Sample records for functions including shock

  1. Utility of Functional Hemodynamics and Echocardiography to Aid Diagnosis and Management of Shock.

    PubMed

    McGee, William T; Raghunathan, Karthik; Adler, Adam C

    2015-12-01

    The utility of functional hemodynamics and bedside ultrasonography is increasingly recognized as advantageous for both improved diagnosis and management of shock states. In contrast to conventional "static" measures, "dynamic" hemodynamic measures and bedside imaging modalities enhance pathophysiology-based comprehensive understanding of shock states and the response to therapy. The current editions of major textbooks in the primary specialties--in which clinicians routinely encounter patients in shock--including surgery, anesthesia, emergency medicine, and internal medicine continue to incorporate traditional (conventional) descriptions of shock that use well-described (but potentially misleading) intravascular pressures to classify shock states. Reliance on such intravascular pressure measurements is not as helpful as newer "dynamic" functional measures including ultrasonography to both better assess volume responsiveness and biventricular cardiac function. This review thus emphasizes the application of current functional hemodynamics and ultrasonography to the diagnosis and management of shock as a contrast to conventional "static" pressure-based measures.

  2. Assessment of renal injury with a clinical dual head lithotriptor delivering 240 shock waves per minute.

    PubMed

    Handa, Rajash K; McAteer, James A; Evan, Andrew P; Connors, Bret A; Pishchalnikov, Yuri A; Gao, Sujuan

    2009-02-01

    Lithotriptors with 2 treatment heads deliver shock waves along separate paths. Firing 1 head and then the other in alternating mode has been suggested as a strategy to treat stones twice as rapidly as with conventional shock wave lithotripsy. Because the shock wave rate is known to have a role in shock wave lithotripsy induced injury, and given that treatment using 2 separate shock wave sources exposes more renal tissue to shock wave energy than treatment with a conventional lithotriptor, we assessed renal trauma in pigs following treatment at rapid rate (240 shock waves per minute and 120 shock waves per minute per head) using a Duet lithotriptor (Direx Medical Systems, Petach Tikva, Israel) fired in alternating mode. Eight adult female pigs (Hardin Farms, Danville, Indiana) each were treated with sham shock wave lithotripsy or 2,400 shock waves delivered in alternating mode (1,200 shock waves per head, 120 shock waves per minute per head and 240 shock waves per minute overall at a power level of 10) to the lower renal pole. Renal functional parameters, including glomerular filtration rate and effective renal plasma flow, were determined before and 1 hour after shock wave lithotripsy. The kidneys were perfusion fixed in situ and the hemorrhagic lesion was quantified as a percent of functional renal volume. Shock wave treatment resulted in no significant change in renal function and the response was similar to the functional response seen in sham shock wave treated animals. In 6 pigs treated with alternating mode the renal lesion was small at a mean +/- SEM of 0.22% +/- 0.09% of functional renal volume. Kidney tissue and function were minimally affected by a clinical dose of shock waves delivered in alternating mode (120 shock waves per minute per head and 240 shock waves per minute overall) with a Duet lithotriptor. These observations decrease concern that dual head lithotripsy at a rapid rate is inherently dangerous.

  3. Impaired left atrial function predicts inappropriate shocks in primary prevention implantable cardioverter-defibrillator candidates.

    PubMed

    Tao, Susumu; Ashikaga, Hiroshi; Ciuffo, Luisa A; Yoneyama, Kihei; Lima, Joao A C; Frank, Terry F; Weiss, Robert G; Tomaselli, Gordon F; Wu, Katherine C

    2017-07-01

    Inappropriate implantable cardioverter-defibrillator (ICD) shocks, commonly caused by atrial fibrillation (AF), are associated with an increased mortality. Because impaired left atrial (LA) function predicts development of AF, we hypothesized that impaired LA function predicts inappropriate shocks beyond a history of AF. We prospectively analyzed the association between LA function and incident inappropriate shocks in primary prevention ICD candidates. In the Prospective Observational Study of ICD (PROSE-ICD), we assessed LA function using tissue-tracking cardiac magnetic resonance (CMR) prior to ICD implantation. A total of 162 patients (113 males, age 56 ± 15 years) were included. During the mean follow-up of 4.0 ± 2.9 years, 26 patients (16%) experienced inappropriate shocks due to AF (n = 19; 73%), supraventricular tachycardia (n = 5; 19%), and abnormal sensing (n = 2; 8%). In univariable analyses, inappropriate shocks were associated with AF history prior to ICD implantation, age below 70 years, QRS duration less than 120 milliseconds, larger LA minimum volume, lower LA stroke volume, lower LA emptying fraction, impaired LA maximum and preatrial contraction strains (S max and S preA ), and impaired LA strain rate during left ventricular systole and atrial contraction (SR s and SR a ). In multivariable analysis, impaired S max (hazard ratio [HR]: 0.96, P = 0.044), S preA (HR: 0.94, P = 0.030), and SR a (HR: 0.25, P < 0.001) were independently associated with inappropriate shocks. The receiver-operating characteristics curve showed that SR a improved the predictive value beyond the patient demographics including AF history (P = 0.033). Impaired LA function assessed by tissue-tracking CMR is an independent predictor of inappropriate shocks in primary prevention ICD candidates beyond AF history. © 2017 Wiley Periodicals, Inc.

  4. Myocardial effects of local shock wave therapy in a Langendorff model.

    PubMed

    Becker, M; Goetzenich, A; Roehl, A B; Huebel, C; de la Fuente, M; Dietz-Laursonn, K; Radermacher, K; Rossaint, R; Hein, M

    2014-01-01

    Applying shock waves to the heart has been reported to stimulate the heart and alter cardiac function. We hypothesized that shock waves could be used to diagnose regional viability. We used a Langendorff model to investigate the acute effects of shock waves at different energy levels and times related to systole, cycle duration and myocardial function. We found only a small time window to use shock waves. Myocardial fibrillation or extrasystolic beats will occur if the shock wave is placed more than 15 ms before or 30 ms after the onset of systole. Increased contractility and augmented relaxation were observed after the second beat, and these effects decreased after prolonging the shock wave delay from 15 ms before to 30 ms after the onset of systole. An energy dependency could be found only after short delays (-15 ms). The involved processes might include post-extrasystolic potentiation and simultaneous pacing. In summary, we found that low-energy shock waves can be a useful tool to stimulate the myocardium at a distance and influence function. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Entropy generation across Earth's collisionless bow shock.

    PubMed

    Parks, G K; Lee, E; McCarthy, M; Goldstein, M; Fu, S Y; Cao, J B; Canu, P; Lin, N; Wilber, M; Dandouras, I; Réme, H; Fazakerley, A

    2012-02-10

    Earth's bow shock is a collisionless shock wave but entropy has never been directly measured across it. The plasma experiments on Cluster and Double Star measure 3D plasma distributions upstream and downstream of the bow shock allowing calculation of Boltzmann's entropy function H and his famous H theorem, dH/dt≤0. The collisionless Boltzmann (Vlasov) equation predicts that the total entropy does not change if the distribution function across the shock becomes nonthermal, but it allows changes in the entropy density. Here, we present the first direct measurements of entropy density changes across Earth's bow shock and show that the results generally support the model of the Vlasov analysis. These observations are a starting point for a more sophisticated analysis that includes 3D computer modeling of collisionless shocks with input from observed particles, waves, and turbulences.

  6. Universal hydrodynamic flow in holographic planar shock collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesler, Paul M.; Kilbertus, Niki; van der Schee, Wilke

    2015-11-20

    We study the collision of planar shock waves in AdS 5 as a function of shock profile. In the dual field theory the shock waves describe planar sheets of energy whose collision results in the formation of a plasma which behaves hydrodynamically at late times. We find that the post-collision stress tensor near the light cone exhibits transient non-universal behavior which depends on both the shock width and the precise functional form of the shock profile. However, over a large range of shock widths, including those which yield qualitative different behavior near the future light cone, and for different shockmore » profiles, we find universal behavior in the subsequent hydrodynamic evolution. In addition, we compute the rapidity distribution of produced particles and find it to be well described by a Gaussian.« less

  7. Shocks and storm sudden commencements

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Slavin, J. A.; Zwickl, R. D.; Bame, S. J.

    1986-01-01

    Recent gains in understanding the relationship between shocks and storm sudden commencements (SSCs) are reviewed with emphasis on spacecraft observations in general and ISEE-3 observations in particular. The topics discussed include the relation of SSC amplitude to increase in solar wind pressure, the inference of shock properties from SSC amplitudes, SSCs as representative of the transient response of the magnetosphere to a step function input, and magnetic storms accompanying shocks.

  8. Normal- and oblique-shock flow parameters in equilibrium air including attached-shock solutions for surfaces at angles of attack, sweep, and dihedral

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Souders, S. W.

    1975-01-01

    Normal- and oblique-shock flow parameters for air in thermochemical equilibrium are tabulated as a function of shock angle for altitudes ranging from 15.24 km to 91.44 km in increments of 7.62 km at selected hypersonic speeds. Post-shock parameters tabulated include flow-deflection angle, velocity, Mach number, compressibility factor, isentropic exponent, viscosity, Reynolds number, entropy difference, and static pressure, temperature, density, and enthalpy ratios across the shock. A procedure is presented for obtaining oblique-shock flow properties in equilibrium air on surfaces at various angles of attack, sweep, and dihedral by use of the two-dimensional tabulations. Plots of the flow parameters against flow-deflection angle are presented at altitudes of 30.48, 60.96, and 91.44 km for various stream velocities.

  9. Existence and Stability of Viscoelastic Shock Profiles

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Lewicka, Marta; Zumbrun, Kevin

    2011-05-01

    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic-parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and nonclassical type shock profiles.

  10. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartavykh, Y. Y.; Dröge, W.; Gedalin, M.

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock formore » which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.« less

  11. Onion-shell model of cosmic ray acceleration in supernova remnants

    NASA Technical Reports Server (NTRS)

    Bogdan, T. J.; Volk, H. J.

    1983-01-01

    A method is devised to approximate the spatially averaged momentum distribution function for the accelerated particles at the end of the active lifetime of a supernova remnant. The analysis is confined to the test particle approximation and adiabatic losses are oversimplified, but unsteady shock motion, evolving shock strength, and non-uniform gas flow effects on the accelerated particle spectrum are included. Monoenergetic protons are injected at the shock front. It is found that the dominant effect on the resultant accelerated particle spectrum is a changing spectral index with shock strength. High energy particles are produced in early phases, and the resultant distribution function is a slowly varying power law over several orders of magnitude, independent of the specific details of the supernova remnant.

  12. Volume Overload: Prevalence, Risk Factors, and Functional Outcome in Survivors of Septic Shock

    PubMed Central

    Carlbom, David; Caldwell, Ellen; Himmelfarb, Jonathan; Hough, Catherine L.

