Prolactin receptor in regulation of neuronal excitability and channels
Patil, Mayur J; Henry, Michael A; Akopian, Armen N
2014-01-01
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL. PMID:24758841
Maximization of Learning Speed in the Motor Cortex Due to Neuronal Redundancy
Takiyama, Ken; Okada, Masato
2012-01-01
Many redundancies play functional roles in motor control and motor learning. For example, kinematic and muscle redundancies contribute to stabilizing posture and impedance control, respectively. Another redundancy is the number of neurons themselves; there are overwhelmingly more neurons than muscles, and many combinations of neural activation can generate identical muscle activity. The functional roles of this neuronal redundancy remains unknown. Analysis of a redundant neural network model makes it possible to investigate these functional roles while varying the number of model neurons and holding constant the number of output units. Our analysis reveals that learning speed reaches its maximum value if and only if the model includes sufficient neuronal redundancy. This analytical result does not depend on whether the distribution of the preferred direction is uniform or a skewed bimodal, both of which have been reported in neurophysiological studies. Neuronal redundancy maximizes learning speed, even if the neural network model includes recurrent connections, a nonlinear activation function, or nonlinear muscle units. Furthermore, our results do not rely on the shape of the generalization function. The results of this study suggest that one of the functional roles of neuronal redundancy is to maximize learning speed. PMID:22253586
Furness, John B; Cho, Hyun-Jung; Hunne, Billie; Hirayama, Haruko; Callaghan, Brid P; Lomax, Alan E; Brock, James A
2012-06-01
Functional studies have shown that subsets of autonomic preganglionic neurons respond to ghrelin and ghrelin mimetics and in situ hybridisation has revealed receptor gene expression in the cell bodies of some preganglionic neurons. Our present goal has been to determine which preganglionic neurons express ghrelin receptors by using mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter for the ghrelin receptor (also called growth hormone secretagogue receptor). The retrograde tracer Fast Blue was injected into target organs of reporter mice under anaesthesia to identify specific functional subsets of postganglionic sympathetic neurons. Cryo-sections were immunohistochemically stained by using anti-EGFP and antibodies to neuronal markers. EGFP was detected in nerve terminal varicosities in all sympathetic chain, prevertebral and pelvic ganglia and in the adrenal medulla. Non-varicose fibres associated with the ganglia were also immunoreactive. No postganglionic cell bodies contained EGFP. In sympathetic chain ganglia, most neurons were surrounded by EGFP-positive terminals. In the stellate ganglion, neurons with choline acetyltransferase immunoreactivity, some being sudomotor neurons, lacked surrounding ghrelin-receptor-expressing terminals, although these terminals were found around other neurons. In the superior cervical ganglion, the ghrelin receptor terminals innervated subgroups of neurons including neuropeptide Y (NPY)-immunoreactive neurons that projected to the anterior chamber of the eye. However, large NPY-negative neurons projecting to the acini of the submaxillary gland were not innervated by EGFP-positive varicosities. In the celiaco-superior mesenteric ganglion, almost all neurons were surrounded by positive terminals but the VIP-immunoreactive terminals of intestinofugal neurons were EGFP-negative. The pelvic ganglia contained groups of neurons without ghrelin receptor terminal innervation and other groups with positive terminals around them. Ghrelin receptors are therefore expressed by subgroups of preganglionic neurons, including those of vasoconstrictor pathways and of pathways controlling gut function, but are absent from some other neurons, including those innervating sweat glands and the secretomotor neurons that supply the submaxillary salivary glands.
Firnhaber, Christopher; Hammarlund, Marc
2013-11-01
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.
Peptides, serotonin, and breathing: the role of the raphe in the control of respiration.
Pilowsky, Paul M
2014-01-01
Over the last 20 years, it has become clear that many functionally defined autonomic neurons in the brainstem contain many more than one neurotransmitter. Here, the possible role and functions of colocalized neuropeptides in the caudal raphe nuclei of the medulla oblongata are discussed. Caudal raphe neurons provide an extensive input to neurons throughout the brainstem and spinal cord, including respiratory and cardiovascular neurons. It is concluded that one plausible function of colocalized neuropeptides is to maintain the membrane potential of target neurons within a defined window so that they remain able to function at extremes of activity. © 2014 Elsevier B.V. All rights reserved.
Laird, Angela S; Mackovski, Nikolce; Rinkwitz, Silke; Becker, Thomas S; Giacomotto, Jean
2016-05-01
Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fukushima, Kazuyuki; Miura, Yuji; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi
2016-01-01
Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development. © 2015 Society for Laboratory Automation and Screening.
Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco
2016-01-01
Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.
Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I.; Castilla, Rocío; Barreto, George E.; Capani, Francisco
2016-01-01
Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788
How to make spinal motor neurons.
Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin
2014-02-01
All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.
A biopolymer transistor: electrical amplification by microtubules.
Priel, Avner; Ramos, Arnolt J; Tuszynski, Jack A; Cantiello, Horacio F
2006-06-15
Microtubules (MTs) are important cytoskeletal structures engaged in a number of specific cellular activities, including vesicular traffic, cell cyto-architecture and motility, cell division, and information processing within neuronal processes. MTs have also been implicated in higher neuronal functions, including memory and the emergence of "consciousness". How MTs handle and process electrical information, however, is heretofore unknown. Here we show new electrodynamic properties of MTs. Isolated, taxol-stabilized MTs behave as biomolecular transistors capable of amplifying electrical information. Electrical amplification by MTs can lead to the enhancement of dynamic information, and processivity in neurons can be conceptualized as an "ionic-based" transistor, which may affect, among other known functions, neuronal computational capabilities.
Aguilar-Arredondo, Andrea; Arias, Clorinda; Zepeda, Angélica
2015-01-01
Hippocampal neurogenesis occurs in the adult brain in various species, including humans. A compelling question that arose when neurogenesis was accepted to occur in the adult dentate gyrus (DG) is whether new neurons become functionally relevant over time, which is key for interpreting their potential contributions to synaptic circuitry. The functional state of adult-born neurons has been evaluated using various methodological approaches, which have, in turn, yielded seemingly conflicting results regarding the timing of maturation and functional integration. Here, we review the contributions of different methodological approaches to addressing the maturation process of adult-born neurons and their functional state, discussing the contributions and limitations of each method. We aim to provide a framework for interpreting results based on the approaches currently used in neuroscience for evaluating functional integration. As shown by the experimental evidence, adult-born neurons are prone to respond from early stages, even when they are not yet fully integrated into circuits. The ongoing integration process for the newborn neurons is characterised by different features. However, they may contribute differently to the network depending on their maturation stage. When combined, the strategies used to date convey a comprehensive view of the functional development of newly born neurons while providing a framework for approaching the critical time at which new neurons become functionally integrated and influence brain function.
The beneficial effects of berry fruit on cognitive and neuronal function in aging
USDA-ARS?s Scientific Manuscript database
Research has demonstrated, in both human and animals, that cognition decreases with age, to include deficits in processing speed, executive function, memory, and spatial learning. The cause of these functional declines is not entirely understood; however, neuronal losses and the associated changes i...
USDA-ARS?s Scientific Manuscript database
Research has demonstrated, in both human and animals, that cognitive functioning decreases with age, to include deficits in processing speed, executive function, memory, and spatial learning. The cause of these functional declines is not entirely understood; however, neuronal losses and the associat...
Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions
VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.
2011-01-01
Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273
NASA Astrophysics Data System (ADS)
Lee, Seunghee; Yoon, Jonghee; Choi, Chulhee
2015-03-01
Amyloid β-protein (Aβ) is known as a key molecule related to the pathogenesis of Alzheimer's disease (AD). Over time, the amyloid cascade disrupts essential function of mitochondria including Ca2+ homeostasis and reactive oxygen species (ROS) regulation, and eventually leads to neuronal cell death. However, there have been no methods that analyze and measure neuronal dysfuction in pathologic conditions quantitatively. Here, we suggest a cell-based optical assay to investigate neuronal function in AD using femtosecond-pulsed laser stimulation. We observed that laser stimulation on primary rat hippocampal neurons for a few microseconds induced intracellular Ca2+ level increases or produced intracellular ROS which was a primary cause of neuronal cell death depending on delivered energy. Although Aβ treatment alone had little effect on the neuronal morphologies and networks in a few hours, Aβ-treated neurons showed delayed Ca2+ increasing pattern and were more vulnerable to laser-induced cell death compared to normal neurons. Our results collectively indicate that femtosecond laser stimulation can be a useful tool to study neuronal dysfuction related to AD pathologies. We anticipate this optical method to enable studies in the early progression of neuronal impairments and the quantitative evaluation of drug effects on neurons in neurodegenerative diseases, including AD and Parkinson's disease in a preclinical study.
Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease.
Tracy, Tara E; Gan, Li
2018-05-09
The accumulation of pathological tau in the brain is associated with neuronal deterioration and cognitive impairments in tauopathies including Alzheimer's disease. Tau, while primarily localized in the axons of healthy neurons, accumulates in the soma and dendrites of neurons under pathogenic conditions. Tau is found in both presynaptic and postsynaptic compartments of neurons in Alzheimer's disease. New research supports that soluble forms of tau trigger pathophysiology in the brain by altering properties of synaptic and neuronal function at the early stages of disease progression, before neurons die. Here we review the current understanding of how tau-mediated synaptic and neuronal dysfunction contributes to cognitive decline. Delineating the mechanisms by which pathogenic tau alters synapses, dendrites and axons will help lay the foundation for new strategies that can restore neuronal function in tauopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Exposure to bisphenol A affects GABAergic neuron differentiation in neurosphere cultures.
Fukushima, Nobuyuki; Nagao, Tetsuji
2018-06-13
Endocrine-disrupting chemicals (EDCs) influence not only endocrine functions but also neuronal development and functions. In-vivo studies have suggested the relationship of EDC-induced neurobehavioral disorders with dysfunctions of neurotransmitter mechanisms including γ-aminobutyric acid (GABA)ergic mechanisms. However, whether EDCs affect GABAergic neuron differentiation remains unclear. In the present study, we show that a representative EDC, bisphenol A (BPA), affects GABAergic neuron differentiation. Cortical neurospheres prepared from embryonic mice were exposed to BPA for 7 days, and then neuronal differentiation was induced. We found that BPA exposure resulted in a decrease in the ratio of GABAergic neurons to total neurons. However, the same exposure stimulated the differentiation of neurons expressing calbindin, a calcium-binding protein observed in a subpopulation of GABAergic neurons. These findings suggested that BPA might influence the formation of an inhibitory neuronal network in developing cerebral cortex involved in the occurrence of neurobehavioral disorders.
Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena
2015-10-29
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation.
RELATIVE POTENCIES FOR ACUTE EFFECTS OF PYRETHROIDS ON MOTOR FUNCTION IN RATS.
A proposed common mode-of-action for pyrethroid insecticides, includes alterations in sodium channel dynamics in nervous system tissues, consequent disturbance of neuronal membrane polarization, abnormal discharge in targeted neurons, and changes in nervous system function. The p...
Connexin-Dependent Neuroglial Networking as a New Therapeutic Target.
Charvériat, Mathieu; Naus, Christian C; Leybaert, Luc; Sáez, Juan C; Giaume, Christian
2017-01-01
Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the "tripartite synapse" with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as new therapeutic targets in neurological and psychiatric disorders.
Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function
Spencer, William C.; Deneris, Evan S.
2017-01-01
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons. PMID:28769770
Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.
Spencer, William C; Deneris, Evan S
2017-01-01
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons.
Broccoli, Vania; Rubio, Alicia; Taverna, Stefano; Yekhlef, Latefa
2015-06-01
The advent of cell reprogramming technologies has widely disclosed the possibility to have direct access to human neurons for experimental and biomedical applications. Human pluripotent stem cells can be instructed in vitro to generate specific neuronal cell types as well as different glial cells. Moreover, new approaches of direct neuronal cell reprogramming can strongly accelerate the generation of different neuronal lineages. However, genetic heterogeneity, reprogramming fidelity, and time in culture of the starting cells can still significantly bias their differentiation efficiency and quality of the neuronal progenies. In addition, reprogrammed human neurons exhibit a very slow pace in gaining a full spectrum of functional properties including physiological levels of membrane excitability, sustained and prolonged action potential firing, mature synaptic currents and synaptic plasticity. This delay poses serious limitations for their significance as biological experimental model and screening platform. We will discuss new approaches of neuronal cell differentiation and reprogramming as well as methods to accelerate the maturation and functional activity of the converted human neurons. © 2015 by the Society for Experimental Biology and Medicine.
Cholecystokinin: A multi-functional molecular switch of neuronal circuits
Lee, Soo Yeun; Soltesz, Ivan
2010-01-01
Cholecystokinin (CCK), a peptide originally discovered in the gastrointestinal tract, is one of the most the abundant and widely distributed neuropeptides in the brain. In spite of its abundance, recent data indicate that that CCK modulates intrinsic neuronal excitability and synaptic transmission in a surprisingly cell-type specific manner, acting as a key molecular switch to regulate the functional output of neuronal circuits. The central importance of CCK in neuronal networks is also reflected in its involvement in a variety of neuropsychiatric and neurological disorders including panic attacks and epilepsy. PMID:21154912
Mechanisms of pyrethroid insecticide-induced stimulation of calcium influx in neocortical neurons
Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated Ca2+ calcium chann...
The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila.
Chung, Brian Y; Kilman, Valerie L; Keath, J Russel; Pitman, Jena L; Allada, Ravi
2009-03-10
Sleep is regulated by a circadian clock that times sleep and wake to specific times of day and a homeostat that drives sleep as a function of prior wakefulness. To analyze the role of the circadian clock, we have used the fruit fly Drosophila. Flies display the core behavioral features of sleep, including relative immobility, elevated arousal thresholds, and homeostatic regulation. We assessed sleep-wake modulation by a core set of circadian pacemaker neurons that express the neuropeptide PDF. We find that disruption of PDF function increases sleep during the late night in light:dark and the first subjective day of constant darkness. Flies deploy genetic and neurotransmitter pathways to regulate sleep that are similar to those of their mammalian counterparts, including GABA. We find that RNA interference-mediated knockdown of the GABA(A) receptor gene, Resistant to dieldrin (Rdl), in PDF neurons reduces sleep, consistent with a role for GABA in inhibiting PDF neuron function. Patch-clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal-promoting PDF neurons is an important mode of sleep-wake regulation in vivo.
Falkowska, Anna; Gutowska, Izabela; Goschorska, Marta; Nowacki, Przemysław; Chlubek, Dariusz; Baranowska-Bosiacka, Irena
2015-01-01
Glycogen metabolism has important implications for the functioning of the brain, especially the cooperation between astrocytes and neurons. According to various research data, in a glycogen deficiency (for example during hypoglycemia) glycogen supplies are used to generate lactate, which is then transported to neighboring neurons. Likewise, during periods of intense activity of the nervous system, when the energy demand exceeds supply, astrocyte glycogen is immediately converted to lactate, some of which is transported to the neurons. Thus, glycogen from astrocytes functions as a kind of protection against hypoglycemia, ensuring preservation of neuronal function. The neuroprotective effect of lactate during hypoglycemia or cerebral ischemia has been reported in literature. This review goes on to emphasize that while neurons and astrocytes differ in metabolic profile, they interact to form a common metabolic cooperation. PMID:26528968
Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko
2016-08-01
Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Mapp, Oni M.; Wanner, Sarah J.; Rohrschneider, Monica R.; Prince, Victoria E.
2011-01-01
The facial branchiomotor neurons undergo a characteristic tangential migration in the vertebrate hindbrain. Several signaling mechanisms have been implicated in this process, including the non-canonical Wnt/planar cell polarity (PCP) pathway. However, the role of this signaling pathway in controlling the dynamics of these neurons is unclear. Here, we describe the cellular dynamics of the facial neurons as they migrate, focusing on the speed and direction of migration, extension of protrusions, cell shape and orientation. Furthermore, we show that the PET/LIM domain protein Prickle1b (Pk1b) is required for several aspects of these migratory behaviors, including cell orientation. However, we find that centrosome localization is not significantly affected by disruption of Pk1b function, suggesting that polarization of the neurons is not completely lost. Together, our data suggest that Pk1b function may be required to integrate the multiple migratory cues received by the neurons into polarization instructions for proper posterior movement. PMID:20503357
Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons
Bradford, Aaron B; McNutt, Patrick M
2015-01-01
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments. PMID:26240679
Activity of cardiorespiratory networks revealed by transsynaptic virus expressing GFP.
Irnaten, M; Neff, R A; Wang, J; Loewy, A D; Mettenleiter, T C; Mendelowitz, D
2001-01-01
A fluorescent transneuronal marker capable of labeling individual neurons in a central network while maintaining their normal physiology would permit functional studies of neurons within entire networks responsible for complex behaviors such as cardiorespiratory reflexes. The Bartha strain of pseudorabies virus (PRV), an attenuated swine alpha herpesvirus, can be used as a transsynaptic marker of neural circuits. Bartha PRV invades neuronal networks in the CNS through peripherally projecting axons, replicates in these parent neurons, and then travels transsynaptically to continue labeling the second- and higher-order neurons in a time-dependent manner. A Bartha PRV mutant that expresses green fluorescent protein (GFP) was used to visualize and record from neurons that determine the vagal motor outflow to the heart. Here we show that Bartha PRV-GFP-labeled neurons retain their normal electrophysiological properties and that the labeled baroreflex pathways that control heart rate are unaltered by the virus. This novel transynaptic virus permits in vitro studies of identified neurons within functionally defined neuronal systems including networks that mediate cardiovascular and respiratory function and interactions. We also demonstrate superior laryngeal motorneurons fire spontaneously and synapse on cardiac vagal neurons in the nucleus ambiguus. This cardiorespiratory pathway provides a neural basis of respiratory sinus arrhythmias.
Iida, Shoko; Shimba, Kenta; Sakai, Koji; Kotani, Kiyoshi; Jimbo, Yasuhiko
2018-06-18
The balance between glutamate-mediated excitation and GABA-mediated inhibition is critical to cortical functioning. However, the contribution of network structure consisting of the both neurons to cortical functioning has not been elucidated. We aimed to evaluate the relationship between the network structure and functional activity patterns in vitro. We used mouse induced pluripotent stem cells (iPSCs) to construct three types of neuronal populations; excitatory-rich (Exc), inhibitory-rich (Inh), and control (Cont). Then, we analyzed the activity patterns of these neuronal populations using microelectrode arrays (MEAs). Inhibitory synaptic densities differed between the three types of iPSC-derived neuronal populations, and the neurons showed spontaneously synchronized bursting activity with functional maturation for one month. Moreover, different firing patterns were observed between the three populations; Exc demonstrated the highest firing rates, including frequent, long, and dominant bursts. In contrast, Inh demonstrated the lowest firing rates and the least dominant bursts. Synchronized bursts were enhanced by disinhibition via GABA A receptor blockade. The present study, using iPSC-derived neurons and MEAs, for the first time show that synchronized bursting of cortical networks in vitro depends on the network structure consisting of excitatory and inhibitory neurons. Copyright © 2018 Elsevier Inc. All rights reserved.
Karak, Somdatta; Jacobs, Julie S; Kittelmann, Maike; Spalthoff, Christian; Katana, Radoslaw; Sivan-Loukianova, Elena; Schon, Michael A; Kernan, Maurice J; Eberl, Daniel F; Göpfert, Martin C
2015-11-26
Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly's ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.
2012-01-01
The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice. PMID:22818293
The Neuronal Ceroid-Lipofuscinoses
ERIC Educational Resources Information Center
Bennett, Michael J.; Rakheja, Dinesh
2013-01-01
The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…
ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function
Sharma, Aarti; Lyashchenko, Alexander K.; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z.; Shneider, Neil A.
2016-01-01
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations. PMID:26842965
Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A
2016-02-04
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.
DeepNeuron: an open deep learning toolbox for neuron tracing.
Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui
2018-06-06
Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.
Morton, Russell A; Yanagawa, Yuchio; Valenzuela, C Fernando
2015-01-01
Alterations in the development of the serotonin system can have prolonged effects, including depression and anxiety disorders later in life. Serotonin axonal projections from the dorsal raphe undergo extensive refinement during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy). However, little is known about the functional properties of serotonin and GABA neurons in the dorsal raphe during this critical developmental period. We assessed the functional properties and synaptic connectivity of putative serotoninergic neurons and GABAergic neurons in the dorsal raphe during early [postnatal day (P) P5-P7] and late (P15-P17) stages of the third trimester equivalent period using electrophysiology. Our studies demonstrate that GABAergic neurons are hyperexcitable at P5-P7 relative to P15-P17. Furthermore, putative serotonin neurons exhibit an increase in both excitatory and GABAA receptor-mediated spontaneous postsynaptic currents during this developmental period. Our data suggest that GABAergic neurons and putative serotonin neurons undergo significant electrophysiological changes during neonatal development.
Uematsu, Akira; Tan, Bao Zhen
2015-01-01
Noradrenergic neurons in the locus coeruleus (LC) play a critical role in many functions including learning and memory. This relatively small population of cells sends widespread projections throughout the brain including to a number of regions such as the amygdala which is involved in emotional associative learning and the medial prefrontal cortex which is important for facilitating flexibility when learning rules change. LC noradrenergic cells participate in both of these functions, but it is not clear how this small population of neurons modulates these partially distinct processes. Here we review anatomical, behavioral, and electrophysiological studies to assess how LC noradrenergic neurons regulate these different aspects of learning and memory. Previous work has demonstrated that subpopulations of LC noradrenergic cells innervate specific brain regions suggesting heterogeneity of function in LC neurons. Furthermore, noradrenaline in mPFC and amygdala has distinct effects on emotional learning and cognitive flexibility. Finally, neural recording data show that LC neurons respond during associative learning and when previously learned task contingencies change. Together, these studies suggest a working model in which distinct and potentially opposing subsets of LC neurons modulate particular learning functions through restricted efferent connectivity with amygdala or mPFC. This type of model may provide a general framework for understanding other neuromodulatory systems, which also exhibit cell type heterogeneity and projection specificity. PMID:26330494
Zhang, Qiaojuan; Hsia, Shao-Chung
2017-01-01
Infection of sensory neurons by herpes simplex virus (HSV)-1 disrupts electrical excitability, altering pain sensory transmission. Because of their low threshold for activation, functional expression of T-type Ca2+ channels regulates various cell functions, including neuronal excitability and neuronal communication. In this study, we have tested the effect of HSV-1 infection on the functional expression of T-type Ca2+ channels in differentiated ND7-23 sensory-like neurons. Voltage-gated Ca2+ currents were measured using whole cell patch clamp recordings in differentiated ND7-23 neurons under various culture conditions. Differentiation of ND7-23 cells evokes a significant increase in T-type Ca2+ current densities. Increased T-type Ca2+ channel expression promotes the morphological differentiation of ND7-23 cells and triggers a rebound depolarization. HSV-1 infection of differentiated ND7-23 cells causes a significant loss of T-type Ca2+ channels from the membrane. HSV-1 evoked reduction in the functional expression of T-type Ca2+ channels is mediated by several factors, including decreased expression of Cav3.2 T-type Ca2+ channel subunits and disruption of endocytic transport. Decreased functional expression of T-type Ca2+ channels by HSV-1 infection requires protein synthesis and viral replication, but occurs independently of Egr-1 expression. These findings suggest that infection of neuron-like cells by HSV-1 causes a significant disruption in the expression of T-type Ca2+ channels, which can results in morphological and functional changes in electrical excitability. PMID:28639215
Visualizing estrogen receptor-a-expressing neurons using a new ERa-ZsGreen reporter mouse line
USDA-ARS?s Scientific Manuscript database
A variety of biological functions of estrogens, including regulation of energy metabolism, are mediated by neurons expressingestrogen receptor-a (ERa) in the brain. However, complex intracellular processes in these ERa-expressing neurons are difficult to unravel, due to the lack of strategy to visua...
Cultured Neuronal Networks Express Complex Patterns of Activity and Morphological Memory
NASA Astrophysics Data System (ADS)
Raichman, Nadav; Rubinsky, Liel; Shein, Mark; Baruchi, Itay; Volman, Vladislav; Ben-Jacob, Eshel
The following sections are included: * Cultured Neuronal Networks * Recording the Network Activity * Network Engineering * The Formation of Synchronized Bursting Events * The Characterization of the SBEs * Highly-Active Neurons * Function-Form Relations in Cultured Networks * Analyzing the SBEs Motifs * Network Repertoire * Network under Hypothermia * Summary * Acknowledgments * References
Programmed to Learn? The Ontogeny of Mirror Neurons
ERIC Educational Resources Information Center
Del Giudice, Marco; Manera, Valeria; Keysers, Christian
2009-01-01
Mirror neurons are increasingly recognized as a crucial substrate for many developmental processes, including imitation and social learning. Although there has been considerable progress in describing their function and localization in the primate and adult human brain, we still know little about their ontogeny. The idea that mirror neurons result…
Odors regulate Arc expression in neuronal ensembles engaged in odor processing.
Guthrie, K; Rayhanabad, J; Kuhl, D; Gall, C
2000-06-26
Synaptic activity is critical to developmental and plastic processes that produce long-term changes in neuronal connectivity and function. Genes expressed by neurons in an activity-dependent fashion are of particular interest since the proteins they encode may mediate neuronal plasticity. One such gene encodes the activity-regulated cytoskeleton-associated protein, Arc. The present study evaluated the effects of odor stimulation on Arc expression in rat olfactory bulb. Arc mRNA was rapidly increased in functionally linked cohorts of neurons topographically activated by odor stimuli. These included neurons surrounding individual glomeruli, mitral cells and transynaptically activated granule cells. Dendritic Arc immunoreactivity was also increased in odor-activated glomeruli. Our results suggest that odor regulation of Arc expression may contribute to activity-dependent structural changes associated with olfactory experience.
The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegans
Sarafi-Reinach, Trina R.; Sengupta, Piali
2000-01-01
Caenorhabditis elegans responds to its complex chemical environment using a small number of chemosensory neurons. Each of these neurons exhibits a unique sensory response repertoire. The developmental mechanisms that generate this diversity of function are largely unknown. Many C. elegans chemosensory neurons, including the AWA and ASG neurons, arise as lineal sisters of an asymmetric division. Here we describe the gene unc-130, which plays a role in the generation of the AWA and ASG neurons. In unc-130 mutants, the ASG neurons adopt the fate of the AWA neurons. unc-130 encodes a member of the forkhead domain family of transcription factors, and is expressed in the precursors to AWA and ASG neurons. Misexpression of unc-130 in the AWA neurons is partly sufficient to repress the AWA fate, but not to promote ASG fate. unc-130 also plays a role in the development of additional chemosensory neurons. Our experiments show that the ASG neurons share a developmental default state in common with three types of olfactory neurons. We propose that distinct cell fates and hence diversity of function in the chemosensory neurons of C. elegans are generated in a hierarchical manner, utilizing both lineage-dependent and independent mechanisms. PMID:11018015
Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat
2015-01-01
The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750
Feng, Jian; Zhou, Yu; Campbell, Susan L.; Le, Thuc; Li, En; Sweatt, J. David; Silva, Alcino J.; Fan, Guoping
2011-01-01
Dnmt1 and Dnmt3a, two major DNA methyltransferases, are expressed in postmitotic neurons, but their function in the central nervous system (CNS) is unclear. We generated conditional mutant mice that lack either Dnmt1, or Dnmt3a, or both exclusively in forebrain excitatory neurons and found only double knockout (DKO) mice exhibited abnormal hippocampal CA1 long-term plasticity and deficits of learning and memory. While no neuronal loss was found, the size of hippocampal neurons in DKO was smaller; furthermore, DKO neurons showed a deregulation of gene expression including class I MHC and Stat1 that are known to play a role in synaptic plasticity. In addition, we observed a significant decrease in DNA methylation in DKO neurons. We conclude that Dnmt1 and Dnmt3a are required for synaptic plasticity, learning and memory through their overlapping roles in maintaining DNA methylation and modulating neuronal gene expression in adult CNS neurons. PMID:20228804
Computational exploration of neuron and neural network models in neurobiology.
Prinz, Astrid A
2007-01-01
The electrical activity of individual neurons and neuronal networks is shaped by the complex interplay of a large number of non-linear processes, including the voltage-dependent gating of ion channels and the activation of synaptic receptors. These complex dynamics make it difficult to understand how individual neuron or network parameters-such as the number of ion channels of a given type in a neuron's membrane or the strength of a particular synapse-influence neural system function. Systematic exploration of cellular or network model parameter spaces by computational brute force can overcome this difficulty and generate comprehensive data sets that contain information about neuron or network behavior for many different combinations of parameters. Searching such data sets for parameter combinations that produce functional neuron or network output provides insights into how narrowly different neural system parameters have to be tuned to produce a desired behavior. This chapter describes the construction and analysis of databases of neuron or neuronal network models and describes some of the advantages and downsides of such exploration methods.
Amaral, Ana I
2013-07-01
Hypoglycaemia is characterized by decreased blood glucose levels and is associated with different pathologies (e.g. diabetes, inborn errors of metabolism). Depending on its severity, it might affect cognitive functions, including impaired judgment and decreased memory capacity, which have been linked to alterations of brain energy metabolism. Glucose is the major cerebral energy substrate in the adult brain and supports the complex metabolic interactions between neurons and astrocytes, which are essential for synaptic activity. Therefore, hypoglycaemia disturbs cerebral metabolism and, consequently, neuronal function. Despite the high vulnerability of neurons to hypoglycaemia, important neurochemical changes enabling these cells to prolong their resistance to hypoglycaemia have been described. This review aims at providing an overview over the main metabolic effects of hypoglycaemia on neurons, covering in vitro and in vivo findings. Recent studies provided evidence that non-glucose substrates including pyruvate, glycogen, ketone bodies, glutamate, glutamine, and aspartate, are metabolized by neurons in the absence of glucose and contribute to prolong neuronal function and delay ATP depletion during hypoglycaemia. One of the pathways likely implicated in the process is the pyruvate recycling pathway, which allows for the full oxidation of glutamate and glutamine. The operation of this pathway in neurons, particularly after hypoglycaemia, has been re-confirmed recently using metabolic modelling tools (i.e. Metabolic Flux Analysis), which allow for a detailed investigation of cellular metabolism in cultured cells. Overall, the knowledge summarized herein might be used for the development of potential therapies targeting neuronal protection in patients vulnerable to hypoglycaemic episodes.
IA channels: diverse regulatory mechanisms.
Carrasquillo, Yarimar; Nerbonne, Jeanne M
2014-04-01
In many peripheral and central neurons, A-type K(+) currents, IA, have been identified and shown to be key determinants in shaping action potential waveforms and repetitive firing properties, as well as in the regulation of synaptic transmission and synaptic plasticity. The functional properties and physiological roles of native neuronal IA, however, have been shown to be quite diverse in different types of neurons. Accumulating evidence suggests that this functional diversity is generated by multiple mechanisms, including the expression and subcellular distributions of IA channels encoded by different voltage-gated K(+) (Kv) channel pore-forming (α) subunits, interactions of Kv α subunits with cytosolic and/or transmembrane accessory subunits and regulatory proteins and post-translational modifications of channel subunits. Several recent reports further suggest that local protein translation in the dendrites of neurons and interactions between IA channels with other types of voltage-gated ion channels further expands the functional diversity of native neuronal IA channels. Here, we review the diverse molecular mechanisms that have been shown or proposed to underlie the functional diversity of native neuronal IA channels.
Cheng, Yu-Che; Huang, Chi-Jung; Lee, Yih-Jing; Tien, Lu-Tai; Ku, Wei-Chi; Chien, Raymond; Lee, Fa-Kung; Chien, Chih-Cheng
2016-01-01
This study presents human placenta-derived multipotent cells (PDMCs) as a source from which functional glutamatergic neurons can be derived. We found that the small heat-shock protein 27 (HSP27) was downregulated during the neuronal differentiation process. The in vivo temporal and spatial profiles of HSP27 expression were determined and showed inverted distributions with neuronal proteins during mouse embryonic development. Overexpression of HSP27 in stem cells led to the arrest of neuronal differentiation; however, the knockdown of HSP27 yielded a substantially enhanced ability of PDMCs to differentiate into neurons. These neurons formed synaptic networks and showed positive staining for multiple neuronal markers. Additionally, cellular phenomena including the absence of apoptosis and rare proliferation in HSP27-silenced PDMCs, combined with molecular events such as cleaved caspase-3 and the loss of stemness with cleaved Nanog, indicated that HSP27 is located upstream of neuronal differentiation and constrains that process. Furthermore, the induced neurons showed increasing intracellular calcium concentrations upon glutamate treatment. These differentiated cells co-expressed the N-methyl-D-aspartate receptor, vesicular glutamate transporter, and synaptosomal-associated protein 25 but did not show expression of tyrosine hydroxylase, choline acetyltransferase or glutamate decarboxylase 67. Therefore, we concluded that HSP27-silenced PDMCs differentiated into neurons possessing the characteristics of functional glutamatergic neurons. PMID:27444754
Watkins, Linda R.; Hutchinson, Mark R.; Milligan, Erin D.; Maier, Steven F.
2008-01-01
It is recently become clear that activated immune cells and immune-like glial cells can dramatically alter neuronal function. By increasing neuronal excitability, these non-neuronal cells are now implicated in the creation and maintenance of pathological pain, such as occurs in response to peripheral nerve injury. Such effects are exerted at multiple sites along the pain pathway, including at peripheral nerves, dorsal root ganglia, and spinal cord. In addition, activated glial cells are now recognized as disrupting the pain suppressive effects of opioid drugs and contributing to opioid tolerance and opioid dependence/withdrawal. While this review focuses on regulation of pain and opioid actions, such immune-neuronal interactions are broad in their implications. Such changes in neuronal function would be expected to occur wherever immune-derived substances come in close contact with neurons. PMID:17706291
Das, Mainak; Bhargava, Neelima; Bhalkikar, Abhijeet; Kang, Jung Fong; Hickman, James J
2008-01-01
The ability to culture functional adult mammalian spinal-cord neurons represents an important step in the understanding and treatment of a spectrum of neurological disorders including spinal cord injury. Previously, the limited functional recovery of these cells, as characterized by a diminished ability to initiate action potentials and to exhibit repetitive firing patterns, has arisen as a major impediment to their physiological relevance. In this report we demonstrate that single temporal doses of the neurotransmitters serotonin, glutamate (N-acetyl-DL-glutamic acid) and acetylcholine-chloride leads to the full electrophysiological functional recovery of adult mammalian spinal-cord neurons, when they are cultured under defined serum-free conditions. Approximately 60% of the neurons treated regained their electrophysiological signature, often firing single, double and, most importantly, multiple action potentials. PMID:18005959
Rehabilitation in practice: management of lower motor neuron weakness.
Ramdharry, Gita M
2010-05-01
This series of articles for rehabilitation in practice aims to cover a knowledge element of the rehabilitation medicine curriculum. Nevertheless they are intended to be of interest to a multidisciplinary audience. The competency addressed in this article is 'The trainee consistently demonstrates a knowledge of the pathophysiology of various specific impairments including lower motor neuron weakness' and 'management approaches for specific impairments including lower motor neuron weakness'.This article explores weakness as a lower motor symptom. Weakness as a primary impairment of neuromuscular diseases is addressed, with recognition of the phenomenon of disuse atrophy, and how weakness impacts on the functional abilities of people with myopathy and neuropathy. Interventions to reduce weakness or address the functional consequences of weakness are evaluated with consideration of safety and clinical application. This paper will allow readers to: (1) appraise the contribution of research in rehabilitation of lower motor neuron weakness to clinical decision making and (2) engage with the issues that arise when researching rehabilitation interventions for lower motor neuron weakness. Impairments associated with neuromuscular conditions can lead to significant functional difficulties that can impact on a person's daily participation. This article focuses on the primary impairment of weakness and explores the research evidence for rehabilitation interventions that directly influence weakness or address the impact of weakness on function.
Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology
Browning, Kirsteen N.
2015-01-01
Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870
Lam, Daniel D; Attard, Courtney A; Mercer, Aaron J; Myers, Martin G; Rubinstein, Marcelo; Low, Malcolm J
2015-04-01
Peptides derived from the proopiomelanocortin (POMC) precursor are critical for the normal regulation of many physiological parameters, and POMC deficiency results in severe obesity and metabolic dysfunction. Conversely, augmentation of central nervous system melanocortin function is a promising therapeutic avenue for obesity and diabetes but is confounded by detrimental cardiovascular effects including hypertension. Because the hypothalamic population of POMC-expressing neurons is neurochemically and neuroanatomically heterogeneous, there is interest in the possible dissociation of functionally distinct POMC neuron subpopulations. We used a Cre recombinase-dependent and hypothalamus-specific reactivatable PomcNEO allele to restrict Pomc expression to hypothalamic neurons expressing leptin receptor (Lepr) in mice. In contrast to mice with total hypothalamic Pomc deficiency, which are severely obese, mice with Lepr-restricted Pomc expression displayed fully normal body weight, food consumption, glucose homeostasis, and locomotor activity. Thus, Lepr+ POMC neurons, which constitute approximately two-thirds of the total POMC neuron population, are sufficient for normal regulation of these parameters. This functional dissociation approach represents a promising avenue for isolating therapeutically relevant POMC neuron subpopulations.
Myostatin-like proteins regulate synaptic function and neuronal morphology.
Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda
2017-07-01
Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.
The Topographical Mapping in Drosophila Central Complex Network and Its Signal Routing
Chang, Po-Yen; Su, Ta-Shun; Shih, Chi-Tin; Lo, Chung-Chuan
2017-01-01
Neural networks regulate brain functions by routing signals. Therefore, investigating the detailed organization of a neural circuit at the cellular levels is a crucial step toward understanding the neural mechanisms of brain functions. To study how a complicated neural circuit is organized, we analyzed recently published data on the neural circuit of the Drosophila central complex, a brain structure associated with a variety of functions including sensory integration and coordination of locomotion. We discovered that, except for a small number of “atypical” neuron types, the network structure formed by the identified 194 neuron types can be described by only a few simple mathematical rules. Specifically, the topological mapping formed by these neurons can be reconstructed by applying a generation matrix on a small set of initial neurons. By analyzing how information flows propagate with or without the atypical neurons, we found that while the general pattern of signal propagation in the central complex follows the simple topological mapping formed by the “typical” neurons, some atypical neurons can substantially re-route the signal pathways, implying specific roles of these neurons in sensory signal integration. The present study provides insights into the organization principle and signal integration in the central complex. PMID:28443014
Ito-Ishida, Aya; Ure, Kerstin; Chen, Hongmei; Swann, John W; Zoghbi, Huda Y
2015-11-18
Inhibitory neurons are critical for proper brain function, and their dysfunction is implicated in several disorders, including autism, schizophrenia, and Rett syndrome. These neurons are heterogeneous, and it is unclear which subtypes contribute to specific neurological phenotypes. We deleted Mecp2, the mouse homolog of the gene that causes Rett syndrome, from the two most populous subtypes, parvalbumin-positive (PV+) and somatostatin-positive (SOM+) neurons. Loss of MeCP2 partially impairs the affected neuron, allowing us to assess the function of each subtype without profound disruption of neuronal circuitry. We found that mice lacking MeCP2 in either PV+ or SOM+ neurons have distinct, non-overlapping neurological features: mice lacking MeCP2 in PV+ neurons developed motor, sensory, memory, and social deficits, whereas those lacking MeCP2 in SOM+ neurons exhibited seizures and stereotypies. Our findings indicate that PV+ and SOM+ neurons contribute complementary aspects of the Rett phenotype and may have modular roles in regulating specific behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.
Smith, Imogen; Silveirinha, Vasco; Stein, Jason L; de la Torre-Ubieta, Luis; Farrimond, Jonathan A; Williamson, Elizabeth M; Whalley, Benjamin J
2017-04-01
Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Decreased function of survival motor neuron protein impairs endocytic pathways.
Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C
2016-07-26
Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.
Decreased function of survival motor neuron protein impairs endocytic pathways
Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.
2016-01-01
Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.
Abruzzi, Katharine C; Zadina, Abigail; Luo, Weifei; Wiyanto, Evelyn; Rahman, Reazur; Guo, Fang; Shafer, Orie; Rosbash, Michael
2017-02-01
Locomotor activity rhythms are controlled by a network of ~150 circadian neurons within the adult Drosophila brain. They are subdivided based on their anatomical locations and properties. We profiled transcripts "around the clock" from three key groups of circadian neurons with different functions. We also profiled a non-circadian outgroup, dopaminergic (TH) neurons. They have cycling transcripts but fewer than clock neurons as well as low expression and poor cycling of clock gene transcripts. This suggests that TH neurons do not have a canonical circadian clock and that their gene expression cycling is driven by brain systemic cues. The three circadian groups are surprisingly diverse in their cycling transcripts and overall gene expression patterns, which include known and putative novel neuropeptides. Even the overall phase distributions of cycling transcripts are distinct, indicating that different regulatory principles govern transcript oscillations. This surprising cell-type diversity parallels the functional heterogeneity of the different neurons.
Kubota, Kenta; Seno, Takeshi; Konishi, Yoshiyuki
2013-11-20
Cerebellar granule neuronal cultures have been used to study the molecular mechanisms underlying neuronal functions, including neuronal morphogenesis. However, a limitation of this system is the difficulty to analyze isolated neurons because these are required to be maintained at a high density. Therefore, in the present study, we aimed to develop a simple and cost-effective method for culturing low-density cerebellar granule neurons. Cerebellar granule cells at two different densities (low- and high-density) were co-cultivated in order for the low-density culture to be supported by the paracrine signals from the high-density culture. This method enabled morphology analysis of isolated cerebellar granule neurons without astrocytic feeder cultures or supplements such as B27. Using this method, we investigated the function of a polarity factor. Studies using hippocampal neurons suggested that glycogen synthase kinase-3 (GSK-3) is an essential regulator of neuronal polarity, and inhibition of GSK-3 results in the formation of multiple axons. Pharmacological inhibitors for GSK-3 (6-bromoindirubin-3'-oxime and lithium chloride) did not cause the formation of multiple axons of cerebellar granule neurons but significantly reduced their length. Consistent results were obtained by introducing kinase-dead form of GSK-3 beta (K85A). These results indicated that GSK-3 is not directly involved in the control of neuronal polarity in cerebellar granule neurons. Overall, this study provides a simple method for culturing low-density cerebellar granule neurons and insights in to the neuronal-type dependent function of GSK-3 in neuronal morphogenesis. © 2013 Elsevier B.V. All rights reserved.
Coding and Plasticity in the Mammalian Thermosensory System.
Yarmolinsky, David A; Peng, Yueqing; Pogorzala, Leah A; Rutlin, Michael; Hoon, Mark A; Zuker, Charles S
2016-12-07
Perception of the thermal environment begins with the activation of peripheral thermosensory neurons innervating the body surface. To understand how temperature is represented in vivo, we used genetically encoded calcium indicators to measure temperature-evoked responses in hundreds of neurons across the trigeminal ganglion. Our results show how warm, hot, and cold stimuli are represented by distinct population responses, uncover unique functional classes of thermosensory neurons mediating heat and cold sensing, and reveal the molecular logic for peripheral warmth sensing. Next, we examined how the peripheral somatosensory system is functionally reorganized to produce altered perception of the thermal environment after injury. We identify fundamental transformations in sensory coding, including the silencing and recruitment of large ensembles of neurons, providing a cellular basis for perceptual changes in temperature sensing, including heat hypersensitivity, persistence of heat perception, cold hyperalgesia, and cold analgesia. Copyright © 2016 Elsevier Inc. All rights reserved.
Mitochondria in neuroplasticity and neurological disorders.
Mattson, Mark P; Gleichmann, Marc; Cheng, Aiwu
2008-12-10
Mitochondrial electron transport generates the ATP that is essential for the excitability and survival of neurons, and the protein phosphorylation reactions that mediate synaptic signaling and related long-term changes in neuronal structure and function. Mitochondria are highly dynamic organelles that divide, fuse, and move purposefully within axons and dendrites. Major functions of mitochondria in neurons include the regulation of Ca(2+) and redox signaling, developmental and synaptic plasticity, and the arbitration of cell survival and death. The importance of mitochondria in neurons is evident in the neurological phenotypes in rare diseases caused by mutations in mitochondrial genes. Mitochondria-mediated oxidative stress, perturbed Ca(2+) homeostasis, and apoptosis may also contribute to the pathogenesis of prominent neurological diseases including Alzheimer's, Parkinson's, and Huntington's diseases; stroke; amyotrophic lateral sclerosis; and psychiatric disorders. Advances in understanding the molecular and cell biology of mitochondria are leading to novel approaches for the prevention and treatment of neurological disorders.
Roles for the VCP co-factors Npl4 and Ufd1 in neuronal function in Drosophila melanogaster.
Byrne, Dwayne J; Harmon, Mark J; Simpson, Jeremy C; Blackstone, Craig; O'Sullivan, Niamh C
2017-10-20
The VCP-Ufd1-Npl4 complex regulates proteasomal processing within cells by delivering ubiquitinated proteins to the proteasome for degradation. Mutations in VCP are associated with two neurodegenerative diseases, amyotrophic lateral sclerosis (ALS) and inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD), and extensive study has revealed crucial functions of VCP within neurons. By contrast, little is known about the functions of Npl4 or Ufd1 in vivo. Using neuronal-specific knockdown of Npl4 or Ufd1 in Drosophila melanogaster, we infer that Npl4 contributes to microtubule organization within developing motor neurons. Moreover, Npl4 RNAi flies present with neurodegenerative phenotypes including progressive locomotor deficits, reduced lifespan and increased accumulation of TAR DNA-binding protein-43 homolog (TBPH). Knockdown, but not overexpression, of TBPH also exacerbates Npl4 RNAi-associated adult-onset neurodegenerative phenotypes. In contrast, we find that neuronal knockdown of Ufd1 has little effect on neuromuscular junction (NMJ) organization, TBPH accumulation or adult behaviour. These findings suggest the differing neuronal functions of Npl4 and Ufd1 in vivo. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed
2014-01-01
Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson’s disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson’s disease. PMID:24685177
2018-01-01
Abstract The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes. PMID:29379878
Assimilation of Biophysical Neuronal Dynamics in Neuromorphic VLSI.
Wang, Jun; Breen, Daniel; Akinin, Abraham; Broccard, Frederic; Abarbanel, Henry D I; Cauwenberghs, Gert
2017-12-01
Representing the biophysics of neuronal dynamics and behavior offers a principled analysis-by-synthesis approach toward understanding mechanisms of nervous system functions. We report on a set of procedures assimilating and emulating neurobiological data on a neuromorphic very large scale integrated (VLSI) circuit. The analog VLSI chip, NeuroDyn, features 384 digitally programmable parameters specifying for 4 generalized Hodgkin-Huxley neurons coupled through 12 conductance-based chemical synapses. The parameters also describe reversal potentials, maximal conductances, and spline regressed kinetic functions for ion channel gating variables. In one set of experiments, we assimilated membrane potential recorded from one of the neurons on the chip to the model structure upon which NeuroDyn was designed using the known current input sequence. We arrived at the programmed parameters except for model errors due to analog imperfections in the chip fabrication. In a related set of experiments, we replicated songbird individual neuron dynamics on NeuroDyn by estimating and configuring parameters extracted using data assimilation from intracellular neural recordings. Faithful emulation of detailed biophysical neural dynamics will enable the use of NeuroDyn as a tool to probe electrical and molecular properties of functional neural circuits. Neuroscience applications include studying the relationship between molecular properties of neurons and the emergence of different spike patterns or different brain behaviors. Clinical applications include studying and predicting effects of neuromodulators or neurodegenerative diseases on ion channel kinetics.
Parker, Lindsay M; Le, Sheng; Wearne, Travis A; Hardwick, Kate; Kumar, Natasha N; Robinson, Katherine J; McMullan, Simon; Goodchild, Ann K
2017-06-15
Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed. © 2017 Wiley Periodicals, Inc.
Immunolocalization of muscarinic M1 receptor in the rat medial prefrontal cortex
Tsuneoka, Yousuke; Yoshida, Sachine; Adachi‐Akahane, Satomi; Ito, Masanori; Kuroda, Masaru; Funato, Hiromasa
2018-01-01
Abstract The medial prefrontal cortex (mPFC) has been considered to participate in many higher cognitive functions, such as memory formation and spatial navigation. These cognitive functions are modulated by cholinergic afferents via muscarinic acetylcholine receptors. Previous pharmacological studies have strongly suggested that the M1 receptor (M1R) is the most important subtype among muscarinic receptors to perform these cognitive functions. Actually, M1R is abundant in mPFC. However, the proportion of somata containing M1R among cortical cellular types, and the precise intracellular localization of M1R remain unclear. In this study, to clarify the precise immunolocalization of M1R in rat mPFC, we examined three major cellular types, pyramidal neurons, inhibitory neurons, and astrocytes. M1R immunopositivity signals were found in the majority of the somata of both pyramidal neurons and inhibitory neurons. In pyramidal neurons, strong M1R immunopositivity signals were usually found throughout their somata and dendrites including spines. On the other hand, the signal strength of M1R immunopositivity in the somata of inhibitory neurons significantly varied. Some neurons showed strong signals. Whereas about 40% of GAD67‐immunopositive neurons and 30% of parvalbumin‐immunopositive neurons (PV neurons) showed only weak signals. In PV neurons, M1R immunopositivity signals were preferentially distributed in somata. Furthermore, we found that many astrocytes showed substantial M1R immunopositivity signals. These signals were also mainly distributed in their somata. Thus, the distribution pattern of M1R markedly differs between cellular types. This difference might underlie the cholinergic modulation of higher cognitive functions subserved by mPFC. PMID:29424434
Dicer maintains the identity and function of proprioceptive sensory neurons
O’Toole, Sean M.; Ferrer, Monica M.; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R.
2017-01-01
Neuronal cell identity is established during development and must be maintained throughout an animal’s life (Fishell G, Heintz N. Neuron 80: 602–612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899–907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359–373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity. PMID:28003412
Dicer maintains the identity and function of proprioceptive sensory neurons.
O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B
2017-03-01
Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity. Copyright © 2017 the American Physiological Society.
Masoudi, Neda; Tavazoie, Saeed; Glenwinkel, Lori; Ryu, Leesun; Kim, Kyuhyung
2018-01-01
Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor–encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be reflective of an ancestral function of an “ur-” bHLH gene. PMID:29672507
BDNF - A key player in cardiovascular system.
Pius-Sadowska, Ewa; Machaliński, Bogusław
2017-09-01
Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gourévitch, Boris; Mellen, Nicholas
2014-09-01
In vertebrates, respiratory control is ascribed to heterogeneous respiration-modulated neurons along the Ventral Respiratory Column (VRC) in medulla, which includes the preBötzinger Complex (preBötC), the putative respiratory rhythm generator. Here, the functional anatomy of the VRC was characterized via optical recordings in the sagittaly sectioned neonate rat hindbrain, at sampling rates permitting coupling estimation between neuron pairs, so that each neuron was described using unitary, neuron-system, and coupling attributes. Structured coupling relations in local networks, significantly oriented coupling in the peri-inspiratory interval detected in pooled data, and significant correlations between firing rate and expiratory duration in subsets of neurons revealed network regulation at multiple timescales. Spatially averaged neuronal attributes, including coupling vectors, revealed a sharp boundary at the rostral margin of the preBötC, as well as other functional anatomical features congruent with identified structures, including the parafacial respiratory group and the nucleus ambiguus. Cluster analysis of attributes identified two spatially compact, homogenous groups: the first overlapped with the preBötC, and was characterized by strong respiratory modulation and dense bidirectional coupling with itself and other groups, consistent with a central role for the preBötC in respiratory control; the second lay between preBötC and the facial nucleus, and was characterized by weak respiratory modulation and weak coupling with other respiratory neurons, which is congruent with cardiovascular regulatory networks that are found in this region. Other groups identified using cluster analysis suggested that networks along VRC regulated expiratory duration, and the transition to and from inspiration, but these groups were heterogeneous and anatomically dispersed. Thus, by recording local networks in parallel, this study found evidence for respiratory regulation at multiple timescales along the VRC, as well as a role for the preBötC in the integration of functionally disparate respiratory neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Neurotrophin signaling endosomes; biogenesis, regulation, and functions
Yamashita, Naoya; Kuruvilla, Rejji
2016-01-01
In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126
Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation
Sekine, Sayaka U; Haraguchi, Shuka; Chao, Kinhong; Kato, Tomoko; Luo, Liqun; Miura, Masayuki; Chihara, Takahiro
2016-01-01
Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo’s function in refinement of glomerular targeting. PMID:23624514
Benvegnù, Stefano; Mateo, María Inés; Palomer, Ernest; Jurado-Arjona, Jerónimo; Dotti, Carlos G
2017-05-04
A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination. Copyright © 2017 Elsevier Inc. All rights reserved.
