specific niches, but are functionally equivalent across a range of habitats. Here, we evaluate the ecology of Saccharomyces cerevisiae, one of the most important microbial species in human history. The artificial collection, concentration and fermentation of large volumes of fruit for alcohol production produce an environment in which S. cerevisiae thrives, and therefore it is assumed that fruit is the ecological niche that S. cerevisiae inhabits and has adapted to. We find very little direct evidence that S. cerevisiae is adapted to fruit, or indeed to any other specific niche. We propose instead a neutral nomad model for S. cerevisiae, which we believe should be used as the starting hypothesis in attempting to unravel the ecology of this important microbe. © FEMS 2015.
The adaptive evolution of the mammalian mitochondrial genome
da Fonseca, Rute R; Johnson, Warren E; O'Brien, Stephen J; Ramos, Maria João; Antunes, Agostinho
2008-01-01
Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas). Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation. PMID:18318906
Seedling growth responses to soil resources in the understory of a wet tropical forest.
Holste, Ellen K; Kobe, Richard K; Vriesendorp, Corine F
2011-09-01
Plant growth responses to resources may be an important mechanism that influences species' distributions, coexistence, and community structure. Irradiance is considered the most important resource for seedling growth in the understory of wet tropical forests, but multiple soil nutrients and species have yet to be examined simultaneously with irradiance under field conditions. To identify potentially limiting resources, we modeled tree seedling growth as a function of irradiance and soil nutrients across five sites, spanning a soil fertility gradient in old-growth, wet tropical forests at La Selva Biological Station, Costa Rica. We measured an array of soil nutrients including total nitrogen (total N), inorganic N (nitrate [NO3-] and ammonium [NH4+]), phosphate (PO4-), and sum of base cations (SBC; potassium, magnesium, and calcium). Shade in the forest understory did not preclude seedling growth correlations with soil nutrients. Irradiance was a significant predictor of growth in 52% of the species, inorganic N in 54% (NO3- in 32%; NH4+ in 34%), total N in 47%, SBC in 39%, and PO4- in 29%. Overall, growth was correlated with both irradiance and soil nutrients in 45% of species and with soil nutrients only in an additional 48%; rarely was irradiance alone correlated with growth. Contrary to expectations, the magnitudes of growth effects, assessed as the maximum growth response to significant resources for each species, were similar for irradiance and most soil nutrients. Among species whose growth correlated with soil nutrients, the rank importance of nutrient effects was SBC, followed by N (total N, NO3-, and/or NH4+) and PO4-. Species' growth responsiveness (i.e., magnitudes of effect) to irradiance and soil nutrients was negatively correlated with species' shade tolerance (survival under 1% full sun). In this broad survey of species and resources, the nearly ubiquitous effects of soil nutrients on seedling growth challenge the idea that soil nutrients are less important than irradiance in the light-limited understory of wet tropical forests.
Forest Species Identification with High Spectral Resolution Data
NASA Technical Reports Server (NTRS)
Olson, C. E., Jr.; Zhu, Z.
1985-01-01
Data collected over the Sleeping Bear Sand Dunes Test Site and the Saginaw Forest Test Site (Michigan) with the JPL Airborne Imaging Spectrometer and the Collins' Airborne Spectroradiometer are being used for forest species identification. The linear discriminant function has provided higher identification accuracies than have principal components analyses. Highest identification accuracies are obtained in the 450 to 520 nm spectral region. Spectral bands near 1,300, 1,685 and 2,220 nm appear to be important, also.
Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun
2014-10-01
A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.
Banko, Paul C.; Peck, Robert W.; Pendleton, Frank; Schmaedick, Mark; Ernsberger, Kelsie
2014-01-01
Rose Atoll, at the eastern end of the Samoan Archipelago, is a small but important refuge for seabirds, shorebirds, and sea turtles. While the vertebrate community is relatively well-studied, the terrestrial arthropod fauna, and its role in ecosystem function, are poorly known. Arthropods may be influencing the decline of Pisonia grandis, an ecologically important tree that once dominated the 6.6 ha of land on Rose Atoll. Reasons for the decline are not fully understood but a facultative relationship between two invasive arthropods, the soft scale Pulvinaria urbicola and ants, likely has contributed to tree death. The primary objectives of this study were to systematically survey the terrestrial arthropod fauna and identify ant species that tend scales on Pisonia. Using an array of standard arthropod collecting techniques, at least 73 species from 20 orders were identified, including nine ant species. Of the ants collected, only Tetramorium bicarinatum and T. simillimum were observed tending scales on Pisonia. No known natural enemies of Pulvinaria scales were found, suggesting little predation on scale populations. Treatment of Pisonia with the systemic insecticide imidacloprid failed to eliminate Pulvinaria scales, although short-term suppression apparently occurred. The arthropod fauna of Rose Atoll is dominated by exotic species that likely have a significant impact on the structure and function of the island’s ecosystem.