    2015-01-01

    Rationale: Survivors of septic shock have impaired functional status. Volume overload is associated with poor outcomes in patients with septic shock, but the impact of volume overload on functional outcome and discharge destination of survivors is unknown. Objectives: This study describes patterns of fluid management both during and after septic shock. We examined factors associated with volume overload upon intensive care unit (ICU) discharge. We then examined associations between volume overload upon ICU discharge, mobility limitation, and discharge to a healthcare facility in septic shock survivors, with the hypothesis that volume overload is associated with increased odds of these outcomes. Methods: We retrospectively reviewed the medical records of 247 patients admitted with septic shock to an academic county hospital between June 2009 and April 2012 who survived to ICU discharge. We defined volume overload as a fluid balance expected to increase the subject’s admission weight by 10%. Statistical methods included unadjusted analyses and multivariable logistic regression. Measurements and Main Results: Eighty-six percent of patients had a positive fluid balance, and 35% had volume overload upon ICU discharge. Factors associated with volume overload in unadjusted analyses included more severe illness, cirrhosis, blood transfusion during shock, and higher volumes of fluid administration both during and after shock. Blood transfusion during shock was independently associated with increased odds of volume overload (odds ratio [OR], 2.65; 95% confidence interval [CI], 1.33–5.27; P = 0.01) after adjusting for preexisting conditions and severity of illness. Only 42% of patients received at least one dose of a diuretic during their hospitalization. Volume overload upon ICU discharge was independently associated with inability to ambulate upon hospital discharge (OR, 2.29; 95% CI, 1.24–4.25; P = 0.01) and, in patients admitted from home, upon discharge to a healthcare facility (OR, 2.34; 95% CI, 1.1–4.98; P = 0.03). Conclusions: Volume overload is independently associated with impaired mobility and discharge to a healthcare facility in survivors of septic shock. Prevention and treatment of volume overload in patients with septic shock warrants further investigation. PMID:26394090

  13. Does extracorporeal shock wave lithotripsy cause hearing impairment in children?

    PubMed

    Tuncer, Murat; Sahin, Cahit; Yazici, Ozgur; Kafkasli, Alper; Turk, Akif; Erdogan, Banu A; Faydaci, Gokhan; Sarica, Kemal

    2015-03-01

    We evaluated the possible effects of noise created by high energy shock waves on the hearing function of children treated with extracorporeal shock wave lithotripsy. A total of 65 children with normal hearing function were included in the study. Patients were divided into 3 groups, ie those becoming stone-free after 1 session of shock wave lithotripsy (group 1, 22 children), those requiring 3 sessions to achieve stone-free status (group 2, 21) and healthy children/controls (group 3, 22). Extracorporeal shock wave lithotripsy was applied with patients in the supine position with a 90-minute frequency and a total of 2,000 shock waves in each session (Compact Sigma, Dornier MedTech, Wessling, Germany). Second energy level was used with a maximum energy value of 58 joules per session in all patients. Hearing function and possible cochlear impairment were evaluated by transient evoked otoacoustic emissions test at 1.0, 1.4, 2.0, 2.8 and 4.0 kHz frequencies before the procedure, 2 hours later, and 1 month after completion of the first shock wave lithotripsy session in groups 1 and 2. In controls the same evaluation procedures were performed at the beginning of the study and 7 weeks later. Regarding transient evoked otoacoustic emissions data, in groups 1 and 2 there was no significant alteration in values obtained after shock wave lithotripsy compared to values obtained at the beginning of the study, similar to controls. A well planned shock wave lithotripsy procedure is a safe and effective treatment in children with urinary stones and causes no detectable harmful effect on hearing function. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Low Intensity Extracorporeal Shock Wave Therapy Improves Erectile Function in a Model of Type II Diabetes Independently of NO/cGMP Pathway.

    PubMed

    Assaly-Kaddoum, Rana; Giuliano, François; Laurin, Miguel; Gorny, Diane; Kergoat, Micheline; Bernabé, Jacques; Vardi, Yoram; Alexandre, Laurent; Behr-Roussel, Delphine

    2016-09-01

    Erectile dysfunction is highly prevalent in type II diabetes mellitus. Low intensity extracorporeal shock wave therapy improves erectile function in patients with erectile dysfunction of vasculogenic origin, including diabetes. However, its mode of action remains unknown. We investigated the effects of low intensity extracorporeal shock wave therapy compared to or combined with sildenafil on erectile dysfunction in a type II diabetes mellitus model. Our purpose was to test our hypothesis of a mode of action targeting the cavernous nitric oxide/cyclic guanosine monophosphate pathway. GK rats, a validated model of type II diabetes mellitus, and age matched Wistar rats were treated with low intensity extracorporeal shock wave therapy twice weekly for 3 weeks. Treatment was repeated after a 3-week no-treatment interval. The penis was stretched and dipped in a specifically designed water-filled cage. Shock waves were delivered by a calibrated probe yielding a controlled energy flux density (0.09 mJ/mm(2)). The probe was attached to an electrohydraulic unit with a focused shock wave source, allowing for accurate extrapolation to humans. Following a 4-week washout period erectile function was assessed as well as endothelium dependent and independent, and nitrergic relaxations of the corpus cavernosum of GK rats. Low intensity extracorporeal shock wave therapy significantly improved erectile function in GK rats to the same extent as sildenafil. Treatment effects were potentiated when combined with sildenafil. Shock wave effects were not associated with improved cavernous endothelium dependent or independent, or nitrergic reactivity. Low intensity extracorporeal shock wave therapy improved erectile function in GK rats. Unexpectedly, this was not mediated by a nitric oxide/cyclic guanosine monophosphate dependent mechanism. Sildenafil increased shock wave efficacy. This preclinical paradigm to deliver low intensity extracorporeal shock wave therapy to the rat penis should help further exploration of the mode of action of this therapy on erectile tissue. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Diffusive Cosmic-Ray Acceleration at Shock Waves of Arbitrary Speed with Magnetostatic Turbulence. I. General Theory and Correct Nonrelativistic Speed Limit

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Oppotsch, J.

    2017-12-01

    The analytical theory of diffusive acceleration of cosmic rays at parallel stationary shock waves of arbitrary speed with magnetostatic turbulence is developed from first principles. The theory is based on the diffusion approximation to the gyrotropic cosmic-ray particle phase-space distribution functions in the respective rest frames of the up- and downstream medium. We derive the correct cosmic-ray jump conditions for the cosmic-ray current and density, and match the up- and downstream distribution functions at the position of the shock. It is essential to account for the different particle momentum coordinates in the up- and downstream media. Analytical expressions for the momentum spectra of shock-accelerated cosmic rays are calculated. These are valid for arbitrary shock speeds including relativistic shocks. The correctly taken limit for nonrelativistic shock speeds leads to a universal broken power-law momentum spectrum of accelerated particles with velocities well above the injection velocity threshold, where the universal power-law spectral index q≃ 2-{γ }1-4 is independent of the flow compression ratio r. For nonrelativistic shock speeds, we calculate for the first time the injection velocity threshold, settling the long-standing injection problem for nonrelativistic shock acceleration.

  16. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  17. Report on Alternative Devices to Pyrotechnics on Spacecraft

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.; Hardy, R. C.; Kist, E. H., Jr.; Watson, J. J.; Wise, S. A.

    1996-01-01

    Pyrotechnics accomplish many functions on today's spacecraft, possessing minimum volume/weight, providing instantaneous operation on demand, and requiring little input energy. However, functional shock, safety, and overall system cost issues, combined with emergence and availability of new technologies question their continued use on space missions. Upon request from the National Aeronautics and Space Administration's (NASA) Program Management Council (PMC), Langley Research Center (LaRC) conducted a survey to identify and evaluate state-of-the-art non-explosively actuated (NEA) alternatives to pyrotechnics, identify NEA devices planned for NASA use, and investigate potential interagency cooperative efforts. In this study, over 135 organizations were contacted, including NASA field centers, Department of Defense (DOD) and other government laboratories, universities, and American and European industrial sources resulting in further detailed discussions with over half, and 18 face-to-face briefings. Unlike their single use pyrotechnic predecessors, NEA mechanisms are typically reusable or refurbishable, allowing flight of actual tested units. NEAs surveyed include spool-based devices, thermal knife, Fast Acting Shockless Separation Nut (FASSN), paraffin actuators, and shape memory alloy (SMA) devices (e.g., Frangibolt). The electro-mechanical spool, paraffin actuator and thermal knife are mature, flight proven technologies, while SMA devices have a limited flight history. There is a relationship between shock, input energy requirements, and mechanism functioning rate. Some devices (e.g., Frangibolt and spool based mechanisms) produce significant levels of functional shock. Paraffin, thermal knife, and SMA devices can provide gentle, shock-free release but cannot perform critically timed, simultaneous functions. The FASSN flywheel-nut release device possesses significant potential for reducing functional shock while activating nearly instantaneously. Specific study recommendations include: (1) development of NEA standards, specifically in areas of material characterization, functioning rates, and test methods; (2) a systems level approach to assure successful NEA technology application; and (3) further investigations into user needs, along with industry/government system-level real spacecraft cost benefit trade studies to determine NEA application foci and performance requirements. Additional survey observations reveal an industry and government desire to establish partnerships to investigate remaining unknowns and formulate NEA standards, specifically those driven by SMAs. Finally, there is increased interest and need to investigate alternative devices for such functions as stage/shroud separation and high pressure valving. This paper summarizes results of the NASA-LaRC survey of pyrotechnic alternatives. State of-the-art devices with their associated weight and cost savings are presented. Additionally, a comparison of functional shock characteristics of several devices are shown, and potentially related technology developments are highlighted.

  18. Insect heat shock proteins during stress and diapause.

    PubMed

    King, Allison M; MacRae, Thomas H

    2015-01-07

    Insect heat shock proteins include ATP-independent small heat shock proteins and the larger ATP-dependent proteins, Hsp70, Hsp90, and Hsp60. In concert with cochaperones and accessory proteins, heat shock proteins mediate essential activities such as protein folding, localization, and degradation. Heat shock proteins are synthesized constitutively in insects and induced by stressors such as heat, cold, crowding, and anoxia. Synthesis depends on the physiological state of the insect, but the common function of heat shock proteins, often working in networks, is to maintain cell homeostasis through interaction with substrate proteins. Stress-induced expression of heat shock protein genes occurs in a background of protein synthesis inhibition, but in the course of diapause, a state of dormancy and increased stress tolerance, these genes undergo differential regulation without the general disruption of protein production. During diapause, when ATP concentrations are low, heat shock proteins may sequester rather than fold proteins.

  19. Multiscale modeling of shock wave localization in porous energetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  20. Multiscale modeling of shock wave localization in porous energetic material

    DOE PAGES

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...

    2018-01-30

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  1. α-Crystallins Are Small Heat Shock Proteins: Functional and Structural Properties.

    PubMed

    Tikhomirova, T S; Selivanova, O M; Galzitskaya, O V

    2017-02-01

    During its life cycle, a cell can be subjected to various external negative effects. Many proteins provide cell protection, including small heat shock proteins (sHsp) that have chaperone-like activity. These proteins have several important functions involving prevention of apoptosis and retention of cytoskeletal integrity; also, sHsp take part in the recovery of enzyme activity. The action mechanism of sHsp is based on the binding of hydrophobic regions exposed to the surface of a molten globule. α-Crystallins presented in chordate cells as two αA- and αB-isoforms are the most studied small heat shock proteins. In this review, we describe the main functions of α-crystallins, features of their secondary and tertiary structures, and examples of their partners in protein-protein interactions.

  2. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation

    PubMed Central

    Shinkawa, Toyohide; Tan, Ke; Fujimoto, Mitsuaki; Hayashida, Naoki; Yamamoto, Kaoru; Takaki, Eiichi; Takii, Ryosuke; Prakasam, Ramachandran; Inouye, Sachiye; Mezger, Valerie; Nakai, Akira

    2011-01-01

    Heat shock response is characterized by the induction of heat shock proteins (HSPs), which facilitate protein folding, and non-HSP proteins with diverse functions, including protein degradation, and is regulated by heat shock factors (HSFs). HSF1 is a master regulator of HSP expression during heat shock in mammals, as is HSF3 in avians. HSF2 plays roles in development of the brain and reproductive organs. However, the fundamental roles of HSF2 in vertebrate cells have not been identified. Here we find that vertebrate HSF2 is activated during heat shock in the physiological range. HSF2 deficiency reduces threshold for chicken HSF3 or mouse HSF1 activation, resulting in increased HSP expression during mild heat shock. HSF2-null cells are more sensitive to sustained mild heat shock than wild-type cells, associated with the accumulation of ubiquitylated misfolded proteins. Furthermore, loss of HSF2 function increases the accumulation of aggregated polyglutamine protein and shortens the lifespan of R6/2 Huntington's disease mice, partly through αB-crystallin expression. These results identify HSF2 as a major regulator of proteostasis capacity against febrile-range thermal stress and suggest that HSF2 could be a promising therapeutic target for protein-misfolding diseases. PMID:21813737

  3. The acceleration of charged particles in interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Decker, R. B.; Armstrong, T. P.