[Dynamics of the dominance of identified cardioregulatory neurons in the snail Achatina fulica] .
Zhuravlev, V L; Bugaĭ, V V; Safronova, T A
2000-08-01
9 cardioregulating neurones belonging to 5 different functional groups were studied in visceral and right parietal ganglia of the Giant African snail Achatina fulica. The neuronal network included multimodal and multifunctional cells exerting short- or long-lasting chronoionotropic effects on the cardiac electro- and mechanograms. Mechanisms of the differences in the cardioregulating effectiveness of these groups were discussed.
Kuhn, Peer-Hendrik; Colombo, Alessio Vittorio; Schusser, Benjamin; Dreymueller, Daniela; Wetzel, Sebastian; Schepers, Ute; Herber, Julia; Ludwig, Andreas; Kremmer, Elisabeth; Montag, Dirk; Müller, Ulrike; Schweizer, Michaela; Saftig, Paul; Bräse, Stefan; Lichtenthaler, Stefan F
2016-01-01
Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain. DOI: http://dx.doi.org/10.7554/eLife.12748.001 PMID:26802628
Yamamoto, Misato; Ueda, Ryu; Takahashi, Kuniaki; Saigo, Kaoru; Uemura, Tadashi
2006-08-22
Neurons are highly polarized cells with distinct subcellular compartments, including dendritic arbors and an axon. The proper function of the nervous system relies not only on correct targeting of axons, but also on development of neuronal-class-specific geometry of dendritic arbors [1-4]. To study the intercellular control of the shaping of dendritic trees in vivo, we searched for cell-surface proteins expressed by Drosophila dendritic arborization (da) neurons [5-7]. One of them was Neuroglian (Nrg), a member of the Ig superfamily ; Nrg and vertebrate L1-family molecules have been implicated in various aspects of neuronal wiring, such as axon guidance, axonal myelination, and synapse formation [9-12]. A subset of the da neurons in nrg mutant embryos exhibited deformed dendritic arbors and abnormal axonal sprouting. Our functional analysis in a cell-type-selective manner strongly suggested that those da neurons employed Nrg to interact with the peripheral glia for suppressing axonal sprouting and for forming second-order dendritic branches. At least for the former role, Nrg functioned in concert with the intracellular adaptor protein Ankyrin (Ank) [13]. Thus, the neuron-glia interaction that is mediated by Nrg, together with Ank under some situations, contributes to axonal and dendritic morphogenesis.
Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation.
Liu, Hong; Aramaki, Michihiko; Fu, Yulong; Forrest, Douglas
2017-01-01
The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity. 2017 Published by Elsevier Inc.
Dutta, Sudeshna; Rieche, Franziska; Eckl, Nina; Duch, Carsten; Kretzschmar, Doris
2016-03-01
Mutations in Drosophila Swiss cheese (SWS) or its vertebrate orthologue neuropathy target esterase (NTE), respectively, cause progressive neuronal degeneration in Drosophila and mice and a complex syndrome in humans that includes mental retardation, spastic paraplegia and blindness. SWS and NTE are widely expressed in neurons but can also be found in glia; however, their function in glia has, until now, remained unknown. We have used a knockdown approach to specifically address SWS function in glia and to probe for resulting neuronal dysfunctions. This revealed that loss of SWS in pseudocartridge glia causes the formation of multi-layered glial whorls in the lamina cortex, the first optic neuropil. This phenotype was rescued by the expression of SWS or NTE, suggesting that the glial function is conserved in the vertebrate protein. SWS was also found to be required for the glial wrapping of neurons by ensheathing glia, and its loss in glia caused axonal damage. We also detected severe locomotion deficits in glial sws-knockdown flies, which occurred as early as 2 days after eclosion and increased further with age. Utilizing the giant fibre system to test for underlying functional neuronal defects showed that the response latency to a stimulus was unchanged in knockdown flies compared to controls, but the reliability with which the neurons responded to increasing frequencies was reduced. This shows that the loss of SWS in glia impairs neuronal function, strongly suggesting that the loss of glial SWS plays an important role in the phenotypes observed in the sws mutant. It is therefore likely that changes in glia also contribute to the pathology observed in humans that carry mutations in NTE. © 2016. Published by The Company of Biologists Ltd.
Cortical cell and neuron density estimates in one chimpanzee hemisphere.
Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H
2016-01-19
The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.
Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153
Lear, Bridget C; Zhang, Luoying; Allada, Ravi
2009-07-01
Discrete clusters of circadian clock neurons temporally organize daily behaviors such as sleep and wake. In Drosophila, a network of just 150 neurons drives two peaks of timed activity in the morning and evening. A subset of these neurons expresses the neuropeptide pigment dispersing factor (PDF), which is important for promoting morning behavior as well as maintaining robust free-running rhythmicity in constant conditions. Yet, how PDF acts on downstream circuits to mediate rhythmic behavior is unknown. Using circuit-directed rescue of PDF receptor mutants, we show that PDF targeting of just approximately 30 non-PDF evening circadian neurons is sufficient to drive morning behavior. This function is not accompanied by large changes in core molecular oscillators in light-dark, indicating that PDF RECEPTOR likely regulates the output of these cells under these conditions. We find that PDF also acts on this focused set of non-PDF neurons to regulate both evening activity phase and period length, consistent with modest resetting effects on core oscillators. PDF likely acts on more distributed pacemaker neuron targets, including the PDF neurons themselves, to regulate rhythmic strength. Here we reveal defining features of the circuit-diagram for PDF peptide function in circadian behavior, revealing the direct neuronal targets of PDF as well as its behavioral functions at those sites. These studies define a key direct output circuit sufficient for multiple PDF dependent behaviors.
NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons
NASA Technical Reports Server (NTRS)
Nadeau, H.; Lester, H. A.
2002-01-01
The neuron restrictive silencer factor (NRSF/REST) has been shown to bind to the promoters of many neuron-specific genes and is able to suppress transcription of Na(+) channels in PC12 cells, although its functional effect in terminally differentiated neurons is unknown. We constructed lentiviral vectors to express NRSF as a bicistronic message with green fluorescent protein (GFP) and followed infected hippocampal neurons in culture over a period of 1-2 wk. NRSF-expressing neurons showed a time-dependent suppression of Na(+) channel function as measured by whole cell electrophysiology. Suppression was reversed or prevented by the addition of membrane-permeable cAMP analogues and enhanced by cAMP antagonists but not affected by increasing protein expression with a viral enhancer. Secondary effects, including altered sensitivity to glutamate and GABA and reduced outward K(+) currents, were duplicated by culturing GFP-infected control neurons in TTX. The striking similarity of the phenotypes makes NRSF potentially useful as a genetic "silencer" and also suggests avenues of further exploration that may elucidate the transcription factor's in vivo role in neuronal plasticity.
Intrinsic cardiac nervous system in tachycardia induced heart failure.
Arora, Rakesh C; Cardinal, Rene; Smith, Frank M; Ardell, Jeffrey L; Dell'Italia, Louis J; Armour, J Andrew
2003-11-01
The purpose of this study was to test the hypothesis that early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiac function. After 2 wk of rapid ventricular pacing in nine anesthetized canines, cardiac and right atrial neuronal function were evaluated in situ in response to enhanced cardiac sensory inputs, stimulation of extracardiac autonomic efferent neuronal inputs, and close coronary arterial administration of neurochemicals that included nicotine. Right atrial neuronal intracellular electrophysiological properties were then evaluated in vitro in response to synaptic activation and nicotine. Intrinsic cardiac nicotine-sensitive, neuronally induced cardiac responses were also evaluated in eight sham-operated, unpaced animals. Two weeks of rapid ventricular pacing reduced the cardiac index by 54%. Intrinsic cardiac neurons of paced hearts maintained their cardiac mechano- and chemosensory transduction properties in vivo. They also responded normally to sympathetic and parasympathetic preganglionic efferent neuronal inputs, as well as to locally administered alpha-or beta-adrenergic agonists or angiotensin II. The dose of nicotine needed to modify intrinsic cardiac neurons was 50 times greater in failure compared with normal preparations. That dose failed to alter monitored cardiovascular indexes in failing preparations. Phasic and accommodating neurons identified in vitro displayed altered intracellular membrane properties compared with control, including decreased membrane resistance, indicative of reduced excitability. Early-stage heart failure differentially affects the intrinsic cardiac nervous system's capacity to regulate cardiodynamics. While maintaining its capacity to transduce cardiac mechano- and chemosensory inputs, as well as inputs from extracardiac autonomic efferent neurons, intrinsic cardiac nicotine-sensitive, local-circuit neurons differentially remodel such that their capacity to influence cardiodynamics becomes obtunded.
Coffee, R. Lane; Tessier, Charles R.; Woodruff, Elvin A.; Broadie, Kendal
2010-01-01
SUMMARY Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity. PMID:20442204
Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie
2014-05-01
Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.
Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator
2017-01-01
Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50–60 Hz “fast trill” song used by males during courtship. We recorded “fictive vocalizations” in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity. SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from the motor to premotor region. Our results indicate that motor neurons activate this bottom-up connection, and blocking this signal eliminates normal premotor activity. These findings may promote increased awareness of potential involvement of motor neurons in a wider range of CPGs, perhaps clarifying our understanding of network principles underlying motor behaviors in numerous organisms, including humans. PMID:28219984
Hu, Hongtao; Li, Mo
2016-09-09
Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. Copyright © 2016 Elsevier Inc. All rights reserved.
Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks
Burroni, Javier; Taylor, P.; Corey, Cassian; Vachnadze, Tengiz; Siegelmann, Hava T.
2017-01-01
Overview: We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly. Background: Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron cooperation, there have been no previous attempts to explore the effects of direct realistic energy costs on network activity in spiking neurons. Currently, biologically realistic spiking neural networks assume that membrane potential is the main driving factor for neural spiking, and do not take into consideration energetic costs. Methods: We define local energy pools to constrain a neuron model, termed Spiking Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron requires energy to spike, and resources in the pool regenerate over time. Our simulation displays an easy-to-use GUI, which can be run locally in a web browser, and is freely available. Results: Energy dependence drastically changes behavior of these neural networks, causing emergent oscillations similar to those in networks of biological neurons. We analyze the system via Lotka-Volterra equations, producing several observations: (1) energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates the degree and type of oscillations, (3) harmonics emerge with frequencies determined by energy parameters, and (4) varying energetic costs have non-linear effects on energy consumption and firing rates. Conclusions: Models of neuron function which attempt biological realism may benefit from including energy constraints. Further, we assert that observed oscillatory effects of energy limitations exist in networks of many kinds, and that these findings generalize to abstract graphs and technological applications. PMID:28289370
Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons
Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.
2015-01-01
The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin–mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron–ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. PMID:25187366
Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia
2012-01-01
Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform. PMID:23248613
Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia
2012-01-01
Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform.
Insights into the Sigma-1 receptor chaperone’s cellular functions: a microarray report
Tsai, Shang-Yi; Rothman, Richard Kyle; Su, Tsung-Ping
2013-01-01
We previously demonstrated that Sig-1Rs are critical regulators in neuronal morphogenesis and development via the regulation of oxidative stress and mitochondrial functions. In the present study, we sought to identify pathways and genes that are affected by Sig-1R. Gene expression profiles were examined in rat hippocampal neurons that had been cultured for18 days in vitro (DIV). The cells were transduced with AAV siRNA targeting Sig-1R on DIV 10 for 7 days, followed by gene expression analysis using a rat genome cDNA array. The gene array results indicated that Sig-1R knockdown hampered cellular functions including steroid biogenesis, protein ubiquitination, actin cytoskeleton network, and Nrf-2 mediated oxidative stress. Many of the cellular components important for actin polymerization and synapse plasticity, including F-actin capping protein and neurofilaments, were significantly changed in AAV-siSig-1R neurons. Further, cytochrome c was reduced in AAV-Sig-1R neurons whereas free-radical generating enzymes including cytochrome p450 and cytochrome b-245 were increased. The microarray results also suggest that Sig-1Rs may regulate genes that are involved in the pathogenesis of many CNS diseases including Alzheimer’s disease and Parkinson’s disease. These data further confirmed that Sig-1Rs play critical roles in the CNS and thus these findings may aid in future development of therapeutic treatments targeting neurodegenerative disorders. PMID:21905129
[P21-activated kinases and their role in the nervous system].
Qin, Yuan; Ding, Yue-Min; Xia, Qiang
2012-12-25
P21-activated kinases (PAK) participate in a variety of important cellular activities, such as cytoskeleton remodeling, cell migration, cell cycle regulation, and apoptosis or survival. PAK also has an important impact on brain development, neuronal differentiation, and regulation of synaptic plasticity in the nervous system. PAK abnormalities result in diseases including cancer, Parkinson's disease (PD), Alzheimer's disease (AD) and neural retardation. Therefore, it is of vital physiological significance to investigate the neuronal function of PAK. In this paper we review the advancement of research on the neuronal biological function and the underlying mechanisms of PAK.
Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.
Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David
2016-12-17
Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI
Tomassy, Giulio Srubek; De Leonibus, Elvira; Jabaudon, Denis; Lodato, Simona; Alfano, Christian; Mele, Andrea; Macklis, Jeffrey D.; Studer, Michèle
2010-01-01
Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise. PMID:20133588
Toledano, Adolfo; Álvarez, María-Isabel; Toledano-Díaz, Adolfo; Merino, José-Joaquín; Rodríguez, José Julio
2016-01-01
From birth to death, neurons are dynamically accompanied by neuroglial cells in a very close morphological and functional relationship. Three families have been classically considered within the CNS: astroglia, oligodendroglia and microglia. Many types/subtypes (including NGR2+ cells), with a wide variety of physiological and pathological effects on neurons, have been described using morphological and immunocytochemical criteria. Glio-glial, glio-neuronal and neuro-glial cell signaling and gliotransmission are phenomena that are essential to support brain functions. Morphofunctional changes resulting from the plasticity of all the glial cell types parallel the plastic neuronal changes that optimize the functionality of neuronal circuits. Moreover, neuroglia possesses the ability to adopt a reactive status (gliosis) in which, generally, new functions arise to improve and restore if needed the neural functionality. All these features make neuroglial cells elements of paramount importance when attempting to explain any physiological or pathological processes in the CNS, because they are involved in both, neuroprotection/neurorepair and neurodegeneration. There exist diverse and profound, regional and local, neuroglial changes in all involutive processes (physiological and pathological aging; neurodegenerative disorders, including Alzheimer ´s disease -AD-), but today, the exact meaning of such modifications (the modifications of the different neuroglial types, in time and place), is not well understood. In this review we consider the different neuroglial cells and their responses in order to understand the possible role they fulfill in pathogenesis, diagnosis and treatment (preventive or palliative) of AD. The existence of differentiated and/or concurrent pathogenic and neuro-protective/neuro-restorative astroglial and microglial responses is highlighted.
Kisspeptin Signaling in the Brain
Oakley, Amy E.; Clifton, Donald K.; Steiner, Robert A.
2009-01-01
Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function. PMID:19770291
Vernon, Claire G; Swanson, Geoffrey T
2017-03-22
Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2) is also expressed in DRG. We show here that it is a developmentally downregulated but dynamic component of KARs in these neurons, that it contributes to regulated neurite regrowth in adult neurons, and that it is increased in adult mice after nerve injury. Our data confirm Neto2 as a KAR auxiliary subunit and expand our knowledge of the molecular composition of KARs in nociceptive neurons, a key piece in understanding the mechanistic contribution of KAR signaling to pain-processing circuits. Copyright © 2017 the authors 0270-6474/17/373352-12$15.00/0.
Vernon, Claire G.
2017-01-01
Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG–dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2−/− neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG–dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2) is also expressed in DRG. We show here that it is a developmentally downregulated but dynamic component of KARs in these neurons, that it contributes to regulated neurite regrowth in adult neurons, and that it is increased in adult mice after nerve injury. Our data confirm Neto2 as a KAR auxiliary subunit and expand our knowledge of the molecular composition of KARs in nociceptive neurons, a key piece in understanding the mechanistic contribution of KAR signaling to pain-processing circuits. PMID:28235897
The neuronal control of cardiac functions in Molluscs☆
Kodirov, Sodikdjon A.
2017-01-01
In this manuscript, I review the current and relevant classical studies on properties of the Mollusca heart and their central nervous system including ganglia, neurons, and nerves involved in cardiomodulation. Similar to mammalian brain hemispheres, these invertebrates possess symmetrical pairs of ganglia albeit visceral (only one) ganglion and the parietal ganglia (the right ganglion is bigger than the left one). Furthermore, there are two major regulatory drives into the compartments (pericard, auricle, and ventricle) and cardiomyocytes of the heart. These are the excitatory and inhibitory signals that originate from a few designated neurons and their putative neurotransmitters. Many of these neurons are well-identified, their specific locations within the corresponding ganglion are mapped, and some are termed as either heart excitatory (HE) or inhibitory (HI) cells. The remaining neurons are classified as cardio-regulatory, and their direct and indirect actions on the heart’s function have been documented. The cardiovascular anatomy of frequently used experimental animals, Achatina, Aplysia, Helix, and Lymnaea is relatively simple. However, as in humans, it possesses all major components including even trabeculae and atrio-ventricular valves. Since the myocardial cells are enzymatically dispersible, multiple voltage dependent cationic currents in isolated cardiomyocytes are described. The latter include at least the A-type K+, delayed rectifier K+, TTX-sensitive Na+, and L-type Ca2+ channels. PMID:21736949
Lasarge, Candi L; Danzer, Steve C
2014-01-01
The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with epilepsy, the most prominent of these being mutations in PTEN and tuberous sclerosis complexes 1 and 2 (TSC1, TSC2). These genes act as negative regulators of mTOR signaling, and mutations lead to hyperactivation of the pathway. Animal models deleting PTEN, TSC1, and TSC2 consistently produce epilepsy phenotypes, demonstrating that increased mTOR signaling can provoke neuronal hyperexcitability. Given the broad range of changes induced by altered mTOR signaling, however, the mechanisms underlying seizure development in these animals remain uncertain. In transgenic mice, cell populations with hyperactive mTOR have many structural abnormalities that support recurrent circuit formation, including somatic and dendritic hypertrophy, aberrant basal dendrites, and enlargement of axon tracts. At the functional level, mTOR hyperactivation is commonly, but not always, associated with enhanced synaptic transmission and plasticity. Moreover, these populations of abnormal neurons can affect the larger network, inducing secondary changes that may explain paradoxical findings reported between cell and network functioning in different models or at different developmental time points. Here, we review the animal literature examining the link between mTOR hyperactivation and epileptogenesis, emphasizing the impact of enhanced mTOR signaling on neuronal form and function.
The GABAA Receptor RDL Acts in Peptidergic PDF Neurons to Promote Sleep in Drosophila
Chung, Brian Y.; Kilman, Valerie L.; Keath, J. Russel; Pitman, Jena L.; Allada, Ravi
2011-01-01
SUMMARY Sleep is regulated by a circadian clock that largely times sleep and wake to occur at specific times of day and a sleep homeostat that drives sleep as a function of duration of prior wakefulness[1]. To better understand the role of the circadian clock in sleep regulation, we have been using the fruit fly Drosophila melanogaster[2]. Fruit flies display all of the core behavioral features of sleep including relative immobility, elevated arousal thresholds and homeostatic regulation[2, 3]. We assessed sleep-wake modulation by a core set of 20 circadian pacemaker neurons that express the neuropeptide PDF. We find that PDF neuron ablation, loss of pdf or its receptor pdfr results in increased sleep during the late night in light:dark (LD) conditions and more prominent increases on the first subjective day of constant darkness (DD). Flies deploy similar genetic and neurotransmitter pathways to regulate sleep as their mammalian counterparts, including GABA[4]. We find that RNAi-mediated knockdown of the GABAA receptor gene, Resistant to dieldrin (Rdl), in PDF neurons, reduced sleep consistent with a role for GABA in inhibiting PDF neuron function. Patch clamp electrophysiology reveals GABA-activated picrotoxin-sensitive chloride currents on PDF+ neurons. In addition, RDL is detectable most strongly on the large subset of PDF+ pacemaker neurons. These results suggest that GABAergic inhibition of arousal promoting PDF neurons is an important mode of sleep-wake regulation in vivo. PMID:19230663
Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment.
Vizi, E S; Fekete, A; Karoly, R; Mike, A
2010-06-01
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.
Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations
Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul
2014-01-01
Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191
Wang, Xiaowan; Li, Hailong; Ding, Shinghua
2014-01-01
NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075
Central neural pathways for thermoregulation.
Morrison, Shaun F; Nakamura, Kazuhiro
2011-01-01
Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.
Herdegen, T; Waetzig, V
2001-04-30
Jun and Fos proteins are induced and activated following most physiological and pathophysiological stimuli in the brain. Only few data allow conclusions about distinct functions of AP-1 proteins in neurodegeneration and neuroregeneration, and these functions mainly refer to c-Jun and its activation by JNKs. Apoptotic functions of activated c-Jun affect hippocampal, nigral and primary cultured neurons following excitotoxic stimulation and destruction of the neuron-target-axis including withdrawal of trophic molecules. The inhibition of JNKs might exert neuroprotection by subsequent omission of c-Jun activation. Besides endogenous neuronal functions, the c-Jun/AP-1 proteins can damage the nervous system by upregulation of harmful programs in non-neuronal cells (e.g. microglia) with release of neurodegenerative molecules. In contrast, the differentiation with neurite extension and maturation of neural cells in vitro indicate physiological and potentially neuroprotective functions of c-Jun and JNKs including sensoring for alterations in the cytoskeleton. This review summarizes the multiple molecular interfunctions which are involved in the shift from the physiological role to degenerative effects of the Jun/JNK-axis such as cell type-specific expression and intracellular localization of scaffold proteins and upstream activators, antagonistic phosphatases, interaction with other kinase systems, or the activation of transcription factors competing for binding to JNK proteins and AP-1 DNA elements.
Coupé, Bérengère; Ishii, Yuko; Dietrich, Marcelo O; Komatsu, Masaaki; Horvath, Tamas L; Bouret, Sebastien G
2012-02-08
The hypothalamic melanocortin system, which includes neurons that produce pro-opiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher postweaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependent accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity. Copyright © 2012 Elsevier Inc. All rights reserved.
TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus
Hurtado-Zavala, Joaquin I.; Ramachandran, Binu; Ahmed, Saheeb; Halder, Rashi; Bolleyer, Christiane; Awasthi, Ankit; Stahlberg, Markus A.; Wagener, Robin J.; Anderson, Kristin; Drenan, Ryan M.; Lester, Henry A.; Miwa, Julie M.; Staiger, Jochen F.; Fischer, Andre; Dean, Camin
2017-01-01
TRPV1 is an ion channel activated by heat and pungent agents including capsaicin, and has been extensively studied in nociception of sensory neurons. However, the location and function of TRPV1 in the hippocampus is debated. We found that TRPV1 is expressed in oriens-lacunosum-moleculare (OLM) interneurons in the hippocampus, and promotes excitatory innervation. TRPV1 knockout mice have reduced glutamatergic innervation of OLM neurons. When activated by capsaicin, TRPV1 recruits more glutamatergic, but not GABAergic, terminals to OLM neurons in vitro. When TRPV1 is blocked, glutamatergic input to OLM neurons is dramatically reduced. Heterologous expression of TRPV1 also increases excitatory innervation. Moreover, TRPV1 knockouts have reduced Schaffer collateral LTP, which is rescued by activating OLM neurons with nicotine—via α2β2-containing nicotinic receptors—to bypass innervation defects. Our results reveal a synaptogenic function of TRPV1 in a specific interneuron population in the hippocampus, where it is important for gating hippocampal plasticity. PMID:28722015
Coupé, Bérengère; Ishii, Yuko; Dietrich, Marcelo O; Komatsu, Masaaki; Horvath, Tamas L.; Bouret, Sebastien G.
2012-01-01
Summary The hypothalamic melanocortin system, which includes neurons that produce proopiomelanocortin (POMC)-derived peptides, is a major negative regulator of energy balance. POMC neurons begin to acquire their unique properties during neonatal life. The formation of functional neural systems requires massive cytoplasmic remodeling that may involve autophagy, an important intracellular mechanism for the degradation of damaged proteins and organelles. Here we investigated the functional and structural effects of the deletion of an essential autophagy gene, Atg7, in POMC neurons. Lack of Atg7 in POMC neurons caused higher post-weaning body weight, increased adiposity, and glucose intolerance. These metabolic impairments were associated with an age-dependant accumulation of ubiquitin/p62-positive aggregates in the hypothalamus and a disruption in the maturation of POMC-containing axonal projections. Together, these data provide direct genetic evidence that Atg7 in POMC neurons is required for normal metabolic regulation and neural development, and they implicate hypothalamic autophagy deficiency in the pathogenesis of obesity. PMID:22285542
Neuronal dystonin isoform 2 is a mediator of endoplasmic reticulum structure and function.
Ryan, Scott D; Ferrier, Andrew; Sato, Tadasu; O'Meara, Ryan W; De Repentigny, Yves; Jiang, Susan X; Hou, Sheng T; Kothary, Rashmi
2012-02-01
Dystonin/Bpag1 is a cytoskeletal linker protein whose loss of function in dystonia musculorum (dt) mice results in hereditary sensory neuropathy. Although loss of expression of neuronal dystonin isoforms (dystonin-a1/dystonin-a2) is sufficient to cause dt pathogenesis, the diverging function of each isoform and what pathological mechanisms are activated upon their loss remains unclear. Here we show that dt(27) mice manifest ultrastructural defects at the endoplasmic reticulum (ER) in sensory neurons corresponding to in vivo induction of ER stress proteins. ER stress subsequently leads to sensory neurodegeneration through induction of a proapoptotic caspase cascade. dt sensory neurons display neurodegenerative pathologies, including Ca(2+) dyshomeostasis, unfolded protein response (UPR) induction, caspase activation, and apoptosis. Isoform-specific loss-of-function analysis attributes these neurodegenerative pathologies to specific loss of dystonin-a2. Inhibition of either UPR or caspase signaling promotes the viability of cells deficient in dystonin. This study provides insight into the mechanism of dt neuropathology and proposes a role for dystonin-a2 as a mediator of normal ER structure and function.
Child, Nicholas D; Benarroch, Eduardo E
2014-03-18
Neurons contain different functional somatodendritic and axonal domains, each with a characteristic distribution of voltage-gated ion channels, synaptic inputs, and function. The dendritic tree of a cortical pyramidal neuron has 2 distinct domains, the basal and the apical dendrites, both containing dendritic spines; the different domains of the axon are the axonal initial segment (AIS), axon proper (which in myelinated axons includes the node of Ranvier, paranodes, juxtaparanodes, and internodes), and the axon terminals. In the cerebral cortex, the dendritic spines of the pyramidal neurons receive most of the excitatory synapses; distinct populations of γ-aminobutyric acid (GABA)ergic interneurons target specific cellular domains and thus exert different influences on pyramidal neurons. The multiple synaptic inputs reaching the somatodendritic region and generating excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) sum and elicit changes in membrane potential at the AIS, the site of initiation of the action potential.
Kv7.2 regulates the function of peripheral sensory neurons.
King, Chih H; Lancaster, Eric; Salomon, Daniela; Peles, Elior; Scherer, Steven S
2014-10-01
The Kv7 (KCNQ) family of voltage-gated K(+) channels regulates cellular excitability. The functional role of Kv7.2 has been hampered by the lack of a viable Kcnq2-null animal model. In this study, we generated homozygous Kcnq2-null sensory neurons using the Cre-Lox system; in these mice, Kv7.2 expression is absent in the peripheral sensory neurons, whereas the expression of other molecular components of nodes (including Kv7.3), paranodes, and juxtaparanodes is not altered. The conditional Kcnq2-null animals exhibit normal motor performance but have increased thermal hyperalgesia and mechanical allodynia. Whole-cell patch recording technique demonstrates that Kcnq2-null sensory neurons have increased excitability and reduced spike frequency adaptation. Taken together, our results suggest that the loss of Kv7.2 activity increases the excitability of primary sensory neurons. © 2014 Wiley Periodicals, Inc.
α7 nicotinic ACh receptors as a ligand-gated source of Ca(2+) ions: the search for a Ca(2+) optimum.
Uteshev, Victor V
2012-01-01
The spatiotemporal distribution of cytosolic Ca(2+) ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca(2+) ions including ligand- and voltage-gated Ca(2+) channels contribute to intracellular Ca(2+) homeostasis. Many normal physiological and therapeutic neuronal functions are Ca(2+)-dependent, however an excess of cytosolic Ca(2+) or a lack of the appropriate balance between Ca(2+) entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca(2+) elevations and thus, optimal activation of ligand- and voltage-gated Ca(2+) ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic -acetylcholine receptors (nAChRs) are highly permeable to Ca(2+) ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca(2+) influx and how this source of Ca(2+) entry compares to NMDA receptors in supporting cytosolic Ca(2+) homeostasis, neuronal function and survival.
Proteoglycans and neuronal migration in the cerebral cortex during development and disease
Maeda, Nobuaki
2015-01-01
Chondroitin sulfate proteoglycans and heparan sulfate proteoglycans are major constituents of the extracellular matrix and the cell surface in the brain. Proteoglycans bind with many proteins including growth factors, chemokines, axon guidance molecules, and cell adhesion molecules through both the glycosaminoglycan and the core protein portions. The functions of proteoglycans are flexibly regulated due to the structural variability of glycosaminoglycans, which are generated by multiple glycosaminoglycan synthesis and modifying enzymes. Neuronal cell surface proteoglycans such as PTPζ, neuroglycan C and syndecan-3 function as direct receptors for heparin-binding growth factors that induce neuronal migration. The lectican family, secreted chondroitin sulfate proteoglycans, forms large aggregates with hyaluronic acid and tenascins, in which many signaling molecules and enzymes including matrix proteases are preserved. In the developing cerebrum, secreted chondroitin sulfate proteoglycans such as neurocan, versican and phosphacan are richly expressed in the areas that are strategically important for neuronal migration such as the striatum, marginal zone, subplate and subventricular zone in the neocortex. These proteoglycans may anchor various attractive and/or repulsive cues, regulating the migration routes of inhibitory neurons. Recent studies demonstrated that the genes encoding proteoglycan core proteins and glycosaminoglycan synthesis and modifying enzymes are associated with various psychiatric and intellectual disorders, which may be related to the defects of neuronal migration. PMID:25852466
Role of mechanical cues in shaping neuronal morphology and connectivity.
Gangatharan, Girisaran; Schneider-Maunoury, Sylvie; Breau, Marie Anne
2018-06-01
Neuronal circuits, the functional building blocks of the nervous system, assemble during development through a series of dynamic processes including the migration of neurons to their final position, the growth and navigation of axons and their synaptic connection with target cells. While the role of chemical cues in guiding neuronal migration and axonal development has been extensively analysed, the contribution of mechanical inputs, such as forces and stiffness, has received far less attention. In this article, we review the in vitro and more recent in vivo studies supporting the notion that mechanical signals are critical for multiple aspects of neuronal circuit assembly, from the emergence of axons to the formation of functional synapses. By combining live imaging approaches with tools designed to measure and manipulate the mechanical environment of neurons, the emerging field of neuromechanics will add a new paradigm in our understanding of neuronal development and potentially inspire novel regenerative therapies. © 2018 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Boumil, Edward F; Vohnoutka, Rishel Brenna; Liu, Yuguan; Lee, Sangmook; Shea, Thomas B
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive disease of motor neurons that has no cure or effective treatment. Any approach that could sustain minor motor function during terminal stages would improve quality of life. We examined the impact of omega-3 (Ω-3) and Ω-6, on motor neuron function in mice expressing mutant human superoxide dismutase-1 (SOD-1), which dominantly confers familial ALS and induces a similar sequence of motor neuron decline and eventual death when expressed in mice. Mice received standard diets supplemented with equivalent amounts of Ω-3 and Ω-6 or a 10x increase in Ω-6 with no change in Ω-3 commencing at 4 weeks of age. Motor function and biochemical/histological parameters were assayed by standard methodologies. Supplementation with equivalent Ω-3 and Ω-6 hastened motor neuron pathology and death, while 10x Ω-6 with no change in Ω-3 significantly delayed motor neuron pathology, including preservation of minor motor neuron function during the terminal stage. In the absence of a cure or treatment, affected individuals may resort to popular nutritional supplements such as Ω-3 as a form of "self-medication". However, our findings and those of other laboratories indicate that such an approach could be harmful. Our findings suggest that a critical balance of Ω-6 and Ω-3 may temporarily preserve motor neuron function during the terminal stages of ALS, which could provide a substantial improvement in quality of life for affected individuals and their caregivers.
Bukiya, Anna N.; Noskov, Sergei; Rosenhouse-Dantsker, Avia
2017-01-01
Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. PMID:28213520
Py, Christophe; Martina, Marzia; Diaz-Quijada, Gerardo A.; Luk, Collin C.; Martinez, Dolores; Denhoff, Mike W.; Charrier, Anne; Comas, Tanya; Monette, Robert; Krantis, Anthony; Syed, Naweed I.; Mealing, Geoffrey A. R.
2011-01-01
All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions – including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells. PMID:22007170
Py, Christophe; Martina, Marzia; Diaz-Quijada, Gerardo A; Luk, Collin C; Martinez, Dolores; Denhoff, Mike W; Charrier, Anne; Comas, Tanya; Monette, Robert; Krantis, Anthony; Syed, Naweed I; Mealing, Geoffrey A R
2011-01-01
All excitable cell functions rely upon ion channels that are embedded in their plasma membrane. Perturbations of ion channel structure or function result in pathologies ranging from cardiac dysfunction to neurodegenerative disorders. Consequently, to understand the functions of excitable cells and to remedy their pathophysiology, it is important to understand the ion channel functions under various experimental conditions - including exposure to novel drug targets. Glass pipette patch-clamp is the state of the art technique to monitor the intrinsic and synaptic properties of neurons. However, this technique is labor intensive and has low data throughput. Planar patch-clamp chips, integrated into automated systems, offer high throughputs but are limited to isolated cells from suspensions, thus limiting their use in modeling physiological function. These chips are therefore not most suitable for studies involving neuronal communication. Multielectrode arrays (MEAs), in contrast, have the ability to monitor network activity by measuring local field potentials from multiple extracellular sites, but specific ion channel activity is challenging to extract from these multiplexed signals. Here we describe a novel planar patch-clamp chip technology that enables the simultaneous high-resolution electrophysiological interrogation of individual neurons at multiple sites in synaptically connected neuronal networks, thereby combining the advantages of MEA and patch-clamp techniques. Each neuron can be probed through an aperture that connects to a dedicated subterranean microfluidic channel. Neurons growing in networks are aligned to the apertures by physisorbed or chemisorbed chemical cues. In this review, we describe the design and fabrication process of these chips, approaches to chemical patterning for cell placement, and present physiological data from cultured neuronal cells.
2013-01-01
Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229
Andres, Devon; Keyser, Brian M; Petrali, John; Benton, Betty; Hubbard, Kyle S; McNutt, Patrick M; Ray, Radharaman
2013-04-18
Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.
N-Acetylaspartate in the CNS: From Neurodiagnostics to Neurobiology
Moffett, John R.; Ross, Brian; Arun, Peethambaran; Madhavarao, Chikkathur N.; Namboodiri, M. A. A.
2007-01-01
The brain is unique among organs in many respects, including its mechanisms of lipid synthesis and energy production. The nervous system-specific metabolite N-acetylaspartate (NAA), which is synthesized from aspartate and acetyl-coenzyme A in neurons, appears to be a key link in these distinct biochemical features of CNS metabolism. During early postnatal CNS development, the expression of lipogenic enzymes in oligodendrocytes, including the NAA-degrading enzyme aspartoacylase (ASPA), is increased along with increased NAA production in neurons. NAA is transported from neurons to the cytoplasm of oligodendrocytes, where ASPA cleaves the acetate moiety for use in fatty acid and steroid synthesis. The fatty acids and steroids produced then go on to be used as building blocks for myelin lipid synthesis. Mutations in the gene for ASPA result in the fatal leukodystrophy Canavan disease, for which there is currently no effective treatment. Once postnatal myelination is completed, NAA may continue to be involved in myelin lipid turnover in adults, but it also appears to adopt other roles, including a bioenergetic role in neuronal mitochondria. NAA and ATP metabolism appear to be linked indirectly, whereby acetylation of aspartate may facilitate its removal from neuronal mitochondria, thus favoring conversion of glutamate to alpha ketoglutarate which can enter the tricarboxylic acid cycle for energy production. In its role as a mechanism for enhancing mitochondrial energy production from glutamate, NAA is in a key position to act as a magnetic resonance spectroscopy marker for neuronal health, viability and number. Evidence suggests that NAA is a direct precursor for the enzymatic synthesis of the neuron specific dipeptide N-acetylaspartylglutamate, the most concentrated neuropeptide in the human brain. Other proposed roles for NAA include neuronal osmoregulation and axon-glial signaling. We propose that NAA may also be involved in brain nitrogen balance. Further research will be required to more fully understand the biochemical functions served by NAA in CNS development and activity, and additional functions are likely to be discovered. PMID:17275978
Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi
2018-06-01
Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.
Kenmoku, Hiroyuki; Ishikawa, Hiroki; Ote, Manabu; Kuraishi, Takayuki; Kurata, Shoichiro
2016-08-01
The metazoan gut performs multiple physiological functions, including digestion and absorption of nutrients, and also serves as a physical and chemical barrier against ingested pathogens and abrasive particles. Maintenance of these functions and structures is partly controlled by the nervous system, yet the precise roles and mechanisms of the neural control of gut integrity remain to be clarified in Drosophila Here, we screened for GAL4 enhancer-trap strains and labeled a specific subsets of neurons, using Kir2.1 to inhibit their activity. We identified an NP3253 line that is susceptible to oral infection by Gram-negative bacteria. The subset of neurons driven by the NP3253 line includes some of the enteric neurons innervating the anterior midgut, and these flies have a disorganized proventricular structure with high permeability of the peritrophic matrix and epithelial barrier. The findings of the present study indicate that neural control is crucial for maintaining the barrier function of the gut, and provide a route for genetic dissection of the complex brain-gut axis in adults of the model organism Drosophila. © 2016. Published by The Company of Biologists Ltd.
Franceschini, Alessia; Nair, Asha; Bele, Tanja; van den Maagdenberg, Arn Mjm; Nistri, Andrea; Fabbretti, Elsa
2012-11-21
Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons.
Mirror Me: Imitative Responses in Adults with Autism
ERIC Educational Resources Information Center
Schunke, Odette; Schöttle, Daniel; Vettorazzi, Eik; Brandt, Valerie; Kahl, Ursula; Bäumer, Tobias; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K; Brass, Marcel; Münchau, Alexander
2016-01-01
Dysfunctions of the human mirror neuron system have been postulated to underlie some deficits in autism spectrum disorders including poor imitative performance and impaired social skills. Using three reaction time experiments addressing mirror neuron system functions under simple and complex conditions, we examined 20 adult autism spectrum…
Redox and Nitric Oxide-Mediated Regulation of Sensory Neuron Ion Channel Function
2015-01-01
Abstract Significance: Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. Recent Advances: Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. Critical Issues: The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. Future Directions: Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics. Antioxid. Redox Signal. 22, 486–504. PMID:24735331
Zhang, Chengjin; Ojiaku, Princess; Cole, Gregory J.
2014-01-01
BACKGROUND Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanol’s effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was employed to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8 or Shh mRNA overexpression rescues ethanol-induced decreases in GAD1 and atonal1a gene expression. CONCLUSIONS These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis. PMID:23184466
Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.
Takayama, Jun; Faumont, Serge; Kunitomo, Hirofumi; Lockery, Shawn R; Iino, Yuichi
2010-01-01
The nervous system is composed of a wide variety of neurons. A description of the transcriptional profiles of each neuron would yield enormous information about the molecular mechanisms that define morphological or functional characteristics. Here we show that RNA isolation from single neurons is feasible by using an optimized mRNA tagging method. This method extracts transcripts in the target cells by co-immunoprecipitation of the complexes of RNA and epitope-tagged poly(A) binding protein expressed specifically in the cells. With this method and genome-wide microarray, we compared the transcriptional profiles of two functionally different neurons in the main C. elegans gustatory neuron class ASE. Eight of the 13 known subtype-specific genes were successfully detected. Additionally, we identified nine novel genes including a receptor guanylyl cyclase, secreted proteins, a TRPC channel and uncharacterized genes conserved among nematodes, suggesting the two neurons are substantially different than previously thought. The expression of these novel genes was controlled by the previously known regulatory network for subtype differentiation. We also describe unique motif organization within individual gene groups classified by the expression patterns in ASE. Our study paves the way to the complete catalog of the expression profiles of individual C. elegans neurons.
Indo, Yasuhiro
2009-05-11
Nerve growth factor (NGF) is a well-known neurotrophic factor essential for the survival and maintenance of sensory and sympathetic neurons. Congenital insensitivity to pain with anhidrosis (CIPA) is a genetic disorder due to loss-of-function mutations in the NTRK1 (also known as TRKA) gene encoding TrkA, a receptor tyrosine kinase for NGF. Patients with CIPA provide us a rare opportunity to explore the developmental and physiological function of the NGF-dependent neurons in behavior, cognitive, and mental activities that are not available in animal studies. Here, I discuss the significance of findings that patients with CIPA lack NGF-dependent neurons, including interoceptive polymodal receptors, sympathetic postganglionic neurons, and probably several types of neurons in the brain. They also exhibit characteristic emotional behavior or problems. Together, the NGF-TrkA system is essential for the establishment of a neural network for interoception and homeostasis that may underlie 'gut feelings'. Thus, NGF-dependent neurons play a crucial role in emotional experiences and decision-making processes. Prospective studies focused on these neurons might provide further insights into the neural basis of human emotion and feeling.
Neuronal Reward and Decision Signals: From Theories to Data
Schultz, Wolfram
2015-01-01
Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. PMID:26109341
Microglia in CNS development: Shaping the brain for the future.
Mosser, Coralie-Anne; Baptista, Sofia; Arnoux, Isabelle; Audinat, Etienne
Microglial cells are the resident macrophages of the central nervous system (CNS) and are mainly known for their roles in neuropathologies. However, major recent developments have revealed that these immune cells actively interact with neurons in physiological conditions and can modulate the fate and functions of synapses. Originating from myeloid precursors born in the yolk sac, microglial cells invade the CNS during early embryonic development. As a consequence they can potentially influence neuronal proliferation, migration and differentiation as well as the formation and maturation of neuronal networks, thereby contributing to the entire shaping of the CNS. We review here recent evidence indicating that microglial cells are indeed involved in crucial steps of the CNS development, including neuronal survival and apoptosis, axonal growth, migration of neurons, pruning of supernumerary synapses and functional maturation of developing synapses. We also discuss current hypotheses proposing that diverting microglial cells of their physiological functions, by promoting the expression of an immune phenotype during development, may be central to neurodevelopmental disorders such as autism, schizophrenia and epilepsy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Majumdar, Debeshi; Bevensee, Mark O.
2010-01-01
Many cellular processes including neuronal activity are sensitive to changes in intracellular and/or extracellular pH— both of which are regulated by acid-base transporter activity. HCO3−-dependent transporters are particularly potent regulators of intracellular pH in neurons and astrocytes, and also contribute to the composition of the cerebrospinal fluid (CSF). The molecular physiology of HCO3− transporters has advanced considerably over the past ~14 years as investigators have cloned and characterized the function and localization of many Na-Coupled Bicarbonate Transporters of the Slc4 family (NCBTs). In this review, we provide an updated overview of the function and localization of NCBTs in the nervous system. Multiple NCBTs are expressed in neurons and astrocytes in various brain regions, as well as in epithelial cells of the choroid plexus. Characteristics of human patients with SLC4 gene mutations/deletions and results from recent studies on mice with Slc4 gene disruptions highlight the functional importance of NCBTs in neuronal activity, somatosensory function, and CSF production. Furthermore, energy-deficient states (e.g., hypoxia and ischemia) lead to altered expression and activity of NCBTs. Thus, recent studies expand our understanding of the role of NCBTs in regulating the pH and ionic composition of the nervous system that can modulate neuronal activity. PMID:20884330
Beaumont, Eric; Salavatian, Siamak; Southerland, E Marie; Vinet, Alain; Jacquemet, Vincent; Armour, J Andrew; Ardell, Jeffrey L
2013-01-01
The aims of the study were to determine how aggregates of intrinsic cardiac (IC) neurons transduce the cardiovascular milieu versus responding to changes in central neuronal drive and to determine IC network interactions subsequent to induced neural imbalances in the genesis of atrial fibrillation (AF). Activity from multiple IC neurons in the right atrial ganglionated plexus was recorded in eight anaesthetized canines using a 16-channel linear microelectrode array. Induced changes in IC neuronal activity were evaluated in response to: (1) focal cardiac mechanical distortion; (2) electrical activation of cervical vagi or stellate ganglia; (3) occlusion of the inferior vena cava or thoracic aorta; (4) transient ventricular ischaemia, and (5) neurally induced AF. Low level activity (ranging from 0 to 2.7 Hz) generated by 92 neurons was identified in basal states, activities that displayed functional interconnectivity. The majority (56%) of IC neurons so identified received indirect central inputs (vagus alone: 25%; stellate ganglion alone: 27%; both: 48%). Fifty per cent transduced the cardiac milieu responding to multimodal stressors applied to the great vessels or heart. Fifty per cent of IC neurons exhibited cardiac cycle periodicity, with activity occurring primarily in late diastole into isovolumetric contraction. Cardiac-related activity in IC neurons was primarily related to direct cardiac mechano-sensory inputs and indirect autonomic efferent inputs. In response to mediastinal nerve stimulation, most IC neurons became excessively activated; such network behaviour preceded and persisted throughout AF. It was concluded that stochastic interactions occur among IC local circuit neuronal populations in the control of regional cardiac function. Modulation of IC local circuit neuronal recruitment may represent a novel approach for the treatment of cardiac disease, including atrial arrhythmias. PMID:23818689
Class II G Protein-Coupled Receptors and Their Ligands in Neuronal Function and Protection
Martin, Bronwen; de Maturana, Rakel Lopez; Brenneman, Randall; Walent, Tom; Mattson, Mark P.; Maudsley, Stuart
2008-01-01
G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs–adenylate cyclase–cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders. PMID:16052036
Higo, S; Honda, S; Iijima, N; Ozawa, H
2016-04-01
The neuropeptide kisspeptin and its receptor play an essential role in reproduction as a potent modulator of the gonadotrophin-releasing hormone (GnRH) neurone. In addition to its reproductive function, kisspeptin signalling is also involved in extra-hypothalamic-pituitary-gonadal (HPG) axis systems, including oxytocin and arginine vasopressin (AVP) secretion. By contrast to the accumulating information for kisspeptin neurones and kisspeptin fibres, the histological distribution and function of the kisspeptin receptor in the rat brain remain poorly characterised. Using in situ hybridisation combined with immunofluorescence, the present study aimed to determine the whole brain map of Kiss1r mRNA (encoding the kisspeptin receptor), and to examine whether oxytocin or AVP neurones express Kiss1r. Neurones with strong Kiss1r expression were observed in several rostral brain areas, including the olfactory bulb, medial septum, diagonal band of Broca and throughout the preoptic area, with the most concentrated population being around 0.5 mm rostral to the bregma. Co-immunofluorescence staining revealed that, in these rostral brain areas, the vast majority of the Kiss1r-expressing neurones co-expressed GnRH. Moderate levels of Kiss1r mRNA were also noted in the rostral periventricular area, paraventricular nucleus (PVN), and throughout the arcuate nucleus. Relatively weak Kiss1r expression was observed in the supraoptic nucleus and supramammillary nuclei. Moderate to weak expression of Kiss1r was also observed in several regions in the midbrain, including the periaqueductal gray and dorsal raphe nucleus. We also examined whether oxytocin and AVP neurones in the PVN co-express Kiss1r. Immunofluorescence revealed the co-expression of Kiss1r in a subset of the oxytocin neurones but not in the AVP neurones in the PVN. The present study provides a fundamental anatomical basis for further examination of the kisspeptin signalling system in the extra-HPG axis, as well as in reproductive function. © 2015 British Society for Neuroendocrinology.
Computer Modelling of Functional Aspects of Noise in Endogenously Oscillating Neurons
NASA Astrophysics Data System (ADS)
Huber, M. T.; Dewald, M.; Voigt, K.; Braun, H. A.; Moss, F.
1998-03-01
Membrane potential oscillations are a widespread feature of neuronal activity. When such oscillations operate close to the spike-triggering threshold, noise can become an essential property of spike-generation. According to that, we developed a minimal Hodgkin-Huxley-type computer model which includes a noise term. This model accounts for experimental data from quite different cells ranging from mammalian cortical neurons to fish electroreceptors. With slight modifications of the parameters, the model's behavior can be tuned to bursting activity, which additionally allows it to mimick temperature encoding in peripheral cold receptors including transitions to apparently chaotic dynamics as indicated by methods for the detection of unstable periodic orbits. Under all conditions, cooperative effects between noise and nonlinear dynamics can be shown which, beyond stochastic resonance, might be of functional significance for stimulus encoding and neuromodulation.
During development neurons undergo a number of morphological changes including neurite outgrowth from the cell body. Exposure to neurotoxicants that interfere with this process may cause in permanent deficits in nervous system function. While many studies have used rodent primary...
Maxwell, Michele M.; Tomkinson, Elizabeth M.; Nobles, Johnathan; Wizeman, John W.; Amore, Allison M.; Quinti, Luisa; Chopra, Vanita; Hersch, Steven M.; Kazantsev, Aleksey G.
2011-01-01
Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain. PMID:21791548
Glover, J C
2009-11-10
The first Kavli Prize in Neuroscience recognizes a confluence of career achievements that together provide a fundamental understanding of how brain and spinal cord circuits are assembled during development and function in the adult. The members of the Kavli Neuroscience Prize Committee have decided to reward three scientists (Sten Grillner, Thomas Jessell, and Pasko Rakic) jointly "for discoveries on the developmental and functional logic of neuronal circuits". Pasko Rakic performed groundbreaking studies of the developing cerebral cortex, including the discovery of how radial glia guide the neuronal migration that establishes cortical layers and for the radial unit hypothesis and its implications for cortical connectivity and evolution. Thomas Jessell discovered molecular principles governing the specification and patterning of different neuron types and the development of their synaptic interconnection into sensorimotor circuits. Sten Grillner elucidated principles of network organization in the vertebrate locomotor central pattern generator, along with its command systems and sensory and higher order control. The discoveries of Rakic, Jessell and Grillner provide a framework for how neurons obtain their identities and ultimate locations, establish appropriate connections with each other, and how the resultant neuronal networks operate. Their work has significantly advanced our understanding of brain development and function and created new opportunities for the treatment of neurological disorders. Each has pioneered an important area of neuroscience research and left a legacy of exceptional scientific achievement, insight, communication, mentoring and leadership.
