Sample records for functioning membrane protein

  1. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles.

    PubMed

    Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner

    2010-10-01

    Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.

  2. Nanodisc-Tm: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay.

    PubMed

    Ashok, Yashwanth; Jaakola, Veli-Pekka

    2016-01-01

    Membrane proteins are generally unstable in detergents. Therefore, biochemical and biophysical studies of membrane proteins in lipidic environments provides a near native-like environment suitable for membrane proteins. However, manipulation of proteins embedded in lipid bilayer has remained difficult. Methods such as nanodiscs and lipid cubic phase have been developed for easy manipulation of membrane proteins and have yielded significant insights into membrane proteins. Traditionally functional reconstitution of receptors in nanodiscs has been studied with radioligands. We present a simple and faster method for studying the functionality of reconstituted membrane proteins for routine characterization of protein batches after initial optimization of suitable conditions using radioligands. The benefits of the method are •Faster and generic method to assess functional reconstitution of membrane proteins.•Adaptable in high throughput format (≥96 well format).•Stability measurement in near-native lipid environment and lipid dependent melting temperatures.

  3. Biopores/membrane proteins in synthetic polymer membranes.

    PubMed

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  4. HMPAS: Human Membrane Protein Analysis System

    PubMed Central

    2013-01-01

    Background Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups. Methods We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences. Results We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins. Conclusions HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas. PMID:24564858

  5. Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches

    PubMed Central

    MÜLLER, DANIEL J.; WU, NAN; PALCZEWSKI, KRZYSZTOF

    2008-01-01

    Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function. PMID:18321962

  6. Biomimetic devices functionalized by membrane channel proteins

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  7. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    PubMed

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  9. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  10. Challenges in the Development of Functional Assays of Membrane Proteins

    PubMed Central

    Tiefenauer, Louis; Demarche, Sophie

    2012-01-01

    Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  11. Functions of intrinsic disorder in transmembrane proteins.

    PubMed

    Kjaergaard, Magnus; Kragelund, Birthe B

    2017-09-01

    Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding protein disorder.

  12. Benchmark data for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-09-01

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predicting multi-functional types of membrane proteins.

  13. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    PubMed

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  14. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    PubMed

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  16. Membrane preparation and solubilization.

    PubMed

    Roy, Ankita

    2015-01-01

    Membrane proteins play an essential role in several biological processes like ion transport, signal transduction, and electron transfer to name a few. For structural and functional studies of integral membrane proteins, it is critically important to isolate proteins from the membrane using biological detergents. Detergents disrupt the native lipid components of the native membrane and encase the membrane protein in an unnatural environment in aqueous solution. However, a particular membrane protein is best solubilized in a specific detergent; therefore, screening for the optimal detergent is essential. Apart from keeping the membrane protein monodispered in solution, the detergent has to be compatible with downstream processes to isolate and characterize a membrane protein. Over the past several years, a number of membrane proteins have been successfully isolated for structural and functional studies that allowed an outline of general strategies for isolating a novel membrane protein of interest. © 2015 Elsevier Inc. All rights reserved.

  17. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory

    DOE PAGES

    Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan; ...

    2015-06-11

    It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.

  18. Characterization of the motion of membrane proteins using high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Casuso, Ignacio; Khao, Jonathan; Chami, Mohamed; Paul-Gilloteaux, Perrine; Husain, Mohamed; Duneau, Jean-Pierre; Stahlberg, Henning; Sturgis, James N.; Scheuring, Simon

    2012-08-01

    For cells to function properly, membrane proteins must be able to diffuse within biological membranes. The functions of these membrane proteins depend on their position and also on protein-protein and protein-lipid interactions. However, so far, it has not been possible to study simultaneously the structure and dynamics of biological membranes. Here, we show that the motion of unlabelled membrane proteins can be characterized using high-speed atomic force microscopy. We find that the molecules of outer membrane protein F (OmpF) are widely distributed in the membrane as a result of diffusion-limited aggregation, and while the overall protein motion scales roughly with the local density of proteins in the membrane, individual protein molecules can also diffuse freely or become trapped by protein-protein interactions. Using these measurements, and the results of molecular dynamics simulations, we determine an interaction potential map and an interaction pathway for a membrane protein, which should provide new insights into the connection between the structures of individual proteins and the structures and dynamics of supramolecular membranes.

  19. Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles*S⃞

    PubMed Central

    Cappuccio, Jenny A.; Blanchette, Craig D.; Sulchek, Todd A.; Arroyo, Erin S.; Kralj, Joel M.; Hinz, Angela K.; Kuhn, Edward A.; Chromy, Brett A.; Segelke, Brent W.; Rothschild, Kenneth J.; Fletcher, Julia E.; Katzen, Federico; Peterson, Todd C.; Kudlicki, Wieslaw A.; Bench, Graham; Hoeprich, Paul D.; Coleman, Matthew A.

    2008-01-01

    Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Δ1–49 apolipoprotein A-I fragment (Δ49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR → M transition. Importantly the functional bR was solubilized in discoidal bR·NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Δ49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies. PMID:18603642

  20. Membrane curvature and its generation by BAR proteins

    PubMed Central

    Mim, Carsten; Unger, Vinzenz M

    2012-01-01

    Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the bin/amphiphysin/rvs domain (BAR) proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR-domain proteins sense, stabilize and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent. PMID:23058040

  1. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases.

    PubMed

    Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong

    2015-05-09

    Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.

  2. Protein Composition of Trypanosoma brucei Mitochondrial Membranes

    PubMed Central

    Acestor, Nathalie; Panigrahi, Aswini K.; Ogata, Yuko; Anupama, Atashi; Stuart, Kenneth D.

    2010-01-01

    Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane and matrix; each harboring specific functions and structures. In this study, we used mass spectrometry (LC-MS/MS) to characterize the protein composition of Trypanosoma brucei mitochondrial membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mitochondrial membranes with high confidence, and 106 with moderate to low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mitochondrial membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mitochondrial functions. PMID:19834910

  3. Durable vesicles for reconstitution of membrane proteins in biotechnology.

    PubMed

    Beales, Paul A; Khan, Sanobar; Muench, Stephen P; Jeuken, Lars J C

    2017-02-08

    The application of membrane proteins in biotechnology requires robust, durable reconstitution systems that enhance their stability and support their functionality in a range of working environments. Vesicular architectures are highly desirable to provide the compartmentalisation to utilise the functional transmembrane transport and signalling properties of membrane proteins. Proteoliposomes provide a native-like membrane environment to support membrane protein function, but can lack the required chemical and physical stability. Amphiphilic block copolymers can also self-assemble into polymersomes: tough vesicles with improved stability compared with liposomes. This review discusses the reconstitution of membrane proteins into polymersomes and the more recent development of hybrid vesicles, which blend the robust nature of block copolymers with the biofunctionality of lipids. These novel synthetic vesicles hold great promise for enabling membrane proteins within biotechnologies by supporting their enhanced in vitro performance and could also contribute to fundamental biochemical and biophysical research by improving the stability of membrane proteins that are challenging to work with. © 2017 The Author(s).

  4. An Integrated Framework Advancing Membrane Protein Modeling and Design

    PubMed Central

    Weitzner, Brian D.; Duran, Amanda M.; Tilley, Drew C.; Elazar, Assaf; Gray, Jeffrey J.

    2015-01-01

    Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1) prediction of free energy changes upon mutation; (2) high-resolution structural refinement; (3) protein-protein docking; and (4) assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design. PMID:26325167

  5. The Human Metapneumovirus Small Hydrophobic Protein Has Properties Consistent with Those of a Viroporin and Can Modulate Viral Fusogenic Activity

    PubMed Central

    Masante, Cyril; El Najjar, Farah; Chang, Andres; Jones, Angela; Moncman, Carole L.

    2014-01-01

    ABSTRACT Human metapneumovirus (HMPV) encodes three glycoproteins: the glycoprotein, which plays a role in glycosaminoglycan binding, the fusion (F) protein, which is necessary and sufficient for both viral binding to the target cell and fusion between the cellular plasma membrane and the viral membrane, and the small hydrophobic (SH) protein, whose function is unclear. The SH protein of the closely related respiratory syncytial virus has been suggested to function as a viroporin, as it forms oligomeric structures consistent with a pore and alters membrane permeability. Our analysis indicates that both the full-length HMPV SH protein and the isolated SH protein transmembrane domain can associate into higher-order oligomers. In addition, HMPV SH expression resulted in increases in permeability to hygromycin B and alteration of subcellular localization of a fluorescent dye, indicating that SH affects membrane permeability. These results suggest that the HMPV SH protein has several characteristics consistent with a putative viroporin. Interestingly, we also report that expression of the HMPV SH protein can significantly decrease HMPV F protein-promoted membrane fusion activity, with the SH extracellular domain and transmembrane domain playing a key role in this inhibition. These results suggest that the HMPV SH protein could regulate both membrane permeability and fusion protein function during viral infection. IMPORTANCE Human metapneumovirus (HMPV), first identified in 2001, is a causative agent of severe respiratory tract disease worldwide. The small hydrophobic (SH) protein is one of three glycoproteins encoded by all strains of HMPV, but the function of the HMPV SH protein is unknown. We have determined that the HMPV SH protein can alter the permeability of cellular membranes, suggesting that HMPV SH is a member of a class of proteins termed viroporins, which modulate membrane permeability to facilitate critical steps in a viral life cycle. We also demonstrated that HMPV SH can inhibit the membrane fusion function of the HMPV fusion protein. This work suggests that the HMPV SH protein has several functions, though the steps in the HMPV life cycle impacted by these functions remain to be clarified. PMID:24672047

  6. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1.

    PubMed

    McDonald, Christopher; Jovanovic, Goran; Ces, Oscar; Buck, Martin

    2015-09-01

    Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins' differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell's inner membrane experiences increased SCE stress. All cell types maintain the integrity of their membrane systems. One widely distributed membrane stress response system in bacteria is the phage shock protein (Psp) system. The central component, peripheral membrane protein PspA, which mitigates inner membrane stress in bacteria, has a counterpart, Vipp1, which functions for membrane maintenance and thylakoid biogenesis in plants and photosynthetic bacteria. Membrane association of both these proteins is accepted as playing a pivotal role in their functions. Here we show that direct membrane binding by PspA and Vipp1 is driven by two physio-chemical signals, one of which is membrane stress specific. Our work points to alleviation of membrane stored curvature elastic stress by amphipathic helix insertions as an attractive mechanism for membrane maintenance by PspA and Vipp1. Furthermore, the identification of a physical, stress-related membrane signal suggests a unilateral mechanism that promotes both binding of PspA and induction of the Psp response. Copyright © 2015 McDonald et al.

  7. Improving membrane protein expression and function using genomic edits

    DOE PAGES

    Jensen, Heather M.; Eng, Thomas; Chubukov, Victor; ...

    2017-10-12

    Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. Here, we hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression ofmore » five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.« less

  8. Improving membrane protein expression and function using genomic edits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Heather M.; Eng, Thomas; Chubukov, Victor

    Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. Here, we hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression ofmore » five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.« less

  9. Reprogramming cellular functions with engineered membrane proteins.

    PubMed

    Arber, Caroline; Young, Melvin; Barth, Patrick

    2017-10-01

    Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03700g

    PubMed Central

    Sadaf, Aiman; Du, Yang; Santillan, Claudia; Mortensen, Jonas S.; Molist, Iago; Seven, Alpay B.; Hariharan, Parameswaran; Skiniotis, Georgios; Loland, Claus J.; Kobilka, Brian K.; Guan, Lan; Byrne, Bernadette

    2017-01-01

    The critical contribution of membrane proteins in normal cellular function makes their detailed structure and functional analysis essential. Detergents, amphipathic agents with the ability to maintain membrane proteins in a soluble state in aqueous solution, have key roles in membrane protein manipulation. Structural and functional stability is a prerequisite for biophysical characterization. However, many conventional detergents are limited in their ability to stabilize membrane proteins, making development of novel detergents for membrane protein manipulation an important research area. The architecture of a detergent hydrophobic group, that directly interacts with the hydrophobic segment of membrane proteins, is a key factor in dictating their efficacy for both membrane protein solubilization and stabilization. In the current study, we developed two sets of maltoside-based detergents with four alkyl chains by introducing dendronic hydrophobic groups connected to a trimaltoside head group, designated dendronic trimaltosides (DTMs). Representative DTMs conferred enhanced stabilization to multiple membrane proteins compared to the benchmark conventional detergent, DDM. One DTM (i.e., DTM-A6) clearly outperformed DDM in stabilizing human β2 adrenergic receptor (β2AR) and its complex with Gs protein. A further evaluation of this DTM led to a clear visualization of β2AR-Gs complex via electron microscopic analysis. Thus, the current study not only provides novel detergent tools useful for membrane protein study, but also suggests that the dendronic architecture has a role in governing detergent efficacy for membrane protein stabilization. PMID:29619178

  11. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOEpatents

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  12. Membrane Protein Production in E. coli Lysates in Presence of Preassembled Nanodiscs.

    PubMed

    Rues, Ralf-Bernhardt; Gräwe, Alexander; Henrich, Erik; Bernhard, Frank

    2017-01-01

    Cell-free expression allows to synthesize membrane proteins in completely new formats that can relatively easily be customized for particular applications. Amphiphilic superstructures such as micelles, lipomicelles, or nanodiscs can be provided as nano-devices for the solubilization of membrane proteins. Defined empty bilayers in the form of nanodiscs offer native like environments for membrane proteins, supporting functional folding, proper oligomeric assembly as well as stability. Even very difficult and detergent-sensitive membrane proteins can be addressed by the combination of nanodisc technology with efficient cell-free expression systems as the direct co-translational insertion of nascent membrane proteins into supplied preassembled nanodiscs is possible. This chapter provides updated protocols for the synthesis of membrane proteins in presence of preassembled nanodiscs suitable for emerging applications such as screening of lipid effects on membrane protein function and the modulation of oligomeric complex formation.

  13. Systematically Ranking the Tightness of Membrane Association for Peripheral Membrane Proteins (PMPs)*

    PubMed Central

    Gao, Liyan; Ge, Haitao; Huang, Xiahe; Liu, Kehui; Zhang, Yuanya; Xu, Wu; Wang, Yingchun

    2015-01-01

    Large-scale quantitative evaluation of the tightness of membrane association for nontransmembrane proteins is important for identifying true peripheral membrane proteins with functional significance. Herein, we simultaneously ranked more than 1000 proteins of the photosynthetic model organism Synechocystis sp. PCC 6803 for their relative tightness of membrane association using a proteomic approach. Using multiple precisely ranked and experimentally verified peripheral subunits of photosynthetic protein complexes as the landmarks, we found that proteins involved in two-component signal transduction systems and transporters are overall tightly associated with the membranes, whereas the associations of ribosomal proteins are much weaker. Moreover, we found that hypothetical proteins containing the same domains generally have similar tightness. This work provided a global view of the structural organization of the membrane proteome with respect to divergent functions, and built the foundation for future investigation of the dynamic membrane proteome reorganization in response to different environmental or internal stimuli. PMID:25505158

  14. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    PubMed Central

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  15. Production of membrane proteins without cells or detergents.

    PubMed

    Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael

    2011-04-30

    The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Membrane protein stoichiometry studied in intact mammalian cells using liquid-phase electron microscopy.

    PubMed

    DE Jonge, N

    2018-02-01

    Receptor membrane proteins in the plasma membranes of cells respond to extracellular chemical signals by conformational changes, spatial redistribution, and (re-)assembly into protein complexes, for example, into homodimers (pairs of the same protein type). The functional state of the proteins can be determined from information about how subunits are assembled into protein complexes. Stoichiometric information about the protein complex subunits, however, is generally not obtained from intact cells but from pooled material extracted from many cells, resulting in a lack of fundamental knowledge about the functioning of membrane proteins. First, functional states may dramatically differ from cell to cell on account of cell heterogeneity. Second, extracting the membrane proteins from the plasma membrane may lead to many artefacts. Liquid-phase scanning transmission electron microscopy (STEM), in short liquid STEM, is a new technique capable of determining the locations of individual membrane proteins within the intact plasma membranes of cells in liquid. Many tens of whole cells can readily be imaged. It is possible to analyse the stoichiometry of membrane proteins in single cells while accounting for heterogenic cell populations. Liquid STEM was used to image epidermal growth factor receptors in whole COS7 cells. A study of the dimerisation of the HER2 protein in breast cancer cells revealed the presence of rare cancer cells in which HER2 was in a different functional state than in the bulk cells. Stoichiometric information about receptors is essential not only for basic science but also for biomedical application because they present many important pharmaceutical targets. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  17. Changes in topography and function of thylakoid membranes following membrane protein phosphorylation.

    PubMed

    Black, M T; Lee, P; Horton, P

    1986-09-01

    Changes in topography and function of pea (Pisum sativum L.) thylakoid membrane fractions following membrane protein phosphorylation have been studied. After protein phosphorylation the stromal membrane fraction had a higher chlorophyll a/b ratio, an increased content of light-harvesting chlorophyll protein and a higher ratio of chlorophyll to cytochrome f. This indicates that a pool of light-harvesting chlorophyll protein migrates from the photosystem II-enriched grana regions to the photosystem I-enriched stroma lamellae, in agreement with Kyle et al. (1984, Biochim. Biophys. Acta 765, 89-96) and Larsson et al. (1983, Eur. J. Biochem. 136, 25-29). Phosphorylation caused a stimulation in the rate of light-limited photosystem-I electron transfer in the unappressed membrane fraction, indicating that the translocated LHC-II becomes functionally associated with photosystem I.

  18. Using Haloarcula marismortui Bacteriorhodopsin as a Fusion Tag for Enhancing and Visible Expression of Integral Membrane Proteins in Escherichia coli

    PubMed Central

    Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H. J.

    2013-01-01

    Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system. PMID:23457558

  19. Active Fragments from Pro- and Antiapoptotic BCL-2 Proteins Have Distinct Membrane Behavior Reflecting Their Functional Divergence

    PubMed Central

    Guillemin, Yannis; Lopez, Jonathan; Gimenez, Diana; Fuertes, Gustavo; Valero, Juan Garcia; Blum, Loïc; Gonzalo, Philippe; Salgado, Jesùs; Girard-Egrot, Agnès; Aouacheria, Abdel

    2010-01-01

    Background The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. Methodology/Principal Findings Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. Conclusion/Significance BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains. PMID:20140092

  20. Hunting for low abundant redox proteins in plant plasma membranes.

    PubMed

    Lüthje, Sabine; Hopff, David; Schmitt, Anna; Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana

    2009-04-13

    Nowadays electron transport (redox) systems in plasma membranes appear well established. Members of the flavocytochrome b family have been identified by their nucleotide acid sequences and characterized on the transcriptional level. For their gene products functions have been demonstrated in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. In addition, NAD(P)H-dependent oxidoreductases and b-type cytochromes have been purified and characterized from plasma membranes. Several of these proteins seem to belong to the group of hypothetical or unknown proteins. Low abundance and the lack of amino acid sequence data for these proteins still hamper their functional analysis. Consequently, little is known about the physiological function and regulation of these enzymes. In recent years evidence has been presented for the existence of microdomains (so-called lipid rafts) in plasma membranes and their interaction with specific membrane proteins. The identification of redox systems in detergent insoluble membranes supports the idea that redox systems may have important functions in signal transduction, stress responses, cell wall metabolism, and transport processes. This review summarizes our present knowledge on plasma membrane redox proteins and discusses alternative strategies to investigate the function and regulation of these enzymes.

  1. Mapping the yeast host cell response to recombinant membrane protein production: relieving the biological bottlenecks.

    PubMed

    Ashe, Mark P; Bill, Roslyn M

    2011-06-01

    Understanding the structures and functions of membrane proteins is an active area of research within bioscience. Membrane proteins are key players in essential cellular processes such as the uptake of nutrients, the export of waste products, and the way in which cells communicate with their environment. It is therefore not surprising that membrane proteins are targeted by over half of all prescription drugs. Since most membrane proteins are not abundant in their native membranes, it is necessary to produce them in recombinant host cells to enable further structural and functional studies. Unfortunately, achieving the required yields of functional recombinant membrane proteins is still a bottleneck in contemporary bioscience. This has highlighted the need for defined and rational optimization strategies based upon experimental observation rather than relying on trial and error. We have published a transcriptome and subsequent genetic analysis that has identified genes implicated in high-yielding yeast cells. These results have highlighted a role for alterations to a cell's protein synthetic capacity in the production of high yields of recombinant membrane protein: paradoxically, reduced protein synthesis favors higher yields. These results highlight a potential bottleneck at the protein folding or translocation stage of protein production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A method for detergent-free isolation of membrane proteins in their local lipid environment.

    PubMed

    Lee, Sarah C; Knowles, Tim J; Postis, Vincent L G; Jamshad, Mohammed; Parslow, Rosemary A; Lin, Yu-Pin; Goldman, Adrian; Sridhar, Pooja; Overduin, Michael; Muench, Stephen P; Dafforn, Timothy R

    2016-07-01

    Despite the great importance of membrane proteins, structural and functional studies of these proteins present major challenges. A significant hurdle is the extraction of the functional protein from its natural lipid membrane. Traditionally achieved with detergents, purification procedures can be costly and time consuming. A critical flaw with detergent approaches is the removal of the protein from the native lipid environment required to maintain functionally stable protein. This protocol describes the preparation of styrene maleic acid (SMA) co-polymer to extract membrane proteins from prokaryotic and eukaryotic expression systems. Successful isolation of membrane proteins into SMA lipid particles (SMALPs) allows the proteins to remain with native lipid, surrounded by SMA. We detail procedures for obtaining 25 g of SMA (4 d); explain the preparation of protein-containing SMALPs using membranes isolated from Escherichia coli (2 d) and control protein-free SMALPS using E. coli polar lipid extract (1-2 h); investigate SMALP protein purity by SDS-PAGE analysis and estimate protein concentration (4 h); and detail biophysical methods such as circular dichroism (CD) spectroscopy and sedimentation velocity analytical ultracentrifugation (svAUC) to undertake initial structural studies to characterize SMALPs (∼2 d). Together, these methods provide a practical tool kit for those wanting to use SMALPs to study membrane proteins.

  3. Phytochemicals perturb membranes and promiscuously alter protein function.

    PubMed

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  4. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  5. Membrane nanodomains in plants: capturing form, function, and movement.

    PubMed

    Tapken, Wiebke; Murphy, Angus S

    2015-03-01

    The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Dynamic nuclear polarization methods in solids and solutions to explore membrane proteins and membrane systems.

    PubMed

    Cheng, Chi-Yuan; Han, Songi

    2013-01-01

    Membrane proteins regulate vital cellular processes, including signaling, ion transport, and vesicular trafficking. Obtaining experimental access to their structures, conformational fluctuations, orientations, locations, and hydration in membrane environments, as well as the lipid membrane properties, is critical to understanding their functions. Dynamic nuclear polarization (DNP) of frozen solids can dramatically boost the sensitivity of current solid-state nuclear magnetic resonance tools to enhance access to membrane protein structures in native membrane environments. Overhauser DNP in the solution state can map out the local and site-specific hydration dynamics landscape of membrane proteins and lipid membranes, critically complementing the structural and dynamics information obtained by electron paramagnetic resonance spectroscopy. Here, we provide an overview of how DNP methods in solids and solutions can significantly increase our understanding of membrane protein structures, dynamics, functions, and hydration in complex biological membrane environments.

  7. Applications of solid-state NMR to membrane proteins.

    PubMed

    Ladizhansky, Vladimir

    2017-11-01

    Membrane proteins mediate flow of molecules, signals, and energy between cells and intracellular compartments. Understanding membrane protein function requires a detailed understanding of the structural and dynamic properties involved. Lipid bilayers provide a native-like environment for structure-function investigations of membrane proteins. In this review we give a general discourse on the recent progress in the field of solid-state NMR of membrane proteins. Solid-state NMR is a variation of NMR spectroscopy that is applicable to molecular systems with restricted mobility, such as high molecular weight proteins and protein complexes, supramolecular assemblies, or membrane proteins in a phospholipid environment. We highlight recent advances in applications of solid-state NMR to membrane proteins, specifically focusing on the recent developments in the field of Dynamic Nuclear Polarization, proton detection, and solid-state NMR applications in situ (in cell membranes). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Plant membrane proteomics.

    PubMed

    Ephritikhine, Geneviève; Ferro, Myriam; Rolland, Norbert

    2004-12-01

    Plant membrane proteins are involved in many different functions according to their location in the cell. For instance, the chloroplast has two membrane systems, thylakoids and envelope, with specialized membrane proteins for photosynthesis and metabolite and ion transporters, respectively. Although recent advances in sample preparation and analytical techniques have been achieved for the study of membrane proteins, the characterization of these proteins, especially the hydrophobic ones, is still challenging. The present review highlights recent advances in methodologies for identification of plant membrane proteins from purified subcellular structures. The interest of combining several complementary extraction procedures to take into account specific features of membrane proteins is discussed in the light of recent proteomics data, notably for chloroplast envelope, mitochondrial membranes and plasma membrane from Arabidopsis. These examples also illustrate how, on one hand, proteomics can feed bioinformatics for a better definition of prediction tools and, on the other hand, although prediction tools are not 100% reliable, they can give valuable information for biological investigations. In particular, membrane proteomics brings new insights over plant membrane systems, on both the membrane compartment where proteins are working and their putative cellular function.

  9. Microfluidic platform for efficient Nanodisc assembly, membrane protein incorporation, and purification.

    PubMed

    Wade, James H; Jones, Joshua D; Lenov, Ivan L; Riordan, Colleen M; Sligar, Stephen G; Bailey, Ryan C

    2017-08-22

    The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.

  10. Structure refinement of membrane proteins via molecular dynamics simulations.

    PubMed

    Dutagaci, Bercem; Heo, Lim; Feig, Michael

    2018-07-01

    A refinement protocol based on physics-based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge-based or implicit membrane-based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane-based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models. © 2018 Wiley Periodicals, Inc.

  11. Membrane proteins bind lipids selectively to modulate their structure and function.

    PubMed

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane protein structure and/or function. We anticipate that these findings will be important not only for defining the selectivity of membrane proteins towards lipids, but also for understanding the role of lipids in modulating protein function or drug binding.

  12. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Demonstration of ion channel synthesis by isolated squid giant axon provides functional evidence for localized axonal membrane protein translation.

    PubMed

    Mathur, Chhavi; Johnson, Kory R; Tong, Brian A; Miranda, Pablo; Srikumar, Deepa; Basilio, Daniel; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2018-02-02

    Local translation of membrane proteins in neuronal subcellular domains like soma, dendrites and axon termini is well-documented. In this study, we isolated the electrical signaling unit of an axon by dissecting giant axons from mature squids (Dosidicus gigas). Axoplasm extracted from these axons was found to contain ribosomal RNAs, ~8000 messenger RNA species, many encoding the translation machinery, membrane proteins, translocon and signal recognition particle (SRP) subunits, endomembrane-associated proteins, and unprecedented proportions of SRP RNA (~68% identical to human homolog). While these components support endoplasmic reticulum-dependent protein synthesis, functional assessment of a newly synthesized membrane protein in axolemma of an isolated axon is technically challenging. Ion channels are ideal proteins for this purpose because their functional dynamics can be directly evaluated by applying voltage clamp across the axon membrane. We delivered in vitro transcribed RNA encoding native or Drosophila voltage-activated Shaker K V channel into excised squid giant axons. We found that total K + currents increased in both cases; with added inactivation kinetics on those axons injected with RNA encoding the Shaker channel. These results provide unambiguous evidence that isolated axons can exhibit de novo synthesis, assembly and membrane incorporation of fully functional oligomeric membrane proteins.

  14. Toward high-resolution computational design of helical membrane protein structure and function

    PubMed Central

    Barth, Patrick; Senes, Alessandro

    2016-01-01

    The computational design of α-helical membrane proteins is still in its infancy but has made important progress. De novo design has produced stable, specific and active minimalistic oligomeric systems. Computational re-engineering can improve stability and modulate the function of natural membrane proteins. Currently, the major hurdle for the field is not computational, but the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress PMID:27273630

  15. Toward high-resolution computational design of the structure and function of helical membrane proteins.

    PubMed

    Barth, Patrick; Senes, Alessandro

    2016-06-07

    The computational design of α-helical membrane proteins is still in its infancy but has already made great progress. De novo design allows stable, specific and active minimal oligomeric systems to be obtained. Computational reengineering can improve the stability and function of naturally occurring membrane proteins. Currently, the major hurdle for the field is the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress.

  16. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    PubMed

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  17. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs

    PubMed Central

    Fox, Philip D.; Haberkorn, Christopher J.; Weigel, Aubrey V.; Higgins, Jenny L.; Akin, Elizabeth J.; Kennedy, Matthew J.; Krapf, Diego; Tamkun, Michael M.

    2013-01-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking. PMID:23864710

  18. Evolved Escherichia coli strains for amplified, functional expression of membrane proteins.

    PubMed

    Gul, Nadia; Linares, Daniel M; Ho, Franz Y; Poolman, Bert

    2014-01-09

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins. © 2013.

  19. The mechanism of protein export enhancement by the SecDF membrane component

    PubMed Central

    Tsukazaki, Tomoya; Nureki, Osamu

    2011-01-01

    Protein transport across membranes is a fundamental and essential cellular activity in all organisms. In bacteria, protein export across the cytoplasmic membrane, driven by dynamic interplays between the protein-conducting SecYEG channel (Sec translocon) and the SecA ATPase, is enhanced by the proton motive force (PMF) and a membrane-integrated Sec component, SecDF. However, the structure and function of SecDF have remained unclear. We solved the first crystal structure of SecDF, consisting of a pseudo-symmetrical 12-helix transmembrane domain and two protruding periplasmic domains. Based on the structural features, we proposed that SecDF functions as a membrane-integrated chaperone, which drives protein movement without using the major energetic currency, ATP, but with remarkable cycles of conformational changes, powered by the proton gradient across the membrane. By a series of biochemical and biophysical approaches, several functionally important residues in the transmembrane region have been identified and our model of the SecDF function has been verified. PMID:27857601

  20. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  1. Functional dynamics of cell surface membrane proteins.

    PubMed

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Membrane-Mediated Cooperativity of Proteins

    NASA Astrophysics Data System (ADS)

    Weikl, Thomas R.

    2018-04-01

    Besides direct protein-protein interactions, indirect interactions mediated by membranes play an important role for the assembly and cooperative function of proteins in membrane shaping and adhesion. The intricate shapes of biological membranes are generated by proteins that locally induce membrane curvature. Indirect curvature-mediated interactions between these proteins arise because the proteins jointly affect the bending energy of the membranes. These curvature-mediated interactions are attractive for crescent-shaped proteins and are a driving force in the assembly of the proteins during membrane tubulation. Membrane adhesion results from the binding of receptor and ligand proteins that are anchored in the apposing membranes. The binding of these proteins strongly depends on nanoscale shape fluctuations of the membranes, leading to a fluctuation-mediated binding cooperativity. A length mismatch between receptor-ligand complexes in membrane adhesion zones causes repulsive curvature-mediated interactions that are a driving force for the length-based segregation of proteins during membrane adhesion.

  3. Outer Membrane Targeting of Passenger Proteins by the Vacuolating Cytotoxin Autotransporter of Helicobacter pylori

    PubMed Central

    Fischer, Wolfgang; Buhrdorf, Renate; Gerland, Elke; Haas, Rainer

    2001-01-01

    Helicobacter pylori produces a number of proteins associated with the outer membrane, including adhesins and the vacuolating cytotoxin. These proteins are supposed to integrate into the outer membrane by β-barrel structures, characteristic of the family of autotransporter proteins. By using the SOMPES (shuttle vector-based outer membrane protein expression) system for outer membrane protein production, we were able to functionally express in H. pylori the cholera toxin B subunit genetically fused to the C-terminal VacA domain. We demonstrate that the fusion protein is translocated to the H. pylori outer membrane and that the CtxB domain is exposed on the H. pylori surface. Thus, we provide the first experimental evidence that the C-terminal β-domain of VacA can transport a foreign passenger protein to the H. pylori surface and hence acts as a functional autotransporter. PMID:11598049

  4. The fine art of integral membrane protein crystallisation.

    PubMed

    Birch, James; Axford, Danny; Foadi, James; Meyer, Arne; Eckhardt, Annette; Thielmann, Yvonne; Moraes, Isabel

    2018-05-18

    Integral membrane proteins are among the most fascinating and important biomolecules as they play a vital role in many biological functions. Knowledge of their atomic structures is fundamental to the understanding of their biochemical function and key in many drug discovery programs. However, over the years, structure determination of integral membrane proteins has proven to be far from trivial, hence they are underrepresented in the protein data bank. Low expression levels, insolubility and instability are just a few of the many hurdles one faces when studying these proteins. X-ray crystallography has been the most used method to determine atomic structures of membrane proteins. However, the production of high quality membrane protein crystals is always very challenging, often seen more as art than a rational experiment. Here we review valuable approaches, methods and techniques to successful membrane protein crystallisation. Copyright © 2018 Diamond Light Source LTD. Published by Elsevier Inc. All rights reserved.

  5. BAR domain proteins regulate Rho GTPase signaling.

    PubMed

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  6. Less is More: Membrane Protein Digestion Beyond Urea–Trypsin Solution for Next-level Proteomics*

    PubMed Central

    Zhang, Xi

    2015-01-01

    The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea–trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting—not destroying—structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics. PMID:26081834

  7. Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis[W][OA

    PubMed Central

    Duncan, Owen; Taylor, Nicolas L.; Carrie, Chris; Eubel, Holger; Kubiszewski-Jakubiak, Szymon; Zhang, Botao; Narsai, Reena; Millar, A. Harvey; Whelan, James

    2011-01-01

    The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction. PMID:21896887

  8. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies

    PubMed Central

    2018-01-01

    Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents. PMID:29488756

  9. Unraveling sterol-dependent membrane phenotypes by analysis of protein abundance-ratio distributions in different membrane fractions under biochemical and endogenous sterol depletion.

    PubMed

    Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X

    2013-12-01

    During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions.

  10. Unraveling Sterol-dependent Membrane Phenotypes by Analysis of Protein Abundance-ratio Distributions in Different Membrane Fractions Under Biochemical and Endogenous Sterol Depletion*

    PubMed Central

    Zauber, Henrik; Szymanski, Witold; Schulze, Waltraud X.

    2013-01-01

    During the last decade, research on plasma membrane focused increasingly on the analysis of so-called microdomains. It has been shown that function of many membrane-associated proteins involved in signaling and transport depends on their conditional segregation within sterol-enriched membrane domains. High throughput proteomic analysis of sterol-protein interactions are often based on analyzing detergent resistant membrane fraction enriched in sterols and associated proteins, which also contain proteins from these microdomain structures. Most studies so far focused exclusively on the characterization of detergent resistant membrane protein composition and abundances. This approach has received some criticism because of its unspecificity and many co-purifying proteins. In this study, by a label-free quantitation approach, we extended the characterization of membrane microdomains by particularly studying distributions of each protein between detergent resistant membrane and detergent-soluble fractions (DSF). This approach allows a more stringent definition of dynamic processes between different membrane phases and provides a means of identification of co-purifying proteins. We developed a random sampling algorithm, called Unicorn, allowing for robust statistical testing of alterations in the protein distribution ratios of the two different fractions. Unicorn was validated on proteomic data from methyl-β-cyclodextrin treated plasma membranes and the sterol biosynthesis mutant smt1. Both, chemical treatment and sterol-biosynthesis mutation affected similar protein classes in their membrane phase distribution and particularly proteins with signaling and transport functions. PMID:24030099

  11. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome.

    PubMed

    Marmagne, Anne; Rouet, Marie-Aude; Ferro, Myriam; Rolland, Norbert; Alcon, Carine; Joyard, Jacques; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève

    2004-07-01

    Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.

  12. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1

    PubMed Central

    McDonald, Christopher; Jovanovic, Goran; Ces, Oscar

    2015-01-01

    ABSTRACT Phage shock protein A (PspA), which is responsible for maintaining inner membrane integrity under stress in enterobacteria, and vesicle-inducting protein in plastids 1 (Vipp1), which functions for membrane maintenance and thylakoid biogenesis in cyanobacteria and plants, are similar peripheral membrane-binding proteins. Their homologous N-terminal amphipathic helices are required for membrane binding; however, the membrane features recognized and required for expressing their functionalities have remained largely uncharacterized. Rigorously controlled, in vitro methodologies with lipid vesicles and purified proteins were used in this study and provided the first biochemical and biophysical characterizations of membrane binding by PspA and Vipp1. Both proteins are found to sense stored curvature elastic (SCE) stress and anionic lipids within the membrane. PspA has an enhanced sensitivity for SCE stress and a higher affinity for the membrane than Vipp1. These variations in binding may be crucial for some of the proteins’ differing roles in vivo. Assays probing the transcriptional regulatory function of PspA in the presence of vesicles showed that a relief of transcription inhibition occurs in an SCE stress-specific manner. This in vitro recapitulation of membrane stress-dependent transcription control suggests that the Psp response may be mounted in vivo when a cell’s inner membrane experiences increased SCE stress. PMID:26330516

  13. Cytosolic proteins can exploit membrane localization to trigger functional assembly

    PubMed Central

    2018-01-01

    Cell division, endocytosis, and viral budding would not function without the localization and assembly of protein complexes on membranes. What is poorly appreciated, however, is that by localizing to membranes, proteins search in a reduced space that effectively drives up concentration. Here we derive an accurate and practical analytical theory to quantify the significance of this dimensionality reduction in regulating protein assembly on membranes. We define a simple metric, an effective equilibrium constant, that allows for quantitative comparison of protein-protein interactions with and without membrane present. To test the importance of membrane localization for driving protein assembly, we collected the protein-protein and protein-lipid affinities, protein and lipid concentrations, and volume-to-surface-area ratios for 46 interactions between 37 membrane-targeting proteins in human and yeast cells. We find that many of the protein-protein interactions between pairs of proteins involved in clathrin-mediated endocytosis in human and yeast cells can experience enormous increases in effective protein-protein affinity (10–1000 fold) due to membrane localization. Localization of binding partners thus triggers robust protein complexation, suggesting that it can play an important role in controlling the timing of endocytic protein coat formation. Our analysis shows that several other proteins involved in membrane remodeling at various organelles have similar potential to exploit localization. The theory highlights the master role of phosphoinositide lipid concentration, the volume-to-surface-area ratio, and the ratio of 3D to 2D equilibrium constants in triggering (or preventing) constitutive assembly on membranes. Our simple model provides a novel quantitative framework for interpreting or designing in vitro experiments of protein complexation influenced by membrane binding. PMID:29505559

  14. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    PubMed

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  15. Selective cell-surface labeling of the molecular motor protein prestin

    PubMed Central

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-01-01

    Prestin, a multipass transmembrane protein whose N- an C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. PMID:21651892

  16. Functional microdomains in bacterial membranes.

    PubMed

    López, Daniel; Kolter, Roberto

    2010-09-01

    The membranes of eukaryotic cells harbor microdomains known as lipid rafts that contain a variety of signaling and transport proteins. Here we show that bacterial membranes contain microdomains functionally similar to those of eukaryotic cells. These membrane microdomains from diverse bacteria harbor homologs of Flotillin-1, a eukaryotic protein found exclusively in lipid rafts, along with proteins involved in signaling and transport. Inhibition of lipid raft formation through the action of zaragozic acid--a known inhibitor of squalene synthases--impaired biofilm formation and protein secretion but not cell viability. The orchestration of physiological processes in microdomains may be a more widespread feature of membranes than previously appreciated.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournia, Zoe; Allen, Toby W.; Andricioaei, Ioan

    It is fundamental for the flourishing biological cells that membrane proteins mediate the process. Membrane-embedded transporters move ions and larger solutes across membranes; receptors mediate communication between the cell and its environment and membrane-embedded enzymes catalyze chemical reactions. Understanding these mechanisms of action requires knowledge of how the proteins couple to their fluid, hydrated lipid membrane environment. Here, we present here current studies in computational and experimental membrane protein biophysics, and show how they address outstanding challenges in understanding the complex environmental effects on the structure, function, and dynamics of membrane proteins.

  18. Less is More: Membrane Protein Digestion Beyond Urea-Trypsin Solution for Next-level Proteomics.

    PubMed

    Zhang, Xi

    2015-09-01

    The goal of next-level bottom-up membrane proteomics is protein function investigation, via high-coverage high-throughput peptide-centric quantitation of expression, modifications and dynamic structures at systems scale. Yet efficient digestion of mammalian membrane proteins presents a daunting barrier, and prevalent day-long urea-trypsin in-solution digestion proved insufficient to reach this goal. Many efforts contributed incremental advances over past years, but involved protein denaturation that disconnected measurement from functional states. Beyond denaturation, the recent discovery of structure/proteomics omni-compatible detergent n-dodecyl-β-d-maltopyranoside, combined with pepsin and PNGase F columns, enabled breakthroughs in membrane protein digestion: a 2010 DDM-low-TCEP (DLT) method for H/D-exchange (HDX) using human G protein-coupled receptor, and a 2015 flow/detergent-facilitated protease and de-PTM digestions (FDD) for integrative deep sequencing and quantitation using full-length human ion channel complex. Distinguishing protein solubilization from denaturation, protease digestion reliability from theoretical specificity, and reduction from alkylation, these methods shifted day(s)-long paradigms into minutes, and afforded fully automatable (HDX)-protein-peptide-(tandem mass tag)-HPLC pipelines to instantly measure functional proteins at deep coverage, high peptide reproducibility, low artifacts and minimal leakage. Promoting-not destroying-structures and activities harnessed membrane proteins for the next-level streamlined functional proteomics. This review analyzes recent advances in membrane protein digestion methods and highlights critical discoveries for future proteomics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.

    PubMed

    Morigaki, Kenichi; Tanimoto, Yasushi

    2018-03-14

    One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses.

    PubMed

    Kessels, Michael M; Qualmann, Britta

    2015-09-01

    A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions. © 2015. Published by The Company of Biologists Ltd.

  1. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.

    PubMed

    Nicolson, Garth L

    2014-06-01

    In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along with membrane-associated cytoskeletal and extracellular structures maintain the long-range, non-random mosaic macro-organization of membranes, while smaller membrane nano- and submicro-sized domains, such as lipid rafts and protein complexes, are important in maintaining specialized membrane structures that are in cooperative dynamic flux in a crowded membrane plane. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. © 2013.

  2. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability**

    PubMed Central

    Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490

  3. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGES

    Johs, Alexander; Whited, A. M.

    2015-07-29

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  4. 75 FR 39667 - Availability for Non-Exclusive or Partially Exclusive Licensing of a U.S. Patent Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ..., which issued on December 15, 2009, entitled ``Use of Shigella Invaplex to Transport Functional Proteins... Functional Proteins and Transcriptionally Active Nucleic Acids Across Mammalian Cell Membranes In Vitro and... functional proteins and biologically active nucleic acids, across eukaryotic cell membranes. Brenda S. Bowen...