Zooplankton From a Reef System Under the Influence of the Amazon River Plume.
Neumann-Leitão, Sigrid; Melo, Pedro A M C; Schwamborn, Ralf; Diaz, Xiomara F G; Figueiredo, Lucas G P; Silva, Andrea P; Campelo, Renata P S; de Melo Júnior, Mauro; Melo, Nuno F A C; Costa, Alejandro E S F; Araújo, Moacyr; Veleda, Dóris R A; Moura, Rodrigo L; Thompson, Fabiano
2018-01-01
At the mouth of the Amazon River, a widespread carbonate ecosystem exists below the river plume, generating a hard-bottom reef (∼9500 km 2 ) that includes mainly large sponges but also rhodolith beds. The mesozooplankton associated with the pelagic realm over the reef formation was characterized, considering the estuarine plume and oceanic influence. Vertical hauls were carried out using a standard plankton net with 200 μm mesh size during September 2014. An indicator index was applied to express species importance as ecological indicators in community. Information on functional traits was gathered for the most abundant copepod species. Overall, 179 zooplankton taxa were recorded. Copepods were the richest (92 species), most diverse and most abundant group, whereas meroplankton were rare and less abundant. Species diversity (>3.0 bits.ind -1 ) and evenness (>0.6) were high, indicating a complex community. Small holoplanktonic species dominated the zooplankton, and the total density varied from 107.98 ind. m -3 over the reef area to 2,609.24 ind. m -3 in the estuarine plume, with a significant difference between coastal and oceanic areas. The most abundant copepods were the coastal species ithona plumifera and Clausocalanus furcatus and early stages copepodites of Paracalanidae. The holoplanktonic Oikopleura , an important producer of mucous houses, was very abundant on the reefs. The indicator species index revealed three groups: (1) indicative of coastal waters under the influence of the estuarine plume [ Euterpina acutifrons, Parvocalanus crassirostris, Oikopleura (Vexillaria) dioica and Hydromedusae]; (2) characterized coastal and oceanic conditions ( Clausocalanus ); (3) characterized the reef system ( O. plumifera ). Two major copepods functional groups were identified and sorted according to their trophic strategy and coastal-oceanic distribution. The species that dominated the coastal area and the area over the rhodolith beds are indicators of the estuarine plume and are mixed with species of the North Brazil Current. These species practically disappear offshore, where occur oceanic species commonly found in other oligotrophic tropical areas. This ecosystem shows a mixture of estuarine, coastal and oceanic communities coexisting in the waters over the Amazon reefs, with no significant differences among these areas. However, the MDS clearly separated the communities along the salinity gradient in the plume.
Chiu, Chun-Huo; Chao, Anne
2014-01-01
Hill numbers (or the "effective number of species") are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally) equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of the classic Jaccard, Sørensen, Horn and Morisita-Horn similarity indices. The proposed measures are applied to artificial and real data for illustration.
Comparative systems biology across an evolutionary gradient within the Shewanella genus.
Konstantinidis, Konstantinos T; Serres, Margrethe H; Romine, Margaret F; Rodrigues, Jorge L M; Auchtung, Jennifer; McCue, Lee-Ann; Lipton, Mary S; Obraztsova, Anna; Giometti, Carol S; Nealson, Kenneth H; Fredrickson, James K; Tiedje, James M
2009-09-15
To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of 10 closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and to rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms, when the organisms were grown under identical conditions, were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information toward beginning a systems-level understanding of bacterial species and genera.
NASA Astrophysics Data System (ADS)
Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.
2017-11-01
Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.
Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.
Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W
2017-06-01
Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.