Natale, G; Ryskalin, L; Busceti, C L; Biagioni, F; Fornai, F
2017-09-01
The gastrointestinal tract is provided with extrinsic and intrinsic innervation. The extrinsic innervation includes the classic vagal parasympathetic and sympathetic components, with afferent sensitive and efferent secretomotor fibers. The intrinsic innervations is represented by the enteric nervous system (ENS), which is recognized as a complex neural network controlling a variety of cell populations, including smooth muscle cells, mucosal secretory cells, endocrine cells, microvasculature, immune and inflammatory cells. This is finalized to regulate gastrointestinal secretion, absorption and motility. In particular, this network is organized in several plexuses each one providing quite autonomous control of gastrointestinal functions (hence the definition of "second brain"). The similarity between ENS and CNS is further substantiated by the presence of local sensitive pseudo- unipolar ganglionic neurons with both peripheral and central branching which terminate in the enteric wall. A large variety of neurons and neurotransmitters takes part in the ENS. However, the nature of these neurons and their role in the regulation of gastrointestinal functions is debatable. In particular, the available literature reporting the specific nature of catecholamine- containing neurons provides conflicting evidence. This is critical both for understanding the specific role of each catecholamine in the gut and, mostly, to characterize specifically the enteric neuropathology occurring in a variety of diseases. An emphasis is posed on neurodegenerative disorders, such as Parkinson's disease, which is associated with the loss of catecholamine neurons. In this respect, the recognition of the nature of such neurons within the ENS would contribute to elucidate the pathological mechanisms which produce both CNS and ENS degeneration and to achieve more effective therapeutic approaches. Despite a great emphasis is posed on the role of noradrenaline to regulate enteric activities only a few reports are available on the anatomy and physiology of enteric dopamine neurons. Remarkably, this review limits the presence of enteric noradrenaline (and adrenaline) only within extrinsic sympathetic nerve terminals. This is based on careful morphological studies showing that the only catecholamine-containing neurons within ENS would be dopaminergic. This means that enteric pathology of catecholamine neurons should be conceived as axon pathology for noradrenaline neurons and whole cell pathology for dopamine neurons which would be the sole catecholamine cell within intrinsic circuitries affecting gut motility and secretions.The gastrointestinal tract is provided with extrinsic and intrinsic innervation. The extrinsic innervation includes the classic vagal parasympathetic and sympathetic components, with afferent sensitive and efferent secretomotor fibers. The intrinsic innervations is represented by the enteric nervous system (ENS), which is recognized as a complex neural network controlling a variety of cell populations, including smooth muscle cells, mucosal secretory cells, endocrine cells, microvasculature, immune and inflammatory cells. This is finalized to regulate gastrointestinal secretion, absorption and motility. In particular, this network is organized in several plexuses each one providing quite autonomous control of gastrointestinal functions (hence the definition of "second brain"). The similarity between ENS and CNS is further substantiated by the presence of local sensitive pseudounipolar ganglionic neurons with both peripheral and central branching which terminate in the enteric wall. A large variety of neurons and neurotransmitters takes part in the ENS. However, the nature of these neurons and their role in the regulation of gastrointestinal functions is debatable. In particular, the available literature reporting the specific nature of catecholamine-containing neurons provides conflicting evidence. This is critical both for understanding the specific role of each catecholamine in the gut and, mostly, to characterize specifically the enteric neuropathology occurring in a variety of diseases. An emphasis is posed on neurodegenerative disorders, such as including Parkinson's disease, which is associated with the loss of catecholamine neurons. In this respect, the recognition of the nature of such neurons within the ENS would contribute to elucidate the pathological mechanisms which produce both CNS and ENS degeneration and to achieve more effective therapeutic approaches. Despite a great emphasis is posed on the role of noradrenaline to regulate enteric activities only a few reports are available on the anatomy and physiology of enteric dopamine neurons. Remarkably, this review limits the presence of enteric noradrenaline (and adrenaline) only within extrinsic sympathetic nerve terminals. This is based on careful morphological studies showing that the only catecholamine-containing neurons within ENS would be dopaminergic. This means that enteric pathology of catecholamine neurons should be conceived as axon pathology for noradrenaline neurons and whole cell pathology for dopamine neurons which would be the sole catecholamine cell within intrinsic circuitries affecting gut motility and secretions.
Delay-slope-dependent stability results of recurrent neural networks.
Li, Tao; Zheng, Wei Xing; Lin, Chong
2011-12-01
By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.
EBF factors drive expression of multiple classes of target genes governing neuronal development.
Green, Yangsook S; Vetter, Monica L
2011-04-30
Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.
Acute carbon dioxide avoidance in Caenorhabditis elegans
Hallem, Elissa A.; Sternberg, Paul W.
2008-01-01
Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFβ signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm. PMID:18524955
Acute carbon dioxide avoidance in Caenorhabditis elegans.
Hallem, Elissa A; Sternberg, Paul W
2008-06-10
Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO2 that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO2 avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFbeta signaling pathways. CO2 response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO2 avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.
The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons.
Moore, Aleisha M; Campbell, Rebecca E
2016-06-01
Polycystic ovary syndrome (PCOS) is a prevalent and distressing endocrine disorder lacking a clearly identified aetiology. Despite its name, PCOS may result from impaired neuronal circuits in the brain that regulate steroid hormone feedback to the hypothalamo-pituitary-gonadal axis. Ovarian function in all mammals is controlled by the gonadotropin-releasing hormone (GnRH) neurons, a small group of neurons that reside in the pre-optic area of the hypothalamus. GnRH neurons drive the secretion of the gonadotropins from the pituitary gland that subsequently control ovarian function, including the production of gonadal steroid hormones. These hormones, in turn, provide important feedback signals to GnRH neurons via a hormone sensitive neuronal network in the brain. In many women with PCOS this feedback pathway is impaired, resulting in the downstream consequences of the syndrome. This review will explore what is currently known from clinical and animal studies about the identity, relative contribution and significance of the individual neuronal components within the GnRH neuronal network that contribute to the pathophysiology of PCOS. We review evidence for the specific neuronal pathways hypothesised to mediate progesterone negative feedback to GnRH neurons, and discuss the potential mechanisms by which androgens may evoke disruptions in these circuits at different developmental time points. Finally, this review discusses data providing compelling support for disordered progesterone-sensitive GABAergic input to GnRH neurons, originating specifically within the arcuate nucleus in prenatal androgen induced forms of PCOS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.
Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico
2015-02-01
The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Lopez, Jose R; Uryash, A; Kolster, J; Estève, E; Zhang, R; Adams, J A
2018-03-26
We have previously shown that inadequate dystrophin in cortical neurons in mdx mice is associated with age-dependent dyshomeostasis of resting intracellular Ca 2+ ([Ca 2+ ] i ) and Na + ([Na + ] i ), elevated reactive oxygen species (ROS) production, increase in neuronal damage and cognitive deficit. In this study, we assessed the potential therapeutic properties of the whole body periodic acceleration (pGz) to ameliorate the pathology observed in cortical neurons from the mdx mouse. pGz adds small pulses to the circulation, thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of nitric oxide (NO). We found [Ca 2+ ] i and [Na + ] i overload along with reactive oxygen species (ROS) overproduction in mdx neurons and cognitive dysfunction. mdx neurons showed increased activity of superoxide dismutase, glutathione peroxidase, malondialdehyde, and calpain as well as decreased cell viability. mdx neurons were more susceptible to hypoxia-reoxygenation injury than WT. pGz ameliorated the [Ca 2+ ] i , and [Na + ] i elevation and ROS overproduction and further increased the activities of superoxide dismutase, glutathione peroxidase and reduced the malondialdehyde and calpains. pGz diminished cell damage and elevated [Ca 2+ ] i during hypoxia-reoxygenation and improved cognitive function in mdx mice. Moreover, pGz upregulated the expression of utrophin, dystroglycan-β and CAPON, constitutive nitric oxide synthases, prosaposin, brain-derived neurotrophic, and glial cell line-derived neurotrophic factors. The present study demonstrated that pGz is an effective therapeutic approach to improve mdx neurons function, including cognitive functions.
Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi
2018-05-16
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders. Copyright © 2018 the authors 0270-6474/18/384791-20$15.00/0.
Calretinin immunoreactivity in the claustrum of the rat
Druga, Rastislav; Salaj, Martin; Barinka, Filip; Edelstein, Lawrence; Kubová, Hana
2015-01-01
The claustrum is a telencephalic structure which consists of dorsal segment adjoining the insular cortex and a ventral segment termed also endopiriform nucleus (END). The dorsal segment (claustrum) is divided into a dorsal and ventral zone, while the END is parcellated into dorsal, ventral and intermediate END. The claustrum and the END consist of glutamatergic projection neurons and GABAergic local interneurons coexpressing calcium binding proteins. Among neurons expressing calcium binding proteins the calretinin (CR)-immunoreactive interneurons exert specific functions in neuronal circuits, including disinhibition of excitatory neurons. Previous anatomical data indicate extensive and reciprocally organized claustral projections with cerebral cortex. We asked if the distribution of cells immunoreactive for CR delineates anatomical or functional subdivisions in the claustrum and in the END. Both segments of the claustrum and all subdivisions of the END contained CR immunoreactive neurons with varying distribution. The ventral zone of the claustrum exhibited weak labeling with isolated cell bodies and thin fibers and is devoid of immunoreactive puncta. Within the medial margin of the intermediate END we noted a group of strongly positive neurons. Cells immunoreactive for CR in all subdivisions of the claustrum and END were bipolar, multipolar and oval with smooth, beaded aspiny dendrites. Small number of CR-immunoreactive neurons displayed thin dendrites which enter to adjoining structures. Penetration of dendrites was reciprocal. These results show an inhomogenity over the claustrum and the END in distribution and types of CR immunoreactive neurons. The distribution of the CR-immunoreactive neurons respects the anatomical but not functional zones of the claustral complex. PMID:25653596
Lembke, Kayly M; Scudder, Charles; Morton, David B
2017-09-27
Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony , a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects. SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43 expression levels, but the specific defects caused by TDP-43 loss of function have not been described in detail. A Drosophila loss-of-function model displays pronounced locomotion defects that can be reversed by restoring the expression levels of a voltage-gated calcium channel, cacophony. We show these defects can be rescued by expression of cacophony in motor neurons and by expression in two pairs of neurons in the brain. These data suggest that loss of TDP-43 can disrupt the central circuitry of the CNS, opening up identification of alternative therapeutic targets for TDP-43 proteinopathies. Copyright © 2017 the authors 0270-6474/17/379486-12$15.00/0.
Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia
2017-04-14
Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Gaudet, Andrew D; Mandrekar-Colucci, Shweta; Hall, Jodie C E; Sweet, David R; Schmitt, Philipp J; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia; Popovich, Phillip G
2016-08-10
Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers, including inflammation. Here, new data show that deleting microRNA-155 (miR-155) affects both mechanisms and improves repair and functional recovery after SCI. Macrophages lacking miR-155 have altered inflammatory capacity, which enhances neuron survival and axon growth of cocultured neurons. In addition, independent of macrophages, adult miR-155 KO neurons show enhanced spontaneous axon growth. Using either spinal cord dorsal column crush or contusion injury models, miR-155 deletion improves indices of repair and recovery. Therefore, miR-155 has a dual role in regulating spinal cord repair and may be a novel therapeutic target for SCI and other CNS pathologies. Copyright © 2016 the authors 0270-6474/16/368516-17$15.00/0.
Face-selective and auditory neurons in the primate orbitofrontal cortex.
Rolls, Edmund T; Critchley, Hugo D; Browning, Andrew S; Inoue, Kazuo
2006-03-01
Neurons with responses selective for faces are described in the macaque orbitofrontal cortex. The neurons typically respond 2-13 times more to the best face than to the best non-face stimulus, and have response latencies which are typically in the range of 130-220 ms. Some of these face-selective neurons respond to identity, and others to facial expression. Some of the neurons do not have different responses to different views of a face, which is a useful property of neurons responding to face identity. Other neurons have view-dependent responses, and some respond to moving but not still heads. The neurons with face expression, face movement, or face view-dependent responses would all be useful as part of a system decoding and representing signals important in social interactions. The representation of face identity is also important in social interactions, for it provides some of the information needed in order to make different responses to different individuals. In addition, some orbitofrontal cortex neurons were shown to be tuned to auditory stimuli, including for some neurons, the sound of vocalizations. The findings are relevant to understanding the functions of the primate including human orbitofrontal cortex in normal behaviour, and to understanding the effects of damage to this region in humans.
SUMO1 Affects Synaptic Function, Spine Density and Memory
Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E.
2015-01-01
Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678
Wirth, Eva K; Roth, Stephan; Blechschmidt, Cristiane; Hölter, Sabine M; Becker, Lore; Racz, Ildiko; Zimmer, Andreas; Klopstock, Thomas; Gailus-Durner, Valerie; Fuchs, Helmut; Wurst, Wolfgang; Naumann, Thomas; Bräuer, Anja; de Angelis, Martin Hrabé; Köhrle, Josef; Grüters, Annette; Schweizer, Ulrich
2009-07-29
Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.
2012-01-01
Background Enhanced activity of trigeminal ganglion neurons is thought to underlie neuronal sensitization facilitating the onset of chronic pain attacks, including migraine. Recurrent headache attacks might establish a chronic neuroinflammatory ganglion profile contributing to the hypersensitive phenotype. Since it is difficult to study this process in vivo, we investigated functional crosstalk between macrophages and sensory neurons in primary cultures from trigeminal sensory ganglia of wild-type (WT) or knock-in (KI) mice expressing the Cacna1a gene mutation (R192Q) found in familial hemiplegic migraine-type 1. After studying the number and morphology of resident macrophages in culture, the consequences of adding host macrophages on macrophage phagocytosis and membrane currents mediated by pain-transducing P2X3 receptors on sensory neurons were examined. Results KI ganglion cultures constitutively contained a larger number of active macrophages, although no difference in P2X3 receptor expression was found. Co-culturing WT or KI ganglia with host macrophages (active as much as resident cells) strongly stimulated single cell phagocytosis. The same protocol had no effect on P2X3 receptor expression in WT or KI co-cultures, but it largely enhanced WT neuron currents that grew to the high amplitude constitutively seen for KI neurons. No further potentiation of KI neuronal currents was observed. Conclusions Trigeminal ganglion cultures from a genetic mouse model of migraine showed basal macrophage activation together with enhanced neuronal currents mediated by P2X3 receptors. This phenotype could be replicated in WT cultures by adding host macrophages, indicating an important functional crosstalk between macrophages and sensory neurons. PMID:23171280
The Amniote Oculomotor Complex.
Company, Verónica; Moreno-Bravo, Juan Antonio; Perez-Balaguer, Ariadna; Puelles, Eduardo
2018-04-16
The oculomotor (OM) complex is a combination of somatic and parasympatethic neurons. The correct development and wiring of this cranial pair is essential to perform basic functions: eyeball and eyelid movements, pupillary constriction, and lens accommodation. The improper formation or function of this nucleus leads pathologies such as strabismus. We describe the OM organization and function in different vertebrate brains, including chick, mouse, and human. The morphological localization is detailed, as well as the spatial relation with the trochlear nucleus in order to adjust some misleading anatomical topographic descriptions. We detailed the signaling processes needed for the specification of the OM neurons. The transcriptional programs driven the specification and differentiation of these neurons are partially determined. We summarized recent genetic studies that have led to the identification of guidance mechanisms involved in the migration, axon pathfinding, and targeting of the OM neurons. Finally, we overviewed the pathology associated to genetic malformations in the OM development and related clinical alterations. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Morris, Kendall F; Nuding, Sarah C; Segers, Lauren S; Iceman, Kimberly E; O'Connor, Russell; Dean, Jay B; Ott, Mackenzie M; Alencar, Pierina A; Shuman, Dale; Horton, Kofi-Kermit; Taylor-Clark, Thomas E; Bolser, Donald C; Lindsey, Bruce G
2018-02-01
We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for postinspiratory neuron inhibition of rostral VRC I-Driver (pre-Bötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive pericolumnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL-pF neurons with functional links to widespread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. NEW & NOTEWORTHY We tested the long-standing hypothesis that carotid chemoreceptors tune the frequency and depth of breathing through parallel circuit operations targeting the ventral respiratory column. Responses to stimulation of the chemoreceptors and identified functional connectivity support differential tuning of inspiratory neuron burst duration and firing rate and a model of brain stem network architecture incorporating tonic expiratory "hub" neurons regulated by convergent neuronal chains and loops through rostral lateral tegmental field neurons with quasi-periodic discharge patterns.
Central neural pathways for thermoregulation
Morrison, Shaun F.; Nakamura, Kazuhiro
2010-01-01
Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160
The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.
Gould, E; Woolley, C S; McEwen, B S
1991-01-01
The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.
Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A
2014-04-01
Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.
Wijayatunge, Ranjula; Chen, Liang-Fu; Cha, Young May; Zannas, Anthony S.; Frank, Christopher L.; West, Anne E.
2014-01-01
Enzymes that regulate histone lysine methylation play important roles in neuronal differentiation, but little is known about their contributions to activity-regulated gene transcription in differentiated neurons. We characterized activity-regulated expression of lysine demethylases and lysine methyltransferases in the hippocampus of adult male mice following pilocarpine-induced seizure. Pilocarpine drove a 20-fold increase in mRNA encoding the histone H3 lysine27-specific demethylase Kdm6b selectively in granule neurons of the dentate gyrus, and this induction was recapitulated in cultured hippocampal neurons by bicuculline and 4-aminopyridine (Bic+4AP) stimulation of synaptic activity. Because activity-regulated gene expression is highly correlated with neuronal survival, we tested the requirement for Kdm6b expression in Bic+4AP induced preconditioning of neuronal survival. Prior exposure to Bic+4AP promoted neuronal survival in control neurons upon growth factor withdrawal, however this effect was ablated when we knocked down Kdm6b expression. Loss of Kdm6b did not disrupt activity-induced expression of most genes, including that of a gene set previously established to promote neuronal survival in this assay. However using bioinformatic analysis of RNA sequencing data, we discovered that Kdm6b knockdown neurons showed impaired inducibility of a discrete set of genes annotated for their function in inflammation. These data reveal a novel function for Kdm6b in activity-regulated neuronal survival, and they suggest that activity- and Kdm6b-dependent regulation of inflammatory gene pathways may serve as an adaptive pro-survival response to increased neuronal activity. PMID:24983519
Wood, J; Verma, D; Lach, G; Bonaventure, P; Herzog, H; Sperk, G; Tasan, R O
2016-09-01
The amygdala is essential for generating emotional-affective behaviors. It consists of several nuclei with highly selective, elaborate functions. In particular, the central extended amygdala, consisting of the central amygdala (CEA) and the bed nucleus of the stria terminalis (BNST) is an essential component actively controlling efferent connections to downstream effectors like hypothalamus and brain stem. Both, CEA and BNST contain high amounts of different neuropeptides that significantly contribute to synaptic transmission. Among these, neuropeptide Y (NPY) has emerged as an important anxiolytic and fear-reducing neuromodulator. Here, we characterized the expression, connectivity and electrophysiological function of NPY and Y2 receptors within the CEA. We identified several NPY-expressing neuronal populations, including somatostatin- and calretinin-expressing neurons. Furthermore, in the main intercalated nucleus, NPY is expressed primarily in dopamine D1 receptor-expressing neurons but also in interspersed somatostatin-expressing neurons. Interestingly, NPY neurons did not co-localize with the Y2 receptor. Retrograde tract tracing experiments revealed that NPY neurons reciprocally connect the CEA and BNST. Functionally, the Y2 receptor agonist PYY3-36, reduced both, inhibitory as well as excitatory synaptic transmission in the centromedial amygdala (CEm). However, we also provide evidence that lack of NPY or Y2 receptors results in increased GABA release specifically at inhibitory synapses in the CEm. Taken together, our findings suggest that NPY expressed by distinct populations of neurons can modulate afferent and efferent projections of the CEA via presynaptic Y2 receptors located at inhibitory and excitatory synapses.
Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons
Jang, Miae; Bum Um, Ki; Jang, Jinyoung; Jin Kim, Hyun; Cho, Hana; Chung, Sungkwon; Kyu Park, Myoung
2015-01-01
Dopamine neurons of the substantia nigra have long been believed to have multiple aspiny dendrites which receive many glutamatergic synaptic inputs from several regions of the brain. But, here, using high-resolution two-photon confocal microscopy in the mouse brain slices, we found a substantial number of common dendritic spines in the nigral dopamine neurons including thin, mushroom, and stubby types of spines. However, the number of dendritic spines of the dopamine neurons was approximately five times lower than that of CA1 pyramidal neurons. Immunostaining and morphological analysis revealed that glutamatergic shaft synapses were present two times more than spine synapses. Using local two-photon glutamate uncaging techniques, we confirmed that shaft synapses and spine synapses had both AMPA and NMDA receptors, but the AMPA/NMDA current ratios differed. The evoked postsynaptic potentials of spine synapses showed lower amplitudes but longer half-widths than those of shaft synapses. Therefore, we provide the first evidence that the midbrain dopamine neurons have two morphologically and functionally distinct types of glutamatergic synapses, spine synapses and shaft synapses, on the same dendrite. This peculiar organization could be a new basis for unraveling many physiological and pathological functions of the midbrain dopamine neurons. PMID:26435058
Eisen, Andrew; Lemon, Roger; Kiernan, Matthew C; Hornberger, Michael; Turner, Martin R
2015-07-01
There is growing evidence that mirror neurons, initially discovered over two decades ago in the monkey, are present in the human brain. In the monkey, mirror neurons characteristically fire not only when it is performing an action, such as grasping an object, but also when observing a similar action performed by another agent (human or monkey). In this review we discuss the origin, cortical distribution and possible functions of mirror neurons as a background to exploring their potential relevance in amyotrophic lateral sclerosis (ALS). We have recently proposed that ALS (and the related condition of frontotemporal dementia) may be viewed as a failure of interlinked functional complexes having their origins in key evolutionary adaptations. This can include loss of the direct projections from the corticospinal tract, and this is at least part of the explanation for impaired motor control in ALS. Since, in the monkey, corticospinal neurons also show mirror properties, ALS in humans might also affect the mirror neuron system. We speculate that a defective mirror neuron system might contribute to other ALS deficits affecting motor imagery, gesture, language and empathy. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Cesca, Fabrizia; Satapathy, Annyesha; Ferrea, Enrico; Nieus, Thierry; Benfenati, Fabio; Scholz-Starke, Joachim
2015-07-17
Kidins220 (kinase D-interacting substrate of 220 kDa)/ankyrin repeat-rich membrane spanning (ARMS) acts as a signaling platform at the plasma membrane and is implicated in a multitude of neuronal functions, including the control of neuronal activity. Here, we used the Kidins220(-/-) mouse model to study the effects of Kidins220 ablation on neuronal excitability. Multielectrode array recordings showed reduced evoked spiking activity in Kidins220(-/-) hippocampal networks, which was compatible with the increased excitability of GABAergic neurons determined by current-clamp recordings. Spike waveform analysis further indicated an increased sodium conductance in this neuronal subpopulation. Kidins220 association with brain voltage-gated sodium channels was shown by co-immunoprecipitation experiments and Na(+) current recordings in transfected HEK293 cells, which revealed dramatic alterations of kinetics and voltage dependence. Finally, an in silico interneuronal model incorporating the Kidins220-induced Na(+) current alterations reproduced the firing phenotype observed in Kidins220(-/-) neurons. These results identify Kidins220 as a novel modulator of Nav channel activity, broadening our understanding of the molecular mechanisms regulating network excitability. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
1-Octen-3-ol (octenol) is a common attractant released by vertebrates which in combination with carbon dioxide attracts haematophagous arthropods including mosquitoes. A receptor neuron contained within basiconic sensilla on the maxillary palps of adult mosquitoes responds selectively to 1-octen-3-o...
USDA-ARS?s Scientific Manuscript database
Ghrelin, a gastric peptide, is implicated in a multiplicity of biological functions, including energy homeostasis and reproduction. Neuronal systems that are involved in energy homeostasis as well as reproduction traverse the hypothalamus, however, the mechanism by which they control energy homeosta...
Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism.
Goforth, Paulette B; Myers, Martin G
The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.
Protection by Neuroglobin Expression in Brain Pathologies
Baez, Eliana; Echeverria, Valentina; Cabezas, Ricardo; Ávila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Barreto, George E.
2016-01-01
Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes. PMID:27672379
Amatrudo, Joseph M.; Weaver, Christina M.; Crimins, Johanna L.; Hof, Patrick R.; Rosene, Douglas L.; Luebke, Jennifer I.
2012-01-01
Whole-cell patch-clamp recordings and high-resolution 3D morphometric analyses of layer 3 pyramidal neurons in in vitro slices of monkey primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) revealed that neurons in these two brain areas possess highly distinctive structural and functional properties. Area V1 pyramidal neurons are much smaller than dlPFC neurons, with significantly less extensive dendritic arbors and far fewer dendritic spines. Relative to dlPFC neurons, V1 neurons have a significantly higher input resistance, depolarized resting membrane potential and higher action potential (AP) firing rates. Most V1 neurons exhibit both phasic and regular-spiking tonic AP firing patterns, while dlPFC neurons exhibit only tonic firing. Spontaneous postsynaptic currents are lower in amplitude and have faster kinetics in V1 than in dlPFC neurons, but are no different in frequency. Three-dimensional reconstructions of V1 and dlPFC neurons were incorporated into computational models containing Hodgkin-Huxley and AMPA- and GABAA-receptor gated channels. Morphology alone largely accounted for observed passive physiological properties, but led to AP firing rates that differed more than observed empirically, and to synaptic responses that opposed empirical results. Accordingly, modeling predicts that active channel conductances differ between V1 and dlPFC neurons. The unique features of V1 and dlPFC neurons are likely fundamental determinants of area-specific network behavior. The compact electrotonic arbor and increased excitability of V1 neurons support the rapid signal integration required for early processing of visual information. The greater connectivity and dendritic complexity of dlPFC neurons likely support higher level cognitive functions including working memory and planning. PMID:23035077
Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons
Garcia, Isabella; Kim, Cynthia; Arenkiel, Benjamin R.
2012-01-01
The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons, now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs toward investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches. PMID:23264761
Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy.
Jarvinen, M K; Powley, T L
1999-01-18
The dorsal motor nucleus of the vagus (DMNX) contains neurons with different projections and discrete functions, but little success has been achieved in distinguishing the cells cytoarchitectonically. The present experiment employed multivariate analytical techniques to evaluate DMNX neuronal morphology. Male Sprague-Dawley rats (n = 77) were perfused, and the brainstems were stained en bloc with a Golgi-Cox protocol. DMNX neurons in each of three planes (coronal, sagittal, and horizontal; total sample = 607) were digitized. Three-dimensional features quantified included dendritic length, number of segments, spine density, number of primary dendrites, dendritic orientation, and soma form factor. Cluster analyses of six independent samples of 100+ neurons and of three composite replicate pools of 200+ neurons consistently identified similar sets of four distinct neuronal profiles. One profile (spinous, limited dendrites, small somata) appears to correspond to the interneuron population of the DMNX. In contrast, the other three distinctive profiles (e.g., one is multipolar, with large dendritic fields and large somata) are different types of preganglionic neurons. Each of the four types of neurons is found throughout the DMNX, suggesting that the individual columnar subnuclei and other postulated vagal motorneuron pools are composed of all types of neurons. Within individual motor pools, ensembles of the different neuronal types must cooperatively organize different functions and project to different effectors within a target organ. By extension, specializations of the preganglionic motor pools are more likely to result from their afferent inputs, peripheral target tissues, neurochemistry, or physiological features rather than from any unique morphological profiles.
Cell diversity and network dynamics in photosensitive human brain organoids
Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z.; Sherwood, John L.; Yang, Sung Min; Berger, Daniel; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin; Boyden, Edward S.; Lichtman, Jeff; Williams, Ziv M.; McCarroll, Steven A.; Arlotta, Paola
2017-01-01
In vitro models of the developing brain such as 3D brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, it remains undefined what cells are generated within organoids and to what extent they recapitulate the regional complexity, cellular diversity, and circuit functionality of the brain. Here, we analyzed gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (over 9 months) enabling unprecedented levels of maturity including the formation of dendritic spines and of spontaneously-active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photoreceptor-like cells, which may offer ways to probe the functionality of human neuronal circuits using physiological sensory stimuli. PMID:28445462
Cell diversity and network dynamics in photosensitive human brain organoids.
Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z; Sherwood, John L; Min Yang, Sung; Berger, Daniel R; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin P; Boyden, Edward S; Lichtman, Jeff W; Williams, Ziv M; McCarroll, Steven A; Arlotta, Paola
2017-05-04
In vitro models of the developing brain such as three-dimensional brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, the cells generated within organoids and the extent to which they recapitulate the regional complexity, cellular diversity and circuit functionality of the brain remain undefined. Here we analyse gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (more than 9 months), allowing for the establishment of relatively mature features, including the formation of dendritic spines and spontaneously active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photosensitive cells, which may offer a way to probe the functionality of human neuronal circuits using physiological sensory stimuli.
Astrocyte and Neuronal Plasticity in the Somatosensory System
Sims, Robert E.; Butcher, John B.; Parri, H. Rheinallt; Glazewski, Stanislaw
2015-01-01
Changing the whisker complement on a rodent's snout can lead to two forms of experience-dependent plasticity (EDP) in the neurons of the barrel cortex, where whiskers are somatotopically represented. One form, termed coding plasticity, concerns changes in synaptic transmission and connectivity between neurons. This is thought to underlie learning and memory processes and so adaptation to a changing environment. The second, called homeostatic plasticity, serves to maintain a restricted dynamic range of neuronal activity thus preventing its saturation or total downregulation. Current explanatory models of cortical EDP are almost exclusively neurocentric. However, in recent years, increasing evidence has emerged on the role of astrocytes in brain function, including plasticity. Indeed, astrocytes appear as necessary partners of neurons at the core of the mechanisms of coding and homeostatic plasticity recorded in neurons. In addition to neuronal plasticity, several different forms of astrocytic plasticity have recently been discovered. They extend from changes in receptor expression and dynamic changes in morphology to alteration in gliotransmitter release. It is however unclear how astrocytic plasticity contributes to the neuronal EDP. Here, we review the known and possible roles for astrocytes in the barrel cortex, including its plasticity. PMID:26345481
NASA Technical Reports Server (NTRS)
Hof, P. R.; Ungerleider, L. G.; Adams, M. M.; Webster, M. J.; Gattass, R.; Blumberg, D. M.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1997-01-01
Previous immunohistochemical studies combined with retrograde tracing in macaque monkeys have demonstrated that corticocortical projections can be differentiated by their content of neurofilament protein. The present study analyzed the distribution of nonphosphorylated neurofilament protein in callosally projecting neurons located at the V1/V2 border. All of the retrogradely labeled neurons were located in layer III at the V1/V2 border and at an immediately adjacent zone of area V2. A quantitative analysis showed that the vast majority (almost 95%) of these interhemispheric projection neurons contain neurofilament protein immunoreactivity. This observation differs from data obtained in other sets of callosal connections, including homotypical interhemispheric projections in the prefrontal, temporal, and parietal association cortices, that were found to contain uniformly low proportions of neurofilament protein-immunoreactive neurons. Comparably, highly variable proportions of neurofilament protein-containing neurons have been reported in intrahemispheric corticocortical pathways, including feedforward and feedback visual connections. These results indicate that neurofilament protein is a prominent neurochemical feature that identifies a particular population of interhemispheric projection neurons at the V1/V2 border and suggest that this biochemical attribute may be critical for the function of this subset of callosal neurons.
Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam
2018-06-06
Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.
Rahmati, Negah; Hoebeek, Freek E; Peter, Saša; De Zeeuw, Chris I
2018-01-01
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl - ([Cl - ] i ) evokes, in addition to that of Na + and Ca 2+ , robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl - ] i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl - ] i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl - channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl - channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl - channels and transporters play an indispensable role in determining their [Cl - ] i and thereby their function in sensorimotor coordination.
Lu, T Z; Kostelecki, W; Sun, C L F; Dong, N; Pérez Velázquez, J L; Feng, Z-P
2016-12-01
The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K + and a small Na + component. We previously reported that a Na + -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na + current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na + leak current as compared to the K + leak current, suggesting a robust function of Na + leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na + leak current in intrinsic properties of pacemaker neurons. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Bru-Martínez, Roque; Herrero, María Trinidad; Fernández-Villalba, Emiliano; Cuenca, Nicolás; Martín-Nieto, José
2013-01-01
Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson’s diseased brain and neurodegenerative diseases of the retina proper. PMID:24040246
Li, Chang-Lin; Li, Kai-Cheng; Wu, Dan; Chen, Yan; Luo, Hao; Zhao, Jing-Rong; Wang, Sa-Shuang; Sun, Ming-Ming; Lu, Ying-Jin; Zhong, Yan-Qing; Hu, Xu-Ye; Hou, Rui; Zhou, Bei-Bei; Bao, Lan; Xiao, Hua-Sheng; Zhang, Xu
2016-01-01
Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases. PMID:26691752
Application of Cell-Specific Isolation to the Study of Dopamine Signaling in Drosophila
Iyer, Eswar Prasad R.; Iyer, Srividya Chandramouli; Cox, Daniel N.
2014-01-01
Dopamine neurotransmission accounts for a number of important brain functions across species including memory formation, the anticipation of reward, cognitive facilities, and drug addiction. Despite this functional significance, relatively little is known of the cellular pathways associated with drug-induced molecular adaptations within individual neurons. Due to its genetic tractability, simplicity, and economy of scale, Drosophila melanogaster has become an important tool in the study of neurological disease states, including drug addiction. To facilitate high-resolution functional analyses of dopamine signaling, it is highly advantageous to obtain genetic material, such as RNA or protein, from a homogeneous cell source. This process can be particularly challenging in most organisms including small model system organisms such as Drosophila melanogaster. Magnetic bead-based cell sorting has emerged as a powerful tool that can be used to isolate select populations of cells, from a whole organism or tissue such as the brain, for genomic as well as proteomic expression profiling. Coupled with the temporal and spatial specificity of the GAL4/UAS system, we demonstrate the application of magnetic bead-based cell sorting towards the isolation of dopaminergic neurons from the Drosophila adult nervous system. RNA derived from these neurons is of high quality and suitable for downstream applications such as microarray expression profiling or quantitative rtPCR. The versatility of this methodology stems from the fact that the cell-specific isolation method employed can be used under a variety of experimental conditions designed to survey molecular adaptations in dopamine signaling neurons including in response to drugs of abuse. PMID:23296786
Lien, Anthony D.; Scanziani, Massimo
2011-01-01
Relating the functional properties of neurons in an intact organism with their cellular and synaptic characteristics is necessary for a mechanistic understanding of brain function. However, while the functional properties of cortical neurons (e.g., tuning to sensory stimuli) are necessarily determined in vivo, detailed cellular and synaptic analysis relies on in vitro techniques. Here we describe an approach that combines in vivo calcium imaging (for functional characterization) with photo-activation of fluorescent proteins (for neuron labeling), thereby allowing targeted in vitro recording of multiple neurons with known functional properties. We expressed photo-activatable GFP rendered non-diffusible through fusion with a histone protein (H2B–PAGFP) in the mouse visual cortex to rapidly photo-label constellations of neurons in vivo at cellular and sub-cellular resolution using two-photon excitation. This photo-labeling method was compatible with two-photon calcium imaging of neuronal responses to visual stimuli, allowing us to label constellations of neurons with specific functional properties. Photo-labeled neurons were easily identified in vitro in acute brain slices and could be targeted for whole-cell recording. We also demonstrate that in vitro and in vivo image stacks of the same photo-labeled neurons could be registered to one another, allowing the exact in vivo response properties of individual neurons recorded in vitro to be known. The ability to perform in vitro recordings from neurons with known functional properties opens up exciting new possibilities for dissecting the cellular, synaptic, and circuit mechanisms that underlie neuronal function in vivo. PMID:22144948
Mechanisms of Pyrethroid Insecticide-Induced Stimulation of Calcium Influx in Neocortical Neurons
Cao, Zhengyu; Shafer, Timothy J.
2011-01-01
Pyrethroid insecticides bind to voltage-gated sodium channels (VGSCs) and modify their gating kinetics, thereby disrupting neuronal function. Pyrethroids have also been reported to alter the function of other channel types, including activation of voltage-gated calcium channels. Therefore, the present study compared the ability of 11 structurally diverse pyrethroids to evoke Ca2+ influx in primary cultures of mouse neocortical neurons. Nine pyrethroids (tefluthrin, deltamethrin, λ-cyhalothrin, β-cyfluthrin, esfenvalerate, S-bioallethrin, fenpropathrin, cypermethrin, and bifenthrin) produced concentration-dependent elevations in intracellular calcium concentration ([Ca2+]i) in neocortical neurons. Permethrin and resmethrin were without effect on [Ca2+]i. These pyrethroids displayed a range of efficacies on Ca2+ influx; however, the EC50 values for active pyrethroids all were within one order of magnitude. Tetrodotoxin blocked increases in [Ca2+]i caused by all nine active pyrethroids, indicating that the effects depended on VGSC activation. The pathways for deltamethrin- and tefluthrin-induced Ca2+ influx include N-methyl-d-aspartic acid receptors, L-type Ca2+ channels, and reverse mode of operation of the Na+/Ca2+ exchanger inasmuch as antagonists of these sites blocked deltamethrin-induced Ca2+ influx. These data demonstrate that pyrethroids stimulate Ca2+ entry into neurons subsequent to their actions on VGSCs. PMID:20881019
miR-126 contributes to Parkinson disease by dysregulating IGF-1/PI3K signaling
Kim, Woori; Lee, Yenarae; McKenna, Noah D.; Yi, Ming; Simunovic, Filip; Wang, Yulei; Kong, Benjamin; Rooney, Robert J.; Seo, Hyemyung; Stephens, Robert; Sonntag, Kai C.
2014-01-01
Dopamine (DA) neurons in sporadic Parkinson disease (PD) display dysregulated gene expression networks and signaling pathways that are implicated in PD pathogenesis. Micro (mi)RNAs are regulators of gene expression, which could be involved in neurodegenerative diseases. We determined the miRNA profiles in laser microdissected DA neurons from postmortem sporadic PD patients’ brains and age-matched controls. DA neurons had a distinctive miRNA signature and a set of miRNAs was dysregulated in PD. Bioinformatics analysis provided evidence for correlations of miRNAs with signaling pathways relevant to PD, including an association of miR-126 with insulin/IGF-1/PI3K signaling. In DA neuronal cell systems, enhanced expression of miR-126 impaired IGF-1 signaling and increased vulnerability to the neurotoxin 6-OHDA by downregulating factors in IGF-1/PI3K signaling, including its targets p85β, IRS-1, and SPRED1. Blocking of miR-126 function increased IGF-1 trophism and neuroprotection to 6-OHDA. Our data imply that elevated levels of miR-126 may play a functional role in DA neurons and in PD pathogenesis by downregulating IGF-1/PI3K/AKT signaling and that its inhibition could be a mechanism of neuroprotection. PMID:24559646
Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals.
Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A
2017-01-01
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding "non-neuronal" cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed.
Modulation of gastrointestinal vagal neurocircuits by hyperglycemia
Browning, Kirsteen N.
2013-01-01
Glucose sensing within autonomic neurocircuits is critical for the effective integration and regulation of a variety of physiological homeostatic functions including the co-ordination of vagally-mediated reflexes regulating gastrointestinal (GI) functions. Glucose regulates GI functions via actions at multiple sites of action, from modulating the activity of enteric neurons, endocrine cells, and glucose transporters within the intestine, to regulating the activity and responsiveness of the peripheral terminals, cell bodies and central terminals of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of central brainstem neurons. Unsurprisingly, significant impairment in GI functions occurs in pathophysiological states where glucose levels are dysregulated, such as diabetes. A substantial obstacle to the development of new therapies to modify the disease, rather than treat the symptoms, are the gaps in our understanding of the mechanisms by which glucose modulates GI functions, particularly vagally-mediated responses and a more complete understanding of disease-related plasticity within these neurocircuits may open new avenues and targets for research. PMID:24324393
Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro
McCarthy, Kelly M.; Tank, David W.; Enquist, Lynn W.
2009-01-01
Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals. PMID:19876391
Hirota, Yuki; Kubo, Ken-Ichiro; Fujino, Takahiro; Yamamoto, Tokuo T; Nakajima, Kazunori
2018-01-01
Neuronal migration contributes to the establishment of mammalian brain. The extracellular protein Reelin sends signals to various downstream molecules by binding to its receptors, the apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor and exerts essential roles in the neuronal migration and formation of the layered neocortex. However, the cellular and molecular functions of Reelin signaling in the cortical development are not yet fully understood. Here, to gain insight into the role of Reelin signaling during cortical development, we examined the migratory behavior of Apoer2-deficient neurons in the developing brain. Stage-specific labeling of newborn neurons revealed that the neurons ectopically invaded the marginal zone (MZ) and that neuronal migration of both early- and late-born neurons was disrupted in the intermediate zone (IZ) in the Apoer2 KO mice. Rescue experiments showed that ApoER2 functions both in cell-autonomous and noncell-autonomous manners, that Rap1, integrin, and Akt are involved in the termination of migration beneath the MZ, and that Akt also controls neuronal migration in the IZ downstream of ApoER2. These data indicate that ApoER2 controls multiple processes in neuronal migration, including the early stage of radial migration and termination of migration beneath the MZ in the developing neocortex. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Stochastic inference with spiking neurons in the high-conductance state
NASA Astrophysics Data System (ADS)
Petrovici, Mihai A.; Bill, Johannes; Bytschok, Ilja; Schemmel, Johannes; Meier, Karlheinz
2016-10-01
The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level.
Transsynaptic trophic effects of steroid hormones in an avian model of adult brain plasticity
Brenowitz, Eliot A.
2014-01-01
The avian song control system provides an excellent model for studying transsynaptic trophic effects of steroid sex hormones. Seasonal changes in systemic testosterone (T) and its metabolites regulate plasticity of this system. Steroids interact with the neurotrophin brain-derived neurotrophic factor (BDNF) to influence cellular processes of plasticity in nucleus HVC of adult birds, including the addition of newborn neurons. This interaction may also occur transsynpatically; T increases the synthesis of BDNF in HVC, and BDNF protein is then released by HVC neurons on to postsynaptic cells in nucleus RA where it has trophic effects on activity and morphology. Androgen action on RA neurons increases their activity and this has a retrograde trophic effect on the addition of new neurons to HVC. The functional linkage of sex steroids to BDNF may be of adaptive value in regulating the trophic effects of the neurotrophin and coordinating circuit function in reproductively relevant contexts. PMID:25285401
Diao, Feici; Mena, Wilson; Shi, Jonathan; Park, Dongkook; Diao, Fengqiu; Taghert, Paul; Ewer, John; White, Benjamin H.
2016-01-01
To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone’s neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced “Trojan exon” technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks. PMID:26534952
Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.
2015-01-01
Neurons and especially their synapses often project long thin processes that can invaginate neighboring neuronal or glial cells. These “invaginating projections” can occur in almost any combination of postsynaptic, presynaptic, and glial processes. Invaginating projections provide a precise mechanism for one neuron to communicate or exchange material exclusively at a highly localized site on another neuron, e.g., to regulate synaptic plasticity. The best-known types are postsynaptic projections called “spinules” that invaginate into presynaptic terminals. Spinules seem to be most prevalent at large very active synapses. Here, we present a comprehensive review of all kinds of invaginating projections associated with both neurons in general and more specifically with synapses; we describe them in all animals including simple, basal metazoans. These structures may have evolved into more elaborate structures in some higher animal groups exhibiting greater synaptic plasticity. In addition to classic spinules and filopodial invaginations, we describe a variety of lesser-known structures such as amphid microvilli, spinules in giant mossy terminals and en marron/brush synapses, the highly specialized fish retinal spinules, the trophospongium, capitate projections, and fly gnarls, as well as examples in which the entire presynaptic or postsynaptic process is invaginated. These various invaginating projections have evolved to modify the function of a particular synapse, or to channel an effect to one specific synapse or neuron, without affecting those nearby. We discuss how they function in membrane recycling, nourishment, and cell signaling and explore how they might change in aging and disease. PMID:26007200
Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization
Patel, Atit A.
2018-01-01
ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280
Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne
2012-01-01
Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation. PMID:22435484
A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress
Bou Dib, Peter; Gnägi, Bettina; Daly, Fiona; Sabado, Virginie; Tas, Damla; Glauser, Dominique A.; Meister, Peter; Nagoshi, Emi
2014-01-01
Parkinson's disease (PD) is the most common neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons. Both environmental and genetic factors are thought to contribute to the pathogenesis of PD. Although several genes linked to rare familial PD have been identified, endogenous risk factors for sporadic PD, which account for the majority of PD cases, remain largely unknown. Genome-wide association studies have identified many single nucleotide polymorphisms associated with sporadic PD in neurodevelopmental genes including the transcription factor p48/ptf1a. Here we investigate whether p48 plays a role in the survival of DA neurons in Drosophila melanogaster and Caenorhabditis elegans. We show that a Drosophila p48 homolog, 48-related-2 (Fer2), is expressed in and required for the development and survival of DA neurons in the protocerebral anterior medial (PAM) cluster. Loss of Fer2 expression in adulthood causes progressive PAM neuron degeneration in aging flies along with mitochondrial dysfunction and elevated reactive oxygen species (ROS) production, leading to the progressive locomotor deficits. The oxidative stress challenge upregulates Fer2 expression and exacerbates the PAM neuron degeneration in Fer2 loss-of-function mutants. hlh-13, the worm homolog of p48, is also expressed in DA neurons. Unlike the fly counterpart, hlh-13 loss-of-function does not impair development or survival of DA neurons under normal growth conditions. Yet, similar to Fer2, hlh-13 expression is upregulated upon an acute oxidative challenge and is required for the survival of DA neurons under oxidative stress in adult worms. Taken together, our results indicate that p48 homologs share a role in protecting DA neurons from oxidative stress and degeneration, and suggest that loss-of-function of p48 homologs in flies and worms provides novel tools to study gene-environmental interactions affecting DA neuron survival. PMID:25340742
A Complete Developmental Sequence of a Drosophila Neuronal Lineage as Revealed by Twin-Spot MARCM
He, Yisheng; Ding, Peng; Kao, Jui-Chun; Lee, Tzumin
2010-01-01
Drosophila brains contain numerous neurons that form complex circuits. These neurons are derived in stereotyped patterns from a fixed number of progenitors, called neuroblasts, and identifying individual neurons made by a neuroblast facilitates the reconstruction of neural circuits. An improved MARCM (mosaic analysis with a repressible cell marker) technique, called twin-spot MARCM, allows one to label the sister clones derived from a common progenitor simultaneously in different colors. It enables identification of every single neuron in an extended neuronal lineage based on the order of neuron birth. Here we report the first example, to our knowledge, of complete lineage analysis among neurons derived from a common neuroblast that relay olfactory information from the antennal lobe (AL) to higher brain centers. By identifying the sequentially derived neurons, we found that the neuroblast serially makes 40 types of AL projection neurons (PNs). During embryogenesis, one PN with multi-glomerular innervation and 18 uniglomerular PNs targeting 17 glomeruli of the adult AL are born. Many more PNs of 22 additional types, including four types of polyglomerular PNs, derive after the neuroblast resumes dividing in early larvae. Although different offspring are generated in a rather arbitrary sequence, the birth order strictly dictates the fate of each post-mitotic neuron, including the fate of programmed cell death. Notably, the embryonic progenitor has an altered temporal identity following each self-renewing asymmetric cell division. After larval hatching, the same progenitor produces multiple neurons for each cell type, but the number of neurons for each type is tightly regulated. These observations substantiate the origin-dependent specification of neuron types. Sequencing neuronal lineages will not only unravel how a complex brain develops but also permit systematic identification of neuron types for detailed structure and function analysis of the brain. PMID:20808769
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697
"Scientific roots" of dualism in neuroscience.
Arshavsky, Yuri I
2006-07-01
Although the dualistic concept is unpopular among neuroscientists involved in experimental studies of the brain, neurophysiological literature is full of covert dualistic statements on the possibility of understanding neural mechanisms of human consciousness. Particularly, the covert dualistic attitude is exhibited in the unwillingness to discuss neural mechanisms of consciousness, leaving the problem of consciousness to psychologists and philosophers. This covert dualism seems to be rooted in the main paradigm of neuroscience that suggests that cognitive functions, such as language production and comprehension, face recognition, declarative memory, emotions, etc., are performed by neural networks consisting of simple elements. I argue that neural networks of any complexity consisting of neurons whose function is limited to the generation of electrical potentials and the transmission of signals to other neurons are hardly capable of producing human mental activity, including consciousness. Based on results obtained in physiological, morphological, clinical, and genetic studies of cognitive functions (mainly linguistic ones), I advocate the hypothesis that the performance of cognitive functions is based on complex cooperative activity of "complex" neurons that are carriers of "elementary cognition." The uniqueness of human cognitive functions, which has a genetic basis, is determined by the specificity of genes expressed by these "complex" neurons. The main goal of the review is to show that the identification of the genes implicated in cognitive functions and the understanding of a functional role of their products is a possible way to overcome covert dualism in neuroscience.
NASA Astrophysics Data System (ADS)
Kim, Junghoe; Lee, Jong-Hwan
2014-03-01
A functional connectivity (FC) analysis from resting-state functional MRI (rsfMRI) is gaining its popularity toward the clinical application such as diagnosis of neuropsychiatric disease. To delineate the brain networks from rsfMRI data, non-neuronal components including head motions and physiological artifacts mainly observed in cerebrospinal fluid (CSF), white matter (WM) along with a global brain signal have been regarded as nuisance variables in calculating the FC level. However, it is still unclear how the non-neuronal components can affect the performance toward diagnosis of neuropsychiatric disease. In this study, a systematic comparison of classification performance of schizophrenia patients was provided employing the partial correlation coefficients (CCs) as feature elements. Pair-wise partial CCs were calculated between brain regions, in which six combinatorial sets of nuisance variables were considered. The partial CCs were used as candidate feature elements followed by feature selection based on the statistical significance test between two groups in the training set. Once a linear support vector machine was trained using the selected features from the training set, the classification performance was evaluated using the features from the test set (i.e. leaveone- out cross validation scheme). From the results, the error rate using all non-neuronal components as nuisance variables (12.4%) was significantly lower than those using remaining combination of non-neuronal components as nuisance variables (13.8 ~ 20.0%). In conclusion, the non-neuronal components substantially degraded the automated diagnosis performance, which supports our hypothesis that the non-neuronal components are crucial in controlling the automated diagnosis performance of the neuropsychiatric disease using an fMRI modality.
Periodic activation function and a modified learning algorithm for the multivalued neuron.
Aizenberg, Igor
2010-12-01
In this paper, we consider a new periodic activation function for the multivalued neuron (MVN). The MVN is a neuron with complex-valued weights and inputs/output, which are located on the unit circle. Although the MVN outperforms many other neurons and MVN-based neural networks have shown their high potential, the MVN still has a limited capability of learning highly nonlinear functions. A periodic activation function, which is introduced in this paper, makes it possible to learn nonlinearly separable problems and non-threshold multiple-valued functions using a single multivalued neuron. We call this neuron a multivalued neuron with a periodic activation function (MVN-P). The MVN-Ps functionality is much higher than that of the regular MVN. The MVN-P is more efficient in solving various classification problems. A learning algorithm based on the error-correction rule for the MVN-P is also presented. It is shown that a single MVN-P can easily learn and solve those benchmark classification problems that were considered unsolvable using a single neuron. It is also shown that a universal binary neuron, which can learn nonlinearly separable Boolean functions, and a regular MVN are particular cases of the MVN-P.
Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals
Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.
2017-01-01
Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744
Kast, Ryan J; Wu, Hsiao-Huei; Williams, Piper; Gaspar, Patricia; Levitt, Pat
2017-05-17
Molecular characterization of neurons across brain regions has revealed new taxonomies for understanding functional diversity even among classically defined neuronal populations. Neuronal diversity has become evident within the brain serotonin (5-HT) system, which is far more complex than previously appreciated. However, until now it has been difficult to define subpopulations of 5-HT neurons based on molecular phenotypes. We demonstrate that the MET receptor tyrosine kinase (MET) is specifically expressed in a subset of 5-HT neurons within the caudal part of the dorsal raphe nuclei (DRC) that is encompassed by the classic B6 serotonin cell group. Mapping from embryonic day 16 through adulthood reveals that MET is expressed almost exclusively in the DRC as a condensed, paired nucleus, with an additional sparse set of MET+ neurons scattered within the median raphe. Retrograde tracing experiments reveal that MET-expressing 5-HT neurons provide substantial serotonergic input to the ventricular/subventricular region that contains forebrain stem cells, but do not innervate the dorsal hippocampus or entorhinal cortex. Conditional anterograde tracing experiments show that 5-HT neurons in the DRC/B6 target additional forebrain structures such as the medial and lateral septum and the ventral hippocampus. Molecular neuroanatomical analysis identifies 14 genes that are enriched in DRC neurons, including 4 neurotransmitter/neuropeptide receptors and 2 potassium channels. These analyses will lead to future studies determining the specific roles that 5-HT MET+ neurons contribute to the broader set of functions regulated by the serotonergic system.
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-01-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. PMID:26447474
Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution.
Kim, Namhee; Park, Chungoo; Jeong, Yongsu; Song, Mi-Ryoung
2015-10-01
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
USDA-ARS?s Scientific Manuscript database
Research has demonstrated, in both human and animals, that cognitive functioning decreases with age, to include deficits in processing speed, executive function, memory, and spatial learning. The cause of these functional declines is not entirely understood; however, neuronal losses and the associat...