  5. Membrane Protein Incorporation into Nano-Bioelectronics: An insight into Rhodopsin Controlled SiNW-FET Devices

    NASA Astrophysics Data System (ADS)

    Tunuguntla, Ramya

    Biological systems use different energy sources to interact with their environments by creating ion gradients, membrane electric potentials, or a proton motive force to accomplish strikingly complex tasks on the nanometer length scale, such as energy harvesting, and whole organism replication. Most of this activity involves a vast arsenal of active and passive ion channels, membrane receptors and ion pumps that mediate complex and precise transport across biological membranes. Despite the remarkable rate of progress exhibited by modern microelectronic devices, they still cannot compete with the efficiency and precision of biological systems on the component level. At the same time, the sophistication of these molecular machines provides an excellent opportunity to use them in hybrid bioelectronic devices where such a combination could deliver enhanced electronic functionality and enable seamless bi-directional interfaces between man-made and biological assemblies. Artificial membrane systems allow researchers to study the structure and function of membrane proteins in a matrix that approximates their natural environment and to integrate these proteins in ex-vivo devices such as electronic biosensors, thin-film protein arrays, or bio-fuel cells. Since most membrane proteins have vectorial functions, both functional studies and applications require effective control over protein orientation within a lipid bilayer. In our work, we have explored the role of the bilayer surface charge in determining transmembrane protein orientation and functionality during formation of proteoliposomes. We reconstituted a model vectorial ion pump, proteorhodopsin, in liposomes of opposite charges and varying charge densities and determined the resultant protein orientation. Antibody-binding assay and proteolysis of proteoliposomes showed physical evidence of preferential orientation, and functional assays verified vectorial nature of ion transport in this system. Our results indicate that the manipulation of lipid composition can indeed control orientation of an asymmetrically charged membrane protein, proteorhodopsin, in liposomes. One-dimensional inorganic nanostructures, which have critical dimensions comparable to the sizes of biological molecules, form an excellent materials platform for building such integrated structures. Researchers already use silicon nanowire-based field effect transistors functionalized with molecular recognition sites in a diverse array of biosensors. In our group, we have been developing a platform for integration of membrane protein functionality and electronic devices using a 1-D phospholipid bilayer device architecture. In these devices, the membrane proteins reside within the lipid bilayer that covers a nanowire channel of a field-effect transistor. This lipid bilayer performs several functions: it shields the nanowire from the solution species; it serves as a native-like environment for membrane proteins and preserves their functionality, integrity, and even vectorality. In this work, we show that a 1-D bilayer device incorporating a rhodopsin proton pump allows us to couple light-driven proton transport to a bioelectronic circuit. We also report that we were able to adapt another distinctive feature of biological signal processing---their widespread use of modifiers, co-factors, and mediator molecules---to regulate and fine-tune the operational characteristics of the bioelectronic device. In our example, we use co-assembly of protein channels and ionophores in the 1-D bilayer to modify the device output levels and response time.

  6. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support

    PubMed Central

    Di Bartolo, Natalie; Compton, Emma L. R.; Warne, Tony; Edwards, Patricia C.; Tate, Christopher G.; Schertler, Gebhard F. X.; Booth, Paula J.

    2016-01-01

    The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes. PMID:26982879

  7. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    PubMed

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  8. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase

    PubMed Central

    Hatahet, Feras; Blazyk, Jessica L.; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E.; Beckwith, Jonathan; Boyd, Dana

    2015-01-01

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants. PMID:26598701

  9. Advances in structural and functional analysis of membrane proteins by electron crystallography

    PubMed Central

    Wisedchaisri, Goragot; Reichow, Steve L.; Gonen, Tamir

    2011-01-01

    Summary Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. PMID:22000511

  10. Advances in structural and functional analysis of membrane proteins by electron crystallography.

    PubMed

    Wisedchaisri, Goragot; Reichow, Steve L; Gonen, Tamir

    2011-10-12

    Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Thermodynamics and Mechanics of Membrane Curvature Generation and Sensing by Proteins and Lipids

    PubMed Central

    Baumgart, Tobias; Capraro, Benjamin R.; Zhu, Chen; Das, Sovan L.

    2014-01-01

    Research investigating lipid membrane curvature generation and sensing is a rapidly developing frontier in membrane physical chemistry and biophysics. The fast recent progress is based on the discovery of a plethora of proteins involved in coupling membrane shape to cellular membrane function, the design of new quantitative experimental techniques to study aspects of membrane curvature, and the development of analytical theories and simulation techniques that allow a mechanistic interpretation of quantitative measurements. The present review first provides an overview of important classes of membrane proteins for which function is coupled to membrane curvature. We then survey several mechanisms that are assumed to underlie membrane curvature sensing and generation. Finally, we discuss relatively simple thermodynamic/mechanical models that allow quantitative interpretation of experimental observations. PMID:21219150

  12. A cell-free translocation system using extracts of cultured insect cells to yield functional membrane proteins.

    PubMed

    Ezure, Toru; Nanatani, Kei; Sato, Yoko; Suzuki, Satomi; Aizawa, Keishi; Souma, Satoshi; Ito, Masaaki; Hohsaka, Takahiro; von Heijine, Gunnar; Utsumi, Toshihiko; Abe, Keietsu; Ando, Eiji; Uozumi, Nobuyuki

    2014-01-01

    Cell-free protein synthesis is a powerful method to explore the structure and function of membrane proteins and to analyze the targeting and translocation of proteins across the ER membrane. Developing a cell-free system based on cultured cells for the synthesis of membrane proteins could provide a highly reproducible alternative to the use of tissues from living animals. We isolated Sf21 microsomes from cultured insect cells by a simplified isolation procedure and evaluated the performance of the translocation system in combination with a cell-free translation system originating from the same source. The isolated microsomes contained the basic translocation machinery for polytopic membrane proteins including SRP-dependent targeting components, translocation channel (translocon)-dependent translocation, and the apparatus for signal peptide cleavage and N-linked glycosylation. A transporter protein synthesized with the cell-free system could be functionally reconstituted into a lipid bilayer. In addition, single and double labeling with non-natural amino acids could be achieved at both the lumen side and the cytosolic side in this system. Moreover, tail-anchored proteins, which are post-translationally integrated by the guided entry of tail-anchored proteins (GET) machinery, were inserted correctly into the microsomes. These results showed that the newly developed cell-free translocation system derived from cultured insect cells is a practical tool for the biogenesis of properly folded polytopic membrane proteins as well as tail-anchored proteins.

  13. Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Engel, Andreas; Janovjak, Harald; Fotiadis, Dimtrios; Kedrov, Alexej; Cisneros, David; Müller, Daniel J.

    Single-molecule atomic force microscopy (AFM) provides novel ways to characterize the structure-function relationship of native membrane proteins. High-resolution AFM topographs allow observing the structure of single proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. We will review these feasibilities illustrating examples of membrane proteins in native and reconstituted membranes. Classification of individual topographs of single proteins allows understanding the principles of motions of their extrinsic domains, to learn about their local structural flexibilities and to find the entropy minima of certain conformations. Combined with the visualization of functionally related conformational changes these insights allow understanding why certain flexibilities are required for the protein to function and how structurally flexible regions allow certain conformational changes. Complementary to AFM imaging, single-molecule force spectroscopy (SMFS) experiments detect molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to measure interactions that stabilize secondary structures such as transmembrane α-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the locations of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes.

  14. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.

    PubMed

    Basu, Avik; Harper, Sandra; Pesciotta, Esther N; Speicher, Kaye D; Chakrabarti, Abhijit; Speicher, David W

    2015-10-14

    Erythrocyte shape and membrane integrity is imparted by the membrane skeleton, which can be isolated as a Triton X-100 insoluble structure that retains the biconcave shape of intact erythrocytes, indicating isolation of essentially intact membrane skeletons. These erythrocyte "Triton Skeletons" have been studied morphologically and biochemically, but unbiased proteome analysis of this substructure of the membrane has not been reported. In this study, different extraction buffers and in-depth proteome analyses were used to more fully define the protein composition of this functionally critical macromolecular complex. As expected, the major, well-characterized membrane skeleton proteins and their associated membrane anchors were recovered in good yield. But surprisingly, a substantial number of additional proteins that are not considered in erythrocyte membrane skeleton models were recovered in high yields, including myosin-9, lipid raft proteins (stomatin, flotillin1 and 2), multiple chaperone proteins (HSPs, protein disulfide isomerase and calnexin), and several other proteins. These results show that the membrane skeleton is substantially more complex than previous biochemical studies indicated, and it apparently has localized regions with unique protein compositions and functions. This comprehensive catalog of the membrane skeleton should lead to new insights into erythrocyte membrane biology and pathogenic mutations that perturb membrane stability. Biological significance Current models of erythrocyte membranes describe fairly simple homogenous structures that are incomplete. Proteome analysis of the erythrocyte membrane skeleton shows that it is quite complex and includes a substantial number of proteins whose roles and locations in the membrane are not well defined. Further elucidation of interactions involving these proteins and definition of microdomains in the membrane that contain these proteins should yield novel insights into how the membrane skeleton produces the normal biconcave erythrocyte shape and how it is perturbed in pathological conditions that destabilize the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Helix formation and stability in membranes.

    PubMed

    McKay, Matthew J; Afrose, Fahmida; Koeppe, Roger E; Greathouse, Denise V

    2018-02-13

    In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex environment of the cell bilayer membrane. While many membrane proteins rely on the translocon and chaperone proteins to fold correctly, others can achieve their functional form in the absence of any translation apparatus or other aides. Nevertheless, the spontaneous folding process is not well understood at the molecular level. Recent findings suggest that helix fraying and loop formation may be important for overall structure, dynamics and regulation of function. Several types of membrane helices with ionizable amino acids change their topology with pH. Additionally we note that some peptides, including many that are rich in arginine, and a particular analogue of gramicidin, are able passively to translocate across cell membranes. The findings indicate that a final protein structure in a lipid-bilayer membrane is sequence-based, with lipids contributing to stability and regulation. While much progress has been made toward understanding the folding process for alpha-helical membrane proteins, it remains a work in progress. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A novel lipoprotein nanoparticle system for membrane proteins

    PubMed Central

    Frauenfeld, Jens; Löving, Robin; Armache, Jean-Paul; Sonnen, Andreas; Guettou, Fatma; Moberg, Per; Zhu, Lin; Jegerschöld, Caroline; Flayhan, Ali; Briggs, John A.G.; Garoff, Henrik; Löw, Christian; Cheng, Yifan; Nordlund, Pär

    2016-01-01

    Membrane proteins are of outstanding importance in biology, drug discovery and vaccination. A common limiting factor in research and applications involving membrane proteins is the ability to solubilize and stabilize membrane proteins. Although detergents represent the major means for solubilizing membrane proteins, they are often associated with protein instability and poor applicability in structural and biophysical studies. Here, we present a novel lipoprotein nanoparticle system that allows for the reconstitution of membrane proteins into a lipid environment that is stabilized by a scaffold of Saposin proteins. We showcase the applicability of the method on two purified membrane protein complexes as well as the direct solubilization and nanoparticle-incorporation of a viral membrane protein complex from the virus membrane. We also demonstrate that this lipid nanoparticle methodology facilitates high-resolution structural studies of membrane proteins in a lipid environment by single-particle electron cryo-microscopy (cryo-EM) and allows for the stabilization of the HIV-envelope glycoprotein in a functional state. PMID:26950744

  17. Membranes, mechanics, and intracellular transport

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer

    2012-10-01

    Cellular membranes are remarkable materials -- self-assembled, flexible, two-dimensional fluids. Understanding how proteins manipulate membrane curvature is crucial to understanding the transport of cargo in cells, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical-trap based assay involving dynamic deformation of biomimetic membranes, we have examined the behavior of Sar1, a key component of the COPII family of transport proteins. We find that Sar1 from yeast (S. cerevisiae) lowers membrane rigidity by up to 100% as a function of its concentration, thereby lowering the energetic cost of membrane deformation. Human Sar1 proteins can also lower the mechanical rigidity of the membranes to which they bind. However, unlike the yeast proteins, the rigidity is not a monotonically decreasing function of concentration but rather shows increased rigidity and decreased mobility at high concentrations that implies interactions between proteins. In addition to describing this study of membrane mechanics, I'll also discuss some topics relevant to a range of biophysical investigations, such as the insights provided by imaging methods and open questions in the dynamics of multicellular systems.

  18. Deorphanizing the human transmembrane genome: A landscape of uncharacterized membrane proteins.

    PubMed

    Babcock, Joseph J; Li, Min

    2014-01-01

    The sequencing of the human genome has fueled the last decade of work to functionally characterize genome content. An important subset of genes encodes membrane proteins, which are the targets of many drugs. They reside in lipid bilayers, restricting their endogenous activity to a relatively specialized biochemical environment. Without a reference phenotype, the application of systematic screens to profile candidate membrane proteins is not immediately possible. Bioinformatics has begun to show its effectiveness in focusing the functional characterization of orphan proteins of a particular functional class, such as channels or receptors. Here we discuss integration of experimental and bioinformatics approaches for characterizing the orphan membrane proteome. By analyzing the human genome, a landscape reference for the human transmembrane genome is provided.

  19. Selective cell-surface labeling of the molecular motor protein prestin.

    PubMed

    McGuire, Ryan M; Silberg, Jonathan J; Pereira, Fred A; Raphael, Robert M

    2011-06-24

    Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins.

    PubMed

    Stojanovski, Diana; Guiard, Bernard; Kozjak-Pavlovic, Vera; Pfanner, Nikolaus; Meisinger, Chris

    2007-12-03

    The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the beta-barrel-specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a beta-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane alpha-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of alpha-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to beta-barrel proteins but also includes the majority of alpha-helical Tom proteins.

  1. Shuttling of G protein subunits between the plasma membrane and intracellular membranes.

    PubMed

    Chisari, Mariangela; Saini, Deepak Kumar; Kalyanaraman, Vani; Gautam, Narasimhan

    2007-08-17

    Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 < 1 min) between the plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.

  2. Analysis of Membrane Protein Topology in the Plant Secretory Pathway.

    PubMed

    Guo, Jinya; Miao, Yansong; Cai, Yi

    2017-01-01

    Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.

  3. Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.

    PubMed

    Shen, Shu; Tobery, Cynthia E; Rose, Mark D

    2009-05-01

    Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.

  4. Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system.

    PubMed

    Klammt, Christian; Schwarz, Daniel; Fendler, Klaus; Haase, Winfried; Dötsch, Volker; Bernhard, Frank

    2005-12-01

    Cell-free expression has become a highly promising tool for the fast and efficient production of integral membrane proteins. The proteins can be produced as precipitates that solubilize in mild detergents usually without any prior denaturation steps. Alternatively, membrane proteins can be synthesized in a soluble form by adding detergents to the cell-free system. However, the effects of a representative variety of detergents on the production, solubility and activity of a wider range of membrane proteins upon cell-free expression are currently unknown. We therefore analyzed the cell-free expression of three structurally very different membrane proteins, namely the bacterial alpha-helical multidrug transporter, EmrE, the beta-barrel nucleoside transporter, Tsx, and the porcine vasopressin receptor of the eukaryotic superfamily of G-protein coupled receptors. All three membrane proteins could be produced in amounts of several mg per one ml of reaction mixture. In general, the detergent 1-myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] was found to be most effective for the resolubilization of membrane protein precipitates, while long chain polyoxyethylene-alkyl-ethers proved to be most suitable for the soluble expression of all three types of membrane proteins. The yield of soluble expressed membrane protein remained relatively stable above a certain threshold concentration of the detergents. We report, for the first time, the high-level cell-free expression of a beta-barrel type membrane protein in a functional form. Structural and functional variations of the analyzed membrane proteins are evident that correspond with the mode of expression and that depend on the supplied detergent.

  5. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1.

    PubMed

    Herlo, Rasmus; Lund, Viktor K; Lycas, Matthew D; Jansen, Anna M; Khelashvili, George; Andersen, Rita C; Bhatia, Vikram; Pedersen, Thomas S; Albornoz, Pedro B C; Johner, Niklaus; Ammendrup-Johnsen, Ina; Christensen, Nikolaj R; Erlendsson, Simon; Stoklund, Mikkel; Larsen, Jannik B; Weinstein, Harel; Kjærulff, Ole; Stamou, Dimitrios; Gether, Ulrik; Madsen, Kenneth L

    2018-05-15

    BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes*

    PubMed Central

    Tietz, Stefanie; Puthiyaveetil, Sujith; Enlow, Heather M.; Yarbrough, Robert; Wood, Magnus; Semchonok, Dmitry A.; Lowry, Troy; Li, Zhirong; Jahns, Peter; Boekema, Egbert J.; Lenhert, Steven; Niyogi, Krishna K.; Kirchhoff, Helmut

    2015-01-01

    The structural organization of proteins in biological membranes can affect their function. Photosynthetic thylakoid membranes in chloroplasts have the remarkable ability to change their supramolecular organization between disordered and semicrystalline states. Although the change to the semicrystalline state is known to be triggered by abiotic factors, the functional significance of this protein organization has not yet been understood. Taking advantage of an Arabidopsis thaliana fatty acid desaturase mutant (fad5) that constitutively forms semicrystalline arrays, we systematically test the functional implications of protein crystals in photosynthetic membranes. Here, we show that the change into an ordered state facilitates molecular diffusion of photosynthetic components in crowded thylakoid membranes. The increased mobility of small lipophilic molecules like plastoquinone and xanthophylls has implications for diffusion-dependent electron transport and photoprotective energy-dependent quenching. The mobility of the large photosystem II supercomplexes, however, is impaired, leading to retarded repair of damaged proteins. Our results demonstrate that supramolecular changes into more ordered states have differing impacts on photosynthesis that favor either diffusion-dependent electron transport and photoprotection or protein repair processes, thus fine-tuning the photosynthetic energy conversion. PMID:25897076

  7. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  8. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2014-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems. PMID:24812051

  9. An Extended Proteome Map of the Lysosomal Membrane Reveals Novel Potential Transporters*

    PubMed Central

    Chapel, Agnès; Kieffer-Jaquinod, Sylvie; Sagné, Corinne; Verdon, Quentin; Ivaldi, Corinne; Mellal, Mourad; Thirion, Jaqueline; Jadot, Michel; Bruley, Christophe; Garin, Jérôme; Gasnier, Bruno; Journet, Agnès

    2013-01-01

    Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions. PMID:23436907

  10. UV-Visible and Infrared Methods for Investigating Lipid-Rhodopsin Membrane Interactions

    PubMed Central

    Brown, Michael F.

    2017-01-01

    Summary Experimental UV-visible and Fourier transform infrared (FTIR) spectroscopic methods are described for characterizing lipid-protein interactions for the example of rhodopsin in a membrane bilayer environment. The combined use of FTIR and UV-visible difference spectroscopy monitors the structural and functional changes during rhodopsin activation. Such studies investigate how membrane lipids stabilize the various rhodopsin photoproducts, analogous to mutating the protein. Interpretation of the results entails a non-specific flexible surface model for explaining the role of membrane lipid-protein interactions in biological functions. PMID:22976026

  11. mpMoRFsDB: a database of molecular recognition features in membrane proteins.

    PubMed

    Gypas, Foivos; Tsaousis, Georgios N; Hamodrakas, Stavros J

    2013-10-01

    Molecular recognition features (MoRFs) are small, intrinsically disordered regions in proteins that undergo a disorder-to-order transition on binding to their partners. MoRFs are involved in protein-protein interactions and may function as the initial step in molecular recognition. The aim of this work was to collect, organize and store all membrane proteins that contain MoRFs. Membrane proteins constitute ∼30% of fully sequenced proteomes and are responsible for a wide variety of cellular functions. MoRFs were classified according to their secondary structure, after interacting with their partners. We identified MoRFs in transmembrane and peripheral membrane proteins. The position of transmembrane protein MoRFs was determined in relation to a protein's topology. All information was stored in a publicly available mySQL database with a user-friendly web interface. A Jmol applet is integrated for visualization of the structures. mpMoRFsDB provides valuable information related to disorder-based protein-protein interactions in membrane proteins. http://bioinformatics.biol.uoa.gr/mpMoRFsDB

  12. Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells.

    PubMed

    Wang, Li; Xue, Yiqun; Xing, Jingjing; Song, Kai; Lin, Jinxing

    2018-04-29

    Plasma membrane proteins have important roles in transport and signal transduction. Deciphering the spatiotemporal organization of these proteins provides crucial information for elucidating the links between the behaviors of different molecules. However, monitoring membrane proteins without disrupting their membrane environment remains difficult. Over the past decade, many studies have developed single-molecule techniques, opening avenues for probing the stoichiometry and interactions of membrane proteins in their native environment by providing nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we assess recent progress in the development of labeling and imaging technology for membrane protein analysis. We focus in particular on several single-molecule techniques for quantifying the dynamics and assembly of membrane proteins. Finally, we provide examples of how these new techniques are advancing our understanding of the complex biological functions of membrane proteins.

  13. The styrene-maleic acid copolymer: a versatile tool in membrane research.

    PubMed

    Dörr, Jonas M; Scheidelaar, Stefan; Koorengevel, Martijn C; Dominguez, Juan J; Schäfer, Marre; van Walree, Cornelis A; Killian, J Antoinette

    2016-01-01

    A new and promising tool in membrane research is the detergent-free solubilization of membrane proteins by styrene-maleic acid copolymers (SMAs). These amphipathic molecules are able to solubilize lipid bilayers in the form of nanodiscs that are bounded by the polymer. Thus, membrane proteins can be directly extracted from cells in a water-soluble form while conserving a patch of native membrane around them. In this review article, we briefly discuss current methods of membrane protein solubilization and stabilization. We then zoom in on SMAs, describe their physico-chemical properties, and discuss their membrane-solubilizing effect. This is followed by an overview of studies in which SMA has been used to isolate and investigate membrane proteins. Finally, potential future applications of the methodology are discussed for structural and functional studies on membrane proteins in a near-native environment and for characterizing protein-lipid and protein-protein interactions.

  14. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria

    PubMed Central

    Lee, Junho; Kim, Dae Heon; Hwang, Inhwan

    2014-01-01

    Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors. PMID:24808904

  15. Bacterial membrane proteomics.

    PubMed

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  16. Membrane Topology and Insertion of Membrane Proteins: Search for Topogenic Signals

    PubMed Central

    van Geest, Marleen; Lolkema, Juke S.

    2000-01-01

    Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies. PMID:10704472

  17. The G protein alpha subunit (GP alpha1) is associated with the ER and the plasma membrane in meristematic cells of Arabidopsis and cauliflower.

    PubMed

    Weiss, C A; White, E; Huang, H; Ma, H

    1997-05-05

    Towards the elucidation of the cellular function(s) of GP alpha1, we have characterized its subcellular localization using immunofluorescence and cell fractionation. GP alpha1 is not present in nuclei or chloroplasts. It is a membrane-bound protein, and analysis of isolated endoplasmic and plasma membranes indicates a good correlation between GP alpha1 in both the plasma membrane and the ER compartment. Interestingly, these results may suggest more different functions for GP alpha1: it might be involved in transmission of extracellular signals across the plasma membrane and in the cytoplasm, and/or it may also be involved in regulating some aspects of the ER functions or membrane trafficking between both membranes.

  18. Cell-Free Translation of Integral Membrane Proteins into Unilamelar Liposomes

    PubMed Central

    Goren, Michael A.; Nozawa, Akira; Makino, Shin-ichi; Wrobel, Russell L.; Fox, Brian G.

    2018-01-01

    Wheat germ cell-free translation is shown to be an effective method to produce integral membrane proteins in the presence of unilamelar liposomes. In this chapter, we describe the expression vectors, preparation of mRNA, two types of cell-free translation reactions performed in the presence of liposomes, a simple and highly efficient purification of intact proteoliposomes using density gradient ultracentrifugation, and some of the types of characterization studies that are facilitated by this facile preparative approach. The in vitro transfer of newly translated, membrane proteins into liposomes compatible with direct measurements of their catalytic function is contrasted with existing approaches to extract membrane proteins from biological membranes using detergents and subsequently transfer them back to liposomes for functional studies. PMID:19892197

  19. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.

    PubMed

    Etzkorn, Manuel; Raschle, Thomas; Hagn, Franz; Gelev, Vladimir; Rice, Amanda J; Walz, Thomas; Wagner, Gerhard

    2013-03-05

    Selecting a suitable membrane-mimicking environment is of fundamental importance for the investigation of membrane proteins. Nonconventional surfactants, such as amphipathic polymers (amphipols) and lipid bilayer nanodiscs, have been introduced as promising environments that may overcome intrinsic disadvantages of detergent micelle systems. However, structural insights into the effects of different environments on the embedded protein are limited. Here, we present a comparative study of the heptahelical membrane protein bacteriorhodopsin in detergent micelles, amphipols, and nanodiscs. Our results confirm that nonconventional environments can increase stability of functional bacteriorhodopsin, and demonstrate that well-folded heptahelical membrane proteins are, in principle, accessible by solution-NMR methods in amphipols and phospholipid nanodiscs. Our data distinguish regions of bacteriorhodopsin that mediate membrane/solvent contacts in the tested environments, whereas the protein's functional inner core remains almost unperturbed. The presented data allow comparing the investigated membrane mimetics in terms of NMR spectral quality and thermal stability required for structural studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry.

    PubMed

    Liu, Zan; Xu, Bo; Nameta, Masaaki; Zhang, Ying; Magdeldin, Sameh; Yoshida, Yutaka; Yamamoto, Keiko; Fujinaka, Hidehiko; Yaoita, Eishin; Tasaki, Masayuki; Nakagawa, Yuki; Saito, Kazuhide; Takahashi, Kota; Yamamoto, Tadashi

    2013-06-01

    Vascular endothelial cells (VECs) play crucial roles in physiological and pathologic conditions in tissues and organs. Most of these roles are related to VEC plasma membrane proteins. In the kidney, VECs are closely associated with structures and functions; however, plasma membrane proteins in kidney VECs remain to be fully elucidated. Rat kidneys were perfused with cationic colloidal silica nanoparticles (CCSN) to label the VEC plasma membrane. The CCSN-labeled plasma membrane fraction was collected by gradient ultracentrifugation. The VEC plasma membrane or whole-kidney lysate proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and digested with trypsin in gels for liquid chromatography-tandem mass spectrometry. Enrichment analysis was then performed. The VEC plasma membrane proteins were purified by the CCSN method with high yield (approximately 20 μg from 1 g of rat kidney). By Mascot search, 582 proteins were identified in the VEC plasma membrane fraction, and 1,205 proteins were identified in the kidney lysate. In addition to 16 VEC marker proteins such as integrin beta-1 and intercellular adhesion molecule-2 (ICAM-2), 8 novel proteins such as Deltex 3-like protein and phosphatidylinositol binding clathrin assembly protein (PICALM) were identified. As expected, many key functions of plasma membranes in general and of endothelial cells in particular (i.e., leukocyte adhesion) were significantly overrepresented in the proteome of CCSN-labeled kidney VEC fraction. The CCSN method is a reliable technique for isolation of VEC plasma membrane from the kidney, and proteomic analysis followed by bioinformatics revealed the characteristics of in vivo VECs in the kidney.

  1. Future directions of electron crystallography.

    PubMed

    Fujiyoshi, Yoshinori

    2013-01-01

    In biological science, there are still many interesting and fundamental yet difficult questions, such as those in neuroscience, remaining to be answered. Structural and functional studies of membrane proteins, which are key molecules of signal transduction in neural and other cells, are essential for understanding the molecular mechanisms of many fundamental biological processes. Technological and instrumental advancements of electron microscopy have facilitated comprehension of structural studies of biological components, such as membrane proteins. While X-ray crystallography has been the main method of structure analysis of proteins including membrane proteins, electron crystallography is now an established technique to analyze structures of membrane proteins in the lipid bilayer, which is close to their natural biological environment. By utilizing cryo-electron microscopes with helium-cooled specimen stages, structures of membrane proteins were analyzed at a resolution better than 3 Å. Such high-resolution structural analysis of membrane proteins by electron crystallography opens up the new research field of structural physiology. Considering the fact that the structures of integral membrane proteins in their native membrane environment without artifacts from crystal contacts are critical in understanding their physiological functions, electron crystallography will continue to be an important technology for structural analysis. In this chapter, I will present several examples to highlight important advantages and to suggest future directions of this technique.

  2. Structural basis for host membrane remodeling induced by protein 2B of hepatitis A virus.

    PubMed

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra; Verdaguer, Núria

    2015-04-01

    The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus

    PubMed Central

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa

    2015-01-01

    ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659

  4. Biophysics of α-synuclein membrane interactions.

    PubMed

    Pfefferkorn, Candace M; Jiang, Zhiping; Lee, Jennifer C

    2012-02-01

    Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function. Copyright © 2011. Published by Elsevier B.V.

  5. Lipid Interaction Sites on Channels, Transporters and Receptors: Recent Insights from Molecular Dynamics Simulations

    PubMed Central

    Hedger, George; Sansom, Mark S. P.

    2017-01-01

    Lipid molecules are able to selectively interact with specific sites on integral membrane proteins, and modulate their structure and function. Identification and characterisation of these sites is of importance for our understanding of the molecular basis of membrane protein function and stability, and may facilitate the design of lipid-like drug molecules. Molecular dynamics simulations provide a powerful tool for the identification of these sites, complementing advances in membrane protein structural biology and biophysics. We describe recent notable biomolecular simulation studies which have identified lipid interaction sites on a range of different membrane proteins. The sites identified in these simulation studies agree well with those identified by complementary experimental techniques. This demonstrates the power of the molecular dynamics approach in the prediction and characterization of lipid interaction sites on integral membrane proteins. PMID:26946244

  6. The Escherichia coli Peripheral Inner Membrane Proteome*

    PubMed Central

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios

    2013-01-01

    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher. PMID:23230279

  7. Development of the field of structural physiology

    PubMed Central

    FUJIYOSHI, Yoshinori

    2015-01-01

    Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835

  8. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling

    PubMed Central

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A.; Rodriguez, Pedro L.; Albert, Armando

    2016-01-01

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca2+ are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca2+ signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca2+-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca2+ sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca2+-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress. PMID:26719420

  9. Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

    PubMed

    Diaz, Maira; Sanchez-Barrena, Maria Jose; Gonzalez-Rubio, Juana Maria; Rodriguez, Lesia; Fernandez, Daniel; Antoni, Regina; Yunta, Cristina; Belda-Palazon, Borja; Gonzalez-Guzman, Miguel; Peirats-Llobet, Marta; Menendez, Margarita; Boskovic, Jasminka; Marquez, Jose A; Rodriguez, Pedro L; Albert, Armando

    2016-01-19

    Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.

  10. Chimera proteins with affinity for membranes and microtubule tips polarize in the membrane of fission yeast cells.

    PubMed

    Recouvreux, Pierre; Sokolowski, Thomas R; Grammoustianou, Aristea; ten Wolde, Pieter Rein; Dogterom, Marileen

    2016-02-16

    Cell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell. Although many molecular components have been shown to play a role in this network, it remains unknown which molecular functionalities are minimally required to establish a polarized protein distribution in this system. Here we show that a membrane-binding protein fragment, which distributes homogeneously in wild-type fission yeast cells, can be made to concentrate at cell ends by attaching it to a cytoplasmic microtubule end-binding protein. This concentration results in a polarized pattern of chimera proteins with a spatial extension that is very reminiscent of natural polarity patterns in fission yeast. However, chimera levels fluctuate in response to microtubule dynamics, and disruption of microtubules leads to disappearance of the pattern. Numerical simulations confirm that the combined functionality of membrane anchoring and microtubule tip affinity is in principle sufficient to create polarized patterns. Our chimera protein may thus represent a simple molecular functionality that is able to polarize the membrane, onto which additional layers of molecular complexity may be built to provide the temporal robustness that is typical of natural polarity patterns.

  11. Variable-order fractional MSD function to describe the evolution of protein lateral diffusion ability in cell membranes

    NASA Astrophysics Data System (ADS)

    Yin, Deshun; Qu, Pengfei

    2018-02-01

    Protein lateral diffusion is considered anomalous in the plasma membrane. And this diffusion is related to membrane microstructure. In order to better describe the property of protein lateral diffusion and find out the inner relationship between protein lateral diffusion and membrane microstructure, this article applies variable-order fractional mean square displacement (f-MSD) function for characterizing the anomalous diffusion. It is found that the variable order can reflect the evolution of diffusion ability. The results of numerical simulation demonstrate variable-order f-MSD function can predict the tendency of anomalous diffusion during the process of confined diffusion. It is also noted that protein lateral diffusion ability during the processes of confined and hop diffusion can be split into three parts. In addition, the comparative analyses reveal that the variable order is related to the confinement-domain size and microstructure of compartment boundary too.

  12. SMP-domain proteins at membrane contact sites: Structure and function.

    PubMed

    Reinisch, Karin M; De Camilli, Pietro

    2016-08-01

    SMP-domains are found in proteins that localize to membrane contact sites. Elucidation of the properties of these proteins gives clues as to the molecular bases underlying processes that occur at such sites. Described here are recent discoveries concerning the structure, function, and regulation of the Extended-Synaptotagmin proteins and ERMES complex subunits, SMP-domain proteins at endoplasmic reticulum (ER)-plasma membrane and ER-mitochondrial contacts, respectively. They act as tethers contributing to the architecture of these sites and as lipid transporters that convey glycerolipids between apposed membranes. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2016. Published by Elsevier B.V.

  13. Protein Solvation in Membranes and at Water-Membrane Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Wilson, Michael A.

    2002-01-01

    Different salvation properties of water and membranes mediate a host of biologically important processes, such as folding, insertion into a lipid bilayer, associations and functions of membrane proteins. These processes will be discussed in several examples involving synthetic and natural peptides. In particular, a mechanism by which a helical peptide becomes inserted into a model membrane will be described. Further, the molecular mechanism of recognition and association of protein helical segments in membranes will be discussed. These processes are crucial for proper functioning of a cell. A membrane-spanning domain of glycophorin A, which exists as a helical dimer, serves as the model system. For this system, the free energy of dissociation of the helices is being determined for both the wild type and a mutant, in which dimerization is disrupted.

  14. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.

    PubMed

    Rebaud, Samuel; Maniti, Ofelia; Girard-Egrot, Agnès P

    2014-12-01

    Biological membranes play a central role in the biology of the cell. They are not only the hydrophobic barrier allowing separation between two water soluble compartments but also a supra-molecular entity that has vital structural functions. Notably, they are involved in many exchange processes between the outside and inside cellular spaces. Accounting for the complexity of cell membranes, reliable models are needed to acquire current knowledge of the molecular processes occurring in membranes. To simplify the investigation of lipid/protein interactions, the use of biomimetic membranes is an approach that allows manipulation of the lipid composition of specific domains and/or the protein composition, and the evaluation of the reciprocal effects. Since the middle of the 80's, lipid bilayer membranes have been constantly developed as models of biological membranes with the ultimate goal to reincorporate membrane proteins for their functional investigation. In this review, after a brief description of the planar lipid bilayers as biomimetic membrane models, we will focus on the construction of the tethered Bilayer Lipid Membranes, the most promising model for efficient membrane protein reconstitution and investigation of molecular processes occurring in cell membranes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. A Step Closer to Membrane Protein Multiplexed Nanoarrays Using Biotin-Doped Polypyrrole

    PubMed Central

    2015-01-01

    Whether for fundamental biological research or for diagnostic and drug discovery applications, protein micro- and nanoarrays are attractive technologies because of their low sample consumption, high-throughput, and multiplexing capabilities. However, the arraying platforms developed so far are still not able to handle membrane proteins, and specific methods to selectively immobilize these hydrophobic and fragile molecules are needed to understand their function and structural complexity. Here we integrate two technologies, electropolymerization and amphipols, to demonstrate the electrically addressable functionalization of micro- and nanosurfaces with membrane proteins. Gold surfaces are selectively modified by electrogeneration of a polymeric film in the presence of biotin, where avidin conjugates can then be selectively immobilized. The method is successfully applied to the preparation of protein-multiplexed arrays by sequential electropolymerization and biomolecular functionalization steps. The surface density of the proteins bound to the electrodes can be easily tuned by adjusting the amount of biotin deposited during electropolymerization. Amphipols are specially designed amphipathic polymers that provide a straightforward method to stabilize and add functionalities to membrane proteins. Exploiting the strong affinity of biotin for streptavidin, we anchor distinct membrane proteins onto different electrodes via a biotin-tagged amphipol. Antibody-recognition events demonstrate that the proteins are stably immobilized and that the electrodeposition of polypyrrole films bearing biotin units is compatible with the protein-binding activity. Since polypyrrole films show good conductivity properties, the platform described here is particularly well suited to prepare electronically transduced bionanosensors. PMID:24476392

  16. Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology

    PubMed Central

    Pompa, Andrea; De Marchis, Francesca; Pallotta, Maria Teresa; Benitez-Alfonso, Yoselin; Jones, Alexandra; Schipper, Kerstin; Moreau, Kevin; Žárský, Viktor; Di Sansebastiano, Gian Pietro; Bellucci, Michele

    2017-01-01

    Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes. PMID:28346345

  17. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis.

    PubMed

    Abdallah, Cosette; Valot, Benoit; Guillier, Christelle; Mounier, Arnaud; Balliau, Thierry; Zivy, Michel; van Tuinen, Diederik; Renaut, Jenny; Wipf, Daniel; Dumas-Gaudot, Eliane; Recorbet, Ghislaine

    2014-08-28

    Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting retrieved around one hundred proteins that displayed changes in abundance upon mycorrhizal establishment. The symbiosis-related membrane proteins that were identified mostly function in signaling/membrane trafficking and nutrient uptake regulation. Besides extending the coverage of the root membrane proteome of M. truncatula, new candidates involved in the symbiotic program emerged from the current study, which pointed out a dynamic reorganization of microsomal proteins during the accommodation of AM fungi within cortical cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Highly branched penta-saccharide-bearing amphiphiles for membrane protein studies

    PubMed Central

    Ehsan, Muhammad; Du, Yang; Scull, Nicola J.; Tikhonova, Elena; Tarrasch, Jeffrey; Mortensen, Jonas S.; Loland, Claus J.; Skiniotis, Georgios; Guan, Lan; Byrne, Bernadette; Kobilka, Brian K.; Chae, Pil Seok

    2016-01-01

    Detergents are essential tools for membrane protein manipulation. Micelles formed by detergent molecules have the ability to encapsulate the hydrophobic domains of membrane proteins. The resulting protein-detergent complexes (PDCs) are compatible with the polar environments of aqueous media, making structural and functional analysis feasible. Although a number of novel agents have been developed to overcome the limitations of conventional detergents, most of them have traditional head groups such as glucoside or maltoside. In this study, we introduce a class of amphiphiles, the PSA’Es with a novel highly branched penta-saccharide hydrophilic group. The PSA’Es conferred markedly increased stability to a diverse range of membrane proteins compared to conventional detergents, indicating a positive role for the new hydrophilic group in maintaining the native protein integrity. In addition, PDCs formed by PSA’Es were smaller and more suitable for electron microscopic analysis than those formed by DDM, indicating that the new agents have significant potential for the structure-function studies of membrane proteins. PMID:26966956

  19. Organization and Dynamics of Receptor Proteins in a Plasma Membrane.

    PubMed

    Koldsø, Heidi; Sansom, Mark S P

    2015-11-25

    The interactions of membrane proteins are influenced by their lipid environment, with key lipid species able to regulate membrane protein function. Advances in high-resolution microscopy can reveal the organization and dynamics of proteins and lipids within living cells at resolutions <200 nm. Parallel advances in molecular simulations provide near-atomic-resolution models of the dynamics of the organization of membranes of in vivo-like complexity. We explore the dynamics of proteins and lipids in crowded and complex plasma membrane models, thereby closing the gap in length and complexity between computations and experiments. Our simulations provide insights into the mutual interplay between lipids and proteins in determining mesoscale (20-100 nm) fluctuations of the bilayer, and in enabling oligomerization and clustering of membrane proteins.

  20. Oligomerization but Not Membrane Bending Underlies the Function of Certain F-BAR Proteins in Cell Motility and Cytokinesis.

    PubMed

    McDonald, Nathan A; Vander Kooi, Craig W; Ohi, Melanie D; Gould, Kathleen L

    2015-12-21

    F-BAR proteins function in diverse cellular processes by linking membranes to the actin cytoskeleton. Through oligomerization, multiple F-BAR domains can bend membranes into tubules, though the physiological importance of F-BAR-to-F-BAR assemblies is not yet known. Here, we investigate the F-BAR domain of the essential cytokinetic scaffold, Schizosaccharomyces pombe Cdc15, during cytokinesis. Challenging a widely held view that membrane deformation is a fundamental property of F-BARs, we report that the Cdc15 F-BAR binds, but does not deform, membranes in vivo or in vitro, and six human F-BAR domains-including those from Fer and RhoGAP4-share this property. Nevertheless, tip-to-tip interactions between F-BAR dimers are critical for Cdc15 oligomerization and high-avidity membrane binding, stabilization of contractile ring components at the medial cortex, and the fidelity of cytokinesis. F-BAR oligomerization is also critical for Fer and RhoGAP4 physiological function, demonstrating its broad importance to F-BAR proteins that function without membrane bending. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Single proteins that serve linked functions in intracellular and extracellular microenvironments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radisky, Derek C.; Stallings-Mann, Melody; Hirai, Yohei

    2009-06-03

    Maintenance of organ homeostasis and control of appropriate response to environmental alterations requires intimate coordination of cellular function and tissue organization. An important component of this coordination may be provided by proteins that can serve distinct, but linked, functions on both sides of the plasma membrane. Here we present a novel hypothesis in which non-classical secretion can provide a mechanism through which single proteins can integrate complex tissue functions. Single genes can exert a complex, dynamic influence through a number of different processes that act to multiply the function of the gene product(s). Alternative splicing can create many different transcriptsmore » that encode proteins of diverse, even antagonistic, function from a single gene. Posttranslational modifications can alter the stability, activity, localization, and even basic function of proteins. A protein can exist in different subcellular localizations. More recently, it has become clear that single proteins can function both inside and outside the cell. These proteins often lack defined secretory signal sequences, and transit the plasma membrane by mechanisms separate from the classical ER/Golgi secretory process. When examples of such proteins are examined individually, the multifunctionality and lack of a signal sequence are puzzling - why should a protein with a well known function in one context function in such a distinct fashion in another? We propose that one reason for a single protein to perform intracellular and extracellular roles is to coordinate organization and maintenance of a global tissue function. Here, we describe in detail three specific examples of proteins that act in this fashion, outlining their specific functions in the extracellular space and in the intracellular space, and we discuss how these functions may be linked. We present epimorphin/syntaxin-2, which may coordinate morphogenesis of secretory organs (as epimorphin) with control of protein secretion (as syntaxin-2), amphoterin/high mobility group box-1 (HMGB1), which may link inflammation (as amphoterin) with regulation of gene expression (as HMGB1), and tissue transglutaminase, which affects delivery of and response to apoptotic signals by serving a related function on both sides of the plasma membrane. As it is notable that all three of these proteins have been reported to transit the plasma membrane through non-classical secretory mechanisms, we will also discuss why coordinated inside/outside functions may be found in some examples of proteins which transit the plasma membrane through non-classical mechanisms and how this relationship can be used to identify additional proteins that share these characteristics.« less

  2. A high content in lipid-modified peripheral proteins and integral receptor kinases features in the arabidopsis plasma membrane proteome.

    PubMed

    Marmagne, Anne; Ferro, Myriam; Meinnel, Thierry; Bruley, Christophe; Kuhn, Lauriane; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève

    2007-11-01

    The proteomics of plasma membrane has brought to date only scarce and partial information on the actual protein repertoire. In this work, the plant plasma membrane proteome of Arabidopsis thaliana was investigated. A highly purified plasma membrane fraction was washed by NaCl and Na2CO3 salts, and the insoluble fractions were further analyzed by nano-LC-MS/MS. With 446 proteins identified, we hereby describe the largest plasma membrane proteome diversity reported so far. Half of the proteins were predicted to display transmembrane domains and/or to be anchored to the membrane, validating a posteriori the pertinence of the approach. A fine analysis highlighted two main specific and novel features. First, the main functional category is represented by a majority of as yet unreported signaling proteins, including 11% receptor-like kinases. Second, 16% of the identified proteins are predicted to be lipid-modified, specifically involving double lipid linkage through N-terminal myristoylation, S-palmitoylation, C-terminal prenylation, or glycosylphosphatidylinositol anchors. Thus, our approach led for the first time to the identification of a large number of peripheral proteins as part of the plasma membrane and allowed the functionality of the plasma membrane in the cell context to be reconsidered.