    1982-01-01

    Consideration of the theoretical and observational literature on energetic ion acceleration in interplanetary shock waves is the basis for the present discussion of the shock acceleration of the solar wind plasma and particle transport effects. It is suggested that ISEE data be used to construct data sets for shock events that extend continuously from solar wind to galactic cosmic ray energies, including data for electrons, protons, alphas and ions with Z values greater than 2.0, and that the temporal and spatial evolution of two- and three-dimensional particle distribution functions be studied by means of two or more spacecraft.

  4. A description of electron heating with an electrostatic potential jump in a parallel, collisionless, fire hose shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1988-01-01

    The electron heating required if protons scatter elastically in a parallel, collisionless shock is calculated. Near-elastic proton scattering off large amplitude background magnetic field fluctuations might be expected if the waves responsible for the shock dissipation are generated by the fire hose instability. The effects of an electrostatic potential jump in the shock layer are included by assuming that the energy lost by protons in traversing the potential jump is converted into electron thermal pressure. It is found that the electron temperature increase is a strong function of the potential jump. Comparison is made to the parallel shock plasma simulation of Quest (1987).

  5. Hugoniot and refractive indices of bromoform under shock compression

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  6. On the role of covarying functions in stimulus class formation and transfer of function.

    PubMed Central

    Markham, Rebecca G; Markham, Michael R

    2002-01-01

    This experiment investigated whether directly trained covarying functions are necessary for stimulus class formation and transfer of function in humans. Initial class training was designed to establish two respondent-based stimulus classes by pairing two visual stimuli with shock and two other visual stimuli with no shock. Next, two operant discrimination functions were trained to one stimulus of each putative class. The no-shock group received the same training and testing in all phases, except no stimuli were ever paired with shock. The data indicated that skin conductance response conditioning did not occur for the shock groups or for the no-shock group. Tests showed transfer of the established discriminative functions, however, only for the shock groups, indicating the formation of two stimulus classes only for those participants who received respondent class training. The results suggest that transfer of function does not depend on first covarying the stimulus class functions. PMID:12507017

  7. Regulation of the mammalian heat shock factor 1.

    PubMed

    Dayalan Naidu, Sharadha; Dinkova-Kostova, Albena T

    2017-06-01

    Living organisms are endowed with the capability to tackle various forms of cellular stress due to the presence of molecular chaperone machinery complexes that are ubiquitous throughout the cell. During conditions of proteotoxic stress, the transcription factor heat shock factor 1 (HSF1) mediates the elevation of heat shock proteins, which are crucial components of the chaperone complex machinery and function to ameliorate protein misfolding and aggregation and restore protein homeostasis. In addition, HSF1 orchestrates a versatile transcriptional programme that includes genes involved in repair and clearance of damaged macromolecules and maintenance of cell structure and metabolism, and provides protection against a broad range of cellular stress mediators, beyond heat shock. Here, we discuss the structure and function of the mammalian HSF1 and its regulation by post-translational modifications (phosphorylation, sumoylation and acetylation), proteasomal degradation, and small-molecule activators and inhibitors. © 2017 Federation of European Biochemical Societies.

  8. Synergistic Effects of Toxic Elements on Heat Shock Proteins

    PubMed Central

    Mahmood, Khalid; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid

    2014-01-01

    Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation. PMID:25136596

  9. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel.

    PubMed

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren; Altier, Christophe

    2016-01-01

    Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function and points to the role of this stress protein in pain associated with neurodegenerative and/or metabolic disorders, including aging. © The Author(s) 2016.

  10. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  11. FE Line Diagnostics of Multiply Shocked Stellar Atmospheres: The Mira S. Carinae

    NASA Technical Reports Server (NTRS)

    Bookbinder, Jay

    1997-01-01

    Extensive LWP-HI spectra were obtained of the Mira S Car at a rapid time cadence as compared with the shock cycle time of S Car. These spectra were obtained in an attempt to understand the velocity structures in the shocked wind using the fluoresced iron lines. Data analysis of the IUE observations, which included the primary calibration of all of the IUE spectra obtained of S Car, was carried out. In addition, line identifications, flux calculations, background subtractions, and line profile analysis as a function of S Car's pulsational phase were performed. The database incorporated all line identifications as a function of pulsation phase for all IUE LWP-HI observations to date of S Car. At least 45 separate iron line features are identified in the S Car spectrum at one or more phases of the shock cycle, including those due to Fe II (UV 161) which is pumped by three different iron lines; Fe I(UV 44) which is pumped by the Mg II k line. Other strong multiplets that have been identified include UV(1), UV(2), UV(5), UV(32), UV(60), UV(63), UV(161), UV(207), and UV(399). Over 300 weaker lines have also been tentatively identified with Fe line transitions.

  12. Penile Low Intensity Shock Wave Treatment is Able to Shift PDE5i Nonresponders to Responders: A Double-Blind, Sham Controlled Study.

    PubMed

    Kitrey, Noam D; Gruenwald, Ilan; Appel, Boaz; Shechter, Arik; Massarwa, Omar; Vardi, Yoram

    2016-05-01

    We performed sham controlled evaluation of penile low intensity shock wave treatment effect in patients unable to achieve sexual intercourse using PDE5i (phosphodiesterase type 5 inhibitor). This prospective, randomized, double-blind, sham controlled study was done in patients with vasculogenic erectile dysfunction who stopped using PDE5i due to no efficacy. All patients had an erection hardness score of 2 or less with PDE5i. A total of 58 patients were randomized, including 37 treated with low intensity shock waves (12 sessions of 1,500 pulses of 0.09 mJ/mm(2) at 120 shock waves per minute) and 18 treated with a sham probe. In the sham group 16 patients underwent low intensity shock wave treatment 1 month after sham treatment. All patients were evaluated at baseline and 1 month after the end of treatment using validated erectile dysfunction questionnaires and the flow mediated dilatation technique for penile endothelial function. Erectile function was evaluated while patients were receiving PDE5i. In the low intensity shock wave treatment group and the sham group 54.1% and 0% of patients, respectively, achieved erection hard enough for vaginal penetration, that is an EHS (Erection Hardness Score) of 3 (p <0.0001). According to changes in the IIEF-EF (International Index of Erectile Function-Erectile Function) score treatment was effective in 40.5% of men who received low intensity shock wave treatment but in none in the sham group (p = 0.001). Of patients treated with shock waves after sham treatment 56.3% achieved erection hard enough for penetration (p <0.005). Low intensity shock wave treatment is effective even in patients with severe erectile dysfunction who are PDE5i nonresponders. After treatment about half of them were able to achieve erection hard enough for penetration with PDE5i. Longer followup is needed to establish the place of low intensity shock wave treatment in these challenging cases. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Management of unstable arrhythmias in cardiogenic shock.

    PubMed

    Saidi, Abdulfattah; Akoum, Nazem; Bader, Feras

    2011-08-01

    Atrial and ventricular arrhythmias commonly arise in the setting of cardiogenic shock and often result in hemodynamic deterioration. Causative factors include myocardial ischemia, volume overload, and metabolic disturbances. Correcting these factors plays an important role in managing arrhythmias in this setting. Ventricular arrhythmias are more ominous compared to atrial arrhythmias but both require prompt intervention with electrical shock and anti-arrhythmic drug suppression. Coronary reperfusion is key to improving survival, including reducing the risk of sudden cardiac arrest, in acute myocardial infarction. Case series have also demonstrated the value of intra-aortic balloon pump counter-pulsation in suppressing ventricular arrhythmias in cardiogenic shock. The mechanism of arrhythmia suppression may be due to improved coronary perfusion and afterload reduction. Percutaneous ventricular assist device placement may be effective in this setting; however, data addressing this specific endpoint are lacking. Anti-arrhythmic drug options for ventricular and atrial arrhythmia suppression, in the setting of cardiogenic shock, are relatively limited. Common class I agents are excluded due to the inherent abnormal cardiac structure and function in the setting of cardiogenic shock. Class III drug options include dofetilide and amiodarone. The other Class III agents, sotalol and dronedarone, are excluded due to associated mortality observed in the SWORD and ANDROMEDA trials, respectively. Dofetilide is renally excreted and causes QT interval prolongation. Care should be taken to avoid excessive drug accumulation due to poor kidney perfusion and function. Dofetilide is approved for use for atrial arrhythmias and has not been studied for ventricular arrhythmia suppression. The DIAMOND-CHF trial established its safety in the setting of heart failure. Amiodarone is very effective in suppressing both atrial and ventricular arrhythmias. It is often the drug of choice in heart failure. Its off-label use for atrial arrhythmias is very common. Care should be taken with intravenous amiodarone to avoid hypotension.

  14. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4-phenylbutyrate increased the nuclear levels of nuclear factor-E2-related factor 2, and decreased the nuclear levels of nuclear factor κB in hypoxic vascular smooth muscle cells. 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2-related factor 2 and nuclear factor-κB may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.

  15. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    PubMed

    Igarashi, Yoko; Ohnishi, Kohta; Irie, Kazuhiro; Murakami, Akira

    2016-01-01

    Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs) in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1) plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  16. Physical Intrepretation of Mathematically Invariant K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At SCCM Shock 99, Lie Group Theory was applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Ratios of the group parameters were shown to be linked to the physical parameters specified in the second, third, and fourth order BM-EOS approximations. This effort has subsequently been extended to provide a general formalism for a wide class of mathematical forms (i.e., K(r,P)) of the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Specific examples included the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. (2) With these ratios defined, the next step is to predict the behavior of these K(r,P) type solids. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. This will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments, and additionally, allow the empirical coefficients for these EOS forms to be adjusted accordingly. (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Invariant Functional Forms For K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  17. Invariant Functional Forms for K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Group Theoretic Methods, as defined by Lie were applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Group parameter ratios were linked to the physical quantities (i.e., KT, K'T, and K''T) specified for the various order Birch-Murnaghan approximations. This technique has now been generalized to provide a mathematical formalism applicable to a wide class of forms (i.e., K(r,P)) for the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Illustrative examples include the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. The results of this study will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. (2) (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Physical Interpretation of Mathematically Invariant K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  18. 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats.

    PubMed

    Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao

    2016-08-01

    Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to septic shock. This beneficial effect of 4-phenylbutyric acid is closely related to the inhibition of endoplasmic reticulum stress-mediated oxidative stress, apoptosis, and cytokine release. This finding provides a potential therapeutic measure for clinical critical conditions, such as severe sepsis.

  19. Shock metamorphism and impact melting in small impact craters on Earth: Evidence from Kamil crater, Egypt

    NASA Astrophysics Data System (ADS)

    Fazio, Agnese; Folco, Luigi; D'Orazio, Massimo; Frezzotti, Maria Luce; Cordier, Carole

    2014-12-01

    Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz-rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high-pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s-1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.