Nakae, Ken; Ikegaya, Yuji; Ishikawa, Tomoe; Oba, Shigeyuki; Urakubo, Hidetoshi; Koyama, Masanori; Ishii, Shin
2014-01-01
Crosstalk between neurons and glia may constitute a significant part of information processing in the brain. We present a novel method of statistically identifying interactions in a neuron–glia network. We attempted to identify neuron–glia interactions from neuronal and glial activities via maximum-a-posteriori (MAP)-based parameter estimation by developing a generalized linear model (GLM) of a neuron–glia network. The interactions in our interest included functional connectivity and response functions. We evaluated the cross-validated likelihood of GLMs that resulted from the addition or removal of connections to confirm the existence of specific neuron-to-glia or glia-to-neuron connections. We only accepted addition or removal when the modification improved the cross-validated likelihood. We applied the method to a high-throughput, multicellular in vitro Ca2+ imaging dataset obtained from the CA3 region of a rat hippocampus, and then evaluated the reliability of connectivity estimates using a statistical test based on a surrogate method. Our findings based on the estimated connectivity were in good agreement with currently available physiological knowledge, suggesting our method can elucidate undiscovered functions of neuron–glia systems. PMID:25393874
Terrasso, Ana Paula; Pinto, Catarina; Serra, Margarida; Filipe, Augusto; Almeida, Susana; Ferreira, Ana Lúcia; Pedroso, Pedro; Brito, Catarina; Alves, Paula Marques
2015-07-10
There is an urgent need for new in vitro strategies to identify neurotoxic agents with speed, reliability and respect for animal welfare. Cell models should include distinct brain cell types and represent brain microenvironment to attain higher relevance. The main goal of this study was to develop and validate a human 3D neural model containing both neurons and glial cells, applicable for toxicity testing in high-throughput platforms. To achieve this, a scalable bioprocess for neural differentiation of human NTera2/cl.D1 cells in stirred culture systems was developed. Endpoints based on neuronal- and astrocytic-specific gene expression and functionality in 3D were implemented in multi-well format and used for toxicity assessment. The prototypical neurotoxicant acrylamide affected primarily neurons, impairing synaptic function; our results suggest that gene expression of the presynaptic marker synaptophysin can be used as sensitive endpoint. Chloramphenicol, described as neurotoxicant affected both cell types, with cytoskeleton markers' expression significantly reduced, particularly in astrocytes. In conclusion, a scalable and reproducible process for production of differentiated neurospheres enriched in mature neurons and functional astrocytes was obtained. This 3D approach allowed efficient production of large numbers of human differentiated neurospheres, which in combination with gene expression and functional endpoints are a powerful cell model to evaluate human neuronal and astrocytic toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.
ERMs colocalize transiently with L1 during neocortical axon outgrowth.
Mintz, C David; Dickson, Tracey C; Gripp, Mark L; Salton, Stephen R J; Benson, Deanna L
2003-09-29
L1 is a member of the Ig superfamily of cell adhesion molecules (CAMs) that functions in many aspects of neuronal development including axonal outgrowth and neuronal migration. These functions require coordination between L1 and the actin cytoskeleton. Because CAMs and the cytoskeleton do not bind directly, membrane-cytoskeletal linkers (MCLs) such as ankyrin are thought to be crucial to their interactions, but data from a knockout mouse suggest that ankyrin is not necessary for the earliest events attributed to L1 function. Recent findings in hippocampal cell culture show that members of the ERM family of proteins (ezrin, radixin, and moesin) can also serve as MCLs between L1 and actin in neurons. Here, we demonstrate that ERM proteins are expressed in extending neuronal processes in the intermediate zone of the developing cortex, a region that is densely packed with migrating neurons and growing axons. ERMs and L1 are codistributed extensively over a transient time course that coincides with rapid axon growth and cortical expansion. This codistribution is strong at embryonic day 17 and 19 but diminishes by postnatal day 0, at which time ankyrin-L1 codistribution increases dramatically. These findings suggest that in the developing neocortex, ERMs are the predominant MCL for L1 during migration and axon extension, neither of which requires ankyrin function. Furthermore, these data suggest that there is a developmentally regulated switch in MCL function in the developing brain. Copyright 2003 Wiley-Liss, Inc.
Postnatal Experience Modulates Functional Properties of Mouse Olfactory Sensory Neurons
He, Jiwei; Tian, Huikai; Lee, Anderson C.; Ma, Minghong
2012-01-01
Early experience considerably modulates the organization and function of all sensory systems. In the mammalian olfactory system, deprivation of the sensory inputs via neonatal, unilateral naris closure has been shown to induce structural, molecular, and functional changes from the olfactory epithelium to the olfactory bulb and cortex. However, it remains unknown how early experience shapes functional properties of individual olfactory sensory neurons (OSNs), the primary odor detectors in the nose. To address this question, we examined odorant response properties of mouse OSNs in both the closed and open nostril after four weeks of unilateral naris closure with age-matched untreated animals as control. Using patch-clamp technique on genetically-tagged OSNs with defined odorant receptors (ORs), we found that sensory deprivation increased the sensitivity of MOR23 neurons in the closed side while overexposure caused the opposite effect in the open side. We next analyzed the response properties including rise time, decay time, and adaptation induced by repeated stimulation in MOR23 and M71 neurons. Even though these two types of neurons showed distinct properties in dynamic range and response kinetics, sensory deprivation significantly slowed down the decay phase of odorant-induced transduction events in both types. Using western blotting and antibody staining, we confirmed upregulation of several signaling proteins in the closed side as compared with the open side. This study suggests that early experience modulates functional properties of OSNs, probably via modifying the signal transduction cascade. PMID:22703547
Plavicki, Jessica; Mader, Sara; Pueschel, Eric; Peebles, Patrick; Boekhoff-Falk, Grace
2012-01-01
Vertebrate Dlx genes have been implicated in the differentiation of multiple neuronal subtypes, including cortical GABAergic interneurons, and mutations in Dlx genes have been linked to clinical conditions such as epilepsy and autism. Here we show that the single Drosophila Dlx homolog, distal-less, is required both to specify chemosensory neurons and to regulate the morphologies of their axons and dendrites. We establish that distal-less is necessary for development of the mushroom body, a brain region that processes olfactory information. These are important examples of distal-less function in an invertebrate nervous system and demonstrate that the Drosophila larval olfactory system is a powerful model in which to understand distal-less functions during neurogenesis. PMID:22307614
Multifunctional glial support by Semper cells in the Drosophila retina
Charlton-Perkins, Mark A.
2017-01-01
Glial cells play structural and functional roles central to the formation, activity and integrity of neurons throughout the nervous system. In the retina of vertebrates, the high energetic demand of photoreceptors is sustained in part by Müller glia, an intrinsic, atypical radial glia with features common to many glial subtypes. Accessory and support glial cells also exist in invertebrates, but which cells play this function in the insect retina is largely undefined. Using cell-restricted transcriptome analysis, here we show that the ommatidial cone cells (aka Semper cells) in the Drosophila compound eye are enriched for glial regulators and effectors, including signature characteristics of the vertebrate visual system. In addition, cone cell-targeted gene knockdowns demonstrate that such glia-associated factors are required to support the structural and functional integrity of neighboring photoreceptors. Specifically, we show that distinct support functions (neuronal activity, structural integrity and sustained neurotransmission) can be genetically separated in cone cells by down-regulating transcription factors associated with vertebrate gliogenesis (pros/Prox1, Pax2/5/8, and Oli/Olig1,2, respectively). Further, we find that specific factors critical for glial function in other species are also critical in cone cells to support Drosophila photoreceptor activity. These include ion-transport proteins (Na/K+-ATPase, Eaat1, and Kir4.1-related channels) and metabolic homeostatic factors (dLDH and Glut1). These data define genetically distinct glial signatures in cone/Semper cells that regulate their structural, functional and homeostatic interactions with photoreceptor neurons in the compound eye of Drosophila. In addition to providing a new high-throughput model to study neuron-glia interactions, the fly eye will further help elucidate glial conserved "support networks" between invertebrates and vertebrates. PMID:28562601
Schalow, G
2010-01-01
Coordination Dynamics Therapy (CDT) has been shown to be able to partly repair CNS injury. The repair is based on a movement-based re-learning theory which requires at least three levels of description: the movement or pattern (and anamnesis) level, the collective variable level, and the neuron level. Upon CDT not only the actually performed movement pattern itself is repaired, but the entire dynamics of CNS organization is improved, which is the theoretical basis for (re-) learning transfer. The transfer of learning for repair from jumping on springboard and exercising on a special CDT and recording device to urinary bladder functions is investigated at the neuron level. At the movement or pattern level, the improvement of central nervous system (CNS) functioning in human patients can be seen (or partly measured) by the improvement of the performance of the pattern. At the collective variable level, coordination tendencies can be measured by the so-called 'coordination dynamics' before, during and after treatment. At the neuron level, re-learning can additionally be assessed by surface electromyography (sEMG) as alterations of single motor unit firings and motor programs. But to express the ongoing interaction between the numerous neural, muscular, and metabolic elements involved in perception and action, it is relevant to inquire how the individual afferent and efferent neurons adjust their phase and frequency coordination to other neurons to satisfy learning task requirements. With the single-nerve fibre action potential recording method it was possible to measure that distributed single neurons communicate by phase and frequency coordination. It is shown that this timed firing of neurons is getting impaired upon injury and has to be improved by learning The stability of phase and frequency coordination among afferent and efferent neuron firings can be related to pattern stability. The stability of phase and frequency coordination at the neuron level can therefore be assessed integratively at the (non-invasive) collective variable level by the arrhythmicity of turning (coordination dynamics) when a patient is exercising on a special CDT device. Upon jumping on springboard and exercising on the special CDT device, the intertwined neuronal networks, subserving movements (somatic) and urinary bladder functions (autonomic and somatic) in the sacral spinal cord, are synchronously activated and entrained to give rise to learning transfer from movements to bladder functions. Jumping on springboard and other movements primarily repair the pattern dynamics, whereas the exactly coordinated performed movements, performed on the special CDT device for turning, primarily improve the preciseness of the timed firing of neurons. The synchronous learning of perceptuomotor and perceptuobladder functioning from a dynamical perspective (giving rise to learning transfer) can be understood at the neuron level. Especially the activated phase and frequency coordination upon natural stimulation under physiologic and pathophysiologic conditions among a and gamma-motoneurons, muscle spindle afferents, touch and pain afferents, and urinary bladder stretch and tension receptor afferents in the human sacral spinal cord make understandable that somatic and parasympathetic functions are integrated in their functioning and give rise to learning transfer from movements to bladder functions. The power of this human treatment research project lies in the unit of theory, diagnostic/measurement, and praxis, namely that CNS injury can partly be repaired, including urinary bladder functions, and the repair can partly be understood even at the neuron level of description in human.
Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A
2013-01-01
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma.
Alan, Jamie K; Struckhoff, Eric C; Lundquist, Erik A
2013-01-01
Rho GTPases are key regulators of cellular protrusion and are involved in many developmental events including axon guidance during nervous system development. Rho GTPase pathways display functional redundancy in developmental events, including axon guidance. Therefore, their roles can often be masked when using simple loss-of-function genetic approaches. As a complement to loss-of-function genetics, we constructed a constitutively activated CDC-42(G12V) expressed in C. elegans neurons. CDC-42(G12V) drove the formation of ectopic lamellipodial and filopodial protrusions in the PDE neurons, which resembled protrusions normally found on migrating growth cones of axons. We then used a candidate gene approach to identify molecules that mediate CDC-42(G12V)-induced ectopic protrusions by determining if loss of function of the genes could suppress CDC-42(G12V). Using this approach, we identified 3 cytoskeletal pathways previously implicated in axon guidance, the Arp2/3 complex, UNC-115/abLIM, and UNC-43/Ena. We also identified the Nck-interacting kinase MIG-15/NIK and p21-activated kinases (PAKs), also implicated in axon guidance. Finally, PI3K signaling was required, specifically the Rictor/mTORC2 branch but not the mTORC1 branch that has been implicated in other aspects of PI3K signaling including stress and aging. Our results indicate that multiple pathways can mediate CDC-42-induced neuronal protrusions that might be relevant to growth cone protrusions during axon pathfinding. Each of these pathways involves Rac GTPases, which might serve to integrate the pathways and coordinate the multiple CDC-42 pathways. These pathways might be relevant to developmental events such as axon pathfinding as well as disease states such as metastatic melanoma. PMID:24149939
Meixner, Andrea; Boldt, Karsten; Van Troys, Marleen; Askenazi, Manor; Gloeckner, Christian J.; Bauer, Matthias; Marto, Jarrod A.; Ampe, Christophe; Kinkl, Norbert; Ueffing, Marius
2011-01-01
Mutations in human leucine-rich repeat kinase 2 (Lrrk2), a protein of yet unknown function, are linked to Parkinson's disease caused by degeneration of midbrain dopaminergic neurons. The protein comprises several domains including a GTPase and a kinase domain both affected by several pathogenic mutations. To elucidate the molecular interaction network of endogenous Lrrk2 under stoichiometric constraints, we applied QUICK (quantitative immunoprecipitation combined with knockdown) in NIH3T3 cells. The identified interactome reveals actin isoforms as well as actin-associated proteins involved in actin filament assembly, organization, rearrangement, and maintenance, suggesting that the biological function of Lrrk2 is linked to cytoskeletal dynamics. In fact, we demonstrate Lrrk2 de novo binding to F-actin and its ability to modulate its assembly in vitro. When tested in intact cells, knockdown of Lrrk2 causes morphological alterations in NIH3T3 cells. In developing dopaminergic midbrain primary neurons, Lrrk2 knockdown results in shortened neurite processes, indicating a physiological role of Lrrk2 in cytoskeletal organization and dynamics of dopaminergic neurons. Hence, our results demonstrate that molecular interactions as well as the physiological function of Lrrk2 are closely related to the organization of the actin-based cytoskeleton, a crucial feature of neuronal development and neuron function. PMID:20876399
Mitsui, Shinichi; Osako, Yoji; Yokoi, Fumiaki; Dang, Mai T.; Yuri, Kazunari; Li, Yuqing; Yamaguchi, Nozomi
2010-01-01
Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin’s function in the mammalian brain, motopsin knockout mice were generated. Motopsin knockout mice did not have significant deficit in memory formation, as was tested using in the Morris water maze, passive avoidance, and Y-maze tests. A social recognition test showed that the motopsin knockout mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin knockout mice spent a longer time investigating a familiar mouse than wild-type mice did. In a resident-intruder test, motopsin knockout mice showed prolonged social interaction compared to wild-type mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin knockout mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP responsive element binding protein (CREB) in hippocampal neurons of wild-type mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons. PMID:20092579
Mitsui, Shinichi; Osako, Yoji; Yokoi, Fumiaki; Dang, Mai T; Yuri, Kazunari; Li, Yuqing; Yamaguchi, Nozomi
2009-12-01
Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions, including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin's function in the mammalian brain, motopsin knockout (KO) mice were generated. Motopsin KO mice did not have significant deficits in memory formation, as tested using the Morris water maze, passive avoidance and Y-maze tests. A social recognition test showed that the motopsin KO mice had the ability to recognize two stimulator mice, suggesting normal social memory. In a social novelty test, motopsin KO mice spent a longer time investigating a familiar mouse than wild-type (WT) mice did. In a resident-intruder test, motopsin KO mice showed prolonged social interaction as compared with WT mice. Consistent with the behavioral deficit, spine density was significantly decreased on apical dendrites, but not on basal dendrites, of hippocampal pyramidal neurons of motopsin KO mice. In contrast, pyramidal neurons at the cingulate cortex showed normal spine density. Spatial learning and social interaction induced the phosphorylation of cAMP-responsive element-binding protein (CREB) in hippocampal neurons of WT mice, whereas the phosphorylation of CREB was markedly decreased in mutant mouse brains. Our results indicate that an extracellular protease, motopsin, preferentially affects social behaviors, and modulates the functions of hippocampal neurons.
Comparative functional expression of nAChR subtypes in rodent DRG neurons.
Smith, Nathan J; Hone, Arik J; Memon, Tosifa; Bossi, Simon; Smith, Thomas E; McIntosh, J Michael; Olivera, Baldomero M; Teichert, Russell W
2013-01-01
We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3β4 and α6β4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3β4/α6β4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.
Perez-Alcazar, Marta; Culley, Georgia; Lyckenvik, Tim; Mobarrez, Kristoffer; Bjorefeldt, Andreas; Wasling, Pontus; Seth, Henrik; Asztely, Frederik; Harrer, Andrea; Iglseder, Bernhard; Aigner, Ludwig; Hanse, Eric; Illes, Sebastian
2016-01-01
For decades it has been hypothesized that molecules within the cerebrospinal fluid (CSF) diffuse into the brain parenchyma and influence the function of neurons. However, the functional consequences of CSF on neuronal circuits are largely unexplored and unknown. A major reason for this is the absence of appropriate neuronal in vitro model systems, and it is uncertain if neurons cultured in pure CSF survive and preserve electrophysiological functionality in vitro. In this article, we present an approach to address how human CSF (hCSF) influences neuronal circuits in vitro. We validate our approach by comparing the morphology, viability, and electrophysiological function of single neurons and at the network level in rat organotypic slice and primary neuronal cultures cultivated either in hCSF or in defined standard culture media. Our results demonstrate that rodent hippocampal slices and primary neurons cultured in hCSF maintain neuronal morphology and preserve synaptic transmission. Importantly, we show that hCSF increases neuronal viability and the number of electrophysiologically active neurons in comparison to the culture media. In summary, our data indicate that hCSF represents a physiological environment for neurons in vitro and a superior culture condition compared to the defined standard media. Moreover, this experimental approach paves the way to assess the functional consequences of CSF on neuronal circuits as well as suggesting a novel strategy for central nervous system (CNS) disease modeling. PMID:26973467
Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons.
Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Tsvetkov, Andrey S
2016-05-11
Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors.
Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons
Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R.; Wefel, Jeffrey S.; Tsvetkov, Andrey S.
2016-01-01
Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors. PMID:27168474
Li, Dan; Li, Feng; Guttipatti, Pavithran; Song, Yuanquan
2018-05-05
The regrowth capacity of damaged neurons governs neuroregeneration and functional recovery after nervous system trauma. Over the past few decades, various intrinsic and extrinsic inhibitory factors involved in the restriction of axon regeneration have been identified. However, simply removing these inhibitory cues is insufficient for successful regeneration, indicating the existence of additional regulatory machinery. Drosophila melanogaster, the fruit fly, shares evolutionarily conserved genes and signaling pathways with vertebrates, including humans. Combining the powerful genetic toolbox of flies with two-photon laser axotomy/dendriotomy, we describe here the Drosophila sensory neuron - dendritic arborization (da) neuron injury model as a platform for systematically screening for novel regeneration regulators. Briefly, this paradigm includes a) the preparation of larvae, b) lesion induction to dendrite(s) or axon(s) using a two-photon laser, c) live confocal imaging post-injury and d) data analysis. Our model enables highly reproducible injury of single labeled neurons, axons, and dendrites of well-defined neuronal subtypes, in both the peripheral and central nervous system.
Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing
Nguyen, Minh Q.; Wu, Youmei; Bonilla, Lauren S.; von Buchholtz, Lars J.
2017-01-01
The trigeminal ganglion contains somatosensory neurons that detect a range of thermal, mechanical and chemical cues and innervate unique sensory compartments in the head and neck including the eyes, nose, mouth, meninges and vibrissae. We used single-cell sequencing and in situ hybridization to examine the cellular diversity of the trigeminal ganglion in mice, defining thirteen clusters of neurons. We show that clusters are well conserved in dorsal root ganglia suggesting they represent distinct functional classes of somatosensory neurons and not specialization associated with their sensory targets. Notably, functionally important genes (e.g. the mechanosensory channel Piezo2 and the capsaicin gated ion channel Trpv1) segregate into multiple clusters and often are expressed in subsets of cells within a cluster. Therefore, the 13 genetically-defined classes are likely to be physiologically heterogeneous rather than highly parallel (i.e., redundant) lines of sensory input. Our analysis harnesses the power of single-cell sequencing to provide a unique platform for in silico expression profiling that complements other approaches linking gene-expression with function and exposes unexpected diversity in the somatosensory system. PMID:28957441
Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons
Boroujeni, Mahdi Eskandarian; Gardaneh, Mossa
2017-01-01
Cell replacement therapy utilizing mesenchymal stem cells as its main resource holds great promise for ultimate treatment of human neurological disorders. Parkinson's disease (PD) is a common, chronic neurodegenerative disorder hallmarked by localized degeneration of a specific set of dopaminergic neurons within a midbrain sub-region. The specific cell type and confined location of degenerating neurons make cell replacement therapy ideal for PD treatment since it mainly requires replenishment of lost dopaminergic neurons with fresh and functional ones. Endogenous as well as exogenous cell sources have been identified as candidate targets for cell replacement therapy in PD. In this review, umbilical cord mesenchymal stem cells (UCMSCs) are discussed as they provide an inexpensive unlimited reservoir differentiable towards functional dopaminergic neurons that potentially lead to long-lasting behavioral recovery in PD patients. We also present miRNAs-mediated neuronal differentiation of UCMSCs. The UCMSCs bear a number of outstanding characteristics including their non-tumorigenic, low-immunogenic properties that make them ideal for cell replacement therapy purposes. Nevertheless, more investigations as well as controlled clinical trials are required to thoroughly confirm the efficacy of UCMSCs for therapeutic medical-grade applications in PD. PMID:28852404
Higher order visual input to the mushroom bodies in the bee, Bombus impatiens.
Paulk, Angelique C; Gronenberg, Wulfila
2008-11-01
To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.
Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M
2015-01-01
PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.
Fierro-González, Juan Carlos; Cornils, Astrid; Alcedo, Joy; Miranda-Vizuete, Antonio; Swoboda, Peter
2011-01-27
Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions.
Fierro-González, Juan Carlos; Cornils, Astrid; Alcedo, Joy
2011-01-01
Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions. PMID:21304598
Pericytes of the neurovascular unit: Key functions and signaling pathways
Sweeney, Melanie D.; Ayyadurai, Shiva; Zlokovic, Berislav V.
2017-01-01
Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles, and post-capillary venules. The central nervous system (CNS) pericytes are uniquely positioned within the neurovascular unit between endothelial cells, astrocytes, and neurons. They integrate, coordinate, and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation, and stem cell activity. Here, we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes, and neurons that control neurovascular functions. We also review the role of pericytes in different CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366
Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David
2017-04-01
Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways. Copyright © 2017 the American Physiological Society.
Emergence of binocular functional properties in a monocular neural circuit
Ramdya, Pavan; Engert, Florian
2010-01-01
Sensory circuits frequently integrate converging inputs while maintaining precise functional relationships between them. For example, in mammals with stereopsis, neurons at the first stages of binocular visual processing show a close alignment of receptive-field properties for each eye. Still, basic questions about the global wiring mechanisms that enable this functional alignment remain unanswered, including whether the addition of a second retinal input to an otherwise monocular neural circuit is sufficient for the emergence of these binocular properties. We addressed this question by inducing a de novo binocular retinal projection to the larval zebrafish optic tectum and examining recipient neuronal populations using in vivo two-photon calcium imaging. Notably, neurons in rewired tecta were predominantly binocular and showed matching direction selectivity for each eye. We found that a model based on local inhibitory circuitry that computes direction selectivity using the topographic structure of both retinal inputs can account for the emergence of this binocular feature. PMID:19160507
Network control principles predict neuron function in the Caenorhabditis elegans connectome
Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László
2017-01-01
Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social and technological networks1–3. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode C. elegans4–6, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires twelve neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation7–13, as well as one previously uncharacterised neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed, with single-cell ablations of DD04 or DD05, but not DD02 or DD03, specifically affecting posterior body movements. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterised connectomes. PMID:29045391
Network control principles predict neuron function in the Caenorhabditis elegans connectome
NASA Astrophysics Data System (ADS)
Yan, Gang; Vértes, Petra E.; Towlson, Emma K.; Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László
2017-10-01
Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.
Network control principles predict neuron function in the Caenorhabditis elegans connectome.
Yan, Gang; Vértes, Petra E; Towlson, Emma K; Chew, Yee Lian; Walker, Denise S; Schafer, William R; Barabási, Albert-László
2017-10-26
Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.
Vocal coordination and vocal imitation: a role for mirror neurons?
Newman, John D
2014-04-01
Some birds and mammals have vocal communication systems in which coordination between individuals is important. Examples would include duetting or antiphonal calling in some birds and mammals, rapid exchanges of the same vocalization, and vocal exchanges between paired individuals and other nearby pairs. Mirror neurons may play a role in such systems but become functional only after experience.
hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation
Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.
2016-01-01
Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614
Mohr, Margaret A; Sisk, Cheryl L
2013-03-19
During puberty, the brain goes through extensive remodeling, involving the addition of new neurons and glia to brain regions beyond the canonical neurogenic regions (i.e., dentate gyrus and olfactory bulb), including limbic and hypothalamic cell groups associated with sex-typical behavior. Whether these pubertally born cells become functionally integrated into neural circuits remains unknown. To address this question, we gave male Syrian hamsters daily injections of the cell birthdate marker bromodeoxyuridine throughout puberty (postnatal day 28-49). Half of the animals were housed in enriched environments with access to a running wheel to determine whether enrichment increased the survival of pubertally born cells compared with the control environment. At 4 wk after the last BrdU injection, animals were allowed to interact with a receptive female and were then killed 1 h later. Triple-label immunofluorescence for BrdU, the mature neuron marker neuronal nuclear antigen, and the astrocytic marker glial fibrillary acidic protein revealed that a proportion of pubertally born cells in the medial preoptic area, arcuate nucleus, and medial amygdala differentiate into either mature neurons or astrocytes. Double-label immunofluorescence for BrdU and the protein Fos revealed that a subset of pubertally born cells in these regions is activated during sociosexual behavior, indicative of their functional incorporation into neural circuits. Enrichment affected the survival and activation of pubertally born cells in a brain region-specific manner. These results demonstrate that pubertally born cells located outside of the traditional neurogenic regions differentiate into neurons and glia and become functionally incorporated into neural circuits that subserve sex-typical behaviors.
Boulanger-Weill, Jonathan; Candat, Virginie; Jouary, Adrien; Romano, Sebastián A; Pérez-Schuster, Verónica; Sumbre, Germán
2017-06-19
From development up to adulthood, the vertebrate brain is continuously supplied with newborn neurons that integrate into established mature circuits. However, how this process is coordinated during development remains unclear. Using two-photon imaging, GCaMP5 transgenic zebrafish larvae, and sparse electroporation in the larva's optic tectum, we monitored spontaneous and induced activity of large neuronal populations containing newborn and functionally mature neurons. We observed that the maturation of newborn neurons is a 4-day process. Initially, newborn neurons showed undeveloped dendritic arbors, no neurotransmitter identity, and were unresponsive to visual stimulation, although they displayed spontaneous calcium transients. Later on, newborn-labeled neurons began to respond to visual stimuli but in a very variable manner. At the end of the maturation period, newborn-labeled neurons exhibited visual tuning curves (spatial receptive fields and direction selectivity) and spontaneous correlated activity with neighboring functionally mature neurons. At this developmental stage, newborn-labeled neurons presented complex dendritic arbors and neurotransmitter identity (excitatory or inhibitory). Removal of retinal inputs significantly perturbed the integration of newborn neurons into the functionally mature tectal network. Our results provide a comprehensive description of the maturation of newborn neurons during development and shed light on potential mechanisms underlying their integration into a functionally mature neuronal circuit. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Bastian, Thomas W.; von Hohenberg, William C.; Mickelson, Daniel J.; Lanier, Lorene M.; Georgieff, Michael K.
2016-01-01
Iron deficiency (ID), with and without anemia, affects an estimated 2 billion people worldwide. ID is particularly deleterious during early-life brain development, leading to long-term neurological impairments, including deficits in hippocampus-mediated learning and memory. Neonatal rats with fetal/neonatal ID anemia (IDA) have shorter hippocampal CA1 apical dendrites with disorganized branching. ID-induced dendritic structural abnormalities persist into adulthood despite normalization of iron status. However, the specific developmental effects of neuronal iron loss on hippocampal neuron dendrite growth and branching are unknown. Embryonic hippocampal neuron cultures were chronically treated with deferoxamine (DFO, an iron chelator) beginning at 3 days in vitro (DIV). Levels of mRNA for Tfr1 and Slc11a2, iron-responsive genes involved in iron uptake, were significantly elevated in DFO-treated cultures at 11DIV and 18DIV, indicating a similar degree of neuronal ID as seen in rodent ID models. DFO treatment decreased mRNA levels for genes indexing dendritic and synaptic development (i.e., BdnfVI, Camk2a, Vamp1, Psd95, Cfl1, Pfn1, Pfn2, and Gda) and mitochondrial function (i.e., Ucp2, Pink1, and Cox6a1). At 18DIV, DFO reduced key aspects of energy metabolism including basal respiration, maximal respiration, spare respiratory capacity, ATP production, and glycolytic rate, capacity, and reserve. Sholl analysis revealed a significant decrease in distal dendritic complexity in DFO-treated neurons at both 11DIV and 18DIV. At 11DIV, the length of primary dendrites and the number and length of branches in DFO-treated neurons was reduced. By 18DIV, a partial recovery of dendritic branch number in DFO-treated neurons was counteracted by a significant reduction in the number and length of primary dendrites and length of branches. Our findings suggest that early neuronal iron loss, at least partially driven through altered mitochondrial function and neuronal energy metabolism, is responsible for the effects of fetal/neonatal ID and IDA on hippocampal neuron dendritic and synaptic maturation. Impairments in these neurodevelopmental processes likely underlie the negative impact of early life ID and IDA on hippocampus-mediated learning and memory. PMID:27669335
The Changing Roles of Neurons in the Cortical Subplate
Friedlander, Michael J.; Torres-Reveron, Juan
2009-01-01
Neurons may serve different functions over the course of an organism's life. Recent evidence suggests that cortical subplate (SP) neurons including those that reside in the white matter may perform longitudinal multi-tasking at different stages of development. These cells play a key role in early cortical development in coordinating thalamocortical reciprocal innervation. At later stages of development, they become integrated within the cortical microcircuitry. This type of longitudinal multi-tasking can enhance the capacity for information processing by populations of cells serving different functions over the lifespan. Subplate cells are initially derived when cells from the ventricular zone underlying the cortex migrate to the cortical preplate that is subsequently split by the differentiating neurons of the cortical plate with some neurons locating in the marginal zone and others settling below in the SP. While the cortical plate neurons form most of the cortical layers (layers 2–6), the marginal zone neurons form layer 1 and the SP neurons become interstitial cells of the white matter as well as forming a compact sublayer along the bottom of layer 6. After serving as transient innervation targets for thalamocortical axons, most of these cells die and layer 4 neurons become innervated by thalamic axons. However, 10–20% survives, remaining into adulthood along the bottom of layer 6 and as a scattered population of interstitial neurons in the white matter. Surviving SP cells' axons project throughout the overlying laminae, reaching layer 1 and issuing axon collaterals within white matter and in lower layer 6. This suggests that they participate in local synaptic networks, as well. Moreover, they receive excitatory and inhibitory synaptic inputs, potentially monitoring outputs from axon collaterals of cortical efferents, from cortical afferents and/or from each other. We explore our understanding of the functional connectivity of these cells at different stages of development. PMID:19688111
Park, Yu Mi; Lee, Won Taek; Bokara, Kiran Kumar; Seo, Su Kyoung; Park, Seung Hwa; Kim, Jae Hwan; Yenari, Midori A.; Park, Kyung Ah; Lee, Jong Eun
2013-01-01
Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI. PMID:23349763
Lin, Chia-Wen; Chen, Chiung-Ya; Cheng, Sin-Jhong; Hu, Hsiao-Tang; Hsueh, Yi-Ping
2014-01-01
Innate immune responses have been shown to influence brain development and function. Dysregulation of innate immunity is significantly associated with psychiatric disorders such as autism spectrum disorders and schizophrenia, which are well-known neurodevelopmental disorders. Recent studies have revealed that critical players of the innate immune response are expressed in neuronal tissues and regulate neuronal function and activity. For example, Sarm1, a negative regulator that acts downstream of Toll-like receptor (TLR) 3 and 4, is predominantly expressed in neurons. We have previously shown that Sarm1 regulates neuronal morphogenesis and the expression of inflammatory cytokines in the brain, which then affects learning ability, cognitive flexibility, and social interaction. Because impaired neuronal morphogenesis and dysregulation of cytokine expression may disrupt neuronal activity, we investigated whether Sarm1 knockdown affects the synaptic responses of neurons. We here show that reduced Sarm1 expression impairs metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) formation but enhances N-methyl-D-aspartate receptor (NMDAR)-dependent long-term potentiation production in hippocampal CA1 neurons. The expression levels of post-synaptic proteins, including NR2a, NR1, Shank1 and Shank3, are also altered in Sarm1 knockdown mice, suggesting a role for Sarm1 in the maintenance of synaptic homeostasis. The addition of a positive allosteric modulator of mGluR5, CDPPB, ameliorates the LTD defects in slice recording and the behavioral deficits in social interaction and associative memory. These results suggest an important role for mGluR5 signaling in the function of Sarm1. In conclusion, our study demonstrates a role for Sarm1 in the regulation of synaptic plasticity. Through these mechanisms, Sarm1 knockdown results in the impairment of associative memory and social interactions in mice.
Altered striatal function in a mutant mouse lacking D1A dopamine receptors.
Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P
1994-01-01
Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078
Axonal transport: cargo-specific mechanisms of motility and regulation.
Maday, Sandra; Twelvetrees, Alison E; Moughamian, Armen J; Holzbaur, Erika L F
2014-10-22
Axonal transport is essential for neuronal function, and many neurodevelopmental and neurodegenerative diseases result from mutations in the axonal transport machinery. Anterograde transport supplies distal axons with newly synthesized proteins and lipids, including synaptic components required to maintain presynaptic activity. Retrograde transport is required to maintain homeostasis by removing aging proteins and organelles from the distal axon for degradation and recycling of components. Retrograde axonal transport also plays a major role in neurotrophic and injury response signaling. This review provides an overview of axonal transport pathways and discusses their role in neuronal function.
Deletion of Gαq in the telencephalon alters specific neurobehavioral outcomes.
Graham, Devon L; Buendia, Matthew A; Chapman, Michelle A; Durai, Heather H; Stanwood, Gregg D
2015-09-01
G(αq) -coupled receptors are ubiquitously expressed throughout the brain and body, and it has been shown that these receptors and associated signaling cascades are involved in a number of functional outputs, including motor function and learning and memory. Genetic alterations to G(αq) have been implicated in neurodevelopmental disorders such as Sturge-Weber syndrome. Some of these associated disease outcomes have been modeled in laboratory animals, but as G(αq) is expressed in all cell types, it is difficult to differentiate the underlying circuitry or causative neuronal population. To begin to address neuronal cell type diversity in G(αq) function, we utilized a conditional knockout mouse whereby G(αq) was eliminated from telencephalic glutamatergic neurons. Unlike the global G(αq) knockout mouse, we found that these conditional knockout mice were not physically different from control mice, nor did they exhibit any gross motor abnormalities. However, similarly to the constitutive knockout animal, G(αq) conditional knockout mice demonstrated apparent deficits in spatial working memory. Loss of G(αq) from glutamatergic neurons also produced enhanced sensitivity to cocaine-induced locomotion, suggesting that cortical G(αq) signaling may limit behavioral responses to psychostimulants. Screening for a variety of markers of forebrain neuronal architecture revealed no obvious differences in the conditional knockouts, suggesting that the loss of G(αq) in telencephalic excitatory neurons does not result in major alterations in brain structure or neuronal differentiation. Taken together, our results define specific modulation of spatial working memory and psychostimulant responses through disruptions in G(αq) signaling within cerebral cortical glutamatergic neurons. © 2015 Wiley Periodicals, Inc.
Cuevas, Javier; Roth, Adelheid L; Berg, Darwin K
2000-01-01
Nicotinic acetylcholine receptors (nAChRs) that bind α-bungarotoxin (αBgt) were studied on isolated rat superior cervical ganglion (SCG) neurons using whole-cell patch clamp recording techniques.Rapid application of ACh onto the soma of voltage clamped neurons evoked a slowly desensitizing current that was reversibly blocked by αBgt (50 nm). The toxin-sensitive current constituted on average about half of the peak whole-cell response evoked by ACh.Nanomolar concentrations of methyllycaconitine blocked the αBgt-sensitive component of the ACh-evoked current as did intracellular dialysis with an anti-α7 monoclonal antibody. The results indicate that the slowly reversible toxin-sensitive response elicited by ACh arises from activation of an unusual class of α7-containing receptor (α7-nAChR) similar to that reported previously for rat intracardiac ganglion neurons.A second class of functional α7-nAChR was identified on some SCG neurons by using rapid application of choline to elicit responses. In these cases a biphasic response was obtained, which included a rapidly desensitizing component that was blocked by αBgt in a pseudo-irreversible manner. The pharmacology and kinetics of the responses resembled those previously attributed to α7-nAChRs in a number of other neuronal cell types.Experiments measuring the dissociation rate of 125I-labelled αBgt from SCG neurons revealed two classes of toxin-binding site. The times for toxin dissociation were consistent with those required to reverse blockade of the two kinds of αBgt-sensitive response.These results indicate that rat SCG neurons express two types of functional α7-nAChR, differing in pharmacology, desensitization and reversibility of αBgt blockade. PMID:10856125
Kakinuma, Yoshihiko
2015-11-01
It has been several years since the function of the non-neuronal cholinergic system was independently reported in cardiomyocytes by several research groups. Although these findings initially seemed to be negligible and insignificant, extraordinary findings about cardiomyocytes were subsequently reported in studies involving the knockdown of the non-neuronal cholinergic system. These studies provide the evidence that this system may be indispensable for maintaining principal cardiac functions. Despite the absence of an appropriate and reliable technology to detect cellular ACh in real time in cardiomyocytes, studies of this system have progressed, albeit very slowly, to gradually consolidate the significance of this system. Based on the many significant findings regarding this system, these will be critical to develop adjunctive intervention therapy against cardiovascular diseases, including peripheral artery disease and heart failure. In this study, previous studies focusing on the non-neuronal cholinergic system are reviewed along with our studies, both indicating the biologically significant roles of the cardiac non-neuronal acetylcholine system from a clinical perspective. Copyright © 2015 Elsevier B.V. All rights reserved.
Briggs, Christine E; Wang, Yulei; Kong, Benjamin; Woo, Tsung-Ung W; Iyer, Lakshmanan K; Sonntag, Kai C
2015-08-27
The degeneration of substantia nigra (SN) dopamine (DA) neurons in sporadic Parkinson׳s disease (PD) is characterized by disturbed gene expression networks. Micro(mi)RNAs are post-transcriptional regulators of gene expression and we recently provided evidence that these molecules may play a functional role in the pathogenesis of PD. Here, we document a comprehensive analysis of miRNAs in SN DA neurons and PD, including sex differences. Our data show that miRNAs are dysregulated in disease-affected neurons and differentially expressed between male and female samples with a trend of more up-regulated miRNAs in males and more down-regulated miRNAs in females. Unbiased Ingenuity Pathway Analysis (IPA) revealed a network of miRNA/target-gene associations that is consistent with dysfunctional gene and signaling pathways in PD pathology. Our study provides evidence for a general association of miRNAs with the cellular function and identity of SN DA neurons, and with deregulated gene expression networks and signaling pathways related to PD pathogenesis that may be sex-specific. Copyright © 2015 Elsevier B.V. All rights reserved.
Neuronal effects of nicotine during auditory selective attention.
Smucny, Jason; Olincy, Ann; Eichman, Lindsay S; Tregellas, Jason R
2015-06-01
Although the attention-enhancing effects of nicotine have been behaviorally and neurophysiologically well-documented, its localized functional effects during selective attention are poorly understood. In this study, we examined the neuronal effects of nicotine during auditory selective attention in healthy human nonsmokers. We hypothesized to observe significant effects of nicotine in attention-associated brain areas, driven by nicotine-induced increases in activity as a function of increasing task demands. A single-blind, prospective, randomized crossover design was used to examine neuronal response associated with a go/no-go task after 7 mg nicotine or placebo patch administration in 20 individuals who underwent functional magnetic resonance imaging at 3T. The task design included two levels of difficulty (ordered vs. random stimuli) and two levels of auditory distraction (silence vs. noise). Significant treatment × difficulty × distraction interaction effects on neuronal response were observed in the hippocampus, ventral parietal cortex, and anterior cingulate. In contrast to our hypothesis, U and inverted U-shaped dependencies were observed between the effects of nicotine on response and task demands, depending on the brain area. These results suggest that nicotine may differentially affect neuronal response depending on task conditions. These results have important theoretical implications for understanding how cholinergic tone may influence the neurobiology of selective attention.
Command and Compensation in a Neuromodulatory Decision Network
Luan, Haojiang; Diao, Fengqiu; Peabody, Nathan C.; White, Benjamin H.
2012-01-01
The neural circuits that mediate behavioral choices must not only weigh internal demands and environmental circumstances, but also select and implement specific actions, including associated visceral or neuroendocrine functions. Coordinating these multiple processes suggests considerable complexity. As a consequence, even circuits that support simple behavioral decisions remain poorly understood. Here we show that the environmentally-sensitive wing expansion decision of adult fruit flies is coordinated by a single pair of neuromodulatory neurons with command-like function. Targeted suppression of these neurons using the Split Gal4 system abrogates the fly's ability to expand its wings in the face of environmental challenges, while stimulating them forces expansion by coordinately activating both motor and neuroendocrine outputs. The arbitration and implementation of the wing expansion decision by this neuronal pair may illustrate a general strategy by which neuromodulatory neurons orchestrate behavior. Interestingly, the decision network shows a behavioral plasticity that is unmasked under conducive environmental conditions in flies lacking the function of the command-like neuromodulatory neurons. Such flies can often expand their wings using a motor program distinct from that of wildtype animals and controls. This compensatory program may be the vestige of an ancestral, environmentally-insensitive program used for wing expansion that existed prior to the evolution of the environmentally-adaptive program currently used by Drosophila and other cyclorrhaphan flies. PMID:22262886
Subramaniam, Mahalakshmi; Kern, Beatrice; Vogel, Simone; Klose, Verena; Schneider, Gaby; Roeper, Jochen
2014-09-01
The impairment of protein degradation via the ubiquitin-proteasome system (UPS) is present in sporadic Parkinson's disease (PD), and might play a key role in selective degeneration of vulnerable dopamine (DA) neurons in the substantia nigra pars compacta (SN). Further evidence for a causal role of dysfunctional UPS in familial PD comes from mutations in parkin, which results in a loss of function of an E3-ubiquitin-ligase. In a mouse model, genetic inactivation of an essential component of the 26S proteasome lead to widespread neuronal degeneration including DA midbrain neurons and the formation of alpha-synuclein-positive inclusion bodies, another hallmark of PD. Studies using pharmacological UPS inhibition in vivo had more mixed results, varying from extensive degeneration to no loss of DA SN neurons. However, it is currently unknown whether UPS impairment will affect the neurophysiological functions of DA midbrain neurons. To answer this question, we infused a selective proteasome inhibitor into the ventral midbrain in vivo and recorded single DA midbrain neurons 2 weeks after the proteasome challenge. We found a selective increase in the mean in vivo firing frequencies of identified DA SN neurons in anesthetized mice, while those in the ventral tegmental area (VTA) were unaffected. Our results demonstrate that a single-hit UPS inhibition is sufficient to induce a stable and selective hyperexcitability phenotype in surviving DA SN neurons in vivo. This might imply that UPS dysfunction sensitizes DA SN neurons by enhancing 'stressful pacemaking'. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Boiko, Nina; Medrano, Geraldo; Montano, Elizabeth; Jiang, Nan; Williams, Claire R.; Madungwe, Ngonidzashe B.; Bopassa, Jean C.; Kim, Charles C.; Parrish, Jay Z.; Hargreaves, Kenneth M.
2017-01-01
Chemotherapy induced peripheral neuropathy (CIPN), a side effect of many anti-cancer drugs including the vinca alkaloids, is characterized by a severe pain syndrome that compromises treatment in many patients. Currently there are no effective treatments for this pain syndrome except for the reduction of anti-cancer drug dose. Existing data supports the model that the pain associated with CIPN is the result of anti-cancer drugs augmenting the function of the peripheral sensory nociceptors but the cellular mechanisms underlying the effects of anti-cancer drugs on sensory neuron function are not well described. Studies from animal models have suggested a number of disease etiologies including mitotoxicity, axonal degeneration, immune signaling, and reduced sensory innervations but these outcomes are the result of prolonged treatment paradigms and do not necessarily represent the early formative events associated with CIPN. Here we show that acute exposure to vinca alkaloids results in an immediate pain syndrome in both flies and mice. Furthermore, we demonstrate that exposure of isolated sensory neurons to vinca alkaloids results in the generation of an inward sodium current capable of depolarizing these neurons to threshold resulting in neuronal firing. These neuronal effects of vinca alkaloids require the transient receptor potential ankyrin-1 (TrpA1) channel, and the hypersensitization to painful stimuli in response to the acute exposure to vinca alkaloids is reduced in TrpA1 mutant flies and mice. These findings demonstrate the direct excitation of sensory neurons by CIPN-causing chemotherapy drugs, and identify TrpA1 as an important target during the pathogenesis of CIPN. PMID:29084244
[The ontogeny of the mirror neuron system].
Myowa-Yamakoshi, Masako
2014-06-01
Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.
Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito
2016-06-01
14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc.
Winkle, Cortney C.; Olsen, Reid H. J.; Kim, Hyojin; Moy, Sheryl S.
2016-01-01
During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo. Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9−/− adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9−/− mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. SIGNIFICANCE STATEMENT Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo. Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo. These cellular defects were associated with severe deficits in spatial learning and memory. PMID:27147649
Winkle, Cortney C; Olsen, Reid H J; Kim, Hyojin; Moy, Sheryl S; Song, Juan; Gupton, Stephanie L
2016-05-04
During hippocampal development, newly born neurons migrate to appropriate destinations, extend axons, and ramify dendritic arbors to establish functional circuitry. These developmental stages are recapitulated in the dentate gyrus of the adult hippocampus, where neurons are continuously generated and subsequently incorporate into existing, local circuitry. Here we demonstrate that the E3 ubiquitin ligase TRIM9 regulates these developmental stages in embryonic and adult-born mouse hippocampal neurons in vitro and in vivo Embryonic hippocampal and adult-born dentate granule neurons lacking Trim9 exhibit several morphological defects, including excessive dendritic arborization. Although gross anatomy of the hippocampus was not detectably altered by Trim9 deletion, a significant number of Trim9(-/-) adult-born dentate neurons localized inappropriately. These morphological and localization defects of hippocampal neurons in Trim9(-/-) mice were associated with extreme deficits in spatial learning and memory, suggesting that TRIM9-directed neuronal morphogenesis may be involved in hippocampal-dependent behaviors. Appropriate generation and incorporation of adult-born neurons in the dentate gyrus are critical for spatial learning and memory and other hippocampal functions. Here we identify the brain-enriched E3 ubiquitin ligase TRIM9 as a novel regulator of embryonic and adult hippocampal neuron shape acquisition and hippocampal-dependent behaviors. Genetic deletion of Trim9 elevated dendritic arborization of hippocampal neurons in vitro and in vivo Adult-born dentate granule cells lacking Trim9 similarly exhibited excessive dendritic arborization and mislocalization of cell bodies in vivo These cellular defects were associated with severe deficits in spatial learning and memory. Copyright © 2016 the authors 0270-6474/16/364940-19$15.00/0.
Dias, Roberto A; Gonçalves, Bruno P; da Rocha, Joana F; da Cruz E Silva, Odete A B; da Silva, Augusto M F; Vieira, Sandra I
2017-12-01
Neurons are specialized cells of the Central Nervous System whose function is intricately related to the neuritic network they develop to transmit information. Morphological evaluation of this network and other neuronal structures is required to establish relationships between neuronal morphology and function, and may allow monitoring physiological and pathophysiologic alterations. Fluorescence-based microphotographs are the most widely used in cellular bioimaging, but phase contrast (PhC) microphotographs are easier to obtain, more affordable, and do not require invasive, complicated and disruptive techniques. Despite the various freeware tools available for fluorescence-based images analysis, few exist that can tackle the more elusive and harder-to-analyze PhC images. To surpass this, an interactive semi-automated image processing workflow was developed to easily extract relevant information (e.g. total neuritic length, average cell body area) from both PhC and fluorescence neuronal images. This workflow, named 'NeuronRead', was developed in the form of an ImageJ macro. Its robustness and adaptability were tested and validated on rat cortical primary neurons under control and differentiation inhibitory conditions. Validation included a comparison to manual determinations and to a golden standard freeware tool for fluorescence image analysis. NeuronRead was subsequently applied to PhC images of neurons at distinct differentiation days and exposed or not to DAPT, a pharmacological inhibitor of the γ-secretase enzyme, which cleaves the well-known Alzheimer's amyloid precursor protein (APP) and the Notch receptor. Data obtained confirms a neuritogenic regulatory role for γ-secretase products and validates NeuronRead as a time- and cost-effective useful monitoring tool. Copyright © 2017. Published by Elsevier Inc.
Novel isoforms of Dlg are fundamental for neuronal development in Drosophila.
Mendoza, Carolina; Olguín, Patricio; Lafferte, Gabriela; Thomas, Ulrich; Ebitsch, Susanne; Gundelfinger, Eckart D; Kukuljan, Manuel; Sierralta, Jimena
2003-03-15
Drosophila discs-large (dlg) mutants exhibit multiple developmental abnormalities, including severe defects in neuronal differentiation and synaptic structure and function. These defects have been ascribed to the loss of a single gene product, Dlg-A, a scaffold protein thought to be expressed in many cell types. Here, we describe that additional isoforms arise as a consequence of different transcription start points and alternative splicing of dlg. At least five different dlg gene products are predicted. We identified a subset of dlg-derived cDNAs that include novel exons encoding a peptide homologous to the N terminus of the mammalian protein SAP97/hDLG (S97N). Dlg isoforms containing the S97N domain are expressed at larval neuromuscular junctions and within the CNS of both embryos and larvae but are not detectable in epithelial tissues. Strong hypomorphic dlg alleles exhibit decreased expression of S97N, which may account for neural-specific aspects of the pleiomorphic dlg mutant phenotype. Selective inhibition of the expression of S97N-containing proteins in embryos by double-strand RNA leads to severe defects in neuronal differentiation and axon guidance, without overt perturbations in epithelia. These results indicate that the differential expression of dlg products correlates with distinct functions in non-neural and neural cells. During embryonic development, proteins that include the S97N domain are essential for proper neuronal differentiation and organization, acting through mechanisms that may include the adequate localization of cell fate determinants.
Theoretical Limitations on Functional Imaging Resolution in Auditory Cortex
Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.
2010-01-01
Functional imaging can reveal detailed organizational structure in cerebral cortical areas, but neuronal response features and local neural interconnectivity can influence the resulting images, possibly limiting the inferences that can be drawn about neural function. Discerning the fundamental principles of organizational structure in the auditory cortex of multiple species has been somewhat challenging historically both with functional imaging and with electrophysiology. A possible limitation affecting any methodology using pooled neuronal measures may be the relative distribution of response selectivity throughout the population of auditory cortex neurons. One neuronal response type inherited from the cochlea, for example, exhibits a receptive field that increases in size (i.e., decreases in selectivity) at higher stimulus intensities. Even though these neurons appear to represent a minority of auditory cortex neurons, they are likely to contribute disproportionately to the activity detected in functional images, especially if intense sounds are used for stimulation. To evaluate the potential influence of neuronal subpopulations upon functional images of primary auditory cortex, a model array representing cortical neurons was probed with virtual imaging experiments under various assumptions about the local circuit organization. As expected, different neuronal subpopulations were activated preferentially under different stimulus conditions. In fact, stimulus protocols that can preferentially excite selective neurons, resulting in a relatively sparse activation map, have the potential to improve the effective resolution of functional auditory cortical images. These experimental results also make predictions about auditory cortex organization that can be tested with refined functional imaging experiments. PMID:20079343
Schättin, Alexandra; de Bruin, Eling D
2016-01-01
A common problem in the older population is the risk of falling and related injury, immobility, and reduced survival. Age-related neuronal changes, e.g., decline in gray-and white-matter, affect neuronal, cognitive, and motor functioning. The improvement of these factors might decrease fall events in elderly. Studies showed that administration of video game-based physical exercise, a so-called exergame, or omega-3 fatty acid (FA) may improve motor and/or cognitive functioning through neuronal changes in the brain of older adults. The aim of this study is to assess the effects of a combination of exergame training with omega-3 FA supplementation on the elderly brain. We hypothesize that an intervention using a combination approach differently affects on the neuronal structure and function of the elderly's brain as compared to the sole administration of exergame training. The study is a parallel, double-blinded, randomized controlled trial lasting 26 weeks. Sixty autonomous living, non-smoking, and right-handed healthy older (>65 years) adults who live independently or in a senior residency are included, randomized, and allocated to one of two study groups. The experimental group receives a daily amount of 13.5 ml fish oil (including 2.9 g of omega-3 FA), whereas the control group receives a daily amount of 13.5 ml olive oil for 26 weeks. After 16 weeks, both groups start with an exergame training program three times per week. Measurements are performed on three time-points by treatment blinded investigators: pre-intervention measurements, blood sample after 16 week, and post-intervention measurements. The main outcomes are motor evoked potentials of the right M. tibialis anterior (transcranial magnetic stimulation) and response-related potentials (electroencephalography) during a cognitive test. For secondary outcomes, reaction time during cognitive tests and spatio-temporal parameters during gait performance are measured. Statistics will include effect sizes and a 2 × 2-ANOVA with normally distributed data or the non-parametric equivalent for data not fulfilling normal distribution. The randomized controlled study is the first to investigate the effectiveness of exergame training combined with omega-3 FA in counteracting age- and behavioral-dependent neuronal changes in the brain. This study has been registered in the Swiss National Clinical Trials (SNCTP000001623) and the ISRCTN (ISRCTN12084831) Portals.