  3. Proteomic analysis of symbiosome membranes in Cnidaria-dinoflagellate endosymbiosis.

    PubMed

    Peng, Shao-En; Wang, Yu-Bao; Wang, Li-Hsueh; Chen, Wan-Nan Uang; Lu, Chi-Yu; Fang, Lee-Shing; Chen, Chii-Shiarng

    2010-03-01

    Symbiosomes are specific intracellular membrane-bound vacuoles containing microalgae in a mutualistic Cnidaria (host)-dinoflagellate (symbiont) association. The symbiosome membrane is originally derived from host plasma membranes during phagocytosis of the symbiont; however, its molecular components and functions are not clear. In order to investigate the protein components of the symbiosome membranes, homogenous symbiosomes were isolated from the sea anemone Aiptasia pulchella and their purities and membrane intactness examined by Western blot analysis for host contaminants and microscopic analysis using various fluorescent probes, respectively. Pure and intact symbiosomes were then subjected to biotinylation by a cell impermeant agent (Biotin-XX sulfosuccinimidyl ester) to label membrane surface proteins. The biotinylated proteins, both Triton X-100 soluble and insoluble fractions, were subjected to 2-D SDS-PAGE and identified by MS using an LC-nano-ESI-MS/MS. A total of 17 proteins were identified. Based on their different subcellular origins and functional categories, it indicates that symbiosome membranes serve as the interface for interaction between host and symbiont by fulfilling several crucial cellular functions such as those of membrane receptors/cell recognition, cytoskeletal remodeling, ATP synthesis/proton homeostasis, transporters, stress responses/chaperones, and anti-apoptosis. The results of proteomic analysis not only indicate the molecular identity of the symbiosome membrane, but also provide insight into the possible role of symbiosome membranes during the endosymbiotic association.

  4. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains.

    PubMed

    Fantini, Jacques; Di Scala, Coralie; Baier, Carlos J; Barrantes, Francisco J

    2016-09-01

    The molecular mechanisms that control the multiple possible modes of protein association with membrane cholesterol are remarkably convergent. These mechanisms, which include hydrogen bonding, CH-π stacking and dispersion forces, are used by a wide variety of extracellular proteins (e.g. microbial or amyloid) and membrane receptors. Virus fusion peptides penetrate the membrane of host cells with a tilted orientation that is compatible with a transient interaction with cholesterol; this tilted orientation is also characteristic of the process of insertion of amyloid proteins that subsequently form oligomeric pores in the plasma membrane of brain cells. Membrane receptors that are associated with cholesterol generally display linear consensus binding motifs (CARC and CRAC) characterized by a triad of basic (Lys/Arg), aromatic (Tyr/phe) and aliphatic (Leu/Val) amino acid residues. In some cases, the presence of both CARC and CRAC within the same membrane-spanning domain allows the simultaneous binding of two cholesterol molecules, one in each membrane leaflet. In this review the molecular basis and the functional significance of the different modes of protein-cholesterol interactions in plasma membranes are discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Periplasmic quality control in biogenesis of outer membrane proteins.

    PubMed

    Lyu, Zhi Xin; Zhao, Xin Sheng

    2015-04-01

    The β-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.

  6. Interaction of Local Anesthetics with Biomembranes Consisting of Phospholipids and Cholesterol: Mechanistic and Clinical Implications for Anesthetic and Cardiotoxic Effects

    PubMed Central

    2013-01-01

    Despite a long history in medical and dental application, the molecular mechanism and precise site of action are still arguable for local anesthetics. Their effects are considered to be induced by acting on functional proteins, on membrane lipids, or on both. Local anesthetics primarily interact with sodium channels embedded in cell membranes to reduce the excitability of nerve cells and cardiomyocytes or produce a malfunction of the cardiovascular system. However, the membrane protein-interacting theory cannot explain all of the pharmacological and toxicological features of local anesthetics. The administered drug molecules must diffuse through the lipid barriers of nerve sheaths and penetrate into or across the lipid bilayers of cell membranes to reach the acting site on transmembrane proteins. Amphiphilic local anesthetics interact hydrophobically and electrostatically with lipid bilayers and modify their physicochemical property, with the direct inhibition of membrane functions, and with the resultant alteration of the membrane lipid environments surrounding transmembrane proteins and the subsequent protein conformational change, leading to the inhibition of channel functions. We review recent studies on the interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol. Understanding the membrane interactivity of local anesthetics would provide novel insights into their anesthetic and cardiotoxic effects. PMID:24174934

  7. Fluorinated colloidal gold immunolabels for imaging select proteins in parallel with lipids using high-resolution secondary ion mass spectrometry

    PubMed Central

    Wilson, Robert L.; Frisz, Jessica F.; Hanafin, William P.; Carpenter, Kevin J.; Hutcheon, Ian D.; Weber, Peter K.; Kraft, Mary L.

    2014-01-01

    The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein’s activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests of whether specific proteins co-localize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein co-localization with specific lipid species. PMID:22284327

  8. Protein quality control at the inner nuclear membrane

    PubMed Central

    Khmelinskii, Anton; Blaszczak, Ewa; Pantazopoulou, Marina; Fischer, Bernd; Omnus, Deike J.; Le Dez, Gaëlle; Brossard, Audrey; Gunnarsson, Alexander; Barry, Joseph D.; Meurer, Matthias; Kirrmaier, Daniel; Boone, Charles; Huber, Wolfgang; Rabut, Gwenaël; Ljungdahl, Per O.; Knop, Michael

    2015-01-01

    The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression1. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER) and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by ER-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc72,3. However, little is known regarding protein quality control at the INM. Here we describe a protein degradation pathway at the INM mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi34. We report that the As complex functions together with the ubiquitin conjugating enzymes Ubc6andUbc7to degrade soluble and integral membrane proteins. Genetic evidence suggest that the Asi ubiquitin ligase defines a pathway distinct from but complementary to ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer (tFT)5, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquity ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalised integral membrane proteins, thus acting to maintain and safeguard the identity of the INM. PMID:25519137

  9. Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Annaert, Wim; Munck, Sebastian

    2016-01-01

    The spatial distribution of proteins within the cell affects their capability to interact with other molecules and directly influences cellular processes and signaling. At the plasma membrane, multiple factors drive protein compartmentalization into specialized functional domains, leading to the formation of clusters in which intermolecule interactions are facilitated. Therefore, quantifying protein distributions is a necessity for understanding their regulation and function. The recent advent of super-resolution microscopy has opened up the possibility of imaging protein distributions at the nanometer scale. In parallel, new spatial analysis methods have been developed to quantify distribution patterns in super-resolution images. In this chapter, we provide an overview of super-resolution microscopy and summarize the factors influencing protein arrangements on the plasma membrane. Finally, we highlight methods for analyzing clusterization of plasma membrane proteins, including examples of their applications.

  10. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    NASA Astrophysics Data System (ADS)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  11. Application of Fragment Based Drug Discovery to Membrane Proteins: Biophysical Identification of Ligands of the Integral Membrane Enzyme DsbB

    PubMed Central

    Früh, Virginie; Zhou, Yunpeng; Chen, Dan; Loch, Caroline; Eiso, AB; Grinkova, Yelena N.; Verheij, Herman; Sligar, Stephen G; Bushweller, John H.; Siegal, Gregg

    2014-01-01

    Summary Membrane proteins are important pharmaceutical targets, but they pose significant challenges for fragment based drug discovery approaches. Here we present the first successful use of biophysical methods to screen for fragment ligands to an integral membrane protein. The E. coli inner membrane protein DsbB was solubilized in detergent micelles and lipid bilayer nanodiscs. The solubilized protein was immobilized with retention of functionality and used to screen 1,071 drug fragments for binding using Target Immobilized NMR Screening. Biochemical and biophysical validation of the 8 most potent hits revealed an IC50 range of 7 to 200 μM. The ability to insert a broad array of membrane proteins into nanodiscs, combined with the efficiency of TINS, demonstrates the feasibility of finding fragments targeting membrane proteins. PMID:20797617

  12. Nanoclustering as a dominant feature of plasma membrane organization.

    PubMed

    Garcia-Parajo, Maria F; Cambi, Alessandra; Torreno-Pina, Juan A; Thompson, Nancy; Jacobson, Ken

    2014-12-01

    Early studies have revealed that some mammalian plasma membrane proteins exist in small nanoclusters. The advent of super-resolution microscopy has corroborated and extended this picture, and led to the suggestion that many, if not most, membrane proteins are clustered at the plasma membrane at nanoscale lengths. In this Commentary, we present selected examples of glycosylphosphatidyl-anchored proteins, Ras family members and several immune receptors that provide evidence for nanoclustering. We advocate the view that nanoclustering is an important part of the hierarchical organization of proteins in the plasma membrane. According to this emerging picture, nanoclusters can be organized on the mesoscale to form microdomains that are capable of supporting cell adhesion, pathogen binding and immune cell-cell recognition amongst other functions. Yet, a number of outstanding issues concerning nanoclusters remain open, including the details of their molecular composition, biogenesis, size, stability, function and regulation. Notions about these details are put forth and suggestions are made about nanocluster function and why this general feature of protein nanoclustering appears to be so prevalent. © 2014. Published by The Company of Biologists Ltd.

  13. MPP1 directly interacts with flotillins in erythrocyte membrane - Possible mechanism of raft domain formation.

    PubMed

    Biernatowska, Agnieszka; Augoff, Katarzyna; Podkalicka, Joanna; Tabaczar, Sabina; Gajdzik-Nowak, Weronika; Czogalla, Aleksander; Sikorski, Aleksander F

    2017-11-01

    Flotillins are prominent, oligomeric protein components of erythrocyte (RBC) membrane raft domains and are considered to play an important structural role in lateral organization of the plasma membrane. In our previous work on erythroid membranes and giant plasma membrane vesicles (GPMVs) derived from them we have shown that formation of functional domains (resting state rafts) depends on the presence of membrane palmitoylated protein 1 (MPP1/p55), pointing to its new physiological role. Exploration of the molecular mechanism of MPP1 function in organizing membrane domains described here, through searching for its molecular partners in RBC membrane by using different methods, led to the identification of the raft-marker proteins, flotillin 1 and flotillin 2, as hitherto unreported direct MPP1 binding-partners in the RBC membrane. These proteins are found in high molecular-weight complexes in native RBC membrane and, significantly, their presence was shown to be separate from the well-known protein 4.1-dependent interactions of MPP1 with membrane proteins. Furthermore, FLIM analysis revealed that loss of the endogenous MPP1-flotillins interactions resulted in significant changes in RBC membrane-fluidity, emphasizing the physiological importance of such interactions in vivo. Therefore, our data establish a new perspective on the role of MPP1 in erythroid cells and suggests that direct MPP1-flotillins interactions could be the major driving-force behind the formation of raft domains in RBC. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  14. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function

    PubMed Central

    Gahbauer, Stefan; Böckmann, Rainer A.

    2016-01-01

    The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function. PMID:27826255

  15. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity.

    PubMed

    Brignac-Huber, Lauren M; Park, Ji Won; Reed, James R; Backes, Wayne L

    2016-12-01

    Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Examining hemodialyzer membrane performance using proteomic technologies

    PubMed Central

    Bonomini, Mario; Pieroni, Luisa; Di Liberato, Lorenzo; Sirolli, Vittorio; Urbani, Andrea

    2018-01-01

    The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium–high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may thus provide an actual functional definition as to the effect of a membrane material on plasma proteins during hemodialysis. Here, we review the results of proteomic studies on the performance of hemodialysis membranes, as evaluated in terms of solute removal efficiency and blood–membrane interactions. The evidence collected indicates that the information provided by proteomic investigations yields improved molecular and functional knowledge and may lead to the development of more efficient membranes for the potential benefit of the patient. PMID:29296087

  17. Examining hemodialyzer membrane performance using proteomic technologies.

    PubMed

    Bonomini, Mario; Pieroni, Luisa; Di Liberato, Lorenzo; Sirolli, Vittorio; Urbani, Andrea

    2018-01-01

    The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium-high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may thus provide an actual functional definition as to the effect of a membrane material on plasma proteins during hemodialysis. Here, we review the results of proteomic studies on the performance of hemodialysis membranes, as evaluated in terms of solute removal efficiency and blood-membrane interactions. The evidence collected indicates that the information provided by proteomic investigations yields improved molecular and functional knowledge and may lead to the development of more efficient membranes for the potential benefit of the patient.

  18. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    PubMed

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  19. SChloro: directing Viridiplantae proteins to six chloroplastic sub-compartments.

    PubMed

    Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita

    2017-02-01

    Chloroplasts are organelles found in plants and involved in several important cell processes. Similarly to other compartments in the cell, chloroplasts have an internal structure comprising several sub-compartments, where different proteins are targeted to perform their functions. Given the relation between protein function and localization, the availability of effective computational tools to predict protein sub-organelle localizations is crucial for large-scale functional studies. In this paper we present SChloro, a novel machine-learning approach to predict protein sub-chloroplastic localization, based on targeting signal detection and membrane protein information. The proposed approach performs multi-label predictions discriminating six chloroplastic sub-compartments that include inner membrane, outer membrane, stroma, thylakoid lumen, plastoglobule and thylakoid membrane. In comparative benchmarks, the proposed method outperforms current state-of-the-art methods in both single- and multi-compartment predictions, with an overall multi-label accuracy of 74%. The results demonstrate the relevance of the approach that is eligible as a good candidate for integration into more general large-scale annotation pipelines of protein subcellular localization. The method is available as web server at http://schloro.biocomp.unibo.it gigi@biocomp.unibo.it.

  20. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  1. Structure-function insights of membrane and soluble proteins revealed by electron crystallography.

    PubMed

    Dreaden, Tina M; Devarajan, Bharanidharan; Barry, Bridgette A; Schmidt-Krey, Ingeborg

    2013-01-01

    Electron crystallography is emerging as an important method in solving protein structures. While it has found extensive applications in the understanding of membrane protein structure and function at a wide range of resolutions, from revealing oligomeric arrangements to atomic models, electron crystallography has also provided invaluable information on the soluble α/β-tubulin which could not be obtained by any other method to date. Examples of critical insights from selected structures of membrane proteins as well as α/β-tubulin are described here, demonstrating the vast potential of electron crystallography that is first beginning to unfold.

  2. Solid state NMR: The essential technology for helical membrane protein structural characterization

    PubMed Central

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-01-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed – neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins. PMID:24412099

  3. Solid state NMR: The essential technology for helical membrane protein structural characterization

    NASA Astrophysics Data System (ADS)

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deisenhofer, J.; Michel, H.

    The history and methods of membrane protein crystallization are described. The solution of the structure of the photosynthetic reaction center from the bacterium Rhodopseudomonas viridis is described, and the structure of this membrane protein complex is correlated with its function as a light-driven electron pump across the photosynthetic membrane. Conclusions about the structure of the photosystem II reaction center from plants are drawn, and aspects of membrane protein structure are discussed. 68 refs., 15 figs., 2 tabs.

  5. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid.

    PubMed

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-10-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane alpha-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lipid, phosphatidylcholine from egg yolk, in only the reaction mixture. By examining a variety of detergents, we found that the combination of a steroid detergent (digitonin, cholate, or CHAPS) and egg phosphatidylcholine yielded a large amount (0.3-0.7 mg/mL reaction mixture) of the fully functional bacteriorhodopsin. We also analyzed the process of functional expression in our system. The synthesized polypeptide was well protected from aggregation by the detergent-lipid mixed micelles and/or lipid disks, and was integrated into liposomes upon detergent removal by dialysis. This approach might be useful for the high yield production of functional membrane proteins.

  6. Function of plasma membrane microdomain-associated proteins during legume nodulation.

    PubMed

    Qiao, Zhenzhen; Libault, Marc

    2017-10-03

    Plasma membrane microdomains are plasma membrane sub-compartments enriched in sphingolipids and sterols, and composed by a specific set of proteins. They are involved in recognizing signal molecules, transducing these signals, and controlling endocytosis and exocytosis processes. In a recent study, applying biochemical and microscopic methods, we characterized the soybean GmFWL1 protein, a major regulator of soybean nodulation, as a new membrane microdomain-associated protein. Interestingly, upon rhizobia inoculation of the soybean root system, GmFWL1 and one of its interacting partners, GmFLOT2/4, both translocate to the root hair cell tip, the primary site of interaction and infection between soybean and Rhizobium. The role of GmFWL1 as a plasma membrane microdomain-associated protein is also supported by immunoprecipitation assays performed on soybean nodules, which revealed 178 GmFWL1 protein partners including a large number of microdomain-associated proteins such as GmFLOT2/4. In this addendum, we provide additional information about the identity of the soybean proteins repetitively identified as GmFWL1 protein partners. Their function is discussed especially in regard to plant-microbe interactions and microbial symbiosis. This addendum will provide new insights in the role of plasma membrane microdomains in regulating legume nodulation.

  7. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin

    PubMed Central

    Roy, Jahnabi; Wycislo, Kathryn L.; Pondenis, Holly; Fan, Timothy M.

    2017-01-01

    Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics. PMID:28910304

  8. Comparative proteomic investigation of metastatic and non-metastatic osteosarcoma cells of human and canine origin.

    PubMed

    Roy, Jahnabi; Wycislo, Kathryn L; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2017-01-01

    Osteosarcoma is the most common bone cancer in dogs and people. In order to improve clinical outcomes, it is necessary to identify proteins that are differentially expressed by metastatic cells. Membrane bound proteins are responsible for multiple pro-metastatic functions. Therefore characterizing the differential expression of membranous proteins between metastatic and non-metastatic clonal variants will allow the discovery of druggable targets and consequently improve treatment methodology. The objective of this investigation was to systemically identify the membrane-associated proteomics of metastatic and non-metastatic variants of human and canine origin. Two clonal variants of divergent in vivo metastatic potential from human and canine origins were used. The plasma membranes were isolated and peptide fingerprinting was used to identify differentially expressed proteins. Selected proteins were further validated using western blotting, flow cytometry, confocal microscopy and immunohistochemistry. Over 500 proteins were identified for each cell line with nearly 40% of the proteins differentially regulated. Conserved between both species, metastatic variants demonstrated significant differences in expression of membrane proteins that are responsible for pro-metastatic functions. Additionally, CD147, CD44 and vimentin were validated using various biochemical techniques. Taken together, through a comparative proteomic approach we have identified several differentially expressed cell membrane proteins that will help in the development of future therapeutics.

  9. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling.

    PubMed

    Parag-Sharma, Kshitij; Leyme, Anthony; DiGiacomo, Vincent; Marivin, Arthur; Broselid, Stefan; Garcia-Marcos, Mikel

    2016-12-30

    GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gα i3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    PubMed Central

    Fischer, Axel W.; Alexander, Nathan S.; Woetzel, Nils; Karakaş, Mert; Weiner, Brian E.; Meiler, Jens

    2016-01-01

    For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The protein-size-normalized root-mean-square-deviation (RMSD100) value of the most accurate model is better than 8 Å for twenty-seven, better than 6 Å for twenty-two, and better than 4 Å for fifteen out of twenty-nine proteins, demonstrating the algorithm’s ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data. PMID:25820805

  11. Specificity of Intramembrane Protein–Lipid Interactions

    PubMed Central

    Contreras, Francesc-Xabier; Ernst, Andreas Max; Wieland, Felix; Brügger, Britta

    2011-01-01

    Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport. PMID:21536707

  12. New insights into the targeting of a sub-set of tail-anchored proteins to the outer mitochondrial membrane

    USDA-ARS?s Scientific Manuscript database

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins that are defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Nout-Cin orientation. The molecular mechanisms by which TA p...

  13. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform

    PubMed Central

    Hu, Che-Ming J.; Zhang, Li; Aryal, Santosh; Cheung, Connie; Fang, Ronnie H.; Zhang, Liangfang

    2011-01-01

    Efforts to extend nanoparticle residence time in vivo have inspired many strategies in particle surface modifications to bypass macrophage uptake and systemic clearance. Here we report a top-down biomimetic approach in particle functionalization by coating biodegradable polymeric nanoparticles with natural erythrocyte membranes, including both membrane lipids and associated membrane proteins for long-circulating cargo delivery. The structure, size and surface zeta potential, and protein contents of the erythrocyte membrane-coated nanoparticles were verified using transmission electron microscopy, dynamic light scattering, and gel electrophoresis, respectively. Mice injections with fluorophore-loaded nanoparticles revealed superior circulation half-life by the erythrocyte-mimicking nanoparticles as compared to control particles coated with the state-of-the-art synthetic stealth materials. Biodistribution study revealed significant particle retention in the blood 72 h following the particle injection. The translocation of natural cellular membranes, their associated proteins, and the corresponding functionalities to the surface of synthetic particles represents a unique approach in nanoparticle functionalization. PMID:21690347

  14. The synthesis of recombinant membrane proteins in yeast for structural studies.

    PubMed

    Routledge, Sarah J; Mikaliunaite, Lina; Patel, Anjana; Clare, Michelle; Cartwright, Stephanie P; Bawa, Zharain; Wilks, Martin D B; Low, Floren; Hardy, David; Rothnie, Alice J; Bill, Roslyn M

    2016-02-15

    Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Discrimination of Native-like States of Membrane Proteins with Implicit Membrane-based Scoring Functions.

    PubMed

    Dutagaci, Bercem; Wittayanarakul, Kitiyaporn; Mori, Takaharu; Feig, Michael

    2017-06-13

    A scoring protocol based on implicit membrane-based scoring functions and a new protocol for optimizing the positioning of proteins inside the membrane was evaluated for its capacity to discriminate native-like states from misfolded decoys. A decoy set previously established by the Baker lab (Proteins: Struct., Funct., Genet. 2006, 62, 1010-1025) was used along with a second set that was generated to cover higher resolution models. The Implicit Membrane Model 1 (IMM1), IMM1 model with CHARMM 36 parameters (IMM1-p36), generalized Born with simple switching (GBSW), and heterogeneous dielectric generalized Born versions 2 (HDGBv2) and 3 (HDGBv3) were tested along with the new HDGB van der Waals (HDGBvdW) model that adds implicit van der Waals contributions to the solvation free energy. For comparison, scores were also calculated with the distance-scaled finite ideal-gas reference (DFIRE) scoring function. Z-scores for native state discrimination, energy vs root-mean-square deviation (RMSD) correlations, and the ability to select the most native-like structures as top-scoring decoys were evaluated to assess the performance of the scoring functions. Ranking of the decoys in the Baker set that were relatively far from the native state was challenging and dominated largely by packing interactions that were captured best by DFIRE with less benefit of the implicit membrane-based models. Accounting for the membrane environment was much more important in the second decoy set where especially the HDGB-based scoring functions performed very well in ranking decoys and providing significant correlations between scores and RMSD, which shows promise for improving membrane protein structure prediction and refinement applications. The new membrane structure scoring protocol was implemented in the MEMScore web server ( http://feiglab.org/memscore ).

  16. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    PubMed Central

    Quon, Evan; Beh, Christopher T.

    2015-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer. In yeast, cortical ER is stapled to the PM through membrane-tethering proteins, which establish a direct connection between the membranes. In this review, we consider passive and facilitated models for lipid transfer at PM–ER contact sites. Besides the tethering proteins, we examine the roles of an additional repertoire of lipid and protein regulators that prime and propagate PM–ER membrane association. We conclude that instead of being simple mediators of membrane association, regulatory components of membrane contact sites have complex and multilayered functions. PMID:26949334

  17. Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features.

    PubMed

    Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu

    2012-12-01

    Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The software and datasets are available at: http://www.csbio.sjtu.edu.cn/bioinf/mpsp.

  18. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  19. Monitoring the function of membrane transport proteins in detergent-solubilized form

    PubMed Central

    Quick, Matthias; Javitch, Jonathan A.

    2007-01-01

    Transport proteins constitute ≈10% of most proteomes and play vital roles in the translocation of solutes across membranes of all organisms. Their (dys)function is implicated in many disorders, making them frequent targets for pharmacotherapy. The identification of substrates for members of this large protein family, still replete with many orphans of unknown function, has proven difficult, in part because high-throughput screening is greatly complicated by endogenous transporters present in many expression systems. In addition, direct structural studies require that transporters be extracted from the membrane with detergent, thereby precluding transport measurements because of the lack of a vectorial environment and necessitating reconstitution into proteoliposomes for activity measurements. Here, we describe a direct scintillation proximity-based radioligand-binding assay for determining transport protein function in crude cell extracts and in purified form. This rapid and universally applicable assay with advantages over cell-based platforms will greatly facilitate the identification of substrates for many orphan transporters and allows monitoring the function of transport proteins in a nonmembranous environment. PMID:17360689

  20. [Molecular organization of glutamate-sensitive chemoexcitable membranes of nerve cells. Function of glutamate-binding proteins of the central nervous system when incorporated into liposomes].

    PubMed

    Besedin, V I; Kuznetsov, A S; Dambinova, S A

    1985-03-01

    The functioning of the glutamate-binding protein of rat brain cortex synaptic membranes was studied by its incorporation into liposomes. The optimal conditions for the receptor protein incorporation were established and the kinetics of 22Na+ and 86Rb+ incorporation into the liposomes in the presence of L-glutamate were analyzed. Modelling of the CNS glutamate receptor functions was found to be dependent on the lipid composition and amount of the incorporated membrane protein. The selective transport of 22Na+ into the liposomes was stimulated in the presence of 10(-4) M glutamate. Addition of monoclonal antibodies against glutamate-binding proteins blocked the incorporation of Na+ into the liposomes. The experimental results are suggestive of the nativity of the liposome-incorporated membrane protein, which is capable of binding glutamate and regulating selective transport of Na+. It was assumed that the glutamate receptor macromolecule represents an integral complex made up of several low molecular weight subunits of glucoprotein nature that form a selective ionic channel.

  1. Anchoring antibodies to membranes using a diphtheria toxin T domain-ZZ fusion protein as a pH sensitive membrane anchor.

    PubMed

    Nizard, P; Liger, D; Gaillard, C; Gillet, D

    1998-08-14

    We have constructed a fusion protein, T-ZZ, in which the IgG-Fc binding protein ZZ was fused to the C-terminus of the diphtheria toxin transmembrane domain (T domain). While soluble at neutral pH, T-ZZ retained the capacity of the T domain to bind to phospholipid membranes at acidic pH. Once anchored to the membrane, the ZZ part of the protein was capable of binding mouse monoclonal or rabbit polyclonal IgG. Our results show that the T-ZZ protein can function as a pH sensitive membrane anchor for the linkage of IgG to the membrane of lipid vesicles, adherent and non-adherent cells.

  2. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties.

    PubMed

    Putta, Priya; Rankenberg, Johanna; Korver, Ruud A; van Wijk, Ringo; Munnik, Teun; Testerink, Christa; Kooijman, Edgar E

    2016-11-01

    Phosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding. Previously, we have described the ionization properties of PA, summarized in the electrostatic-hydrogen bond switch, as one aspect that drives the specific binding of PA by PA-binding proteins. Here we focus on membrane curvature stress induced by phosphatidylethanolamine and show that many PA-binding proteins display enhanced binding as a function of negative curvature stress. This result is corroborated by the observation that positive curvature stress, induced by lyso phosphatidylcholine, abolishes PA binding of target proteins. We show, for the first time, that a novel plant PA-binding protein, Arabidopsis Epsin-like Clathrin Adaptor 1 (ECA1) displays curvature-dependence in its binding to PA. Other established PA targets examined in this study include, the plant proteins TGD2, and PDK1, the yeast proteins Opi1 and Spo20, and, the mammalian protein Raf-1 kinase and the C2 domain of the mammalian phosphatidylserine binding protein Lact as control. Based on our observations, we propose that liposome binding assays are the preferred method to investigate lipid binding compared to the popular lipid overlay assays where membrane environment is lost. The use of complex lipid mixtures is important to elucidate further aspects of PA binding proteins. Copyright © 2016. Published by Elsevier B.V.

  3. Cavin Family: New Players in the Biology of Caveolae.

    PubMed

    Nassar, Zeyad D; Parat, Marie-Odile

    2015-01-01

    Caveolae are specialized small plasma-membrane invaginations that play crucial cellular functions. Two essential protein families are required for caveola formation: membrane caveolin proteins and cytoplasmic cavin proteins. Each family includes members with specific tissue distribution, and their expression is altered under physiological and pathological conditions, implying highly specialized functions. Cavins not only stabilize caveolae, but modulate their morphology and functions as well. Before association with the plasma membrane, cavins form homo- and hetero-oligomers with strikingly strict stoichiometry in the cytosol. At the plasma membrane, they provide an outer peripheral cytosolic layer, necessary for caveola stability. Interestingly, upon stimulation, cavins can be released from caveolae into the cytoplasm in distinct subcomplexes, providing a rapid dynamic link between caveolae and cellular organelles including the nucleus. In this review, we detail the biology of cavins, their structural and functional roles, and their implication in pathophysiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Retention mechanisms for ER and Golgi membrane proteins.

    PubMed

    Gao, Caiji; Cai, Yi; Wang, Yejun; Kang, Byung-Ho; Aniento, Fernando; Robinson, David G; Jiang, Liwen

    2014-08-01

    Unless there are mechanisms to selectively retain membrane proteins in the endoplasmic reticulum (ER) or in the Golgi apparatus, they automatically proceed downstream to the plasma or vacuole membranes. Two types of coat protein complex I (COPI)-interacting motifs in the cytosolic tails of membrane proteins seem to facilitate membrane retention in the early secretory pathway of plants: a dilysine (KKXX) motif (which is typical of p24 proteins) for the ER and a KXE/D motif (which occurs in the Arabidopsis endomembrane protein EMP12) for the Golgi apparatus. The KXE/D motif is highly conserved in all eukaryotic EMPs and is additionally present in hundreds of other proteins of unknown subcellular localization and function. This novel signal may represent a new general mechanism for Golgi targeting and the retention of polytopic integral membrane proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor*

    PubMed Central

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-01-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988

  6. Cytosol-dependent membrane fusion in ER, nuclear envelope and nuclear pore assembly: biological implications.

    PubMed

    Rafikova, Elvira R; Melikov, Kamran; Chernomordik, Leonid V

    2010-01-01

    Endoplasmic reticulum and nuclear envelope rearrangements after mitosis are often studied in the reconstitution system based on Xenopus egg extract. In our recent work we partially replaced the membrane vesicles in the reconstitution mix with protein-free liposomes to explore the relative contributions of cytosolic and transmembrane proteins. Here we discuss our finding that cytosolic proteins mediate fusion between membranes lacking functional transmembrane proteins and the role of membrane fusion in endoplasmic reticulum and nuclear envelope reorganization. Cytosol-dependent liposome fusion has allowed us to restore, without adding transmembrane nucleoporins, functionality of nuclear pores, their spatial distribution and chromatin decondensation in nuclei formed at insufficient amounts of membrane material and characterized by only partial decondensation of chromatin and lack of nuclear transport. Both the mechanisms and the biological implications of the discovered coupling between spatial distribution of nuclear pores, chromatin decondensation and nuclear transport are discussed.

  7. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    PubMed

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mechanisms of EHD/RME-1 Protein Function in Endocytic Transport

    PubMed Central

    Grant, Barth D.; Caplan, Steve

    2009-01-01

    The evolutionarily conserved Eps15 homology domain (EHD)/receptor-mediated endocytosis (RME)-1 family of C-terminal EH domain proteins has recently come under intense scrutiny because of its importance in intracellular membrane transport, especially with regard to the recycling of receptors from endosomes to the plasma membrane. Recent studies have shed new light on the mode by which these adenosine triphosphatases function on endosomal membranes in mammals and Caenorhabditis elegans. This review highlights our current understanding of the physiological roles of these proteins in vivo, discussing conserved features as well as emerging functional differences between individual mammalian paralogs. In addition, these findings are discussed in light of the identification of novel EHD/RME-1 protein and lipid interactions and new structural data for proteins in this family, indicating intriguing similarities to the Dynamin superfamily of large guanosine triphosphatases. PMID:18801062

  9. Quantitative Proteomics Reveals Membrane Protein-Mediated Hypersaline Sensitivity and Adaptation in Halophilic Nocardiopsis xinjiangensis.

    PubMed

    Zhang, Yao; Li, Yanchang; Zhang, Yongguang; Wang, Zhiqiang; Zhao, Mingzhi; Su, Na; Zhang, Tao; Chen, Lingsheng; Wei, Wei; Luo, Jing; Zhou, Yanxia; Xu, Yongru; Xu, Ping; Li, Wenjun; Tao, Yong

    2016-01-04

    The genus Nocardiopsis is one of the most dominant Actinobacteria that survives in hypersaline environments. However, the adaptation mechanisms for halophilism are still unclear. Here, we performed isobaric tags for relative and absolute quantification based quantitative proteomics to investigate the functions of the membrane proteome after salt stress. A total of 683 membrane proteins were identified and quantified, of which 126 membrane proteins displayed salt-induced changes in abundance. Intriguingly, bioinformatics analyses indicated that these differential proteins showed two expression patterns, which were further validated by phenotypic changes and functional differences. The majority of ABC transporters, secondary active transporters, cell motility proteins, and signal transduction kinases were up-regulated with increasing salt concentration, whereas cell differentiation, small molecular transporter (ions and amino acids), and secondary metabolism proteins were significantly up-regulated at optimum salinity, but down-regulated or unchanged at higher salinity. The small molecule transporters and cell differentiation-related proteins acted as sensing proteins that played a more important biological role at optimum salinity. However, the ABC transporters for compatible solutes, Na(+)-dependent transporters, and cell motility proteins acted as adaptive proteins that actively counteracted higher salinity stress. Overall, regulation of membrane proteins may provide a major protection strategy against hyperosmotic stress.

  10. Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology.

    PubMed

    Gordon, V D; O'Halloran, T J; Shindell, O

    2015-06-28

    Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development.

  11. Specific Adhesion of Lipid Membranes Can Simultaneously Produce Two Types of Lipid and Protein Heterogeneities

    NASA Astrophysics Data System (ADS)

    Shindell, Orrin; Micah, Natalie; Ritzer, Max; Gordon, Vernita

    2015-03-01

    Living cells adhere to one another and their environment. Adhesion is associated with re-organization of the lipid and protein components of the cell membrane. The resulting heterogeneities are functional structures involved in biological processes. We use artificial lipid membranes that contain a single type of binding protein. Before adhesion, the lipid, protein, and dye components in the membrane are well-mixed and constitute a single disordered-liquid phase (Ld) . After adhesion, two distinct types of heterogeneities coexist in the adhesion zone: a central domain of ordered lipid phase that excludes both binding proteins and membrane dye, and a peripheral domain of disordered lipid phase that is densely packed with adhesion proteins and enriched in membrane dye relative to the non-adhered portion of the vesicle. Thus, we show that adhesion that is mediated by only one type of protein can organize the lipid and protein components of the membranes into heterogeneities that resemble those found in biology, for example the immune synapse.

  12. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence.

    PubMed

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu

    2012-11-28

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  13. Biofunctionalized nanofibrous membranes as super separators of protein and enzyme from water.

    PubMed

    Homaeigohar, Shahin; Dai, Tianhe; Elbahri, Mady

    2013-09-15

    Here, we report development of a novel biofunctionalized nanofibrous membrane which, despite its macroporous structure, is able to separate even trace amounts (as low as 2mg/L) of biomolecules such as protein and enzyme from water with an optimum efficiency of ~90%. Such an extraordinary protein selectivity at this level of pollutant concentration for a nanofibrous membrane has never been reported. In the current study, poly(acrylonitrile-co-glycidyl methacrylate) (PANGMA) electrospun nanofibers are functionalized by a bovine serum albumin (BSA) protein. This membrane is extraordinarily successful in removal of BSA protein and Candida antarctica Lipase B (Cal-B) enzyme from a water based solution. Despite a negligible non-specific adsorption of both BSA and Cal-B to the PANGMA nanofibrous membrane (8%), the separation efficiency of the biofunctionalized membrane for BSA and Cal-B reaches to 88% and 81%, respectively. The optimum separation efficiency at a trace amount of protein models is due to the water-induced conformational change of the biofunctional agent. The conformational change not only exposes more functional groups available to catch the biomolecules but also leads to swelling of the nanofibers thereby a higher steric hindrance for the solutes. Besides the optimum selectivity, the biofunctionalized membranes are highly wettable thereby highly water permeable. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Analysis of molecular assemblies by flow cytometry: determinants of Gi1 and by binding

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Noune A.; Neubig, Richard R.

    1998-05-01

    We report here a novel application of flow cytometry for the quantitative analysis of the high affinity interaction between membrane proteins both in detergent solutions and when reconstituted into lipid vesicles. The approach is further advanced to permit the analysis of binding to expressed protein complexes in native cell membranes. The G protein heterotrimer signal transduction function links the extracellularly activated transmembrane receptors and intracellular effectors. Upon activation, (alpha) and (beta) (gamma) subunits of G protein undergo a dissociation/association cycle on the cell membrane interface. The binding parameters of solubilized G protein (alpha) and (beta) (gamma) subunits have been defined but little is known quantitatively about their interactions in the membrane. Using a novel flow cytometry approach, the binding of low nanomolar concentrations of fluorescein-labeled G(alpha) i1 (F- (alpha) ) to (beta) (gamma) both in detergent solution and in a lipid environment was quantitatively compared. Unlabeled (beta) $gama reconstituted in biotinylated phospholipid vesicles bound F-(alpha) tightly (Kd 6 - 12 nM) while the affinity for biotinylated-(beta) (gamma) in Lubrol was even higher (Kd of 2.9 nM). The application of this approach to proteins expressed in native cell membranes will advance our understanding of G protein function in context of receptor and effector interaction. More generally, this approach can be applied to study the interaction of any fluorescently labeled protein with a membrane protein which can be expressed in Sf9 plasma membranes.

  15. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bienz, K.; Egger, D.; Troxler, M.

    1990-03-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but didmore » not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed.« less

  16. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization.

    PubMed

    Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok

    2014-02-01

    Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biophysical EPR Studies Applied to Membrane Proteins

    PubMed Central

    Sahu, Indra D; Lorigan, Gary A

    2015-01-01

    Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825

  18. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    PubMed

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane

    PubMed Central

    Richardson, Lynn G. L.; Paila, Yamuna D.; Siman, Steven R.; Chen, Yi; Smith, Matthew D.; Schnell, Danny J.

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus. PMID:24966864

  20. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    PubMed

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  1. Membrane raft association is a determinant of plasma membrane localization.

    PubMed

    Diaz-Rohrer, Blanca B; Levental, Kandice R; Simons, Kai; Levental, Ilya

    2014-06-10

    The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting.

  2. Membrane raft association is a determinant of plasma membrane localization

    PubMed Central

    Diaz-Rohrer, Blanca B.; Levental, Kandice R.; Simons, Kai; Levental, Ilya

    2014-01-01

    The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting. PMID:24912166

  3. A PI4P-driven electrostatic field controls cell membrane identity and signaling in plants

    PubMed Central

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-01-01

    Many signaling proteins permanently or transiently localize to specific organelles for function. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PI4P). Our results further reveal that, contrarily to other eukaryotes, PI4P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID, as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATORs (MAKRs) family, which are involved in brassinosteroid and receptor-like kinase signaling. We anticipate that this PI4P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition. PMID:27322096

  4. Role of the MAGUK protein family in synapse formation and function.

    PubMed

    Oliva, Carlos; Escobedo, Pía; Astorga, César; Molina, Claudia; Sierralta, Jimena

    2012-01-01

    Synaptic function is crucially dependent on the spatial organization of the presynaptic and postsynaptic apparatuses and the juxtaposition of both membrane compartments. This precise arrangement is achieved by a protein network at the submembrane region of each cell that is built around scaffold proteins. The membrane-associated guanylate kinase (MAGUK) family of proteins is a widely expressed and well-conserved group of proteins that plays an essential role in the formation and regulation of this scaffolding. Here, we review general features of this protein family, focusing on the discs large and calcium/calmodulin-dependent serine protein kinase subfamilies of MAGUKs in the formation, function, and plasticity of synapses. Copyright © 2011 Wiley Periodicals, Inc.

  5. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  6. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database.

    PubMed

    Friso, Giulia; Giacomelli, Lisa; Ytterberg, A Jimmy; Peltier, Jean-Benoit; Rudella, Andrea; Sun, Qi; Wijk, Klaas J van

    2004-02-01

    An extensive analysis of the Arabidopsis thaliana peripheral and integral thylakoid membrane proteome was performed by sequential extractions with salt, detergent, and organic solvents, followed by multidimensional protein separation steps (reverse-phase HPLC and one- and two-dimensional electrophoresis gels), different enzymatic and nonenzymatic protein cleavage techniques, mass spectrometry, and bioinformatics. Altogether, 154 proteins were identified, of which 76 (49%) were alpha-helical integral membrane proteins. Twenty-seven new proteins without known function but with predicted chloroplast transit peptides were identified, of which 17 (63%) are integral membrane proteins. These new proteins, likely important in thylakoid biogenesis, include two rubredoxins, a potential metallochaperone, and a new DnaJ-like protein. The data were integrated with our analysis of the lumenal-enriched proteome. We identified 83 out of 100 known proteins of the thylakoid localized photosynthetic apparatus, including several new paralogues and some 20 proteins involved in protein insertion, assembly, folding, or proteolysis. An additional 16 proteins are involved in translation, demonstrating that the thylakoid membrane surface is an important site for protein synthesis. The high coverage of the photosynthetic apparatus and the identification of known hydrophobic proteins with low expression levels, such as cpSecE, Ohp1, and Ohp2, indicate an excellent dynamic resolution of the analysis. The sequential extraction process proved very helpful to validate transmembrane prediction. Our data also were cross-correlated to chloroplast subproteome analyses by other laboratories. All data are deposited in a new curated plastid proteome database (PPDB) with multiple search functions (http://cbsusrv01.tc.cornell.edu/users/ppdb/). This PPDB will serve as an expandable resource for the plant community.

  7. Synthetic (polymer) biology (membrane): functionalization of polymer scaffolds for membrane proteins.

    PubMed

    Hu, Zhaolong; Ho, James C S; Nallani, Madhavan

    2017-08-01

    A plethora of polymer-based scaffolds have been designed to facilitate biochemical and biophysical investigation of membrane proteins, with a common goal to stabilize and present them in a functional format. In this review, an up-to-date account of such polymer-based supports and incorporation methodologies are presented. Furthermore, conceptual and imminent technological advances, with associated technical challenges are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes.

    PubMed

    Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W

    2016-01-01

    The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.

  9. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.

    PubMed

    Adams, Michael C; Barbano, David M

    2016-01-01

    Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein determination by mid-infrared spectrophotometry were all useful tools for monitoring the retentate protein concentration to ensure a sustainable MF process. Using 6-mm membranes instead of 4-mm membranes would be advantageous for processors who wish to reduce energy costs or maximize the protein concentration of a MF retentate. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Smart polymer brush nanostructures guide the self-assembly of pore-spanning lipid bilayers with integrated membrane proteins

    NASA Astrophysics Data System (ADS)

    Wilhelmina de Groot, G.; Demarche, Sophie; Santonicola, M. Gabriella; Tiefenauer, Louis; Vancso, G. Julius

    2014-01-01

    Nanopores in arrays on silicon chips are functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes and used as supports for pore-spanning lipid bilayers with integrated membrane proteins. Robust platforms are created by the covalent grafting of polymer brushes using surface-initiated atom transfer radical polymerization (ATRP), resulting in sensor chips that can be successfully reused over several assays. His-tagged proteins are selectively and reversibly bound to the nitrilotriacetic acid (NTA) functionalization of the PMAA brush, and consequently lipid bilayer membranes are formed. The enhanced membrane resistance as determined by electrochemical impedance spectroscopy and free diffusion of dyed lipids observed as fluorescence recovery after photobleaching confirmed the presence of lipid bilayers. Immobilization of the His-tagged membrane proteins on the NTA-modified PMAA brush near the pore edges is characterized by fluorescence microscopy. This system allows us to adjust the protein density in free-standing bilayers, which are stabilized by the polymer brush underneath. The potential application of the integrated platform for ion channel protein assays is demonstrated.

  11. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    NASA Astrophysics Data System (ADS)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration < 5 å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains. In the bound state, PTEN's regulatory C-terminal tail is displaced from the membrane and organized on the far side of the protein, ˜ 60 å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN. Molecular dynamics simulations, currently in progress, refine this structural picture further.