  20. DIFFUSIVE PARTICLE ACCELERATION IN SHOCKED, VISCOUS ACCRETION DISKS: GREEN'S FUNCTION ENERGY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Peter A.; Das, Santabrata; Le, Truong, E-mail: pbecker@gmu.edu, E-mail: sbdas@iitg.ernet.in, E-mail: truong.le@nhrec.org

    2011-12-10

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classicalmore » method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.« less

  1. Early Health Shocks, Intra-household Resource Allocation and Child Outcomes*

    PubMed Central

    Yi, Junjian; Heckman, James J.; Zhang, Junsen; Conti, Gabriella

    2016-01-01

    An open question in the literature is whether families compensate or reinforce the impact of child health shocks. Discussions usually focus on one dimension of child investment. This paper examines multiple dimensions using household survey data on Chinese child twins whose average age is 11. We find that, compared with a twin sibling who did not suffer from negative early health shocks at ages 0–3, the other twin sibling who did suffer negative health shocks received RMB 305 more in terms of health investments, but received RMB 182 less in terms of educational investments in the 12 months prior to the survey. In terms of financial transfers over all dimensions of investment, the family acts as a net equalizer in response to early health shocks for children. We estimate a human capital production function and establish that, for this sample, early health shocks negatively affect child human capital, including health, education, and socioemotional skills. Compensating investments in health as measured by BMI reduce the adverse effects of health shocks by 50%, but exacerbate the adverse impact of shocks on educational attainment by 30%. PMID:27019517

  2. Shock compression experiments on Lithium Deuteride (LiD) single crystals

    DOE PAGES

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.

    2016-12-21

    Shock compression experiments in the few hundred GPa (multi-Mabr) regime were performed on Lithium Deuteride (LiD) single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ~200-600 GPa along the Principal Hugoniot – the locus of end states achievable through compression by large amplitude shock waves – as well as pressure and density of re - shock states up to ~900 GPa. Lastly, the experimental measurements are compared with recent density functional theorymore » calculations as well as a new tabular equation of state developed at Los Alamos National Labs.« less

  3. Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.

    PubMed

    Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F

    2017-01-01

    We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.

  4. Optical characterization of chemistry in shocked nitromethane with time-dependent density functional theory.

    PubMed

    Pellouchoud, Lenson A; Reed, Evan J

    2013-11-27

    We compute the optical properties of the liquid-phase energetic material nitromethane (CH3NO2) for the first 100 ps behind the front of a simulated shock at 6.5 km/s, close to the experimentally observed detonation shock speed of the material. We utilize molecular dynamics trajectories computed using the multiscale shock technique (MSST) for time-resolved optical spectrum calculations based on both linear response time-dependent DFT (TDDFT) and the Kubo-Greenwood formula with Kohn-Sham DFT wave functions. We find that the TDDFT method predicts an optical conductivity 25-35% lower than the Kubo-Greenwood calculation and provides better agreement with the experimentally measured index of refraction of unreacted nitromethane. We investigate the influence of electronic temperature on the Kubo-Greenwood spectra and find no significant effect at optical wavelengths. In both Kubo-Greenwood and TDDFT, the spectra evolve nonmonotonically in time as shock-induced chemistry takes place. We attribute the time-resolved absorption at optical wavelengths to time-dependent populations of molecular decomposition products, including NO, CNO, CNOH, H2O, and larger molecules. These calculations offer direction for guiding and interpreting ultrafast optical measurements on reactive materials.

  5. Determining the standoff distance of the bow shock: Mach number dependence and use of models

    NASA Technical Reports Server (NTRS)

    Farris, M. H.; Russell, C. T.

    1994-01-01

    We explore the factors that determine the bow shock standoff distance. These factors include the parameters of the solar wind, as well as the size and shape of the obstacle. In this report we develop a semiempirical Mach number relation for the bow shock standoff distance in order to take into account the shock's behavior at low Mach numbers. This is done by determining which properties of the shock are most important in controlling the standoff distance and using this knowledge to modify the current Mach number relation. While the present relation has proven useful at higher Mach numbers, it has lacked effectiveness at the low Mach number limit. We also analyze the bow shock dependence upon the size and shape of the obstacle, noting that it is most appropriate to compare the standoff distance of the bow shock to the radius of curvature of the obstacle, as opposed to the distance from the focus of the object to the nose. Last, we focus our attention on the use of bow shock models in determining the standoff distance. We note that the physical behavior of the shock must correctly be taken into account, specifically the behavior as a function of solar wind dynamic pressure; otherwise, erroneous results can be obtained for the bow shock standoff distance.

  6. Physical activity, muscle, and the HSP70 response.

    PubMed

    Kilgore, J L; Musch, T I; Ross, C R

    1998-06-01

    Selye (1936) described how organisms react to various external stimuli (i.e., stressors). These reactions generally follow a programmed series of events and help the organism adapt to the imposed stress. The heat shock response is a common cellular reaction to external stressors, including physical activity. A characteristic set of proteins is synthesised shortly after the organism is exposed to stress. Researchers have not determined how heat shock proteins affect the exercise response. However, their role in adaptation to exercise and training might be inferred, since the synthetic patterns correlate well with the stress adaptation syndrome that Selye described. This review addresses the 70 kilodalton heat shock protein family (HSP70), the most strongly induced heat shock proteins. This paper provides an overview of the general heat shock response and a brief review of literature on HSP70 function, structure, regulation, and potential applications. Potential applications in health, exercise, and medicine are provided.

  7. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas.

    PubMed

    MacRae, T H

    2000-06-01

    Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.

  8. The shock sensitivity of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee

    2013-06-01

    The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.

  9. The role of heat shock proteins in protection and pathophysiology of the arterial wall.

    PubMed

    Xu, Q; Wick, G

    1996-09-01

    The arterial wall is an integrated functional component of the circulatory system that is continually remodelling in response to various stressors, including localized injury, toxins, smoking and hypercholesterolaemia. These stimuli directly or indirectly cause changes in blood pressure and damage to the vessel wall, and eventually induce arterial stiffness and obstruction. To maintain the homeostasis of the vessel wall, the vascular cells produce a high level of stress proteins, also known as heat shock proteins, which protect against damage during haemodynamic stress. However, an immune reaction to heat shock proteins might contribute to the development of atherosclerosis. We hypothesize that the induction of heat shock proteins is beneficial in the arterial wall's response to stress but is harmful in certain other circumstances.

  10. Molecular systems under shock compression into the dense plasma regime: carbon dioxide and hydrocarbon polymers

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Root, Seth; Carpenter, John H.

    2013-10-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression into the dense plasma regime. Materials where chemistry plays a role are of interest for many applications, including planetary science and inertial confinement fusion (ICF). As examples of systems where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa and shock compression of hydrocarbon polymers, including GDP (glow discharge polymer) which is used as an ablator in laser ICF experiments. Experimental results from Sandia's Z machine validate the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Functional response to cardiac resynchronization therapy is associated with improved clinical outcome and absence of appropriate shocks.

    PubMed

    Van Boven, Nick; Bogaard, Kjell; Ruiter, Jaap; Kimman, Geert; Theuns, Dominic; Kardys, Isabella; Umans, Victor

    2013-03-01

    We evaluated clinical outcome and incidence of (in)appropriate shocks in consecutive chronic heart failure (CHF) patients treated with CRT with a defibrillator (CRT-D) according to functional response status. Furthermore, we investigated which factors predict such functional response. In a large teaching hospital, 179 consecutive CHF patients received CRT-D in 2005-2010. Patients were considered functional responders if left ventricular ejection fraction (LVEF) increased to ≥ 35% postimplantation. Analysis was performed on 142 patients, who had CRT-D as primary prevention, complete data and a baseline LVEF <35%. Endpoints consisted of all-cause mortality, heart failure (HF) hospitalizations, appropriate shocks and inappropriate shocks. Median follow-up was 3.0 years (interquartile range [IQR] 1.6-4.4) and median baseline LVEF was 20% (IQR 18-25%). The functional response-group consisted of 42 patients. In this group no patients died, none were hospitalized for HF, none received appropriate shocks and 3 patients (7.1%) received ≥ 1 inappropriate shocks. In comparison, the functional nonresponse group consisted of 100 patients, of whom 22 (22%) died (P = 0.003), 17 (17%) were hospitalized for HF (P = 0.007), 17 (17%) had ≥ 1 appropriate shocks (P = 0.003) and 8 (8.1%) received ≥ 1 inappropriate shocks (P = 0.78). Multivariable analysis showed that left bundle branch block (LBBB), QRS duration ≥ 150 milliseconds and no need for diuretics at baseline are independent predictors of functional response. Functional responders to CRT have a good prognosis and rarely need ICD therapy. LBBB, QRS duration ≥ 150 milliseconds and lack of chronic diuretic use predict functional response. © 2012 Wiley Periodicals, Inc.

  12. Effect of the heat shock protein HSP27 on androgen receptor expression and function in prostate cancer cells.

    PubMed

    Stope, Matthias B; Schubert, Tina; Staar, Doreen; Rönnau, Cindy; Streitbörger, Andreas; Kroeger, Nils; Kubisch, Constanze; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin

    2012-06-01

    Heat shock proteins (HSP) are involved in processes of folding, activation, trafficking and transcriptional activity of most steroid receptors including the androgen receptor (AR). Accumulating evidence links rising heat shock protein 27 (HSP27) levels with the development of castration-resistant prostate cancer. In order to study the functional relationship between HSP27 and the AR, we modulated the expression of the small heat shock protein HSP27 in human prostate cancer (PC) cell lines. HSP27 protein concentrations in LNCaP and PC-3 cells were modulated by over-expression or silencing of HSP27. The effects of HSP27 on AR protein and mRNA levels were monitored by Western blotting and quantitative RT-PCR. Treatment for the AR-positive LNCaP with HSP27-specific siRNA resulted in a down-regulation of AR levels. This down-regulation of protein was paralleled by a decrease in AR mRNA. Most interestingly, over-expression of HSP27 in PC-3 cells led to a significant increase in AR mRNA although the cells were unable to produce functional AR protein. The observation that HSP27 is involved in the regulation of AR mRNA by a yet unknown mechanism highlights the complexity of HSP27-AR signaling network.

  13. Shock-drift particle acceleration in superluminal shocks - A model for hot spots in extragalactic radio sources

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Kirk, John G.

    1990-01-01

    Shock-drift acceleration at relativistic shock fronts is investigated using a fully relativistic treatment of both the microphysics of the shock-drift acceleration and the macrophysics of the shock front. By explicitly tracing particle trajectories across shocks, it is shown how the adiabatic invariance of a particle's magnetic moment breaks down as the upstream shock speed becomes relativistic, and is recovered at subrelativistic velocities. These calculations enable the mean increase in energy of a particle which encounters the shock with a given pitch angle to be calculated. The results are used to construct the downstream electron distribution function in terms of the incident distribution function and the bulk properties of the shock. The synchrotron emissivity of the transmitted distribution is calculated, and it is demonstrated that amplification factors are easily obtained which are more than adequate to explain the observed constrasts in surface brightness between jets and hot spots.

  14. On a Stochastic Failure Model under Random Shocks

    NASA Astrophysics Data System (ADS)

    Cha, Ji Hwan

    2013-02-01

    In most conventional settings, the events caused by an external shock are initiated at the moments of its occurrence. In this paper, we study a new classes of shock model, where each shock from a nonhomogeneous Poisson processes can trigger a failure of a system not immediately, as in classical extreme shock models, but with delay of some random time. We derive the corresponding survival and failure rate functions. Furthermore, we study the limiting behaviour of the failure rate function where it is applicable.