Developmental origins of brain disorders: roles for dopamine
Money, Kelli M.; Stanwood, Gregg D.
2013-01-01
Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541
Yao, Pamela J.; Manor, Uri; Petralia, Ronald S.; Brose, Rebecca D.; Wu, Ryan T. Y.; Ott, Carolyn; Wang, Ya-Xian; Charnoff, Ari; Lippincott-Schwartz, Jennifer; Mattson, Mark P.
2017-01-01
Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons. PMID:27932496
Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.
Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas
2018-01-01
The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.
Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.
Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen
2017-11-07
Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.
Navarro, Montserrat; Olney, Jeffrey J; Burnham, Nathan W; Mazzone, Christopher M; Lowery-Gionta, Emily G; Pleil, Kristen E; Kash, Thomas L; Thiele, Todd E
2016-05-01
It was recently reported that activation of a subset of lateral hypothalamus (LH) GABAergic neurons induced both appetitive (food-seeking) and consummatory (eating) behaviors in vGat-ires-cre mice, while inhibition or deletion of GABAergic neurons blunted these behaviors. As food and caloric-dense liquid solutions were used, the data reported suggest that these LH GABAergic neurons may modulate behaviors that function to maintain homeostatic caloric balance. Here we report that chemogenetic activation of this GABAergic population in vGat-ires-cre mice increased consummatory behavior directed at any available stimulus, including those entailing calories (food, sucrose, and ethanol), those that do not (saccharin and water), and those lacking biological relevance (wood). Chemogenetic inhibition of these neurons attenuated consummatory behaviors. These data indicate that LH GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli.
Pheromone detection by mammalian vomeronasal neurons.
Zufall, Frank; Kelliher, Kevin R; Leinders-Zufall, Trese
2002-08-01
The vomeronasal organ (VNO) of mammals plays an essential role in the perception of chemical stimuli of social nature including pheromone-like signals but direct evidence for the transduction of pheromones by vomeronasal sensory neurons has been lacking. The recent development of electrophysiological and optical imaging methods using confocal microscopy has enabled researchers to systematically analyze sensory responses in large populations of mouse vomeronasal neurons. These experiments revealed that vomeronasal neurons are surprisingly sensitive and highly discriminative detectors of volatile, urinary metabolites that have pheromonal activity in recipient mice. Functional mapping studies of pheromone receptor activation have uncovered the basic principles of sensory processing by vomeronasal neurons and revealed striking differences in the neural mechanisms by which chemosensory information is detected by receptor neurons in the VNO and the main olfactory epithelium. These advances offer the opportunity to decipher the logic of mammalian pheromonal communication. Copyright 2002 Wiley-Liss, Inc.
Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors
Harrison, Thomas C.; Pinto, Lucas; Brock, Julien R.; Dan, Yang
2016-01-01
The basal forebrain (BF) plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate) or performed a go/no-go auditory discrimination task (learned). Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors. PMID:27242444
Parkin Regulation and Neurodegenerative Disorders
Zhang, Cheng-Wu; Hang, Liting; Yao, Tso-Pang; Lim, Kah-Leong
2016-01-01
Parkin is a unique, multifunctional ubiquitin ligase whose various roles in the cell, particularly in neurons, are widely thought to be protective. The pivotal role that Parkin plays in maintaining neuronal survival is underscored by our current recognition that Parkin dysfunction represents not only a predominant cause of familial parkinsonism but also a formal risk factor for the more common, sporadic form of Parkinson’s disease (PD). Accordingly, keen research on Parkin over the past decade has led to an explosion of knowledge regarding its physiological roles and its relevance to PD. However, our understanding of Parkin is far from being complete. Indeed, surprises emerge from time to time that compel us to constantly update the paradigm of Parkin function. For example, we now know that Parkin’s function is not confined to mere housekeeping protein quality control (QC) roles but also includes mitochondrial homeostasis and stress-related signaling. Furthermore, emerging evidence also suggest a role for Parkin in several other major neurodegenerative diseases including Alzheimer’s disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Yet, it remains truly amazing to note that a single enzyme could serve such multitude of functions and cellular roles. Clearly, its activity has to be tightly regulated. In this review, we shall discuss this and how dysregulated Parkin function may precipitate neuronal demise in various neurodegenerative disorders. PMID:26793099
Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.
Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R
2012-01-11
Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.
Diversity of layer 5 projection neurons in the mouse motor cortex
Oswald, Manfred J.; Tantirigama, Malinda L. S.; Sonntag, Ivo; Hughes, Stephanie M.; Empson, Ruth M.
2013-01-01
In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function. PMID:24137110
Friedman, Lauren G; Riemslagh, Fréderike W; Sullivan, Josefa M; Mesias, Roxana; Williams, Frances M; Huntley, George W; Benson, Deanna L
2015-01-01
Neocortical interactions with the dorsal striatum support many motor and executive functions, and such underlying functional networks are particularly vulnerable to a variety of developmental, neurological, and psychiatric brain disorders, including autism spectrum disorders, Parkinson's disease, and Huntington's disease. Relatively little is known about the development of functional corticostriatal interactions, and in particular, virtually nothing is known of the molecular mechanisms that control generation of prefrontal cortex-striatal circuits. Here, we used regional and cellular in situ hybridization techniques coupled with neuronal tract tracing to show that Cadherin-8 (Cdh8), a homophilic adhesion protein encoded by a gene associated with autism spectrum disorders and learning disability susceptibility, is enriched within striatal projection neurons in the medial prefrontal cortex and in striatal medium spiny neurons forming the direct or indirect pathways. Developmental analysis of quantitative real-time polymerase chain reaction and western blot data show that Cdh8 expression peaks in the prefrontal cortex and striatum at P10, when cortical projections start to form synapses in the striatum. High-resolution immunoelectron microscopy shows that Cdh8 is concentrated at excitatory synapses in the dorsal striatum, and Cdh8 knockdown in cortical neurons impairs dendritic arborization and dendrite self-avoidance. Taken together, our findings indicate that Cdh8 delineates developing corticostriatal circuits where it is a strong candidate for regulating the generation of normal cortical projections, neuronal morphology, and corticostriatal synapses. © 2014 Wiley Periodicals, Inc.
Bondarenko, Vladimir E; Cymbalyuk, Gennady S; Patel, Girish; Deweerth, Stephen P; Calabrese, Ronald L
2004-12-01
Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks. An oscillatory system of two mutually inhibitory neuronal units is a ubiquitous network module found in nervous systems and is called a half-center oscillator. Previously we created a half-center oscillator of two identical oscillatory silicon (analog Very Large Scale Integration) neurons and developed a mathematical model describing its dynamics. In the mathematical model, we have shown that an in-phase limit cycle becomes unstable through a subcritical torus bifurcation. However, the existence of this torus bifurcation in experimental silicon two-neuron system was not rigorously demonstrated or investigated. Here we demonstrate the torus predicted by the model for the silicon implementation of a half-center oscillator using complex time series analysis, including bifurcation diagrams, mapping techniques, correlation functions, amplitude spectra, and correlation dimensions, and we investigate how the properties of the quasiperiodic oscillations depend on the strengths of coupling between the silicon neurons. The potential advantages and disadvantages of quasiperiodic oscillations (torus) for biological neural systems and artificial neural networks are discussed.
Al-Nedawi, Khalid; Mian, M Firoz; Hossain, Nazia; Karimi, Khalil; Mao, Yu-Kang; Forsythe, Paul; Min, Kevin K; Stanisz, Andrew M; Kunze, Wolfgang A; Bienenstock, John
2015-02-01
Ingestion of a commensal bacteria, Lactobacillus rhamnosus JB-1, has potent immunoregulatory effects, and changes nerve-dependent colon migrating motor complexes (MMCs), enteric nerve function, and behavior. How these alterations occur is unknown. JB-1 microvesicles (MVs) are enriched for heat shock protein components such as chaperonin 60 heat-shock protein isolated from Escherichia coli (GroEL) and reproduce regulatory and neuronal effects in vitro and in vivo. Ingested labeled MVs were detected in murine Peyer's patch (PP) dendritic cells (DCs) within 18 h. After 3 d, PP and mesenteric lymph node DCs assumed a regulatory phenotype and increased functional regulatory CD4(+)25(+)Foxp3+ T cells. JB-1, MVs, and GroEL similarly induced phenotypic change in cocultured DCs via multiple pathways including C-type lectin receptors specific intercellular adhesion molecule-3 grabbing non-integrin-related 1 and Dectin-1, as well as TLR-2 and -9. JB-1 and MVs also decreased the amplitude of neuronally dependent MMCs in an ex vivo model of peristalsis. Gut epithelial, but not direct neuronal application of, MVs, replicated functional effects of JB-1 on in situ patch-clamped enteric neurons. GroEL and anti-TLR-2 were without effect in this system, suggesting the importance of epithelium neuron signaling and discrimination between pathways for bacteria-neuron and -immune communication. Together these results offer a mechanistic explanation of how Gram-positive commensals and probiotics may influence the host's immune and nervous systems. © FASEB.
Getting a Grip on Memory: Unilateral Hand Clenching Alters Episodic Recall
2013-04-24
States of America Abstract Unilateral hand clenching increases neuronal activity in the frontal lobe of the contralateral hemisphere. Such hand clenching...Simple clenching of one versus the other hand increases the neuronal activity of the frontal lobe in the opposite (contralateral) hemisphere [1], [2...hemispheres are thought to be differentially involved in many functions, including language , emotion, spatial processing, and local/global informa
Lindahl, Mikael; Hellgren Kotaleski, Jeanette
2016-01-01
The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.
Biochemistry and neuroscience: the twain need to meet.
Kennedy, Mary B
2017-04-01
Neuroscience has come to mean the study of electrophysiology of neurons and synapses, micro and macro-scale neuroanatomy, and the functional organization of brain areas. The molecular axis of the field, as reflected in textbooks, often includes only descriptions of the structure and function of individual channels and receptor proteins, and the extracellular signals that guide development and repair. Studies of cytosolic 'molecular machines', large assemblies of proteins that orchestrate regulation of neuronal functions, have been neglected. However, a complete understanding of brain function that will enable new strategies for treatment of the most intractable neural disorders will require that in vitro biochemical studies of molecular machines be reintegrated into the field of neuroscience. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rinaldi, Arianna; Defterali, Cagla; Mialot, Antoine; Garden, Derek L F; Beraneck, Mathieu; Nolan, Matthew F
2013-01-01
Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour. PMID:24000178
The hypothalamic slice approach to neuroendocrinology.
Hatton, G I
1983-07-01
The magnocellular peptidergic cells of the supraoptic and paraventricular nuclei comprise much of what is known as the hypothalamo-neurohypophysial system and is involved in several functions, including body fluid balance, parturition and lactation. While we have learned much from experiments in vivo, they have not produced a clear understanding of some of the crucial features associated with the functioning of this system. In particular, questions relating to the osmosensitivity of magnocellular neurones and the mechanism(s) by which their characteristic firing patterns are generated have not been answered using the older approaches. Electrophysiological studies with brain slices present direct evidence for osmosensitivity, and perhaps even osmoreceptivity, of magnocellular neurones. Other evidence indicates that the phasic bursting patterns of activity associated with vasopressin-releasing neurones (a) occur in the absence of patterned chemical synaptic input, (b) may be modulated by electrotonic conduction across gap junctions connecting magnocellular neurones and (c) are likely to be generated by endogenous membrane currents. These results make untenable the formerly held idea that phasic bursting activity is dependent upon recurrent synaptic inhibition.
Zebrafish CiA interneurons are late-born primary neurons.
Yeo, Sang-Yeob
2009-12-11
Pax2 is a neural-related transcription factor downstream of Notch signaling and is expressed in the developing spinal cord of zebrafish, including in CiA interneurons. However, the characteristics of pax2-positive neurons are largely unknown. The goal of this study was to characterize Pax2-positive neurons by examining their expression in embryos in which Notch function had been knocked down by mutation or injection of a morpholino or mRNA. I found that Pax2-positive CiA interneurons were late-differentiating primary neurons. pax2.1 was expressed in CoPA commissural neurons and CiA interneurons at 26 hpf. The number of pax2.1-positive cells increased in mind bomb mutant embryos or embryos injected with Su(H)1-MO, but not in cells injected with Xenopus Delta or Delta(stu) mRNA. These observations imply that Notch signaling plays a role in regulating the number of CiA neurons by preventing uncommitted precursors from acquiring a neuronal fate during vertebrate development.
Energy imbalance alters Ca2+ handling and excitability of POMC neurons
Paeger, Lars; Pippow, Andreas; Hess, Simon; Paehler, Moritz; Klein, Andreas C; Husch, Andreas; Pouzat, Christophe; Brüning, Jens C; Kloppenburg, Peter
2017-01-01
Satiety-signaling, pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus play a pivotal role in the regulation of energy homeostasis. Recent studies reported altered mitochondrial dynamics and decreased mitochondria- endoplasmic reticulum contacts in POMC neurons during diet-induced obesity. Since mitochondria play a crucial role in Ca2+ signaling, we investigated whether obesity alters Ca2+ handling of these neurons in mice. In diet-induced obesity, cellular Ca2+ handling properties including mitochondrial Ca2+ uptake capacity are impaired, and an increased resting level of free intracellular Ca2+ is accompanied by a marked decrease in neuronal excitability. Experimentally increasing or decreasing intracellular Ca2+ concentrations reproduced electrophysiological properties observed in diet-induced obesity. Taken together, we provide the first direct evidence for a diet-dependent deterioration of Ca2+ homeostasis in POMC neurons during obesity development resulting in impaired function of these critical energy homeostasis-regulating neurons. DOI: http://dx.doi.org/10.7554/eLife.25641.001 PMID:28762947
Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango.
Talay, Mustafa; Richman, Ethan B; Snell, Nathaniel J; Hartmann, Griffin G; Fisher, John D; Sorkaç, Altar; Santoyo, Juan F; Chou-Freed, Cambria; Nair, Nived; Johnson, Mark; Szymanski, John R; Barnea, Gilad
2017-11-15
Mapping neural circuits across defined synapses is essential for understanding brain function. Here we describe trans-Tango, a technique for anterograde transsynaptic circuit tracing and manipulation. At the core of trans-Tango is a synthetic signaling pathway that is introduced into all neurons in the animal. This pathway converts receptor activation at the cell surface into reporter expression through site-specific proteolysis. Specific labeling is achieved by presenting a tethered ligand at the synapses of genetically defined neurons, thereby activating the pathway in their postsynaptic partners and providing genetic access to these neurons. We first validated trans-Tango in the Drosophila olfactory system and then implemented it in the gustatory system, where projections beyond the first-order receptor neurons are not fully characterized. We identified putative second-order neurons within the sweet circuit that include projection neurons targeting known neuromodulation centers in the brain. These experiments establish trans-Tango as a flexible platform for transsynaptic circuit analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Choe, Eugenie; Lee, Tae Young; Kim, Minah; Hur, Ji-Won; Yoon, Youngwoo Bryan; Cho, Kang-Ik K; Kwon, Jun Soo
2018-03-26
It has been suggested that the mentalizing network and the mirror neuron system network support important social cognitive processes that are impaired in schizophrenia. However, the integrity and interaction of these two networks have not been sufficiently studied, and their effects on social cognition in schizophrenia remain unclear. Our study included 26 first-episode psychosis (FEP) patients and 26 healthy controls. We utilized resting-state functional connectivity to examine the a priori-defined mirror neuron system network and the mentalizing network and to assess the within- and between-network connectivities of the networks in FEP patients. We also assessed the correlation between resting-state functional connectivity measures and theory of mind performance. FEP patients showed altered within-network connectivity of the mirror neuron system network, and aberrant between-network connectivity between the mirror neuron system network and the mentalizing network. The within-network connectivity of the mirror neuron system network was noticeably correlated with theory of mind task performance in FEP patients. The integrity and interaction of the mirror neuron system network and the mentalizing network may be altered during the early stages of psychosis. Additionally, this study suggests that alterations in the integrity of the mirror neuron system network are highly related to deficient theory of mind in schizophrenia, and this problem would be present from the early stage of psychosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Kisspeptin and energy balance in reproduction.
De Bond, Julie-Ann P; Smith, Jeremy T
2014-03-01
Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fertility is compromised, as is Kiss1 expression in the arcuate nucleus. A number of metabolic modulators have been proposed as regulators of kisspeptin neurons including leptin, ghrelin, pro-opiomelanocortin (POMC), and neuropeptide Y (NPY). Whether these regulate kisspeptin neurons directly or indirectly will be discussed. Moreover, whether the stimulatory role of leptin on reproduction is mediated by kisspeptin directly will be questioned. Furthermore, in addition to being expressed in GNRH neurons, the kisspeptin receptor (Kiss1r) is also expressed in other areas of the brain, as well as in the periphery, suggesting alternative roles for kisspeptin signaling outside of reproduction. Interestingly, kisspeptin neurons are anatomically linked to, and can directly excite, anorexigenic POMC neurons and indirectly inhibit orexigenic NPY neurons. Thus, kisspeptin may have a direct role in regulating energy balance. Although data from Kiss1r knockout and WT mice found no differences in body weight, recent data indicate that kisspeptin may still play a role in food intake and glucose homeostasis. Thus, in addition to regulating reproduction, and mediating the effect of energy balance on reproductive function, kisspeptin signaling may also be a direct regulator of metabolism.
Modeling Axonal Defects in Hereditary Spastic Paraplegia with Human Pluripotent Stem Cells
Denton, Kyle R.; Xu, Chongchong; Shah, Harsh; Li, Xue-Jun
2016-01-01
BACKGROUND Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders, including hereditary spastic paraplegia (HSP) and amyotrophic lateral sclerosis (ALS). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remains largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathologic processes including axonal defects. METHODS In this article, we will frst review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summurize the findings and insights gained from studies using iPSC-based models, and discuss the challenges and future directions. RESULTS HSPs, a heterogeneous group of genetic neurodegenerative disorders, are characterized by lower extremity weakness and spasticity that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit disease-relevant axonal defects, such as impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport. CONCLUSION These patient-derived neurons offer unique tools to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy. PMID:27956894
Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C; Mennerick, Steven
2015-08-05
Neuron-astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (-astrocyte) within the same culture dish. -Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal action potentials to synaptic terminals. GABA transmission was not disrupted. The disruption did not involve detectable morphological changes to axons of glutamate neurons. Our work identifies a developmental role for astrocytes in the temporal precision of excitatory signals. Copyright © 2015 the authors 0270-6474/15/3511105-13$15.00/0.
1985-01-01
Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the vesicles of acetylcholine, thus allowing them to reload with catecholamine. These data also suggest that the same vesicles may contain both neurotransmitters simultaneously. PMID:4008529
Dulin, M F; Steffensen, I; Morris, C E; Walters, E T
1995-10-01
Recovery of behavioural and sensory function was examined following unilateral pedal nerve crush in Aplysia californica. Nerve crush that transected all axons connecting the tail to the central nervous system (CNS) eliminated the ipsilateral tail-evoked siphon reflex, whose sensory input travels in the crushed tail nerve (p9). The first reliable signs of recovery of this reflex were observed within 1 week, and most animals displayed tail-evoked siphon responses within 2 weeks. Wide-dynamic-range mechanosensory neurons with somata in the ventrocaudal (VC) cluster of the ipsilateral pleural ganglion exhibited a few receptive fields (RFs) on the tail 3 weeks after unilateral pedal nerve crush, indicating that the RFs had either regenerated or been reconnected to the central somata. These RFs were smaller and sensitized compared with corresponding RFs on the contralateral, uncrushed side. Centrally conducted axon responses of VC sensory neurones to electrical stimulation distal to the nerve crush site did not reappear until at least 10 days after the crush. Because the crush site was much closer to the CNS than to the tail, the failure of axon responses to be restored earlier than the behavioural responses indicates that early stages of reflex recovery are not due to regeneration of VC sensory neurone axons into the tail. Following nerve crush, VC sensory neurones often could be activated by stimulating central connectives or peripheral nerves that do not normally contain the sensory neurone's axons. These results suggest that recovery of behavioral function after nerve injury involves complex mechanisms, including regenerative growth of axotomized VC sensory neurones, sensitization of regenerating RFs and sprouting of VC sensory neurone fibres within the CNS. Furthermore, the rapidity of behavioural recovery indicates that its initial phases are mediated by additional mechanisms, perhaps centripetal regeneration of unidentified sensory neurones having peripheral somata, or transient reconnection of proximal and distal stumps of axotomized VC cells.
Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg
2016-08-15
The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks.
A dangerous method? The use of induced pluripotent stem cells as a model for schizophrenia.
Jacobs, Benjamin Meir
2015-10-01
Schizophrenia is a devastating and prevalent psychiatric illness. Progress in understanding the basic pathophysiological processes underlying this disorder has been hindered by the lack of appropriate models. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to generate live neurons in vitro from somatic tissue of schizophrenia patients. Despite its several limitations, this revolutionary technology has already helped to advance our understanding of schizophrenia. The phenotypic insights garnered with iPSC models of schizophrenia include transcriptional dysregulation, oxidative stress synaptic dysregulation, and neurodevelopmental abnormalities. Potential pitfalls of this work include the possibility of introducing random genetic mutations during the reprogramming process, the inadequacy of using neurons from other patients as controls, the inability to capture the complex environmental contribution to schizophrenia pathogenesis, the difficulty in modelling neurodevelopment, and the difficulty in modelling the interaction of multiple neuronal and non-neuronal cell types. However, with the increasing sophistication of available reprogramming techniques, co-culture technology, and gene correction strategies, iPSC-derived neurons will continue to elucidate how neuronal function is disrupted in schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.
Using iPSC-derived human DA neurons from opioid-dependent subjects to study dopamine dynamics.
Sheng, Yang; Filichia, Emily; Shick, Elizabeth; Preston, Kenzie L; Phillips, Karran A; Cooperman, Leslie; Lin, Zhicheng; Tesar, Paul; Hoffer, Barry; Luo, Yu
2016-08-01
The dopaminergic (DA) system plays important roles in addiction. However, human DA neurons from drug-dependent subjects were not available for study until recent development in inducible pluripotent stem cells (iPSCs) technology. In this study, we produced DA neurons differentiated using iPSCs derived from opioid-dependent and control subjects carrying different 3' VNTR (variable number tandem repeat) polymorphism in the human dopamine transporter (DAT or SLC6A3). In addition, the effects of valproic acid (VPA) exposures on iPSC-derived human DA neurons are also examined. We present the first evidence suggesting that the 3' VNTR polymorphism in the hDAT gene affects DAT expression level in iPSC-derived human DA neurons. In human DA neurons, which provide an appropriate cellular milieu, VPA treatment alters the expression of several genes important for dopaminergic neuron function including DAT, Nurr1, and TH; this might partly explain its action in regulating addictive behaviors. VPA treatment also significantly increased DA D2 receptor (Drd2) expression, especially in the opioid-dependent iPSC cell lines. Our data suggest that human iPSC-derived DA neurons may be useful in in vitro experimental model to examine the effects of genetic variation in gene regulation, to examine the underlying mechanisms in neurological disorders including drug addiction, and to serve as a platform for therapeutic development.
Arbitrary nonlinearity is sufficient to represent all functions by neural networks - A theorem
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.
1991-01-01
It is proved that if we have neurons implementing arbitrary linear functions and a neuron implementing one (arbitrary but smooth) nonlinear function g(x), then for every continuous function f(x sub 1,..., x sub m) of arbitrarily many variables, and for arbitrary e above 0, we can construct a network that consists of g-neurons and linear neurons, and computes f with precision e.
Loesel, R; Homberg, U
2001-10-15
The accessory medulla (AMe), a small neuropil in the insect optic lobe, has been proposed to serve a circadian pacemaker function analogous to the role of the suprachiasmatic nucleus in mammals. Building upon considerable knowledge of the circadian system of the cockroach Leucophaea maderae, we investigated the properties of AMe neurons in this insect with intracellular recordings combined with dye injections. Responses of neurons with processes in the AMe to visual stimuli, including stationary white light, moving objects, and polarized light were compared with the responses of adjacent medulla tangential neurons. Neurons with processes in the AMe and additional ramifications in the medulla strongly responded to stationary light stimuli and might, therefore, be part of photic entrainment pathways to the clock. Accessory medulla neurons lacking significant processes in the medulla but with projections to the midbrain or to the contralateral optic lobe, in contrast, responded weakly or not at all to light and, thus, seem to be part of the clock's output pathway. Two types of commissural neurons with tangential arborizations in both medullae were sensitive to polarized light, suggesting a role of these neurons in celestial navigation. Sidebranches in the AMae of one of the two cell types are discussed with respect to a possible involvement of the AMe in polarization vision. Finally, neurons responding to movement stimuli did not arborize in the AMe. The results show that the AMe receives photic input and support a role of this neuropil in circadian timekeeping functions. Copyright 2001 Wiley-Liss, Inc.
Jak2 is Necessary for Neuroendocrine Control of Female Reproduction
Wu, Sheng; Divall, Sara; Hoffman, Gloria E.; Le, Wei Wei; Wagner, Kay-Uwe; Wolfe, Andrew
2011-01-01
GnRH neurons represent the final common output of signals from the brain that regulates reproductive function. A wide range of environmental factors impact GnRH neuron activity including disease, stress, nutrition, and seasonal cues, as well as gonadal steroid hormones. The CNS response is thought to be mediated, at least in part, through intermediate signaling molecules that affect GnRH neuronal activity. In vitro, GnRH neuronal cell lines respond to a variety of ligands which activate the Jak/STAT intracellular signaling pathway. In order to determine its biological function in reproduction, we used Cre/LoxP technology to generate GnRH neuron specific Jak2 conditional knockout (Jak2 G−/−) mice. GnRH mRNA levels were reduced in Jak2 G−/− mice when compared to controls, while the number of GnRH neurons was equivalent, indicating a reduction in GnRH gene expression. Secretion of GnRH is also reduced as basal serum LH levels were significantly lower in female Jak2 G−/− mice while the pituitary responded normally to exogenous GnRH. Preovulatory LH surge levels were blunted in Jak2 G−/− mice, which was correlated with reduced GnRH neuronal activation as assessed by c-Fos. However the activation of GnRH neurons following release from estrogen negative feedback is retained. Female Jak2 G−/− mice exhibited significantly delayed puberty and first estrus, abnormal estrous cyclicity and impaired fertility. These results demonstrate an essential role for Jak2 signaling in GnRH neurons for normal reproductive development and fertility in female mice. PMID:21209203
UNC-18 Promotes Both the Anterograde Trafficking and Synaptic Function of Syntaxin
McEwen, Jason M.
2008-01-01
The SM protein UNC-18 has been proposed to regulate several aspects of secretion, including synaptic vesicle docking, priming, and fusion. Here, we show that UNC-18 has a chaperone function in neurons, promoting anterograde transport of the plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein Syntaxin-1. In unc-18 mutants, UNC-64 (Caenorhabditis elegans Syntaxin-1) accumulates in neuronal cell bodies. Colocalization studies and analysis of carbohydrate modifications both suggest that this accumulation occurs in the endoplasmic reticulum. This trafficking defect is specific for UNC-64 Syntaxin-1, because 14 other SNARE proteins and two active zone markers were unaffected. UNC-18 binds to Syntaxin through at least two mechanisms: binding to closed Syntaxin, or to the N terminus of Syntaxin. It is unclear which of these binding modes mediates UNC-18 function in neurons. The chaperone function of UNC-18 was eliminated in double mutants predicted to disrupt both modes of Syntaxin binding, but it was unaffected in single mutants. By contrast, mutations predicted to disrupt UNC-18 binding to the N terminus of Syntaxin caused significant defects in locomotion behavior and responsiveness to cholinesterase inhibitors. Collectively, these results demonstrate the UNC-18 acts as a molecular chaperone for Syntaxin transport in neurons and that the two modes of UNC-18 binding to Syntaxin are involved in different aspects of UNC-18 function. PMID:18596236
Zheng, Huiyuan; Patterson, Laurel M; Berthoud, Hans-Rudolf
2005-05-02
Orexin-expressing neurons in the hypothalamus project throughout the neuraxis and are involved in regulation of the sleep/wake cycle, food intake, and autonomic functions. Here we specifically analyze the anatomical organization of orexin projections to the dorsal vagal complex (DVC) and raphe pallidus and effects on ingestive behavior and autonomic functions of local orexin-A administration in nonanesthetized rats. Retrograde tracing experiments revealed that as many as 20% of hypothalamic orexin neurons project to the DVC, where they form straight varicose axon profiles, some of which are in close anatomical apposition with tyrosine hydroxylase (TH)-, glucagon-like peptide-1-, gamma-aminobutyric acid-, and nitric oxide synthase-immunoreactive neurons in a nonselective manner. Similar contacts were frequently observed with neurons of the nucleus of the solitary tract whose activation by gastrointestinal food stimuli was demonstrated by the expression of nuclear c-Fos immunoreactivity. Orexin-A administration to the fourth ventricle induced significant Fos-expression throughout the DVC compared with saline control injections, with about 20-25% of TH-ir neurons among the stimulated ones. Fourth ventricular orexin injections also significantly stimulated chow and water intake in nonfood-deprived rats. Direct bilateral injections of orexin into the DVC increased intake of palatable high-fat pellets. Orexin-ir fibers also innervated raphe pallidus. Fourth ventricular orexin-A (1 nmol) activated Fos expression in the raphe pallidus and C1/A1 catecholaminergic neurons in the ventral medulla and increased body temperature, heart rate, and locomotor activity. The results confirm that hypothalamomedullary orexin projections are involved in a variety of physiological functions, including ingestive behavior and sympathetic outflow. Copyright 2005 Wiley-Liss, Inc.
Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain
Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.
2014-01-01
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349
Sadaf, Sufia; Birman, Serge; Hasan, Gaiti
2012-01-01
Background Flight is an integral component of many complex behavioral patterns in insects. The giant fiber circuit has been well studied in several insects including Drosophila. However, components of the insect flight circuit that respond to an air-puff stimulus and comprise the flight central pattern generator are poorly defined. Aminergic neurons have been implicated in locust, moth and Drosophila flight. Here we have investigated the requirement of neuronal activity in serotonergic neurons, during development and in adults, on air-puff induced flight in Drosophila. Methodology/Principal Findings To target serotonergic neurons specifically, a Drosophila strain that contains regulatory regions from the TRH (Tryptophan Hydroxylase) gene linked to the yeast transcription factor GAL4 was used. By blocking synaptic transmission from serotonergic neurons with a tetanus toxin transgene or by hyperpolarisation with Kir2.1, close to 50% adults became flightless. Temporal expression of a temperature sensitive Dynamin mutant transgene (Shits) suggests that synaptic function in serotonergic neurons is required both during development and in adults. Depletion of IP3R in serotonergic neurons via RNAi did not affect flight. Interestingly, at all stages a partial requirement for synaptic activity in serotonergic neurons was observed. The status of serotonergic neurons was investigated in the central nervous system of larvae and adults expressing tetanus toxin. A small but significant reduction was observed in serotonergic cell number in adult second thoracic segments from flightless tetanus toxin expressing animals. Conclusions These studies show that loss of synaptic activity in serotonergic neurons causes a flight deficit. The temporal focus of the flight deficit is during pupal development and in adults. The cause of the flight deficit is likely to be loss of neurons and reduced synaptic function. Based on the partial phenotypes, serotonergic neurons appear to be modulatory, rather than an intrinsic part of the flight circuit. PMID:23029511
Mandelblat-Cerf, Yael; Ramesh, Rohan N; Burgess, Christian R; Patella, Paola; Yang, Zongfang; Lowell, Bradford B; Andermann, Mark L
2015-01-01
Agouti-related-peptide (AgRP) neurons—interoceptive neurons in the arcuate nucleus of the hypothalamus (ARC)—are both necessary and sufficient for driving feeding behavior. To better understand the functional roles of AgRP neurons, we performed optetrode electrophysiological recordings from AgRP neurons in awake, behaving AgRP-IRES-Cre mice. In free-feeding mice, we observed a fivefold increase in AgRP neuron firing with mounting caloric deficit in afternoon vs morning recordings. In food-restricted mice, as food became available, AgRP neuron firing dropped, yet remained elevated as compared to firing in sated mice. The rapid drop in spiking activity of AgRP neurons at meal onset may reflect a termination of the drive to find food, while residual, persistent spiking may reflect a sustained drive to consume food. Moreover, nearby neurons inhibited by AgRP neuron photostimulation, likely including satiety-promoting pro-opiomelanocortin (POMC) neurons, demonstrated opposite changes in spiking. Finally, firing of ARC neurons was also rapidly modulated within seconds of individual licks for liquid food. These findings suggest novel roles for antagonistic AgRP and POMC neurons in the regulation of feeding behaviors across multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.07122.001 PMID:26159614
Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye
Morrison, Carolyn A.; Chen, Hao; Cook, Tiffany; Brown, Stuart
2018-01-01
Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye. PMID:29324767
Neuert, Helen; Yuva-Aydemir, Yeliz; Silies, Marion; Klämbt, Christian
2017-12-15
The development of the nervous system requires tight control of cell division, fate specification and migration. The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that affects different steps of cell cycle progression, as well as having postmitotic functions in nervous system development. It can therefore link different developmental stages in one tissue. The two adaptor proteins, Fizzy/Cdc20 and Fizzy-related/Cdh1, confer APC/C substrate specificity. Here, we show that two distinct modes of APC/C function act during Drosophila eye development. Fizzy/Cdc20 controls the early growth of the eye disc anlage and the concomitant entry of glial cells onto the disc. In contrast, fzr/cdh1 acts during neuronal patterning and photoreceptor axon growth, and subsequently affects neuron-glia interaction. To further address the postmitotic role of Fzr/Cdh1 in controlling neuron-glia interaction, we identified a series of novel APC/C candidate substrates. Four of our candidate genes are required for fzr/cdh1 -dependent neuron-glia interaction, including the dynein light chain Dlc90F Taken together, our data show how different modes of APC/C activation can couple early growth and neuron-glia interaction during eye disc development. © 2017. Published by The Company of Biologists Ltd.
Salchner, Peter; Engidawork, Ephrem; Hoeger, Harald; Lubec, Barbara; Singewald, Nicolas
2003-09-01
Perinatal asphyxia (PA) causes irreversible damage to the brain of newborns and can produce neurologic and behavioral changes later in life. To identify neuronal substrates underlying the effects of PA, we investigated whether and how neuronal responsiveness to an established stress challenge is affected. We used Fos expression as a marker of neuronal activation and examined the pattern of Fos expression in response to acute swim stress in 24-month-old rats exposed to a 20-minute PA insult. Swim stress produced a similar pattern of Fos expression in control and asphyxiated rats in 34 brain areas. Asphyxiated rats displayed a higher number of stress-induced Fos-positive cells in the nucleus of the solitary tract, parabrachial nucleus, periaqueductal gray, paraventricular hypothalamic nucleus, nucleus accumbens, caudate-putamen, and prelimbic cortex. No differences in the Fos response to stress were observed in other regions, including the locus ceruleus, amygdala, hippocampus, or septum. These data provide functional anatomic evidence that PA has lifelong effects on neuronal communication and leads to an abnormal, augmented neuronal responsiveness to stress in specific brain areas, particularly in the main telencephalic target regions of the mesencephalic dopamine projections, as well as in a functionally related set of brain regions associated with autonomic and neuroendocrine regulation.
TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.
Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian
2013-12-15
TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.
Mirror neurons: from origin to function.
Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia
2014-04-01
This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.
van Deijk, Anne-Lieke F; Broersen, Laus M; Verkuyl, J Martin; Smit, August B; Verheijen, Mark H G
2017-01-01
Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis -docosahexaenoic acid (DHA), uridine and choline- has been shown to increase neurite outgrowth and synaptogenesis both in vivo and in vitro . A role for multi-nutrient intervention with specific precursors and cofactors has recently emerged in early Alzheimer's disease, which is characterized by decreased synapse numbers in the hippocampus. Moreover, the medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect (FC), improves memory performance in early Alzheimer's disease patients, possibly via maintaining brain connectivity. This suggests an effect of FC on synapses, but the underlying cellular mechanism is not fully understood. Therefore, we investigated the effect of FC (consisting of DHA, eicosapentaenoic acid (EPA), uridine, choline, phospholipids, folic acid, vitamins B12, B6, C and E, and selenium), on synaptogenesis by supplementing it to primary neuron-astrocyte co-cultures, a cellular model that mimics metabolic dependencies in the brain. We measured neuronal developmental processes using high content screening in an automated manner, including neuronal survival, neurite morphology, as well as the formation and maturation of synapses. Here, we show that FC supplementation resulted in increased numbers of neurons without affecting astrocyte number. Furthermore, FC increased postsynaptic PSD95 levels in both immature and mature synapses. These findings suggest that supplementation with FC to neuron-astrocyte co-cultures increased both neuronal survival and the maturation of postsynaptic terminals, which might aid the functional interpretation of FC-based intervention strategies in neurological diseases characterized by neuronal loss and impaired synaptic functioning.
van Deijk, Anne-Lieke F.; Broersen, Laus M.; Verkuyl, J. Martin; Smit, August B.; Verheijen, Mark H. G.
2017-01-01
Neuronal and synaptic membranes are composed of a phospholipid bilayer. Supplementation with dietary precursors for phospholipid synthesis –docosahexaenoic acid (DHA), uridine and choline– has been shown to increase neurite outgrowth and synaptogenesis both in vivo and in vitro. A role for multi-nutrient intervention with specific precursors and cofactors has recently emerged in early Alzheimer's disease, which is characterized by decreased synapse numbers in the hippocampus. Moreover, the medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect (FC), improves memory performance in early Alzheimer's disease patients, possibly via maintaining brain connectivity. This suggests an effect of FC on synapses, but the underlying cellular mechanism is not fully understood. Therefore, we investigated the effect of FC (consisting of DHA, eicosapentaenoic acid (EPA), uridine, choline, phospholipids, folic acid, vitamins B12, B6, C and E, and selenium), on synaptogenesis by supplementing it to primary neuron-astrocyte co-cultures, a cellular model that mimics metabolic dependencies in the brain. We measured neuronal developmental processes using high content screening in an automated manner, including neuronal survival, neurite morphology, as well as the formation and maturation of synapses. Here, we show that FC supplementation resulted in increased numbers of neurons without affecting astrocyte number. Furthermore, FC increased postsynaptic PSD95 levels in both immature and mature synapses. These findings suggest that supplementation with FC to neuron-astrocyte co-cultures increased both neuronal survival and the maturation of postsynaptic terminals, which might aid the functional interpretation of FC-based intervention strategies in neurological diseases characterized by neuronal loss and impaired synaptic functioning. PMID:28824363
Juárez-Morales, José L; Martinez-De Luna, Reyna I; Zuber, Michael E; Roberts, Alan; Lewis, Katharine E
2017-09-01
A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017. © 2017 Wiley Periodicals, Inc.
Sensitivity to perception level differentiates two subnetworks within the mirror neuron system.
Simon, Shiri; Mukamel, Roy
2017-05-01
Mirror neurons are a subset of brain cells that discharge during action execution and passive observation of similar actions. An open question concerns the functional role of their ability to match observed and executed actions. Since understanding of goals requires conscious perception of actions, we expect that mirror neurons potentially involved in action goal coding, will be modulated by changes in action perception level. Here, we manipulated perception level of action videos depicting short hand movements and measured the corresponding fMRI BOLD responses in mirror regions. Our results show that activity levels within a network of regions, including the sensorimotor cortex, primary motor cortex, dorsal premotor cortex and posterior superior temporal sulcus, are sensitive to changes in action perception level, whereas activity levels in the inferior frontal gyrus, ventral premotor cortex, supplementary motor area and superior parietal lobule are invariant to such changes. In addition, this parcellation to two sub-networks manifest as smaller functional distances within each group of regions during task and resting state. Our results point to functional differences between regions within the mirror neurons system which may have implications with respect to their possible role in action understanding. © The Author (2017). Published by Oxford University Press.
Neuronal correlates of reduced memory performance in overweight subjects.
Stingl, Krunoslav T; Kullmann, Stephanie; Ketterer, Caroline; Heni, Martin; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert
2012-03-01
There is growing evidence that excessive body weight correlates with impaired cognitive performance like executive function, attention and memory. In our study, we applied a visual working memory task to quantify associations between body weight and executive function. In total, 34 lean (BMI 22±2.1 kg/m(2)) and 34 obese (BMI 30.4±3.2 kg/m(2)) subjects were included. Magnetic brain activity and behavioral responses were recorded during a one-back visual memory task with food and non-food pictures, which were matched for color, size and complexity. Behavioral responses (reaction time and accuracy) were reduced in obese subjects independent of the stimulus category. Neuronal activity at the source level showed a positive correlation between the right dorsolateral prefrontal cortex (DLPFC) activity and BMI only for the food category. In addition, a negative correlation between BMI and neuronal activity was observed in the occipital area for both categories. Therefore we conclude that increased body weight is associated with reduced task performance and specific neuronal changes. This altered activity is probably related to executive function as well as encoding and retrieval of information. Copyright © 2011 Elsevier Inc. All rights reserved.
Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.
Chao, Hsiao-Tuan; Chen, Hongmei; Samaco, Rodney C; Xue, Mingshan; Chahrour, Maria; Yoo, Jong; Neul, Jeffrey L; Gong, Shiaoching; Lu, Hui-Chen; Heintz, Nathaniel; Ekker, Marc; Rubenstein, John L R; Noebels, Jeffrey L; Rosenmund, Christian; Zoghbi, Huda Y
2010-11-11
Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.
The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells
Shi, Lingling; Chang, Xiao; Zhang, Peilin; Coba, Marcelo P.; Lu, Wange; Wang, Kai
2013-01-01
Genetic mutations in NLGN4X (neuroligin 4), including point mutations and copy number variants (CNVs), have been associated with susceptibility to autism spectrum disorders (ASDs). However, it is unclear how mutations in NLGN4X result in neurodevelopmental defects. Here, we used neural stem cells (NSCs) as in vitro models to explore the impacts of NLGN4X knockdown on neurodevelopment. Using two shRNAmir-based vectors targeting NLGN4X and one control shRNAmir vector, we modulated NLGN4X expression and differentiated these NSCs into mature neurons. We monitored the neurodevelopmental process at Weeks 0, 0.5, 1, 2, 4 and 6, based on morphological analysis and whole-genome gene expression profiling. At the cellular level, in NSCs with NLGN4X knockdown, we observed increasingly delayed neuronal development and compromised neurite formation, starting from Week 2 through Week 6 post differentiation. At the molecular level, we identified multiple pathways, such as neurogenesis, neuron differentiation and muscle development, which are increasingly disturbed in cells with NLGN4X knockdown. Notably, several postsynaptic genes, including DLG4, NLGN1 and NLGN3, also have decreased expression. Based on in vitro models, NLGN4X knockdown directly impacts neurodevelopmental process during the formation of neurons and their connections. Our functional genomics study highlights the utility of NSCs models in understanding the functional roles of CNVs in affecting neurodevelopment and conferring susceptibility to neurodevelopmental diseases. PMID:23710042
The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells.
Shi, Lingling; Chang, Xiao; Zhang, Peilin; Coba, Marcelo P; Lu, Wange; Wang, Kai
2013-09-15
Genetic mutations in NLGN4X (neuroligin 4), including point mutations and copy number variants (CNVs), have been associated with susceptibility to autism spectrum disorders (ASDs). However, it is unclear how mutations in NLGN4X result in neurodevelopmental defects. Here, we used neural stem cells (NSCs) as in vitro models to explore the impacts of NLGN4X knockdown on neurodevelopment. Using two shRNAmir-based vectors targeting NLGN4X and one control shRNAmir vector, we modulated NLGN4X expression and differentiated these NSCs into mature neurons. We monitored the neurodevelopmental process at Weeks 0, 0.5, 1, 2, 4 and 6, based on morphological analysis and whole-genome gene expression profiling. At the cellular level, in NSCs with NLGN4X knockdown, we observed increasingly delayed neuronal development and compromised neurite formation, starting from Week 2 through Week 6 post differentiation. At the molecular level, we identified multiple pathways, such as neurogenesis, neuron differentiation and muscle development, which are increasingly disturbed in cells with NLGN4X knockdown. Notably, several postsynaptic genes, including DLG4, NLGN1 and NLGN3, also have decreased expression. Based on in vitro models, NLGN4X knockdown directly impacts neurodevelopmental process during the formation of neurons and their connections. Our functional genomics study highlights the utility of NSCs models in understanding the functional roles of CNVs in affecting neurodevelopment and conferring susceptibility to neurodevelopmental diseases.
Yang, Qiaoqiao; Liu, Shuxi; Yin, Min; Yin, Yanqing; Zhou, Guomin; Zhou, Jiawei
2015-11-01
Dopaminergic (DA) neurons in the midbrain ventral periaqueductal gray matter (PAG) play critical roles in various physiological and pathophysiological processes including sleep-wake rhyme, antinociception, and drug addiction. However, the molecular mechanisms underlying their development are poorly understood. Here, we showed that PAG DA neurons arose as early as E15.5 in mouse embryos. During the prenatal period, the majority of PAG DA neurons was distributed in the intermediate and caudal regions of the PAG. In the postnatal brain, ∼50% of PAG DA neurons were preferentially located in the caudal portion of the PAG. Moreover, transcription factor early B-cell factor 2 (Ebf2) was transiently expressed in a subset of DA neurons in embryonic ventral mesencephalon. Functional analysis revealed that loss of Ebf2 in vivo caused a marked reduction in the number of DA neurons in the midbrain PAG but not in the substantia nigra and ventral tegmental area. Thus, Ebf2 is identified as a novel and important regulator selectively required for midbrain PAG DA neuron development. © 2015 Wiley Periodicals, Inc.
Life and death of neurons in the aging brain
NASA Technical Reports Server (NTRS)
Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)
1997-01-01
Neurodegenerative disorders are characterized by extensive neuron death that leads to functional decline, but the neurobiological correlates of functional decline in normal aging are less well defined. For decades, it has been a commonly held notion that widespread neuron death in the neocortex and hippocampus is an inevitable concomitant of brain aging, but recent quantitative studies suggest that neuron death is restricted in normal aging and unlikely to account for age-related impairment of neocortical and hippocampal functions. In this article, the qualitative and quantitative differences between aging and Alzheimer's disease with respect to neuron loss are discussed, and age-related changes in functional and biochemical attributes of hippocampal circuits that might mediate functional decline in the absence of neuron death are explored. When these data are viewed comprehensively, it appears that the primary neurobiological substrates for functional impairment in aging differ in important ways from those in neurodegenerative disorders such as Alzheimer's disease.
Zhang, Yiming; Jiang, Dongsheng; Zhang, Yuan; Jiang, Xinghong; Wang, Fen; Tao, Jin
2012-01-01
Although neuromedin U (NMU) has been implicated in analgesia, the detailed mechanisms still remain unclear. In this study, we identify a novel functional role of NMU type 1 receptor (NMUR1) in regulating the transient outward K+ currents (IA) in small dorsal root ganglion (DRG) neurons. We found that NMU reversibly increased IA in a dose-dependent manner, instead the sustained delayed rectifier K+ current (IDR) was not affected. This NMU-induced IA increase was pertussis toxin-sensitive and was totally reversed by NMUR1 knockdown. Intracellular application of GDPβS (guanosine 5′-O-(2-thiodiphosphate)), QEHA peptide, or a selective antibody raised against the Gαo or Gβ blocked the stimulatory effects of NMU. Pretreatment of the cells with the protein kinase A (PKA) inhibitor or ERK inhibitor abolished the NMU-induced IA response, whereas inhibition of phosphatidylinositol 3-kinase or PKC had no such effects. Exposure of DRG neurons to NMU markedly induced the phosphorylation of ERK (p-ERK), whereas p-JNK or p-p38 was not affected. Moreover, the NMU-induced p-ERK increase was attenuated by PKA inhibition and activation of PKA by foskolin would mimic the NMU-induced IA increase. Functionally, we observed a significant decrease of the firing rate of neuronal action potential induced by NMU and pretreatment of DRG neurons with 4-AP could abolish this effect. In summary, these results suggested that NMU increases IA via activation of NMUR1 that couples sequentially to the downstream activities of Gβγ of the Go protein, PKA, and ERK, which could contribute to its physiological functions including neuronal hypoexcitability in DRG neurons. PMID:22493291
Huang, Jianying; Yang, Yang; Dib-Hajj, Sulayman D; van Es, Michael; Zhao, Peng; Salomon, Jody; Drenth, Joost P H; Waxman, Stephen G
2014-09-10
Sodium channel Nav1.7, encoded by SCN9A, is expressed in DRG neurons and regulates their excitability. Genetic and functional studies have established a critical contribution of Nav1.7 to human pain disorders. We have now characterized a novel Nav1.7 mutation (R1279P) from a female human subject with distal limb pain, in which depolarized fast inactivation overrides impaired activation to produce hyperexcitability and spontaneous firing in DRG neurons. Whole-cell voltage-clamp recordings in human embryonic kidney (HEK) 293 cells demonstrated that R1279P significantly depolarizes steady-state fast-, slow-, and closed-state inactivation. It accelerates deactivation, decelerates inactivation, and facilitates repriming. The mutation increases ramp currents in response to slow depolarizations. Our voltage-clamp analysis showed that R1279P depolarizes channel activation, a change that was supported by our multistate structural modeling. Because this mutation confers both gain-of-function and loss-of-function attributes on the Nav1.7 channel, we tested the impact of R1279P expression on DRG neuron excitability. Current-clamp studies reveal that R1279P depolarizes resting membrane potential, decreases current threshold, and increases firing frequency of evoked action potentials within small DRG neurons. The populations of spontaneously firing and repetitively firing neurons were increased by expressing R1279P. These observations indicate that the dominant proexcitatory gating changes associated with this mutation, including depolarized steady-state fast-, slow-, and closed-state inactivation, faster repriming, and larger ramp currents, override the depolarizing shift of activation, to produce hyperexcitability and spontaneous firing of nociceptive neurons that underlie pain. Copyright © 2014 the authors 0270-6474/14/3412328-13$15.00/0.
Dong, Yi; Mihalas, Stefan; Russell, Alexander; Etienne-Cummings, Ralph; Niebur, Ernst
2012-01-01
When a neuronal spike train is observed, what can we say about the properties of the neuron that generated it? A natural way to answer this question is to make an assumption about the type of neuron, select an appropriate model for this type, and then to choose the model parameters as those that are most likely to generate the observed spike train. This is the maximum likelihood method. If the neuron obeys simple integrate and fire dynamics, Paninski, Pillow, and Simoncelli (2004) showed that its negative log-likelihood function is convex and that its unique global minimum can thus be found by gradient descent techniques. The global minimum property requires independence of spike time intervals. Lack of history dependence is, however, an important constraint that is not fulfilled in many biological neurons which are known to generate a rich repertoire of spiking behaviors that are incompatible with history independence. Therefore, we expanded the integrate and fire model by including one additional variable, a variable threshold (Mihalas & Niebur, 2009) allowing for history-dependent firing patterns. This neuronal model produces a large number of spiking behaviors while still being linear. Linearity is important as it maintains the distribution of the random variables and still allows for maximum likelihood methods to be used. In this study we show that, although convexity of the negative log-likelihood is not guaranteed for this model, the minimum of the negative log-likelihood function yields a good estimate for the model parameters, in particular if the noise level is treated as a free parameter. Furthermore, we show that a nonlinear function minimization method (r-algorithm with space dilation) frequently reaches the global minimum. PMID:21851282
Spiking Neurons for Analysis of Patterns
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance
2008-01-01
Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological neurons). These features enable the neurons to adapt their responses to high-rate inputs from sensors, and to adapt their firing thresholds to mitigate noise or effects of potential sensor failure. The mathematical derivation of the SVM starts from a prior model, known in the art as the point soma model, which captures all of the salient properties of neuronal response while keeping the computational cost low. The point-soma latency time is modified to be an exponentially decaying function of the strength of the applied potential. Choosing computational efficiency over biological fidelity, the dendrites surrounding a neuron are represented by simplified compartmental submodels and there are no dendritic spines. Updates to the dendritic potential, calcium-ion concentrations and conductances, and potassium-ion conductances are done by use of equations similar to those of the point soma. Diffusion processes in dendrites are modeled by averaging among nearest-neighbor compartments. Inputs to each of the dendritic compartments come from sensors. Alternatively or in addition, when an affected neuron is part of a pool, inputs can come from other spiking neurons. At present, SVM neural networks are implemented by computational simulation, using algorithms that encode the SVM and its submodels. However, it should be possible to implement these neural networks in hardware: The differential equations for the dendritic and cellular processes in the SVM model of spiking neurons map to equivalent circuits that can be implemented directly in analog very-large-scale integrated (VLSI) circuits.