  12. Trafficking and Membrane Organization of GPI-Anchored Proteins in Health and Diseases.

    PubMed

    Paladino, Simona; Lebreton, Stéphanie; Zurzolo, Chiara

    2015-01-01

    Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a class of lipid-anchored proteins attached to the membranes by a glycolipid anchor that is added, as posttranslation modification, in the endoplasmic reticulum. GPI-APs are expressed at the cell surface of eukaryotes where they play diverse vital functions. Like all plasma membrane proteins, GPI-APs must be correctly sorted along the different steps of the secretory pathway to their final destination. The presence of both a glycolipid anchor and a protein portion confers special trafficking features to GPI-APs. Here, we discuss the recent advances in the field of GPI-AP trafficking, focusing on the mechanisms regulating their biosynthetic pathway and plasma membrane organization. We also discuss how alterations of these mechanisms can result in different diseases. Finally, we will examine the strict relationship between the trafficking and function of GPI-APs in epithelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study.

    PubMed

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2016-03-01

    Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science.

  14. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study

    PubMed Central

    Sadaf, Aiman; Mortensen, Jonas S.; Capaldi, Stefano; Tikhonova, Elena; Hariharan, Parameswaran; de Castro Ribeiro, Orquidea; Loland, Claus J; Guan, Lan; Byrne, Bernadette

    2015-01-01

    Membrane proteins are amphipathic bio-macromolecules incompatible with the polar environments of aqueous media. Conventional detergents encapsulate the hydrophobic surfaces of membrane proteins allowing them to exist in aqueous solution. Membrane proteins stabilized by detergent micelles are used for structural and functional analysis. Despite the availability of a large number of detergents, only a few agents are sufficiently effective at maintaining the integrity of membrane proteins to allow successful crystallization. In the present study, we describe a novel class of synthetic amphiphiles with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively. Members of this class conferred enhanced stability on target membrane proteins compared to conventional detergents. Because of straightforward synthesis of the novel agents and their favourable effects on a range of membrane proteins, these agents should be of wide applicability to membrane protein science. PMID:27110345

  15. Preparation of Gap Junctions in Membrane Microdomains for Immunoprecipitation and Mass Spectrometry Interactome Analysis.

    PubMed

    Fowler, Stephanie; Akins, Mark; Bennett, Steffany A L

    2016-01-01

    Protein interaction networks at gap junction plaques are increasingly implicated in a variety of intracellular signaling cascades. Identifying protein interactions of integral membrane proteins is a valuable tool for determining channel function. However, several technical challenges exist. Subcellular fractionation of the bait protein matrix is usually required to identify less abundant proteins in complex homogenates. Sufficient solvation of the lipid environment without perturbation of the protein interactome must also be achieved. The present chapter describes the flotation of light and heavy liver tissue membrane microdomains to facilitate the identification and analysis of endogenous gap junction proteins and includes technical notes for translation to other integral membrane proteins, tissues, or cell culture models. These procedures are valuable tools for the enrichment of gap junction membrane compartments and for the identification of gap junction signaling interactomes.

  16. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane.

    PubMed

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-29

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

  17. Composite S-layer lipid structures

    PubMed Central

    Schuster, Bernhard; Sleytr, Uwe B.

    2010-01-01

    Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state of the art survey how S-layer proteins, lipids, and polysaccharides may be used as basic building blocks for the assembly of S-layer supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas for application of composite S-layer membrane systems concern sensor systems involving specific membrane functions. PMID:19303933

  18. Elucidating the structure and function of S100 proteins in membranes

    NASA Astrophysics Data System (ADS)

    Valenzuela, Stella M.; Berkahn, Mark; Martin, Donald K.; Huynh, Thuan; Yang, Zheng; Geczy, Carolyn L.

    2006-01-01

    S100 proteins are important Ca 2+-binding proteins involved in vital cellular functions including the modulation of cell growth, migration and differentiation, regulation of intracellular signal transduction/phosphorylation pathways, energy metabolism, cytoskeletal interactions and modulation of ion channels. Furthermore, they are implicated in oncogenesis and numerous other disease states. Three S100 proteins: S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and monocytes. At low levels of intracellular Ca 2+, S100A8 and S100A9 are located predominantly in the cytosol but when Ca 2+ concentrations are elevated as a consequence of activation, they translocate to membranes and complex with cytoskeletal components such as vimentin. The functions of S100A8 and S100A9 at the plasma membrane remain unclear. A possible role may be the regulation of ion channel proteins. The current study uses the techniques of Atomic Force Microscopy and production of artificial lipid membranes in the form of liposomes to investigate possible mechanisms for the insertion of these proteins into membranes in order to elucidate their structure and stoichiometry in the transmembrane state. We have successfully imaged the liposomes as a lipid bilayer, the S100A8/A9 protein complex in solution and the S100A8/A9 complex associating with lipid, using tapping-mode atomic force microscopy, in buffer.

  19. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis.

    PubMed

    Godlewska, Renata; Wiśniewska, Katarzyna; Pietras, Zbigniew; Jagusztyn-Krynicka, Elzbieta Katarzyna

    2009-09-01

    The protein Pal (peptidoglycan-associated lipoprotein) is anchored in the outer membrane (OM) of Gram-negative bacteria and interacts with Tol proteins. Tol-Pal proteins form two complexes: the first is composed of three inner membrane Tol proteins (TolA, TolQ and TolR); the second consists of the TolB and Pal proteins linked to the cell's OM. These complexes interact with one another forming a multiprotein membrane-spanning system. It has recently been demonstrated that Pal is essential for bacterial survival and pathogenesis, although its role in virulence has not been clearly defined. This review summarizes the available data concerning the structure and function of Pal and its role in pathogenesis.

  20. Membrane adhesion and the formation of heterogeneities: biology, biophysics, and biotechnology

    PubMed Central

    Gordon, V. D.; O’Halloran, T.J.; Shindell, O.

    2015-01-01

    Membrane adhesion is essential to many vital biological processes. Sites of membrane adhesion are often associated with heterogeneities in the lipid and protein composition of the membrane. These heterogeneities are thought to play functional roles by facilitating interactions between proteins. However, the causal links between membrane adhesion and membrane heterogeneities are not known. Here we survey the state of the field and indicate what we think are understudied areas ripe for development. PMID:25866854

  1. Motor Protein Myo1c Is a Podocyte Protein That Facilitates the Transport of Slit Diaphragm Protein Neph1 to the Podocyte Membrane ▿

    PubMed Central

    Arif, E.; Wagner, M. C.; Johnstone, D. B.; Wong, H. N.; George, B.; Pruthi, P. A.; Lazzara, M. J.; Nihalani, D.

    2011-01-01

    The podocyte proteins Neph1 and nephrin organize a signaling complex at the podocyte cell membrane that forms the structural framework for a functional glomerular filtration barrier. Mechanisms regulating the movement of these proteins to and from the membrane are currently unknown. This study identifies a novel interaction between Neph1 and the motor protein Myo1c, where Myo1c plays an active role in targeting Neph1 to the podocyte cell membrane. Using in vivo and in vitro experiments, we provide data supporting a direct interaction between Neph1 and Myo1c which is dynamic and actin dependent. Unlike wild-type Myo1c, the membrane localization of Neph1 was significantly reduced in podocytes expressing dominant negative Myo1c. In addition, Neph1 failed to localize at the podocyte cell membrane and cell junctions in Myo1c-depleted podocytes. We further demonstrate that similarly to Neph1, Myo1c also binds nephrin and reduces its localization at the podocyte cell membrane. A functional analysis of Myo1c knockdown cells showed defects in cell migration, as determined by a wound assay. In addition, the ability to form tight junctions was impaired in Myo1c knockdown cells, as determined by transepithelial electric resistance (TER) and bovine serum albumin (BSA) permeability assays. These results identify a novel Myo1c-dependent molecular mechanism that mediates the dynamic organization of Neph1 and nephrin at the slit diaphragm and is critical for podocyte function. PMID:21402783

  2. Plants and fungi in the era of heterogeneous plasma membranes.

    PubMed

    Opekarová, M; Malinsky, J; Tanner, W

    2010-09-01

    Examples from yeast and plant cells are described that show that their plasma membrane is laterally compartmented. Distinct lateral domains encompassing both specific lipids and integral proteins coexist within the plane of the plasma membrane. The compartments are either spatially stable and include distinct sets of proteins, or they are transiently formed to accomplish diverse functions. They are not related to lipid rafts or their clusters, as defined for mammalian cells. This review summarises only well-documented compartments of plasma membranes from plants and fungi, which have been recognised using microscopic approaches. In several cases, physiological functions of the membrane compartmentation are revealed.

  3. Dietary fatty acids and membrane protein function.

    PubMed

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  4. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.

    PubMed

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2018-02-10

    A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane

    PubMed Central

    Marty, Naomi J.; Teresinski, Howard J.; Hwang, Yeen Ting; Clendening, Eric A.; Gidda, Satinder K.; Sliwinska, Elwira; Zhang, Daiyuan; Miernyk, Ján A.; Brito, Glauber C.; Andrews, David W.; Dyer, John M.; Mullen, Robert T.

    2014-01-01

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X{X≠E}) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins. PMID:25237314

  6. Multiple-Localization and Hub Proteins

    PubMed Central

    Ota, Motonori; Gonja, Hideki; Koike, Ryotaro; Fukuchi, Satoshi

    2016-01-01

    Protein-protein interactions are fundamental for all biological phenomena, and protein-protein interaction networks provide a global view of the interactions. The hub proteins, with many interaction partners, play vital roles in the networks. We investigated the subcellular localizations of proteins in the human network, and found that the ones localized in multiple subcellular compartments, especially the nucleus/cytoplasm proteins (NCP), the cytoplasm/cell membrane proteins (CMP), and the nucleus/cytoplasm/cell membrane proteins (NCMP), tend to be hubs. Examinations of keywords suggested that among NCP, those related to post-translational modifications and transcription functions are the major contributors to the large number of interactions. These types of proteins are characterized by a multi-domain architecture and intrinsic disorder. A survey of the typical hub proteins with prominent numbers of interaction partners in the type revealed that most are either transcription factors or co-regulators involved in signaling pathways. They translocate from the cytoplasm to the nucleus, triggered by the phosphorylation and/or ubiquitination of intrinsically disordered regions. Among CMP and NCMP, the contributors to the numerous interactions are related to either kinase or ubiquitin ligase activity. Many of them reside on the cytoplasmic side of the cell membrane, and act as the upstream regulators of signaling pathways. Overall, these hub proteins function to transfer external signals to the nucleus, through the cell membrane and the cytoplasm. Our analysis suggests that multiple-localization is a crucial concept to characterize groups of hub proteins and their biological functions in cellular information processing. PMID:27285823

  7. Membrane fusion and exocytosis.

    PubMed

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  8. Life at the border: Adaptation of proteins to anisotropic membrane environment

    PubMed Central

    Pogozheva, Irina D; Mosberg, Henry I; Lomize, Andrei L

    2014-01-01

    This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding. PMID:24947665

  9. Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria

    PubMed Central

    Waizenegger, Thomas; Habib, Shukry J; Lech, Maciej; Mokranjac, Dejana; Paschen, Stefan A; Hell, Kai; Neupert, Walter; Rapaport, Doron

    2004-01-01

    Insertion of β-barrel proteins into the outer membrane of mitochondria is mediated by the TOB complex. Known constituents of this complex are Tob55 and Mas37. We identified a novel component, Tob38. It is essential for viability of yeast and the function of the TOB complex. Tob38 is exposed on the surface of the mitochondrial outer membrane. It interacts with Mas37 and Tob55 and is associated with Tob55 even in the absence of Mas37. The Tob38–Tob55 core complex binds precursors of β-barrel proteins and facilitates their insertion into the outer membrane. Depletion of Tob38 results in strongly reduced levels of Tob55 and Mas37 and the residual proteins no longer form a complex. Tob38-depleted mitochondria are deficient in the import of β-barrel precursor proteins, but not of other outer membrane proteins or proteins of other mitochondrial subcompartments. We conclude that Tob38 has a crucial function in the biogenesis of β-barrel proteins of mitochondria. PMID:15205677

  10. Misregulation of membrane trafficking processes in human nonalcoholic steatohepatitis.

    PubMed

    Dzierlenga, Anika L; Cherrington, Nathan J

    2018-03-01

    Nonalcoholic steatohepatitis (NASH) remodels the expression and function of genes and proteins that are critical for drug disposition. This study sought to determine whether disruption of membrane protein trafficking pathways in human NASH contributes to altered localization of multidrug resistance-associated protein 2 (MRP2). A comprehensive immunoblot analysis assessed the phosphorylation, membrane translocation, and expression of transporter membrane insertion regulators, including several protein kinases (PK), radixin, MARCKS, and Rab11. Radixin exhibited a decreased phosphorylation and total expression, whereas Rab11 had an increased membrane localization. PKCδ, PKCα, and PKA had increased membrane activation, whereas PKCε had a decreased phosphorylation and membrane expression. Radixin dephosphorylation may activate MRP2 membrane retrieval in NASH; however, the activation of Rab11/PKCδ and PKA/PKCα suggest an activation of membrane insertion pathways as well. Overall these data suggest an altered regulation of protein trafficking in human NASH, although other processes may be involved in the regulation of MRP2 localization. © 2018 Wiley Periodicals, Inc.

  11. Direct simulation of amphiphilic nanoparticle mediated membrane interactions

    NASA Astrophysics Data System (ADS)

    Tahir, Mukarram; Alexander-Katz, Alfredo

    Membrane fusion is a critical step in the transport of biological cargo through membrane-bound compartments like vesicles. Membrane proteins that alleviate energy barriers for initial stalk formation and eventual rupture of the hemifusion intermediate during fusion generally assist this process. Gold nanoparticles functionalized with a combination of hydrophobic and hydrophilic alkanethiol ligands have recently been shown to induce membrane re-arrangements that are similar to those associated with these fusion proteins. In this work, we utilize molecular dynamics simulation to systematically design nanoparticles that exhibit targeted interactions with membranes. We introduce a method for rapidly parameterizing nanoparticle topology for the MARTINI biomolecular force field to permit long timescale simulation of their interactions with lipid bilayers. We leverage this model to investigate how ligand chemistry governs the nanoparticle's insertion efficacy and the perturbations it generates in the membrane environment. We further demonstrate through unbiased simulations that these nanoparticles can direct the fusion of lipid assemblies such as micelles and vesicles in a manner that mimics the function of biological fusion peptides and SNARE proteins.

  12. Construction and Structural Analysis of Tethered Lipid Bilayer Containing Photosynthetic Antenna Proteins for Functional Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumino, Ayumi; Dewa, Takehisa; Takeuchi, Toshikazu

    2011-07-11

    The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAY), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RCmore » within the tethered membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.« less

  13. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    PubMed

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.

  14. Role of membrane contact sites in protein import into mitochondria

    PubMed Central

    Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus

    2015-01-01

    Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture. PMID:25514890

  15. A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins

    PubMed Central

    Xiao, Li; Diao, Jianxiong; Greene, D'Artagnan; Wang, Junmei; Luo, Ray

    2017-01-01

    Membrane proteins constitute a large portion of the human proteome and perform a variety of important functions as membrane receptors, transport proteins, enzymes, signaling proteins, and more. Computational studies of membrane proteins are usually much more complicated than those of globular proteins. Here we propose a new continuum model for Poisson-Boltzmann calculations of membrane channel proteins. Major improvements over the existing continuum slab model are as follows:1) The location and thickness of the slab model are fine-tuned based on explicit-solvent MD simulations. 2) The highly different accessibility in the membrane and water regions are addressed with a two-step, two-probe grid labeling procedure, and 3) The water pores/channels are automatically identified. The new continuum membrane model is optimized (by adjusting the membrane probe, as well as the slab thickness and center) to best reproduce the distributions of buried water molecules in the membrane region as sampled in explicit water simulations. Our optimization also shows that the widely adopted water probe of 1.4 Å for globular proteins is a very reasonable default value for membrane protein simulations. It gives the best compromise in reproducing the explicit water distributions in membrane channel proteins, at least in the water accessible pore/channel regions that we focus on. Finally, we validate the new membrane model by carrying out binding affinity calculations for a potassium channel, and we observe a good agreement with experiment results. PMID:28564540

  16. Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon

    PubMed Central

    Chou, Ming-Lun; Fitzpatrick, Lynda M.; Tu, Shuh-Long; Budziszewski, Gregory; Potter-Lewis, Sharon; Akita, Mitsuru; Levin, Joshua Z.; Keegstra, Kenneth; Li, Hsou-min

    2003-01-01

    The function of Tic40 during chloroplast protein import was investigated. Tic40 is an inner envelope membrane protein with a large hydrophilic domain located in the stroma. Arabidopsis null mutants of the atTic40 gene were very pale green and grew slowly but were not seedling lethal. Isolated mutant chloroplasts imported precursor proteins at a lower rate than wild-type chloroplasts. Mutant chloroplasts were normal in allowing binding of precursor proteins. However, during subsequent translocation across the inner membrane, fewer precursors were translocated and more precursors were released from the mutant chloroplasts. Cross-linking experiments demonstrated that Tic40 was part of the translocon complex and functioned at the same stage of import as Tic110 and Hsp93, a member of the Hsp100 family of molecular chaperones. Tertiary structure prediction and immunological studies indicated that the C-terminal portion of Tic40 contains a TPR domain followed by a domain with sequence similarity to co-chaperones Sti1p/Hop and Hip. We propose that Tic40 functions as a co-chaperone in the stromal chaperone complex that facilitates protein translocation across the inner membrane. PMID:12805212

  17. Continuum electromechanical modeling of protein-membrane interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Y. C.; Lu, Benzhuo; Gorfe, Alemayehu A.

    2010-10-01

    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.

  18. Purification and Identification of Membrane Proteins from Urinary Extracellular Vesicles using Triton X-114 Phase Partitioning.

    PubMed

    Hu, Shuiwang; Musante, Luca; Tataruch, Dorota; Xu, Xiaomeng; Kretz, Oliver; Henry, Michael; Meleady, Paula; Luo, Haihua; Zou, Hequn; Jiang, Yong; Holthofer, Harry

    2018-01-05

    Urinary extracellular vesicles (uEVs) have become a promising source for biomarkers accurately reflecting biochemical changes in kidney and urogenital diseases. Characteristically, uEVs are rich in membrane proteins associated with several cellular functions like adhesion, transport, and signaling. Hence, membrane proteins of uEVs should represent an exciting protein class with unique biological properties. In this study, we utilized uEVs to optimize the Triton X-114 detergent partitioning protocol targeted for membrane proteins and proceeded to their subsequent characterization while eliminating effects of Tamm-Horsfall protein, the most abundant interfering protein in urine. This is the first report aiming to enrich and characterize the integral transmembrane proteins present in human urinary vesicles. First, uEVs were enriched using a "hydrostatic filtration dialysis'' appliance, and then the enriched uEVs and lysates were verified by transmission electron microscopy. After using Triton X-114 phase partitioning, we generated an insoluble pellet fraction and aqueous phase (AP) and detergent phase (DP) fractions and analyzed them with LC-MS/MS. Both in- and off-gel protein digestion methods were used to reveal an increased number of membrane proteins of uEVs. After comparing with the identified proteins without phase separation as in our earlier publication, 199 different proteins were detected in DP. Prediction of transmembrane domains (TMDs) from these protein fractions showed that DP had more TMDs than other groups. The analyses of hydrophobicity revealed that the GRAVY score of DP was much higher than those of the other fractions. Furthermore, the analysis of proteins with lipid anchor revealed that DP proteins had more lipid anchors than other fractions. Additionally, KEGG pathway analysis showed that the DP proteins detected participate in endocytosis and signaling, which is consistent with the expected biological functions of membrane proteins. Finally, results of Western blotting confirmed that the membrane protein bands are found in the DP fraction instead of AP. In conclusion, our study validates the use of Triton X-114 phase partitioning protocol on uEVs for a targeted isolation of membrane proteins and to reduce sample complexity. This method successfully facilitates detection of potential biomarkers and druggable targets in uEVs.

  19. Disordered Cold Regulated15 Proteins Protect Chloroplast Membranes during Freezing through Binding and Folding, But Do Not Stabilize Chloroplast Enzymes in Vivo1[W][OPEN

    PubMed Central

    Thalhammer, Anja; Bryant, Gary; Sulpice, Ronan; Hincha, Dirk K.

    2014-01-01

    Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic α-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins. PMID:25096979

  20. Conserved features in TamA enable interaction with TamB to drive the activity of the translocation and assembly module

    PubMed Central

    Selkrig, Joel; Belousoff, Matthew J.; Headey, Stephen J.; Heinz, Eva; Shiota, Takuya; Shen, Hsin-Hui; Beckham, Simone A.; Bamert, Rebecca S.; Phan, Minh-Duy; Schembri, Mark A.; Wilce, Matthew C.J.; Scanlon, Martin J.; Strugnell, Richard A.; Lithgow, Trevor

    2015-01-01

    The biogenesis of membranes from constituent proteins and lipids is a fundamental aspect of cell biology. In the case of proteins assembled into bacterial outer membranes, an overarching question concerns how the energy required for protein insertion and folding is accessed at this remote location of the cell. The translocation and assembly module (TAM) is a nanomachine that functions in outer membrane biogenesis and virulence in diverse bacterial pathogens. Here we demonstrate the interactions through which TamA and TamB subunits dock to bridge the periplasm, and unite the outer membrane aspects to the inner membrane of the bacterial cell. We show that specific functional features in TamA have been conserved through evolution, including residues surrounding the lateral gate and an extensive surface of the POTRA domains. Analysis by nuclear magnetic resonance spectroscopy and small angle X-ray scattering document the characteristic structural features of these POTRA domains and demonstrate rigidity in solution. Quartz crystal microbalance measurements pinpoint which POTRA domain specifically docks the TamB subunit of the nanomachine. We speculate that the POTRA domain of TamA functions as a lever arm in order to drive the activity of the TAM, assembling proteins into bacterial outer membranes. PMID:26243377

  1. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering.

    PubMed

    Karlsen, Morten L; Thorsen, Thor S; Johner, Niklaus; Ammendrup-Johnsen, Ina; Erlendsson, Simon; Tian, Xinsheng; Simonsen, Jens B; Høiberg-Nielsen, Rasmus; Christensen, Nikolaj M; Khelashvili, George; Streicher, Werner; Teilum, Kaare; Vestergaard, Bente; Weinstein, Harel; Gether, Ulrik; Arleth, Lise; Madsen, Kenneth L

    2015-07-07

    PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host

    PubMed Central

    Pochon, Nathalie; Dementin, Sébastien; Hivin, Patrick; Boutigny, Sylvain; Rioux, Jean-Baptiste; Salvi, Daniel; Seigneurin-Berny, Daphné; Richaud, Pierre; Joyard, Jacques; Pignol, David; Sabaty, Monique; Desnos, Thierry; Pebay-Peyroula, Eva; Darrouzet, Elisabeth; Vernet, Thierry; Rolland, Norbert

    2011-01-01

    Background Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. Methodology/Principal Findings The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. Conclusions/Significance Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein. PMID:22216205

  3. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    PubMed

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  4. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Glasslike Membrane Protein Diffusion in a Crowded Membrane.

    PubMed

    Munguira, Ignacio; Casuso, Ignacio; Takahashi, Hirohide; Rico, Felix; Miyagi, Atsushi; Chami, Mohamed; Scheuring, Simon

    2016-02-23

    Many functions of the plasma membrane depend critically on its structure and dynamics. Observation of anomalous diffusion in vivo and in vitro using fluorescence microscopy and single particle tracking has advanced our concept of the membrane from a homogeneous fluid bilayer with freely diffusing proteins to a highly organized crowded and clustered mosaic of lipids and proteins. Unfortunately, anomalous diffusion could not be related to local molecular details given the lack of direct and unlabeled molecular observation capabilities. Here, we use high-speed atomic force microscopy and a novel analysis methodology to analyze the pore forming protein lysenin in a highly crowded environment and document coexistence of several diffusion regimes within one membrane. We show the formation of local glassy phases, where proteins are trapped in neighbor-formed cages for time scales up to 10 s, which had not been previously experimentally reported for biological membranes. Furthermore, around solid-like patches and immobile molecules a slower glass phase is detected leading to protein trapping and creating a perimeter of decreased membrane diffusion.

  6. Factor VIII organisation on nanodiscs with different lipid composition.

    PubMed

    Grushin, Kirill; Miller, Jaimy; Dalm, Daniela; Stoilova-McPhie, Svetla

    2015-04-01

    Nanodiscs (ND) are lipid bilayer membrane patches held by amphiphilic scaffolding proteins (MSP) of ~10 nm in diameter. Nanodiscs have been developed as lipid nanoplatforms for structural and functional studies of membrane and membrane associated proteins. Their size and monodispersity have rendered them unique for electron microscopy (EM) and single particle analysis studies of proteins and complexes either spanning or associated to the ND membrane. Binding of blood coagulation factors and complexes, such as the Factor VIII (FVIII) and the Factor VIIIa - Factor IXa (intrinsic tenase) complex to the negatively charged activated platelet membrane is required for normal haemostasis. In this study we present our work on optimising ND, specifically designed to bind FVIII at close to physiological conditions. The binding of FVIII to the negatively charged ND rich in phosphatidylserine (PS) was followed by electron microscopy at three different PS compositions and two different membrane scaffolding protein (MSP1D1) to lipid ratios. Our results show that the ND with highest PS content (80 %) and lowest MSP1D1 to lipid ratio (1:47) are the most suitable for structure determination of the membrane-bound FVIII by single particle EM. Our preliminary FVIII 3D reconstruction as bound to PS containing ND demonstrates the suitability of the optimised ND for structural studies by EM. Further assembly of the activated FVIII form (FVIIIa) and the whole FVIIIa-FIXa complex on ND, followed by EM and single particle reconstruction will help to identify the protein-protein and protein-membrane interfaces critical for the intrinsic tenase complex assembly and function.

  7. Curvature Forces in Membrane Lipid-Protein Interactions

    PubMed Central

    Brown, Michael F.

    2012-01-01

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284

  8. The eisosome core is composed of BAR domain proteins

    PubMed Central

    Olivera-Couto, Agustina; Graña, Martin; Harispe, Laura; Aguilar, Pablo S.

    2011-01-01

    Eisosomes define sites of plasma membrane organization. In Saccharomyces cerevisiae, eisosomes delimit furrow-like plasma membrane invaginations that concentrate sterols, transporters, and signaling molecules. Eisosomes are static macromolecular assemblies composed of cytoplasmic proteins, most of which have no known function. In this study, we used a bioinformatics approach to analyze a set of 20 eisosome proteins. We found that the core components of eisosomes, paralogue proteins Pil1 and Lsp1, are distant homologues of membrane-sculpting Bin/amphiphysin/Rvs (BAR) proteins. Consistent with this finding, purified recombinant Pil1 and Lsp1 tubulated liposomes and formed tubules when the proteins were overexpressed in mammalian cells. Structural homology modeling and site-directed mutagenesis indicate that Pil1 positively charged surface patches are needed for membrane binding and liposome tubulation. Pil1 BAR domain mutants were defective in both eisosome assembly and plasma membrane domain organization. In addition, we found that eisosome-associated proteins Slm1 and Slm2 have F-BAR domains and that these domains are needed for targeting to furrow-like plasma membrane invaginations. Our results support a model in which BAR domain protein–mediated membrane bending leads to clustering of lipids and proteins within the plasma membrane. PMID:21593205

  9. Membrane protein properties revealed through data-rich electrostatics calculations

    PubMed Central

    Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael

    2015-01-01

    SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532

  10. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    PubMed

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells.

    PubMed

    Pucadyil, Thomas J; Chattopadhyay, Amitabha

    2007-03-01

    Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin(1A) receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin(1A) receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin(1A) receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.

  12. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    PubMed

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  13. Deuterated detergents for structural and functional studies of membrane proteins: Properties, chemical synthesis and applications.

    PubMed

    Hiruma-Shimizu, Kazumi; Shimizu, Hiroki; Thompson, Gary S; Kalverda, Arnout P; Patching, Simon G

    2015-01-01

    Detergents are amphiphilic compounds that have crucial roles in the extraction, purification and stabilization of integral membrane proteins and in experimental studies of their structure and function. One technique that is highly dependent on detergents for solubilization of membrane proteins is solution-state NMR spectroscopy, where detergent micelles often serve as the best membrane mimetic for achieving particle sizes that tumble fast enough to produce high-resolution and high-sensitivity spectra, although not necessarily the best mimetic for a biomembrane. For achieving the best quality NMR spectra, detergents with partial or complete deuteration can be used, which eliminate interfering proton signals coming from the detergent itself and also eliminate potential proton relaxation pathways and strong dipole-dipole interactions that contribute line broadening effects. Deuterated detergents have also been used to solubilize membrane proteins for other experimental techniques including small angle neutron scattering and single-crystal neutron diffraction and for studying membrane proteins immobilized on gold electrodes. This is a review of the properties, chemical synthesis and applications of detergents that are currently commercially available and/or that have been synthesized with partial or complete deuteration. Specifically, the detergents are sodium dodecyl sulphate (SDS), lauryldimethylamine-oxide (LDAO), n-octyl-β-D-glucoside (β-OG), n-dodecyl-β-D-maltoside (DDM) and fos-cholines including dodecylphosphocholine (DPC). The review also considers effects of deuteration, detergent screening and guidelines for detergent selection. Although deuterated detergents are relatively expensive and not always commercially available due to challenges associated with their chemical synthesis, they will continue to play important roles in structural and functional studies of membrane proteins, especially using solution-state NMR.

  14. Stomatin-Like Protein 2 Binds Cardiolipin and Regulates Mitochondrial Biogenesis and Function▿

    PubMed Central

    Christie, Darah A.; Lemke, Caitlin D.; Elias, Isaac M.; Chau, Luan A.; Kirchhof, Mark G.; Li, Bo; Ball, Eric H.; Dunn, Stanley D.; Hatch, Grant M.; Madrenas, Joaquín

    2011-01-01

    Stomatin-like protein 2 (SLP-2) is a widely expressed mitochondrial inner membrane protein of unknown function. Here we show that human SLP-2 interacts with prohibitin-1 and -2 and binds to the mitochondrial membrane phospholipid cardiolipin. Upregulation of SLP-2 expression increases cardiolipin content and the formation of metabolically active mitochondrial membranes and induces mitochondrial biogenesis. In human T lymphocytes, these events correlate with increased complex I and II activities, increased intracellular ATP stores, and increased resistance to apoptosis through the intrinsic pathway, ultimately enhancing cellular responses. We propose that the function of SLP-2 is to recruit prohibitins to cardiolipin to form cardiolipin-enriched microdomains in which electron transport complexes are optimally assembled. Likely through the prohibitin functional interactome, SLP-2 then regulates mitochondrial biogenesis and function. PMID:21746876

  15. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins

    PubMed Central

    Walsh, Dustin R.; Nolin, Thomas D.

    2015-01-01

    Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na+/H+ exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development. PMID:26092975

  16. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    PubMed

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Common α2A and α2C adrenergic receptor polymorphisms do not affect plasma membrane trafficking.

    PubMed

    Hurt, Carl M; Sorensen, Matt W; Angelotti, Timothy

    2014-06-01

    Various naturally occurring polymorphic forms of human G protein-coupled receptors (GPCRs) have been identified and linked to diverse pathological diseases, including receptors for vasopressin type 2 (nephrogenic diabetes insipidus) and gonadotropin releasing hormone (hypogonadotropic hypogonadism). In most cases, polymorphic amino acid mutations disrupt protein folding, altering receptor function as well as plasma membrane expression. Other pathological GPCR variants have been found that do not alter receptor function, but instead affect only plasma membrane trafficking (e.g., delta opiate and histamine type 1 receptors). Thus, altered membrane trafficking with retained receptor function may be another mechanism causing polymorphic GPCR dysfunction. Two common human α2A and α2C adrenergic receptor (AR) variants have been identified (α2A N251K and α2C Δ322-325 ARs), but pharmacological analysis of ligand binding and second messenger signaling has not consistently demonstrated altered receptor function. However, possible alterations in plasma membrane trafficking have not been investigated. We utilized a systematic approach previously developed for the study of GPCR trafficking motifs and accessory proteins to assess whether these α2 AR variants affected intracellular trafficking or plasma membrane expression. By combining immunofluorescent microscopy, glycosidic processing analysis, and quantitative fluorescent-activated cell sorting (FACS), we demonstrate that neither variant receptor had altered intracellular localization, glycosylation, nor plasma membrane expression compared to wild-type α2 ARs. Therefore, pathopharmacological properties of α2A N251K and α2C Δ322-325 ARs do not appear to be due to altered receptor pharmacology or plasma membrane trafficking, but may involve interactions with other intracellular signaling cascades or proteins.

  18. Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay

    PubMed Central

    Hansen, Randi Westh; Wang, Xiaole; Golab, Agnieszka; Bornert, Olivier; Oswald, Christine; Wagner, Renaud; Martinez, Karen Laurence

    2016-01-01

    Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors—a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption. PMID:27035823

  19. Bioactive Structure of Membrane Lipids and Natural Products Elucidated by a Chemistry-Based Approach.

    PubMed

    Murata, Michio; Sugiyama, Shigeru; Matsuoka, Shigeru; Matsumori, Nobuaki

    2015-08-01

    Determining the bioactive structure of membrane lipids is a new concept, which aims to examine the functions of lipids with respect to their three-dimensional structures. As lipids are dynamic by nature, their "structure" does not refer solely to a static picture but also to the local and global motions of the lipid molecules. We consider that interactions with lipids, which are completely defined by their structures, are controlled by the chemical, functional, and conformational matching between lipids and between lipid and protein. In this review, we describe recent advances in understanding the bioactive structures of membrane lipids bound to proteins and related molecules, including some of our recent results. By examining recent works on lipid-raft-related molecules, lipid-protein interactions, and membrane-active natural products, we discuss current perspectives on membrane structural biology. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan W.; Brozik, James A.; Brozik, Susan Marie

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increasemore » in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.« less

  1. Purification and fractionation of membranes for proteomic analyses.

    PubMed

    Marmagne, Anne; Salvi, Daniel; Rolland, Norbert; Ephritikhine, Geneviève; Joyard, Jacques; Barbier-Brygoo, Hélène

    2006-01-01

    Proteomics is a very powerful approach to link the information contained in sequenced genomes, such as Arabidopsis, to the functional knowledge provided by studies of plant cell compartments. However, membrane proteomics remains a challenge. One way to bring into view the complex mixture of proteins present in a membrane is to develop proteomic analyses based on (1) the use of highly purified membrane fractions and (2) fractionation of membrane proteins to retrieve as many proteins as possible (from the most to the less hydrophobic ones). To illustrate such strategies, we choose two types of membranes, the plasma membrane and the chloroplast envelope membranes. Both types of membranes can be prepared in a reasonable degree of purity from different types of tissues: the plasma membrane from cultured cells and the chloroplast envelope membrane from whole plants. This article is restricted to the description of methods for the preparation of highly purified and characterized plant membrane fractions and the subsequent fractionation of these membrane proteins according to simple physicochemical criteria (i.e., chloroform/methanol extraction, alkaline or saline treatments) for further analyses using modern proteomic methodologies.

  2. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.

    PubMed

    Isono, Erika; Kalinowska, Kamila

    2017-12-01

    To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Molecular Modeling of Lipid Aggregates: Theory and Application

    NASA Astrophysics Data System (ADS)

    Fenner, Joel Stewart

    The ability of cell membranes to perform a wide variety of biological functions stems from the organization and composition of its molecular constituents. There are many engineering applications, such as liposome drug delivery carriers, whose functionality takes advantage of the structure to function relationship of lipid membranes. The fundamental understanding of the relationship between the thermodynamic behavior and structure of lipid membranes and the molecular properties of their lipid constituents is crucial to the successful design of lipid related applications. However, information about how the local microscopic composition of lipid membranes responds to the presence of proteins and nanomaterials is challenging given the intrinsic experimental and theoretical difficulties of studying such small-scale systems. The present work generalizes a self consistent mean field theory for the study of the thermodynamic and structural behavior of lipid bilayers as a function of its molecular composition and physicochemical environments. This novel molecular theory provides with the ability of performing systematic thermodynamic calculations at relatively low computational costs while considering a detailed molecular description of the system under study. The competition of all relevant molecular interactions, such as electrostatics, vdW and chemical equilibria, in the membrane system is described. The developed molecular theory is applied to study how the protonation state of pH-sensitive amphiphiles in a membrane system affects the membrane's morphology. The molecular theory results demonstrate that the protonation state of ionizable groups within amphiphilic membranes shows a highly complex non-monotonic dependence on bulk salt concentration and pH strength. This result suggests that information about the pKa of the molecules is not sufficient to predict the protonation state of the ionizable groups in the membrane system. The molecular theory is also applied to study how the presence of proteins or functionalized nanoparticles near a multicomponent membrane surface leads to changes in its local membrane composition. The results support an electrostatic dependent recruitment mechanism of oncogenic RhoA proteins to the cell membrane. Finally, the molecular theory results describe how nanoparticle functionality and/or membrane molecular composition can be tuned to enhance or suppress nanoparticle adsorption on to phospholipid membranes.

  4. Computational and theoretical approaches for studies of a lipid recognition protein on biological membranes

    PubMed Central

    Yamamoto, Eiji

    2017-01-01

    Many cellular functions, including cell signaling and related events, are regulated by the association of peripheral membrane proteins (PMPs) with biological membranes containing anionic lipids, e.g., phosphatidylinositol phosphate (PIP). This association is often mediated by lipid recognition modules present in many PMPs. Here, I summarize computational and theoretical approaches to investigate the molecular details of the interactions and dynamics of a lipid recognition module, the pleckstrin homology (PH) domain, on biological membranes. Multiscale molecular dynamics simulations using combinations of atomistic and coarse-grained models yielded results comparable to those of actual experiments and could be used to elucidate the molecular mechanisms of the formation of protein/lipid complexes on membrane surfaces, which are often difficult to obtain using experimental techniques. Simulations revealed some modes of membrane localization and interactions of PH domains with membranes in addition to the canonical binding mode. In the last part of this review, I address the dynamics of PH domains on the membrane surface. Local PIP clusters formed around the proteins exhibit anomalous fluctuations. This dynamic change in protein-lipid interactions cause temporally fluctuating diffusivity of proteins, i.e., the short-term diffusivity of the bound protein changes substantially with time, and may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:29159013

  5. Functional, Responsive Materials Assembled from Recombinant Oleosin

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel

    Biological cells are surrounded by a plasma membrane made primarily of phospholipids that form a bilayer. This membrane is permselective and compartmentalizes the cell. A simple form of artificial cell is the vesicle, in which a phospholipid bilayer membrane surrounds an aqueous solution. However, there is no a priori reason why a membrane needs to be made of phospholipids. It could be made of any surfactant that forms a bilayer. We have assembled membranes and other structures from the recombinant plant protein oleosin. The ability to assemble from a recombinant protein means that every molecule is identical, we have complete control over the sequence, and hence can build in designer functionality with high fidelity, including adhesion and enzymatic activity. Such incorporation is trivial using the tools of molecular biology. We find that while many variants of oleosin make membranes, others make micelles and sheets. We show how the type of supramolecular structure can be altered by the conditions of solvent, such as ionic strength, and the architecture of the surfactant itself. We show that protease cleavable domains can be incorporated within oleosin, and be engineered to protect other functional domains such as adhesive motifs, to make responsive materials whose activity and shape depend on the action of proteases. We will also present the idea of making ``Franken''-oleosins, where large domains of native oleosin are replaced with domains from other functional proteins, to make hybrids conferred by the donor protein. Thus, we can view oleosin as a template upon which a vast array of designer functionalities can be imparted..

  6. A Single Polar Residue and Distinct Membrane Topologies Impact the Function of the Infectious Bronchitis Coronavirus E Protein

    PubMed Central

    Ruch, Travis R.; Machamer, Carolyn E.

    2012-01-01

    The coronavirus E protein is a small membrane protein with a single predicted hydrophobic domain (HD), and has a poorly defined role in infection. The E protein is thought to promote virion assembly, which occurs in the Golgi region of infected cells. It has also been implicated in the release of infectious particles after budding. The E protein has ion channel activity in vitro, although a role for channel activity in infection has not been established. Furthermore, the membrane topology of the E protein is of considerable debate, and the protein may adopt more than one topology during infection. We previously showed that the HD of the infectious bronchitis virus (IBV) E protein is required for the efficient release of infectious virus, an activity that correlated with disruption of the secretory pathway. Here we report that a single residue within the hydrophobic domain, Thr16, is required for secretory pathway disruption. Substitutions of other residues for Thr16 were not tolerated. Mutations of Thr16 did not impact virus assembly as judged by virus-like particle production, suggesting that alteration of secretory pathway and assembly are independent activities. We also examined how the membrane topology of IBV E affected its function by generating mutant versions that adopted either a transmembrane or membrane hairpin topology. We found that a transmembrane topology was required for disrupting the secretory pathway, but was less efficient for virus-like particle production. The hairpin version of E was unable to disrupt the secretory pathway or produce particles. The findings reported here identify properties of the E protein that are important for its function, and provide insight into how the E protein may perform multiple roles during infection. PMID:22570613

  7. Oncoprotein AEG-1 is an endoplasmic reticulum RNA-binding protein whose interactome is enriched in organelle resident protein-encoding mRNAs.

    PubMed

    Hsu, Jack C-C; Reid, David W; Hoffman, Alyson M; Sarkar, Devanand; Nicchitta, Christopher V

    2018-05-01

    Astrocyte elevated gene-1 (AEG-1), an oncogene whose overexpression promotes tumor cell proliferation, angiogenesis, invasion, and enhanced chemoresistance, is thought to function primarily as a scaffolding protein, regulating PI3K/Akt and Wnt/β-catenin signaling pathways. Here we report that AEG-1 is an endoplasmic reticulum (ER) resident integral membrane RNA-binding protein (RBP). Examination of the AEG-1 RNA interactome by HITS-CLIP and PAR-CLIP methodologies revealed a high enrichment for endomembrane organelle-encoding transcripts, most prominently those encoding ER resident proteins, and within this cohort, for integral membrane protein-encoding RNAs. Cluster mapping of the AEG-1/RNA interaction sites demonstrated a normalized rank order interaction of coding sequence >5' untranslated region, with 3' untranslated region interactions only weakly represented. Intriguingly, AEG-1/membrane protein mRNA interaction sites clustered downstream from encoded transmembrane domains, suggestive of a role in membrane protein biogenesis. Secretory and cytosolic protein-encoding mRNAs were also represented in the AEG-1 RNA interactome, with the latter category notably enriched in genes functioning in mRNA localization, translational regulation, and RNA quality control. Bioinformatic analyses of RNA-binding motifs and predicted secondary structure characteristics indicate that AEG-1 lacks established RNA-binding sites though shares the property of high intrinsic disorder commonly seen in RBPs. These data implicate AEG-1 in the localization and regulation of secretory and membrane protein-encoding mRNAs and provide a framework for understanding AEG-1 function in health and disease. © 2018 Hsu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruskamo, Salla; University of Oulu, Oulu; Yadav, Ravi P.

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structuralmore » analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.« less

  9. High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes.

    PubMed

    Wittig, Ilka; Karas, Michael; Schägger, Hermann

    2007-07-01

    Clear native electrophoresis and blue native electrophoresis are microscale techniques for the isolation of membrane protein complexes. The Coomassie Blue G-250 dye, used in blue native electrophoresis, interferes with in-gel fluorescence detection and in-gel catalytic activity assays. This problem can be overcome by omitting the dye in clear native electrophoresis. However, clear native electrophoresis suffers from enhanced protein aggregation and broadening of protein bands during electrophoresis and therefore has been used rarely. To preserve the advantages of both electrophoresis techniques we substituted Coomassie dye in the cathode buffer of blue native electrophoresis by non-colored mixtures of anionic and neutral detergents. Like Coomassie dye, these mixed micelles imposed a charge shift on the membrane proteins to enhance their anodic migration and improved membrane protein solubility during electrophoresis. This improved clear native electrophoresis offers a high resolution of membrane protein complexes comparable to that of blue native electrophoresis. We demonstrate the superiority of high resolution clear native electrophoresis for in-gel catalytic activity assays of mitochondrial complexes I-V. We present the first in-gel histochemical staining protocol for respiratory complex III. Moreover we demonstrate the special advantages of high resolution clear native electrophoresis for in-gel detection of fluorescent labeled proteins labeled by reactive fluorescent dyes and tagged by fluorescent proteins. The advantages of high resolution clear native electrophoresis make this technique superior for functional proteomics analyses.