  15. Genetic variation in resistance of the preimplantation bovine embryo to heat shock.

    PubMed

    Hansen, Peter J

    2014-12-01

    Reproduction is among the physiological functions in mammals most susceptible to disruption by hyperthermia. Many of the effects of heat stress on function of the oocyte and embryo involve direct effects of elevated temperature (i.e. heat shock) on cellular function. Mammals limit the effects of heat shock by tightly regulating body temperature. This ability is genetically controlled: lines of domestic animals have been developed with superior ability to regulate body temperature during heat stress. Through experimentation in cattle, it is also evident that there is genetic variation in the resistance of cells to the deleterious effects of elevated temperature. Several breeds that were developed in hot climates, including Bos indicus (Brahman, Gir, Nelore and Sahiwal) and Bos taurus (Romosinuano and Senepol) are more resistant to the effects of elevated temperature on cellular function than breeds that evolved in cooler climates (Angus, Holstein and Jersey). Genetic differences are expressed in the preimplantation embryo by Day 4-5 of development (after embryonic genome activation). It is not clear whether genetic differences are expressed in cells in which transcription is repressed (oocytes >100 µm in diameter or embryos at stages before embryonic genome activation). The molecular basis for cellular thermotolerance has also not been established, although there is some suggestion for involvement of heat shock protein 90 and the insulin-like growth factor 1 system. Given the availability of genomic tools for genetic selection, identification of genes controlling cellular resistance to elevated temperature could be followed by progress in selection for those genes within the populations in which they exist. It could also be possible to introduce genes from thermotolerant breeds into thermally sensitive breeds. The ability to edit the genome makes it possible to design new genes that confer protection of cells from stresses like heat shock.

  16. Theoretical and Observational Analysis of Particle Acceleration Mechanisms at Astrophysical Shocks

    NASA Astrophysics Data System (ADS)

    Lever, Edward Lawrence

    We analytically and numerically investigate the viability of Shock Surfing as a pre-injection mechanism for Diffusive Shock Acceleration, believed to be responsible for the production of Cosmic Rays. We demonstrate mathematically and from computer simulations that four critical conditions must be satisfied for Shock Surfing to function; the shock ramp must be narrow, the shock front must be smooth, the magnetic field angle must be very nearly perpendicular and, finally, these conditions must persist without interruption over substantial time periods and spatial scales. We quantify these necessary conditions, exhibit predictive functions for velocity maxima and accelerated ion fluxes based on observable shock parameters, and show unequivocally from current observational evidence that all of these necessary conditions are violated at shocks within the heliosphere, at the heliospheric Termination Shock, and also at Supernovae.

  17. Effects of rubber shock absorber on the flywheel micro vibration in the satellite imaging system

    NASA Astrophysics Data System (ADS)

    Deng, Changcheng; Mu, Deqiang; Jia, Xuezhi; Li, Zongxuan

    2016-12-01

    When a satellite is in orbit, its flywheel will generate micro vibration and affect the imaging quality of the camera. In order to reduce this effect, a rubber shock absorber is used, and a numerical model and an experimental setup are developed to investigate its effect on the micro vibration in the study. An integrated model is developed for the system, and a ray tracing method is used in the modeling. The spot coordinates and displacements of the image plane are obtained, and the modulate transfer function (MTF) of the system is calculated. A satellite including a rubber shock absorber is designed, and the experiments are carried out. Both simulation and experiments results show that the MTF increases almost 10 %, suggesting the rubber shock absorber is useful to decrease the flywheel vibration.

  18. Molecule formation and infrared emission in fast interstellar shocks. I Physical processes

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Mckee, C. F.

    1979-01-01

    The paper analyzes the structure of fast shocks incident upon interstellar gas of ambient density from 10 to the 7th per cu cm, while focusing on the problems of formation and destruction of molecules and infrared emission in the cooling, neutral post shock gas. It is noted that such fast shocks initially dissociate almost all preexisting molecules. Discussion covers the physical processes which determine the post shock structure between 10 to the 4 and 10 to the 2 K. It is shown that the chemistry of important molecular coolants H2, CO, OH, and H2O, as well as HD and CH, is reduced to a relatively small set of gas phase and grain surface reactions. Also, the chemistry follows the slow conversion of atomic hydrogen into H2, which primarily occurs on grain surfaces. The dependence of this H2 formation rate on grain and gas temperatures is examined and the survival of grains behind fast shocks is discussed. Post shock heating and cooling rates are calculated and an appropriate, analytic, universal cooling function is developed for molecules other than hydrogen which includes opacities from both the dust and the lines.

  19. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  20. "A Tiger in Your Tank": Advertisements in the Language Classroom.

    ERIC Educational Resources Information Center

    Mollica, Anthony

    1979-01-01

    Describes the use of advertisements in language instruction, with particular attention to the language of advertisements, including the conative and emotive functions, linguistic shock, translation, humor, and cultural information. (AM)

  1. Rayleigh Taylor growth at an embedded interface driven by a radiative shock

    NASA Astrophysics Data System (ADS)

    Huntington, Channing

    2016-10-01

    Radiative shocks are those where the radiation generated by the shock influences the hydrodynamics of the matter in the system. Radiative shocks are common in astrophysics, including during type II supernovae, and have also been observed in the rebound phase of a compressed inertial confinement fusion (ICF) capsule. It is predicted that the radiative heating serves to stabilize hydrodynamic instabilities in these systems, but studying the effect is challenging. Only in recent experiments at the National Ignition Facility has the energy been available to drive a radiative shock across a planar, Rayleigh-Taylor unstable interface in solid-density materials. Because the generation of radiation at the shock front is a strong function of shock velocity (v8) , the RT growth rates in the presence of fast and slow shockas were directly compared. We observe reduced RT spike development when the driving shock is expected to be radiative. Both low drive (225 eV) hydrodynamic RT growth and high drive (325 eV), radiatively-stabilized growth rates are in good agreement with 2D models. This NIF Discovery Science result has important implications for our understanding of astrophysical radiative shocks, as well as the dynamics of ICF capsules. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Crack propagation in functionally graded strip under thermal shock

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Sadowski, T.; Pietras, D.

    2013-09-01

    The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.

  3. Contributions to the Fourth Solar Wind Conference. [interplanetary magnetic fields and medium

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Lepping, R.; Ness, N.; Ogilvie, K.; Pizzo, J.

    1979-01-01

    Recent results in interplanetary physics are examined. These include observations of shock waves and post-shock magnetic fields made by Voyager 1, 2; observations of the electron temperature as a function of distance between 1.36 AU and 2.25 AU; and observations of the structure of sector boundaries observed by Helios 1. A theory of electron energy transport in the collisionless solar wind is presented, and compared with observations. Alfven waves and Alvenic fluctuations in the solar wind are also discussed.

  4. The small heat shock protein Hsp27: Present understanding and future prospects.

    PubMed

    Singh, Manish Kumar; Sharma, Bechan; Tiwari, Pramod K

    2017-10-01

    Heat shock proteins are important for maintaining protein homeostasis and cell survival. Among different classes of highly conserved Hsps, low molecular weight Hsps (sHsps) have significant place, particularly Hsp27, whose role has been demonstrated in wide range of biological processes, including development, immunity, diseases and therapy. In this review, the structure and functions of Hsp27 and related genes, their role in different cellular processes as well as in stress tolerance, is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Estimating Basic Preliminary Design Performances of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.; Alexander, Reginald

    2004-01-01

    Aerodynamics and Performance Estimation Toolset is a collection of four software programs for rapidly estimating the preliminary design performance of aerospace vehicles represented by doing simplified calculations based on ballistic trajectories, the ideal rocket equation, and supersonic wedges through standard atmosphere. The program consists of a set of Microsoft Excel worksheet subprograms. The input and output data are presented in a user-friendly format, and calculations are performed rapidly enough that the user can iterate among different trajectories and/or shapes to perform "what-if" studies. Estimates that can be computed by these programs include: 1. Ballistic trajectories as a function of departure angles, initial velocities, initial positions, and target altitudes; assuming point masses and no atmosphere. The program plots the trajectory in two-dimensions and outputs the position, pitch, and velocity along the trajectory. 2. The "Rocket Equation" program calculates and plots the trade space for a vehicle s propellant mass fraction over a range of specific impulse and mission velocity values, propellant mass fractions as functions of specific impulses and velocities. 3. "Standard Atmosphere" will estimate the temperature, speed of sound, pressure, and air density as a function of altitude in a standard atmosphere, properties of a standard atmosphere as functions of altitude. 4. "Supersonic Wedges" will calculate the free-stream, normal-shock, oblique-shock, and isentropic flow properties for a wedge-shaped body flying supersonically through a standard atmosphere. It will also calculate the maximum angle for which a shock remains attached, and the minimum Mach number for which a shock becomes attached, all as functions of the wedge angle, altitude, and Mach number.

  6. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    PubMed

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  7. [Use of quantitative electroencephalogram in patients with septic shock].

    PubMed

    Ma, Yujie; Ouyang, Bin; Guan, Xiangdong

    2016-01-19

    To observe the quantitative electroencephalogram (qEEG) characteristics of the patients with septic shock in intensive care unit (ICU), and to find the early presence and severity of septic-associated encephalopathy (SAE) in these patients. During November 2014 to August 2015, 26 cases with septic shock were included from the ICU of the First Affiliated Hospital, Sun Yat-sen University.During the same period, 14 healthy volunteers were included as control. The brain function instrument was used to monitor the patients by the bed, placing leads as the internationally used 10-20 system, bipolar longitudinal F3-P3, F4-P4 four channels, and then consecutive clips of 5 minutes was chosen, using the average value of the clips, the amplitude integrated electroencephalogram (aEEG), relative frequency band energy, spectrum entropy, relative alpha ariability to carry out statistical analysis.And the qEEG features of septic shock patients with different Glasgow coma scale (GCS) levels were also analyzed. (1) 96% of the patients with septic shock had EEG abnormalities.Alpha frequency band energy, alpha ariability, aEEG amplitude, spectrum entropy decreased significantly (P<0.05=, while the delta frequency band energy significantly increased (P<0.05=. (2) aEEG amplitude decline appeared in 34% of patients with septic shock, and within the septic shock groups, amplitude decreased significantly (P<0.05= in patients with GCS under five. Patients with septic shock tends to have diffuse inhibition in EEG, and the inhibition degree can reflect cerebral lesion degree; changes of EEG frequency as early warning indicators of brain damage are sensitive, and the decline of amplitude often indicates critical injury.

  8. Heat Shock Proteins in Association with Heat Tolerance in Grasses

    PubMed Central

    Xu, Yan; Zhan, Chenyang; Huang, Bingru

    2011-01-01

    The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding. PMID:22084689

  9. Contribution to the optimal shape design of two-dimensional internal flows with embedded shocks

    NASA Technical Reports Server (NTRS)

    Iollo, Angelo; Salas, Manuel D.

    1995-01-01

    We explore the practicability of optimal shape design for flows modeled by the Euler equations. We define a functional whose minimum represents the optimality condition. The gradient of the functional with respect to the geometry is calculated with the Lagrange multipliers, which are determined by solving a co-state equation. The optimization problem is then examined by comparing the performance of several gradient-based optimization algorithms. In this formulation, the flow field can be computed to an arbitrary order of accuracy. Finally, some results for internal flows with embedded shocks are presented, including a case for which the solution to the inverse problem does not belong to the design space.

  10. TG2 regulates the heat-shock response by the post-translational modification of HSF1.

    PubMed

    Rossin, Federica; Villella, Valeria Rachela; D'Eletto, Manuela; Farrace, Maria Grazia; Esposito, Speranza; Ferrari, Eleonora; Monzani, Romina; Occhigrossi, Luca; Pagliarini, Vittoria; Sette, Claudio; Cozza, Giorgio; Barlev, Nikolai A; Falasca, Laura; Fimia, Gian Maria; Kroemer, Guido; Raia, Valeria; Maiuri, Luigi; Piacentini, Mauro

    2018-05-11

    Heat-shock factor 1 (HSF1) is the master transcription factor that regulates the response to proteotoxic stress by controlling the transcription of many stress-responsive genes including the heat-shock proteins. Here, we show a novel molecular mechanism controlling the activation of HSF1. We demonstrate that transglutaminase type 2 (TG2), dependent on its protein disulphide isomerase activity, triggers the trimerization and activation of HSF1 regulating adaptation to stress and proteostasis impairment. In particular, we find that TG2 loss of function correlates with a defect in the nuclear translocation of HSF1 and in its DNA-binding ability to the HSP70 promoter. We show that the inhibition of TG2 restores the unbalance in HSF1-HSP70 pathway in cystic fibrosis (CF), a human disorder characterized by deregulation of proteostasis. The absence of TG2 leads to an increase of about 40% in CFTR function in a new experimental CF mouse model lacking TG2. Altogether, these results indicate that TG2 plays a key role in the regulation of cellular proteostasis under stressful cellular conditions through the modulation of the heat-shock response. © 2018 The Authors.