Using Immediate-Early Genes to Map Hippocampal Subregional Functions
ERIC Educational Resources Information Center
Kubik, Stepan; Miyashita, Teiko; Guzowski, John F.
2007-01-01
Different functions have been suggested for the hippocampus and its subdivisions along both transversal and longitudinal axes. Expression of immediate-early genes (IEGs) has been used to map specific functions onto neuronal activity in different areas of the brain including the hippocampus (IEG imaging). Here we review IEG studies on hippocampal…
Choi, In-Young; Lee, Phil; Peng, Huiling; Kaufman, Christina L.; Frey, Scott H.
2017-01-01
Deafferentation is accompanied by large-scale functional reorganization of maps in the primary sensory and motor areas of the hemisphere contralateral to injury. Animal models of deafferentation suggest a variety of cellular-level changes including depression of neuronal metabolism and even neuronal death. Whether similar neuronal changes contribute to patterns of reorganization within the contralateral sensorimotor cortex of chronic human amputees is uncertain. We used functional MRI-guided proton magnetic resonance spectroscopy to test the hypothesis that unilateral deafferentation is associated with lower levels of N-acetylaspartate (NAA, a putative marker of neuronal integrity) in the sensorimotor hand territory located contralateral to the missing hand in chronic amputees (n = 19) compared with the analogous hand territory of age- and sex-matched healthy controls (n = 28). We also tested whether former amputees [i.e., recipients of replanted (n = 3) or transplanted (n = 2) hands] exhibit NAA levels that are indistinguishable from controls, possible evidence for reversal of the effects of deafferentation. As predicted, relative to controls, current amputees exhibited lower levels of NAA that were negatively and significantly correlated with the time after amputation. Contrary to our prediction, NAA levels in both replanted and transplanted patients fell within the range of the current amputees. We suggest that lower levels of NAA in current amputees reflects altered neuronal integrity consequent to chronic deafferentation. Thus local changes in NAA levels may provide a means of assessing neuroplastic changes in deafferented cortex. Results from former amputees suggest that these changes may not be readily reversible through reafferentation. NEW & NOTEWORTHY This study is the first to use functional magnetic resonance-guided magnetic resonance spectroscopy to examine neurochemical mechanisms underlying functional reorganization in the primary somatosensory and motor cortices consequent to upper extremity amputation and its potential reversal through hand replantation or transplantation. We provide evidence for selective alteration of cortical neuronal integrity associated with amputation-related deafferentation that may not be reversible. PMID:28179478
Clare, Alison J.; Wicky, Hollie E.; Empson, Ruth M.; Hughes, Stephanie M.
2017-01-01
Forebrain embryonic zinc finger (Fezf2) encodes a transcription factor essential for the specification of layer 5 projection neurons (PNs) in the developing cerebral cortex. As with many developmental transcription factors, Fezf2 continues to be expressed into adulthood, suggesting it remains crucial to the maintenance of neuronal phenotypes. Despite the continued expression, a function has yet to be explored for Fezf2 in the PNs of the developed cortex. Here, we investigated the role of Fezf2 in mature neurons, using lentiviral-mediated delivery of a shRNA to conditionally knockdown the expression of Fezf2 in the mouse primary motor cortex (M1). RNA-sequencing analysis of Fezf2-reduced M1 revealed significant changes to the transcriptome, identifying a regulatory role for Fezf2 in the mature M1. Kyoto Encyclopedia Genes and Genomes (KEGG) pathway analyses of Fezf2-regulated genes indicated a role in neuronal signaling and plasticity, with significant enrichment of neuroactive ligand-receptor interaction, cell adhesion molecules and calcium signaling pathways. Gene Ontology analysis supported a functional role for Fezf2-regulated genes in neuronal transmission and additionally indicated an importance in the regulation of behavior. Using the mammalian phenotype ontology database, we identified a significant overrepresentation of Fezf2-regulated genes associated with specific behavior phenotypes, including associative learning, social interaction, locomotor activation and hyperactivity. These roles were distinct from that of Fezf2-regulated genes identified in development, indicating a dynamic transition in Fezf2 function. Together our findings demonstrate a regulatory role for Fezf2 in the mature brain, with Fezf2-regulated genes having functional roles in sustaining normal neuronal and behavioral phenotypes. These results support the hypothesis that developmental transcription factors are important for maintaining neuron transcriptomes and that disruption of their expression could contribute to the progression of disease phenotypes. PMID:28936162
Mitroi, Daniel N; Deutschmann, André U; Raucamp, Maren; Karunakaran, Indulekha; Glebov, Konstantine; Hans, Michael; Walter, Jochen; Saba, Julie; Gräler, Markus; Ehninger, Dan; Sopova, Elena; Shupliakov, Oleg; Swandulla, Dieter; van Echten-Deckert, Gerhild
2016-11-24
The bioactive lipid sphingosine 1-phosphate (S1P) is a degradation product of sphingolipids that are particularly abundant in neurons. We have shown previously that neuronal S1P accumulation is toxic leading to ER-stress and an increase in intracellular calcium. To clarify the neuronal function of S1P, we generated brain-specific knockout mouse models in which S1P-lyase (SPL), the enzyme responsible for irreversible S1P cleavage was inactivated. Constitutive ablation of SPL in the brain (SPL fl/fl/Nes ) but not postnatal neuronal forebrain-restricted SPL deletion (SPL fl/fl/CaMK ) caused marked accumulation of S1P. Hence, altered presynaptic architecture including a significant decrease in number and density of synaptic vesicles, decreased expression of several presynaptic proteins, and impaired synaptic short term plasticity were observed in hippocampal neurons from SPL fl/fl/Nes mice. Accordingly, these mice displayed cognitive deficits. At the molecular level, an activation of the ubiquitin-proteasome system (UPS) was detected which resulted in a decreased expression of the deubiquitinating enzyme USP14 and several presynaptic proteins. Upon inhibition of proteasomal activity, USP14 levels, expression of presynaptic proteins and synaptic function were restored. These findings identify S1P metabolism as a novel player in modulating synaptic architecture and plasticity.
Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation.
Krotov, Volodymyr; Tokhtamysh, Anastasia; Kopach, Olga; Dromaretsky, Andrew; Sheremet, Yevhenii; Belan, Pavel; Voitenko, Nana
2017-01-01
Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent). The tissue preparation has been also probed using Ca 2+ imaging with fluorescent Ca 2+ dyes (membrane-impermeable or -permeable) to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.
Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H
2014-01-28
ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.
Mitsui, Shinichi; Yamaguchi, Nozomi; Osako, Yoji; Yuri, Kazunari
2007-03-09
Motopsin (PRSS12) is a mosaic protease expressed in the central nervous system. Truncation of the human motopsin gene causes nonsyndromic mental retardation. Understanding the enzymatic properties and localization of motopsin protein in the central nervous system will help identify the molecular mechanism by which the loss of motopsin function causes mental retardation. Recombinant motopsin showed amidolytic activity against the synthetic substrate benzyloxycarbonyl-l-phenylalanyl-l-arginine 4-methyl-coumaryl-7-amide. Motopsin activated the single-chain tissue plasminogen activator precursor and exhibited gelatinolytic activity. This enzymatic activity was inhibited by typical serine protease inhibitors such as aprotinin, leupeptin, and (4-amidinophenyl) methanesulfonyl fluoride. Immunocytochemistry using anti-motopsin IgG revealed that both human and mouse motopsin proteins were distributed in discrete puncta along the dendrites and soma as well as axons in cultured hippocampal neurons. In the limbic system, including the cingulate and hippocampal pyramidal neurons and piriform cortex, high level of motopsin protein was expressed at postnatal day 10, but a very low level at 10-week-old mice. Motopsin and tissue plasminogen activator were co-expressed in the cingulate pyramidal neurons at postnatal day 10 and were distributed along dendrites of cultured pyramidal neurons. In cranial nuclei, a moderate level of motopsin protein was detected independently on the developmental stage. Our results suggest that motopsin has multiple functions, such as axon outgrowth, arranging perineuronal environment, and maintaining neuronal plasticity, partly in coordination with other proteases including tissue plasminogen activator.
The structure and function of serially homologous leg motor neurons in the locust. I. Anatomy.
Wilson, J A
1979-01-01
Twenty-one prothoracic and 17 mesothoracic motor neurons innervating leg muscles have been identified physiologically and subsequently injected with dye from a microelectrode. A tract containing the primary neurites of motor neurons innervating the retractor unquis, levator and depressor tarsus, flexor tibiae, and reductor femora is described. All motor neurons studied have regions in which their dendritic branches overlap with those of other leg motor neurons. Identified, serially homologous motor neurons in the three thoracic ganglia were found to have: (1) cell bodies at similar locations and morphologically similar primary neurites (e.g., flexor tibiae motor neurons), (2) cell bodies at different locations in each ganglion and morphologically different primary neurites in each ganglion (e.g., fast retractor unguis motor neurons), or (3) cell bodies at similar locations and morphologically similar primary neurites but with a functional switch in one ganglion relative to the function of the neurons in the other two ganglia. As an example of the latter, the morphology of the metathoracic slow extensor tibiae (SETi) motor neurons was similar to that of pro- and mesothoracic fast extensor tibiae (FETi) motor neurons. Similarly the metathoracic FETi bears a striking resemblance to the pro- and the mesothoracic SETi. It is proposed that in the metathoracic ganglion the two extensor tibiae motor neurons have switched functions while retaining similar morphologies relative to the structure and function of their pro- and mesothoracic serial homologues.
Intrinsically active and pacemaker neurons in pluripotent stem cell-derived neuronal populations.
Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig
2014-03-11
Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks.
Molecular and cellular organization of taste neurons in adult Drosophila pharynx
Chen, Yu-Chieh (David); Dahanukar, Anupama
2017-01-01
SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040
Antunes, Gabriela; Faria da Silva, Samuel F; Simoes de Souza, Fabio M
2018-06-01
Mirror neurons fire action potentials both when the agent performs a certain behavior and watches someone performing a similar action. Here, we present an original mirror neuron model based on the spike-timing-dependent plasticity (STDP) between two morpho-electrical models of neocortical pyramidal neurons. Both neurons fired spontaneously with basal firing rate that follows a Poisson distribution, and the STDP between them was modeled by the triplet algorithm. Our simulation results demonstrated that STDP is sufficient for the rise of mirror neuron function between the pairs of neocortical neurons. This is a proof of concept that pairs of neocortical neurons associating sensory inputs to motor outputs could operate like mirror neurons. In addition, we used the mirror neuron model to investigate whether channelopathies associated with autism spectrum disorder could impair the modeled mirror function. Our simulation results showed that impaired hyperpolarization-activated cationic currents (Ih) affected the mirror function between the pairs of neocortical neurons coupled by STDP.
Intrinsically Active and Pacemaker Neurons in Pluripotent Stem Cell-Derived Neuronal Populations
Illes, Sebastian; Jakab, Martin; Beyer, Felix; Gelfert, Renate; Couillard-Despres, Sébastien; Schnitzler, Alfons; Ritter, Markus; Aigner, Ludwig
2014-01-01
Summary Neurons generated from pluripotent stem cells (PSCs) self-organize into functional neuronal assemblies in vitro, generating synchronous network activities. Intriguingly, PSC-derived neuronal assemblies develop spontaneous activities that are independent of external stimulation, suggesting the presence of thus far undetected intrinsically active neurons (IANs). Here, by using mouse embryonic stem cells, we provide evidence for the existence of IANs in PSC-neuronal networks based on extracellular multielectrode array and intracellular patch-clamp recordings. IANs remain active after pharmacological inhibition of fast synaptic communication and possess intrinsic mechanisms required for autonomous neuronal activity. PSC-derived IANs are functionally integrated in PSC-neuronal populations, contribute to synchronous network bursting, and exhibit pacemaker properties. The intrinsic activity and pacemaker properties of the neuronal subpopulation identified herein may be particularly relevant for interventions involving transplantation of neural tissues. IANs may be a key element in the regulation of the functional activity of grafted as well as preexisting host neuronal networks. PMID:24672755
Leptin signaling and leptin resistance
Zhou, Yingjiang; Rui, Liangyou
2014-01-01
Leptin is secreted into the bloodstream by adipocytes and is required for the maintenance of energy homeostasis and body weight. Leptin deficiency or genetic defects in the components of the leptin signaling pathways causes obesity. Leptin controls energy balance and body weight primarily by targeting LEPRb-expressing neurons in the brain, particularly in the hypothalamus. These LEPRb-expressing neurons function as the first-order neurons that project to the second-order neurons located within and outside the hypothalamus, forming a neural network that controls the energy homeostasis and body weight. Multiple factors, including inflammation and ER stress, contribute to leptin resistance, and leptin resistance is the key risk factor for obesity. This review is focused on recent advance about leptin action, leptin signaling, and leptin resistance. PMID:23580174
Craddock, Travis J A; Priel, Avner; Tuszynski, Jack A
2014-06-01
This paper discusses the possibility of quantum coherent oscillations playing a role in neuronal signaling. Consciousness correlates strongly with coherent neural oscillations, however the mechanisms by which neurons synchronize are not fully elucidated. Recent experimental evidence of quantum beats in light-harvesting complexes of plants (LHCII) and bacteria provided a stimulus for seeking similar effects in important structures found in animal cells, especially in neurons. We argue that microtubules (MTs), which play critical roles in all eukaryotic cells, possess structural and functional characteristics that are consistent with quantum coherent excitations in the aromatic groups of their tryptophan residues. Furthermore we outline the consequences of these findings on neuronal processes including the emergence of consciousness.
Qi, Yuchen; Zhang, Xin-Jun; Renier, Nicolas; Wu, Zhuhao; Atkin, Talia; Sun, Ziyi; Ozair, M. Zeeshan; Tchieu, Jason; Zimmer, Bastian; Fattahi, Faranak; Ganat, Yosif; Azevedo, Ricardo; Zeltner, Nadja; Brivanlou, Ali H.; Karayiorgou, Maria; Gogos, Joseph; Tomishima, Mark; Tessier-Lavigne, Marc; Shi, Song-Hai; Studer, Lorenz
2017-01-01
Considerable progress has been made in converting human pluripotent stem cells (hPSCs) into functional neurons. However, the protracted timing of human neuron specification and functional maturation remains a key challenge that hampers the routine application of hPSC-derived lineages in disease modeling and regenerative medicine. Using a combinatorial small-molecule screen, we previously identified conditions for the rapid differentiation of hPSCs into peripheral sensory neurons. Here we generalize the approach to central nervous system (CNS) fates by developing a small-molecule approach for accelerated induction of early-born cortical neurons. Combinatorial application of 6 pathway inhibitors induces post-mitotic cortical neurons with functional electrophysiological properties by day 16 of differentiation, in the absence of glial cell co-culture. The resulting neurons, transplanted at 8 days of differentiation into the postnatal mouse cortex, are functional and establish long-distance projections, as shown using iDISCO whole brain imaging. Accelerated differentiation into cortical neuron fates should facilitate hPSC-based strategies for disease modeling and cell therapy in CNS disorders. PMID:28112759
Schratt, Gerhard M; Nigh, Elizabeth A; Chen, Wen G; Hu, Linda; Greenberg, Michael E
2004-08-18
Local regulation of mRNA translation plays an important role in axon guidance, synaptic development, and neuronal plasticity. Little is known, however, regarding the mechanisms that control translation in neurons, and only a few mRNAs have been identified that are locally translated within axon and dendrites. Using Affymetrix gene arrays to identify mRNAs that are newly associated with polysomes after exposure to BDNF, we identified subsets of mRNAs for which translation is enhanced in neurons at different developmental stages. In mature neurons, many of these mRNAs encode proteins that are known to function at synapses, including CamKIIalpha, NMDA receptor subunits, and the postsynaptic density (PSD) scaffolding protein Homer2. BDNF regulates the translation of Homer2 locally in the synaptodendritic compartment by activating translational initiation via a mammalian target of rapamycin-phosphatidylinositol 3-kinase-dependent pathway. These findings suggest that BDNF likely regulates synaptic function by inducing the local synthesis of numerous synaptic proteins. The local translation of the cytoskeleton-associated protein Homer2 in particular might have important implications for growth cone dynamics and dendritic spine development.
Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.
2012-01-01
Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767
Li, Ruijie; Wang, Meng; Yao, Jiwei; Liang, Shanshan; Liao, Xiang; Yang, Mengke; Zhang, Jianxiong; Yan, Junan; Jia, Hongbo; Chen, Xiaowei; Li, Xingyi
2018-01-01
In vivo two-photon Ca 2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca 2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca 2+ indicators, we recorded the Ca 2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca 2+ indicators (GECIs), we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.
Molecular bases of caloric restriction regulation of neuronal synaptic plasticity.
Fontán-Lozano, Angela; López-Lluch, Guillermo; Delgado-García, José María; Navas, Placido; Carrión, Angel Manuel
2008-10-01
Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.
Li, Ruijie; Wang, Meng; Yao, Jiwei; Liang, Shanshan; Liao, Xiang; Yang, Mengke; Zhang, Jianxiong; Yan, Junan; Jia, Hongbo; Chen, Xiaowei; Li, Xingyi
2018-01-01
In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs), we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors. PMID:29740289
Human cerebral cortex Cajal-Retzius neuron: development, structure and function. A Golgi study.
Marín-Padilla, Miguel
2015-01-01
The development, morphology and possible functional activity of the Cajal-Retzius cell of the developing human cerebral cortex are explored herein. The C-RC, of extracortical origin, is the essential neuron of the neocortex first lamina. It receives inputs from afferent fibers that reach the first lamina early in development. Although the origin and function of these original afferent fibers remain unknown, their target is the first lamina sole neuron: the C-RC. This neuron orchestrates the arrival, size and stratification of all pyramidal neurons (of ependymal origin) of the neocortex gray matter. Its axonic terminals spread radially and horizontally throughout the entirety of the first lamina establishing contacts with the dendritic terminals of all gray matter pyramidal cells regardless of size, location and/or eventual functional roles. While the neuron axonic terminals spread radially and horizontally throughout the first lamina, the neuronal' body undergoes progressive developmental dilution and locating any of them in the adult brain become quite difficult. The neuron bodies are probably retained in the older regions of the neocortex while their axonic collaterals will spread throughout its more recent ones and eventually will extend to great majority of the cortical surface. The neocortex first lamina evolution and composition and that of the C-RC are intertwined and mutually interdependent. It is not possible to understand the C-RC evolving morphology without understanding that of the first lamina. The first lamina composition and its structural and functional organizations obtained with different staining methods may be utterly different. These differences have added unnecessary confusion about its nature. The essential emptiness observed in hematoxylin and eosin preparations (most commonly used) contrast sharply with the concentration of dendrites (the cortex' largest) obtained using special (MAP-2) stain for dendrites. Only Golgi preparations demonstrate the numerous dendritic and axonic terminals that compose the first lamina basic structure. High power microscopic views of Golgi preparations demonstrate the intimate anatomical and functional interrelationships among dendritic and axonic terminals as well as synaptic contacts between them. The C-RC' essential morphology does not changes but it is progressively modified by the first lamina increase in thickness and in number of terminal dendrites and their subsequent maturation. This neuron variable morphologic appearance has been the source of controversy. Its morphology depends on the first lamina thickness that may be quite variable among different mammals. In rodents (most commonly used experimental mammal), the first lamina thickness, number and horizontal expansion of dendrites is but a fraction of those in humans. This differences are reflected in the C-RC' morphology among mammals (including humans) and should not be thought as representing new types of neurons.
Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST
Alterations in hypothalamic–pituitary–adrenal axis function contribute to many of the adverse behavioral effects of chronic voluntary alcohol drinking, including alcohol dependence and mood disorders; limbic brain structures such as the bed nucleus of the stria termin...
Diabetic neuropathy: mechanisms, emerging treatments, and subtypes.
Albers, James W; Pop-Busui, Rodica
2014-08-01
Diabetic neuropathies (DNs) differ in clinical course, distribution, fiber involvement (type and size), and pathophysiology, the most typical type being a length-dependent distal symmetric polyneuropathy (DSP) with differing degrees of autonomic involvement. The pathogenesis of diabetic DSP is multifactorial, including increased mitochondrial production of free radicals due to hyperglycemia-induced oxidative stress. Mechanisms that impact neuronal activity, mitochondrial function, membrane permeability, and endothelial function include formation of advanced glycosylation end products, activation of polyol aldose reductase signaling, activation of poly(ADP ribose) polymerase, and altered function of the Na(+)/K(+)-ATPase pump. Hyperglycemia-induced endoplasmic reticulum stress triggers several neuronal apoptotic processes. Additional mechanisms include impaired nerve perfusion, dyslipidemia, altered redox status, low-grade inflammation, and perturbation of calcium balance. Successful therapies require an integrated approach targeting these mechanisms. Intensive glycemic control is essential but is insufficient to prevent onset or progression of DSP, and disease-modifying treatments for DSP have been disappointing. Atypical forms of DN include subacute-onset sensory (symmetric) or motor (asymmetric) predominant conditions that are frequently painful but generally self-limited. DNs are a major cause of disability, associated with reduced quality of life and increased mortality.
Mirror neuron activity during contagious yawning--an fMRI study.
Haker, Helene; Kawohl, Wolfram; Herwig, Uwe; Rössler, Wulf
2013-03-01
Yawning is contagious. However, little research has been done to elucidate the neuronal representation of this phenomenon. Our study objective was to test the hypothesis that the human mirror neuron system (MNS) is activated by visually perceived yawning. We used functional magnetic resonance imaging to assess brain activity during contagious yawning (CY). Signal-dependent changes in blood oxygen levels were compared when subjects viewed videotapes of yawning faces as opposed to faces with a neutral expression. In response to yawning, subjects showed unilateral activation of their Brodmann's area 9 (BA 9) portion of the right inferior frontal gyrus, a region of the MNS. In this way, two individuals could share physiological and associated emotional states based on perceived motor patterns. This is one component of empathy (motor empathy) that underlies the development of cognitive empathy. The BA 9 is reportedly active in tasks requiring mentalizing abilities. Our results emphasize the connection between the MNS and higher cognitive empathic functions, including mentalizing. We conclude that CY is based on a functional substrate of empathy.
Cell type-specific long-range connections of basal forebrain circuit.
Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang
2016-09-19
The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.
ASIC1A in neurons is critical for fear-related behaviors.
Taugher, R J; Lu, Y; Fan, R; Ghobbeh, A; Kreple, C J; Faraci, F M; Wemmie, J A
2017-11-01
Acid-sensing ion channels (ASICs) have been implicated in fear-, addiction- and depression-related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron-specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron-specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear-related behaviors including Pavlovian fear conditioning to cue and context, predator odor-evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression-related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear-related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Cholinergic Interneurons Are Differentially Distributed in the Human Striatum
Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel
2007-01-01
Background The striatum (caudate nucleus, CN, and putamen, Put) is a group of subcortical nuclei involved in planning and executing voluntary movements as well as in cognitive processes. Its neuronal composition includes projection neurons, which connect the striatum with other structures, and interneurons, whose main roles are maintaining the striatal organization and the regulation of the projection neurons. The unique electrophysiological and functional properties of the cholinergic interneurons give them a crucial modulating function on the overall striatal response. Methodology/Principle Findings This study was carried out using stereological methods to examine the volume and density (cells/mm3) of these interneurons, as visualized by choline acetyltransferase (ChAT) immunoreactivity, in the following territories of the CN and Put of nine normal human brains: 1) precommissural head; 2) postcommissural head; 3) body; 4) gyrus and 5) tail of the CN; 6) precommissural and 7) postcommissural Put. The distribution of ChAT interneurons was analyzed with respect to the topographical, functional and chemical territories of the dorsal striatum. The CN was more densely populated by cholinergic neurons than the Put, and their density increased along the anteroposterior axis of the striatum with the CN body having the highest neuronal density. The associative territory of the dorsal striatum was by far the most densely populated. The striosomes of the CN precommissural head and the postcommissural Put contained the greatest number of ChAT-ir interneurons. The intrastriosomal ChAT-ir neurons were abundant on the periphery of the striosomes throughout the striatum. Conclusions/Significance All these data reveal that cholinergic interneurons are differentially distributed in the distinct topographical and functional territories of the human dorsal striatum, as well as in its chemical compartments. This heterogeneity may indicate that the posterior aspects of the CN require a special integration of information by interneurons. Interestingly, these striatal regions have been very much left out in functional studies. PMID:18080007
Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg
2016-01-01
The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks. DOI: http://dx.doi.org/10.7554/eLife.15719.001 PMID:27525488
LGR5/GPR49 is implicated in motor neuron specification in nervous system.
Song, Shao-jun; Mao, Xing-gang; Wang, Chao; Han, An-guo; Yan, Ming; Xue, Xiao-yan
2015-01-01
The biological roles of stem cell marker LGR5, the receptor for the Wnt-agonistic R-spondins, for nervous system are poorly known. Bioinformatics analysis in normal human brain tissues revealed that LGR5 is closely related with neuron development and functions. Interestingly, LGR5 and its ligands R-spondins (RSPO2 and RSPO3) are specifically highly expressed in projection motor neurons in the spinal cord, brain stem and cerebral. Inhibition of Notch activity in neural stem cells (NSCs) increased the percentage of neuronal cells and promoted LGR5 expression, while activation of Notch signal decreased neuronal cells and inhibited the LGR5 expression. Furthermore, knockdown of LGR5 inhibited the expression of neuronal markers MAP2, NeuN, GAP43, SYP and CHRM3, and also reduced the expression of genes that program the identity of motor neurons, including Isl1, Lhx3, PHOX2A, TBX20 and NEUROG2. Our data demonstrated that LGR5 is highly expressed in motor neurons in nervous system and is involved in their development by regulating transcription factors that program motor neuron identity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Conserved properties of Drosophila Insomniac link sleep regulation and synaptic function.
Li, Qiuling; Kellner, David A; Hatch, Hayden A M; Yumita, Tomohiro; Sanchez, Sandrine; Machold, Robert P; Frank, C Andrew; Stavropoulos, Nicholas
2017-05-01
Sleep is an ancient animal behavior that is regulated similarly in species ranging from flies to humans. Various genes that regulate sleep have been identified in invertebrates, but whether the functions of these genes are conserved in mammals remains poorly explored. Drosophila insomniac (inc) mutants exhibit severely shortened and fragmented sleep. Inc protein physically associates with the Cullin-3 (Cul3) ubiquitin ligase, and neuronal depletion of Inc or Cul3 strongly curtails sleep, suggesting that Inc is a Cul3 adaptor that directs the ubiquitination of neuronal substrates that impact sleep. Three proteins similar to Inc exist in vertebrates-KCTD2, KCTD5, and KCTD17-but are uncharacterized within the nervous system and their functional conservation with Inc has not been addressed. Here we show that Inc and its mouse orthologs exhibit striking biochemical and functional interchangeability within Cul3 complexes. Remarkably, KCTD2 and KCTD5 restore sleep to inc mutants, indicating that they can substitute for Inc in vivo and engage its neuronal targets relevant to sleep. Inc and its orthologs localize similarly within fly and mammalian neurons and can traffic to synapses, suggesting that their substrates may include synaptic proteins. Consistent with such a mechanism, inc mutants exhibit defects in synaptic structure and physiology, indicating that Inc is essential for both sleep and synaptic function. Our findings reveal that molecular functions of Inc are conserved through ~600 million years of evolution and support the hypothesis that Inc and its orthologs participate in an evolutionarily conserved ubiquitination pathway that links synaptic function and sleep regulation.
Booth, Clair A.; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W.; Randall, Andrew D.
2016-01-01
The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. SIGNIFICANCE STATEMENT Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. PMID:26758828
Cho, Yongmin; Oakland, David N; Lee, Sol Ah; Schafer, William R; Lu, Hang
2018-02-13
Mechanosensation is fundamentally important for the abilities of an organism to experience touch, hear sounds, and maintain balance. Caenorhabditis elegans is a powerful system for studying mechanosensation as this worm is well suited for in vivo functional imaging of neurons. Many years of research using labor-intensive methods have generated a wealth of knowledge about mechanosensation in C. elegans, and the recent microfluidic-based platforms continue to push the boundary for this field. However, developmental aspects of sensory biology, including mechanosensation, are still not fully understood. One current bottleneck is the difficulty in assaying larvae because they are much smaller than adult worms. Microfluidic devices with features small enough for larvae, especially actuators for the delivery of mechanical stimulation, are difficult to design and fabricate. Here, we present a series of automatic microfluidic platforms that allow for in vivo functional imaging of C. elegans responding to controlled mechanical stimulation at different developmental stages. Using a novel fabrication method, we designed highly deformable pneumatically actuated on-chip structures that can deliver mechanical stimulation to larval worms. The PDMS actuator allows for quantitatively controlled mechanical stimulation of both gentle and harsh touch neurons, by simply changing the actuation pressure, which makes this device easily translatable to other labs. We validated the design and utility of our systems with studies of the functional role of mechanosensory neurons in developing worms; we showed that gentle and harsh touch neurons function similarly in early larvae as they do in the adult stage, which would not have been possible previously. Finally, we investigated the effect of a sleep-like state on neuronal responses by imaging C. elegans in the lethargus state.
Booth, Clair A; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W; Randall, Andrew D; Brown, Jonathan T
2016-01-13
The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. Copyright © 2016 Booth, Witton et al.
Dopamine neurons share common response function for reward prediction error
Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige
2016-01-01
Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically-identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found striking homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we could describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal. PMID:26854803
Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.
2011-01-01
SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257
Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides.
Pan, Xuefang; De Aragão, Camila De Britto Pará; Velasco-Martin, Juan P; Priestman, David A; Wu, Harry Y; Takahashi, Kohta; Yamaguchi, Kazunori; Sturiale, Luisella; Garozzo, Domenico; Platt, Frances M; Lamarche-Vane, Nathalie; Morales, Carlos R; Miyagi, Taeko; Pshezhetsky, Alexey V
2017-08-01
Gangliosides (sialylated glycolipids) play an essential role in the CNS by regulating recognition and signaling in neurons. Metabolic blocks in processing and catabolism of gangliosides result in the development of severe neurologic disorders, including gangliosidoses manifesting with neurodegeneration and neuroinflammation. We demonstrate that 2 mammalian enzymes, neuraminidases 3 and 4, play important roles in catabolic processing of brain gangliosides by cleaving terminal sialic acid residues in their glycan chains. In neuraminidase 3 and 4 double-knockout mice, G M3 ganglioside is stored in microglia, vascular pericytes, and neurons, causing micro- and astrogliosis, neuroinflammation, accumulation of lipofuscin bodies, and memory loss, whereas their cortical and hippocampal neurons have lower rate of neuritogenesis in vitro Double-knockout mice also have reduced levels of G M1 ganglioside and myelin in neuronal axons. Furthermore, neuraminidase 3 deficiency drastically increased storage of G M2 in the brain tissues of an asymptomatic mouse model of Tay-Sachs disease, a severe human gangliosidosis, indicating that this enzyme is responsible for the metabolic bypass of β-hexosaminidase A deficiency. Together, our results provide the first in vivo evidence that neuraminidases 3 and 4 have important roles in CNS function by catabolizing gangliosides and preventing their storage in lipofuscin bodies.-Pan, X., De Britto Pará De Aragão, C., Velasco-Martin, J. P., Priestman, D. A., Wu, H. Y., Takahashi, K., Yamaguchi, K., Sturiale, L., Garozzo, D., Platt, F. M., Lamarche-Vane, N., Morales, C. R., Miyagi, T., Pshezhetsky, A. V. Neuraminidases 3 and 4 regulate neuronal function by catabolizing brain gangliosides. © FASEB.
Mu opioid receptors in GABAergic forebrain neurons moderate motivation for heroin and palatable food
Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L.; Matsui, Aya; Mechling, Anna E.; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; Von Everfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A.; Maldonado, Rafael; Kieffer, Brigitte L.
2016-01-01
BACKGROUND Mu opioid receptors (MORs) are central to pain control, drug reward and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in GABAergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. METHODS We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in GABAergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology and microdialysis, probed neuronal activation by c-Fos immunohistochemistry and resting state-functional magnetic resonance imaging, and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. RESULTS Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area (VTA), local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. CONCLUSIONS Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus beyond a well-established role in reward processing, operating at the level of local VTA neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. PMID:28185645
Mirror neurons and imitation: a computationally guided review.
Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael
2006-04-01
Neurophysiology reveals the properties of individual mirror neurons in the macaque while brain imaging reveals the presence of 'mirror systems' (not individual neurons) in the human. Current conceptual models attribute high level functions such as action understanding, imitation, and language to mirror neurons. However, only the first of these three functions is well-developed in monkeys. We thus distinguish current opinions (conceptual models) on mirror neuron function from more detailed computational models. We assess the strengths and weaknesses of current computational models in addressing the data and speculations on mirror neurons (macaque) and mirror systems (human). In particular, our mirror neuron system (MNS), mental state inference (MSI) and modular selection and identification for control (MOSAIC) models are analyzed in more detail. Conceptual models often overlook the computational requirements for posited functions, while too many computational models adopt the erroneous hypothesis that mirror neurons are interchangeable with imitation ability. Our meta-analysis underlines the gap between conceptual and computational models and points out the research effort required from both sides to reduce this gap.
Ramachandran, Kapil V.; Margolis, Seth S.
2017-01-01
In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It remains unclear how proteasomes can acutely regulate such processes, as this is inconsistent with their canonical role in proteostasis. Here, we made the discovery of a mammalian nervous system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is tightly associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of this membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked extracellular peptide production and attenuated neuronal activity-induced calcium signaling. Moreover, membrane proteasome-derived peptides are sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes primarily function to maintain proteostasis, and highlight a form of neuronal communication through a membrane proteasome complex. PMID:28287632
Huang, Hao; Ghosh, Prabhat; van den Pol, Anthony N
2006-03-01
The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.
Roberts, Brandon L; Zhu, Mingyan; Zhao, Huan; Dillon, Crystal; Appleyard, Suzanne M
2017-09-01
Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT 3 Rs. Decreasing the glucose concentration also decreased both basal and 5-HT 3 R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT 3 R activity, and glucokinase. Copyright © 2017 the American Physiological Society.
Wallace, Sean W; Singhvi, Aakanksha; Liang, Yupu; Lu, Yun; Shaham, Shai
2016-04-19
Sensory neurons are an animal's gateway to the world, and their receptive endings, the sites of sensory signal transduction, are often associated with glia. Although glia are known to promote sensory-neuron functions, the molecular bases of these interactions are poorly explored. Here, we describe a post-developmental glial role for the PROS-1/Prospero/PROX1 homeodomain protein in sensory-neuron function in C. elegans. Using glia expression profiling, we demonstrate that, unlike previously characterized cell fate roles, PROS-1 functions post-embryonically to control sense-organ glia-specific secretome expression. PROS-1 functions cell autonomously to regulate glial secretion and membrane structure, and non-cell autonomously to control the shape and function of the receptive endings of sensory neurons. Known glial genes controlling sensory-neuron function are PROS-1 targets, and we identify additional PROS-1-dependent genes required for neuron attributes. Drosophila Prospero and vertebrate PROX1 are expressed in post-mitotic sense-organ glia and astrocytes, suggesting conserved roles for this class of transcription factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Sonic Hedgehog Expression in Corticofugal Projection Neurons Directs Cortical Microcircuit Formation
Harwell, Corey C.; Parker, Philip R.L.; Gee, Steven M.; Okada, Ami; McConnell, Susan K.; Kreitzer, Anatol C.; Kriegstein, Arnold R.
2012-01-01
SUMMARY The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. PMID:22445340
α-Synuclein in Parkinson's Disease
Stefanis, Leonidas
2012-01-01
α-Synuclein is a presynaptic neuronal protein that is linked genetically and neuropathologically to Parkinson's disease (PD). α-Synuclein may contribute to PD pathogenesis in a number of ways, but it is generally thought that its aberrant soluble oligomeric conformations, termed protofibrils, are the toxic species that mediate disruption of cellular homeostasis and neuronal death, through effects on various intracellular targets, including synaptic function. Furthermore, secreted α-synuclein may exert deleterious effects on neighboring cells, including seeding of aggregation, thus possibly contributing to disease propagation. Although the extent to which α-synuclein is involved in all cases of PD is not clear, targeting the toxic functions conferred by this protein when it is dysregulated may lead to novel therapeutic strategies not only in PD, but also in other neurodegenerative conditions, termed synucleinopathies. PMID:22355802
The FMRFamide-Like Peptide Family in Nematodes
Peymen, Katleen; Watteyne, Jan; Frooninckx, Lotte; Schoofs, Liliane; Beets, Isabel
2014-01-01
In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs) represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp-genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory neurons, and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes. PMID:24982652
The Role of Glia in Sleep Regulation and Function.
Frank, Marcos G
2018-01-28
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
2016-01-01
Abstract The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson’s disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion–induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN–MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion–induced changes to CTX–MSN D1, CTX–MSN D2, TA–MSN, and MSN–MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function. PMID:28101525
Hiranuma, Maya
2013-03-01
Temporomandibular joint (TMJ) loading during development promotes its growth and maintains normal structure/function. Continuous change in diet consistency is related to development and maturation of the peripheral nervous system, including the nociceptive system. However, the functional modulation of TMJ-nociceptive neurons under different ingestive behavior is unclear. We fed growing rats a liquid diet to investigate the effects of low TMJ loading on the response properties of neurons in the trigeminal spinal tract subnucleus caudalis (Sp5C). Forty 2-week-old male rats were used. They were fed chow pellets (n = 20, C group) or a liquid diet (n = 20, LD group) soon after weaning. Firing activities of single sensory units in response to TMJ pressure stimuli were recorded at 4, 5, 7 and 9 weeks. In TMJ-nociceptive neurons, the firing threshold (FT) in the LD group was significantly lower than that in the C group at each recording age. The FT in the C group remained unchanged throughout the recording period, whereas that in the LD group was the highest at 4 weeks, and gradually decreased. On the other hand, the initial firing frequency (IFF) was significantly higher in the LD group than in the C group at each recording age. The IFF in the C group remained unchanged throughout the experimental period, whereas that in the LD group was at its lowest at 4 weeks, and gradually increased. Based on these findings, ingestive behavior that results from continuous changes in the physical consistency of the diet during growth may affect the functional maturation of TMJ-nociceptive neurons.
Residual effects of ecstasy (3,4-methylenedioxymethamphetamine) on low level visual processes.
Murray, Elizabeth; Bruno, Raimondo; Brown, John
2012-03-01
'Ecstasy' (3,4-methylenedioxymethamphetamine) induces impaired functioning in the serotonergic system, including the occipital lobe. This study employed the 'tilt aftereffect' paradigm to operationalise the function of orientation-selective neurons among ecstasy consumers and controls as a means of investigating the role of reduced serotonin on visual orientation processing. The magnitude of the tilt aftereffect reflects the extent of lateral inhibition between orientation-selective neurons and is elicited to both 'real' contours, processed in visual cortex area V1, and illusory contours, processed in V2. The magnitude of tilt aftereffect to both contour types was examined among 19 ecstasy users (6 ecstasy only; 13 ecstasy-plus-cannabis users) and 23 matched controls (9 cannabis-only users; 14 drug-naive). Ecstasy users had a significantly greater tilt magnitude than non-users for real contours (Hedge's g = 0.63) but not for illusory contours (g = 0.20). These findings provide support for literature suggesting that residual effects of ecstasy (and reduced serotonin) impairs lateral inhibition between orientation-selective neurons in V1, which however suggests that ecstasy may not substantially affect this process in V2. Multiple studies have now demonstrated ecstasy-related deficits on basic visual functions, including orientation and motion processing. Such low-level effects may contribute to the impact of ecstasy use on neuropsychological tests of visuospatial function. Copyright © 2012 John Wiley & Sons, Ltd.
Hasselmo, Michael E
2005-01-01
The extensive physiological data on hippocampal theta rhythm provide an opportunity to evaluate hypotheses about the role of theta rhythm for hippocampal network function. Computational models based on these hypotheses help to link behavioral data with physiological measurements of different variables during theta rhythm. This paper reviews work on network models in which theta rhythm contributes to the following functions: (1) separating the dynamics of encoding and retrieval, (2) enhancing the context-dependent retrieval of sequences, (3) buffering of novel information in entorhinal cortex (EC) for episodic encoding, and (4) timing interactions between prefrontal cortex and hippocampus for memory-guided action selection. Modeling shows how these functional mechanisms are related to physiological data from the hippocampal formation, including (1) the phase relationships of synaptic currents during theta rhythm measured by current source density analysis of electroencephalographic data from region CA1 and dentate gyrus, (2) the timing of action potentials, including the theta phase precession of single place cells during running on a linear track, the context-dependent changes in theta phase precession across trials on each day, and the context-dependent firing properties of hippocampal neurons in spatial alternation (e.g., "splitter cells"), (3) the cholinergic regulation of sustained activity in entorhinal cortical neurons, and (4) the phasic timing of prefrontal cortical neurons relative to hippocampal theta rhythm. Copyright 2005 Wiley-Liss, Inc.
Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment
Vizi, ES; Fekete, A; Karoly, R; Mike, A
2010-01-01
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the ‘what’ of brain function, the ‘how’ of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the ‘how’ that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic–extrasynaptic receptor trafficking, neuron–glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them. PMID:20136842
Serrano-Saiz, Esther; Oren-Suissa, Meital; Bayer, Emily A.; Hobert, Oliver
2018-01-01
SUMMARY Functional and anatomical sexual dimorphisms in the brain are either the result of cells that are generated only in one sex, or a manifestation of sex-specific differentiation of neurons present in both sexes. The PHC neurons of the nematode C. elegans differentiate in a strikingly sex-specific manner. While in hermaphrodites the PHC neurons display a canonical pattern of synaptic connectivity similar to that of other sensory neurons, PHC differentiates into a densely connected hub sensory/interneuron in males, integrating a large number of male-specific synaptic inputs and conveying them to both male-specific and sex-shared circuitry. We show that the differentiation into such a hub neuron involves the sex-specific scaling of several components of the synaptic vesicle machinery, including the vesicular glutamate transporter eat-4/VGLUT, induction of neuropeptide expression, changes in axonal projection morphology and a switch in neuronal function. We demonstrate that these molecular and anatomical remodeling events are controlled cell-autonomously by the phylogenetically conserved Doublesex homolog dmd-3, which is both required and sufficient for sex-specific PHC differentiation. Cellular specificity of dmd-3 action is ensured by its collaboration with non-sex specific terminal selector-type transcription factors whereas sex-specificity of dmd-3 action is ensured by the hermaphrodite-specific, transcriptional master regulator of hermaphroditic cell identity, tra-1, which represses transcription of dmd-3 in hermaphrodite PHC. Taken together, our studies provide mechanistic insights into how neurons are specified in a sexually dimorphic manner. PMID:28065609
Boyadjieva, Nadka I.; Ortigüela, María; Arjona, Alvaro; Cheng, Xiaodong; Sarkar, Dipak K.
2010-01-01
Background Natural killer (NK) cell dysfunction is associated with hyperresponse of corticotropin releasing hormone (CRH) to immune challenge and with a loss of β-endorphin (BEP) neurons in fetal alcohol exposed animals. Recently, we established a method to differentiate neural stem cells into BEP neurons using cyclic adenosine monophosphate (cAMP)-elevating agents in cultures. Hence, we determined whether in vitro differentiated BEP neurons could be used for reversing the compromised stress response and immune function in fetal alcohol exposed rats. Methods To determine the effect of BEP neuron transplants on NK cell function, we implanted in vitro differentiated BEP neurons into the paraventricular nucleus of pubertal and adult male rats exposed to ethanol or control in utero. The functionality of transplanted BEP neurons was determined by measuring proopiomelanocortin (POMC) gene expression in these cells and their effects on CRH gene expression under basal and after lipopolysaccaride (LPS) challenge. In addition, the effectiveness of BEP neurons in activating NK cell functions is determined by measuring NK cell cytolytic activity and interferon-γ (IFN-γ) production in the spleen and in the peripheral blood mononuclear cell (PBMC) following cell transplantation. Results We showed here that when these in vitro differentiated BEP neurons were transplanted into the hypothalamus, they maintain biological functions by producing POMC and reducing the CRH neuronal response to the LPS challenge. BEP neuronal transplants significantly increased NK cell cytolytic activity in the spleen and in the PBMC and increased plasma levels of IFN-γ in control and fetal alcohol exposed rats. Conclusions These data further establish the BEP neuronal regulatory role in the control of CRH and NK cell cytolytic function and identify a possible novel therapy to treat stress hyper-response and immune deficiency in fetal alcohol exposed subjects. PMID:19320628
Role of Non-Neuronal Cells in Body Weight and Appetite Control
Argente-Arizón, Pilar; Freire-Regatillo, Alejandra; Argente, Jesús; Chowen, Julie A.
2015-01-01
The brain is composed of neurons and non-neuronal cells, with the latter encompassing glial, ependymal and endothelial cells, as well as pericytes and progenitor cells. Studies aimed at understanding how the brain operates have traditionally focused on neurons, but the importance of non-neuronal cells has become increasingly evident. Once relegated to supporting roles, it is now indubitable that these diverse cell types are fundamental for brain development and function, including that of metabolic circuits, and they may play a significant role in obesity onset and complications. They participate in processes of neurogenesis, synaptogenesis, and synaptic plasticity of metabolic circuits both during development and in adulthood. Some glial cells, such as tanycytes and astrocytes, transport circulating nutrients and metabolic factors that are fundamental for neuronal viability and activity into and within the hypothalamus. All of these cell types express receptors for a variety of metabolic factors and hormones, suggesting that they participate in metabolic function. They are the first line of defense against any assault to neurons. Indeed, microglia and astrocytes participate in the hypothalamic inflammatory response to high fat diet (HFD)-induced obesity, with this process contributing to inflammatory-related insulin and leptin resistance. Moreover, HFD-induced obesity and hyperleptinemia modify hypothalamic astroglial morphology, which is associated with changes in the synaptic inputs to neuronal metabolic circuits. Astrocytic contact with the microvasculature is increased by HFD intake and this could modify nutrient/hormonal uptake into the brain. In addition, progenitor cells in the hypothalamus are now known to have the capacity to renew metabolic circuits, and this can be affected by HFD intake and obesity. Here, we discuss our current understanding of how non-neuronal cells participate in physiological and physiopathological metabolic control. PMID:25859240
Yu, Zhanyang; Liu, Ning; Zhao, Jianhua; Li, Yadan; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying
2015-04-01
Near infrared radiation (NIR) is known to penetrate and affect biological systems in multiple ways. Recently, a series of experimental studies suggested that low intensity NIR may protect neuronal cells against a wide range of insults that mimic diseases such as stroke, brain trauma and neurodegeneration. However, the potential molecular mechanisms of neuroprotection with NIR remain poorly defined. In this study, we tested the hypothesis that low intensity NIR may attenuate hypoxia/ischemia-induced mitochondrial dysfunction in neurons. Primary cortical mouse neuronal cultures were subjected to 4 h oxygen-glucose deprivation followed by reoxygenation for 2 h, neurons were then treated with a 2 min exposure to 810-nm NIR. Mitochondrial function markers including MTT reduction and mitochondria membrane potential were measured at 2 h after treatment. Neurotoxicity was quantified 20 h later. Our results showed that 4 h oxygen-glucose deprivation plus 20 h reoxygenation caused 33.8 ± 3.4 % of neuron death, while NIR exposure significantly reduced neuronal death to 23.6 ± 2.9 %. MTT reduction rate was reduced to 75.9 ± 2.7 % by oxygen-glucose deprivation compared to normoxic controls, but NIR exposure significantly rescued MTT reduction to 87.6 ± 4.5 %. Furthermore, after oxygen-glucose deprivation, mitochondria membrane potential was reduced to 48.9 ± 4.39 % of normoxic control, while NIR exposure significantly ameliorated this reduction to 89.6 ± 13.9 % of normoxic control. Finally, NIR significantly rescued OGD-induced ATP production decline at 20 min after NIR. These findings suggest that low intensity NIR can protect neurons against oxygen-glucose deprivation by rescuing mitochondrial function and restoring neuronal energetics.
Nagy, J; Kobolák, J; Berzsenyi, S; Ábrahám, Z; Avci, H X; Bock, I; Bekes, Z; Hodoscsek, B; Chandrasekaran, A; Téglási, A; Dezső, P; Koványi, B; Vörös, E T; Fodor, L; Szél, T; Németh, K; Balázs, A; Dinnyés, A; Lendvai, B; Lévay, G; Román, V
2017-01-01
The aim of the present study was to establish an in vitro Kleefstra syndrome (KS) disease model using the human induced pluripotent stem cell (hiPSC) technology. Previously, an autism spectrum disorder (ASD) patient with Kleefstra syndrome (KS-ASD) carrying a deleterious premature termination codon mutation in the EHMT1 gene was identified. Patient specific hiPSCs generated from peripheral blood mononuclear cells of the KS-ASD patient were differentiated into post-mitotic cortical neurons. Lower levels of EHMT1 mRNA as well as protein expression were confirmed in these cells. Morphological analysis on neuronal cells differentiated from the KS-ASD patient-derived hiPSC clones showed significantly shorter neurites and reduced arborization compared to cells generated from healthy controls. Moreover, density of dendritic protrusions of neuronal cells derived from KS-ASD hiPSCs was lower than that of control cells. Synaptic connections and spontaneous neuronal activity measured by live cell calcium imaging could be detected after 5 weeks of differentiation, when KS-ASD cells exhibited higher sensitivity of calcium responses to acetylcholine stimulation indicating a lower nicotinic cholinergic tone at baseline condition in KS-ASD cells. In addition, gene expression profiling of differentiated neuronal cells from the KS-ASD patient revealed higher expression of proliferation-related genes and lower mRNA levels of genes involved in neuronal maturation and migration. Our data demonstrate anomalous neuronal morphology, functional activity and gene expression in KS-ASD patient-specific hiPSC-derived neuronal cultures, which offers an in vitro system that contributes to a better understanding of KS and potentially other neurodevelopmental disorders including ASD. PMID:28742076
Jones, Clinton
2013-01-01
α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776
Yu, Zhanyang; Liu, Ning; Zhao, Jianhua; Li, Yadan; McCarthy, Thomas J.; Tedford, Clark E.; Lo, Eng H.; Wang, Xiaoying
2014-01-01
Near infrared radiation (NIR) is known to penetrate and affect biological systems in multiple ways. Recently, a series of experimental studies suggested that low intensity NIR may protect neuronal cells against a wide range of insults that mimic diseases such as stroke, brain trauma and neuro-degeneration. However, the potential molecular mechanisms of neuroprotection with NIR remain poorly defined. In this study, we tested the hypothesis that low intensity NIR may attenuate hypoxia/ischemia-induced mitochondrial dysfunction in neurons. Primary cortical mouse neuronal cultures were subjected to 4 h oxygen-glucose deprivation followed by reoxygenation for 2 h, neurons were then treated with a 2 min exposure to 810-nm NIR. Mitochondrial function markers including MTT reduction and mitochondria membrane potential were measured at 2 h after treatment. Neurotoxicity was quantified 20 h later. Our results showed that 4 h oxygen-glucose deprivation plus 20 h reoxygenation caused 33.8±3.4 % of neuron death, while NIR exposure significantly reduced neuronal death to 23.6±2.9 %. MTT reduction rate was reduced to 75.9±2.7 % by oxygen-glucose deprivation compared to normoxic controls, but NIR exposure significantly rescued MTT reduction to 87.6±4.5 %. Furthermore, after oxygen-glucose deprivation, mitochondria membrane potential was reduced to 48.9±4.39 % of normoxic control, while NIR exposure significantly ameliorated this reduction to 89.6±13.9 % of normoxic control. Finally, NIR significantly rescued OGD-induced ATP production decline at 20 min after NIR. These findings suggest that low intensity NIR can protect neurons against oxygen-glucose deprivation by rescuing mitochondrial function and restoring neuronal energetics. PMID:24599760
Miller, D. M.; Cotter, L. A.; Gandhi, N. J.; Schor, R. H.; Cass, S. P.; Huff, N. O.; Raj, S. G.; Shulman, J. A; Yates, B. J.