  10. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes.

    PubMed

    Yáñez-Mó, María; Barreiro, Olga; Gordon-Alonso, Mónica; Sala-Valdés, Mónica; Sánchez-Madrid, Francisco

    2009-09-01

    Membrane lipids and proteins are non-randomly distributed and are unable to diffuse freely in the plane of the membrane. This is because of multiple constraints imposed both by the cortical cytoskeleton and by the preference of lipids and proteins to cluster into diverse and specialized membrane domains, including tetraspanin-enriched microdomains, glycosylphosphatidyl inositol-linked proteins nanodomains and caveolae, among others. Recent biophysical characterization of tetraspanin-enriched microdomains suggests that they might be specially suited for the regulation of avidity of adhesion receptors and the compartmentalization of enzymatic activities. Moreover, modulation by tetraspanins of the function of adhesion receptors involved in inflammation, lymphocyte activation, cancer and pathogen infection suggests potential as therapeutic targets. This review explores this emerging picture of tetraspanin microdomains and discusses the implications for cell adhesion, proteolysis and pathogenesis.

  11. Hybrid In Silico/In Vitro Approaches for the Identification of Functional Cholesterol-Binding Domains in Membrane Proteins.

    PubMed

    Di Scala, Coralie; Fantini, Jacques

    2017-01-01

    In eukaryotic cells, cholesterol is an important regulator of a broad range of membrane proteins, including receptors, transporters, and ion channels. Understanding how cholesterol interacts with membrane proteins is a difficult task because structural data of these proteins complexed with cholesterol are scarce. Here, we describe a dual approach based on in silico studies of protein-cholesterol interactions, combined with physico-chemical measurements of protein insertion into cholesterol-containing monolayers. Our algorithm is validated through careful analysis of the effect of key mutations within and outside the predicted cholesterol-binding site. Our method is illustrated by a complete analysis of cholesterol-binding to Alzheimer's β-amyloid peptide, a protein that penetrates the plasma membrane of brain cells through a cholesterol-dependent process.

  12. Domain-swapping analysis of FtsI, FtsL, and FtsQ, bitopic membrane proteins essential for cell division in Escherichia coli.

    PubMed Central

    Guzman, L M; Weiss, D S; Beckwith, J

    1997-01-01

    FtsI, FtsL, and FtsQ are three membrane proteins required for assembly of the division septum in the bacterium Escherichia coli. Cells lacking any of these three proteins form long, aseptate filaments that eventually lyse. FtsI, FtsL, and FtsQ are not homologous but have similar overall structures: a small cytoplasmic domain, a single membrane-spanning segment (MSS), and a large periplasmic domain that probably encodes the primary functional activities of these proteins. The periplasmic domain of FtsI catalyzes transpeptidation and is involved in the synthesis of septal peptidoglycan. The precise functions of FtsL and FtsQ are not known. To ask whether the cytoplasmic domain and MSS of each protein serve only as a membrane anchor or have instead a more sophisticated function, we have used molecular genetic techniques to swap these domains among the three Fts proteins and one membrane protein not involved in cell division, MalF. In the cases of FtsI and FtsL, replacement of the cytoplasmic domain and/or MSS resulted in the loss of the ability to support cell division. For FtsQ, MSS swaps supported cell division but cytoplasmic domain swaps did not. We discuss several potential interpretations of these results, including that the essential domains of FtsI, FtsL, and FtsQ have a role in regulating the localization and/or activity of these proteins to ensure that septum formation occurs at the right place in the cell and at the right time during the division cycle. PMID:9260951

  13. One-step extraction of functional recombinant aquaporin Z from inclusion bodies with optimal detergent.

    PubMed

    Wang, Lili; Zhou, Hu; Li, Zhengjun; Lim, Teck Kwang; Lim, Xin Shan; Lin, Qingsong

    2015-11-01

    Aquaporins are integral membrane channel proteins found in all kingdoms of life. The Escherichia coli aquaporin Z (AqpZ) has been shown to solely conduct water at high permeability. Functional AqpZ is generally purified from the membrane fraction. However, the quantity of the purified protein is limited. In this study, a new method is developed to achieve high yield of bioactive AqpZ protein. A mild detergent n-dodecyl-β-D-maltopyranoside (DDM) was used to solubilize the over-expressed insoluble AqpZ from inclusion bodies without a refolding process. The recovered AqpZ protein showed high water permeability comparable with AqpZ obtained from the membrane fraction. In this way, the total yield of bioactive AqpZ has been increased greatly, which will facilitate the structural and functional characterization and future applications of AqpZ. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells.

    PubMed

    Schaletzki, Yvonne; Kromrey, Marie-Luise; Bröderdorf, Susanne; Hammer, Elke; Grube, Markus; Hagen, Paul; Sucic, Sonja; Freissmuth, Michael; Völker, Uwe; Greinacher, Andreas; Rauch, Bernhard H; Kroemer, Heyo K; Jedlitschky, Gabriele

    2017-01-05

    The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.

  15. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.

    PubMed

    Lin, Meishan; Gessmann, Dennis; Naveed, Hammad; Liang, Jie

    2016-03-02

    Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.

  16. Selective association of a fragment of the knob protein with spectrin, actin and the red cell membrane.

    PubMed

    Kilejian, A; Rashid, M A; Aikawa, M; Aji, T; Yang, Y F

    1991-02-01

    The knob protein of Plasmodium falciparum is essential for the formation of knob-like protrusions on the host erythrocyte membrane. A functional domain of the knob protein was identified. This peptide formed stable complexes with the two major red cell skeletal proteins, spectrin and actin. When introduced into resealed normal erythrocytes, the peptide associated selectively with the cytoplasmic surface of the membrane and formed knob-like electron dense deposits. Knobs are thought to play an important role in the immunopathology of P. falciparum infections. Our findings provide a first step towards understanding the molecular basis for selective membrane changes at knobs.

  17. Suspended marine particulate proteins in coastal and oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between membrane proteins and intracellular proteins grows to an approximate 75-25 split. Unlike the phytoplankton membrane proteins, which are detrital in nature, the bacterial protein suite at depth is consistent with living biomass.

  18. Spring-loaded model revisited: paramyxovirus fusion requires engagement of a receptor binding protein beyond initial triggering of the fusion protein.

    PubMed

    Porotto, Matteo; Devito, Ilaria; Palmer, Samantha G; Jurgens, Eric M; Yee, Jia L; Yokoyama, Christine C; Pessi, Antonello; Moscona, Anne

    2011-12-01

    During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.

  19. Regulation of T-cell receptor signalling by membrane microdomains

    PubMed Central

    Razzaq, Tahir M; Ozegbe, Patricia; Jury, Elizabeth C; Sembi, Phupinder; Blackwell, Nathan M; Kabouridis, Panagiotis S

    2004-01-01

    There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms. PMID:15554919

  20. Preprotein transport machineries of yeast mitochondrial outer membrane are not required for Bax-induced release of intermembrane space proteins.

    PubMed

    Sanjuán Szklarz, Luiza K; Kozjak-Pavlovic, Vera; Vögtle, F-Nora; Chacinska, Agnieszka; Milenkovic, Dusanka; Vogel, Sandra; Dürr, Mark; Westermann, Benedikt; Guiard, Bernard; Martinou, Jean-Claude; Borner, Christoph; Pfanner, Nikolaus; Meisinger, Chris

    2007-04-20

    The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.

  1. Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus

    NASA Astrophysics Data System (ADS)

    Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

    2011-06-01

    Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

  2. Phosphatidylserine in the Brain: Metabolism and Function

    PubMed Central

    Kim, Hee-Yong; Huang, Bill X.; Spector, Arthur A.

    2014-01-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine in reactions are catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear. PMID:24992464

  3. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions

    PubMed Central

    Vagne, Quentin; Turner, Matthew S.; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912

  4. Membrane and inclusion body targeting of lyssavirus matrix proteins.

    PubMed

    Pollin, Reiko; Granzow, Harald; Köllner, Bernd; Conzelmann, Karl-Klaus; Finke, Stefan

    2013-02-01

    Lyssavirus matrix proteins (M) support virus budding and have accessory functions that may contribute to host cell manipulation and adaptation to specific hosts. Here, we show that rabies virus (RABV) and European Bat Lyssavirus Type 1 (EBLV-1) M proteins differ in targeting and accumulation at cellular membranes. In contrast to RABV M, EBLV-1 M expressed from authentic EBLV-1 or chimeric RABV accumulated at the Golgi apparatus. Chimeric M proteins revealed that Golgi association depends on the integrity of the entire EBLV-1 M protein. Since RABV and EBLV-1 M differ in the use of cellular membranes for particle formation, differential membrane targeting and transport of M might determine the site of virus production. Moreover, both RABV and EBLV-1 M were for the first time detected within the nucleus and in Negri body-like inclusions bodies. Whereas nuclear M may imply hitherto unknown functions of lyssavirus M in host cell manipulation, the presence of M in inclusion bodies may correlate with regulatory functions of M in virus RNA synthesis. The data strongly support a model in which targeting of lyssavirus M proteins to distinctintracellular sites is a key determinant of diverse features in lyssavirus replication, host adaptation and pathogenesis. © 2012 Blackwell Publishing Ltd.

  5. N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: implications for pathophysiology in autism

    PubMed Central

    2014-01-01

    Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested. PMID:24834316

  6. Structures of membrane proteins

    PubMed Central

    Vinothkumar, Kutti R.; Henderson, Richard

    2010-01-01

    In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class. PMID:20667175

  7. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    PubMed

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  8. Measuring Membrane Protein Dimerization Equilibrium in Lipid Bilayers by Single-Molecule Fluorescence Microscopy.

    PubMed

    Chadda, R; Robertson, J L

    2016-01-01

    Dimerization of membrane protein interfaces occurs during membrane protein folding and cell receptor signaling. Here, we summarize a method that allows for measurement of equilibrium dimerization reactions of membrane proteins in lipid bilayers, by measuring the Poisson distribution of subunit capture into liposomes by single-molecule photobleaching analysis. This strategy is grounded in the fact that given a comparable labeling efficiency, monomeric or dimeric forms of a membrane protein will give rise to distinctly different photobleaching probability distributions. These methods have been used to verify the dimer stoichiometry of the Fluc F - ion channel and the dimerization equilibrium constant of the ClC-ec1 Cl - /H + antiporter in lipid bilayers. This approach can be applied to any membrane protein system provided it can be purified, fluorescently labeled in a quantitative manner, and verified to be correctly folded by functional assays, even if the structure is not yet known. © 2016 Elsevier Inc. All rights reserved.

  9. Lipid-binding analysis using a fat blot assay.

    PubMed

    Munnik, Teun; Wierzchowiecka, Magdalena

    2013-01-01

    Protein-lipid interactions play an important role in lipid metabolism, membrane trafficking and cell -signaling by regulating protein localization, activation, and function. The Fat Blot assay is a relatively simple and inexpensive method to examine these interactions using nitrocellulose membrane-immobilized lipids. The assay is adapted from the method by Dowler et al. (Sci STKE 129:pl6, 2002) and provides qualitative and quantitative information on the relative affinity with which a protein binds to a particular lipid. To perform a Fat Blot assay, serial dilutions of different phospholipids are spotted onto a nitrocellulose membrane. These membranes are then incubated with a lipid-binding protein possessing a GST (or other epitope) tag. The membranes are washed and the protein, which is bound to the membrane by virtue of its interaction with the lipid's head group, is detected by immunoblotting with an antibody against GST (or other epitope). The procedure only requires a few micrograms of protein and is quick, simple and cheap to perform.

  10. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import.

    PubMed Central

    Hönlinger, A; Bömer, U; Alconada, A; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Pfanner, N

    1996-01-01

    The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase. Images PMID:8641278

  11. Spring-Loaded Model Revisited: Paramyxovirus Fusion Requires Engagement of a Receptor Binding Protein beyond Initial Triggering of the Fusion Protein▿

    PubMed Central

    Porotto, Matteo; DeVito, Ilaria; Palmer, Samantha G.; Jurgens, Eric M.; Yee, Jia L.; Yokoyama, Christine C.; Pessi, Antonello; Moscona, Anne

    2011-01-01

    During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry. PMID:21976650

  12. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    PubMed

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. High yield cell-free production of integral membrane proteins without refolding or detergents.

    PubMed

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  14. Dissecting Stop Transfer versus Conservative Sorting Pathways for Mitochondrial Inner Membrane Proteins in Vivo*

    PubMed Central

    Park, Kwangjin; Botelho, Salomé Calado; Hong, Joonki; Österberg, Marie; Kim, Hyun

    2013-01-01

    Mitochondrial inner membrane proteins that carry an N-terminal presequence are sorted by one of two pathways: stop transfer or conservative sorting. However, the sorting pathway is known for only a small number of proteins, in part due to the lack of robust experimental tools with which to study. Here we present an approach that facilitates determination of inner membrane protein sorting pathways in vivo by fusing a mitochondrial inner membrane protein to the C-terminal part of Mgm1p containing the rhomboid cleavage region. We validated the Mgm1 fusion approach using a set of proteins for which the sorting pathway is known, and determined sorting pathways of inner membrane proteins for which the sorting mode was previously uncharacterized. For Sdh4p, a multispanning membrane protein, our results suggest that both conservative sorting and stop transfer mechanisms are required for insertion. Furthermore, the sorting process of Mgm1 fusion proteins was analyzed under different growth conditions and yeast mutant strains that were defective in the import motor or the m-AAA protease function. Our results show that the sorting of mitochondrial proteins carrying moderately hydrophobic transmembrane segments is sensitive to cellular conditions, implying that mitochondrial import and membrane sorting in the physiological environment may be dynamically tuned. PMID:23184936

  15. Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale.

    PubMed

    Chavent, Matthieu; Duncan, Anna L; Sansom, Mark Sp

    2016-10-01

    Molecular dynamics simulations provide a computational tool to probe membrane proteins and systems at length scales ranging from nanometers to close to a micrometer, and on microsecond timescales. All atom and coarse-grained simulations may be used to explore in detail the interactions of membrane proteins and specific lipids, yielding predictions of lipid binding sites in good agreement with available structural data. Building on the success of protein-lipid interaction simulations, larger scale simulations reveal crowding and clustering of proteins, resulting in slow and anomalous diffusional dynamics, within realistic models of cell membranes. Current methods allow near atomic resolution simulations of small membrane organelles, and of enveloped viruses to be performed, revealing key aspects of their structure and functionally important dynamics. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Membrane-Based Functions in the Origin of Cellular Life

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.

    2003-01-01

    How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.

  17. The N-Terminal Amphipathic Helix of the Topological Specificity Factor MinE Is Associated with Shaping Membrane Curvature

    PubMed Central

    Shih, Yu-Ling; Huang, Kai-Fa; Lai, Hsin-Mei; Liao, Jiahn-Haur; Lee, Chai-Siah; Chang, Chiao-Min; Mak, Huey-Ming; Hsieh, Cheng-Wei; Lin, Chu-Chi

    2011-01-01

    Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE2–9, which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature. PMID:21738659

  18. Anionic lipids and the cytoskeletal proteins MreB and RodZ define the spatio-temporal distribution and function of membrane stress controller PspA in Escherichia coli.

    PubMed

    Jovanovic, Goran; Mehta, Parul; Ying, Liming; Buck, Martin

    2014-11-01

    All cell types must maintain the integrity of their membranes. The conserved bacterial membrane-associated protein PspA is a major effector acting upon extracytoplasmic stress and is implicated in protection of the inner membrane of pathogens, formation of biofilms and multi-drug-resistant persister cells. PspA and its homologues in Gram-positive bacteria and archaea protect the cell envelope whilst also supporting thylakoid biogenesis in cyanobacteria and higher plants. In enterobacteria, PspA is a dual function protein negatively regulating the Psp system in the absence of stress and acting as an effector of membrane integrity upon stress. We show that in Escherichia coli the low-order oligomeric PspA regulatory complex associates with cardiolipin-rich, curved polar inner membrane regions. There, cardiolipin and the flotillin 1 homologue YqiK support the PspBC sensors in transducing a membrane stress signal to the PspA-PspF inhibitory complex. After stress perception, PspA high-order oligomeric effector complexes initially assemble in polar membrane regions. Subsequently, the discrete spatial distribution and dynamics of PspA effector(s) in lateral membrane regions depend on the actin homologue MreB and the peptidoglycan machinery protein RodZ. The consequences of loss of cytoplasmic membrane anionic lipids, MreB, RodZ and/or YqiK suggest that the mode of action of the PspA effector is closely associated with cell envelope organization. © 2014 The Authors.

  19. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import

    PubMed Central

    Paila, Yamuna D; Richardson, Lynn GL; Inoue, Hitoshi; Parks, Elizabeth S; McMahon, James; Inoue, Kentaro; Schnell, Danny J

    2016-01-01

    Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI: http://dx.doi.org/10.7554/eLife.12631.001 PMID:26999824

  20. Fold-Unfold Transitions in the Selectivity and Mechanism of Action of the N-Terminal Fragment of the Bactericidal/Permeability-Increasing Protein (rBPI21)

    PubMed Central

    Domingues, Marco M.; Lopes, Sílvia C.D.N.; Santos, Nuno C.; Quintas, Alexandre; Castanho, Miguel A.R.B.

    2009-01-01

    Septic or endotoxic shock is a common cause of death in hospital intensive care units. In the last decade numerous antimicrobial peptides and proteins have been tested in the search for an efficient drug to treat this lethal disease. Now in phase III clinical trials, rBPI21, a recombinant N-terminal fragment of the bactericidal/permeability-increasing protein (BPI), is a promising drug to reduce lesions caused by meningococcal sepsis. We correlated structural and stability data with functional information of rBPI21 bound to both model systems of eukaryotic and bacterial membranes. On interaction with membranes, rBPI21 loses its conformational stability, as studied by circular dichroism. This interaction of rBPI21 at membrane level was higher in the presence of negatively charged phospholipid relatively to neutral ones, with higher partition coefficients (Kp), suggesting a preference for bacterial membranes over mammalian membranes. rBPI21 binding to membranes is reinforced when its disulfide bond is broken due to conformational changes of the protein. This interaction is followed by liposome aggregation due to unfolding, which ensures protein aggregation, and interfacial localization of rBPI21 in membranes, as studied by extensive quenching by acrylamide and 5-deoxylstearic acid and not by 16-deoxylstearic acid. An uncommon model of the selectivity and mechanism of action is proposed, where membrane induces unfolding of the antimicrobial protein, rBPI21. The unfolding ensures protein aggregation, established by protein-protein interaction at membrane surface or between adjacent membranes covered by the unfolded protein. This protein aggregation step may lead to membrane perturbation. PMID:19186136

  1. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria

    PubMed Central

    Hoppins, Suzanne; Collins, Sean R.; Cassidy-Stone, Ann; Hummel, Eric; DeVay, Rachel M.; Lackner, Laura L.; Westermann, Benedikt; Schuldiner, Maya

    2011-01-01

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane–associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria. PMID:21987634

  2. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.

    PubMed

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-06-20

    Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.

  3. Differential expression profile of membrane proteins in L-02 cells exposed to trichloroethylene.

    PubMed

    Hong, Wen-Xu; Huang, Aibo; Lin, Sheng; Yang, Xifei; Yang, Linqing; Zhou, Li; Huang, Haiyan; Wu, Desheng; Huang, Xinfeng; Xu, Hua; Liu, Jianjun

    2016-10-01

    Trichloroethylene (TCE), a halogenated organic solvent widely used in industries, is known to cause severe hepatotoxicity. However, the mechanisms underlying TCE hepatotoxicity are still not well understood. It is predicted that membrane proteins are responsible for key biological functions, and recent studies have revealed that TCE exposure can induce abnormal levels of membrane proteins in body fluids and cultured cells. The aim of this study is to investigate the TCE-induced alterations of membrane proteins profiles in human hepatic L-02 liver cells. A comparative membrane proteomics analysis was performed in combination with two-dimensional fluorescence difference gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A total of 15 proteins were identified as differentially expressed (4 upregulated and 11 downregulated) between TCE-treated cells and normal controls. Among this, 14 of them are suggested as membrane-associated proteins by their transmembrane domain and/or subcellular location. Furthermore, the differential expression of β subunit of adenosine triphosphate synthase (ATP5B) and prolyl 4-hydroxylase, β polypeptide (P4HB) were verified by Western blot analysis in TCE-treated L-02 cells. Our work not only reveals the association between TCE exposure and altered expression of membrane proteins but also provides a novel strategy to discover membrane biomarkers and elucidate the potential mechanisms involving with membrane proteins response to chemical-induced toxic effect. © The Author(s) 2015.

  4. The prion-ZIP connection: From cousins to partners in iron uptake

    PubMed Central

    Singh, Neena; Asthana, Abhishek; Baksi, Shounak; Desai, Vilok; Haldar, Swati; Hari, Sahi; Tripathi, Ajai K

    2015-01-01

    ABSTRACT Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrPC), a plasma membrane glycoprotein, from α-helical to a β-sheet rich PrP-scrapie (PrPSc) isoform. Biochemical evidence indicates that PrPC facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrPC and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrPC with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrPC and ZIP14 suggest that PrPC functions as a FR partner for certain members of this family. The connection between PrPC and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrPC in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains. PMID:26689487

  5. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion.

    PubMed

    Heidrich, Jennifer; Thurotte, Adrien; Schneider, Dirk

    2017-04-01

    The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg 2+ is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Amphipathic Helix of Adenovirus Capsid Protein VI Contributes to Penton Release and Postentry Sorting

    PubMed Central

    Martinez, Ruben; Schellenberger, Pascale; Vasishtan, Daven; Aknin, Cindy; Austin, Sisley; Dacheux, Denis; Rayne, Fabienne; Siebert, Alistair; Ruzsics, Zsolt; Gruenewald, Kay

    2014-01-01

    ABSTRACT Nuclear delivery of the adenoviral genome requires that the capsid cross the limiting membrane of the endocytic compartment and traverse the cytosol to reach the nucleus. This endosomal escape is initiated upon internalization and involves a highly coordinated process of partial disassembly of the entering capsid to release the membrane lytic internal capsid protein VI. Using wild-type and protein VI-mutated human adenovirus serotype 5 (HAdV-C5), we show that capsid stability and membrane rupture are major determinants of entry-related sorting of incoming adenovirus virions. Furthermore, by using electron cryomicroscopy, as well as penton- and protein VI-specific antibodies, we show that the amphipathic helix of protein VI contributes to capsid stability by preventing premature disassembly and deployment of pentons and protein VI. Thus, the helix has a dual function in maintaining the metastable state of the capsid by preventing premature disassembly and mediating efficient membrane lysis to evade lysosomal targeting. Based on these findings and structural data from cryo-electron microscopy, we suggest a refined disassembly mechanism upon entry. IMPORTANCE In this study, we show the intricate connection of adenovirus particle stability and the entry-dependent release of the membrane-lytic capsid protein VI required for endosomal escape. We show that the amphipathic helix of the adenovirus internal protein VI is required to stabilize pentons in the particle while coinciding with penton release upon entry and that release of protein VI mediates membrane lysis, thereby preventing lysosomal sorting. We suggest that this dual functionality of protein VI ensures an optimal disassembly process by balancing the metastable state of the mature adenovirus particle. PMID:25473051

  7. From fast fluorescence imaging to molecular diffusion law on live cell membranes in a commercial microscope.

    PubMed

    Di Rienzo, Carmine; Gratton, Enrico; Beltram, Fabio; Cardarelli, Francesco

    2014-10-09

    It has become increasingly evident that the spatial distribution and the motion of membrane components like lipids and proteins are key factors in the regulation of many cellular functions. However, due to the fast dynamics and the tiny structures involved, a very high spatio-temporal resolution is required to catch the real behavior of molecules. Here we present the experimental protocol for studying the dynamics of fluorescently-labeled plasma-membrane proteins and lipids in live cells with high spatiotemporal resolution. Notably, this approach doesn't need to track each molecule, but it calculates population behavior using all molecules in a given region of the membrane. The starting point is a fast imaging of a given region on the membrane. Afterwards, a complete spatio-temporal autocorrelation function is calculated correlating acquired images at increasing time delays, for example each 2, 3, n repetitions. It is possible to demonstrate that the width of the peak of the spatial autocorrelation function increases at increasing time delay as a function of particle movement due to diffusion. Therefore, fitting of the series of autocorrelation functions enables to extract the actual protein mean square displacement from imaging (iMSD), here presented in the form of apparent diffusivity vs average displacement. This yields a quantitative view of the average dynamics of single molecules with nanometer accuracy. By using a GFP-tagged variant of the Transferrin Receptor (TfR) and an ATTO488 labeled 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE) it is possible to observe the spatiotemporal regulation of protein and lipid diffusion on µm-sized membrane regions in the micro-to-milli-second time range.

  8. NPHP4 controls ciliary trafficking of membrane proteins and large soluble proteins at the transition zone

    PubMed Central

    Awata, Junya; Takada, Saeko; Standley, Clive; Lechtreck, Karl F.; Bellvé, Karl D.; Pazour, Gregory J.; Fogarty, Kevin E.; Witman, George B.

    2014-01-01

    ABSTRACT The protein nephrocystin-4 (NPHP4) is widespread in ciliated organisms, and defects in NPHP4 cause nephronophthisis and blindness in humans. To learn more about the function of NPHP4, we have studied it in Chlamydomonas reinhardtii. NPHP4 is stably incorporated into the distal part of the flagellar transition zone, close to the membrane and distal to CEP290, another transition zone protein. Therefore, these two proteins, which are incorporated into the transition zone independently of each other, define different domains of the transition zone. An nphp4-null mutant forms flagella with nearly normal length, ultrastructure and intraflagellar transport. When fractions from isolated wild-type and nphp4 flagella were compared, few differences were observed between the axonemes, but the amounts of certain membrane proteins were greatly reduced in the mutant flagella, and cellular housekeeping proteins >50 kDa were no longer excluded from mutant flagella. Therefore, NPHP4 functions at the transition zone as an essential part of a barrier that regulates both membrane and soluble protein composition of flagella. The phenotypic consequences of NPHP4 mutations in humans likely follow from protein mislocalization due to defects in the transition zone barrier. PMID:25150219

  9. mda-9/Syntenin protein positively regulates the activation of Akt protein by facilitating integrin-linked kinase adaptor function during adhesion to type I collagen.

    PubMed

    Hwangbo, Cheol; Park, Juhee; Lee, Jeong-Hyung

    2011-09-23

    The integrin-linked kinase (ILK)-PINCH1-α-parvin (IPP) complex functions as a signaling platform for integrins that modulates various cellular processes. ILK functions as a central adaptor for the assembly of IPP complex. We report here that mda-9/syntenin, a positive regulator of cancer metastasis, regulates the activation of Akt (also known as protein kinase B) by facilitating ILK adaptor function during adhesion to type I collagen (COL-I) in human breast cancer cells. COL-I stimulation induced the phosphorylation and plasma membrane translocation of Akt. Inhibition of mda-9/syntenin or expression of mutant ILK (E359K) significantly blocked the translocation of both ILK and Akt to the plasma membrane. mda-9/syntenin associated with ILK, and this association was increased at the plasma membrane by COL-I stimulation. Knockdown of mda-9/syntenin impaired COL-I-induced association of ILK with Akt and plasma membrane targeting of ILK-Akt complex. These results demonstrated that mda-9/syntenin regulates the activation of Akt by controlling the plasma membrane targeting of Akt via a mechanism that facilitates the association of Akt with ILK at the plasma membrane during adhesion to COL-I. On a striking note, inhibition of mda-9/syntenin impaired COL-I-induced plasma membrane translocation of the IPP complex and assembly of integrin β1-IPP signaling complexes. Thus, our study defines the role of mda-9/syntenin in ILK adaptor function and describes a new mechanism of mda-9/syntenin for regulation of cell migration.

  10. Tuning membrane protein mobility by confinement into nanodomains

    NASA Astrophysics Data System (ADS)

    Karner, Andreas; Nimmervoll, Benedikt; Plochberger, Birgit; Klotzsch, Enrico; Horner, Andreas; Knyazev, Denis G.; Kuttner, Roland; Winkler, Klemens; Winter, Lukas; Siligan, Christine; Ollinger, Nicole; Pohl, Peter; Preiner, Johannes

    2017-03-01

    High-speed atomic force microscopy (HS-AFM) can be used to visualize function-related conformational changes of single soluble proteins. Similar studies of single membrane proteins are, however, hampered by a lack of suitable flat, non-interacting membrane supports and by high protein mobility. Here we show that streptavidin crystals grown on mica-supported lipid bilayers can be used as porous supports for membranes containing biotinylated lipids. Using SecYEG (protein translocation channel) and GlpF (aquaglyceroporin), we demonstrate that the platform can be used to tune the lateral mobility of transmembrane proteins to any value within the dynamic range accessible to HS-AFM imaging through glutaraldehyde-cross-linking of the streptavidin. This allows HS-AFM to study the conformation or docking of spatially confined proteins, which we illustrate by imaging GlpF at sub-molecular resolution and by observing the motor protein SecA binding to SecYEG.

  11. Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases.

    PubMed

    Perez-Castineira, Jose R; Lopez-Marques, Rosa L; Villalba, Jose M; Losada, Manuel; Serrano, Aurelio

    2002-12-10

    Two types of proteins that hydrolyze inorganic pyrophosphate (PPi), very different in both amino acid sequence and structure, have been characterized to date: soluble and membrane-bound proton-pumping pyrophosphatases (sPPases and H(+)-PPases, respectively). sPPases are ubiquitous proteins that hydrolyze PPi releasing heat, whereas H+-PPases, so far unidentified in animal and fungal cells, couple the energy of PPi hydrolysis to proton movement across biological membranes. The budding yeast Saccharomyces cerevisiae has two sPPases that are located in the cytosol and in the mitochondria. Previous attempts to knock out the gene coding for a cytosolic sPPase (IPP1) have been unsuccessful, thus suggesting that this protein is essential for growth. Here, we describe the generation of a conditional S. cerevisiae mutant (named YPC-1) whose functional IPP1 gene is under the control of a galactose-dependent promoter. Thus, YPC-1 cells become growth arrested in glucose but they regain the ability to grow on this carbon source when transformed with autonomous plasmids bearing diverse foreign H+-PPase genes under the control of a yeast constitutive promoter. The heterologously expressed H+-PPases are distributed among different yeast membranes, including the plasma membrane, functional complementation by these integral membrane proteins being consistently sensitive to external pH. These results demonstrate that hydrolysis of cytosolic PPi is essential for yeast growth and that this function is not substantially affected by the intrinsic characteristics of the PPase protein that accomplishes it. Moreover, this is, to our knowledge, the first direct evidence that H+-PPases can mediate net hydrolysis of PPi in vivo. YPC-1 mutant strain constitutes a convenient expression system to perform studies aimed at the elucidation of the structure-function relationships of this type of proton pumps.

  12. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    PubMed

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  13. A new role for the architecture of microvillar actin bundles in apical retention of membrane proteins.

    PubMed

    Revenu, Céline; Ubelmann, Florent; Hurbain, Ilse; El-Marjou, Fatima; Dingli, Florent; Loew, Damarys; Delacour, Delphine; Gilet, Jules; Brot-Laroche, Edith; Rivero, Francisco; Louvard, Daniel; Robine, Sylvie

    2012-01-01

    Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.

  14. Elucidation of the Block to Herpes Simplex Virus Egress in the Absence of Tegument Protein UL16 Reveals a Novel Interaction with VP22

    PubMed Central

    Starkey, Jason L.; Han, Jun; Chadha, Pooja; Marsh, Jacob A.

    2014-01-01

    UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a “bridging” function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production. PMID:24131716

  15. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes.

    PubMed

    Ter Beek, Josy; Kahle, Maximilian; Ädelroth, Pia

    2017-10-01

    For detailed functional characterization, membrane proteins are usually studied in detergent. However, it is becoming clear that detergent micelles are often poor mimics of the lipid environment in which these proteins function. In this work we compared the catalytic properties of the membrane-embedded cytochrome c-dependent nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans in detergent, lipid/protein nanodiscs, and proteoliposomes. We used two different lipid mixtures, an extract of soybean lipids and a defined mix of synthetic lipids mimicking the original P. denitrificans membrane. We show that the catalytic activity of detergent-solubilized cNOR increased threefold upon reconstitution from detergent into proteoliposomes with the P. denitrificans lipid mixture, and above two-fold when soybean lipids were used. In contrast, there was only a small activity increase in nanodiscs. We further show that binding of the gaseous ligands CO and O 2 are affected differently by reconstitution. In proteoliposomes the turnover rates are affected much more than in nanodiscs, but CO-binding is more significantly accelerated in liposomes with soybean lipids, while O 2 -binding is faster with the P. denitrificans lipid mix. We also investigated proton-coupled electron transfer during the reaction between fully reduced cNOR and O 2 , and found that the pK a of the internal proton donor was increased in proteoliposomes but not in nanodiscs. Taking our results together, the liposome-reconstituted enzyme shows significant differences to detergent-solubilized protein. Nanodiscs show much more subtle effects, presumably because of their much lower lipid to protein ratio. Which of these two membrane-mimetic systems best mimics the native membrane is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Protein-protein interactions indicate composition of a 480 kDa SELMA complex in the second outermost membrane of diatom complex plastids.

    PubMed

    Lau, Julia B; Stork, Simone; Moog, Daniel; Schulz, Julian; Maier, Uwe G

    2016-04-01

    Most secondary plastids of red algal origin are surrounded by four membranes and nucleus-encoded plastid proteins have to traverse these barriers. Translocation across the second outermost plastid membrane, the periplastidal membrane (PPM), is facilitated by a ERAD-(ER-associated degradation) derived machinery termed SELMA (symbiont-specific ERAD-like machinery). In the last years, important subunits of this translocator have been identified, which clearly imply compositional similarities between SELMA and ERAD. Here we investigated, via protein-protein interaction studies, if the composition of SELMA is comparable to the known ERAD complex. As a result, our data suggest that the membrane proteins of SELMA, the derlin proteins, are linked to the soluble sCdc48 complex via the UBX protein sUBX. This is similar to the ERAD machinery whereas the additional SELMA components, sPUB und a second Cdc48 copy might indicate the influence of functional constraints in developing a translocation machinery from ERAD-related factors. In addition, we show for the first time that a rhomboid protease is a central interaction partner of the membrane proteins of the SELMA system in complex plastids. © 2015 John Wiley & Sons Ltd.

  17. Isolation of plasma membranes from the nervous system by countercurrent distribution in aqueous polymer two-phase systems.

    PubMed

    Schindler, Jens; Nothwang, Hans Gerd

    2009-01-01

    The plasma membrane separates the cell-interior from the cell's environment. To maintain homeostatic conditions and to enable transfer of information, the plasma membrane is equipped with a variety of different proteins such as transporters, channels, and receptors. The kind and number of plasma membrane proteins are a characteristic of each cell type. Owing to their location, plasma membrane proteins also represent a plethora of drug targets. Their importance has entailed many studies aiming at their proteomic identification and characterization. Therefore, protocols are required that enable their purification in high purity and quantity. Here, we report a protocol, based on aqueous polymer two-phase systems, which fulfils these demands. Furthermore, the protocol is time-saving and protects protein structure and function.

  18. Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein

    PubMed Central

    Dominguez, Laura; Foster, Leigh; Straub, John E.; Thirumalai, D.

    2016-01-01

    Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer’s disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923−55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C9923−55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C991−55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β protein, on membrane thickness and lipid composition. PMID:27559086

  19. Protein prenylation: a new mode of host-pathogen interaction.

    PubMed

    Amaya, Moushimi; Baranova, Ancha; van Hoek, Monique L

    2011-12-09

    Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  1. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4-7 helices. The helices could arrange themselves such that they formed pores capable of transporting ions and small molecules across membranes. Stability of transmembrane aggregates of simple proteins is often only marginal and, therefore, it can be regulated by environmental signals or small sequence modifications in the region of interhelical interactions. A key step in the earliest evolution of membrane proteins was the emergence of selectivity for specific substrates. Many channels could become selective if one or only a few properly chosen amino acids are properly placed along the channel, acting as filters or gates. This is a convenient evolutionary solution because it does not require imposing conditions on the whole sequence.

  2. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    PubMed

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins

    PubMed Central

    Schwarz, Lindsay A.; Patrick, Gentry N.

    2011-01-01

    Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, synaptic development and function. Endocytic membrane trafficking of receptors can ensure that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism to control receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function. PMID:21884797

  4. Interplay between membrane curvature and protein conformational equilibrium investigated by solid-state NMR.

    PubMed

    Liao, Shu Y; Lee, Myungwoon; Hong, Mei

    2018-03-01

    Many membrane proteins sense and induce membrane curvature for function, but structural information about how proteins modulate their structures to cause membrane curvature is sparse. We review our recent solid-state NMR studies of two virus membrane proteins whose conformational equilibrium is tightly coupled to membrane curvature. The influenza M2 proton channel has a drug-binding site in the transmembrane (TM) pore. Previous chemical shift data indicated that this pore-binding site is lost in an M2 construct that contains the TM domain and a curvature-inducing amphipathic helix. We have now obtained chemical shift perturbation, protein-drug proximity, and drug orientation data that indicate that the pore-binding site is restored when the full cytoplasmic domain is present. This finding indicates that the curvature-inducing amphipathic helix distorts the TM structure to interfere with drug binding, while the cytoplasmic tail attenuates this effect. In the second example, we review our studies of a parainfluenza virus fusion protein that merges the cell membrane and the virus envelope during virus entry. Chemical shifts of two hydrophobic domains of the protein indicate that both domains have membrane-dependent backbone conformations, with the β-strand structure dominating in negative-curvature phosphatidylethanolamine (PE) membranes. 31 P NMR spectra and 1 H- 31 P correlation spectra indicate that the β-strand-rich conformation induces saddle-splay curvature to PE membranes and dehydrates them, thus stabilizing the hemifusion state. These results highlight the indispensable role of solid-state NMR to simultaneously determine membrane protein structures and characterize the membrane curvature in which these protein structures exist. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Nutrient Sensing at the Plasma Membrane of Fungal Cells.

    PubMed

    Van Dijck, Patrick; Brown, Neil Andrew; Goldman, Gustavo H; Rutherford, Julian; Xue, Chaoyang; Van Zeebroeck, Griet

    2017-03-01

    To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.

  6. Phospholipase Cβ1 induces membrane tubulation and is involved in caveolae formation

    PubMed Central

    Inaba, Takehiko; Kishimoto, Takuma; Murate, Motohide; Tajima, Takuya; Sakai, Shota; Abe, Mitsuhiro; Makino, Asami; Tomishige, Nario; Ishitsuka, Reiko; Ikeda, Yasuo; Takeoka, Shinji; Kobayashi, Toshihide

    2016-01-01

    Lipid membrane curvature plays important roles in various physiological phenomena. Curvature-regulated dynamic membrane remodeling is achieved by the interaction between lipids and proteins. So far, several membrane sensing/sculpting proteins, such as Bin/amphiphysin/Rvs (BAR) proteins, are reported, but there remains the possibility of the existence of unidentified membrane-deforming proteins that have not been uncovered by sequence homology. To identify new lipid membrane deformation proteins, we applied liposome-based microscopic screening, using unbiased-darkfield microscopy. Using this method, we identified phospholipase Cβ1 (PLCβ1) as a new candidate. PLCβ1 is well characterized as an enzyme catalyzing the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2). In addition to lipase activity, our results indicate that PLCβ1 possessed the ability of membrane tubulation. Lipase domains and inositol phospholipids binding the pleckstrin homology (PH) domain of PLCβ1 were not involved, but the C-terminal sequence was responsible for this tubulation activity. Computational modeling revealed that the C terminus displays the structural homology to the BAR domains, which is well known as a membrane sensing/sculpting domain. Overexpression of PLCβ1 caused plasma membrane tubulation, whereas knockdown of the protein reduced the number of caveolae and induced the evagination of caveolin-rich membrane domains. Taken together, our results suggest a new function of PLCβ1: plasma membrane remodeling, and in particular, caveolae formation. PMID:27342861

  7. A Novel Domain Assembly Routine for Creating Full-Length Models of Membrane Proteins from Known Domain Structures.

    PubMed

    Koehler Leman, Julia; Bonneau, Richard

    2018-04-03

    Membrane proteins composed of soluble and membrane domains are often studied one domain at a time. However, to understand the biological function of entire protein systems and their interactions with each other and drugs, knowledge of full-length structures or models is required. Although few computational methods exist that could potentially be used to model full-length constructs of membrane proteins, none of these methods are perfectly suited for the problem at hand. Existing methods require an interface or knowledge of the relative orientations of the domains or are not designed for domain assembly, and none of them are developed for membrane proteins. Here we describe the first domain assembly protocol specifically designed for membrane proteins that assembles intra- and extracellular soluble domains and the transmembrane domain into models of the full-length membrane protein. Our protocol does not require an interface between the domains and samples possible domain orientations based on backbone dihedrals in the flexible linker regions, created via fragment insertion, while keeping the transmembrane domain fixed in the membrane. For five examples tested, our method mp_domain_assembly, implemented in RosettaMP, samples domain orientations close to the known structure and is best used in conjunction with experimental data to reduce the conformational search space.

  8. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    NASA Astrophysics Data System (ADS)

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped clarify the role of the microtubule binding domain in anionic lipid affinity and demonstrated even "hyperphosphorylation" did not prevent interaction with anionic membranes. Additional studies investigated more complex membrane models to increase physiological relevance. These insights revealed structural changes in tau protein and lipid membranes after interaction. We observed tau's affinity for interfaces, and aggregation and compaction once tau partitions to interfaces. We observed the beginnings of beta-sheet formation in tau at anionic lipid membranes. We also examined disruption to the membrane on a molecular scale.

  9. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation

    PubMed Central

    Hung, Victoria; Lam, Stephanie S; Udeshi, Namrata D; Svinkina, Tanya; Guzman, Gaelen; Mootha, Vamsi K; Carr, Steven A; Ting, Alice Y

    2017-01-01

    The cytosol-facing membranes of cellular organelles contain proteins that enable signal transduction, regulation of morphology and trafficking, protein import and export, and other specialized processes. Discovery of these proteins by traditional biochemical fractionation can be plagued with contaminants and loss of key components. Using peroxidase-mediated proximity biotinylation, we captured and identified endogenous proteins on the outer mitochondrial membrane (OMM) and endoplasmic reticulum membrane (ERM) of living human fibroblasts. The proteomes of 137 and 634 proteins, respectively, are highly specific and highlight 94 potentially novel mitochondrial or ER proteins. Dataset intersection identified protein candidates potentially localized to mitochondria-ER contact sites. We found that one candidate, the tail-anchored, PDZ-domain-containing OMM protein SYNJ2BP, dramatically increases mitochondrial contacts with rough ER when overexpressed. Immunoprecipitation-mass spectrometry identified ribosome-binding protein 1 (RRBP1) as SYNJ2BP’s ERM binding partner. Our results highlight the power of proximity biotinylation to yield insights into the molecular composition and function of intracellular membranes. DOI: http://dx.doi.org/10.7554/eLife.24463.001 PMID:28441135

  10. Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes

    PubMed Central

    Piper, Robert C.

    2007-01-01

    Summary The pathways that deliver newly synthesized proteins that reside in lysosomes are well understood by comparison with our knowledge of how integral membrane proteins are sorted and delivered to the lysosome for degradation. Many membrane proteins are sorted to lysosomes following ubiquitination, which provides a sorting signal that can operate for sorting at the TGN (trans-Golgi network), at the plasma membrane or at the endosome for delivery into lumenal vesicles. Candidate multicomponent machines that can potentially move ubiquitinated integral membrane cargo proteins have been identified, but much work is still required to ascertain which of these candidates directly recognizes ubiquitinated cargo and what they do with cargo after recognition. In the case of the machinery required for sorting into the lumenal vesicles of endosomes, other functions have also been determined including a link between sorting and movement of endosomes along microtubules. PMID:17689064

  11. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged?