Arias Garcia, Andrea; Chinea, J Danilo
2014-09-01
Seed dispersal is a fundamental process in plant ecology and is of critical importance for the restoration of tropical communities. The lands of the Cabo Rojo National Wildlife Refuge (CRNWR), formerly under agriculture, were abandoned in the 1970s and colonized mainly by non-native tree species of degraded pastures. Here we described the seed rain under the most common native and non-native trees in the refuge in an attempt to determine if focal tree geographic origin (native versus non-native) influences seed dispersal. For this, seed rain was sampled for one year under the canopies of four native and four non-native tree species common in this refuge using 40 seed traps. No significant differences were found for the abundance of seeds, or their diversity, dispersing under native versus non-native focal tree species, nor under the different tree species. A significantly different seed species composition was observed reaching native versus non-native focal species. However, this last result could be more easily explained as a function of distance of the closest adults of the two most abundantly dispersed plant species to the seed traps than as a function of the geographic origin of the focal species. We suggest to continue the practice of planting native tree species, not only as a way to restore the community to a condition similar to the original one, but also to reduce the distances needed for effective dispersal.
Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P
2016-03-16
Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).
Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.
2016-01-01
Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241
Friedli, Lucia; Rosenzweig, Ephron S.; Barraud, Quentin; Schubert, Martin; Dominici, Nadia; Awai, Lea; Nielson, Jessica L.; Musienko, Pavel; Nout-Lomas, Yvette; Zhong, Hui; Zdunowski, Sharon; Roy, Roland R.; Strand, Sarah C.; van den Brand, Rubia; Havton, Leif A.; Beattie, Michael S.; Bresnahan, Jacqueline C.; Bézard, Erwan; Bloch, Jocelyne; Edgerton, V. Reggie; Ferguson, Adam R.; Curt, Armin; Tuszynski, Mark H.; Courtine, Grégoire
2017-01-01
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species has not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys, but nearly absent in rats. Our results uncover pronounced inter-species differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury re-emphasizes the importance of primate models for designing clinically relevant treatments. PMID:26311729
Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutsinger, Greg; Sanders, Dr. Nathan James; Classen, Aimee T
2009-09-01
Plant species can differ in the quantity and quality of leaf litter they produce, and many studies have examined whether plant species diversity affects leaf-litter decomposition and nutrient release. A growing number of studies have indicated that intra-specific variation within plant species can also affect key ecosystem processes. However, the relative importance of intra- versus inter-specific variation for the functioning of ecosystems remains poorly known. Here, we investigate the effects of intra-specific variation in a dominant old-field plant species, tall goldenrod (Solidago altissima), and inter-specific variation among goldenrod species on litter quality, decomposition, and nitrogen (N) release. We found thatmore » the nutrient concentration of leaf litter varied among genotypes, which translated into 50% difference in decomposition rates. Variation among other goldenrod species in decomposition rate was more than twice that of genetic variation within S. altissima. Furthermore, by manipulating litterbags to contain 1, 3, 6, or 9 genotypes, we found that S. altissima genotype identity had much stronger effects than did genotypic diversity on leaf-litter quality, decomposition, and N release. Taken together, these results suggest that the order of ecological importance for controlling leaf-litter decomposition and N release dynamics is plant species identitygenotype identity>genotypic diversity.« less
Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Fletcher, Tim D; Hatt, Belinda E; Deletic, Ana
2014-01-01
The use of biofilters to remove nitrogen and other pollutants from urban stormwater runoff has demonstrated varied success across laboratory and field studies. Design variables including plant species and use of a saturated zone have large impacts upon performance. A laboratory column study of 22 plant species and designs with varied outlet configuration was conducted across a 1.5-year period to further investigate the mechanisms and influences driving biofilter nitrogen processing. This paper presents outflow concentrations of total nitrogen from two sampling events across both 'wet' and 'dry' frequency dosing, and from sampling across two points in the outflow hydrograph. All plant species were effective under conditions of frequent dosing, but extended drying increased variation between species and highlighted the importance of a saturated zone in maintaining biofilter function. The saturated zone also effectively treated the volume of stormwater stored between inflow events, but this extended detention provided no additional benefit alongside the rapid processing of the highest performing species. Hence, the saturated zone reduced performance differences between plant species, and potentially acts as an 'insurance policy' against poor sub-optimal plant selection. The study shows the importance of biodiversity and inclusion of a saturated zone in protecting against climate variability.
Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati
Frisvad, Jens C.; Larsen, Thomas O.
2016-01-01
Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species. PMID:26779142