2008-01-01
Although many previous experiments have considered the responses of vestibular nucleus neurons to rotations and translations of the head, little data are available regarding cells in the caudalmost portions of the vestibular nuclei (CVN), which mediate vestibulo-autonomic responses among other functions. This study examined the responses of CVN neurons of conscious cats to rotations in vertical planes, both before and after a bilateral vestibular neurectomy. None of the units included in the data sample had eye movement-related activity. In labyrinth-intact animals, some CVN neurons (22%) exhibited graviceptive responses consistent with inputs from otolith organs, but most (55%) had dynamic responses with phases synchronized with stimulus velocity. Furthermore, the large majority of CVN neurons had response vector orientations that were aligned either near the roll or vertical canal planes, and only 18% of cells were preferentially activated by pitch rotations. Sustained head-up rotations of the body provide challenges to the cardiovascular system and breathing, and thus the response dynamics of the large majority of CVN neurons were dissimilar to those of posturally-related autonomic reflexes. These data suggest that vestibular influences on autonomic control mediated by the CVN are more complex than previously envisioned, and likely involve considerable processing and integration of signals by brainstem regions involved in cardiovascular and respiratory regulation. Following a bilateral vestibular neurectomy, CVN neurons regained spontaneous activity within 24 h, and a very few neurons (<10%) responded to vertical tilts <15° in amplitude. These findings indicate that nonlabyrinthine inputs are likely important in sustaining the activity of CVN neurons; thus, these inputs may play a role in functional recovery following peripheral vestibular lesions. PMID:18368395
Sobieski, Courtney; Jiang, Xiaoping; Crawford, Devon C.
2015-01-01
Neuron–astrocyte interactions are critical for proper CNS development and function. Astrocytes secrete factors that are pivotal for synaptic development and function, neuronal metabolism, and neuronal survival. Our understanding of this relationship, however, remains incomplete due to technical hurdles that have prevented the removal of astrocytes from neuronal circuits without changing other important conditions. Here we overcame this obstacle by growing solitary rat hippocampal neurons on microcultures that were comprised of either an astrocyte bed (+astrocyte) or a collagen bed (−astrocyte) within the same culture dish. −Astrocyte autaptic evoked EPSCs, but not IPSCs, displayed an altered temporal profile, which included increased synaptic delay, increased time to peak, and severe glutamate release asynchrony, distinct from previously described quantal asynchrony. Although we observed minimal alteration of the somatically recorded action potential waveform, action potential propagation was altered. We observed a longer latency between somatic initiation and arrival at distal locations, which likely explains asynchronous EPSC peaks, and we observed broadening of the axonal spike, which likely underlies changes to evoked EPSC onset. No apparent changes in axon structure were observed, suggesting altered axonal excitability. In conclusion, we propose that local astrocyte support has an unappreciated role in maintaining glutamate release synchrony by disturbing axonal signal propagation. SIGNIFICANCE STATEMENT Certain glial cell types (oligodendrocytes, Schwann cells) facilitate the propagation of neuronal electrical signals, but a role for astrocytes has not been identified despite many other functions of astrocytes in supporting and modulating neuronal signaling. Under identical global conditions, we cultured neurons with or without local astrocyte support. Without local astrocytes, glutamate transmission was desynchronized by an alteration of the waveform and arrival time of axonal action potentials to synaptic terminals. GABA transmission was not disrupted. The disruption did not involve detectable morphological changes to axons of glutamate neurons. Our work identifies a developmental role for astrocytes in the temporal precision of excitatory signals. PMID:26245971
A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types
Campbell, John N.; Macosko, Evan Z.; Fenselau, Henning; Pers, Tune H.; Lyubetskaya, Anna; Tenen, Danielle; Goldman, Melissa; Verstegen, Anne M.J.; Resch, Jon M.; McCarroll, Steven A.; Rosen, Evan D.; Lowell, Bradford B.; Tsai, Linus
2017-01-01
The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility, and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a novel leptin-sensing neuronal population, multiple AgRP and POMC subtypes, and an orexigenic somatostatin neuronal population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinctly responsive subtypes of AgRP and POMC neurons. Finally, integrating our data with human GWAS data implicates two previously unknown neuronal subtypes in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred. PMID:28166221
Barrows, Caitlynn M; McCabe, Matthew P; Chen, Hongmei; Swann, John W; Weston, Matthew C
2017-09-06
Changes in synaptic strength and connectivity are thought to be a major mechanism through which many gene variants cause neurological disease. Hyperactivation of the PI3K-mTOR signaling network, via loss of function of repressors such as PTEN, causes epilepsy in humans and animal models, and altered mTOR signaling may contribute to a broad range of neurological diseases. Changes in synaptic transmission have been reported in animal models of PTEN loss; however, the full extent of these changes, and their effect on network function, is still unknown. To better understand the scope of these changes, we recorded from pairs of mouse hippocampal neurons cultured in a two-neuron microcircuit configuration that allowed us to characterize all four major connection types within the hippocampus. Loss of PTEN caused changes in excitatory and inhibitory connectivity, and these changes were postsynaptic, presynaptic, and transynaptic, suggesting that disruption of PTEN has the potential to affect most connection types in the hippocampal circuit. Given the complexity of the changes at the synaptic level, we measured changes in network behavior after deleting Pten from neurons in an organotypic hippocampal slice network. Slices containing Pten -deleted neurons showed increased recruitment of neurons into network bursts. Importantly, these changes were not confined to Pten -deleted neurons, but involved the entire network, suggesting that the extensive changes in synaptic connectivity rewire the entire network in such a way that promotes a widespread increase in functional connectivity. SIGNIFICANCE STATEMENT Homozygous deletion of the Pten gene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand how gene deletions lead to altered neuronal activity, we investigated the synaptic and network effects that occur 1 week after Pten deletion. PTEN loss increased the connectivity of all four types of hippocampal synaptic connections, including two forms of increased inhibition of inhibition, and increased network functional connectivity. These data suggest that single gene mutations that cause neurological diseases such as epilepsy may affect a surprising range of connection types. Moreover, given the robustness of homeostatic plasticity, these diverse effects on connection types may be necessary to cause network phenotypes such as increased synchrony. Copyright © 2017 the authors 0270-6474/17/378595-17$15.00/0.
McCabe, Matthew P.; Chen, Hongmei; Swann, John W.
2017-01-01
Changes in synaptic strength and connectivity are thought to be a major mechanism through which many gene variants cause neurological disease. Hyperactivation of the PI3K-mTOR signaling network, via loss of function of repressors such as PTEN, causes epilepsy in humans and animal models, and altered mTOR signaling may contribute to a broad range of neurological diseases. Changes in synaptic transmission have been reported in animal models of PTEN loss; however, the full extent of these changes, and their effect on network function, is still unknown. To better understand the scope of these changes, we recorded from pairs of mouse hippocampal neurons cultured in a two-neuron microcircuit configuration that allowed us to characterize all four major connection types within the hippocampus. Loss of PTEN caused changes in excitatory and inhibitory connectivity, and these changes were postsynaptic, presynaptic, and transynaptic, suggesting that disruption of PTEN has the potential to affect most connection types in the hippocampal circuit. Given the complexity of the changes at the synaptic level, we measured changes in network behavior after deleting Pten from neurons in an organotypic hippocampal slice network. Slices containing Pten-deleted neurons showed increased recruitment of neurons into network bursts. Importantly, these changes were not confined to Pten-deleted neurons, but involved the entire network, suggesting that the extensive changes in synaptic connectivity rewire the entire network in such a way that promotes a widespread increase in functional connectivity. SIGNIFICANCE STATEMENT Homozygous deletion of the Pten gene in neuronal subpopulations in the mouse serves as a valuable model of epilepsy caused by mTOR hyperactivation. To better understand how gene deletions lead to altered neuronal activity, we investigated the synaptic and network effects that occur 1 week after Pten deletion. PTEN loss increased the connectivity of all four types of hippocampal synaptic connections, including two forms of increased inhibition of inhibition, and increased network functional connectivity. These data suggest that single gene mutations that cause neurological diseases such as epilepsy may affect a surprising range of connection types. Moreover, given the robustness of homeostatic plasticity, these diverse effects on connection types may be necessary to cause network phenotypes such as increased synchrony. PMID:28751459
Genetically identified spinal interneurons integrating tactile afferents for motor control
Panek, Izabela; Farah, Carl
2015-01-01
Our movements are shaped by our perception of the world as communicated by our senses. Perception of sensory information has been largely attributed to cortical activity. However, a prior level of sensory processing occurs in the spinal cord. Indeed, sensory inputs directly project to many spinal circuits, some of which communicate with motor circuits within the spinal cord. Therefore, the processing of sensory information for the purpose of ensuring proper movements is distributed between spinal and supraspinal circuits. The mechanisms underlying the integration of sensory information for motor control at the level of the spinal cord have yet to be fully described. Recent research has led to the characterization of spinal neuron populations that share common molecular identities. Identification of molecular markers that define specific populations of spinal neurons is a prerequisite to the application of genetic techniques devised to both delineate the function of these spinal neurons and their connectivity. This strategy has been used in the study of spinal neurons that receive tactile inputs from sensory neurons innervating the skin. As a result, the circuits that include these spinal neurons have been revealed to play important roles in specific aspects of motor function. We describe these genetically identified spinal neurons that integrate tactile information and the contribution of these studies to our understanding of how tactile information shapes motor output. Furthermore, we describe future opportunities that these circuits present for shedding light on the neural mechanisms of tactile processing. PMID:26445867
Motor neuron mitochondrial dysfunction in spinal muscular atrophy
Miller, Nimrod; Shi, Han; Zelikovich, Aaron S.; Ma, Yong-Chao
2016-01-01
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, predominantly affects high metabolic tissues including motor neurons, skeletal muscles and the heart. Although the genetic cause of SMA has been identified, mechanisms underlying tissue-specific vulnerability are not well understood. To study these mechanisms, we carried out a deep sequencing analysis of the transcriptome of spinal motor neurons in an SMA mouse model, in which we unexpectedly found changes in many genes associated with mitochondrial bioenergetics. Importantly, functional measurement of mitochondrial activities showed decreased basal and maximal mitochondrial respiration in motor neurons from SMA mice. Using a reduction-oxidation sensitive GFP and fluorescence sensors specifically targeted to mitochondria, we found increased oxidative stress level and impaired mitochondrial membrane potential in motor neurons affected by SMA. In addition, mitochondrial mobility was impaired in SMA disease conditions, with decreased retrograde transport but no effect on anterograde transport. We also found significantly increased fragmentation of the mitochondrial network in primary motor neurons from SMA mice, with no change in mitochondria density. Electron microscopy study of SMA mouse spinal cord revealed mitochondria fragmentation, edema and concentric lamellar inclusions in motor neurons affected by the disease. Intriguingly, these functional and structural deficiencies in the SMA mouse model occur during the presymptomatic stage of disease, suggesting a role in initiating SMA. Altogether, our findings reveal a critical role for mitochondrial defects in SMA pathogenesis and suggest a novel target for improving tissue health in the disease. PMID:27488123
Gender differences in human single neuron responses to male emotional faces.
Newhoff, Morgan; Treiman, David M; Smith, Kris A; Steinmetz, Peter N
2015-01-01
Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p < 0.01). These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala.
Blumenthal, Nils R; Hermanson, Ola; Heimrich, Bernd; Shastri, V Prasad
2014-11-11
Extracellular soluble signals are known to play a critical role in maintaining neuronal function and homeostasis in the CNS. However, the CNS is also composed of extracellular matrix macromolecules and glia support cells, and the contribution of the physical attributes of these components in maintenance and regulation of neuronal function is not well understood. Because these components possess well-defined topography, we theorize a role for topography in neuronal development and we demonstrate that survival and function of hippocampal neurons and differentiation of telencephalic neural stem cells is modulated by nanoroughness. At roughnesses corresponding to that of healthy astrocytes, hippocampal neurons dissociated and survived independent from astrocytes and showed superior functional traits (increased polarity and calcium flux). Furthermore, telencephalic neural stem cells differentiated into neurons even under exogenous signals that favor astrocytic differentiation. The decoupling of neurons from astrocytes seemed to be triggered by changes to astrocyte apical-surface topography in response to nanoroughness. Blocking signaling through mechanosensing cation channels using GsMTx4 negated the ability of neurons to sense the nanoroughness and promoted decoupling of neurons from astrocytes, thus providing direct evidence for the role of nanotopography in neuron-astrocyte interactions. We extrapolate the role of topography to neurodegenerative conditions and show that regions of amyloid plaque buildup in brain tissue of Alzheimer's patients are accompanied by detrimental changes in tissue roughness. These findings suggest a role for astrocyte and ECM-induced topographical changes in neuronal pathologies and provide new insights for developing therapeutic targets and engineering of neural biomaterials.
Fornaro, Michele; Sharthiya, Harsh; Tiwari, Vaibhav
2018-03-09
This protocol describes an ex vivo model of mouse-derived dorsal root ganglia (DRG) explant and in vitro DRG-derived co-culture of dissociated sensory neurons and glial satellite cells. These are useful and versatile models to investigate a variety of biological responses associated with physiological and pathological conditions of the peripheral nervous system (PNS) ranging from neuron-glial interaction, neuroplasticity, neuroinflammation, and viral infection. The usage of DRG explant is scientifically advantageous compared to simplistic single cells models for multiple reasons. For instance, as an organotypic culture, the DRG explant allows ex vivo transfer of an entire neuronal network including the extracellular microenvironment that play a significant role in all the neuronal and glial functions. Further, DRG explants can also be maintained ex vivo for several days and the culture conditions can be perturbed as desired. In addition, the harvested DRG can be further dissociated into an in vitro co-culture of primary sensory neurons and satellite glial cells to investigate neuronal-glial interaction, neuritogenesis, axonal cone interaction with the extracellular microenvironment, and more general, any aspect associated with the neuronal metabolism. Therefore, the DRG-explant system offers a great deal of flexibility to study a wide array of events related to biological, physiological, and pathological conditions in a cost-effective manner.
The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer’s Disease
Giorgi, Filippo S.; Ryskalin, Larisa; Ruffoli, Riccardo; Biagioni, Francesca; Limanaqi, Fiona; Ferrucci, Michela; Busceti, Carla L.; Bonuccelli, Ubaldo; Fornai, Francesco
2017-01-01
Alzheimer’s Disease (AD) features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs), respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC), which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE) and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable. PMID:28974926
The Neuroanatomy of the Reticular Nucleus Locus Coeruleus in Alzheimer's Disease.
Giorgi, Filippo S; Ryskalin, Larisa; Ruffoli, Riccardo; Biagioni, Francesca; Limanaqi, Fiona; Ferrucci, Michela; Busceti, Carla L; Bonuccelli, Ubaldo; Fornai, Francesco
2017-01-01
Alzheimer's Disease (AD) features the accumulation of β-amyloid and Tau aggregates, which deposit as extracellular plaques and intracellular neurofibrillary tangles (NFTs), respectively. Neuronal Tau aggregates may appear early in life, in the absence of clinical symptoms. This occurs in the brainstem reticular formation and mostly within Locus Coeruleus (LC), which is consistently affected during AD. LC is the main source of forebrain norepinephrine (NE) and it modulates a variety of functions including sleep-waking cycle, alertness, synaptic plasticity, and memory. The iso-dendritic nature of LC neurons allows their axons to spread NE throughout the whole forebrain. Likewise, a prion-like hypothesis suggests that Tau aggregates may travel along LC axons to reach out cortical neurons. Despite this timing is compatible with cross-sectional studies, there is no actual evidence for a causal relationship between these events. In the present mini-review, we dedicate special emphasis to those various mechanisms that may link degeneration of LC neurons to the onset of AD pathology. This includes the hypothesis that a damage to LC neurons contributes to the onset of dementia due to a loss of neuroprotective effects or, even the chance that, LC degenerates independently from cortical pathology. At the same time, since LC neurons are lost in a variety of neuropsychiatric disorders we considered which molecular mechanism may render these brainstem neurons so vulnerable.
Hayashi, Kensuke
2017-01-01
Drebrin is localized in actin-rich regions of neuronal and non-neuronal cells. In mature neurons, its localization is strictly restricted to the postsynaptic sites. In order to understand the function of drebrin in cells, many studies have been performed to examine the effect of overexpression or knocking down of drebrin in various cell types, including neurons, myoblasts, kidney cells, and intestinal epithelial cells. In most cases alteration of cell shape and impairment or facilitation of actin-based activities of these cells were observed. Interestingly, overexpression of drebrin in matured neurons results in the alteration in dendritic spine morphology. Further studies have shown alteration in the localization of postsynaptic receptors and even changes in synaptic transmission caused by drebrin overexpression or depletion in neurons. These drebrin's effects are thought to come from drebrin's actin-cross-linking activity or competitive binding to actin against tropomyosin, fascin, and α-actinin. Furthermore, drebrin binds to various molecules, such as homer, EB3, and cell-cell junctional proteins, indicating that drebrin is a multifunctional cytoskeletal regulator.
Neuronal Progenitor Maintenance Requires Lactate Metabolism and PEPCK-M-Directed Cataplerosis.
Álvarez, Zaida; Hyroššová, Petra; Perales, José Carlos; Alcántara, Soledad
2016-03-01
This study investigated the metabolic requirements for neuronal progenitor maintenance in vitro and in vivo by examining the metabolic adaptations that support neuronal progenitors and neural stem cells (NSCs) in their undifferentiated state. We demonstrate that neuronal progenitors are strictly dependent on lactate metabolism, while glucose induces their neuronal differentiation. Lactate signaling is not by itself capable of maintaining the progenitor phenotype. The consequences of lactate metabolism include increased mitochondrial and oxidative metabolism, with a strict reliance on cataplerosis through the mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) pathway to support anabolic functions, such as the production of extracellular matrix. In vivo, lactate maintains/induces populations of postnatal neuronal progenitors/NSCs in a PEPCK-M-dependent manner. Taken together, our data demonstrate that, lactate alone or together with other physical/biochemical cues maintain NSCs/progenitors with a metabolic signature that is classically found in tissues with high anabolic capacity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus.
Venner, Anne; Anaclet, Christelle; Broadhurst, Rebecca Y; Saper, Clifford B; Fuller, Patrick M
2016-08-22
The largest synaptic input to the sleep-promoting ventrolateral preoptic area (VLPO) [1] arises from the lateral hypothalamus [2], a brain area associated with arousal [3-5]. However, the neurochemical identity of the majority of these VLPO-projecting neurons within the lateral hypothalamus (LH), as well as their function in the arousal network, remains unknown. Herein we describe a population of VLPO-projecting neurons in the LH that express the vesicular GABA transporter (VGAT; a marker for GABA-releasing neurons). In addition to the VLPO, these neurons also project to several other established sleep and arousal nodes, including the tuberomammillary nucleus, ventral periaqueductal gray, and locus coeruleus. Selective and acute chemogenetic activation of LH VGAT(+) neurons was profoundly wake promoting, whereas acute inhibition increased sleep. Because of its direct and massive inputs to the VLPO, this population may play a particularly important role in sleep-wake switching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Little, Daniel; Luft, Christin; Mosaku, Olukunbi; Lorvellec, Maëlle; Yao, Zhi; Paillusson, Sébastien; Kriston-Vizi, Janos; Gandhi, Sonia; Abramov, Andrey Y; Ketteler, Robin; Devine, Michael J; Gissen, Paul
2018-06-13
Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Amarillo, Yimy; Mato, Germán; Nadal, Marcela S
2015-01-01
Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1-4 Hz) has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation.
V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.
Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn
2008-10-09
A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.
Altered LARK Expression Perturbs Development and Physiology of the Drosophila PDF Clock Neurons
Huang, Yanmei; Howlett, Eric; Stern, Michael; Jackson, F. Rob
2009-01-01
The LARK RNA-binding protein (RBP) has well documented roles in the circadian systems of Drosophila and mammals. Recent studies have demonstrated that the Drosophila LARK RBP is associated with many mRNA targets, in vivo, including those that regulate either neurophysiology or development of the nervous system. In the present study, we have employed conditional expression techniques to distinguish developmental and physiological functions of LARK for a defined class of neurons: the Pigment Dispersing Factor (PDF)-containing LNv clock neurons. We found that increased LARK expression during development dramatically alters the small LNv class of neurons with no obvious effects on the large LNv cells. Conversely, conditional expression of LARK at the adult stage results in altered clock protein rhythms and circadian locomotor activity, even though neural morphology is normal in such animals. Electrophysiological analyses at the larval neuromuscular junction indicate a role for LARK in regulating neuronal excitability. Altogether, our results demonstrate that LARK activity is critical for neuronal development and physiology. PMID:19303442
Biophysical synaptic dynamics in an analog VLSI network of Hodgkin-Huxley neurons.
Yu, Theodore; Cauwenberghs, Gert
2009-01-01
We study synaptic dynamics in a biophysical network of four coupled spiking neurons implemented in an analog VLSI silicon microchip. The four neurons implement a generalized Hodgkin-Huxley model with individually configurable rate-based kinetics of opening and closing of Na+ and K+ ion channels. The twelve synapses implement a rate-based first-order kinetic model of neurotransmitter and receptor dynamics, accounting for NMDA and non-NMDA type chemical synapses. The implemented models on the chip are fully configurable by 384 parameters accounting for conductances, reversal potentials, and pre/post-synaptic voltage-dependence of the channel kinetics. We describe the models and present experimental results from the chip characterizing single neuron dynamics, single synapse dynamics, and multi-neuron network dynamics showing phase-locking behavior as a function of synaptic coupling strength. The 3mm x 3mm microchip consumes 1.29 mW power making it promising for applications including neuromorphic modeling and neural prostheses.
Optimal compensation for neuron loss
Barrett, David GT; Denève, Sophie; Machens, Christian K
2016-01-01
The brain has an impressive ability to withstand neural damage. Diseases that kill neurons can go unnoticed for years, and incomplete brain lesions or silencing of neurons often fail to produce any behavioral effect. How does the brain compensate for such damage, and what are the limits of this compensation? We propose that neural circuits instantly compensate for neuron loss, thereby preserving their function as much as possible. We show that this compensation can explain changes in tuning curves induced by neuron silencing across a variety of systems, including the primary visual cortex. We find that compensatory mechanisms can be implemented through the dynamics of networks with a tight balance of excitation and inhibition, without requiring synaptic plasticity. The limits of this compensatory mechanism are reached when excitation and inhibition become unbalanced, thereby demarcating a recovery boundary, where signal representation fails and where diseases may become symptomatic. DOI: http://dx.doi.org/10.7554/eLife.12454.001 PMID:27935480
Morphological evidence for novel enteric neuronal circuitry in guinea pig distal colon.
Smolilo, D J; Costa, M; Hibberd, T J; Wattchow, D A; Spencer, Nick J
2018-07-01
The gastrointestinal (GI) tract is unique compared to all other internal organs; it is the only organ with its own nervous system and its own population of intrinsic sensory neurons, known as intrinsic primary afferent neurons (IPANs). How these IPANs form neuronal circuits with other functional classes of neurons in the enteric nervous system (ENS) is incompletely understood. We used a combination of light microscopy, immunohistochemistry and confocal microscopy to examine the topographical distribution of specific classes of neurons in the myenteric plexus of guinea-pig colon, including putative IPANs, with other classes of enteric neurons. These findings were based on immunoreactivity to the neuronal markers, calbindin, calretinin and nitric oxide synthase. We then correlated the varicose outputs formed by putative IPANs with subclasses of excitatory interneurons and motor neurons. We revealed that calbindin-immunoreactive varicosities form specialized structures resembling 'baskets' within the majority of myenteric ganglia, which were arranged in clusters around calretinin-immunoreactive neurons. These calbindin baskets directly arose from projections of putative IPANs and represent morphological evidence of preferential input from sensory neurons directly to a select group of calretinin neurons. Our findings uncovered that these neurons are likely to be ascending excitatory interneurons and excitatory motor neurons. Our study reveals for the first time in the colon, a novel enteric neural circuit, whereby calbindin-immunoreactive putative sensory neurons form specialized varicose structures that likely direct synaptic outputs to excitatory interneurons and motor neurons. This circuit likely forms the basis of polarized neuronal pathways underlying motility. © 2018 Wiley Periodicals, Inc.
Establishment and characterization of a new conditionally immortalized human astrocyte cell line.
Furihata, Tomomi; Ito, Ryo; Kamiichi, Atsuko; Saito, Kosuke; Chiba, Kan
2016-01-01
Astrocytes are the most abundant cell types in mammalian brains, within which they participate in various neuronal activities, partly by utilizing the numerous transporters expressed at their plasma membranes. Accordingly, detailed characterization of astrocytic functions, including transporters, are essential for understanding of mechanistic basis of normal brain functions, as well as the pathogenesis and treatment of various brain diseases. As a part of overall efforts to facilitate such studies, this study reports on the establishment of a new human astrocyte cell line, which is hereafter referred to as human astrocyte/conditionally immortalized, clone 35 (HASTR/ci35). This line, which was developed utilizing a cell immortalization method, showed excellent proliferative ability and expressed various astrocyte markers, including glial fibrillary acidic protein. When co-cultured with neuronal cells, HASTR/ci35 cells could facilitate their dendritic network formation. Furthermore, HASTR/ci35 cells not only possessed significant glutamate and adenosine transporter activities but also exhibited organic ion transporter activities. To summarize, HASTR/ci35 cells possess several key astrocytic characteristics, including various transporter functions, while simultaneously showing infinite proliferation and scalability. Based on these findings, HASTR/ci35 cells can be expected to contribute significantly to various human astrocyte study fields. In vitro astrocyte models are valuable experimental tools in various astrocyte studies. Here, we report the establishment of a new human astrocyte cell line, HASTR/ci35, which show various key astrocyte properties, including astrocytic transporter activities, glycogen storage and facilitation of neuronal cell differentiation. Thus, HASTR/ci35 is expected to significantly contribute to advances toward detailed understanding of human astrocyte functions. © 2015 International Society for Neurochemistry.
Functional model of biological neural networks.
Lo, James Ting-Ho
2010-12-01
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.
Vitamin C transport and its role in the central nervous system
May, James M.
2013-01-01
Vitamin C, or ascorbic acid, is important as an antioxidant and participates in numerous cellular functions. Although it circulates in plasma in micromolar concentrations, it reaches millimolar concentrations in most tissues. These high ascorbate cellular concentrations are thought to be generated and maintained by the SVCT2 (Slc23a2), a specific transporter for ascorbate. The vitamin is also readily recycled from its oxidized forms inside cells. Neurons in the central nervous system (CNS) contain some of the highest ascorbic acid concentrations of mammalian tissues. Intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity. The importance of the SVCT2 for CNS function is supported by the finding that its targeted deletion in mice causes widespread cerebral hemorrhage and death on post-natal day one. Neuronal ascorbate content as maintained by this protein also has relevance for human disease, since ascorbate supplements decrease infarct size in ischemia-reperfusion injury models of stroke, and since ascorbate may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s. The aim of this review is to assess the role of the SVCT2 in regulating neuronal ascorbate homeostasis and the extent to which ascorbate affects brain function and antioxidant defenses in the CNS. PMID:22116696
De Cicco, Vincenzo; Tramonti Fantozzi, Maria P.; Cataldo, Enrico; Barresi, Massimo; Bruschini, Luca; Faraguna, Ugo; Manzoni, Diego
2018-01-01
It is known that sensory signals sustain the background discharge of the ascending reticular activating system (ARAS) which includes the noradrenergic locus coeruleus (LC) neurons and controls the level of attention and alertness. Moreover, LC neurons influence brain metabolic activity, gene expression and brain inflammatory processes. As a consequence of the sensory control of ARAS/LC, stimulation of a sensory channel may potential influence neuronal activity and trophic state all over the brain, supporting cognitive functions and exerting a neuroprotective action. On the other hand, an imbalance of the same input on the two sides may lead to an asymmetric hemispheric excitability, leading to an impairment in cognitive functions. Among the inputs that may drive LC neurons and ARAS, those arising from the trigeminal region, from visceral organs and, possibly, from the vestibular system seem to be particularly relevant in regulating their activity. The trigeminal, visceral and vestibular control of ARAS/LC activity may explain why these input signals: (1) affect sensorimotor and cognitive functions which are not directly related to their specific informational content; and (2) are effective in relieving the symptoms of some brain pathologies, thus prompting peripheral activation of these input systems as a complementary approach for the treatment of cognitive impairments and neurodegenerative disorders. PMID:29358907
Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation
Cromer, Jason A; Waitzman, David M
2006-01-01
Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward). According to each respective proposal, specific predictions about cMRF neuronal discharge have been formulated. Individual neurones should: (1) encode instantaneous eye velocity, (2) burst specifically in relation to saccade duration but not to other saccade metrics, or (3) have a spectrum of weak to strong correlations to saccade dynamics. To determine if cMRF neurones could subserve these multiple oculomotor roles, we examined neuronal activity in relation to a variety of saccade metrics including amplitude, velocity and duration. We found separate groups of cMRF neurones that have the characteristics predicted by each of the proposed models. We also identified a number of subgroups for which no specific model prediction had previously been established. We found that we could accurately predict the neuronal firing pattern during one type of saccade behaviour (visually guided) using the activity during an alternative behaviour with different saccade metrics (memory guided saccades). We suggest that this evidence of a close relationship of cMRF neuronal discharge to individual saccade metrics supports the hypothesis that the cMRF participates in multiple saccade control pathways carrying saccade amplitude, velocity and duration information within the brainstem. PMID:16308353
Tulgren, Erik D.; Turgeon, Shane M.; Opperman, Karla J.; Grill, Brock
2014-01-01
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions. PMID:25010424
Tulgren, Erik D; Turgeon, Shane M; Opperman, Karla J; Grill, Brock
2014-07-01
Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions.
Tsoi, Shuk C; Aiya, Utsav V; Wasner, Kobi D; Phan, Mimi L; Pytte, Carolyn L; Vicario, David S
2014-01-01
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.
Wasner, Kobi D.; Phan, Mimi L.; Pytte, Carolyn L.; Vicario, David S.
2014-01-01
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals. PMID:25251077
Stritih, Natasa
2009-10-20
Vibratory interneurons were investigated in a primitive nonhearing ensiferan (orthopteran) species (Troglophilus neglectus, Rhaphidophoridae), using intracellular recording and staining technique. The study included 26 morphologically and/or physiologically distinct types of neurons from the prothoracic ganglion responding to vibration of the front legs. Most of these neurons are tuned to frequencies below 400 Hz. The morphology, anatomical position in the ganglion, and physiological responses are described in particular for a set of these low-frequency-tuned elements, including one local neuron, two T-shaped fibers, and five descending neurons, for which no putative homologues are known from the hearing Orthoptera. Their lowest thresholds are between about 0.01 and 0.4 m/second(2) at frequencies of 50-400 Hz, and the shortest latencies between 10 and 16 msec, suggesting that they are first- or second-order interneurons. Six interneurons have dendritic arborizations in the neuropile region that contains projections of tibial organ vibratory receptors, but their sensitivity suggests predominating inputs from vibrational sensilla of another origin. Responses of most neurons are composed of frequency-specific excitatory and inhibitory synaptic potentials, most of the latter being received in the high-frequency range. The function of these neurons in predator detection and intraspecific communication is discussed.
Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy
Sampaio, Hugo; Mowat, David; Roscioli, Tony
2017-01-01
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis. PMID:28634552
The metabolic response to excitotoxicity - lessons from single-cell imaging.
Connolly, Niamh M C; Prehn, Jochen H M
2015-04-01
Excitotoxicity is a pathological process implicated in neuronal death during ischaemia, traumatic brain injuries and neurodegenerative diseases. Excitotoxicity is caused by excess levels of glutamate and over-activation of NMDA or calcium-permeable AMPA receptors on neuronal membranes, leading to ionic influx, energetic stress and potential neuronal death. The metabolic response of neurons to excitotoxicity is complex and plays a key role in the ability of the neuron to adapt and recover from such an insult. Single-cell imaging is a powerful experimental technique that can be used to study the neuronal metabolic response to excitotoxicity in vitro and, increasingly, in vivo. Here, we review some of the knowledge of the neuronal metabolic response to excitotoxicity gained from in vitro single-cell imaging, including calcium and ATP dynamics and their effects on mitochondrial function, along with the contribution of glucose metabolism, oxidative stress and additional neuroprotective signalling mechanisms. Future work will combine knowledge gained from single-cell imaging with data from biochemical and computational techniques to garner holistic information about the metabolic response to excitotoxicity at the whole brain level and transfer this knowledge to a clinical setting.
Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti
2017-02-14
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.
Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman
2015-04-01
Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pienaar, Ilse S; Gartside, Sarah E; Sharma, Puneet; De Paola, Vincenzo; Gretenkord, Sabine; Withers, Dominic; Elson, Joanna L; Dexter, David T
2015-09-23
Patients with advanced Parkinson's disease (PD) often present with axial symptoms, including postural- and gait difficulties that respond poorly to dopaminergic agents. Although deep brain stimulation (DBS) of a highly heterogeneous brain structure, the pedunculopontine nucleus (PPN), improves such symptoms, the underlying neuronal substrate responsible for the clinical benefits remains largely unknown, thus hampering optimization of DBS interventions. Choline acetyltransferase (ChAT)::Cre(+) transgenic rats were sham-lesioned or rendered parkinsonian through intranigral, unihemispheric stereotaxic administration of the ubiquitin-proteasomal system inhibitor, lactacystin, combined with designer receptors exclusively activated by designer drugs (DREADD), to activate the cholinergic neurons of the nucleus tegmenti pedunculopontine (PPTg), the rat equivalent of the human PPN. We have previously shown that the lactacystin rat model accurately reflects aspects of PD, including a partial loss of PPTg cholinergic neurons, similar to what is seen in the post-mortem brains of advanced PD patients. In this manuscript, we show that transient activation of the remaining PPTg cholinergic neurons in the lactacystin rat model of PD, via peripheral administration of the cognate DREADD ligand, clozapine-N-oxide (CNO), dramatically improved motor symptoms, as was assessed by behavioral tests that measured postural instability, gait, sensorimotor integration, forelimb akinesia and general motor activity. In vivo electrophysiological recordings revealed increased spiking activity of PPTg putative cholinergic neurons during CNO-induced activation. c-Fos expression in DREADD overexpressed ChAT-immunopositive (ChAT+) neurons of the PPTg was also increased by CNO administration, consistent with upregulated neuronal activation in this defined neuronal population. Overall, these findings provide evidence that functional modulation of PPN cholinergic neurons alleviates parkinsonian motor symptoms.
Thalamocortical Dysfunction and Thalamic Injury after Asphyxial Cardiac Arrest in Developing Rats
Shoykhet, Michael; Simons, Daniel J.; Alexander, Henry; Hosler, Christina; Kochanek, Patrick M.; Clark, Robert S. B.
2012-01-01
Global hypoxia-ischemia interrupts oxygen delivery and blood flow to the entire brain. Previous studies of global brain hypoxia ischemia have primarily focused on injury to the cerebral cortex and to the hippocampus. Susceptible neuronal populations also include inhibitory neurons in the thalamic Reticular Nucleus. We therefore investigated the impact of global brain hypoxia-ischemia on the thalamic circuit function in the somatosensory system of young rats. We used single neuron recordings and controlled whisker deflections to examine responses of thalamocortical neurons to sensory stimulation in rat survivors of 9 min of asphyxial cardiac arrest incurred on post-natal day 17. We found that 48–72 hours after cardiac arrest, thalamocortical neurons demonstrate significantly elevated firing rates both during spontaneous activity and in response to whisker deflections. The elevated evoked firing rates persist for at least 6–8 weeks after injury. Despite the overall increase in firing, by 6 weeks, thalamocortical neurons display degraded receptive fields, with decreased responses to adjacent whiskers. Nine min of asphyxial cardiac arrest was associated with extensive degeneration of neurites in the somatosensory nucleus as well as activation of microglia in the Reticular Nucleus. Global brain hypoxia-ischemia during cardiac arrest has a long-term impact on processing and transfer of sensory information by thalamic circuitry. Thalamic circuitry and normalization of its function may represent a distinct therapeutic target after cardiac arrest. PMID:22492052
Visualization of Cortical Dynamics
NASA Astrophysics Data System (ADS)
Grinvald, Amiram
2003-03-01
Recent progress in studies of cortical dynamics will be reviewed including the combination of real time optical imaging based on voltage sensitive dyes, single and multi- unit recordings, LFP, intracellular recordings and microstimulation. To image the flow of neuronal activity from one cortical site to the next, in real time, we have used optical imaging based on newly designed voltage sensitive dyes and a Fuji 128x 128 fast camera which we modified. A factor of 20-40 fold improvement in the signal to noise ratio was obtained with the new dye during in vivo imaging experiments. This improvements has facilitates the exploration of cortical dynamics without signal averaging in the millisecond time domain. We confirmed that the voltage sensitive dye signal indeed reflects membrane potential changes in populations of neurons by showing that the time course of the intracellular activity recorded intracellularly from a single neuron was highly correlated in many cases with the optical signal from a small patch of cortex recorded nearby. We showed that the firing of single cortical neurons is not a random process but occurs when the on-going pattern of million of neurons is similar to the functional architecture map which correspond to the tuning properties of that neuron. Chronic optical imaging, combined with electrical recordings and microstimulation, over a long period of times of more than a year, was successfully applied also to the study of higher brain functions in the behaving macaque monkey.
Structural dynamics of the cell nucleus
Wiegert, Simon; Bading, Hilmar
2011-01-01
Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832
Structure-function analysis of genetically defined neuronal populations.
Groh, Alexander; Krieger, Patrik
2013-10-01
Morphological and functional classification of individual neurons is a crucial aspect of the characterization of neuronal networks. Systematic structural and functional analysis of individual neurons is now possible using transgenic mice with genetically defined neurons that can be visualized in vivo or in brain slice preparations. Genetically defined neurons are useful for studying a particular class of neurons and also for more comprehensive studies of the neuronal content of a network. Specific subsets of neurons can be identified by fluorescence imaging of enhanced green fluorescent protein (eGFP) or another fluorophore expressed under the control of a cell-type-specific promoter. The advantages of such genetically defined neurons are not only their homogeneity and suitability for systematic descriptions of networks, but also their tremendous potential for cell-type-specific manipulation of neuronal networks in vivo. This article describes a selection of procedures for visualizing and studying the anatomy and physiology of genetically defined neurons in transgenic mice. We provide information about basic equipment, reagents, procedures, and analytical approaches for obtaining three-dimensional (3D) cell morphologies and determining the axonal input and output of genetically defined neurons. We exemplify with genetically labeled cortical neurons, but the procedures are applicable to other brain regions with little or no alterations.
A conserved juxtacrine signal regulates synaptic partner recognition in Caenorhabditis elegans
2011-01-01
Background An essential stage of neural development involves the assembly of neural circuits via formation of inter-neuronal connections. Early steps in neural circuit formation, including cell migration, axon guidance, and the localization of synaptic components, are well described. However, upon reaching their target region, most neurites still contact many potential partners. In order to assemble functional circuits, it is critical that within this group of cells, neurons identify and form connections only with their appropriate partners, a process we call synaptic partner recognition (SPR). To understand how SPR is mediated, we previously developed a genetically encoded fluorescent trans-synaptic marker called NLG-1 GRASP, which labels synaptic contacts between individual neurons of interest in dense cellular environments in the genetic model organism Caenorhabditis elegans. Results Here, we describe the first use of NLG-1 GRASP technology, to identify SPR genes that function in this critical process. The NLG-1 GRASP system allows us to assess synaptogenesis between PHB sensory neurons and AVA interneurons instantly in live animals, making genetic analysis feasible. Additionally, we employ a behavioral assay to specifically test PHB sensory circuit function. Utilizing this approach, we reveal a new role for the secreted UNC-6/Netrin ligand and its transmembrane receptor UNC-40/Deleted in colorectal cancer (DCC) in SPR. Synapses between PHB and AVA are severely reduced in unc-6 and unc-40 animals despite normal axon guidance and subcellular localization of synaptic components. Additionally, behavioral defects indicate a complete disruption of PHB circuit function in unc-40 mutants. Our data indicate that UNC-40 and UNC-6 function in PHB and AVA, respectively, to specify SPR. Strikingly, overexpression of UNC-6 in postsynaptic neurons is sufficient to promote increased PHB-AVA synaptogenesis and to potentiate the behavioral response beyond wild-type levels. Furthermore, an artificially membrane-tethered UNC-6 expressed in the postsynaptic neurons promotes SPR, consistent with a short-range signal between adjacent synaptic partners. Conclusions These results indicate that the conserved UNC-6/Netrin-UNC-40/DCC ligand-receptor pair has a previously unknown function, acting in a juxtacrine manner to specify recognition of individual postsynaptic neurons. Furthermore, they illustrate the potential of this new approach, combining NLG-1 GRASP and behavioral analysis, in gene discovery and characterization. PMID:21663630
MicroRNAs in neuronal function and dysfunction
Im, Heh-In; Kenny, Paul J.
2012-01-01
MicroRNAs (miRNAs) are small noncoding RNA transcripts expressed throughout the brain that can regulate neuronal gene expression at the post-transcriptional level. Here, we provide an overview of the role for miRNAs in brain development and function, and review evidence suggesting that dysfunction in miRNA signaling contributes to neurodevelopment disorders such as Rett and fragile X syndromes, as well as complex behavioral disorders including schizophrenia, depression and drug addiction. A better understanding of how miRNAs influence the development of neuropsychiatric disorders may reveal fundamental insights into the causes of these devastating illnesses and offer novel targets for therapeutic development. PMID:22436491
Spinal Muscular Atrophy: More than a Disease of Motor Neurons?
Nash, L A; Burns, J K; Chardon, J Warman; Kothary, R; Parks, R J
2016-01-01
Spinal muscular atrophy (SMA) is the most common genetically inherited neurodegenerative disease resulting in infant mortality. SMA is caused by genetic deletion or mutation in the survival of motor neuron 1 (SMN1) gene, which results in reduced levels of the survival of motor neuron (SMN) protein. SMN protein deficiency preferentially affects α- motor neurons, leading to their degeneration and subsequent atrophy of limb and trunk muscles, progressing to death in severe forms of the disease. More recent studies have shown that SMN protein depletion is detrimental to the functioning of other tissues including skeletal muscle, heart, autonomic and enteric nervous systems, metabolic/endocrine (e.g. pancreas), lymphatic, bone and reproductive system. In this review, we summarize studies discussing SMN protein's function in various cell and tissue types and their involvement in the context of SMA disease etiology. Taken together, these studies indicate that SMA is a multi-organ disease, which suggests that truly effective disease intervention may require body-wide correction of SMN protein levels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
[Schizophrenia and cortical GABA neurotransmission].
Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A
2010-01-01
Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra-synaptic GABA-A receptors. Our recent analyses demonstrated that this pattern exists across diverse cortical areas including the prefrontal, anterior cingulate, primary motor, and primary visual cortices. GABA neurotransmission by PV-containing and SST-containing neurons is important for the generation of cortical oscillatory activities in the gamma (30-100 Hz) and theta (4-7 Hz) bands, respectively. These oscillatory activities have been proposed to play critical roles in regulating the efficiency of information transfer between neurons and neuronal networks in the cortex. Altered cortical GABA neurotransmission appears to contribute to disturbances in diverse functions through affecting the generation of cortical oscillations in schizophrenia.
A Co-operative Regulation of Neuronal Excitability by UNC-7 Innexin and NCA/NALCN Leak Channel
2011-01-01
Gap junctions mediate the electrical coupling and intercellular communication between neighboring cells. Some gap junction proteins, namely connexins and pannexins in vertebrates, and innexins in invertebrates, may also function as hemichannels. A conserved NCA/Dmα1U/NALCN family cation leak channel regulates the excitability and activity of vertebrate and invertebrate neurons. In the present study, we describe a genetic and functional interaction between the innexin UNC-7 and the cation leak channel NCA in Caenorhabditis elegans neurons. While the loss of the neuronal NCA channel function leads to a reduced evoked postsynaptic current at neuromuscular junctions, a simultaneous loss of the UNC-7 function restores the evoked response. The expression of UNC-7 in neurons reverts the effect of the unc-7 mutation; moreover, the expression of UNC-7 mutant proteins that are predicted to be unable to form gap junctions also reverts this effect, suggesting that UNC-7 innexin regulates neuronal activity, in part, through gap junction-independent functions. We propose that, in addition to gap junction-mediated functions, UNC-7 innexin may also form hemichannels to regulate C. elegans' neuronal activity cooperatively with the NCA family leak channels. PMID:21489288
Connelly, William M; Crunelli, Vincenzo; Errington, Adam C
2015-11-25
Low-threshold Ca(2+) spikes (LTS) are an indispensible signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson's disease, and schizophrenia. However, although dendritic T-type Ca(2+) channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca(2+) imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca(2+) spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca(2+)/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons. Low-threshold Ca(2+) spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson's disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca(2+) channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca(2+) imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons. Copyright © 2015 Connelly et al.
Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro
2013-10-01
To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.
Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan
2017-01-01
Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2 protein upregulated the level of presynaptic proteins. Finally, gabapentin decreased the expression of presynaptic proteins in mixed cultures by blocking the interaction of thrombospondin 2 and α2δ-1. Taken together, these results indicate that activated macroglia cells may participate in alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure, and macroglia-derived thrombospondin 2 may modulate these changes via binding to its neuronal receptor α2δ-1.
Sokolowski, Katie; Tran, Tuyen; Esumi, Shigeyuki; Kamal, Yasmin; Oboti, Livio; Lischinsky, Julieta; Goodrich, Meredith; Lam, Andrew; Carter, Margaret; Nakagawa, Yasushi; Corbin, Joshua G
2016-05-21
Neurons in the hypothalamus function to regulate the state of the animal during both learned and innate behaviors, and alterations in hypothalamic development may contribute to pathological conditions such as anxiety, depression or obesity. Despite many studies of hypothalamic development and function, the link between embryonic development and innate behaviors remains unexplored. Here, focusing on the embryonically expressed homeodomain-containing gene Developing Brain Homeobox 1 (Dbx1), we explored the relationship between embryonic lineage, post-natal neuronal identity and lineage-specific responses to innate cues. We found that Dbx1 is widely expressed across multiple developing hypothalamic subdomains. Using standard and inducible fate-mapping to trace the Dbx1-derived neurons, we identified their contribution to specific neuronal subtypes across hypothalamic nuclei and further mapped their activation patterns in response to a series of well-defined innate behaviors. Dbx1-derived neurons occupy multiple postnatal hypothalamic nuclei including the lateral hypothalamus (LH), arcuate nucleus (Arc) and the ventral medial hypothalamus (VMH). Within these nuclei, Dbx1 (+) progenitors generate a large proportion of the Pmch-, Nesfatin-, Cart-, Hcrt-, Agrp- and ERα-expressing neuronal populations, and to a lesser extent the Pomc-, TH- and Aromatase-expressing populations. Inducible fate-mapping reveals distinct temporal windows for development of the Dbx1-derived LH and Arc populations, with Agrp(+) and Cart(+) populations in the Arc arising early (E7.5-E9.5), while Pmch(+) and Hcrt(+) populations in the LH derived from progenitors expressing Dbx1 later (E9.5-E11.5). Moreover, as revealed by c-Fos labeling, Dbx1-derived cells in male and female LH, Arc and VMH are responsive during mating and aggression. In contrast, Dbx1-lineage cells in the Arc and LH have a broader behavioral tuning, which includes responding to fasting and predator odor cues. We define a novel fate map of the hypothalamus with respect to Dbx1 expression in hypothalamic progenitor zones. We demonstrate that in a temporally regulated manner, Dbx1-derived neurons contribute to molecularly distinct neuronal populations in the LH, Arc and VMH that have been implicated in a variety of hypothalamic-driven behaviors. Consistent with this, Dbx1-derived neurons in the LH, Arc and VMH are activated during stress and other innate behavioral responses, implicating their involvement in these diverse behaviors.
Synaptic Synthesis, Dephosphorylation, and Degradation
La Montanara, Paolo; Rusconi, Laura; Locarno, Albina; Forti, Lia; Barbiero, Isabella; Tramarin, Marco; Chandola, Chetan; Kilstrup-Nielsen, Charlotte; Landsberger, Nicoletta
2015-01-01
Mutations in the X-linked CDKL5 (cyclin-dependent kinase-like 5) gene have been associated with several forms of neurodevelopmental disorders, including atypical Rett syndrome, autism spectrum disorders, and early infantile epileptic encephalopathy. Accordingly, loss of CDKL5 in mice results in autistic-like features and impaired neuronal communication. Although the biological functions of CDKL5 remain largely unknown, recent pieces of evidence suggest that CDKL5 is involved in neuronal plasticity. Herein, we show that, at all stages of development, neuronal depolarization induces a rapid increase in CDKL5 levels, mostly mediated by extrasomatic synthesis. In young neurons, this induction is prolonged, whereas in more mature neurons, NMDA receptor stimulation induces a protein phosphatase 1-dependent dephosphorylation of CDKL5 that is mandatory for its proteasome-dependent degradation. As a corollary, neuronal activity leads to a prolonged induction of CDKL5 levels in immature neurons but to a short lasting increase of the kinase in mature neurons. Recent results demonstrate that many genes associated with autism spectrum disorders are crucial components of the activity-dependent signaling networks regulating the composition, shape, and strength of the synapse. Thus, we speculate that CDKL5 deficiency disrupts activity-dependent signaling and the consequent synapse development, maturation, and refinement. PMID:25555910
Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.
Tomchik, Seth M
2013-01-30
Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.
LTP Induction Modifies Functional Relationship among Hippocampal Neurons
ERIC Educational Resources Information Center
Yun, Sung H.; Lee, Deok S.; Lee, Hyunjung; Baeg, Eun H.; Kim, Yun B.; Jung, Min W.
2007-01-01
To obtain evidence linking long-term potentiation (LTP) and memory, we examined whether LTP induction modifies functional relationship among neurons in the rat hippocampus. In contrast to neurons in low-frequency stimulated or AP5-treated slices, LTP induction altered "functional connectivity," as defined by the degree of synchronous firing, among…
The Role of Adult-Born Neurons in the Constantly Changing Olfactory Bulb Network
Malvaut, Sarah; Saghatelyan, Armen
2016-01-01
The adult mammalian brain is remarkably plastic and constantly undergoes structurofunctional modifications in response to environmental stimuli. In many regions plasticity is manifested by modifications in the efficacy of existing synaptic connections or synapse formation and elimination. In a few regions, however, plasticity is brought by the addition of new neurons that integrate into established neuronal networks. This type of neuronal plasticity is particularly prominent in the olfactory bulb (OB) where thousands of neuronal progenitors are produced on a daily basis in the subventricular zone (SVZ) and migrate along the rostral migratory stream (RMS) towards the OB. In the OB, these neuronal precursors differentiate into local interneurons, mature, and functionally integrate into the bulbar network by establishing output synapses with principal neurons. Despite continuous progress, it is still not well understood how normal functioning of the OB is preserved in the constantly remodelling bulbar network and what role adult-born neurons play in odor behaviour. In this review we will discuss different levels of morphofunctional plasticity effected by adult-born neurons and their functional role in the adult OB and also highlight the possibility that different subpopulations of adult-born cells may fulfill distinct functions in the OB neuronal network and odor behaviour. PMID:26839709
Tornero, Daniel; Tsupykov, Oleg; Granmo, Marcus; Rodriguez, Cristina; Grønning-Hansen, Marita; Thelin, Jonas; Smozhanik, Ekaterina; Laterza, Cecilia; Wattananit, Somsak; Ge, Ruimin; Tatarishvili, Jemal; Grealish, Shane; Brüstle, Oliver; Skibo, Galina; Parmar, Malin; Schouenborg, Jens; Lindvall, Olle; Kokaia, Zaal
2017-03-01
Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Functional Convergence of Neurons Generated in the Developing and Adult Hippocampus
Piatti, Verónica C; Morgenstern, Nicolás A; Zhao, Chunmei; van Praag, Henriette; Gage, Fred H; Schinder, Alejandro F
2006-01-01
The dentate gyrus of the hippocampus contains neural progenitor cells (NPCs) that generate neurons throughout life. Developing neurons of the adult hippocampus have been described in depth. However, little is known about their functional properties as they become fully mature dentate granule cells (DGCs). To compare mature DGCs generated during development and adulthood, NPCs were labeled at both time points using retroviruses expressing different fluorescent proteins. Sequential electrophysiological recordings from neighboring neurons of different ages were carried out to quantitatively study their major synaptic inputs: excitatory projections from the entorhinal cortex and inhibitory afferents from local interneurons. Our results show that DGCs generated in the developing and adult hippocampus display a remarkably similar afferent connectivity with regard to both glutamate and GABA, the major neurotransmitters. We also demonstrate that adult-born neurons can fire action potentials in response to an excitatory drive, exhibiting a firing behavior comparable to that of neurons generated during development. We propose that neurons born in the developing and adult hippocampus constitute a functionally homogeneous neuronal population. These observations are critical to understanding the role of adult neurogenesis in hippocampal function. PMID:17121455
Wang, Xiuling; Wu, Jianming; Yu, Chonglin; Tang, Yong; Liu, Jian; Chen, Haixia; Jin, Bingjin; Mei, Qibing; Cao, Shousong; Qin, Dalian
2017-01-01
Lychee seed is a traditional Chinese medicine and possesses many activities, including hypoglycemia, liver protection, antioxidation, antivirus, and antitumor. However, its effect on neuroprotection is still unclear. The present study investigated the effects of lychee seed saponins (LSS) on neuroprotection and associated mechanisms. We established a rat model of Alzheimer’s disease (AD) by injecting Aβ25–35 into the lateral ventricle of rats and evaluated the effect of LSS on spatial learning and memory ability via the Morris water maze. Neuronal apoptosis was analyzed by hematoxylin and eosin stain and terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP nick-end labeling analysis, and mRNA expression of caspase-3 and protein expressions of Bax and Bcl-2 by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The results showed that LSS remarkably improved cognitive function and alleviated neuronal injury by inhibiting apoptosis in the hippocampus of AD rats. Furthermore, the mRNA expression of caspase-3 and the protein expression of Bax were downregulated, while the protein expression of Bcl-2 and the ratio of Bcl-2/Bax were increased by LSS. We demonstrate that LSS significantly improves cognitive function and prevent neuronal injury in the AD rats via regulation of the apoptosis pathway. Therefore, LSS may be developed as a nutritional supplement and sold as a drug for AD prevention and/or treatment. PMID:28165366
Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.