    PubMed

    Rizo, Josep; Südhof, Thomas C

    2012-01-01

    Neurotransmitter release is governed by proteins that have homo-logs in most types of intracellular membrane fusion, including the Sec1/Munc18 protein Munc18-1 and the SNARE proteins syntaxin-1, synaptobrevin/VAMP, and SNAP-25. The SNAREs initiate fusion by forming tight SNARE complexes that bring the vesicle and plasma membranes together. SNARE maintenance in a functional state depends on two chaperone systems (Hsc70/αCSP/SGT and synuclein); defects in these systems lead to neurodegeneration. Munc18-1 binds to an autoinhibitory closed conformation of syntaxin-1, gating formation of SNARE complexes, and also binds to SNARE complexes, which likely underlies the crucial function of Munc18-1 in membrane fusion by an as-yet unclear mechanism. Syntaxin-1 opening is mediated by Munc13s through their MUN domain, which is homologous to diverse tethering factors and may also have a general role in fusion. MUN domain activity is likely modulated in diverse presynaptic plasticity processes that depend on Ca(2+) and RIM proteins, among others.

  12. Tropomyosin modulates erythrocyte membrane stability

    PubMed Central

    An, Xiuli; Salomao, Marcela; Guo, Xinhua; Gratzer, Walter; Mohandas, Narla

    2007-01-01

    The ternary complex of spectrin, actin, and 4.1R (human erythrocyte protein 4.1) defines the nodes of the erythrocyte membrane skeletal network and is inseparable from membrane stability under mechanical stress. These junctions also contain tropomyosin (TM) and the other actin-binding proteins, adducin, protein 4.9, tropomodulin, and a small proportion of capZ, the functions of which are poorly defined. Here, we have examined the consequences of selective elimination of TM from the membrane. We have shown that the mechanical stability of the membranes of resealed ghosts devoid of TM is grossly, but reversibly, impaired. That the decreased membrane stability of TM-depleted membranes is the result of destabilization of the ternary complex of the network junctions is demonstrated by the strongly facilitated entry into the junctions in situ of a β-spectrin peptide, containing the actin- and 4.1R-binding sites, after extraction of the TM. The stabilizing effect of TM is highly specific, in that it is only the endogenous isotype, and not the slightly longer muscle TM that can bind to the depleted membranes and restore their mechanical stability. These findings have enabled us identify a function for TM in elevating the mechanical stability of erythrocyte membranes by stabilizing the spectrin-actin-4.1R junctional complex. PMID:17008534

  13. In vitro assay using engineered yeast vacuoles for neuronal SNARE-mediated membrane fusion

    PubMed Central

    Ko, Young-Joon; Lee, Miriam; Kang, KyeongJin; Song, Woo Keun; Jun, Youngsoo

    2014-01-01

    Intracellular membrane fusion requires not only SNARE proteins but also other regulatory proteins such as the Rab and Sec1/Munc18 (SM) family proteins. Although neuronal SNARE proteins alone can drive the fusion between synthetic liposomes, it remains unclear whether they are also sufficient to induce the fusion of biological membranes. Here, through the use of engineered yeast vacuoles bearing neuronal SNARE proteins, we show that neuronal SNAREs can induce membrane fusion between yeast vacuoles and that this fusion does not require the function of the Rab protein Ypt7p or the SM family protein Vps33p, both of which are essential for normal yeast vacuole fusion. Although excess vacuolar SNARE proteins were also shown to mediate Rab-bypass fusion, this fusion required homotypic fusion and vacuole protein sorting complex, which bears Vps33p and was accompanied by extensive membrane lysis. We also show that this neuronal SNARE-driven vacuole fusion can be stimulated by the neuronal SM protein Munc18 and blocked by botulinum neurotoxin serotype E, a well-known inhibitor of synaptic vesicle fusion. Taken together, our results suggest that neuronal SNARE proteins are sufficient to induce biological membrane fusion, and that this new assay can be used as a simple and complementary method for investigating synaptic vesicle fusion mechanisms. PMID:24821814

  14. GSL-enriched membrane microdomains in innate immune responses.

    PubMed

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  15. A Split-GFP Gateway Cloning System for Topology Analyses of Membrane Proteins in Plants.

    PubMed

    Xie, Wenjun; Nielsen, Mads Eggert; Pedersen, Carsten; Thordal-Christensen, Hans

    2017-01-01

    To understand the function of membrane proteins, it is imperative to know their topology. For such studies, a split green fluorescent protein (GFP) method is useful. GFP is barrel-shaped, consisting of 11 β-sheets. When the first ten β-sheets (GFP1-10) and the 11th β-sheet (GFP11) are expressed from separate genes they will self-assembly and reconstitute a fluorescent GFP protein. However, this will only occur when the two domains co-localize in the same cellular compartment. We have developed an easy-to-use Gateway vector set for determining on which side of the membrane the N- and C-termini are located. Two vectors were designed for making N- and C-terminal fusions between the membrane proteins-of-interest and GFP11, while another three plasmids were designed to express GFP1-10 in either the cytosol, the endoplasmic reticulum (ER) lumen or the apoplast. We tested functionality of the system by applying the vector set for the transmembrane domain, CNXTM, of the ER membrane protein, calnexin, after transient expression in Nicotiana benthamiana leaves. We observed GFP signal from the ER when we reciprocally co-expressed GFP11-CNXTM with GFP1-10-HDEL and CNXTM-GFP with cytosolic GFP1-10. The opposite combinations did not result in GFP signal emission. This test using the calnexin ER-membrane domain demonstrated its C-terminus to be in the cytosol and its N-terminus in the ER lumen. This result confirmed the known topology of calnexin, and we therefore consider this split-GFP system highly useful for ER membrane topology studies. Furthermore, the vector set provided is useful for detecting the topology of proteins on other membranes in the cell, which we confirmed for a plasma membrane syntaxin. The set of five Ti-plasmids are easily and efficiently used for Gateway cloning and transient transformation of N. benthamiana leaves.

  16. Prediction of the translocon-mediated membrane insertion free energies of protein sequences.

    PubMed

    Park, Yungki; Helms, Volkhard

    2008-05-15

    Helical membrane proteins (HMPs) play crucial roles in a variety of cellular processes. Unlike water-soluble proteins, HMPs need not only to fold but also get inserted into the membrane to be fully functional. This process of membrane insertion is mediated by the translocon complex. Thus, it is of great interest to develop computational methods for predicting the translocon-mediated membrane insertion free energies of protein sequences. We have developed Membrane Insertion (MINS), a novel sequence-based computational method for predicting the membrane insertion free energies of protein sequences. A benchmark test gives a correlation coefficient of 0.74 between predicted and observed free energies for 357 known cases, which corresponds to a mean unsigned error of 0.41 kcal/mol. These results are significantly better than those obtained by traditional hydropathy analysis. Moreover, the ability of MINS to reasonably predict membrane insertion free energies of protein sequences allows for effective identification of transmembrane (TM) segments. Subsequently, MINS was applied to predict the membrane insertion free energies of 316 TM segments found in known structures. An in-depth analysis of the predicted free energies reveals a number of interesting findings about the biogenesis and structural stability of HMPs. A web server for MINS is available at http://service.bioinformatik.uni-saarland.de/mins

  17. Disruption of Ankyrin B and Caveolin-1 Interaction Sites Alters Na+,K+-ATPase Membrane Diffusion.

    PubMed

    Junghans, Cornelia; Vukojević, Vladana; Tavraz, Neslihan N; Maksimov, Eugene G; Zuschratter, Werner; Schmitt, Franz-Josef; Friedrich, Thomas

    2017-11-21

    The Na + ,K + -ATPase is a plasma membrane ion transporter of high physiological importance for ion homeostasis and cellular excitability in electrically active tissues. Mutations in the genes coding for Na + ,K + -ATPase α-subunit isoforms lead to severe human pathologies including Familial Hemiplegic Migraine type 2, Alternating Hemiplegia of Childhood, Rapid-onset Dystonia Parkinsonism, or epilepsy. Many of the reported mutations lead to change- or loss-of-function effects, whereas others do not alter the functional properties, but lead to, e.g., reduced protein stability, reduced protein expression, or defective plasma membrane targeting. Na + ,K + -ATPase frequently assembles with other membrane transporters or cellular matrix proteins in specialized plasma membrane microdomains, but the effects of these interactions on targeting or protein mobility are elusive so far. Mutation of established interaction motifs of the Na + ,K + -ATPase with ankyrin B and caveolin-1 are expected to result in changes in plasma membrane targeting, changes of the localization pattern, and of the diffusion behavior of the enzyme. We studied the consequences of mutations in these binding sites by monitoring diffusion of eGFP-labeled Na + ,K + -ATPase constructs in the plasma membrane of HEK293T cells by fluorescence correlation spectroscopy as well as fluorescence recovery after photobleaching or photoswitching, and observed significant differences compared to the wild-type enzyme, with synergistic effects for combinations of interaction site mutations. These measurements expand the possibilities to study the consequences of Na + ,K + -ATPase mutations and provide information about the interaction of Na + ,K + -ATPase α-isoforms with cellular matrix proteins, the cytoskeleton, or other membrane protein complexes. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Barriers to the free diffusion of proteins and lipids in the plasma membrane

    PubMed Central

    Trimble, William S.

    2015-01-01

    Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization. PMID:25646084

  19. Barriers to the free diffusion of proteins and lipids in the plasma membrane.

    PubMed

    Trimble, William S; Grinstein, Sergio

    2015-02-02

    Biological membranes segregate into specialized functional domains of distinct composition, which can persist for the entire life of the cell. How separation of their lipid and (glyco)protein components is generated and maintained is not well understood, but the existence of diffusional barriers has been proposed. Remarkably, the physical nature of such barriers and the manner whereby they impede the free diffusion of molecules in the plane of the membrane has rarely been studied in depth. Moreover, alternative mechanisms capable of generating membrane inhomogeneity are often disregarded. Here we describe prototypical biological systems where membrane segregation has been amply documented and discuss the role of diffusional barriers and other processes in the generation and maintenance of their structural and functional compartmentalization. © 2015 Trimble and Grinstein.

  20. Protein fouling in microfiltration: deposition mechanism as a function of pressure for different pH.

    PubMed

    Velasco, C; Ouammou, M; Calvo, J I; Hernández, A

    2003-10-01

    The influence of applied pressure on the fouling mechanism during bovine serum albumin (BSA) dead-end microfiltration (MF) has been investigated for a polyethersulfone acidic negatively charged membrane (ICE-450) from Pall Co. BSA solutions at pH values of 4, 5 (almost equal to the protein isoelectric point, IEP), and 6 were microfiltered through the membrane at different applied transmembrane pressures. Results have been analyzed in terms of the usual blocking filtration laws and a substantial change in the fouling mechanism was observed as the pressure was increased, this change can be related to the specific membrane-protein and protein-protein interactions.

  1. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes

    NASA Astrophysics Data System (ADS)

    Shen, Hsin-Hui; Leyton, Denisse L.; Shiota, Takuya; Belousoff, Matthew J.; Noinaj, Nicholas; Lu, Jingxiong; Holt, Stephen A.; Tan, Khershing; Selkrig, Joel; Webb, Chaille T.; Buchanan, Susan K.; Martin, Lisandra L.; Lithgow, Trevor

    2014-10-01

    In biological membranes, various protein secretion devices function as nanomachines, and measuring the internal movements of their component parts is a major technological challenge. The translocation and assembly module (TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by quartz crystal microbalance with dissipation (QCM-D) and magnetic contrast neutron reflectrometry (MCNR). The MCNR studies provided structural resolution down to 1 Å, enabling accurate measurement of protein domains projecting from the membrane layer. Here we show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  2. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    PubMed

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  3. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance.

    PubMed

    Minami, Anzu; Tominaga, Yoko; Furuto, Akari; Kondo, Mariko; Kawamura, Yukio; Uemura, Matsuo

    2015-08-01

    The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  4. The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck.

    PubMed

    Wang, Lili; Dumoulin, Andréa; Renner, Marianne; Triller, Antoine; Specht, Christian G

    2016-01-01

    The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion.

  5. The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck

    PubMed Central

    Wang, Lili; Dumoulin, Andréa; Renner, Marianne; Triller, Antoine; Specht, Christian G.

    2016-01-01

    The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion. PMID:26840625

  6. Red Bell Pepper Chromoplasts Exhibit in Vitro Import Competency and Membrane Targeting of Passenger Proteins from the Thylakoidal Sec and ΔpH Pathways but Not the Chloroplast Signal Recognition Particle Pathway1

    PubMed Central

    Summer, Elizabeth J.; Cline, Kenneth

    1999-01-01

    Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways. PMID:9952453

  7. Uniform structure of eukaryotic plasma membrane: lateral domains in plants.

    PubMed

    Malínská, Kateŕina; Zažímalová, Eva

    2011-03-01

    Current models of the plasma membrane (PM) organization focus on the lateral heterogeneity of the membrane and its relation to the cell function. Increasing evidence in mammals and yeast supports the direct relationship between PM lateral microdomains and specific cell processes and functions (nutrient transport, signaling, protein and lipid sorting, endocytosis, pathogen entry etc.). However, for the present the functional significance of an enrichment of specific proteins and possibly lipids in plant PM domains as well as the underlying molecular mechanism driving the lateral PM segregation remain unaddressed. Here we summarize recent findings on the plant PM organization and its role in signaling pathways, with the special emphasis on auxin transport.

  8. Structure elucidation of dimeric transmembrane domains of bitopic proteins.

    PubMed

    Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S

    2010-01-01

    The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.

  9. A Protein Structure Initiative Approach to Expression, Purification, and In Situ Delivery of Human Cytochrome b5 to Membrane Vesicles†

    PubMed Central

    Sobrado, Pablo; Goren, Michael A.; James, Declan; Amundson, Carissa K.; Fox, Brian G.

    2008-01-01

    A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of ~18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3 mg per]of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed. PMID:18226920

  10. A Protein Structure Initiative approach to expression, purification, and in situ delivery of human cytochrome b5 to membrane vesicles.

    PubMed

    Sobrado, Pablo; Goren, Michael A; James, Declan; Amundson, Carissa K; Fox, Brian G

    2008-04-01

    A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of approximately 18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3mg per g of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed.

  11. Proteomic analysis of Herbaspirillum seropedicae reveals ammonium-induced AmtB-dependent membrane sequestration of PII proteins.

    PubMed

    Huergo, Luciano F; Noindorf, Lilian; Gimenes, Camila; Lemgruber, Renato S P; Cordellini, Daniela F; Falarz, Lucas J; Cruz, Leonardo M; Monteiro, Rose A; Pedrosa, Fábio O; Chubatsu, Leda S; Souza, Emanuel M; Steffens, Maria B R

    2010-07-01

    This study was aimed at describing the spectrum and dynamics of proteins associated with the membrane in the nitrogen-fixing bacterium Herbaspirillum seropedicae according to the availability of fixed nitrogen. Using two-dimensional electrophoresis we identified 79 protein spots representing 45 different proteins in the membrane fraction of H. seropedicae. Quantitative analysis of gel images of membrane extracts indicated two spots with increased levels when cells were grown under nitrogen limitation in comparison with nitrogen sufficiency; these spots were identified as the GlnK protein and as a conserved noncytoplasmic protein of unknown function which was encoded in an operon together with GlnK and AmtB. Comparison of gel images of membrane extracts from cells grown under nitrogen limitation or under the same regime but collected after an ammonium shock revealed two proteins, GlnB and GlnK, with increased levels after the shock. The P(II) proteins were not present in the membrane fraction of an amtB mutant. The results reported here suggest that changes in the cellular localization of P(II) might play a role in the control of nitrogen metabolism in H. seropedicae.

  12. Sphingolipid topology and the dynamic organization and function of membrane proteins.

    PubMed

    van Meer, Gerrit; Hoetzl, Sandra

    2010-05-03

    When acquiring internal membranes and vesicular transport, eukaryotic cells started to synthesize sphingolipids and sterols. The physical differences between these and the glycerophospholipids must have enabled the cells to segregate lipids in the membrane plane. Localizing this event to the Golgi then allowed them to create membranes of different lipid composition, notably a thin, flexible ER membrane, consisting of glycerolipids, and a sturdy plasma membrane containing at least 50% sphingolipids and sterols. Besides sorting membrane proteins, in the course of evolution the simple sphingolipids obtained key positions in cellular physiology by developing specific interactions with (membrane) proteins involved in the execution and control of signaling. The few signaling sphingolipids in mammals must provide basic transmission principles that evolution has built upon for organizing the specific regulatory pathways tuned to the needs of the different cell types in the body. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site.

    PubMed

    Klug, Yoel A; Ashkenazi, Avraham; Viard, Mathias; Porat, Ziv; Blumenthal, Robert; Shai, Yechiel

    2014-07-15

    Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus-cell and cell-cell contact sites. Overall, the findings of the present study may suggest lipid-protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes.

  14. High Efficacy but Low Potency of δ-Opioid Receptor-G Protein Coupling in Brij-58-Treated, Low-Density Plasma Membrane Fragments.

    PubMed

    Roubalova, Lenka; Vosahlikova, Miroslava; Brejchova, Jana; Sykora, Jan; Rudajev, Vladimir; Svoboda, Petr

    2015-01-01

    HEK293 cells stably expressing PTX-insensitive δ-opioid receptor-Gi1α (C351I) fusion protein were homogenized, treated with low concentrations of non-ionic detergent Brij-58 at 0°C and fractionated by flotation in sucrose density gradient. In optimum range of detergent concentrations (0.025-0.05% w/v), Brij-58-treated, low-density membranes exhibited 2-3-fold higher efficacy of DADLE-stimulated, high-affinity [32P]GTPase and [35S]GTPγS binding than membranes of the same density prepared in the absence of detergent. The potency of agonist DADLE response was significantly decreased. At high detergent concentrations (>0.1%), the functional coupling between δ-opioid receptors and G proteins was completely diminished. The same detergent effects were measured in plasma membranes isolated from PTX-treated cells. Therefore, the effect of Brij-58 on δ-opioid receptor-G protein coupling was not restricted to the covalently bound Gi1α within δ-opioid receptor-Gi1α fusion protein, but it was also valid for PTX-sensitive G proteins of Gi/Go family endogenously expressed in HEK293 cells. Characterization of the direct effect of Brij-58 on the hydrophobic interior of isolated plasma membranes by steady-state anisotropy of diphenylhexatriene (DPH) fluorescence indicated a marked increase of membrane fluidity. The time-resolved analysis of decay of DPH fluorescence by the "wobble in cone" model of DPH motion in the membrane indicated that the exposure to the increasing concentrations of Brij-58 led to a decreased order and higher motional freedom of the dye. Limited perturbation of plasma membrane integrity by low concentrations of non-ionic detergent Brij-58 results in alteration of δ-OR-G protein coupling. Maximum G protein-response to agonist stimulation (efficacy) is increased; affinity of response (potency) is decreased. The total degradation plasma membrane structure at high detergent concentrations results in diminution of functional coupling between δ-opioid receptors and G proteins.

  15. Spatial and temporal dynamics of receptor for advanced glycation endproducts, integrins, and actin cytoskeleton as probed with fluorescence-based imaging techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syed, Aleem

    Systematic spatial and temporal fluctuations are a fundamental part of any biological process. For example, lateral diffusion of membrane proteins is one of the key mechanisms in their cellular function. Lateral diffusion governs how membrane proteins interact with intracellular, transmembrane, and extracellular components to achieve their function. Herein, fluorescence-based techniques are used to elucidate the dynamics of receptor for advanced glycation end-products (RAGE) and integrin membrane proteins. RAGE is a transmembrane protein that is being used as a biomarker for various diseases. RAGE dependent signaling in numerous pathological conditions is well studied. However, RAGE lateral diffusion in the cell membranemore » is poorly understood. For this purpose, effect of cholesterol, cytoskeleton dynamics, and presence of ligand on RAGE lateral diffusion is investigated.« less

  16. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins

    PubMed Central

    2011-01-01

    Background Sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches composed of non-polar residues. Simple, quantitative criteria are desirable for identifying transmembrane helices (TMs) that must be included into or should be excluded from start sequence segments in similarity searches aimed at finding distant homologues. Results We found that there are two types of TMs in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intra-membrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information. Conclusion For extending the homology concept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs (and a sufficient criterion for complex TMs) in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments. Reviewers This article was reviewed by Shamil Sunyaev, L. Aravind and Arcady Mushegian. PMID:22024092

  17. Safeguards of Neurotransmission: Endocytic Adaptors as Regulators of Synaptic Vesicle Composition and Function

    PubMed Central

    Kaempf, Natalie; Maritzen, Tanja

    2017-01-01

    Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis. PMID:29085282

  18. Platelet Function in Basset Hound Hereditary Thrombopathy.

    DTIC Science & Technology

    1986-01-01

    4021, 1975. 20. DZANDU, J.K., DEH, M.E., BARRETT, D.L., AND WISE, G.E. Detec- tion of erythrocyte membrane proteins, sialoproteins , and lipids in the...Wise GE. Detection of erythrocyte membrane proteins, sialoproteins , and lipids in the same polyacrylamide gel using a double staining technique. Proc

  19. A BAR domain in the N terminus of the Arf GAP ASAP1 affects membrane structure and trafficking of epidermal growth factor receptor.

    PubMed

    Nie, Zhongzhen; Hirsch, Dianne S; Luo, Ruibai; Jian, Xiaoying; Stauffer, Stacey; Cremesti, Aida; Andrade, Josefa; Lebowitz, Jacob; Marino, Michael; Ahvazi, Bijan; Hinshaw, Jenny E; Randazzo, Paul A

    2006-01-24

    Arf GAPs are multidomain proteins that function in membrane traffic by inactivating the GTP binding protein Arf1. Numerous Arf GAPs contain a BAR domain, a protein structural element that contributes to membrane traffic by either inducing or sensing membrane curvature. We have examined the role of a putative BAR domain in the function of the Arf GAP ASAP1. ASAP1's N terminus, containing the putative BAR domain together with a PH domain, dimerized to form an extended structure that bound to large unilamellar vesicles containing acidic phospholipids, properties that define a BAR domain. A recombinant protein containing the BAR domain of ASAP1, together with the PH and Arf GAP domains, efficiently bent the surface of large unilamellar vesicles, resulting in the formation of tubular structures. This activity was regulated by Arf1*GTP binding to the Arf GAP domain. In vivo, the tubular structures induced by ASAP1 mutants contained epidermal growth factor receptor (EGFR) and Rab11, and ASAP1 colocalized in tubular structures with EGFR during recycling of receptor. Expression of ASAP1 accelerated EGFR trafficking and slowed cell spreading. An ASAP1 mutant lacking the BAR domain had no effect. The N-terminal BAR domain of ASAP1 mediates membrane bending and is necessary for ASAP1 function. The Arf dependence of the bending activity is consistent with ASAP1 functioning as an Arf effector.

  20. Photonic homeostatics

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Li, Fan-Hui

    2010-11-01

    Photonic homeostatics is a discipline to study the establishment, maintenance, decay, upgrading and representation of function-specific homoestasis (FSH) by using photonics. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stress may increase sirtuin 1 (SIRT1) activities above FSH-specific SIRT1 activity to induce a function far from its FSH. On the one hand, low level laser irradiation or monochromatic light (LLL) can not modulate a function in its FSH or a stress in its stress-specific homeostasis (StSH), but modulate a function far from its FSH or a stress far from its StSH. On the other hand, the biophotons from a biosystem with its function in its FSH should be less than the one from the biosystem with its function far from its FSH. The non-resonant interaction of low intensity laser irradiation or monochromatic light (LIL) and a kind of membrane protein can be amplified by all the membrane proteins if the function is far from its FSH. This amplification might hold for biophoton emission of the membrane protein so that the photonic spectroscopy can be used to represent the function far from its FSH, which is called photonomics.

  1. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

    PubMed

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Pfanner, Nikolaus; Wiedemann, Nils; Becker, Thomas

    2015-09-28

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. © 2015 Wenz et al.

  2. Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform

    NASA Astrophysics Data System (ADS)

    Gao, Changyong; Wu, Zhiguang; Lin, Zhihua; Lin, Xiankun; He, Qiang

    2016-02-01

    We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural cell membrane camouflaged polymeric multilayer capsules with the immunosuppressive and tumor-recognition functionalities of natural leukocytes provide a new biomimetic delivery platform for disease therapy.We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural cell membrane camouflaged polymeric multilayer capsules with the immunosuppressive and tumor-recognition functionalities of natural leukocytes provide a new biomimetic delivery platform for disease therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08407e

  3. Purification of Plant Receptor Kinases from Plant Plasma Membranes.

    PubMed

    Lee, Jin Suk

    2017-01-01

    Receptor kinases play a central role in various biological processes, but due to their low abundance and highly hydrophobic and dynamic nature, only a few of them have been functionally characterized, and their partners and ligands remain unidentified. Receptor protein extraction and purification from plant tissues is one of the most challenging steps for the success of various biochemical analyses to characterize their function. Immunoprecipitation is a widely used and selective method for enriching or purifying a specific protein. Here we describe two different optimized protein purification protocols, batch and on-chip immunoprecipitation, which efficiently isolate plant membrane receptor kinases for functional analysis.

  4. Deciphering the BAR code of membrane modulators.

    PubMed

    Salzer, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina

    2017-07-01

    The BAR domain is the eponymous domain of the "BAR-domain protein superfamily", a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.

  5. Membrane transport in the malaria parasite and its host erythrocyte.

    PubMed

    Kirk, Kiaran; Lehane, Adele M

    2014-01-01

    As it grows and replicates within the erythrocytes of its host the malaria parasite takes up nutrients from the extracellular medium, exports metabolites and maintains a tight control over its internal ionic composition. These functions are achieved via membrane transport proteins, integral membrane proteins that mediate the passage of solutes across the various membranes that separate the biochemical machinery of the parasite from the extracellular environment. Proteins of this type play a key role in antimalarial drug resistance, as well as being candidate drug targets in their own right. This review provides an overview of recent work on the membrane transport biology of the malaria parasite-infected erythrocyte, encompassing both the parasite-induced changes in the membrane transport properties of the host erythrocyte and the cell physiology of the intracellular parasite itself.

  6. Cholesterol asymmetry in synaptic plasma membranes.

    PubMed

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  7. Mechanisms of polarized membrane trafficking in neurons – focusing in on endosomes

    PubMed Central

    Lasiecka, Zofia M.; Winckler, Bettina

    2011-01-01

    Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells is necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER-Golgi via the trans-Golgi network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes. PMID:21762782

  8. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stekhoven, Daniel J.; Omasits, Ulrich; Quebatte, Maxime

    2014-03-01

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled usmore » to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.« less

  9. AHNAK1 and AHNAK2 are costameric proteins: AHNAK1 affects transverse skeletal muscle fiber stiffness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marg, Andreas, E-mail: andreas.marg@mdc-berlin.de; Haase, Hannelore; Neumann, Tanja

    2010-10-08

    Research highlights: {yields} AHNAK1 and AHNAK2 are costameric proteins. {yields} Intact membrane repair in AHNAK1-deficient mice. {yields} AHNAK1{sup -/-} single fibers have a higher transverse stiffness. -- Abstract: The AHNAK scaffold PDZ-protein family is implicated in various cellular processes including membrane repair; however, AHNAK function and subcellular localization in skeletal muscle are unclear. We used specific AHNAK1 and AHNAK2 antibodies to analyzed the detailed localization of both proteins in mouse skeletal muscle. Co-localization of AHNAK1 and AHNAK2 with vinculin clearly demonstrates that both proteins are components of the costameric network. In contrast, no AHNAK expression was detected in the T-tubulemore » system. A laser wounding assay with AHNAK1-deficient fibers suggests that AHNAK1 is not involved in membrane repair. Using atomic force microscopy (AFM), we observed a significantly higher transverse stiffness of AHNAK1{sup -/-} fibers. These findings suggest novel functions of AHNAK proteins in skeletal muscle.« less

  10. Current Progress in Tonoplast Proteomics Reveals Insights into the Function of the Large Central Vacuole

    PubMed Central

    Trentmann, Oliver; Haferkamp, Ilka

    2013-01-01

    Vacuoles of plants fulfill various biologically important functions, like turgor generation and maintenance, detoxification, solute sequestration, or protein storage. Different types of plant vacuoles (lytic versus protein storage) are characterized by different functional properties apparently caused by a different composition/abundance and regulation of transport proteins in the surrounding membrane, the tonoplast. Proteome analyses allow the identification of vacuolar proteins and provide an informative basis for assigning observed transport processes to specific carriers or channels. This review summarizes techniques required for vacuolar proteome analyses, like e.g., isolation of the large central vacuole or tonoplast membrane purification. Moreover, an overview about diverse published vacuolar proteome studies is provided. It becomes evident that qualitative proteomes from different plant species represent just the tip of the iceberg. During the past few years, mass spectrometry achieved immense improvement concerning its accuracy, sensitivity, and application. As a consequence, modern tonoplast proteome approaches are suited for detecting alterations in membrane protein abundance in response to changing environmental/physiological conditions and help to clarify the regulation of tonoplast transport processes. PMID:23459586

  11. Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling

    PubMed Central

    Hu, Patrick J; Xu, Jinling; Ruvkun, Gary

    2006-01-01

    Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. PMID:16839187

  12. The neuronal porosome complex in health and disease

    PubMed Central

    Naik, Akshata R; Lewis, Kenneth T

    2015-01-01

    Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse. PMID:26264442

  13. MINS2: revisiting the molecular code for transmembrane-helix recognition by the Sec61 translocon.

    PubMed

    Park, Yungki; Helms, Volkhard

    2008-08-15

    To be fully functional, membrane proteins should not only fold, but also get inserted into the membrane, which is mediated by the Sec61 translocon. Recent experimental studies have attempted to elucidate how the Sec61 translocon accomplishes this delicate task by measuring the translocon-mediated membrane insertion free energies of 357 systematically designed peptides. On the basis of this data set, we have developed MINS2, a novel sequence-based computational method for predicting the membrane insertion free energies of protein sequences. A benchmark analysis of MINS2 shows that MINS2 signi.cantly outperforms previously proposed methods. Importantly, the application of MINS2 to known membrane protein structures shows that a better prediction of membrane insertion free energies does not lead to a better prediction of transmembrane segments of polytopic membrane proteins. A web server for MINS2 is publicly available at http://service.bioinformatik.uni-saarland.de/mins. Supplementary data are available at Bioinformatics online.

  14. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    PubMed

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  15. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  16. Non-Brownian diffusion in lipid membranes: Experiments and simulations.

    PubMed

    Metzler, R; Jeon, J-H; Cherstvy, A G

    2016-10-01

    The dynamics of constituents and the surface response of cellular membranes-also in connection to the binding of various particles and macromolecules to the membrane-are still a matter of controversy in the membrane biophysics community, particularly with respect to crowded membranes of living biological cells. We here put into perspective recent single particle tracking experiments in the plasma membranes of living cells and supercomputing studies of lipid bilayer model membranes with and without protein crowding. Special emphasis is put on the observation of anomalous, non-Brownian diffusion of both lipid molecules and proteins embedded in the lipid bilayer. While single component, pure lipid bilayers in simulations exhibit only transient anomalous diffusion of lipid molecules on nanosecond time scales, the persistence of anomalous diffusion becomes significantly longer ranged on the addition of disorder-through the addition of cholesterol or proteins-and on passing of the membrane lipids to the gel phase. Concurrently, experiments demonstrate the anomalous diffusion of membrane embedded proteins up to macroscopic time scales in the minute time range. Particular emphasis will be put on the physical character of the anomalous diffusion, in particular, the occurrence of ageing observed in the experiments-the effective diffusivity of the measured particles is a decreasing function of time. Moreover, we present results for the time dependent local scaling exponent of the mean squared displacement of the monitored particles. Recent results finding deviations from the commonly assumed Gaussian diffusion patterns in protein crowded membranes are reported. The properties of the displacement autocorrelation function of the lipid molecules are discussed in the light of their appropriate physical anomalous diffusion models, both for non-crowded and crowded membranes. In the last part of this review we address the upcoming field of membrane distortion by elongated membrane-binding particles. We discuss how membrane compartmentalisation and the particle-membrane binding energy may impact the dynamics and response of lipid membranes. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Grafting PNIPAAm from β-barrel shaped transmembrane nanopores.

    PubMed

    Charan, Himanshu; Kinzel, Julia; Glebe, Ulrich; Anand, Deepak; Garakani, Tayebeh Mirzaei; Zhu, Leilei; Bocola, Marco; Schwaneberg, Ulrich; Böker, Alexander

    2016-11-01

    The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Biologically Complex Planar Cell Plasma Membranes Supported on Polyelectrolyte Cushions Enhance Transmembrane Protein Mobility and Retain Native Orientation.

    PubMed

    Liu, Han-Yuan; Chen, Wei-Liang; Ober, Christopher K; Daniel, Susan

    2018-01-23

    Reconstituted supported lipid bilayers (SLB) are widely used as in vitro cell-surface models because they are compatible with a variety of surface-based analytical techniques. However, one of the challenges of using SLBs as a model of the cell surface is the limited complexity in membrane composition, including the incorporation of transmembrane proteins and lipid diversity that may impact the activity of those proteins. Additionally, it is challenging to preserve the transmembrane protein native orientation, function, and mobility in SLBs. Here, we leverage the interaction between cell plasma membrane vesicles and polyelectrolyte brushes to create planar bilayers from cell plasma membrane vesicles that have budded from the cell surface. This approach promotes the direct incorporation of membrane proteins and other species into the planar bilayer without using detergent or reconstitution and preserves membrane constituents. Furthermore, the structure of the polyelectrolyte brush serves as a cushion between the planar bilayer and rigid supporting surface, limiting the interaction of the cytosolic domains of membrane proteins with this surface. Single particle tracking was used to analyze the motion of GPI-linked yellow fluorescent proteins (GPI-YFP) and neon-green fused transmembrane P2X2 receptors (P2X2-neon) and shows that this platform retains over 75% mobility of multipass transmembrane proteins in its native membrane environment. An enzyme accessibility assay confirmed that the protein orientation is preserved and results in the extracellular domain facing toward the bulk phase and the cytosolic side facing the support. Because the platform presented here retains the complexity of the cell plasma membrane and preserves protein orientation and mobility, it is a better representative mimic of native cell surfaces, which may find many applications in biological assays aimed at understanding cell membrane phenomena.

  19. Living target of Ce(III) action on horseradish cells: proteins on/in cell membrane.

    PubMed

    Yang, Guangmei; Sun, Zhaoguo; Lv, Xiaofen; Deng, Yunyun; Zhou, Qing; Huang, Xiaohua

    2012-12-01

    Positive and negative effects of rare earth elements (REEs) in life have been reported in many papers, but the cellular mechanisms have not been answered, especially the action sites of REEs on plasma membrane are unknown. Proteins on/in the plasma membrane perform main functions of the plasma membrane. Cerium (Ce) is the richest REEs in crust. Thus, the interaction between Ce(III) and the proteins on/in the plasma membrane, the morphology of protoplast, and the contents of nutrient elements in protoplast of horseradish were investigated using the optimized combination of the fluorescence microscopy, fluorescence spectroscopy, circular dichroism, scanning electron microscopy, and X-ray energy dispersive spectroscopy. It was found that Ce(III) at the low concentrations (10, 30 μM) could interact with proteins on/in the plasma membrane of horseradish, leading to the improvement in the structure of membrane proteins and the plasma membrane, which accelerated the intra-/extra-cellular substance exchange and further promoted the development of cells. When horseradish was treated with Ce(III) at the high concentrations (60, 80 μM), Ce(III) also could interact with the proteins on/in the plasma membrane of horseradish, leading to the destruction in the structure of membrane proteins and the plasma membrane. These effects decelerated the intra-/extra-cellular substance exchange and further inhibited the development of cells. Thus, the interaction between Ce(III) and proteins on/in the plasma membrane in plants was an important reason of the positive and negative effects of Ce(III) on plants. The results would provide some references for understanding the cellular effect mechanisms of REEs on plants.

  20. Abnormal swelling of the peritrophic membrane in Eri silkworm gut caused by MLX56 family defense proteins with chitin-binding and extensin domains.

    PubMed

    Konno, Kotaro; Shimura, Sachiko; Ueno, Chihiro; Arakawa, Toru; Nakamura, Masatoshi

    2018-03-01

    MLX56 family defense proteins, MLX56 and its close homolog LA-b, are chitin-binding defense proteins found in mulberry latex that show strong growth-inhibitions against caterpillars when fed at concentrations as low as 0.01%. MLX56 family proteins contain a unique structure with an extensin domain surrounded by two hevein-like chitin-binding domains, but their defensive modes of action remain unclear. Here, we analyzed the effects of MLX56 family proteins on the peritrophic membrane (PM), a thin and soft membrane consisting of chitin that lines the midgut lumen of insects. We observed an abnormally thick (>1/5 the diameter of midgut) hard gel-like membrane consisted of chitin and MLX56 family proteins, MLX56 and LA-b, in the midgut of the Eri silkworms, Samia ricini, fed a diet containing MLX56 family proteins, MLX56 and LA-b. When polyoxin AL, a chitin-synthesis-inhibitor, was added to the diet containing MLX56 family proteins, the toxicity of MLX56 family proteins disappeared and PM became thinner and fragmented. These results suggest that MLX56 family proteins, through their chitin-binding domains, bind to the chitin framework of PM, then through their extensin-domain (gum arabic-like structure), which functions as swelling agent, expands PM into an abnormally thick membrane that inhibits the growth of insects. This study shows that MLX56 family proteins are plant defense lectins with a totally unique mode of action, and reveals the functions of extensin domains and arabinogalactan proteins as swelling (gel-forming) agents of plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Palisade is required in the Drosophila ovary for assembly and function of the protective vitelline membrane.

    PubMed

    Elalayli, Maggie; Hall, Jacklyn D; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T; Han, Zhe; Roon, Penny; LeMosy, Ellen K

    2008-07-15

    The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell.

  2. Palisade is required in the Drosophila ovary for assembly and function of the protective vitelline membrane

    PubMed Central

    Elalayli, Maggie; Hall, Jacklyn D.; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T.; Han, Zhe; Roon, Penny; LeMosy, Ellen K.

    2008-01-01

    The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell. PMID:18514182

  3. Protein aggregation induced during glass bead lysis of yeast

    PubMed Central

    Papanayotou, Irene; Sun, Beimeng; Roth, Amy F.; Davis, Nicholas G.

    2013-01-01

    Yeast cell lysates produced by mechanical glass bead disruption are widely used in a variety of applications, including for the analysis of native function, e.g. protein–protein interaction, enzyme assays and membrane fractionations. Below, we report a striking case of protein denaturation and aggregation that is induced by this lysis protocol. Most of this analysis focuses on the type 1 casein kinase Yck2, which normally tethers to the plasma membrane through C-terminal palmitoylation. Surprisingly, when cells are subjected to glass bead disruption, non-palmitoylated, cytosolic forms of the kinase denature and aggregate, while membrane-associated forms, whether attached through their native palmitoyl tethers or through a variety of artificial membrane-tethering sequences, are wholly protected from denaturation and aggregation. A wider look at the yeast proteome finds that, while the majority of proteins resist glass bead-induced aggregation, a significant subset does, in fact, succumb to such denaturation. Thus, yeast researchers should be aware of this potential artifact when embarking on biochemical analyses that employ glass bead lysates to look at native protein function. Finally, we demonstrate an experimental utility for glass bead-induced aggregation, using its fine discrimination of membrane-associated from non-associated Yck2 forms to discern fractional palmitoylation states of Yck2 mutants that are partially defective for palmitoylation. PMID:20641011

  4. The Candida albicans stress response gene Stomatin-Like Protein 3 is implicated in ROS-induced apoptotic-like death of yeast phase cells

    PubMed Central

    Salcedo, Eugenia C.

    2018-01-01

    The ubiquitous presence of SPFH (Stomatin, Prohibitin, Flotillin, HflK/HflC) proteins in all domains of life suggests that their function would be conserved. However, SPFH functions are diverse with organism-specific attributes. SPFH proteins play critical roles in physiological processes such as mechanosensation and respiration. Here, we characterize the stomatin ORF19.7296/SLP3 in the opportunistic human pathogen Candida albicans. Consistent with the localization of stomatin proteins, a Slp3p-Yfp fusion protein formed visible puncta along the plasma membrane. We also visualized Slp3p within the vacuolar lumen. Slp3p primary sequence analyses identified four putative S-palmitoylation sites, which may facilitate membrane localization and are conserved features of stomatins. Plasma membrane insertion sequences are present in mammalian and nematode SPFH proteins, but are absent in Slp3p. Strikingly, Slp3p was present in yeast cells, but was absent in hyphal cells, thus categorizing it as a yeast-phase specific protein. Slp3p membrane fluorescence significantly increased in response to cellular stress caused by plasma membrane, cell wall, oxidative, or osmotic perturbants, implicating SLP3 as a general stress-response gene. A slp3Δ/Δ homozygous null mutant had no detected phenotype when slp3Δ/Δ mutants were grown in the presence of a variety of stress agents. Also, we did not observe a defect in ion accumulation, filamentation, endocytosis, vacuolar structure and function, cell wall structure, or cytoskeletal structure. However, SLP3 over-expression triggered apoptotic-like death following prolonged exposure to oxidative stress or when cells were induced to form hyphae. Our findings reveal the cellular localization of Slp3p, and for the first time associate Slp3p function with the oxidative stress response. PMID:29389961

  5. CHIP as a membrane-shuttling proteostasis sensor

    PubMed Central

    Kopp, Yannick; Martínez-Limón, Adrián; Hofbauer, Harald F; Ernst, Robert; Calloni, Giulia

    2017-01-01

    Cells respond to protein misfolding and aggregation in the cytosol by adjusting gene transcription and a number of post-transcriptional processes. In parallel to functional reactions, cellular structure changes as well; however, the mechanisms underlying the early adaptation of cellular compartments to cytosolic protein misfolding are less clear. Here we show that the mammalian ubiquitin ligase C-terminal Hsp70-interacting protein (CHIP), if freed from chaperones during acute stress, can dock on cellular membranes thus performing a proteostasis sensor function. We reconstituted this process in vitro and found that mainly phosphatidic acid and phosphatidylinositol-4-phosphate enhance association of chaperone-free CHIP with liposomes. HSP70 and membranes compete for mutually exclusive binding to the tetratricopeptide repeat domain of CHIP. At new cellular locations, access to compartment-specific substrates would enable CHIP to participate in the reorganization of the respective organelles, as exemplified by the fragmentation of the Golgi apparatus (effector function). PMID:29091030

  6. Molecular and functional characterization of multiple aquaporin water channel proteins from the western tarnished plant bug, Lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    Aquaporins (AQPs) are integral membrane channel proteins that facilitate the bidirectional transfer of water or other small solutes across biological membranes involved in numerous essential physiological processes. In arthropods, AQPs belong to several subfamilies, which contribute to osmoregulatio...

  7. Intracellular localization of a group II chaperonin indicates a membrane-related function

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Paavola, Chad D.; McMillan, R. Andrew; Howard, Jeanie; Jahnke, Linda; Lavin, Colleen; Embaye, Tsegereda; Henze, Christopher E.

    2003-01-01

    Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C by using immunofluorescence microscopy and in thick sections of rapidly frozen cells grown at 76 degrees C by using immunogold electron microscopy. We observed that increased abundance of rosettasomes after heat shock correlated with decreased membrane permeability at lethal temperature (92 degrees C). This change in permeability was not seen in cells heat-shocked in the presence of the amino acid analogue azetidine 2-carboxylic acid, indicating functional protein synthesis influences permeability. Azetidine experiments also indicated that observed heat-induced changes in lipid composition in S. shibatae could not account for changes in membrane permeability. Rosettasomes purified from cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C bind to liposomes made from either the bipolar tetraether lipids of Sulfolobus or a variety of artificial lipid mixtures. The presence of rosettasomes did not significantly change the transition temperature of liposomes, as indicated by differential scanning calorimetry, or the proton permeability of liposomes, as indicated by pyranine fluorescence. We propose that these group II chaperonins function as a structural element in the natural membrane based on their intracellular location, the correlation between their functional abundance and membrane permeability, and their potential distribution on the membrane surface.

  8. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism.