  11. Stress Proteins and Initiation of Immune Response: Chaperokine activity of Hsp72

    PubMed Central

    Asea, Alexzander

    2006-01-01

    From its original description as solely an intracellular molecular chaperone, heat shock proteins have now been shown to function as initiators of the host's immune response. Although the exact mechanism by which intracellular heat shock proteins leave cells is still incompletely understood, recent work from several labs suggest that heat shock proteins are released by both passive (necrotic) and active (physiological) mechanisms. Binding to specific surface receptors is a prerequisite for the initiation of an immune response. To date, several cell surface proteins have been described as the receptor for seventy kilo-Dalton heat shock protein (Hsp70) including Toll-like receptors 2 and 4 with their cofactor CD14, the scavenger receptor CD36, the low-density lipoprotein receptor-related protein CD91, the C-type lectin receptor LOX-1, and another member of the scavenger super-family SR-A plus the co-stimulatory molecule, CD40. Binding of Hsp70 to these surface receptors specifically activates intracellular signaling cascades, which in turn exert immunoregulatory effector functions; a process known as the chaperokine activity of Hsp70. This review will highlight recent advances in understanding the mechanism by which Hsp70 initiates the host's immune response. PMID:16385842

  12. Stress proteins and initiation of immune response: chaperokine activity of hsp72.

    PubMed

    Asea, Alexzander

    2005-01-01

    From its original description as solely an intracellular molecular chaperone, heat shock proteins have now been shown to function as initiators of the host's immune response. Although the exact mechanism by which intracellular heat shock proteins leave cells is still incompletely understood, recent work from several labs suggest that heat shock proteins are released by both passive (necrotic) and active (physiological) mechanisms. Binding to specific surface receptors is a prerequisite for the initiation of an immune response. To date, several cell surface proteins have been described as the receptor for seventy kilo-Dalton heat shock protein (Hsp70) including Toll-like receptors 2 and 4 with their cofactor CD14, the scavenger receptor CD36, the low-density lipoprotein receptor-related protein CD91, the C-type lectin receptor LOX-1, and another member of the scavenger super-family SR-A plus the co-stimulatory molecule, CD40. Binding of Hsp70 to these surface receptors specifically activates intracellular signaling cascades, which in turn exert immunoregulatory effector functions; a process known as the chaperokine activity of Hsp70. This review will highlight recent advances in understanding the mechanism by which Hsp70 initiates the host's immune response.

  13. Prediction of Broadband Shock-Associated Noise Including Propagation Effects Originating NASA

    NASA Technical Reports Server (NTRS)

    Miller, Steven; Morris, Philip J.

    2012-01-01

    An acoustic analogy is developed based on the Euler equations for broadband shock-associated noise (BBSAN) that directly incorporates the vector Green s function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) to describe the mean flow. The vector Green s function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation rate. An adjoint vector Green s function solver is implemented to determine the vector Green s function based on a locally parallel mean flow at different streamwise locations. The newly developed acoustic analogy can be simplified to one that uses the Green s function associated with the Helmholtz equation, which is consistent with a previous formulation by the authors. A large number of predictions are generated using three different nozzles over a wide range of fully-expanded jet Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise experimental facilities. In addition, two models for the so-called fine-scale mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include propagation effects.

  14. Variational formulation of hybrid problems for fully 3-D transonic flow with shocks in rotor

    NASA Technical Reports Server (NTRS)

    Liu, Gao-Lian

    1991-01-01

    Based on previous research, the unified variable domain variational theory of hybrid problems for rotor flow is extended to fully 3-D transonic rotor flow with shocks, unifying and generalizing the direct and inverse problems. Three variational principles (VP) families were established. All unknown boundaries and flow discontinuities (such as shocks, free trailing vortex sheets) are successfully handled via functional variations with variable domain, converting almost all boundary and interface conditions, including the Rankine Hugoniot shock relations, into natural ones. This theory provides a series of novel ways for blade design or modification and a rigorous theoretical basis for finite element applications and also constitutes an important part of the optimal design theory of rotor bladings. Numerical solutions to subsonic flow by finite elements with self-adapting nodes given in Refs., show good agreement with experimental results.

  15. On the cosmic ray diffusion in a violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Bykov, A. M.; Toptygin, I. N.

    1985-01-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  16. [Whole-blood transfusion for hemorrhagic shock resuscitation: two cases in Djibouti].

    PubMed

    Cordier, P Y; Eve, O; Dehan, C; Topin, F; Menguy, P; Bertani, A; Massoure, P L; Kaiser, E

    2012-01-01

    Hemorrhagic shock requires early aggressive treatment, including transfusion of packed red blood cells and hemostatic resuscitation. In austere environments, when component therapy is not available, warm fresh whole-blood transfusion is a convenient treatment. It provides red blood cells, clotting factors, and functional platelets. Therefore it is commonly used in military practice to treat hemorrhagic shock in combat casualties. At Bouffard Hospital Center in Djibouti, the supply of packed red blood cells is limited, and apheresis platelets are unavailable. We used whole blood transfusion in two civilian patients with life-threatening non-traumatic hemorrhages. One had massive bleeding caused by disseminated intravascular coagulation due to septic shock; the second was a 39 year-old pregnant woman with uterine rupture. In both cases, whole blood transfusion (twelve and ten 500 mL bags respectively), combined with etiological treatment, enabled coagulopathy correction, hemorrhage control, and satisfactory recovery.

  17. Histoplasma capsulatum Heat-Shock 60 Orchestrates the Adaptation of the Fungus to Temperature Stress

    PubMed Central

    Guimarães, Allan Jefferson; Nakayasu, Ernesto S.; Sobreira, Tiago J. P.; Cordero, Radames J. B.; Nimrichter, Leonardo; Almeida, Igor C.; Nosanchuk, Joshua Daniel

    2011-01-01

    Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins. Hsps are essential regulators of diverse constitutive metabolic processes and are markedly upregulated during stress. A 62 kDa Hsp (Hsp60) of Histoplasma capsulatum (Hc) is an immunodominant antigen and the major surface ligand to CR3 receptors on macrophages. However little is known about the function of this protein within the fungus. We characterized Hc Hsp60-protein interactions under different temperature to gain insights of its additional functions oncell wall dynamism, heat stress and pathogenesis. We conducted co-immunoprecipitations with antibodies to Hc Hsp60 using cytoplasmic and cell wall extracts. Interacting proteins were identified by shotgun proteomics. For the cell wall, 84 common interactions were identified among the 3 growth conditions, including proteins involved in heat-shock response, sugar and amino acid/protein metabolism and cell signaling. Unique interactions were found at each temperature [30°C (81 proteins), 37°C (14) and 37/40°C (47)]. There were fewer unique interactions in cytoplasm [30°C (6), 37°C (25) and 37/40°C (39)] and four common interactions, including additional Hsps and other known virulence factors. These results show the complexity of Hsp60 function and provide insights into Hc biology, which may lead to new avenues for the management of histoplasmosis. PMID:21347364

  18. Extracellular Release and Signaling by Heat Shock Protein 27: Role in Modifying Vascular Inflammation

    PubMed Central

    Batulan, Zarah; Pulakazhi Venu, Vivek Krishna; Li, Yumei; Koumbadinga, Geremy; Alvarez-Olmedo, Daiana Gisela; Shi, Chunhua; O’Brien, Edward R.

    2016-01-01

    Heat shock protein 27 (HSP27) is traditionally viewed as an intracellular chaperone protein with anti-apoptotic properties. However, recent data indicate that a number of heat shock proteins, including HSP27, are also found in the extracellular space where they may signal via membrane receptors to alter gene transcription and cellular function. Therefore, there is increasing interest in better understanding how HSP27 is released from cells, its levels and composition in the extracellular space, and the cognate cell membrane receptors involved in effecting cell signaling. In this paper, the knowledge to date, as well as some emerging paradigms about the extracellular function of HSP27 is presented. Of particular interest is the role of HSP27 in attenuating atherogenesis by modifying lipid uptake and inflammation in the plaque. Moreover, the abundance of HSP27 in serum is an emerging new biomarker for ischemic events. Finally, HSP27 replacement therapy may represent a novel therapeutic opportunity for chronic inflammatory disorders, such as atherosclerosis. PMID:27507972

  19. Direct Acceleration of Pickup Ions at The Solar Wind Termination Shock: The Production of Anomalous Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.; Baring, Matthew G.

    1998-01-01

    We have modeled the injection and acceleration of pickup ions at the solar wind termination shock and investigated the parameters needed to produce the observed Anomalous Cosmic Ray (ACR) fluxes. A non-linear Monte Carlo technique was employed, which in effect solves the Boltzmann equation and is not restricted to near-isotropic particle distribution functions. This technique models the injection of thermal and pickup ions, the acceleration of these ions, and the determination of the shock structure under the influence of the accelerated ions. The essential effects of injection are treated in a mostly self-consistent manner, including effects from shock obliquity, cross- field diffusion, and pitch-angle scattering. Using recent determinations of pickup ion densities, we are able to match the absolute flux of hydrogen in the ACRs by assuming that pickup ion scattering mean free paths, at the termination shock, are much less than an AU and that modestly strong cross-field diffusion occurs. Simultaneously, we match the flux ratios He(+)/H(+) or O(+)/H(+) to within a factor approx. 5. If the conditions of strong scattering apply, no pre-termination-shock injection phase is required and the injection and acceleration of pickup ions at the termination shock is totally analogous to the injection and acceleration of ions at highly oblique interplanetary shocks recently observed by the Ulysses spacecraft. The fact that ACR fluxes can be modeled with standard shock assumptions suggests that the much-discussed "injection problem" for highly oblique shocks stems from incomplete (either mathematical or computer) modeling of these shocks rather than from any actual difficulty shocks may have in injecting and accelerating thermal or quasi-thermal particles.

  20. In-Situ Measurement of Shock-Induced Reactive Flow in a Series of Related Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Sheffield, S. A.; Dattelbaum, D. M.; Stahl, D. B.

    2009-12-01

    Understanding of the chemistry that occurs under extreme, high-pressure, high-temperature shock environments poses both a significant scientific challenge, due to the difficulty of direct experimental observations, and an opportunity for discovery of new materials and bonding constructs. The combined high pressure, high temperature conditions induced by shock loading results in prompt reactions that may include dynamic bond breaking, dimerization and polymerization, and dissociation to small molecules. Understanding of the evolution of different reaction pathways as a function of shock input remains a significant challenge, due to both the very short shock timescales, and difficulty in measurement of reaction intermediates and products. We have used in-situ multiple magnetic gauges to measure changes in mechanical variables (such as particle velocity waveforms) resulting from the shock-induced chemistry. This allows us to gain some understanding of the shock input conditions necessary to start chemical reaction. Seven experiments have been completed on a set of related organic liquids; 1-3 cyclohexadiene was found to react at 4.9 GPa, 1-4 cyclohexadiene at 7 GPa, cyclohexene between 10 and 12 GPa, and cyclopentene results were inconclusive. Since 1-3 cyclohexadiene could dimerize by a Diels-Alder reaction, it was expected to react at the lowest pressure.

  1. The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis.

    PubMed

    Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub

    2017-03-01

    [Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.

  2. Clonidine Reduces Norepinephrine and Improves Bone Marrow Function in a Rodent Model of Lung Contusion, Hemorrhagic Shock and Chronic Stress

    PubMed Central

    Alamo, Ines G.; Kannan, Kolenkode B.; Ramos, Harry; Loftus, Tyler J.; Efron, Philip A.; Mohr, Alicia M.