2015-01-01
Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880
Ebert, Allison D; Barber, Amelia E; Heins, Brittany M; Svendsen, Clive N
2010-07-01
Huntington's disease (HD) is an autosomal dominant disorder caused by expansion of polyglutamine repeats in the huntingtin gene leading to loss of striatal and cortical neurons followed by deficits in cognition and choreic movements. Growth factor delivery to the brain has shown promise in various models of neurodegenerative diseases, including HD, by reducing neuronal death and thus limiting motor impairment. Here we used mouse neural progenitor cells (mNPCs) as growth factor delivery vehicles in the N171-82Q transgenic mouse model of HD. mNPCs derived from the developing mouse striatum were isolated and infected with lentivirus expressing either glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Next, mNPCs(GDNF) or mNPCs(GFP) were transplanted bilaterally into the striatum of pre-symptomatic N171-82Q mice. We found that mNPCs(GDNF), but not mNPCs(GFP), maintained rotarod function and increased striatal neuron survival out to 3months post-transplantation. Importantly, histological analysis showed GDNF expression through the duration of the experiment. Our data show that mNPCs(GDNF) can survive transplantation, secrete GDNF for several weeks and are able to maintain motor function in this model of HD. Copyright 2010 Elsevier Inc. All rights reserved.
Stepien, Anna E; Tripodi, Marco; Arber, Silvia
2010-11-04
Movement is the behavioral output of neuronal activity in the spinal cord. Motor neurons are grouped into motor neuron pools, the functional units innervating individual muscles. Here we establish an anatomical rabies virus-based connectivity assay in early postnatal mice. We employ it to study the connectivity scheme of premotor neurons, the neuronal cohorts monosynaptically connected to motor neurons, unveiling three aspects of organization. First, motor neuron pools are connected to segmentally widely distributed yet stereotypic interneuron populations, differing for pools innervating functionally distinct muscles. Second, depending on subpopulation identity, interneurons take on local or segmentally distributed positions. Third, cholinergic partition cells involved in the regulation of motor neuron excitability segregate into ipsilaterally and bilaterally projecting populations, the latter exhibiting preferential connections to functionally equivalent motor neuron pools bilaterally. Our study visualizes the widespread yet precise nature of the connectivity matrix for premotor interneurons and reveals exquisite synaptic specificity for bilaterally projecting cholinergic partition cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Luccioli, Stefano; Ben-Jacob, Eshel; Barzilai, Ari; Bonifazi, Paolo; Torcini, Alessandro
2014-01-01
It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity. PMID:25255443
Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z
2017-07-01
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.
Fletcher, Emily V.; Simon, Christian M.; Pagiazitis, John G.; Chalif, Joshua I.; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z.
2017-01-01
Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contribution of their synaptic partners to the disease process is largely unknown. Here, we show that in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission we observed a decrease in the motor neuron firing which could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Increasing neuronal activity pharmacologically by chronic exposure in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease. PMID:28504671
α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons.
Froula, Jessica M; Henderson, Benjamin W; Gonzalez, Jose Carlos; Vaden, Jada H; Mclean, John W; Wu, Yumei; Banumurthy, Gokulakrishna; Overstreet-Wadiche, Linda; Herskowitz, Jeremy H; Volpicelli-Daley, Laura A
2018-05-01
Neuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear. To determine if pathologic α-syn causes neuronal defects, we induced endogenous α-syn to form inclusions resembling those found in diseased brains by treating hippocampal neurons with α-syn fibrils. At seven days after adding fibrils, α-syn inclusions are abundant in axons, but there is no cell death at this time point, allowing us to assess for potential alterations in neuronal function that are not caused by neuron death. We found that exposure of neurons to fibrils caused a significant reduction in mushroom spine densities, adding to the growing body of literature showing that altered spine morphology is a major pathologic phenotype in synucleinopathies. The reduction in spine densities occurred only in wild type neurons and not in neurons from α-syn knockout mice, suggesting that the changes in spine morphology result from fibril-induced corruption of endogenously expressed α-syn. Paradoxically, reduced postsynaptic spine density was accompanied by increased frequency of miniature excitatory postsynaptic currents (EPSCs) and presynaptic docked vesicles, suggesting enhanced presynaptic function. Action-potential dependent activity was unchanged, suggesting compensatory mechanisms responding to synaptic defects. Although activity at the level of the synapse was unchanged, neurons exposed to α-syn fibrils, showed reduced frequency and amplitudes of spontaneous Ca 2+ transients. These findings open areas of research to determine the mechanisms that alter neuronal function in brain regions critical for cognition at time points before neuron death.
Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons
2017-01-01
Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function. SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-injected small dye. After examining many neuronal properties, we determined that this dye defect is cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new molecular factors underpinning FXS dysfunction. PMID:28887386
Vijayakrishnan, Niranjana; Phillips, Scott E.; Broadie, Kendal
2010-01-01
Drosophila temperature-sensitive rolling blackout (rbots) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rboS358A mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase-domain is critical for RBO essential function. Likewise, the rboS358A mutant cannot provide any rescue of endocytic blockade in rbots Garland cells, demonstrating that the lipase-domain is indispensable for non-neuronal endocytosis. In contrast, rbots conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rboS358A mutant, showing that the RBO lipase-domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbots and the well-characterized dynamin GTPase conditional shibire (shits1) mutant. In both non-neuronal cells and neuronal synapses, shits1;rbots phenocopies shits1 endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase-domain dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. PMID:21029287
Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J
2012-06-20
The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.
Oligodendrocyte-Neuron Interactions: Impact on Myelination and Brain Function.
Shimizu, Takeshi; Osanai, Yasuyuki; Ikenaka, Kazuhiro
2018-01-01
In the past, glial cells were considered to be 'glue' cells whose primary role was thought to be merely filling gaps in neural circuits. However, a growing number of reports have indicated the role of glial cells in higher brain function through their interaction with neurons. Myelin was originally thought to be just a sheath structure surrounding neuronal axons, but recently it has been shown that myelin exerts effects on the conduction velocity of neuronal axons even after myelin formation. Therefore, the investigation of glial cell properties and the neuron-glial interactions is important for understanding higher brain function. Moreover, since there are many neurological disorders caused by glial abnormalities, further understanding of glial cell-related diseases and the development of effective therapeutic strategies are warranted. In this review, we focused on oligodendrocyte-neuron interactions, with particular attention on (1) axonal signals underlying oligodendrocyte differentiation and myelination, (2) neuronal activity-dependent myelination and (3) the effects of myelination on higher brain function.
Harwell, Corey C; Parker, Philip R L; Gee, Steven M; Okada, Ami; McConnell, Susan K; Kreitzer, Anatol C; Kriegstein, Arnold R
2012-03-22
The precise connectivity of inputs and outputs is critical for cerebral cortex function; however, the cellular mechanisms that establish these connections are poorly understood. Here, we show that the secreted molecule Sonic Hedgehog (Shh) is involved in synapse formation of a specific cortical circuit. Shh is expressed in layer V corticofugal projection neurons and the Shh receptor, Brother of CDO (Boc), is expressed in local and callosal projection neurons of layer II/III that synapse onto the subcortical projection neurons. Layer V neurons of mice lacking functional Shh exhibit decreased synapses. Conversely, the loss of functional Boc leads to a reduction in the strength of synaptic connections onto layer Vb, but not layer II/III, pyramidal neurons. These results demonstrate that Shh is expressed in postsynaptic target cells while Boc is expressed in a complementary population of presynaptic input neurons, and they function to guide the formation of cortical microcircuitry. Copyright © 2012 Elsevier Inc. All rights reserved.
Barton, Alan J; Valdés, Julio J; Orchard, Robert
2009-01-01
Classical neural networks are composed of neurons whose nature is determined by a certain function (the neuron model), usually pre-specified. In this paper, a type of neural network (NN-GP) is presented in which: (i) each neuron may have its own neuron model in the form of a general function, (ii) any layout (i.e network interconnection) is possible, and (iii) no bias nodes or weights are associated to the connections, neurons or layers. The general functions associated to a neuron are learned by searching a function space. They are not provided a priori, but are rather built as part of an Evolutionary Computation process based on Genetic Programming. The resulting network solutions are evaluated based on a fitness measure, which may, for example, be based on classification or regression errors. Two real-world examples are presented to illustrate the promising behaviour on classification problems via construction of a low-dimensional representation of a high-dimensional parameter space associated to the set of all network solutions.
Margolis, Elyssa B; Lock, Hagar; Hjelmstad, Gregory O; Fields, Howard L
2006-01-01
The ventral tegmental area (VTA) and in particular VTA dopamine (DA) neurons are postulated to play a central role in reward, motivation and drug addiction. However, most evidence implicating VTA DA neurons in these functions is based on indirect electrophysiological characterization, rather than cytochemical identification. These physiological criteria were first established in the substantia nigra pars compacta (SNc), but their validity in the VTA is uncertain. In the current study we found that while 88 ± 2% of SNc neurons labelled by the neuronal marker NeuN were co-labelled for the catecholamine enzyme tyrosine hydroxylase (TH), a much smaller percentage (55 ± 2%) of VTA neurons co-expressed TH. In addition, using in vitro whole-cell recordings we found that widely accepted physiological criteria for VTA DA neurons, including the hyperpolarization-activated inwardly rectifying non-specific cation current (Ih), spike duration, and inhibition by DA D2 receptor agonists, do not reliably predict the DA content of VTA neurons. We could not distinguish DA neurons from other VTA neurons by size, shape, input resistance, Ih size, or spontaneous firing rate. Although the absence of an Ih reliably predicted that a VTA neuron was non-dopaminergic, and Ih(−) neurons differ from Ih(+) neurons in firing rate, interspike interval (ISI) standard deviation, and ISI skew, no physiological property examined here is both sensitive and selective for DA neurons in the VTA. We conclude that reliable physiological criteria for VTA DA neuron identification have yet to be determined, and that the criteria currently being used are unreliable. PMID:16959856
Importance of Being Nernst: Synaptic Activity and Functional Relevance in Stem Cell-derived Neurons
2015-07-26
neurodevelopmental stages. In some cases these factors can be controlled very precisely, such as by the addition of small molecules to promote exit from...neurogenesis[43]. These include markers of the different stages of neurodevelopment , starting from a stem cell state and expressing characteristics of a...neuroligin-3 mutations associated with autism cause post-synaptic dysfunction in iNs when co-cultured with primary neurons[163]. The iN field is still
Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth
Hu, Hui; Ni, Yingchun; Montana, Vedrana; Haddon, Robert C.; Parpura, Vladimir
2009-01-01
We report the use of chemically modified carbon nanotubes as a substrate for cultured neurons. The morphological features of neurons that directly reflect their potential capability in synaptic transmission are characterized. The chemical properties of carbon nanotubes are systematically varied by attaching different functional groups that confer known characteristics to the substrate. By manipulating the charge carried by functionalized carbon nanotubes we are able to control the outgrowth and branching pattern of neuronal processes. PMID:21394241
Lord, Anton R.; Li, Meng; Demenescu, Liliana R.; van den Meer, Johan; Borchardt, Viola; Krause, Anna Linda; Heinze, Hans-Jochen; Breakspear, Michael; Walter, Martin
2017-01-01
The brain's connectivity skeleton—a rich club of strongly interconnected members—was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the “rich club.” Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age (p = 0.001), while the rich club coefficient showed no effect of age (p = 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC (p = 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level. PMID:28439224
Lord, Anton R; Li, Meng; Demenescu, Liliana R; van den Meer, Johan; Borchardt, Viola; Krause, Anna Linda; Heinze, Hans-Jochen; Breakspear, Michael; Walter, Martin
2017-01-01
The brain's connectivity skeleton-a rich club of strongly interconnected members-was initially shown to exist in human structural networks, but recent evidence suggests a functional counterpart. This rich club typically includes key regions (or hubs) from multiple canonical networks, reducing the cost of inter-network communication. The posterior cingulate cortex (PCC), a hub node embedded within the default mode network, is known to facilitate communication between brain networks and is a key member of the "rich club." Here, we assessed how metabolic signatures of neuronal integrity and cortical thickness influence the global extent of a functional rich club as measured using the functional rich club coefficient (fRCC). Rich club estimation was performed on functional connectivity of resting state brain signals acquired at 3T in 48 healthy adult subjects. Magnetic resonance spectroscopy was measured in the same session using a point resolved spectroscopy sequence. We confirmed convergence of functional rich club with a previously established structural rich club. N-acetyl aspartate (NAA) in the PCC is significantly correlated with age ( p = 0.001), while the rich club coefficient showed no effect of age (p = 0.106). In addition, we found a significant quadratic relationship between fRCC and NAA concentration in PCC ( p = 0.009). Furthermore, cortical thinning in the PCC was correlated with a reduced rich club coefficient after accounting for age and NAA. In conclusion, we found that the fRCC is related to a marker of neuronal integrity in a key region of the cingulate cortex. Furthermore, cortical thinning in the same area was observed, suggesting that both cortical thinning and neuronal integrity in the hub regions influence functional integration of at a whole brain level.
Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth
2015-01-01
This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.
Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth
2016-01-01
This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972
Lin, Mingyan; Pedrosa, Erika; Hrabovsky, Anastasia; Chen, Jian; Puliafito, Benjamin R; Gilbert, Stephanie R; Zheng, Deyou; Lachman, Herbert M
2016-11-15
Individuals with 22q11.2 Deletion Syndrome (22q11.2 DS) are a specific high-risk group for developing schizophrenia (SZ), schizoaffective disorder (SAD) and autism spectrum disorders (ASD). Several genes in the deleted region have been implicated in the development of SZ, e.g., PRODH and DGCR8. However, the mechanistic connection between these genes and the neuropsychiatric phenotype remains unclear. To elucidate the molecular consequences of 22q11.2 deletion in early neural development, we carried out RNA-seq analysis to investigate gene expression in early differentiating human neurons derived from induced pluripotent stem cells (iPSCs) of 22q11.2 DS SZ and SAD patients. Eight cases (ten iPSC-neuron samples in total including duplicate clones) and seven controls (nine in total including duplicate clones) were subjected to RNA sequencing. Using a systems level analysis, differentially expressed genes/gene-modules and pathway of interests were identified. Lastly, we related our findings from in vitro neuronal cultures to brain development by mapping differentially expressed genes to BrainSpan transcriptomes. We observed ~2-fold reduction in expression of almost all genes in the 22q11.2 region in SZ (37 genes reached p-value < 0.05, 36 of which reached a false discovery rate < 0.05). Outside of the deleted region, 745 genes showed significant differences in expression between SZ and control neurons (p < 0.05). Function enrichment and network analysis of the differentially expressed genes uncovered converging evidence on abnormal expression in key functional pathways, such as apoptosis, cell cycle and survival, and MAPK signaling in the SZ and SAD samples. By leveraging transcriptome profiles of normal human brain tissues across human development into adulthood, we showed that the differentially expressed genes converge on a sub-network mediated by CDC45 and the cell cycle, which would be disrupted by the 22q11.2 deletion during embryonic brain development, and another sub-network modulated by PRODH, which could contribute to disruption of brain function during adolescence. This study has provided evidence for disruption of potential molecular events in SZ patient with 22q11.2 deletion and related our findings from in vitro neuronal cultures to functional perturbations that can occur during brain development in SZ.
Neuroendocrine control of reproductive aging: roles of GnRH neurons.
Yin, Weiling; Gore, Andrea C
2006-03-01
The process of reproductive senescence in many female mammals, including humans, is characterized by a gradual transition from regular reproductive cycles to irregular cycles to eventual acyclicity, and ultimately a loss of fertility. In the present review, the role of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons is considered in this context. GnRH neurons provide the primary driving force upon the other levels of the reproductive axis. With respect to aging, GnRH cells undergo changes in biosynthesis, processing and release of the GnRH decapeptide. GnRH neurons also exhibit morphologic and ultrastructural alterations that appear to underlie these biosynthetic properties. Thus, functional and morphologic changes in the GnRH neurosecretory system may play causal roles in the transition to acyclicity. In addition, GnRH neurons are regulated by numerous inputs from neurotransmitters, neuromodulators and glia. The relationship among GnRH cells and their inputs at the cell body (thereby affecting GnRH biosynthesis) and the neuroterminal (thereby affecting GnRH neurosecretion) is crucial to the function of the GnRH system, with age-related changes in these relationships contributing to the reproductive senescent process. Therefore, the aging hypothalamus is characterized by changes intrinsic to the GnRH cell, as well as its regulatory inputs, which summate to contribute to a loss of reproductive competence in aging females.
Noise reduction of coincidence detector output by the inferior colliculus of the barn owl.
Christianson, G Björn; Peña, José Luis
2006-05-31
A recurring theme in theoretical work is that integration over populations of similarly tuned neurons can reduce neural noise. However, there are relatively few demonstrations of an explicit noise reduction mechanism in a neural network. Here we demonstrate that the brainstem of the barn owl includes a stage of processing apparently devoted to increasing the signal-to-noise ratio in the encoding of the interaural time difference (ITD), one of two primary binaural cues used to compute the position of a sound source in space. In the barn owl, the ITD is processed in a dedicated neural pathway that terminates at the core of the inferior colliculus (ICcc). The actual locus of the computation of the ITD is before ICcc in the nucleus laminaris (NL), and ICcc receives no inputs carrying information that did not originate in NL. Unlike in NL, the rate-ITD functions of ICcc neurons require as little as a single stimulus presentation per ITD to show coherent ITD tuning. ICcc neurons also displayed a greater dynamic range with a maximal difference in ITD response rates approximately double that seen in NL. These results indicate that ICcc neurons perform a computation functionally analogous to averaging across a population of similarly tuned NL neurons.
Charbogne, Pauline; Gardon, Olivier; Martín-García, Elena; Keyworth, Helen L; Matsui, Aya; Mechling, Anna E; Bienert, Thomas; Nasseef, Taufiq; Robé, Anne; Moquin, Luc; Darcq, Emmanuel; Ben Hamida, Sami; Robledo, Patricia; Matifas, Audrey; Befort, Katia; Gavériaux-Ruff, Claire; Harsan, Laura-Adela; von Elverfeldt, Dominik; Hennig, Jurgen; Gratton, Alain; Kitchen, Ian; Bailey, Alexis; Alvarez, Veronica A; Maldonado, Rafael; Kieffer, Brigitte L
2017-05-01
Mu opioid receptors (MORs) are central to pain control, drug reward, and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in gamma-aminobutyric acidergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward. We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in gamma-aminobutyric acidergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology, and microdialysis; probed neuronal activation by c-Fos immunohistochemistry and resting-state functional magnetic resonance imaging; and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food. Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area, local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, and neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures. Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus, beyond a well-established role in reward processing, operating at the level of local ventral tegmental area neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Castillon, Charlotte; Lunion, Steeve; Desvignes, Nathalie; Hanauer, André; Laroche, Serge; Poirier, Roseline
2018-07-01
Adult neurogenesis is involved in certain hippocampus-dependent cognitive functions and is linked to psychiatric diseases including intellectual disabilities. The Coffin-Lowry syndrome (CLS) is a developmental disorder caused by mutations in the Rsk2 gene and characterized by intellectual disabilities associated with growth retardation. How RSK2-deficiency leads to cognitive dysfunctions in CLS is however poorly understood. Here, using Rsk2 Knock-Out mice, we characterized the impact of RSK2 deficiency on adult hippocampal neurogenesis in vivo. We report that the absence of RSK2 does not affect basal proliferation, differentiation and survival of dentate gyrus adult-born neurons but alters the maturation progression of young immature newborn neurons. Moreover, when RSK2-deficient mice were submitted to spatial learning, in contrast to wild-type mice, proliferation of adult generated neurons was decreased and no pro-survival effect of learning was observed. Thus, learning failed to recruit a selective population of young newborn neurons in association with deficient long-term memory recall. Given the proposed role of the dentate gyrus and of adult-generated newborn neurons in hippocampal-dependent pattern separation function, we explored this function in a delayed non-matching to place task and in an object-place pattern separation task and report severe deficits in spatial pattern separation in Rsk2-KO mice. Together, this study reveals a previously unknown role for RSK2 in the early stages of maturation and learning-dependent involvement of adult-born dentate gyrus neurons. These alterations associated with a deficit in the ability of RSK2-deficient mice to finely discriminate relatively similar spatial configurations, may contribute to cognitive dysfunction in CLS. Copyright © 2018 Elsevier Inc. All rights reserved.
Vogel Ciernia, Annie; Kramár, Enikö A; Matheos, Dina P; Havekes, Robbert; Hemstedt, Thekla J; Magnan, Christophe N; Sakata, Keith; Tran, Ashley; Azzawi, Soraya; Lopez, Alberto; Dang, Richard; Wang, Weisheng; Trieu, Brian; Tong, Joyce; Barrett, Ruth M; Post, Rebecca J; Baldi, Pierre; Abel, Ted; Lynch, Gary; Wood, Marcelo A
2017-05-01
Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53bΔSB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53bΔSB2 mice in an effort to rescue LTP and memory. BAF53bΔSB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders. © 2017 Vogel Ciernia et al.; Published by Cold Spring Harbor Laboratory Press.
Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy
Li, Zhaohui; Li, Xiaoli
2013-01-01
Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662
Hammer, Jiří; Pistohl, Tobias; Fischer, Jörg; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio
2016-01-01
How neuronal activity of motor cortex is related to movement is a central topic in motor neuroscience. Motor-cortical single neurons are more closely related to hand movement velocity than speed, that is, the magnitude of the (directional) velocity vector. Recently, there is also increasing interest in the representation of movement parameters in neuronal population activity, such as reflected in the intracranial EEG (iEEG). We show that in iEEG, contrasting to what has been previously found on the single neuron level, speed predominates over velocity. The predominant speed representation was present in nearly all iEEG signal features, up to the 600–1000 Hz range. Using a model of motor-cortical signals arising from neuronal populations with realistic single neuron tuning properties, we show how this reversal can be understood as a consequence of increasing population size. Our findings demonstrate that the information profile in large population signals may systematically differ from the single neuron level, a principle that may be helpful in the interpretation of neuronal population signals in general, including, for example, EEG and functional magnetic resonance imaging. Taking advantage of the robust speed population signal may help in developing brain–machine interfaces exploiting population signals. PMID:26984895
Divergent roles of growth factors in the GnRH regulation of puberty in mice
DiVall, Sara A.; Williams, Tameeka R.; Carver, Sarah E.; Koch, Linda; Brüning, Jens C.; Kahn, C. Ronald; Wondisford, Fredric; Radovick, Sally; Wolfe, Andrew
2010-01-01
Pubertal onset, initiated by pulsatile gonadotropin-releasing hormone (GnRH), only occurs in a favorable, anabolic hormonal milieu. Anabolic factors that may signal nutritional status to the hypothalamus include the growth factors insulin and IGF-1. It is unclear which hypothalamic neuronal subpopulation these factors affect to ultimately regulate GnRH neuron function in puberty and reproduction. We examined the direct role of the GnRH neuron in growth factor regulation of reproduction using the Cre/lox system. Mice with the IR or IGF-1R deleted specifically in GnRH neurons were generated. Male and female mice with the IR deleted in GnRH neurons displayed normal pubertal timing and fertility, but male and female mice with the IGF-1R deleted in GnRH neurons experienced delayed pubertal development with normal fertility. With IGF-1 administration, puberty was advanced in control females, but not in females with the IGF-1R deleted in GnRH neurons, in control males, or in knockout males. These mice exhibited developmental differences in GnRH neuronal morphology but normal number and distribution of neurons. These studies define the role of IGF-1R signaling in the coordination of somatic development with reproductive maturation and provide insight into the mechanisms regulating pubertal timing in anabolic states. PMID:20628204
Patel, Tapan P.; Ventre, Scott C.; Geddes-Klein, Donna; Singh, Pallab K.
2014-01-01
Alterations in the activity of neural circuits are a common consequence of traumatic brain injury (TBI), but the relationship between single-neuron properties and the aggregate network behavior is not well understood. We recently reported that the GluN2B-containing NMDA receptors (NMDARs) are key in mediating mechanical forces during TBI, and that TBI produces a complex change in the functional connectivity of neuronal networks. Here, we evaluated whether cell-to-cell heterogeneity in the connectivity and aggregate contribution of GluN2B receptors to [Ca2+]i before injury influenced the functional rewiring, spontaneous activity, and network plasticity following injury using primary rat cortical dissociated neurons. We found that the functional connectivity of a neuron to its neighbors, combined with the relative influx of calcium through distinct NMDAR subtypes, together contributed to the individual neuronal response to trauma. Specifically, individual neurons whose [Ca2+]i oscillations were largely due to GluN2B NMDAR activation lost many of their functional targets 1 h following injury. In comparison, neurons with large GluN2A contribution or neurons with high functional connectivity both independently protected against injury-induced loss in connectivity. Mechanistically, we found that traumatic injury resulted in increased uncorrelated network activity, an effect linked to reduction of the voltage-sensitive Mg2+ block of GluN2B-containing NMDARs. This uncorrelated activation of GluN2B subtypes after injury significantly limited the potential for network remodeling in response to a plasticity stimulus. Together, our data suggest that two single-cell characteristics, the aggregate contribution of NMDAR subtypes and the number of functional connections, influence network structure following traumatic injury. PMID:24647941
Johar, Kaid; Priya, Anusha; Dhar, Shilpa; Liu, Qiuli; Wong-Riley, Margaret T T
2013-11-01
Neurons are highly dependent on oxidative metabolism for their energy supply, and cytochrome c oxidase (COX) is a key energy-generating enzyme in the mitochondria. A unique feature of COX is that it is one of only four proteins in mammalian cells that are bigenomically regulated. Of its thirteen subunits, three are encoded in the mitochondrial genome and ten are nuclear-encoded on nine different chromosomes. The mechanism of regulating this multisubunit, bigenomic enzyme poses a distinct challenge. In recent years, we found that nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) mediate such bigenomic coordination. The latest candidate is the specificity factor (Sp) family of proteins. In N2a cells, we found that Sp1 regulates all 13 COX subunits. However, we discovered recently that in primary neurons, it is Sp4 and not Sp1 that regulates some of the key glutamatergic receptor subunit genes. The question naturally arises as to the role of Sp4 in regulating COX in primary neurons. The present study utilized multiple approaches, including chromatin immunoprecipitation, promoter mutational analysis, knockdown and over-expression of Sp4, as well as functional assays to document that Sp4 indeed functionally regulate all 13 subunits of COX as well as mitochondrial transcription factors A and B. The present study discovered that among the specificity family of transcription factors, it is the less known neuron-specific Sp4 that regulates the expression of all 13 subunits of mitochondrial cytochrome c oxidase (COX) enzyme in primary neurons. Sp4 also regulates the three mitochondrial transcription factors (TFAM, TFB1M, and TFB2M) and a COX assembly protein SURF-1 in primary neurons. © 2013 International Society for Neurochemistry.
Gene Expression in Accumbens GABA Neurons from Inbred Rats with Different Drug-Taking Behavior
Sharp, B.M.; Chen, H.; Gong, S.; Wu, X.; Liu, Z.; Hiler, K.; Taylor, W.L.; Matta, S.G.
2011-01-01
Inbred Lewis and Fisher 344 rat strains differ greatly in drug self-administration; Lewis rats operantly self-administer drugs of abuse including nicotine, whereas Fisher self-administer poorly. As shown herein, operant food self-administration is similar. Based on their pivotal role in drug reward, we hypothesized that differences in basal gene expression in GABAergic neurons projecting from nucleus accumbens (NAcc) to ventral pallidum (VP) play a role in vulnerability to drug taking behavior. The transcriptomes of NAcc shell-VP GABAergic neurons from these two strains were analyzed in adolescents, using a multidisciplinary approach that combined stereotaxic ionotophoretic brain microinjections, laser-capture microdissection (LCM) and microarray measurement of transcripts. LCM enriched the gene transcripts detected in GABA neurons compared to the residual NAcc tissue: a ratio of neuron/residual > 1 and false discovery rate (FDR) <5% yielded 6,623 transcripts, whereas a ratio of >3 yielded 3,514. Strain-dependent differences in gene expression within GABA neurons were identified; 322 vs. 60 transcripts showed 1.5-fold vs. 2-fold differences in expression (FDR<5%). Classification by gene ontology showed these 322 transcripts were widely distributed, without categorical enrichment. This is most consistent with a global change in GABA neuron function. Literature-mining by Chilibot found 38 genes related to synaptic plasticity, signaling and gene transcription, all of which determine drug-abuse; 33 genes have no known association with addiction or nicotine. In Lewis rats, upregulation of Mint-1, Cask, CamkIIδ, Ncam1, Vsnl1, Hpcal1 and Car8 indicates these transcripts likely contribute to altered signaling and synaptic function in NAcc GABA projection neurons to VP. PMID:21745336
King, T. Luise; Ruyle, Brian C.; Kline, David D.; Heesch, Cheryl M.
2015-01-01
Brainstem catecholamine neurons modulate sensory information and participate in control of cardiorespiratory function. These neurons have multiple projections, including to the paraventricular nucleus (PVN), which contributes to cardiorespiratory and neuroendocrine responses to hypoxia. We have shown that PVN-projecting catecholaminergic neurons are activated by hypoxia, but the function of these neurons is not known. To test the hypothesis that PVN-projecting catecholamine neurons participate in responses to respiratory challenges, we injected IgG saporin (control; n = 6) or anti-dopamine β-hydroxylase saporin (DSAP; n = 6) into the PVN to retrogradely lesion catecholamine neurons projecting to the PVN. After 2 wk, respiratory measurements (plethysmography) were made in awake rats during normoxia, increasing intensities of hypoxia (12, 10, and 8% O2) and hypercapnia (5% CO2-95% O2). DSAP decreased the number of tyrosine hydroxylase-immunoreactive terminals in PVN and cells counted in ventrolateral medulla (VLM; −37%) and nucleus tractus solitarii (nTS; −36%). DSAP produced a small but significant decrease in respiratory rate at baseline (during normoxia) and at all intensities of hypoxia. Tidal volume and minute ventilation (VE) index also were impaired at higher hypoxic intensities (10-8% O2; e.g., VE at 8% O2: IgG = 181 ± 22, DSAP = 91 ± 4 arbitrary units). Depressed ventilation in DSAP rats was associated with significantly lower arterial O2 saturation at all hypoxic intensities. PVN DSAP also reduced ventilatory responses to 5% CO2 (VE: IgG = 176 ± 21 and DSAP = 84 ± 5 arbitrary units). Data indicate that catecholamine neurons projecting to the PVN are important for peripheral and central chemoreflex respiratory responses and for maintenance of arterial oxygen levels during hypoxic stimuli. PMID:26157062
5-HT6 receptor blockade regulates primary cilia morphology in striatal neurons.
Brodsky, Matthew; Lesiak, Adam J; Croicu, Alex; Cohenca, Nathalie; Sullivan, Jane M; Neumaier, John F
2017-04-01
The 5-HT 6 receptor has been implicated in a variety of cognitive processes including habitual behaviors, learning, and memory. It is found almost exclusively in the brain, is expressed abundantly in striatum, and localizes to neuronal primary cilia. Primary cilia are antenna-like, sensory organelles found on most neurons that receive both chemical and mechanical signals from other cells and the surrounding environment; however, the effect of 5-HT 6 receptor function on cellular morphology has not been examined. We confirmed that 5-HT 6 receptors were localized to primary cilia in wild-type (WT) but not 5-HT 6 knockout (5-HT 6 KO) in both native mouse brain tissue and primary cultured striatal neurons then used primary neurons cultured from WT or 5-HT 6 KO mice to study the function of these receptors. Selective 5-HT 6 antagonists reduced cilia length in neurons cultured from wild-type mice in a concentration and time-dependent manner without altering dendrites, but had no effect on cilia length in 5-HT 6 KO cultured neurons. Varying the expression levels of heterologously expressed 5-HT 6 receptors affected the fidelity of ciliary localization in both WT and 5-HT 6 KO neurons; overexpression lead to increasing amounts of 5-HT 6 localization outside of the cilia but did not alter cilia morphology. Introducing discrete mutations into the third cytoplasmic loop of the 5-HT 6 receptor greatly reduced, but did not entirely eliminate, trafficking of the 5-HT 6 receptor to primary cilia. These data suggest that blocking 5-HT 6 receptor activity reduces the length of primary cilia and that mechanisms that regulate trafficking of 5-HT 6 receptors to cilia are more complex than previously thought. Copyright © 2017 Elsevier B.V. All rights reserved.
Ge, Shun-Nan; Ma, Yun-Fei; Hioki, Hiroyuki; Wei, Yan-Yan; Kaneko, Takeshi; Mizuno, Noboru; Gao, Guo-Dong; Li, Jin-Lian
2010-08-01
VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual-fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1- and VGLUT2-expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1-, VGLUT2-, and VGLUT1/VGLUT2-expressing ones, remain unsettled. (c) 2010 Wiley-Liss, Inc.
Skrapits, Katalin; Kanti, Vivien; Savanyú, Zsófia; Maurnyi, Csilla; Szenci, Ottó; Horváth, András; Borsay, Beáta Á.; Herczeg, László; Liposits, Zsolt; Hrabovszky, Erik
2015-01-01
Hypophysiotropic projections of gonadotropin-releasing hormone (GnRH)-synthesizing neurons form the final common output way of the hypothalamus in the neuroendocrine control of reproduction. Several peptidergic neuronal systems of the medial hypothalamus innervate human GnRH cells and mediate crucially important hormonal and metabolic signals to the reproductive axis, whereas much less is known about the contribution of the lateral hypothalamic area to the afferent control of human GnRH neurons. Orexin (ORX)- and melanin-concentrating hormone (MCH)-synthesizing neurons of this region have been implicated in diverse behavioral and autonomic processes, including sleep and wakefulness, feeding and other functions. In the present immunohistochemical study, we addressed the anatomical connectivity of these neurons to human GnRH cells in post-mortem hypothalamic samples obtained from autopsies. We found that 38.9 ± 10.3% and 17.7 ± 3.3% of GnRH-immunoreactive (IR) perikarya in the infundibular nucleus of human male subjects received ORX-IR and MCH-IR contacts, respectively. On average, each 1 mm segment of GnRH dendrites received 7.3 ± 1.1 ORX-IR and 3.7 ± 0.5 MCH-IR axo-dendritic appositions. Overall, the axo-dendritic contacts dominated over the axo-somatic contacts and represented 80.5 ± 6.4% of ORX-IR and 76.7 ± 4.6% of MCH-IR inputs to GnRH cells. Based on functional evidence from studies of laboratory animals, the direct axo-somatic and axo-dendritic input from ORX and MCH neurons to the human GnRH neuronal system may convey critical metabolic and other homeostatic signals to the reproducive axis. In this study, we also report the generation and characterization of new antibodies for immunohistochemical detection of GnRH neurons in histological sections. PMID:26388735
Shining light on neurons--elucidation of neuronal functions by photostimulation.
Eder, Matthias; Zieglgänsberger, Walter; Dodt, Hans-Ulrich
2004-01-01
Many neuronal functions can be elucidated by techniques that allow for a precise stimulation of defined regions of a neuron and its afferents. Photolytic release of neurotransmitters from 'caged' derivates in the vicinity of visualized neurons in living brain slices meets this request. This technique allows the study of the subcellular distribution and properties of functional native neurotransmitter receptors. These are prerequisites for a detailed analysis of the expression and spatial specificity of synaptic plasticity. Photostimulation can further be used to fast map the synaptic connectivity between nearby and, more importantly, distant cells in a neuronal network. Here we give a personal review of some of the technical aspects of photostimulation and recent findings, which illustrate the advantages of this technique.
Sagal, Jonathan; Zhan, Xiping; Xu, Jinchong; Tilghman, Jessica; Karuppagounder, Senthilkumar S; Chen, Li; Dawson, Valina L; Dawson, Ted M; Laterra, John; Ying, Mingyao
2014-08-01
Human pluripotent stem cells (PSCs) are a promising cell resource for various applications in regenerative medicine. Highly efficient approaches that differentiate human PSCs into functional lineage-specific neurons are critical for modeling neurological disorders and testing potential therapies. Proneural transcription factors are crucial drivers of neuron development and hold promise for driving highly efficient neuronal conversion in PSCs. Here, we study the functions of proneural transcription factor Atoh1 in the neuronal differentiation of PSCs. We show that Atoh1 is induced during the neuronal conversion of PSCs and that ectopic Atoh1 expression is sufficient to drive PSCs into neurons with high efficiency. Atoh1 induction, in combination with cell extrinsic factors, differentiates PSCs into functional dopaminergic (DA) neurons with >80% purity. Atoh1-induced DA neurons recapitulate key biochemical and electrophysiological features of midbrain DA neurons, the degeneration of which is responsible for clinical symptoms in Parkinson's disease (PD). Atoh1-induced DA neurons provide a reliable disease model for studying PD pathogenesis, such as neurotoxin-induced neurodegeneration in PD. Overall, our results determine the role of Atoh1 in regulating neuronal differentiation and neuron subtype specification of human PSCs. Our Atoh1-mediated differentiation approach will enable large-scale applications of PD patient-derived midbrain DA neurons in mechanistic studies and drug screening for both familial and sporadic PD. ©AlphaMed Press.
Brain metabolism in health, aging, and neurodegeneration.
Camandola, Simonetta; Mattson, Mark P
2017-06-01
Brain cells normally respond adaptively to bioenergetic challenges resulting from ongoing activity in neuronal circuits, and from environmental energetic stressors such as food deprivation and physical exertion. At the cellular level, such adaptive responses include the "strengthening" of existing synapses, the formation of new synapses, and the production of new neurons from stem cells. At the molecular level, bioenergetic challenges result in the activation of transcription factors that induce the expression of proteins that bolster the resistance of neurons to the kinds of metabolic, oxidative, excitotoxic, and proteotoxic stresses involved in the pathogenesis of brain disorders including stroke, and Alzheimer's and Parkinson's diseases. Emerging findings suggest that lifestyles that include intermittent bioenergetic challenges, most notably exercise and dietary energy restriction, can increase the likelihood that the brain will function optimally and in the absence of disease throughout life. Here, we provide an overview of cellular and molecular mechanisms that regulate brain energy metabolism, how such mechanisms are altered during aging and in neurodegenerative disorders, and the potential applications to brain health and disease of interventions that engage pathways involved in neuronal adaptations to metabolic stress. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Frédéric, Melissa Y; Lundin, Victor F; Whiteside, Matthew D; Cueva, Juan G; Tu, Domena K; Kang, S Y Catherine; Singh, Hansmeet; Baillie, David L; Hutter, Harald; Goodman, Miriam B; Brinkman, Fiona S L; Leroux, Michel R
2013-01-01
The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the 'metazoanome'), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types. Global analyses of previously-characterized core metazoan genes suggest a prevalent property, namely that they act as partially redundant modifiers of ancient eukaryotic pathways. Our data also highlights the importance of exaptation of pre-existing genetic tools during metazoan evolution. Expression studies in C. elegans revealed that many metazoan-specific genes, including tubulin folding cofactor E-like (TBCEL/coel-1), are expressed in neurons. We used C. elegans COEL-1 as a representative to experimentally validate the metazoan-specific character of our dataset. We show that coel-1 disruption results in developmental hypersensitivity to the microtubule drug paclitaxel/taxol, and that overexpression of coel-1 has broad effects during embryonic development and perturbs specialized microtubules in the touch receptor neurons (TRNs). In addition, coel-1 influences the migration, neurite outgrowth and mechanosensory function of the TRNs, and functionally interacts with components of the tubulin acetylation/deacetylation pathway. Together, our findings unveil a conserved molecular toolbox fundamental to metazoan biology that contains a number of neuronally expressed and disease-related genes, and reveal a key role for TBCEL/coel-1 in regulating microtubule function during metazoan development and neuronal differentiation.
Oaks, Adam W; Zamarbide, Marta; Tambunan, Dimira E; Santini, Emanuela; Di Costanzo, Stefania; Pond, Heather L; Johnson, Mark W; Lin, Jeff; Gonzalez, Dilenny M; Boehler, Jessica F; Wu, Guangying K; Klann, Eric; Walsh, Christopher A; Manzini, M Chiara
2017-02-01
Loss-of-function (LOF) mutations in CC2D1A cause a spectrum of neurodevelopmental disorders, including intellectual disability, autism spectrum disorder, and seizures, identifying a critical role for this gene in cognitive and social development. CC2D1A regulates intracellular signaling processes that are critical for neuronal function, but previous attempts to model the human LOF phenotypes have been prevented by perinatal lethality in Cc2d1a-deficient mice. To overcome this challenge, we generated a floxed Cc2d1a allele for conditional removal of Cc2d1a in the brain using Cre recombinase. While removal of Cc2d1a in neuronal progenitors using Cre expressed from the Nestin promoter still causes death at birth, conditional postnatal removal of Cc2d1a in the forebrain via calcium/calmodulin-dependent protein kinase II-alpha (CamKIIa) promoter-driven Cre generates animals that are viable and fertile with grossly normal anatomy. Analysis of neuronal morphology identified abnormal cortical dendrite organization and a reduction in dendritic spine density. These animals display deficits in neuronal plasticity and in spatial learning and memory that are accompanied by reduced sociability, hyperactivity, anxiety, and excessive grooming. Cc2d1a conditional knockout mice therefore recapitulate features of both cognitive and social impairment caused by human CC2D1A mutation, and represent a model that could provide much needed insights into the developmental mechanisms underlying nonsyndromic neurodevelopmental disorders. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kim, Yoonhee; Zhang, Yinhua; Pang, Kaifang; Kang, Hyojin; Park, Heejoo; Lee, Yeunkum; Lee, Bokyoung; Lee, Heon-Jeong; Kim, Won-Ki; Geum, Dongho
2016-01-01
Bipolar disorder (BD), characterized by recurrent mood swings between depression and mania, is a highly heritable and devastating mental illness with poorly defined pathophysiology. Recent genome-wide molecular genetic studies have identified several protein-coding genes and microRNAs (miRNAs) significantly associated with BD. Notably, some of the proteins expressed from BD-associated genes function in neuronal synapses, suggesting that abnormalities in synaptic function could be one of the key pathogenic mechanisms of BD. In contrast, however, the role of BD-associated miRNAs in disease pathogenesis remains largely unknown, mainly because of a lack of understanding about their target mRNAs and pathways in neurons. To address this problem, in this study, we focused on a recently identified BD-associated but uncharacterized miRNA, miR-1908-5p. We identified and validated its novel target genes including DLGAP4, GRIN1, STX1A, CLSTN1 and GRM4, which all function in neuronal glutamatergic synapses. Moreover, bioinformatic analyses of human brain expression profiles revealed that the expression levels of miR-1908-5p and its synaptic target genes show an inverse-correlation in many brain regions. In our preliminary experiments, the expression of miR-1908-5p was increased after chronic treatment with valproate but not lithium in control human neural progenitor cells. In contrast, it was decreased by valproate in neural progenitor cells derived from dermal fibroblasts of a BD subject. Together, our results provide new insights into the potential role of miR-1908-5p in the pathogenesis of BD and also propose a hypothesis that neuronal synapses could be a key converging pathway of some BD-associated protein-coding genes and miRNAs. PMID:28035180
Intrinsic Properties of Larval Zebrafish Neurons in Ethanol
Ikeda, Hiromi; Delargy, Alison H.; Yokogawa, Tohei; Urban, Jason M.; Burgess, Harold A.; Ono, Fumihito
2013-01-01
The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca2+] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets. PMID:23658822
Gender differences in human single neuron responses to male emotional faces
Newhoff, Morgan; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.
2015-01-01
Well-documented differences in the psychology and behavior of men and women have spurred extensive exploration of gender's role within the brain, particularly regarding emotional processing. While neuroanatomical studies clearly show differences between the sexes, the functional effects of these differences are less understood. Neuroimaging studies have shown inconsistent locations and magnitudes of gender differences in brain hemodynamic responses to emotion. To better understand the neurophysiology of these gender differences, we analyzed recordings of single neuron activity in the human brain as subjects of both genders viewed emotional expressions. This study included recordings of single-neuron activity of 14 (6 male) epileptic patients in four brain areas: amygdala (236 neurons), hippocampus (n = 270), anterior cingulate cortex (n = 256), and ventromedial prefrontal cortex (n = 174). Neural activity was recorded while participants viewed a series of avatar male faces portraying positive, negative or neutral expressions. Significant gender differences were found in the left amygdala, where 23% (n = 15∕66) of neurons in men were significantly affected by facial emotion, vs. 8% (n = 6∕76) of neurons in women. A Fisher's exact test comparing the two ratios found a highly significant difference between the two (p < 0.01). These results show specific differences between genders at the single-neuron level in the human amygdala. These differences may reflect gender-based distinctions in evolved capacities for emotional processing and also demonstrate the importance of including subject gender as an independent factor in future studies of emotional processing by single neurons in the human amygdala. PMID:26441597
Tupone, Domenico; Madden, Christopher J; Cano, Georgina; Morrison, Shaun F
2011-11-02
Orexin (hypocretin) neurons, located exclusively in the PeF-LH, which includes the perifornical area (PeF), the lateral hypothalamus (LH), and lateral portions of the medial hypothalamus, have widespread projections and influence many physiological functions, including the autonomic regulation of body temperature and energy metabolism. Narcolepsy is characterized by the loss of orexin neurons and by disrupted sleep, but also by dysregulation of body temperature and by a strong tendency for obesity. Heat production (thermogenesis) in brown adipose tissue (BAT) contributes to the maintenance of body temperature and, through energy consumption, to body weight regulation. We identified a neural substrate for the influence of orexin neurons on BAT thermogenesis in rat. Nanoinjection of orexin-A (12 pmol) into the rostral raphe pallidus (rRPa), the site of BAT sympathetic premotor neurons, produced large, sustained increases in BAT sympathetic outflow and in BAT thermogenesis. Activation of neurons in the PeF-LH also enhanced BAT thermogenesis over a long time course. Combining viral retrograde tracing from BAT, or cholera toxin subunit b tracing from rRPa, with orexin immunohistochemistry revealed synaptic connections to BAT from orexin neurons in PeF-LH and from rRPa neurons with closely apposed, varicose orexin fibers, as well as a direct, orexinergic projection from PeF-LH to rRPa. These results indicate a potent modulation of BAT thermogenesis by orexin released from the terminals of orexin neurons in PeF-LH directly into the rRPa and provide a potential mechanism contributing to the disrupted regulation of body temperature and energy metabolism in the absence of orexin.
2014-01-01
Several morphometric studies have revealed smaller than normal neurons in the neocortex of autistic subjects. To test the hypothesis that abnormal neuronal growth is a marker of an autism-associated global encephalopathy, neuronal volumes were estimated in 16 brain regions, including various subcortical structures, Ammon’s horn, archicortex, cerebellum, and brainstem in 14 brains from individuals with autism 4 to 60 years of age and 14 age-matched control brains. This stereological study showed a significantly smaller volume of neuronal soma in 14 of 16 regions in the 4- to 8-year-old autistic brains than in the controls. Arbitrary classification revealed a very severe neuronal volume deficit in 14.3% of significantly altered structures, severe in 50%, moderate in 21.4%, and mild in 14.3% structures. This pattern suggests desynchronized neuronal growth in the interacting neuronal networks involved in the autistic phenotype. The comparative study of the autistic and control subject brains revealed that the number of structures with a significant volume deficit decreased from 14 in the 4- to 8-year-old autistic subjects to 4 in the 36- to 60-year-old. Neuronal volumes in 75% of the structures examined in the older adults with autism are comparable to neuronal volume in age-matched controls. This pattern suggests defects of neuronal growth in early childhood and delayed up-regulation of neuronal growth during adolescence and adulthood reducing neuron soma volume deficit in majority of examined regions. However, significant correction of neuron size but limited clinical improvements suggests that delayed correction does not restore functional deficits. PMID:24612906
Carter, D A; Choong, Y-T; Connelly, A A; Bassi, J K; Hunter, N O; Thongsepee, N; Llewellyn-Smith, I J; Fong, A Y; McDougall, S J; Allen, A M
2017-10-01
Angiotensin II acts via two main receptors within the central nervous system, with the type 1A receptor (AT 1A R) most widely expressed in adult neurons. Activation of the AT 1 R in the nucleus of the solitary tract (NTS), the principal nucleus receiving central synapses of viscerosensory afferents, modulates cardiovascular reflexes. Expression of the AT 1 R occurs in high density within the NTS of most mammals, including humans, but the fundamental electrophysiological and neurochemical characteristics of the AT 1A R-expressing NTS neurons are not known. To address this, we have used a transgenic mouse, in which the AT 1A R promoter drives expression of green fluorescent protein (GFP). Approximately one-third of AT 1A R-expressing neurons express the catecholamine-synthetic enzyme tyrosine hydroxylase (TH), and a subpopulation of these stained for the transcription factor paired-like homeobox 2b (Phox2b). A third group, comprising approximately two-thirds of the AT 1A R-expressing NTS neurons, showed Phox2b immunoreactivity alone. A fourth group in the ventral subnucleus expressed neither TH nor Phox2b. In whole cell recordings from slices in vitro, AT 1A R-GFP neurons exhibited voltage-activated potassium currents, including the transient outward current and the M-type potassium current. In two different mouse strains, both AT 1A R-GFP neurons and TH-GFP neurons showed similar AT 1A R-mediated depolarizing responses to superfusion with angiotensin II. These data provide a comprehensive description of AT 1A R-expressing neurons in the NTS and increase our understanding of the complex actions of this neuropeptide in the modulation of viscerosensory processing. Copyright © 2017 the American Physiological Society.
Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex
Corcoran, Andrea E.; Brust, Rachael D.; Chang, YoonJeung; Nattie, Eugene E.
2017-01-01
Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 (Tac1) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1, referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine-N-oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO2. Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using genetic tools, we characterize a 5-HT neuron subtype defined by expression of Tachykinin1 and Pet1 (Tac1-Pet1 neurons), mapping soma localization to the caudal medulla primarily and axonal projections to brainstem motor nuclei most prominently, and, when silenced, observed blunting of the ventilatory response to inhaled CO2. Tac1-Pet1 neurons thus appear distinct from and contrast previously described Egr2-Pet1 neurons, which project primarily to chemosensory integration centers and are themselves chemosensitive. PMID:28073937
2011-06-30
Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti Alan J. Grant, Joseph C...Dickens JC (2011) Functional Characterization of the Octenol Receptor Neuron on the Maxillary Palps of the Yellow Fever Mosquito, Aedes aegypti . PLoS...palps. Both sexes of mosquitoes possess basiconic sensilla that contain three neurons; in Aedes aegypti these sensilla number about 35 in females and 21
Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish
Lenkowski, Jenny R.; Raymond, Pamela A.
2014-01-01
Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine. PMID:24412518
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.
Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A
2018-01-01
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.