    PubMed

    Stekhoven, Daniel J; Omasits, Ulrich; Quebatte, Maxime; Dehio, Christoph; Ahrens, Christian H

    2014-03-17

    Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral inner membrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion. The work presented here describes the first prokaryotic proteome-wide subcellular localization (SCL) dataset for the emerging pathogen B. henselae (Bhen). The study indicates that suitable subcellular fractionation experiments combined with straight-forward computational analysis approaches assessing the proportion of spectral counts observed in different subcellular fractions are powerful for determining the predominant SCL of a large percentage of the experimentally observed proteins. This includes numerous cases where in silico prediction methods do not provide any prediction. Avoiding a treatment with harsh conditions, cytoplasmic proteins tend to co-fractionate with proteins of the inner membrane fraction, indicative of close functional interactions. The spectral count proportion (SCP) of total membrane versus cytoplasmic fractions allowed us to obtain a good indication about the relative proximity of individual protein complex members to the inner membrane. Using principal component analysis and k-nearest neighbor approaches, we were able to extend the percentage of proteins with a predominant experimental localization to over 90% of all expressed proteins and identified a set of at least 74 outer membrane (OM) proteins. In general, OM proteins represent a rich source of candidates for the development of urgently needed new therapeutics in combat of resurgence of infectious disease and multi-drug resistant bacteria. Finally, by comparing the data from two infection biology relevant conditions, we conceptually explore methods to identify and visualize potential candidates that may partially change their SCL in these different conditions. The data are made available to researchers as a SCL compendium for Bhen and as an assistance in further improving in silico SCL prediction algorithms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Predictive energy landscapes for folding membrane protein assemblies

    NASA Astrophysics Data System (ADS)

    Truong, Ha H.; Kim, Bobby L.; Schafer, Nicholas P.; Wolynes, Peter G.

    2015-12-01

    We study the energy landscapes for membrane protein oligomerization using the Associative memory, Water mediated, Structure and Energy Model with an implicit membrane potential (AWSEM-membrane), a coarse-grained molecular dynamics model previously optimized under the assumption that the energy landscapes for folding α-helical membrane protein monomers are funneled once their native topology within the membrane is established. In this study we show that the AWSEM-membrane force field is able to sample near native binding interfaces of several oligomeric systems. By predicting candidate structures using simulated annealing, we further show that degeneracies in predicting structures of membrane protein monomers are generally resolved in the folding of the higher order assemblies as is the case in the assemblies of both nicotinic acetylcholine receptor and V-type Na+-ATPase dimers. The physics of the phenomenon resembles domain swapping, which is consistent with the landscape following the principle of minimal frustration. We revisit also the classic Khorana study of the reconstitution of bacteriorhodopsin from its fragments, which is the close analogue of the early Anfinsen experiment on globular proteins. Here, we show the retinal cofactor likely plays a major role in selecting the final functional assembly.

  10. A Novel Type III Endosome Transmembrane Protein, TEMP

    PubMed Central

    Aturaliya, Rajith N.; Kerr, Markus C.; Teasdale, Rohan D.

    2012-01-01

    As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP’s plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport. PMID:24710541

  11. Nanodiscs in Membrane Biochemistry and Biophysics.

    PubMed

    Denisov, Ilia G; Sligar, Stephen G

    2017-03-22

    Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.

  12. Single-step electrochemical functionalization of double-walled carbon nanotube (DWCNT) membranes and the demonstration of ionic rectification

    PubMed Central

    2013-01-01

    Carbon nanotube (CNT) membranes allow the mimicking of natural ion channels for applications in drug delivery and chemical separation. Double-walled carbon nanotube membranes were simply functionalized with dye in a single step instead of the previous two-step functionalization. Non-faradic electrochemical impedance spectra indicated that the functionalized gatekeeper by single-step modification can be actuated to mimic the protein channel under bias. This functional chemistry was proven by a highly efficient ion rectification, wherein the highest experimental rectification factor of ferricyanide was up to 14.4. One-step functionalization by electrooxidation of amine provides a simple and promising functionalization chemistry for the application of CNT membranes. PMID:23758999

  13. Rab proteins: The key regulators of intracellular vesicle transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in

    2014-10-15

    Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less

  14. Remodeling of the Host Cell Plasma Membrane by HIV-1 Nef and Vpu: A Strategy to Ensure Viral Fitness and Persistence.

    PubMed

    Sugden, Scott M; Bego, Mariana G; Pham, Tram N Q; Cohen, Éric A

    2016-03-03

    The plasma membrane protects the cell from its surroundings and regulates cellular communication, homing, and metabolism. Not surprisingly, the composition of this membrane is highly controlled through the vesicular trafficking of proteins to and from the cell surface. As intracellular pathogens, most viruses exploit the host plasma membrane to promote viral replication while avoiding immune detection. This is particularly true for the enveloped human immunodeficiency virus (HIV), which assembles and obtains its lipid shell directly at the plasma membrane. HIV-1 encodes two proteins, negative factor (Nef) and viral protein U (Vpu), which function primarily by altering the quantity and localization of cell surface molecules to increase virus fitness despite host antiviral immune responses. These proteins are expressed at different stages in the HIV-1 life cycle and employ a variety of mechanisms to target both unique and redundant surface proteins, including the viral receptor CD4, host restriction factors, immunoreceptors, homing molecules, tetraspanins and membrane transporters. In this review, we discuss recent progress in the study of the Nef and Vpu targeting of host membrane proteins with an emphasis on how remodeling of the cell membrane allows HIV-1 to avoid host antiviral immune responses leading to the establishment of systemic and persistent infection.

  15. Unconventional secretory processing diversifies neuronal ion channel properties

    PubMed Central

    Hanus, Cyril; Geptin, Helene; Tushev, Georgi; Garg, Sakshi; Alvarez-Castelao, Beatriz; Sambandan, Sivakumar; Kochen, Lisa; Hafner, Anne-Sophie; Langer, Julian D; Schuman, Erin M

    2016-01-01

    N-glycosylation – the sequential addition of complex sugars to adhesion proteins, neurotransmitter receptors, ion channels and secreted trophic factors as they progress through the endoplasmic reticulum and the Golgi apparatus – is one of the most frequent protein modifications. In mammals, most organ-specific N-glycosylation events occur in the brain. Yet, little is known about the nature, function and regulation of N-glycosylation in neurons. Using imaging, quantitative immunoblotting and mass spectrometry, we show that hundreds of neuronal surface membrane proteins are core-glycosylated, resulting in the neuronal membrane displaying surprisingly high levels of glycosylation profiles that are classically associated with immature intracellular proteins. We report that while N-glycosylation is generally required for dendritic development and glutamate receptor surface expression, core-glycosylated proteins are sufficient to sustain these processes, and are thus functional. This atypical glycosylation of surface neuronal proteins can be attributed to a bypass or a hypo-function of the Golgi apparatus. Core-glycosylation is regulated by synaptic activity, modulates synaptic signaling and accelerates the turnover of GluA2-containing glutamate receptors, revealing a novel mechanism that controls the composition and sensing properties of the neuronal membrane. DOI: http://dx.doi.org/10.7554/eLife.20609.001 PMID:27677849

  16. Probing microscopic material properties inside simulated membranes through spatially resolved three-dimensional local pressure fields and surface tensions

    PubMed Central

    Kasson, Peter M.; Hess, Berk; Lindahl, Erik

    2013-01-01

    Cellular lipid membranes are spatially inhomogeneous soft materials. Materials properties such as pressure and surface tension thus show important microscopic-scale variation that is critical to many biological functions. We present a means to calculate pressure and surface tension in a 3D-resolved manner within molecular-dynamics simulations and show how such measurements can yield important insight. We also present the first corrections to local virial and pressure fields to account for the constraints typically used in lipid simulations that otherwise cause problems in highly oriented systems such as bilayers. Based on simulations of an asymmetric bacterial ion channel in a POPC bilayer, we demonstrate how 3D-resolved pressure can probe for both short-range and long-range effects from the protein on the membrane environment. We also show how surface tension is a sensitive metric for inter-leaflet equilibrium and can be used to detect even subtle imbalances between bilayer leaflets in a membrane-protein simulation. Since surface tension is known to modulate the function of many proteins, this effect is an important consideration for predictions of ion channel function. We outline a strategy by which our local pressure measurements, which we make available within a version of the GROMACS simulation package, may be used to design optimally equilibrated membrane-protein simulations. PMID:23318532

  17. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and then, using a sonication process, a uniform lipid bilayer that supports the incorporation of membrane proteins is formed. These bilayer-coated carbon nanotubes are highly dispersible and stable in aqueous solution, and they can be used in development of various biosensors and energy producing devices. In the other hybrid nanostructure, the lipid bilayer of a liposome is covalently anchored to a biocompatible poly(ethylene) glycol (PEG) hydrogel core using double-stranded DNA (dsDNA) linkers. Release studies shows that nano-size hydrogel-anchored liposomes are exceptionally stable, and they can be used as biomimetic model membranes that mimic the connectivity between the cytoskeleton and the plasma membrane. After lipid bilayer removal, dsDNA linkers can provide programmable nanogels decorated with oligonucleotides with potential sites for further molecular assembly. These stable nanostructures can be useful for oligonucleotide and drug delivery applications. The developed hydrogel-anchored liposomes are exploited for encapsulation and intracellular delivery of therapeutic peptide. Peptides with anti-cancer properties are successfully encapsulated in hydrogel core of pH-sensitive liposomes during rehydration process. Liposomes release their cargo at acidic pH. Confocal microscopy confirms the intracellular delivery of liposomes through an endocytotic pathway.

  18. A new functional membrane protein microarray based on tethered phospholipid bilayers.

    PubMed

    Chadli, Meriem; Maniti, Ofelia; Marquette, Christophe; Tillier, Bruno; Cortès, Sandra; Girard-Egrot, Agnès

    2018-04-30

    A new prototype of a membrane protein biochip is presented in this article. This biochip was created by the combination of novel technologies of peptide-tethered bilayer lipid membrane (pep-tBLM) formation and solid support micropatterning. Pep-tBLMs integrating a membrane protein were obtained in the form of microarrays on a gold chip. The formation of the microspots was visualized in real-time by surface plasmon resonance imaging (SPRi) and the functionality of a GPCR (CXCR4), reinserted locally into microwells, was assessed by ligand binding studies. In brief, to achieve micropatterning, P19-4H, a 4 histidine-possessing peptide spacer, was spotted inside microwells obtained on polystyrene-coated gold, and Ni-chelating proteoliposomes were injected into the reaction chamber. Proteoliposome binding to the peptide was based on metal-chelate interaction. The peptide-tethered lipid bilayer was finally obtained by addition of a fusogenic peptide (AH peptide) to promote proteoliposome fusion. The CXCR4 pep-tBLM microarray was characterized by surface plasmon resonance imaging (SPRi) throughout the building-up process. This new generation of membrane protein biochip represents a promising method of developing a screening tool for drug discovery.

  19. Photoreactive synthetic regulator of protein function and methods of use thereof

    DOEpatents

    Trauner, Dirk; Isacoff, Ehud Y; Kramer, Richard H; Banghart, Matthew R; Fortin, Doris L; Mourot, Alexandre

    2015-03-31

    The present disclosure provides a photoreactive synthetic regulator of protein function. The present disclosure further provides a light-regulated polypeptide that includes a subject synthetic regulator. Also provided are cells and membranes comprising a subject light-regulated polypeptide. The present disclosure further provides methods of modulating protein function, involving use of light.

  20. Monitoring glycolipid transfer protein activity and membrane interaction with the surface plasmon resonance technique.

    PubMed

    Ohvo-Rekilä, Henna; Mattjus, Peter

    2011-01-01

    The glycolipid transfer protein (GLTP) is a protein capable of binding and transferring glycolipids. GLTP is cytosolic and it can interact through its FFAT-like (two phenylalanines in an acidic tract) motif with proteins localized on the surface of the endoplasmic reticulum. Previous in vitro work with GLTP has focused mainly on the complete transfer reaction of the protein, that is, binding and subsequent removal of the glycolipid from the donor membrane, transfer through the aqueous environment, and the final release of the glycolipid to an acceptor membrane. Using bilayer vesicles and surface plasmon resonance spectroscopy, we have now, for the first time, analyzed the binding and lipid removal capacity of GLTP with a completely label-free technique. This technique is focused on the initial steps in GLTP-mediated transfer and the parameters affecting these steps can be more precisely determined. We used the new approach for detailed structure-function studies of GLTP by examining the glycolipid transfer capacity of specific GLTP tryptophan mutants. Tryptophan 96 is crucial for the transfer activity of the protein and tryptophan 142 is an important part of the proteins membrane interacting domain. Further, we varied the composition of the used lipid vesicles and gained information on the effect of membrane properties on GLTP activity. GLTP prefers to interact with more tightly packed membranes, although GLTP-mediated transfer is faster from more fluid membranes. This technique is very useful for the study of membrane-protein interactions and lipid-transfer rates and it can easily be adapted to other membrane-interacting proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Production of okara and soy protein concentrates using membrane technology.

    PubMed

    Vishwanathan, K H; Govindaraju, K; Singh, Vasudeva; Subramanian, R

    2011-01-01

    Microfiltration (MF) membranes with pore sizes of 200 and 450 nm and ultrafiltration (UF) membranes with molecular weight cut off of 50, 100, and 500 kDa were assessed for their ability to eliminate nonprotein substances from okara protein extract in a laboratory cross-flow membrane system. Both MF and UF improved the protein content of okara extract to a similar extent from approximately 68% to approximately 81% owing to the presence of protein in the feed leading to the formation of dynamic layer controlling the performance rather than the actual pore size of membranes. Although normalized flux in MF-450 (117 LMH/MPa) was close to UF-500 (118 LMH/MPa), the latter was selected based on higher average flux (47 LMH) offering the advantage of reduced processing time. Membrane processing of soy extract improved the protein content from 62% to 85% much closer to the target value. However, the final protein content in okara (approximately 80%) did not reach the target value (90%) owing to the greater presence of soluble fibers that were retained by the membrane. Solubility curve of membrane okara protein concentrate (MOPC) showed lower solubility than soy protein concentrate and a commercial isolate in the entire pH range. However, water absorption and fat-binding capacities of MOPC were either superior or comparable while emulsifying properties were in accordance with its solubility. The results of this study showed that okara protein concentrate (80%) could be produced using membrane technology without loss of any true proteins, thus offering value addition to okara, hitherto underutilized. Practical Application: Okara, a byproduct obtained during processing soybean for soymilk, is either underutilized or unutilized in spite of the fact that its protein quality is as good as that of soy milk and tofu. Membrane-processed protein products have been shown to possess superior functional properties compared to conventionally produced protein products. However, the potential of membrane technology has not been exploited for the recovery of okara protein. Our study showed that protein content of okara extract could be improved from approximately 68% to approximately 81% without losing any true proteins in the process.

  2. ESCRT-I function is required for Tyrp1 transport from early endosomes to the melanosome limiting membrane

    PubMed Central

    Truschel, Steven T.; Simoes, Sabrina; Setty, Subba Rao Gangi; Harper, Dawn C.; Tenza, Danièle; Thomas, Penelope C.; Herman, Kathryn E.; Sackett, Sara D.; Cowan, David C.; Theos, Alexander C.; Raposo, Graça; Marks, Michael S.

    2009-01-01

    Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome (HPS) that lack BLOC-1, melanosomal proteins such as Tyrp1 accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverses early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle. PMID:19624486

  3. New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores.

    PubMed

    Bavencoffe, Alexis; Zhu, Michael Xi; Tian, Jin-Bin

    2017-01-01

    Transient receptor potential canonical (TRPC) proteins were identified as molecular candidates of receptor- and/or store-operated channels because of their close homology to the Drosophila TRP and TRPL. Functional studies have revealed that TRPC channels play an integrated part of phospholipase C-transduced cell signaling, mediating the influx of both Ca 2+ and Na + into cells. As a consequence, the TRPC channels have diverse functional roles in different cell types, including metabotropic receptor-evoked membrane depolarization and intracellular Ca 2+ concentration elevation. Depending on the cellular environment and the protein partners present in the channel complex, the TRPC channels display different biophysical properties and mechanisms of regulation, including but not limited to the Ca 2+ filling state of the endoplasmic reticulum. Despite the overwhelming focus on STIM-regulated Orai channels for store-operated Ca 2+ entry, evidence is growing for STIM-operated TRPC channel activities in various cell types, demonstrating both store-dependent and store-independent mechanisms of TRPC channel gating. The existence of physical and functional interactions between plasma membrane-localized TRPC channels and other proteins involved in sensing and regulating the intracellular Ca 2+ store contents, such as inositol trisphosphate receptors, Junctate, and Homer, further argues for the role of TRPC proteins in linking plasma membrane ion transport with intracellular Ca 2+ stores. The interplay among these proteins will likely define the functional significance of TRPC channel activation in different cellular contexts and under different modes of stimulations.

  4. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    PubMed Central

    Chae, Pil Seok; Rasmussen, Søren G. F.; Rana, Rohini; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A.; Kruse, Andrew C.; Nurva, Shailika; Loland, Claus J.; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G.; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H.

    2011-01-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces displayed by native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each of which is built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family display favorable behavior relative to conventional detergents, as tested on multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied. PMID:21037590

  5. 'Gate effect' in templated polyacrylamide membranes influences the electrotransport of proteins and finds applications in proteome analysis.

    PubMed

    Bossi, Alessandra; Andreoli, Matteo; Bonini, Francesca; Piletsky, Sergey

    2007-09-01

    Templating is an effective way for the structural modifications of a material and hence for altering its functional properties. Here protein imprinting was exploited to alter polymeric polyacrylamide (PAA) membranes. The sieving properties and selection abilities of the material formed were evaluated by studying the electrically driven transport of various proteins across templated PAA membranes. The sieving properties correlated with the templating process and depended on the quantity of template used during the polymerisation. For 1 mg/mL protein-templated membranes a 'gate effect' was shown, which induced a preferential migration of the template and of similar-size proteins. Such template preferential electrotransport was exploited for the selective removal of certain proteins in biological fluids prior to proteome analysis (depletion of albumin from human serum); the efficiency of the removal was demonstrated by analysing the serum proteome by two-dimensional electrophoresis experiments.

  6. Bovine seminal PDC-109 protein: an overview of biochemical and functional properties.

    PubMed

    Srivastava, N; Jerome, A; Srivastava, S K; Ghosh, S K; Kumar, Amit

    2013-04-01

    Although long-term storage of bovine semen is desirable for wider use, successful cryopreservation depends on several factors, including various proteins present in seminal plasma. One such group of proteins, viz. bovine seminal plasma (BSP) proteins represents the major protein fraction in bovine seminal plasma. They constitute three major heparin-binding (HB-) acidic proteins secreted by seminal vesicles, viz. BSP-A1/-A2 (PDC-109), BSP-A3 and BSP-30-kDa. By purification studies it was deduced that PDC-109 is a polypeptide of 109 amino acids and contains two tandem repeating fibronectin type-II (Fn-II) domains, preceded by a 23 residue N-terminal domain. Though BSP-A1 and BSP-A2 are biochemically similar they differ only in glycosylation and their mixture is called PDC-109 or gonadostatins. PDC-109 exists as a polydisperse, multimeric self-associated molecule and possesses multifunctional properties, viz. binding to the surface of plasma membrane of spermatozoa causing conformational change in the sperm surface proteins and enhances motility. Besides binding, PDC-109 protein provokes cholesterol efflux from sperm membrane and promotes sperm reservoir by interacting with oviductal membrane. Interaction of sperm with PDC-109 protein induces sperm capacitation and acrosome reaction. However, prolonged exposure of spermatozoa with free floating PDC-109 protein as during processing for preservation, increases cholesterol efflux from spermatozoa. The efflux of sperm membrane cholesterol and disturbance in cholesterol:phospholipids ratio causes destabilization of plasma membrane thereby inducing cryoinjury to the sperm. In this review, the biochemical, functional properties of PDC-109 protein and its role during semen cryopreservation is summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Analysis of Protein Interactions at Native Chloroplast Membranes by Ellipsometry

    PubMed Central

    Kriechbaumer, Verena; Nabok, Alexei; Mustafa, Mohd K.; Al-Ammar, Rukaiah; Tsargorodskaya, Anna; Smith, David P.; Abell, Ben M.

    2012-01-01

    Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE). We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins. PMID:22479632

  8. LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations.

    PubMed

    Schmidt, Thomas H; Kandt, Christian

    2012-10-22

    At the beginning of each molecular dynamics membrane simulation stands the generation of a suitable starting structure which includes the working steps of aligning membrane and protein and seamlessly accommodating the protein in the membrane. Here we introduce two efficient and complementary methods based on pre-equilibrated membrane patches, automating these steps. Using a voxel-based cast of the coarse-grained protein, LAMBADA computes a hydrophilicity profile-derived scoring function based on which the optimal rotation and translation operations are determined to align protein and membrane. Employing an entirely geometrical approach, LAMBADA is independent from any precalculated data and aligns even large membrane proteins within minutes on a regular workstation. LAMBADA is the first tool performing the entire alignment process automatically while providing the user with the explicit 3D coordinates of the aligned protein and membrane. The second tool is an extension of the InflateGRO method addressing the shortcomings of its predecessor in a fully automated workflow. Determining the exact number of overlapping lipids based on the area occupied by the protein and restricting expansion, compression and energy minimization steps to a subset of relevant lipids through automatically calculated and system-optimized operation parameters, InflateGRO2 yields optimal lipid packing and reduces lipid vacuum exposure to a minimum preserving as much of the equilibrated membrane structure as possible. Applicable to atomistic and coarse grain structures in MARTINI format, InflateGRO2 offers high accuracy, fast performance, and increased application flexibility permitting the easy preparation of systems exhibiting heterogeneous lipid composition as well as embedding proteins into multiple membranes. Both tools can be used separately, in combination with other methods, or in tandem permitting a fully automated workflow while retaining a maximum level of usage control and flexibility. To assess the performance of both methods, we carried out test runs using 22 membrane proteins of different size and transmembrane structure.

  9. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring.

    PubMed

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong; Gould, Kathleen L

    2017-09-15

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.

  10. Nanoscale architecture of the Schizosaccharomyces pombe contractile ring

    PubMed Central

    McDonald, Nathan A; Lind, Abigail L; Smith, Sarah E; Li, Rong

    2017-01-01

    The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0–80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80–160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160–350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function. PMID:28914606

  11. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders.

    PubMed

    Hou, Zhi-Shuai; Ulloa-Aguirre, Alfredo; Tao, Ya-Xiong

    2018-06-01

    Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases. Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases. Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.

  12. Phosphatidic acid (PA) binds PP2AA1 to regulate PP2A activity and PIN1 polar localization.

    PubMed

    Gao, Hong-Bo; Chu, Yu-Jia; Xue, Hong-Wei

    2013-09-01

    Phospholipase D (PLD) exerts broad biological functions in eukaryotes through regulating downstream effectors by its product, phosphatidic acid (PA). Protein kinases and phosphatases, such as mammalian target of rapamycin (mTOR), Protein Phosphatase 1 (PP1) and Protein Phosphatase 2C (PP2C), are PA-binding proteins that execute crucial regulatory functions in both animals and plants. PA participates in many signaling pathways by modulating the enzymatic activity and/or subcellular localization of bound proteins. In this study, we demonstrated that PLD-derived PA interacts with the scaffolding A1 subunit of Protein Phosphatase 2A (PP2A) and regulates PP2A-mediated PIN1 dephosphorylation in Arabidopsis. Genetic and pharmacological studies showed that both PA and PP2A participate in the regulation of auxin distribution. In addition, both the phosphorylation status and polar localization of PIN1 protein were affected by PLD inhibitors. Exogenous PA triggered the membrane accumulation of PP2AA1 and enhanced the PP2A activity at membrane, while PLD inhibition resulted in the reduced endosomal localization and perinuclear aggregation of PP2AA1. These results demonstrate the important role of PLD-derived PA in normal PP2A-mediated PIN dephosphorylation and reveal a novel mechanism, in which PA recruits PP2AA1 to the membrane system and regulates PP2A function on membrane-targeted proteins. As PA and PP2A are conserved among eukaryotes, other organisms might use similar mechanisms to mediate multiple biological processes.

  13. Measuring the diffusion coefficient of ganglioside on cell membrane by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Shiqing; You, Minghai; Chen, Jianling; Zhou, Jie; Xie, Shusen; Yang, Hongqin

    2017-06-01

    The fluidity of proteins and lipids on cell membrane plays an important role in cell’s physiological functions. Fluorescence correlation spectroscopy (FCS) is an effective technique to detect the rapid dynamic behaviors of proteins and/or lipids in living cells. In this study, we used the rhodamine6G solution to optimize the FCS system. And, cholera toxin B subunit (CT-B) was used to label ganglioside on living Hela cell membranes. The diffusion time and coefficients of ganglioside can be obtained through fitting the autocorrelation curve based on the model of two-dimensional cell membrane. The results showed that the diffusion coefficients of ganglioside distributed within a wide range. It revealed the lateral diffusion of lipids on cell membrane was inhomogeneous, which was due to different microstructures of cytoplasmic membrane. The study provides a helpful method for further studying the dynamic characteristics of proteins and lipids molecules on living cell membrane.

  14. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    PubMed Central

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  15. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    PubMed

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell endomembrane system to produce a membranous replication organelle (RO). The underlying mechanisms are far from being elucidated fully. In this report, we provide evidence that HCV RNA replication depends on functional lipid transport along the endosomal-lysosomal pathway that is mediated by several lipid transfer proteins, such as the Niemann-Pick type C1 (NPC1) protein. Pharmacological inhibition of NPC1 function reduced viral replication, impaired the transport of cholesterol to the viral replication organelle, and altered organelle morphology. Besides NPC1, our study reports the importance of additional endosomal and lysosomal lipid transfer proteins required for viral replication, thus contributing to our understanding of how HCV manipulates their function in order to generate a membranous replication organelle. These results might have implications for the biogenesis of replication organelles of other positive-strand RNA viruses. Copyright © 2017 American Society for Microbiology.

  16. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

    NASA Astrophysics Data System (ADS)

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.

  17. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.

    PubMed

    Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura

    2017-01-01

    Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.

  18. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH.

    PubMed

    Tian, Ye; Schwieters, Charles D; Opella, Stanley J; Marassi, Francesca M

    2017-01-01

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.

  19. MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.

    PubMed

    Aaltonen, Mari J; Friedman, Jonathan R; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi; Langer, Thomas; Tatsuta, Takashi

    2016-06-06

    Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. © 2016 Aaltonen et al.

  20. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution

    PubMed Central

    Heinz, Eva; Lithgow, Trevor

    2014-01-01

    Members of the Omp85/TpsB protein superfamily are ubiquitously distributed in Gram-negative bacteria, and function in protein translocation (e.g., FhaC) or the assembly of outer membrane proteins (e.g., BamA). Several recent findings are suggestive of a further level of variation in the superfamily, including the identification of the novel membrane protein assembly factor TamA and protein translocase PlpD. To investigate the diversity and the causal evolutionary events, we undertook a comprehensive comparative sequence analysis of the Omp85/TpsB proteins. A total of 10 protein subfamilies were apparent, distinguished in their domain structure and sequence signatures. In addition to the proteins FhaC, BamA, and TamA, for which structural and functional information is available, are families of proteins with so far undescribed domain architectures linked to the Omp85 β-barrel domain. This study brings a classification structure to a dynamic protein superfamily of high interest given its essential function for Gram-negative bacteria as well as its diverse domain architecture, and we discuss several scenarios of putative functions of these so far undescribed proteins. PMID:25101071

  1. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins

    PubMed Central

    Strop, Pavel; Brunger, Axel T.

    2005-01-01

    The concentration of detergent in membrane protein preparations can have a critical role on protein stability, function, and the potential for crystallization. Unfortunately, dialysis or protein concentration can lead to an unknown amount of detergent in the final membrane protein preparations. Here we present a method for the determination of detergent concentration based on refractive index of the detergent solution. This method was applied to quantitate the amount of detergent remaining in solution after concentration in various concentrators. We found that the ability of the tested detergents to pass through the molecular weight cutoff membrane correlates well with detergent micelle size. Therefore, the micelle size can be used as a rough guide to estimate the retention of a given detergent in various molecular weight cutoff concentrators. The refractive index method is exceptionally informative when coupled with size exclusion chromatography and light scattering, and can be used to determine the oligomeric state of the membrane protein, the size of a protein-associated micelle, as well as the amount and size of the unbound detergent micelle. PMID:16046633

  2. Refractive index-based determination of detergent concentration and its application to the study of membrane proteins.

    PubMed

    Strop, Pavel; Brunger, Axel T

    2005-08-01

    The concentration of detergent in membrane protein preparations can have a critical role on protein stability, function, and the potential for crystallization. Unfortunately, dialysis or protein concentration can lead to an unknown amount of detergent in the final membrane protein preparations. Here we present a method for the determination of detergent concentration based on refractive index of the detergent solution. This method was applied to quantitate the amount of detergent remaining in solution after concentration in various concentrators. We found that the ability of the tested detergents to pass through the molecular weight cutoff membrane correlates well with detergent micelle size. Therefore, the micelle size can be used as a rough guide to estimate the retention of a given detergent in various molecular weight cutoff concentrators. The refractive index method is exceptionally informative when coupled with size exclusion chromatography and light scattering, and can be used to determine the oligomeric state of the membrane protein, the size of a protein-associated micelle, as well as the amount and size of the unbound detergent micelle.

  3. Signatures of Mechanosensitive Gating.

    PubMed

    Morris, Richard G

    2017-01-10

    The question of how mechanically gated membrane channels open and close is notoriously difficult to address, especially if the protein structure is not available. This perspective highlights the relevance of micropipette-aspirated single-particle tracking-used to obtain a channel's diffusion coefficient, D, as a function of applied membrane tension, σ-as an indirect assay for determining functional behavior in mechanosensitive channels. While ensuring that the protein remains integral to the membrane, such methods can be used to identify not only the gating mechanism of a protein, but also associated physical moduli, such as torsional and dilational rigidity, which correspond to the protein's effective shape change. As an example, three distinct D-versus-σ "signatures" are calculated, corresponding to gating by dilation, gating by tilt, and gating by a combination of both dilation and tilt. Both advantages and disadvantages of the approach are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes.

    PubMed

    Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kopeina, G S; Shulepko, M A; Paramonov, A S; Mineev, K S; Tikhonov, R V; Shingarova, L N; Petrovskaya, L E; Dolgikh, D A; Arseniev, A S; Kirpichnikov, M P

    2012-03-01

    Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. On the role of VDAC in apoptosis: fact and fiction.

    PubMed

    Rostovtseva, Tatiana K; Tan, Wenzhi; Colombini, Marco

    2005-06-01

    Research on VDAC has accelerated as evidence grows of its importance in mitochondrial function and in apoptosis. New investigators entering the field are often confounded by the VDAC literature and its many apparent conflicts and contradictions. This review is an effort to shed light on the situation and identify reliable information from more questionable claims. Our views on the most important controversial issues are as follows: VDAC is only present in the mitochondrial outer membrane. VDAC functions as a monomer. VDAC functions normally with or without Ca(2+). It does not form channels that mediate the flux of proteins through membranes (peptides and unfolded proteins are excluded from this statement). Closure of VDAC, not VDAC opening, leads to mitochondria outer membrane permeabilization and apoptosis.

  6. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    PubMed Central

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-01-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria. PMID:10816421

  7. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    PubMed

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-06-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria.

  8. A split ubiquitin system to reveal topology and released peptides of membrane proteins.

    PubMed

    Li, Qiu-Ping; Wang, Shuai; Gou, Jin-Ying

    2017-09-02

    Membrane proteins define biological functions of membranes in cells. Extracellular peptides of transmembrane proteins receive signals from pathogens or environments, and are the major targets of drug developments. Despite of their essential roles, membrane proteins remain elusive in topological studies due to technique difficulties in their expressions and purifications. First, the target gene is cloned into a destination vector to fuse with C terminal ubiquitin at the N or C terminus. Then, Cub vector with target gene and Nub WT or Nub G vectors are transformed into AP4 or AP5 yeast cells, respectively. After mating, the diploid cells are dipped onto selection medium to check the growth. Topology of the target protein is determined according to Table 1. We present a split ubiquitin topology (SUT) analysis system to study the topology and truncation peptide of membrane proteins in a simple yeast experiment. In the SUT system, transcription activator (TA) fused with a nucleo-cytoplasmic protein shows strong auto-activation with both positive and negative control vectors. TA fused with the cytoplasmic end of membrane proteins activates reporter genes only with positive control vector with a wild type N terminal ubiquitin (Nub WT ). However, TA fused with the extracellular termini of membrane proteins can't activate reporter genes even with Nub WT . Interestingly,TA fused with the released peptide of a membrane protein shows autoactivation in the SUT system. The SUT system is a simple and fast experimental procedure complementary to computational predictions and large scale proteomic techniques. The preliminary data from SUT are valuable for pathogen recognitions and new drug developments.

  9. Understanding bimolecular machines: Theoretical and experimental approaches

    NASA Astrophysics Data System (ADS)

    Goler, Adam Scott

    This dissertation concerns the study of two classes of molecular machines from a physical perspective: enzymes and membrane proteins. Though the functions of these classes of proteins are different, they each represent important test-beds from which new understanding can be developed by the application of different techniques. HIV1 Reverse Transcriptase is an enzyme that performs multiple functions, including reverse transcription of RNA into an RNA/DNA duplex, RNA degradation by the RNaseH domain, and synthesis of dsDNA. These functions allow for the incorporation of the retroviral genes into the host genome. Its catalytic cycle requires repeated large-scale conformational changes fundamental to its mechanism. Motivated by experimental work, these motions were studied theoretically by the application of normal mode analysis. It was observed that the lowest order modes correlate with largest amplitude (low-frequency) motion, which are most likely to be catalytically relevant. Comparisons between normal modes obtained via an elastic network model to those calculated from the essential dynamics of a series of all-atom molecular dynamics simulations show the self-consistency between these calculations. That similar conformational motions are seen between independent theoretical methods reinforces the importance of large-scale subdomain motion for the biochemical action of DNA polymerases in general. Moreover, it was observed that the major subunits of HIV1 Reverse Transcriptase interact quasi-harmonically. The 5HT3A Serotonin receptor and P2X1 receptor, by contrast, are trans-membrane proteins that function as ligand gated ion channels. Such proteins feature a central pore, which allows for the transit of ions necessary for cellular function across a membrane. The pore is opened by the ligation of binding sites on the extracellular portion of different protein subunits. In an attempt to resolve the individual subunits of these membrane proteins beyond the diffraction limit, a super-localization microscope capable of reconstructing super-resolution images was constructed. This novel setup allows for the study of discrete state kinetic mechanisms with spatial resolution good enough to distinguish individual binding sites of these membrane proteins. Further use of this technique may allow for the study of allostery and subunit specific stoichiometry in the presence of agonist or antagonist ligands relevant to pharmacology.

  10. Separation and identification of mouse liver membrane proteins using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS

    NASA Astrophysics Data System (ADS)

    Thanh Tran, The; Phan, Van Chi

    2010-03-01

    In this work, we present results of membrane proteome profiling from mouse liver tissues using a gel-based approach in combination with 2DnanoLC-Q-TOF-MS/MS. Following purification of the membrane fraction, SDS-PAGE was carried out as a useful separation step. After staining, gels with protein bands were cut, reduced, alkylated and trypsin-digested. The peptide mixtures extracted from each gel slice were fractionated by two-dimensional nano liquid chromatography (2DnanoLC) coupled online with tandem mass spectrometry analysis (NanoESI-Q-TOF-MS/MS). The proteins were identified by MASCOT search against a mouse protein database using a peptide and fragment mass tolerance of ±0.5 Da. Protein identification was carried out using a Mowse scoring algorithm with a confidence level of 95% and processed by MSQuant v1.5 software for further validation. In total, 318 verified membrane proteins from mouse liver tissues were identified; 66.67% of them (212 proteins) contained at least one or more transmembrane domains predicted by the SOSUI program and 43 were found to be unique microsome membranes. Furthermore, GRAVY values of membrane proteins varied in the range -1.1276 to 0.9016 and only 31 (9.76%) membrane proteins had positive values. The functions and subcellular locations of the identified proteins were categorized as well, according to universal GO annotations.

  11. Molecular modeling of biomembranes and their complexes with protein transmembrane α-helices

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey S.; Smirnov, Kirill V.; Antonov, Mikhail Yu.; Nikolaev, Ivan N.; Efremov, Roman G.

    2017-11-01

    Helical segments are common structural elements of membrane proteins. Dimerization and oligomerization of transmembrane (TM) α-helices provides the framework for spatial structure formation and protein-protein interactions. The membrane itself also takes part in the protein functioning. There are some examples of the mutual influence of the lipid bilayer properties and embedded membrane proteins. This work aims at the detail investigation of protein-lipid interactions using model systems: TM peptides corresponding to native protein segments. Three peptides were considered corresponding to TM domains of human glycophorin A (GpA), epidermal growth factor receptor (EGFR) and proposed TM-segment of human neuraminidase-1 (Neu1). A computational analysis of structural and dynamical properties was performed using molecular dynamics method. Monomers of peptides were considered incorporated into hydrated lipid bilayers. It was confirmed, that all these TM peptides have stable helical conformation in lipid environment, and the mutual adaptation of peptides and membrane was observed. It was shown that incorporation of the peptide into membrane results in the modulation of local and mean structural properties of the bilayer. Each peptide interacts with lipid acyl chains having special binding sites on the surface of central part of α-helix that exist for at least 200 ns. However, lipid acyl chains substitute each other faster occupying the same site. The formation of a special pattern of protein-lipid interactions may modulate the association of TM domains of membrane proteins, so membrane environment should be considered when proposing new substances targeting cell receptors.

  12. Herpesvirus gB: A Finely Tuned Fusion Machine

    PubMed Central

    Cooper, Rebecca S.; Heldwein, Ekaterina E.

    2015-01-01

    Enveloped viruses employ a class of proteins known as fusogens to orchestrate the merger of their surrounding envelope and a target cell membrane. Most fusogens accomplish this task alone, by binding cellular receptors and subsequently catalyzing the membrane fusion process. Surprisingly, in herpesviruses, these functions are distributed among multiple proteins: the conserved fusogen gB, the conserved gH/gL heterodimer of poorly defined function, and various non-conserved receptor-binding proteins. We summarize what is currently known about gB from two closely related herpesviruses, HSV-1 and HSV-2, with emphasis on the structure of the largely uncharted membrane interacting regions of this fusogen. We propose that the unusual mechanism of herpesvirus fusion could be linked to the unique architecture of gB. PMID:26690469

  13. Cellulose membranes are more effective in holding back vital proteins and exhibit less interaction with plasma proteins during hemodialysis.

    PubMed

    Pešić, Ivana; Müller, Gerhard A; Baumann, Cosima; Dihazi, Gry H; Koziolek, Michael J; Eltoweissy, Marwa; Bramlage, Carsten; Asif, Abdul R; Dihazi, Hassan

    2013-04-01

    The vast majority of patients with end-stage renal disease are treated with intermittent hemodialysis as a form of renal replacement therapy. To investigate the impact of hemodialysis membrane material on vital protein removal, dialysates from 26 well-characterized hemodialysis patients were collected 5 min after beginning, during 5h of treatment, as well as 5 min before ending of the dialysis sessions. Dialysis sessions were performed using either modified cellulose (n=12) (low-flux and high flux) or synthetic Polyflux (n=14) (low-flux and high-flux) dialyzer. Protein removal during hemodialysis was quantified and the dialysate proteome patterns were analyzed by 2-DE, MS and Western blot. There was a clear correlation between the type of membrane material and the amount of protein removed. Synthetic Polyflux membranes exhibit strong interaction with plasma proteins resulting in a significantly higher protein loss compared to modified cellulosic membrane. Moreover, the proteomics analysis showed that the removed proteins represented different molecular weight range and different functional groups: transport proteins, protease inhibitors, proteins with role in immune response and regulations, constructive proteins and as a part of HLA immune complex. The effect of this protein removal on hemodialysis treatment outcome should be investigated in further studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Fluorophore Absorption Size Exclusion Chromatography (FA-SEC): An Alternative Method for High-Throughput Detergent Screening of Membrane Proteins.

    PubMed

    Lin, Sung-Yao; Sun, Xing-Han; Hsiao, Yu-Hsuan; Chang, Shao-En; Li, Guan-Syun; Hu, Nien-Jen

    2016-01-01

    Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC) has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC) at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins.

  15. Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering

    PubMed Central

    Schmidt, Nathan W.; Wong, Gerard C. L.

    2013-01-01

    Short cationic, amphipathic antimicrobial peptides are multi-functional molecules that have roles in host defense as direct microbicides and modulators of the immune response. While a general mechanism of microbicidal activity involves the selective disruption and permeabilization of cell membranes, the relationships between peptide sequence and membrane activity are still under investigation. Here, we review the diverse functions that AMPs collectively have in host defense, and show that these functions can be multiplexed with a membrane mechanism of activity derived from the generation of negative Gaussian membrane curvature. As AMPs preferentially generate this curvature in model bacterial cell membranes, the selective generation of negative Gaussian curvature provides AMPs with a broad mechanism to target microbial membranes. The amino acid constraints placed on AMPs by the geometric requirement to induce negative Gaussian curvature are consistent with known AMP sequences. This ‘saddle-splay curvature selection rule’ is not strongly restrictive so AMPs have significant compositional freedom to multiplex membrane activity with other useful functions. The observation that certain proteins involved in cellular processes which require negative Gaussian curvature contain domains with similar motifs as AMPs, suggests this rule may be applicable to other curvature-generating proteins. Since our saddle-splay curvature design rule is based upon both a mechanism of activity and the existing motifs of natural AMPs, we believe it will assist the development of synthetic antimicrobials. PMID:24778573

  16. Gestational undernourishment modifies the composition of skeletal muscle transverse tubule membranes and the mechanical properties of muscles in newborn rats.

    PubMed

    Ramírez-Oseguera, Ricardo Tonathiu; Jiménez-Garduño, Aura Matilde; Alvarez, Rocío; Heine, Katharina; Pinzón-Estrada, Enrique; Torres-Saldaña, Ismael; Ortega, Alicia

    2013-01-01

    [corrected] Skeletal muscle (SM) constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4) located in the Transverse tubule membrane system (TT). The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN) in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL) muscle. We demonstrate that compared to control, GUN in the new-born produces; i) decreases body weight; ii) diminution in SM mass; iii) decreases the formation of TT membranes; iv) expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood. © 2013 S. Karger AG, Basel

  17. The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles

    PubMed Central

    Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  18. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  19. Clathrin Terminal Domain-Ligand Interactions Regulate Sorting of Mannose 6-Phosphate Receptors Mediated by AP-1 and GGA Adaptors*

    PubMed Central

    Stahlschmidt, Wiebke; Robertson, Mark J.; Robinson, Phillip J.; McCluskey, Adam; Haucke, Volker

    2014-01-01

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane. PMID:24407285

  20. Accurate computational design of multipass transmembrane proteins.

    PubMed

    Lu, Peilong; Min, Duyoung; DiMaio, Frank; Wei, Kathy Y; Vahey, Michael D; Boyken, Scott E; Chen, Zibo; Fallas, Jorge A; Ueda, George; Sheffler, William; Mulligan, Vikram Khipple; Xu, Wenqing; Bowie, James U; Baker, David

    2018-03-02

    The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Structure and Function of the Haemophilus influenzae Autotransporters

    PubMed Central

    Spahich, Nicole A.; St. Geme, Joseph W.