    2016-01-01

    Background Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Methods Male Sprague-Dawley rats underwent six days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75μg/kg) after the restraint stress. On post-injury day seven, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor (G-CSF), and peripheral blood mobilization of hematopoietic progenitor cells (HPC), as well as bone marrow cellularity and erythroid progenitor cell growth. Results The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress, significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1±0.6 vs. 10.8±0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased HPC mobilization and restored G-CSF levels. Conclusions After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. PMID:27742030

  3. Extracorporeal shock wave therapy (ESWT) for wound healing: technology, mechanisms, and clinical efficacy.

    PubMed

    Mittermayr, Rainer; Antonic, Vlado; Hartinger, Joachim; Kaufmann, Hanna; Redl, Heinz; Téot, Luc; Stojadinovic, Alexander; Schaden, Wolfgang

    2012-01-01

    For almost 30 years, extracorporeal shock wave therapy has been clinically implemented as an effective treatment to disintegrate urinary stones. This technology has also emerged as an effective noninvasive treatment modality for several orthopedic and traumatic indications including problematic soft tissue wounds. Delayed/nonhealing or chronic wounds constitute a burden for each patient affected, significantly impairing quality of life. Intensive wound care is required, and this places an enormous burden on society in terms of lost productivity and healthcare costs. Therefore, cost-effective, noninvasive, and efficacious treatments are imperative to achieve both (accelerated and complete) healing of problematic wounds and reduce treatment-related costs. Several experimental and clinical studies show efficacy for extracorporeal shock wave therapy as means to accelerate tissue repair and regeneration in various wounds. However, the biomolecular mechanism by which this treatment modality exerts its therapeutic effects remains unclear. Potential mechanisms, which are discussed herein, include initial neovascularization with ensuing durable and functional angiogenesis. Furthermore, recruitment of mesenchymal stem cells, stimulated cell proliferation and differentiation, and anti-inflammatory and antimicrobial effects as well as suppression of nociception are considered important facets of the biological responses to therapeutic shock waves. This review aims to provide an overview of shock wave therapy, its history and development as well as its current place in clinical practice. Recent research advances are discussed emphasizing the role of extracorporeal shock wave therapy in soft tissue wound healing. © 2012 by the Wound Healing Society.

  4. Strong imploding shock - The representative curve

    NASA Astrophysics Data System (ADS)

    Mishkin, E. A.; Alejaldre, C.

    1981-02-01

    The representative curve of the ideal gas behind the front of a spherically or cylindrically asymmetric strong imploding shock is derived. The partial differential equations of mass, momentum and energy conservation are reduced to a set of ordinary differential equations by the method of quasi-separation of variables, following which the reduced pressure and density as functions of the radius with respect to the shock front are explicit functions of coordinates defining the phase plane of the self-similar solution. The curve in phase space representing the state of the imploded gas behind the shock front is shown to pass through the point where the reduced pressure is maximum, which is located somewhat behind the shock front and ahead of the tail of the shock.

  5. Assessment of Neutrophil Function in Patients with Septic Shock: Comparison of Methods

    PubMed Central

    Wenisch, C.; Fladerer, P.; Patruta, S.; Krause, R.; Hörl, W.

    2001-01-01

    Patients with septic shock are shown to have decreased neutrophil phagocytic function by multiple assays, and their assessment by whole-blood assays (fluorescence-activated cell sorter analysis) correlates with assays requiring isolated neutrophils (microscopic and spectrophotometric assays). For patients with similar underlying conditions but without septic shock, this correlation does not occur. PMID:11139215

  6. Injection of thermal and suprathermal seed particles into coronal shocks of varying obliquity

    NASA Astrophysics Data System (ADS)

    Battarbee, M.; Vainio, R.; Laitinen, T.; Hietala, H.

    2013-10-01

    Context. Diffusive shock acceleration in the solar corona can accelerate solar energetic particles to very high energies. Acceleration efficiency is increased by entrapment through self-generated waves, which is highly dependent on the amount of accelerated particles. This, in turn, is determined by the efficiency of particle injection into the acceleration process. Aims: We present an analysis of the injection efficiency at coronal shocks of varying obliquity. We assessed injection through reflection and downstream scattering, including the effect of a cross-shock potential. Both quasi-thermal and suprathermal seed populations were analysed. We present results on the effect of cross-field diffusion downstream of the shock on the injection efficiency. Methods: Using analytical methods, we present applicable injection speed thresholds that were compared with both semi-analytical flux integration and Monte Carlo simulations, which do not resort to binary thresholds. Shock-normal angle θBn and shock-normal velocity Vs were varied to assess the injection efficiency with respect to these parameters. Results: We present evidence of a significant bias of thermal seed particle injection at small shock-normal angles. We show that downstream isotropisation methods affect the θBn-dependence of this result. We show a non-negligible effect caused by the cross-shock potential, and that the effect of downstream cross-field diffusion is highly dependent on boundary definitions. Conclusions: Our results show that for Monte Carlo simulations of coronal shock acceleration a full distribution function assessment with downstream isotropisation through scatterings is necessary to realistically model particle injection. Based on our results, seed particle injection at quasi-parallel coronal shocks can result in significant acceleration efficiency, especially when combined with varying field-line geometry. Appendices are available in electronic form at http://www.aanda.org

  7. Numerical simulations of non-spherical bubble collapse.

    PubMed

    Johnsen, Eric; Colonius, Tim

    2009-06-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.

  8. Numerical simulations of non-spherical bubble collapse

    PubMed Central

    JOHNSEN, ERIC; COLONIUS, TIM

    2009-01-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233

  9. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    NASA Astrophysics Data System (ADS)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  10. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Hargreaves, John

    2007-01-01

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  11. Wave and ion evolution downstream of quasi-perpendicular bow shocks

    NASA Technical Reports Server (NTRS)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.

    1995-01-01

    Distribution functions of ions heated in quasi-perpendicular bow shocks have a large perpendicular temperature anisotropy that provides free energy for the growth of Alfven ion cyclotron (AIC) waves and mirror waves. Both types of waves have been observed in the Earth's magnetosheath downstream of quasi-perpendicular shocks. We use a two-dimensional hybrid simulations to give a self-consistent description of the evolution of the wave spectra downstream of quasi-perpendicular shocks. Both mirror and AIC waves are identified in the simulated magnetosheath. They are generated at or near the shock front and convected away from it by the sheath plasma. Near the shock, the waves have a broad spectrum, but downstream of the shock, shorter-wavelength modes are heavily damped and only longer-wavelength modes persist. The characteristics of these surviving modes can be predicted with reasonable accuracy by linear kinetic theory appropriate for downstream conditions. We also follow the evolution of the ion distribution function. The shocked ions that provide the free energy for wave growth have a two-component distribution function. The halo is initially gyrophase-bunched and extremely anisotropic. Within a relatively short distance downstream of the shock (of the order of 10 ion inertial lengths), wave-particle interactions remove these features from the halo and reduce the anisotropy of the distribution to near-threshold levels for the mirror and AIC instabilities. A similar evolution has been observed for ions at the Earth's bow shock.

  12. Clonidine reduces norepinephrine and improves bone marrow function in a rodent model of lung contusion, hemorrhagic shock, and chronic stress.

    PubMed

    Alamo, Ines G; Kannan, Kolenkode B; Ramos, Harry; Loftus, Tyler J; Efron, Philip A; Mohr, Alicia M

    2017-03-01

    Propranolol has been shown previously to restore bone marrow function and improve anemia after lung contusion/hemorrhagic shock. We hypothesized that daily clonidine administration would inhibit central sympathetic outflow and restore bone marrow function in our rodent model of lung contusion/hemorrhagic shock with chronic stress. Male Sprague-Dawley rats underwent 6 days of restraint stress after lung contusion/hemorrhagic shock during which the animals received clonidine (75 μg/kg) after the restraint stress. On postinjury day 7, we assessed urine norepinephrine, blood hemoglobin, plasma granulocyte colony stimulating factor, and peripheral blood mobilization of hematopoietic progenitor cells, as well as bone marrow cellularity and erythroid progenitor cell growth. The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased urine norepinephrine levels, improved bone marrow cellularity, restored erythroid progenitor colony growth, and improved hemoglobin (14.1 ± 0.6 vs 10.8 ± 0.6 g/dL). The addition of clonidine to lung contusion/hemorrhagic shock with chronic restraint stress significantly decreased hematopoietic progenitor cells mobilization and restored granulocyte colony stimulating factor levels. After lung contusion/hemorrhagic shock with chronic restraint stress, daily administration of clonidine restored bone marrow function and improved anemia. Alleviating chronic stress and decreasing norepinephrine is a key therapeutic target to improve bone marrow function after severe injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis.

    PubMed

    Ouweneel, Dagmar M; Schotborgh, Jasper V; Limpens, Jacqueline; Sjauw, Krischan D; Engström, A E; Lagrand, Wim K; Cherpanath, Thomas G V; Driessen, Antoine H G; de Mol, Bas A J M; Henriques, José P S

    2016-12-01

    Veno-arterial extracorporeal life support (ECLS) is increasingly used in patients during cardiac arrest and cardiogenic shock, to support both cardiac and pulmonary function. We performed a systematic review and meta-analysis of cohort studies comparing mortality in patients treated with and without ECLS support in the setting of refractory cardiac arrest and cardiogenic shock complicating acute myocardial infarction. We systematically searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials and the publisher subset of PubMed updated to December 2015. Thirteen studies were included of which nine included cardiac arrest patients (n = 3098) and four included patients with cardiogenic shock after acute myocardial infarction (n = 235). Data were pooled by a Mantel-Haenzel random effects model and heterogeneity was examined by the I 2 statistic. In cardiac arrest, the use of ECLS was associated with an absolute increase of 30 days survival of 13 % compared with patients in which ECLS was not used [95 % CI 6-20 %; p < 0.001; number needed to treat (NNT) 7.7] and a higher rate of favourable neurological outcome at 30 days (absolute risk difference 14 %; 95 % CI 7-20 %; p < 0.0001; NNT 7.1). Propensity matched analysis, including 5 studies and 438 patients (219 in both groups), showed similar results. In cardiogenic shock, ECLS showed a 33 % higher 30-day survival compared with IABP (95 % CI, 14-52 %; p < 0.001; NNT 13) but no difference when compared with TandemHeart/Impella (-3 %; 95 % CI -21 to 14 %; p = 0.70; NNH 33). In cardiac arrest, the use of ECLS was associated with an increased survival rate as well as an increase in favourable neurological outcome. In the setting of cardiogenic shock there was an increased survival with ECLS compared with IABP.

  14. Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock.

    PubMed

    Duvigneau, Johanna Catharina; Kozlov, Andrey V; Zifko, Clara; Postl, Astrid; Hartl, Romana T; Miller, Ingrid; Gille, Lars; Staniek, Katrin; Moldzio, Rudolf; Gregor, Wolfgang; Haindl, Susanne; Behling, Tricia; Redl, Heinz; Bahrami, Soheyl

    2010-03-01

    Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.

  15. Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes

    NASA Astrophysics Data System (ADS)

    Bershader, Daniel; Hanson, Ronald

    1986-09-01

    One hundred ten papers were presented in 32 sessions. Topics included: The application of Hook-method spectroscopy to the diagnosis of shock-heated gases. The nonintrusive destruction of kidney stones by underwater focused shock waves. Several of the papers reflect the recent and continuing interest in shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive configurations. The major subject areas were: shock propagation and interactions; shock-general chemical kinetics; shock computation, modeling, and stability problems; shock wave aerodynamics; experimental methods; shocks in multiphase and heterogeneous media; high energy gas excitation and wave phenomena; and technical applications and shocks in condensed matter.