    2011-01-01

    Autotransporters are a large class of proteins that are found in the outer membrane of Gram-negative bacteria and are almost universally implicated in virulence. These proteins consist of a C-terminal β-domain that is embedded in the outer membrane and an N-terminal domain that is exposed on the bacterial surface and is endowed with effector function. In this article, we review and compare the structural and functional characteristics of the Haemophilus influenzae IgA1 protease and Hap monomeric autotransporters and the H. influenzae Hia and Hsf trimeric autotransporters. All of these proteins play a role in colonization of the upper respiratory tract and in the pathogenesis of H. influenzae disease. PMID:22919571

  2. Tight junction-based epithelial microenvironment and cell proliferation.

    PubMed

    Tsukita, S; Yamazaki, Y; Katsuno, T; Tamura, A; Tsukita, S

    2008-11-24

    Belt-like tight junctions (TJs), referred to as zonula occludens, have long been regarded as a specialized differentiation of epithelial cell membranes. They are required for cell adhesion and paracellular barrier functions, and are now thought to be partly involved in fence functions and in cell polarization. Recently, the molecular bases of TJs have gradually been unveiled. TJs are constructed by TJ strands, whose basic frameworks are composed of integral membrane proteins with four transmembrane domains, designated claudins. The claudin family is supposedly composed of at least 24 members in mice and humans. Other types of integral membrane proteins with four transmembrane domains, namely occludin and tricellulin, as well as the single transmembrane proteins, JAMs (junctional adhesion molecules) and CAR (coxsackie and adenovirus receptor), are associated with TJ strands, and the high-level organization of TJ strands is likely to be established by membrane-anchored scaffolding proteins, such as ZO-1/2. Recent functional analyses of claudins in cell cultures and in mice have suggested that claudin-based TJs may have pivotal functions in the regulation of the epithelial microenvironment, which is critical for various biological functions such as control of cell proliferation. These represent the dawn of 'Barriology' (defined by Shoichiro Tsukita as the science of barriers in multicellular organisms). Taken together with recent reports regarding changes in claudin expression levels, understanding the regulation of the TJ-based microenvironment system will provide new insights into the regulation of polarization in the respect of epithelial microenvironment system and new viewpoints for developing anticancer strategies.

  3. The scope of phage display for membrane proteins.

    PubMed

    Vithayathil, Rosemarie; Hooy, Richard M; Cocco, Melanie J; Weiss, Gregory A

    2011-12-09

    Numerous examples of phage display applied to soluble proteins demonstrate the power of the technique for protein engineering, affinity reagent discovery and structure-function studies. Recent reports have expanded phage display to include membrane proteins (MPs). The scope and limitations of MP display remain undefined. Therefore, we report data from the phage display of representative types of membrane-associated proteins including plasma, nuclear, peripheral, single and multipass. The peripheral MP neuromodulin displays robustly with packaging by conventional M13-KO7 helper phage. The monotopic MP Nogo-66 can also display on the phage surface, if packaged by the modified M13-KO7(+) helper phage. The modified phage coat of KO7(+) can better mimic the zwitterionic character of the plasma membrane. Four examples of putatively α-helical, integral MPs failed to express as fusions to an anchoring phage coat protein and therefore did not display on the phage surface. However, the β-barrel MPs ShuA (Shigella heme uptake A) and MOMP (major outer membrane protein), which pass through the membrane 22 and 16 times, respectively, can display surprisingly well on the surfaces of both conventional and KO7(+) phages. The results provide a guide for protein engineering and large-scale mutagenesis enabled by the phage display of MPs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  5. Cooperative interactions of LPPR family members in membrane localization and alteration of cellular morphology

    PubMed Central

    Yu, Panpan; Agbaegbu, Chinyere; Malide, Daniela A.; Wu, Xufeng; Katagiri, Yasuhiro; Hammer, John A.; Geller, Herbert M.

    2015-01-01

    ABSTRACT The lipid phosphate phosphatase-related proteins (LPPRs), also known as plasticity-related genes (PRGs), are classified as a new brain-enriched subclass of the lipid phosphate phosphatase (LPP) superfamily. They induce membrane protrusions, neurite outgrowth or dendritic spine formation in cell lines and primary neurons. However, the exact roles of LPPRs and the mechanisms underlying their effects are not certain. Here, we present the results of a large-scale proteome analysis to determine LPPR1-interacting proteins using co-immunoprecipitation coupled to mass spectrometry. We identified putative LPPR1-binding proteins involved in various biological processes. Most interestingly, we identified the interaction of LPPR1 with its family member LPPR3, LPPR4 and LPPR5. Their interactions were characterized by co-immunoprecipitation and colocalization analysis using confocal and super-resolution microscopy. Moreover, co-expressing two LPPR members mutually elevated their protein levels, facilitated their plasma membrane localization and resulted in an increased induction of membrane protrusions as well as the phosphorylation of S6 ribosomal protein. Taken together, we revealed a new functional cooperation between LPPR family members and discovered for the first time that LPPRs likely exert their function through forming complex with its family members. PMID:26183180

  6. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE PAGES

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.; ...

    2016-09-23

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates thatCaulobacter crescentushas two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closestC. crescentushomologs to TolC inE. coli, do not process TolC functionality inC. crescentus.« less

  7. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    ABSTRACT Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrugmore » efflux pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates thatCaulobacter crescentushas two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closestC. crescentushomologs to TolC inE. coli, do not process TolC functionality inC. crescentus.« less

  8. Two Outer Membrane Proteins Contribute to Caulobacter crescentus Cellular Fitness by Preventing Intracellular S-Layer Protein Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overton, K. Wesley; Park, Dan M.; Yung, Mimi C.

    Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior.Caulobacter crescentusis unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaF aand RsaF b, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology toEscherichia coliTolC, the outer membrane channel of multidrug effluxmore » pumps. Here we provide evidence that, unlike TolC, RsaF aand RsaF bare not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaF aand RsaF bare required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaF aand RsaF bled to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaF aand RsaF bled to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaF aand RsaF bin cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels inC. crescentus. IMPORTANCEDecreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates thatCaulobacter crescentushas two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closestC. crescentushomologs to TolC inE. coli, do not process TolC functionality inC. crescentus.« less

  9. Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks

    NASA Astrophysics Data System (ADS)

    Bayburt, Timothy H.; Sligar, Stephen G.

    2002-05-01

    The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy. Individual P450 molecules were observed protruding from the bilayer surface. Problems associated with deformation of the protein by the atomic force microscopy probe were avoided by analyzing force-dependent height measurements to quantitate the height of the protein above the bilayer surface. Measurements of the atomic force microscopy cantilever deflection as a function of probe-sample separation reveal that the top of the P450 opposite the N-terminal membrane anchor region sits 3.5 nanometers above the phospholipid-water boundary. Models of the orientation of the enzyme are presented and discussed in relation to membrane interactions and interaction with cytochrome P450 reductase.

  10. [Quantitative changes of main components of erythrocyte membranes which define architectonics of cells under pttg gene knockout].

    PubMed

    Kaniuka, O P; Filiak, Ie Z; Kulachkovs'kyĭ, O R; Osyp, Iu L; Sybirna, N O

    2014-01-01

    A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein--beta-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of erythrocyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed underpttg gene knockout.

  11. Superresolution imaging of viral protein trafficking

    PubMed Central

    Salka, Kyle; Bhuvanendran, Shivaprasad; Yang, David

    2015-01-01

    The endoplasmic reticulum (ER) membrane is closely apposed to the outer mitochondrial membrane (OMM), which facilitates communication between these organelles. These contacts, known as mitochondria-associated membranes (MAM), facilitate calcium signaling, lipid transfer, as well as antiviral and stress responses. How cellular proteins traffic to the MAM, are distributed therein, and interact with ER and mitochondrial proteins are subject of great interest. The human cytomegalovirus UL37 exon 1 protein or viral mitochondria-localized inhibitor of apoptosis (vMIA) is crucial for viral growth. Upon synthesis at the ER, vMIA traffics to the MAM and OMM, where it reprograms the organization and function of these compartments. vMIA significantly changes the abundance of cellular proteins at the MAM and OMM, including proteins that regulate calcium homeostasis and cell death. Through the use of superresolution imaging, we have shown that vMIA is distributed at the OMM in nanometer scale clusters. This is similar to the clusters reported for the mitochondrial calcium channel, VDAC, as well as electron transport chain, translocase of the OMM complex, and mitochondrial inner membrane organizing system components. Thus, aside from addressing how vMIA targets the MAM and regulates survival of infected cells, biochemical studies and superresolution imaging of vMIA offer insights into the formation, organization, and functioning of MAM. Here, we discuss these insights into trafficking, function, and organization of vMIA at the MAM and OMM and discuss how the use of superresolution imaging is contributing to the study of the formation and trafficking of viruses. PMID:25724304

  12. Computational Approaches for Revealing the Structure of Membrane Transporters: Case Study on Bilitranslocase.

    PubMed

    Venko, Katja; Roy Choudhury, A; Novič, Marjana

    2017-01-01

    The structural and functional details of transmembrane proteins are vastly underexplored, mostly due to experimental difficulties regarding their solubility and stability. Currently, the majority of transmembrane protein structures are still unknown and this present a huge experimental and computational challenge. Nowadays, thanks to X-ray crystallography or NMR spectroscopy over 3000 structures of membrane proteins have been solved, among them only a few hundred unique ones. Due to the vast biological and pharmaceutical interest in the elucidation of the structure and the functional mechanisms of transmembrane proteins, several computational methods have been developed to overcome the experimental gap. If combined with experimental data the computational information enables rapid, low cost and successful predictions of the molecular structure of unsolved proteins. The reliability of the predictions depends on the availability and accuracy of experimental data associated with structural information. In this review, the following methods are proposed for in silico structure elucidation: sequence-dependent predictions of transmembrane regions, predictions of transmembrane helix-helix interactions, helix arrangements in membrane models, and testing their stability with molecular dynamics simulations. We also demonstrate the usage of the computational methods listed above by proposing a model for the molecular structure of the transmembrane protein bilitranslocase. Bilitranslocase is bilirubin membrane transporter, which shares similar tissue distribution and functional properties with some of the members of the Organic Anion Transporter family and is the only member classified in the Bilirubin Transporter Family. Regarding its unique properties, bilitranslocase is a potentially interesting drug target.

  13. Mapping the energy landscape for second-stage folding of a single membrane protein

    PubMed Central

    Min, Duyoung; Jefferson, Robert E; Bowie, James U; Yoon, Tae-Young

    2016-01-01

    Membrane proteins are designed to fold and function in a lipid membrane, yet folding experiments within a native membrane environment are challenging to design. Here we show that single-molecule forced unfolding experiments can be adapted to study helical membrane protein folding under native-like bicelle conditions. Applying force using magnetic tweezers, we find that a transmembrane helix protein, Escherichia coli rhomboid protease GlpG, unfolds in a highly cooperative manner, largely unraveling as one physical unit in response to mechanical tension above 25 pN. Considerable hysteresis is observed, with refolding occurring only at forces below 5 pN. Characterizing the energy landscape reveals only modest thermodynamic stability (ΔG = 6.5 kBT) but a large unfolding barrier (21.3 kBT) that can maintain the protein in a folded state for long periods of time (t1/2 ~3.5 h). The observed energy landscape may have evolved to limit the existence of troublesome partially unfolded states and impart rigidity to the structure. PMID:26479439

  14. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

    NASA Astrophysics Data System (ADS)

    Golan, Yonatan; Sherman, Eilon

    2017-06-01

    The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

  15. A Neutron View of Proteins in Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    White, Stephen

    2012-02-01

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.

  16. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants.

    PubMed

    Brummell, D A; Catala, C; Lashbrook, C C; Bennett, A B

    1997-04-29

    Endo-1,4-beta-D-glucanases (EGases, EC 3.2.1.4) are enzymes produced in bacteria, fungi, and plants that hydrolyze polysaccharides possessing a 1,4-beta-D-glucan backbone. All previously identified plant EGases are E-type endoglucanases that possess signal sequences for endoplasmic reticulum entry and are secreted to the cell wall. Here we report the characterization of a novel E-type plant EGase (tomato Cel3) with a hydrophobic transmembrane domain and structure typical of type II integral membrane proteins. The predicted protein is composed of 617 amino acids and possesses seven potential sites for N-glycosylation. Cel3 mRNA accumulates in young vegetative tissues with highest abundance during periods of rapid cell expansion, but is not hormonally regulated. Antibodies raised to a recombinant Cel3 protein specifically recognized three proteins, with apparent molecular masses of 93, 88, and 53 kDa, in tomato root microsomal membranes separated by sucrose density centrifugation. The 53-kDa protein comigrated in the gradient with plasma membrane markers, the 88-kDa protein with Golgi membrane markers, and the 93-kDa protein with markers for both Golgi and plasma membranes. EGase enzyme activity was also found in regions of the density gradient corresponding to both Golgi and plasma membranes, suggesting that Cel3 EGase resides in both membrane systems, the sites of cell wall polymer biosynthesis. The in vivo function of Cel3 is not known, but the only other known membrane-anchored EGase is present in Agrobacterium tumefaciens where it is required for cellulose biosynthesis.

  17. Glycosylatable GFP as a compartment-specific membrane topology reporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hunsang; Min, Jisoo; Heijne, Gunnar von

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer An N-linked glycosylation site is introduced near the GFP fluorophore. Black-Right-Pointing-Pointer gGFP is not glycosylated and is fully fluorescent in the cytosol. Black-Right-Pointing-Pointer gGFP is glycosylated and non-fluorescent in the lumen of the ER. Black-Right-Pointing-Pointer gGFP is fused to membrane proteins of known topology. Black-Right-Pointing-Pointer Its applicability as a membrane topology reporter is demonstrated. -- Abstract: Determination of the membrane topology is an essential step in structural and functional studies of integral membrane proteins, yet the choices of membrane topology reporters are limited and the experimental analysis can be laborious, especially in eukaryotic cells. Here, we present amore » robust membrane topology reporter, glycosylatable green fluorescent protein (gGFP). gGFP is fully fluorescent in the yeast cytosol but becomes glycosylated and does not fluoresce in the lumen of the endoplasmic reticulum (ER). Thus, by assaying fluorescence and the glycosylation status of C-terminal fusions of gGFP to target membrane proteins in whole-cell lysates, the localization of the gGFP moiety (and hence the fusion joint) relative to the ER membrane can be unambiguously determined.« less

  18. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution.

    PubMed

    Vermaas, Josh V; Baylon, Javier L; Arcario, Mark J; Muller, Melanie P; Wu, Zhe; Pogorelov, Taras V; Tajkhorshid, Emad

    2015-06-01

    Biological membranes constitute a critical component in all living cells. In addition to providing a conducive environment to a wide range of cellular processes, including transport and signaling, mounting evidence has established active participation of specific lipids in modulating membrane protein function through various mechanisms. Understanding lipid-protein interactions underlying these mechanisms at a sufficiently high resolution has proven extremely challenging, partly due to the semi-fluid nature of the membrane. In order to address this challenge computationally, multiple methods have been developed, including an alternative membrane representation termed highly mobile membrane mimetic (HMMM) in which lateral lipid diffusion has been significantly enhanced without compromising atomic details. The model allows for efficient sampling of lipid-protein interactions at atomic resolution, thereby significantly enhancing the effectiveness of molecular dynamics simulations in capturing membrane-associated phenomena. In this review, after providing an overview of HMMM model development, we will describe briefly successful application of the model to study a variety of membrane processes, including lipid-dependent binding and insertion of peripheral proteins, the mechanism of phospholipid insertion into lipid bilayers, and characterization of optimal tilt angle of transmembrane helices. We conclude with practical recommendations for proper usage of the model in simulation studies of membrane processes.

  19. Membrane transporters studied by EPR spectroscopy: structure determination and elucidation of functional dynamics.

    PubMed

    Mullen, Anna; Hall, Jenny; Diegel, Janika; Hassan, Isa; Fey, Adam; MacMillan, Fraser

    2016-06-15

    During their mechanistic cycles membrane transporters often undergo extensive conformational changes, sampling a range of orientations, in order to complete their function. Such membrane transporters present somewhat of a challenge to conventional structural studies; indeed, crystallization of membrane-associated proteins sometimes require conditions that vary vastly from their native environments. Moreover, this technique currently only allows for visualization of single selected conformations during any one experiment. EPR spectroscopy is a magnetic resonance technique that offers a unique opportunity to study structural, environmental and dynamic properties of such proteins in their native membrane environments, as well as readily sampling their substrate-binding-induced dynamic conformational changes especially through complementary computational analyses. Here we present a review of recent studies that utilize a variety of EPR techniques in order to investigate both the structure and dynamics of a range of membrane transporters and associated proteins, focusing on both primary (ABC-type transporters) and secondary active transporters which were key interest areas of the late Professor Stephen Baldwin to whom this review is dedicated. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Detergent-free purification of ABC (ATP-binding-cassette) transporters.

    PubMed

    Gulati, Sonali; Jamshad, Mohammed; Knowles, Timothy J; Morrison, Kerrie A; Downing, Rebecca; Cant, Natasha; Collins, Richard; Koenderink, Jan B; Ford, Robert C; Overduin, Michael; Kerr, Ian D; Dafforn, Timothy R; Rothnie, Alice J

    2014-07-15

    ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.

  1. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  2. Structural basis for membrane targeting by the MVB12-associated [beta]-prism domain of the human ESCRT-I MVB12 subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boura, Evzen; Hurley, James H.

    2012-03-15

    MVB12-associated {beta}-prism (MABP) domains are predicted to occur in a diverse set of membrane-associated bacterial and eukaryotic proteins, but their existence, structure, and biochemical properties have not been characterized experimentally. Here, we find that the MABP domains of the MVB12A and B subunits of ESCRT-I are functional modules that bind in vitro to liposomes containing acidic lipids depending on negative charge density. The MABP domain is capable of autonomously localizing to subcellular puncta and to the plasma membrane. The 1.3-{angstrom} atomic resolution crystal structure of the MVB12B MABP domain reveals a {beta}-prism fold, a hydrophobic membrane-anchoring loop, and an electropositivemore » phosphoinositide-binding patch. The basic patch is open, which explains how it senses negative charge density but lacks stereoselectivity. These observations show how ESCRT-I could act as a coincidence detector for acidic phospholipids and protein ligands, enabling it to function both in protein transport at endosomes and in cytokinesis and viral budding at the plasma membrane.« less

  3. Plant uncoupling mitochondrial proteins.

    PubMed

    Vercesi, Aníbal Eugênio; Borecký, Jiri; Maia, Ivan de Godoy; Arruda, Paulo; Cuccovia, Iolanda Midea; Chaimovich, Hernan

    2006-01-01

    Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.

  4. Isolation, Characterization and Lipid-Binding Properties of the Recalcitrant FtsA Division Protein from Escherichia coli

    PubMed Central

    Zorrilla, Silvia; Reija, Belén; Alfonso, Carlos; Mingorance, Jesús; Rivas, Germán; Jiménez, Mercedes

    2012-01-01

    We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures. PMID:22761913

  5. Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems

    NASA Astrophysics Data System (ADS)

    Chu, Bong-Chieh Benjamin

    Alternative energy sources have become an increasingly important topic as energy needs outpace supply. Furthermore, as the world moves into the digital age of portable electronics, highly efficient and lightweight energy sources will need to be developed. Current technology, such as lithium ion batteries, provide enough power to run portable electronics for hours or days, but can still allow for improvement in their power density (W/kg). Utilizing energy-transducing membrane proteins, which are by nature highly efficient, it is possible to engineer biological-based energy sources with energy densities far greater than any solid-state systems. Furthermore, solar powered membrane proteins have the added benefit of a virtually unlimited supply of energy. This work has developed protein-polymer hybrid films and nanoscale vesicles for a variety of applications from fuel-cell technology to biological-based photovoltaics. Bacteriorhodopsin (BR), a light-activated proton pump, and Cytochrome C Oxidase (COX), a protein involved in the electron transport chain in mitochondria, were reconstituted into biomimetic triblock copolymer membranes. Block copolymer membranes mimic the amphiphilic nature of a natural lipid bilayer but exhibit greater mechanical stability due to UV-polymerizable endgroups. In BR/COX functionalized nanovesicles, proton gradients generated by the light-activated proton pumping of BR are used to drive COX in reverse to generate electrons, providing a hybrid biologically-active polymer to convert solar energy to chemical energy, and finally to electrical energy. This work has found protein activity in planar membranes through the photoelectric current generation by BR and the proton pumping activity of BR-functionalized polymer membranes deposited onto proton exchange membranes, as well as the coupled functionality of BR and COX through current generation in cyclic voltammetry and direct current measurements. Current switching between light and dark environments of composite BR/COX polymer vesicles show a light-dependent current generation with current changes as high as 10muA. Furthermore, electrode modifications were made using polymer and polymer/carbon nanotube (CNT) coatings as anti-absorbent and conductive anti-absorbent layers for the purpose of a more robust electrode. These findings have shown that biological functionality can be engineered into synthetic polymers to make hybrid devices.

  6. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    PubMed

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  7. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology.

    PubMed

    Manford, Andrew G; Stefan, Christopher J; Yuan, Helen L; Macgurn, Jason A; Emr, Scott D

    2012-12-11

    Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Growth factor-functionalized silk membranes support wound healing in vitro.

    PubMed

    Bienert, M; Hoss, M; Bartneck, M; Weinandy, S; Böbel, M; Jockenhövel, S; Knüchel, R; Pottbacker, K; Wöltje, M; Jahnen-Dechent, W; Neuss, S

    2017-08-16

    Chronic wounds represent a serious problem in daily medical routine requiring improved wound care. Silk of the domesticated silkworm (Bombyx mori) has been used to form a variety of biomaterials for medical applications. We genetically engineered B. mori to produce silk functionalized with growth factors to promote wound healing in vitro. In this study FGF-, EGF-, KGF-, PDGF- or VEGF-functionalized silk membranes were compared to native B. mori silk membranes without growth factors for their ability to support wound healing in vitro. All silk membranes were cytocompatible and supported macrophage secretion of neutrophil recruiting factor CXCL1 and monocyte chemoattractant protein 1 (MCP-1). VEGF-functionalized silk significantly outperformed other growth factor-functionalized silk membranes, but not native silk in angiogenesis assays. In addition, EGF- and VEGF-functionalized silk membranes slightly enhanced macrophage adhesion compared to silk without growth factors. In wound healing assays in vitro (reduction of wound lesion), dermal equivalents showed a higher wound healing capacity when covered with EGF-, FGF- or VEGF-functionalized silk membranes compared to native, KGF- or PDGF-functionalized silk membranes. Keratinocyte migration and growth is overstimulated by KGF- and VEGF-functionalized silk membranes. In conclusion, growth factor-functionalized silk membranes prepared from genetically engineered silk worm glands are promising wound dressings for future wound healing therapies.

  9. Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.

    PubMed

    Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William

    2017-02-03

    Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Functional characterization of ExFadLO, an outer membrane protein required for exporting oxygenated long-chain fatty acids in Pseudomonas aeruginosa.

    PubMed

    Martínez, Eriel; Estupiñán, Mónica; Pastor, F I Javier; Busquets, Montserrat; Díaz, Pilar; Manresa, Angeles

    2013-02-01

    Bacterial proteins of the FadL family have frequently been associated to the uptake of exogenous hydrophobic substrates. However, their outer membrane location and involvement in substrate uptake have been inferred mainly from sequence similarity to Escherichia coli FadL, the first well-characterized outer membrane transporters of Long-Chain Fatty Acids (LCFAs) in bacteria. Here we report the functional characterization of a Pseudomonas aeruginosa outer membrane protein (ORF PA1288) showing similarities to the members of the FadL family, for which we propose the name ExFadLO. We demonstrate herein that this protein is required to export LCFAs 10-HOME and 7,10-DiHOME, derived from a diol synthase oxygenation activity on oleic acid, from the periplasm to the extracellular medium. Accumulation of 10-HOME and 7,10-DiHOME in the extracellular medium of P. aeruginosa was abolished by a transposon insertion mutation in exFadLO (ExFadLO¯ mutant). However, intact periplasm diol synthase activity was found in this mutant, indicating that ExFadLO participates in the export of these oxygenated LCFAs across the outer membrane. The capacity of ExFadLO¯ mutant to export 10-HOME and 7,10-DiHOME was recovered after complementation with a wild-type, plasmid-expressed ExFadLO protein. A western blot assay with a variant of ExFadLO tagged with a V5 epitope confirmed the location of ExFadLO in the bacterial outer membrane under the experimental conditions tested. Our results provide the first evidence that FadL family proteins, known to be involved in the uptake of hydrophobic substrates from the extracellular environment, also function as secretion elements for metabolites of biological relevance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane.

    PubMed

    Koga, Ritsuko; Kubota, Marie; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-02-28

    Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca 2+ -dependent manner. Annexin A2 (AnxA2), a member of the family, has been implicated in a variety of cellular functions including the organization of membrane domains, vesicular trafficking and cell-cell adhesion. AnxA2 generally forms the heterotetrameric complex with a small Ca 2+ -binding protein S100A10. Measles virus (MV), a member of the family Paramyxoviridae , is an enveloped virus with a nonsegmented negative strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells, without affecting its entry and viral RNA production. In MV-infected, AnxA2-knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10, and was co-localized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6-10), thereby aiding in MV assembly. IMPORTANCE Measles virus (MV) is an important human pathogen, still claiming ∼ 100,000 lives per year despite the presence of effective vaccines, and causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of MV within the cell. Further studies demonstrated that annexin A2 interacts with the MV matrix (M) protein and mediates the localization of the M protein at the plasma membrane where MV particles are formed. The M protein lines the inner surface of the MV envelope membrane and plays a role in MV particle formation. Our results provide useful information for the understanding of the MV replication process and potential development of anti-viral agents. Copyright © 2018 American Society for Microbiology.

  12. The Safety Dance: Biophysics of Membrane Protein Folding and Misfolding in a Cellular Context

    PubMed Central

    Schlebach, Jonathan P.; Sanders, Charles R.

    2015-01-01

    Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine. PMID:25420508

  13. Membrane trafficking pathways and their roles in plant-microbe interactions.

    PubMed

    Inada, Noriko; Ueda, Takashi

    2014-04-01

    Membrane trafficking functions in the delivery of proteins that are newly synthesized in the endoplasmic reticulum (ER) to their final destinations, such as the plasma membrane (PM) and the vacuole, and in the internalization of extracellular components or PM-associated proteins for recycling or degradative regulation. These trafficking pathways play pivotal roles in the rapid responses to environmental stimuli such as challenges by microorganisms. In this review, we provide an overview of the current knowledge of plant membrane trafficking and its roles in plant-microbe interactions. Although there is little information regarding the mechanism of pathogenic modulation of plant membrane trafficking thus far, recent research has identified many membrane trafficking factors as possible targets of microbial modulation.

  14. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins.

    PubMed

    Suetsugu, Shiro; Kurisu, Shusaku; Takenawa, Tadaomi

    2014-10-01

    All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes. Copyright © 2014 the American Physiological Society.

  15. Transport proteins of the plant plasma membrane

    NASA Technical Reports Server (NTRS)

    Assmann, S. M.; Haubrick, L. L.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Recently developed molecular and genetic approaches have enabled the identification and functional characterization of novel genes encoding ion channels, ion carriers, and water channels of the plant plasma membrane.

  16. Proteomic Analysis of Rat Hippocampus under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin

    It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling

  17. [Interaction of FABP4 with plasma membrane proteins of endothelial cells].

    PubMed

    Saavedra, Paula; Girona, Josefa; Aragonès, Gemma; Cabré, Anna; Guaita, Sandra; Heras, Mercedes; Masana, Lluís

    2015-01-01

    Fatty acid binding protein (FABP4) is an adipose tissue-secreted adipokine implicated in the regulation of the energetic metabolism and inflammation. High levels of circulating FABP4 have been described in people with obesity, atherogenic dyslipidemia, diabetes and metabolic syndrome. Recent studies have demonstrated that FABP4 could have a direct effect on peripheral tissues and, specifically, on vascular function. It is still unknown how the interaction between FABP4 and the endothelial cells is produced to prompt these effects on vascular function. The objective of this work is studying the interaction between FABP4 and the plasma membrane proteins of endothelial cells. HUVEC cells were incubated with and without FABP4 (100 ng/ml) for 5 minutes. Immunolocalization of FABP4 was studied by confocal microscopy. The results showed that FABP4 colocalizates with CD31, a membrane protein marker. A strategy which combines 6XHistidine-tag FABP4 (FABP4-His), incubations with or without FABP4-His (100 ng/ml), formaldehyde cross-linking, cellular membrane protein extraction and western blot, was designed to study the FABP4 interactions with membrane proteins of HUVECs. The results showed different western blot profiles depending of the incubation with or without FABP4-His. The immunoblot revelead three covalent protein complexes of about 108, 77 and 33 kDa containing FAPB4 and its putative receptor. The existence of a specific binding protein complex able to bind FABP4 to endothelial cells is supported by these results. The obtained results will permit us advance in the molecular knowledge of FABP4 effects as well as use this protein and its receptor as therapeutic target to prevent cardiovascular. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamunusinghe, Devinka, E-mail: dbamu001@ucr.ed; Hemenway, Cynthia L., E-mail: cindy_hemenway@ncsu.ed; Nelson, Richard S., E-mail: rsnelson@noble.or

    Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER atmore » the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.« less

  19. YTPdb: a wiki database of yeast membrane transporters.

    PubMed

    Brohée, Sylvain; Barriot, Roland; Moreau, Yves; André, Bruno

    2010-10-01

    Membrane transporters constitute one of the largest functional categories of proteins in all organisms. In the yeast Saccharomyces cerevisiae, this represents about 300 proteins ( approximately 5% of the proteome). We here present the Yeast Transport Protein database (YTPdb), a user-friendly collaborative resource dedicated to the precise classification and annotation of yeast transporters. YTPdb exploits an evolution of the MediaWiki web engine used for popular collaborative databases like Wikipedia, allowing every registered user to edit the data in a user-friendly manner. Proteins in YTPdb are classified on the basis of functional criteria such as subcellular location or their substrate compounds. These classifications are hierarchical, allowing queries to be performed at various levels, from highly specific (e.g. ammonium as a substrate or the vacuole as a location) to broader (e.g. cation as a substrate or inner membranes as location). Other resources accessible for each transporter via YTPdb include post-translational modifications, K(m) values, a permanently updated bibliography, and a hierarchical classification into families. The YTPdb concept can be extrapolated to other organisms and could even be applied for other functional categories of proteins. YTPdb is accessible at http://homes.esat.kuleuven.be/ytpdb/. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Membrane Composition Tunes the Outer Hair Cell Motor

    NASA Astrophysics Data System (ADS)

    Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.

    2009-02-01

    Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.

  1. Alcohols are inhibitors of Saccharomyces cerevisiae multidrug-resistance pumps Pdr5p and Snq2p.

    PubMed

    Gášková, Dana; Plášek, Jaromír; Zahumenský, Jakub; Benešová, Ivana; Buriánková, Luboslava; Sigler, Karel

    2013-12-01

    The effect of alcohols on cell membrane proteins has originally been assumed to be mediated by their primary action on membrane lipid matrix. Many studies carried out later on both animal and yeast cells have revealed that ethanol and other alcohols inhibit the functions of various membrane channels, receptors and solute transport proteins, and a direct interaction of alcohols with these membrane proteins has been proposed. Using our fluorescence diS-C3 (3) diagnostic assay for multidrug-resistance pump inhibitors in a set of isogenic yeast Pdr5p and Snq2p mutants, we found that n-alcohols (from ethanol to hexanol) variously affect the activity of both pumps. Beginning with propanol, these alcohols have an inhibitory effect that increases with increasing length of the alcohol acyl chain. While ethanol does not exert any inhibitory effect at any of the concentration used (up to 3%), hexanol exerts a strong inhibition at 0.1%. The alcohol-induced inhibition of MDR pumps was detected even in cells whose membrane functional and structural integrity were not compromised. This supports a notion that the inhibitory action does not necessarily involve only changes in the lipid matrix of the membrane but may entail a direct interaction of the alcohols with the pump proteins. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Atomistic models for free energy evaluation of drug binding to membrane proteins.

    PubMed

    Durdagi, S; Zhao, C; Cuervo, J E; Noskov, S Y

    2011-01-01

    The binding of various molecules to integral membrane proteins with optimal affinity and specificity is central to normal function of cell. While membrane proteins represent about one third of the whole cell proteome, they are a majority of common drug targets. The quest for the development of computational models capable of accurate evaluation of binding affinities, decomposition of the binding into its principal components and thus mapping molecular mechanisms of binding remains one of the main goals of modern computational biophysics and related drug development. The primary scope of this review will be on the recent extension of computational methods for the study of drug binding to membrane proteins. Several examples of such applications will be provided ranging from secondary transporters to voltage gated channels. In this mini-review, we will provide a short summary on the breadth of different methods for binding affinity evaluation. These methods include molecular docking with docking scoring functions, molecular dynamics (MD) simulations combined with post-processing analysis using Molecular Mechanics/Poisson Boltzmann (Generalized Born) Surface Area (MM/PB(GB)SA), as well as direct evaluation of free energies from Free Energy Perturbation (FEP) with constraining schemes, and Potential of Mean Force (PMF) computations. We will compare advantages and shortcomings of popular techniques and provide discussion on the integrative strategies for drug development aimed at targeting membrane proteins.

  3. Aromatic Side Chain Water-to-Lipid Transfer Free Energies Show a Depth Dependence across the Membrane Normal.

    PubMed

    McDonald, Sarah K; Fleming, Karen G

    2016-06-29

    Quantitating and understanding the physical forces responsible for the interactions of biomolecules are fundamental to the biological sciences. This is especially challenging for membrane proteins because they are embedded within cellular bilayers that provide a unique medium in which hydrophobic sequences must fold. Knowledge of the energetics of protein-lipid interactions is thus vital to understand cellular processes involving membrane proteins. Here we used a host-guest mutational strategy to calculate the Gibbs free energy changes of water-to-lipid transfer for the aromatic side chains Trp, Tyr, and Phe as a function of depth in the membrane. This work reveals an energetic gradient in the transfer free energies for Trp and Tyr, where transfer was most favorable to the membrane interfacial region and comparatively less favorable into the bilayer center. The transfer energetics follows the concentration gradient of polar atoms across the bilayer normal that naturally occurs in biological membranes. Additional measurements revealed nearest-neighbor coupling in the data set are influenced by a network of aromatic side chains in the host protein. Taken together, these results show that aromatic side chains contribute significantly to membrane protein stability through either aromatic-aromatic interactions or placement at the membrane interface.

  4. Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling

    NASA Astrophysics Data System (ADS)

    Jaiswal, Dinesh Kumar; Mishra, Poonam; Subba, Pratigya; Rathi, Divya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-02-01

    Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling.

  5. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Roslyn N.; Sanford, James A.; Park, Jea H.

    Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators ofmore » two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.« less

  7. Biochemistry and biophysics of HIV-1 gp41 - membrane interactions and implications for HIV-1 envelope protein mediated viral-cell fusion and fusion inhibitor design.

    PubMed

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-12-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein - mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), Nterminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors.

  8. Golgi sorting regulates organization and activity of GPI-proteins at apical membranes

    PubMed Central

    Tivodar, Simona; Formiggini, Fabio; Ossato, Giulia; Gratton, Enrico; Tramier, Marc; Coppey-Moisan, Maïté; Zurzolo, Chiara

    2014-01-01

    Here, we combined classical biochemistry with novel biophysical approaches to study with high spatial and temporal resolution the organization of GPI-anchored proteins (GPI-APs) at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, following sorting in the Golgi, each GPI-AP reaches the apical surface in homo-clusters. Golgi-derived homo-clusters are required for their subsequent plasma membrane organization into cholesterol-dependent hetero-clusters. By contrast, in non-polarized MDCK cells GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form hetero-clusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, different from fibroblasts, in polarized epithelial cells a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and the function of GPI-APs at the apical surface. PMID:24681536

  9. WHEAT GERM CELL-FREE TRANSLATION, PURIFICATION, AND ASSEMBLY OF A FUNCTIONAL HUMAN STEAROYL-COA DESATURASE COMPLEX

    PubMed Central

    Goren, Michael A.; Fox, Brian G.

    2008-01-01

    A wheat germ cell-free extract was used to perform in vitro translation of human stearoyl-CoA desaturase in the presence of unilamelar liposomes, and near complete transfer of the expressed integral membrane protein into the liposome was observed. Moreover, co-translation of the desaturase along with human cytochrome b5 led to transfer of both membrane proteins into the liposomes. A simple, single step purification via centrifugation in a density gradient yielded proteoliposomes with the desaturase in high purity as judged by capillary electrophoresis. After in vitro reconstitution of the non-heme iron and heme active sites, the function of the reconstituted enzyme complex was demonstrated by conversion of stearoyl-CoA to oleoyl-CoA. This simple translation approach obviates the use of detergents or other lipids to stabilize and isolate a catalytically active integral membrane enzyme. The applicability of cell-free translation to the assembly and purification of other integral membrane protein complexes is discussed. PMID:18765284

  10. Wheat germ cell-free translation, purification, and assembly of a functional human stearoyl-CoA desaturase complex.

    PubMed

    Goren, Michael A; Fox, Brian G

    2008-12-01

    A wheat germ cell-free extract was used to perform in vitro translation of human stearoyl-CoA desaturase in the presence of unilamelar liposomes, and near complete transfer of the expressed integral membrane protein into the liposome was observed. Moreover, co-translation of the desaturase along with human cytochrome b(5) led to transfer of both membrane proteins into the liposomes. A simple, single step purification via centrifugation in a density gradient yielded proteoliposomes with the desaturase in high purity as judged by capillary electrophoresis. After in vitro reconstitution of the non-heme iron and heme active sites, the function of the reconstituted enzyme complex was demonstrated by conversion of stearoyl-CoA to oleoyl-CoA. This simple translation approach obviates the use of detergents or other lipids to stabilize and isolate a catalytically active integral membrane enzyme. The applicability of cell-free translation to the assembly and purification of other integral membrane protein complexes is discussed.

  11. Functionalized Vesicles by Microfluidic Device.

    PubMed

    Vallejo, Derek; Lee, Shih-Hui; Lee, Abraham

    2017-01-01

    In recent years, lipid vesicles have become popular vehicles for the creation of biosensors. Vesicles can hold reaction components within a selective permeable membrane that provides an ideal environment for membrane protein biosensing elements. The lipid bilayer allows a protein to retain its native structure and function, and the membrane fluidity can allow for conformational changes and physiological interactions with target analytes. Here, we present two methods for the production of giant unilamellar vesicles (GUVs) within a microfluidic device that can be used as the basis for a biosensor. The vesicles are produced from water-in-oil-in-water (W/O/W) double emulsion templates using a nonvolatile oil phase. To create the GUVs, the oil can be removed via extraction with ethanol, or by altering the interfacial tension between the oil and carrier solution causing the oil to retract into a cap on one side of the structure, leaving behind an exposed lipid bilayer. Methods to integrate sensing elements and membrane protein pores onto the vesicles are also introduced in this work.

  12. Amphiphilic gold nanoparticles as modulators of lipid membrane fusion

    NASA Astrophysics Data System (ADS)

    Tahir, Mukarram; Alexander-Katz, Alfredo

    The fusion of lipid membranes is central to biological functions like inter-cellular transport and signaling and is coordinated by proteins of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) superfamily. We utilize molecular dynamics simulations to demonstrate that gold nanoparticles functionalized with a mixed-monolayer of hydrophobic and hydrophilic alkanethiol ligands can act as synthetic analogues of these fusion proteins and mediate lipid membrane fusion by catalyzing the formation of a toroidal stalk between adjacent membranes and enabling the formation of a fusion pore upon influx of Ca2+ into the exterior solvent. The fusion pathway enabled by these synthetic nanostructures is analogous to the regulated fast fusion pathway observed during synaptic vesicle fusion; it therefore provides novel physical insights into this important biological process while also being relevant in a number of single-cell therapeutic applications. Computational resources from NSF XSEDE contract TG-DMR130042. Financial support from DOE CSGF fellowship DE-FG02-97ER25308.

  13. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain.

    PubMed

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-10-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.

  14. Protein osmotic pressure gradients and microvascular reflection coefficients.

    PubMed

    Drake, R E; Dhother, S; Teague, R A; Gabel, J C

    1997-08-01

    Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.

  15. With or without rafts? Alternative views on cell membranes.

    PubMed

    Sevcsik, Eva; Schütz, Gerhard J

    2016-02-01

    The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity. © 2015 WILEY Periodicals, Inc.

  16. Tunable Membrane Binding of the Intrinsically Disordered Dehydrin Lti30, a Cold-Induced Plant Stress Protein[W

    PubMed Central

    Eriksson, Sylvia K.; Kutzer, Michael; Procek, Jan; Gröbner, Gerhard; Harryson, Pia

    2011-01-01

    Dehydrins are intrinsically disordered plant proteins whose expression is upregulated under conditions of desiccation and cold stress. Their molecular function in ensuring plant survival is not yet known, but several studies suggest their involvement in membrane stabilization. The dehydrins are characterized by a broad repertoire of conserved and repetitive sequences, out of which the archetypical K-segment has been implicated in membrane binding. To elucidate the molecular mechanism of these K-segments, we examined the interaction between lipid membranes and a dehydrin with a basic functional sequence composition: Lti30, comprising only K-segments. Our results show that Lti30 interacts electrostatically with vesicles of both zwitterionic (phosphatidyl choline) and negatively charged phospholipids (phosphatidyl glycerol, phosphatidyl serine, and phosphatidic acid) with a stronger binding to membranes with high negative surface potential. The membrane interaction lowers the temperature of the main lipid phase transition, consistent with Lti30’s proposed role in cold tolerance. Moreover, the membrane binding promotes the assembly of lipid vesicles into large and easily distinguishable aggregates. Using these aggregates as binding markers, we identify three factors that regulate the lipid interaction of Lti30 in vitro: (1) a pH dependent His on/off switch, (2) phosphorylation by protein kinase C, and (3) reversal of membrane binding by proteolytic digest. PMID:21665998

  17. Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane.

    PubMed

    Leser, George P; Lamb, Robert A

    2017-05-01

    Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some proteins, like hemagglutinin (HA), NA, and M2, are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains, whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immunogold staining. The distribution of these proteins was examined individually and pairwise by using the Ripley K function, a type of nearest-neighbor analysis. Individually, HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly coclustered in the plasma membrane; however, in the case of NA and M2, clustering depends upon the expression system used. Despite both proteins being raft resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly cocluster, but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the coexpression of other viral proteins. Similarly, M2 and NP occupy separate compartments, but an association can be bridged by the coexpression of M1. IMPORTANCE The complement of influenza virus proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft-like domains, whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships between viral proteins in the plasma membrane. Some proteins, such as HA and M2, inherently cocluster within the membrane, although M2 is found mostly at the periphery of regions of HA, consistent with the proposed role of M2 in scission at the end of budding. The association between some pairs of influenza virus proteins, such as M2 and NP, appears to be brokered by additional influenza virus proteins, in this case M1. HA and NA, while raft associated, reside in distinct domains, reflecting their distributions in the viral membrane. Copyright © 2017 American Society for Microbiology.

  18. Protein profiles of hatchery egg shell membrane.

    PubMed

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  19. X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization

    PubMed Central

    Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Wan, Frank; Sheraden, Paige N.; Broecker, Jana; Ernst, Oliver P.; Gennis, Robert B.

    2017-01-01

    Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å. PMID:28469762

  20. Study of zinc-induced changes in lymphocyte membranes using atomic force microscopy, luminescence, and light scattering methods

    NASA Astrophysics Data System (ADS)

    Filimonenko, D. S.; Khairullina, A. Ya.; Yasinskii, V. M.; Kozlova, N. M.; Zubritskaja, G. P.; Slobozhanina, E. I.

    2011-07-01

    Changes in the surface structure of lymphocyte membranes exposed to various concentrations of zinc ions are studied. It is found by atomic force microscopy that increasing the concentration of zinc ions leads to a reduction in the correlation length of the autocorrelation function of the roughness profile of a lymphocyte compared to control samples; this may indicate the existence of fine structure in the membrane surface. Fluorescence markers are used to observe a reduction in the microviscosity of the lipids in the outer monolayer of the lipid bilayer after lymphocytes are exposed to Zn ions, as well as the exposure of phosphatidylserine on the surface membrane, and the oxidation of HS-groups of membrane proteins. Calculations of the absorption coefficients of lymphocytes modified with zinc reveal the existence of absorption bands owing to the formation of metal-protein complexes and zinc oxide nanoparticles. These results indicate significant changes in the structural and functional state of lymphocyte membranes exposed to zinc ions.

Top