  16. Comparative analysis of changes in gene expression due to RNA melting activities of translation initiation factor IF1 and a cold shock protein of the CspA family.

    PubMed

    Phadtare, Sangita; Severinov, Konstantin

    2009-11-01

    In Escherichia coli, temperature downshift elicits cold shock response, which is characterized by induction of cold shock proteins. CspA, the major cold shock protein of E. coli, helps cells to acclimatize to low temperature by melting the secondary structures in nucleic acids and acting as a transcription antiterminator. CspA and its homologues contain the cold shock domain and belong to the oligomer binding protein family, which also includes S1 domain proteins such as IF1. Structural similarity between IF1 and CspA homologues suggested a functional overlap between these proteins. Indeed IF1 can melt secondary structures in RNA and acts as transcription antiterminator in vivo and in vitro. Here, we show that in spite of having these critical activities, IF1 does not complement cold-sensitivity of a csp quadruple deletion strain. DNA microarray analysis shows that overproduction of IF1 and Csp leads to changes in expression of different sets of genes. Importantly, several genes which were previously shown to require Csp proteins for their expression at low temperature did not respond to IF1. Moreover, in vitro, we show that a transcription terminator responsive to Csp does not respond to IF1. Our results suggest that Csp proteins and IF1 have different sets of target genes as they may be suppressing the function of different types of transcription termination elements in specific genes.

  17. Nonstandard Analysis and Jump Conditions for Converging Shock Waves

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Tucker, Don H.

    2008-01-01

    Nonstandard analysis is an area of modern mathematics which studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.

  18. Numerical modeling of a glow discharge through a supersonic bow shock in air

    NASA Astrophysics Data System (ADS)

    Rassou, S.; Packan, D.; Elias, P.-Q.; Tholin, F.; Chemartin, L.; Labaune, J.

    2017-03-01

    The interaction between a glow discharge and the bow shock of a Mach 3 air flow around a truncated conical model with a central spike is modeled, and comparison is made with prior experimental results. The KRONOS workflow for plasma modeling in flow fields, which has recently been developed at ONERA, was used for the modeling. Based on the quasi-neutral approximation, it couples hypersonic and reactive flow fields with electron chemistry, including the effect of non-Maxwellian electron energy distribution function. The model used for the discharge involves 12 species and 82 reactions, including ionization, electronic and vibrational excitation, and attachment. The simulations reproduce the main features of the discharge observed experimentally well, in particular, the very recognizable topology of the discharge. It was found from the simulations that behind the bow shock, in the afterglow, the negative ion flow ensures the electrical conduction and the establishment of the glow discharge. The influence of kinetic rates on the voltage-current characteristics is discussed.

  19. Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1972-01-01

    Shock structure during ionization of a hydrogen-helium mixture was studied using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement was achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2 - 0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.

  20. Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture.

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1973-01-01

    Shock structure during ionization of a hydrogen-helium mixture has been followed using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement has been achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2-0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.

  1. Potential applications of low-energy shock waves in functional urology.

    PubMed

    Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi

    2017-08-01

    A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.

  2. Non-specific protein modifications by a phytochemical induce heat shock response for self-defense.

    PubMed

    Ohnishi, Kohta; Ohkura, Shinya; Nakahata, Erina; Ishisaka, Akari; Kawai, Yoshichika; Terao, Junji; Mori, Taiki; Ishii, Takeshi; Nakayama, Tsutomu; Kioka, Noriyuki; Matsumoto, Shinya; Ikeda, Yasutaka; Akiyama, Minoru; Irie, Kazuhiro; Murakami, Akira

    2013-01-01

    Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities.

  3. Non-Specific Protein Modifications by a Phytochemical Induce Heat Shock Response for Self-Defense

    PubMed Central

    Ohnishi, Kohta; Ohkura, Shinya; Nakahata, Erina; Ishisaka, Akari; Kawai, Yoshichika; Terao, Junji; Mori, Taiki; Ishii, Takeshi; Nakayama, Tsutomu; Kioka, Noriyuki; Matsumoto, Shinya; Ikeda, Yasutaka; Akiyama, Minoru; Irie, Kazuhiro; Murakami, Akira

    2013-01-01

    Accumulated evidence shows that some phytochemicals provide beneficial effects for human health. Recently, a number of mechanistic studies have revealed that direct interactions between phytochemicals and functional proteins play significant roles in exhibiting their bioactivities. However, their binding selectivities to biological molecules are considered to be lower due to their small and simple structures. In this study, we found that zerumbone, a bioactive sesquiterpene, binds to numerous proteins with little selectivity. Similar to heat-denatured proteins, zerumbone-modified proteins were recognized by heat shock protein 90, a constitutive molecular chaperone, leading to heat shock factor 1-dependent heat shock protein induction in hepa1c1c7 mouse hepatoma cells. Furthermore, oral administration of this phytochemical up-regulated heat shock protein expressions in the livers of Sprague-Dawley rats. Interestingly, pretreatment with zerumbone conferred a thermoresistant phenotype to hepa1c1c7 cells as well as to the nematode Caenorhabditis elegans. It is also important to note that several phytochemicals with higher hydrophobicity or electrophilicity, including phenethyl isothiocyanate and curcumin, markedly induced heat shock proteins, whereas most of the tested nutrients did not. These results suggest that non-specific protein modifications by xenobiotic phytochemicals cause mild proteostress, thereby inducing heat shock response and leading to potentiation of protein quality control systems. We considered these bioactivities to be xenohormesis, an adaptation mechanism against xenobiotic chemical stresses. Heat shock response by phytochemicals may be a fundamental mechanism underlying their various bioactivities. PMID:23536805

  4. Dynamical Effects in Metal-Organic Frameworks: The Microporous Materials as Shock Absorbers

    NASA Astrophysics Data System (ADS)

    Banlusan, Kiettipong; Strachan, Alejandro

    2017-06-01

    Metal-organic frameworks (MOFs) are a class of nano-porous crystalline solids consisting of inorganic units coordinated to organic linkers. The unique molecular structures and outstanding properties with ultra-high porosity and tunable chemical functionality by various choices of metal clusters and organic ligands make this class of materials attractive for many applications. The complex and quite unique responses of these materials to mechanical loading including void collapse make them attractive for applications in energy absorption and storage. We will present using large-scale molecular dynamics simulations to investigate shock propagation in zeolitic imidazolate framework ZIF-8 and MOF-5. We find that for shock strengths above a threshold a two-wave structure develops with a leading elastic precursor followed by a second wave of structural collapse to relax the stress. Structural transition of MOFs in response to shock waves corresponds to the transition between two Hugoniot curves, and results in abrupt change in temperature. The pore-collapse wave propagates at slower velocity than the leading wave and weakens it, resulting in shock attenuation. Increasing piston speed results in faster propagation of pore-collapse wave, but the leading elastic wave remains unchanged below the overdriven regime. We discuss how the molecular structure of the MOFs and shock propagation direction affect the response of the materials and their ability to weaken shocks. Office of Naval Research, MURI 2012 02341 01.

  5. AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions

    NASA Astrophysics Data System (ADS)

    Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.

    2007-12-01

    We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.

  6. Tadalafil once daily and extracorporeal shock wave therapy in the management of patients with Peyronie's disease and erectile dysfunction: results from a prospective randomized trial.

    PubMed

    Palmieri, A; Imbimbo, C; Creta, M; Verze, P; Fusco, F; Mirone, V

    2012-04-01

    Extracorporeal shock wave therapy improves erectile function in patients with Peyronie's disease. However, erectile dysfunction still persists in many cases. We aimed to investigate the effects of extracorporeal shock wave therapy plus tadalafil 5 mg once daily in the management of patients with Peyronie's disease and erectile dysfunction not previously treated. One hundred patients were enrolled in a prospective, randomized, controlled study. Patients were randomly allocated to receive either extracorporeal shock wave therapy alone for 4 weeks (n = 50) or extracorporeal shock wave therapy plus tadalafil 5 mg once daily for 4 weeks (n = 50). Main outcome measures were: erectile function (evaluated through the shortened version of the International Index of Erectile Function), pain during erection (evaluated through a Visual Analog Scale), plaque size, penile curvature and quality of life (evaluated through an internal questionnaire). Follow-up evaluations were performed after 12 and 24 weeks. In both groups, at 12 weeks follow-up, mean Visual Analog Scale score, mean International Index of Erectile Function score and mean quality of life score ameliorated significantly while mean plaque size and mean curvature degree were unchanged. Intergroup analysis revealed a significantly higher mean International Index of Erectile Function score and quality of life score in patients receiving the combination. After 24 weeks, intergroup analysis revealed a significantly higher mean International Index of Erectile Function score and mean quality of life score in patients that received extracorporeal shock wave therapy plus tadalafil. In conclusion extracorporeal shock wave therapy plus tadalafil 5 mg once daily may represent a valid conservative strategy for the management of patients with Peyronie's disease and erectile dysfunction. © 2011 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.

  7. Functional analysis of Drosophila HSP70 promoter with different HSE numbers in human cells.

    PubMed

    Kust, Nadezda; Rybalkina, Ekaterina; Mertsalov, Ilya; Savchenko, Ekaterina; Revishchin, Alexander; Pavlova, Gali

    2014-01-01

    The activation of genetic constructs including the Drosophila hsp70 promoter with four and eight HSE sequences in the regulatory region has been described in human cells. The promoter was shown to be induced at lower temperatures compared to the human hsp70 promoter. The promoter activity increased after a 60-min heat shock already at 38 °C in human cells. The promoter activation was observed 24 h after heat shock for the constructs with eight HSEs, while those with four HSEs required 48 h. After transplantation of in vitro heat-shocked transfected cells, the promoter activity could be maintained for 3 days with a gradual decline. The promoter activation was confirmed in vivo without preliminary heat shock in mouse ischemic brain foci. Controlled expression of the Gdnf gene under a Drosophila hsp70 promoter was demonstrated. This promoter with four and eight HSE sequences in the regulatory region can be proposed as a regulated promoter in genetic therapeutic systems.

  8. The Prediction of Broadband Shock-Associated Noise Including Propagation Effects

    NASA Technical Reports Server (NTRS)

    Miller, Steven; Morris, Philip J.

    2011-01-01

    An acoustic analogy is developed based on the Euler equations for broadband shock- associated noise (BBSAN) that directly incorporates the vector Green's function of the linearized Euler equations and a steady Reynolds-Averaged Navier-Stokes solution (SRANS) as the mean flow. The vector Green's function allows the BBSAN propagation through the jet shear layer to be determined. The large-scale coherent turbulence is modeled by two-point second order velocity cross-correlations. Turbulent length and time scales are related to the turbulent kinetic energy and dissipation. An adjoint vector Green's function solver is implemented to determine the vector Green's function based on a locally parallel mean flow at streamwise locations of the SRANS solution. However, the developed acoustic analogy could easily be based on any adjoint vector Green's function solver, such as one that makes no assumptions about the mean flow. The newly developed acoustic analogy can be simplified to one that uses the Green's function associated with the Helmholtz equation, which is consistent with the formulation of Morris and Miller (AIAAJ 2010). A large number of predictions are generated using three different nozzles over a wide range of fully expanded Mach numbers and jet stagnation temperatures. These predictions are compared with experimental data from multiple jet noise labs. In addition, two models for the so-called 'fine-scale' mixing noise are included in the comparisons. Improved BBSAN predictions are obtained relative to other models that do not include the propagation effects, especially in the upstream direction of the jet.

  9. Shock wave treatment improves nerve regeneration in the rat.

    PubMed

    Mense, Siegfried; Hoheisel, Ulrich

    2013-05-01

    The aims of the experiments were to: (1) determine whether low-energy shock wave treatment accelerates the recovery of muscle sensitivity and functionality after a nerve lesion; and (2) assess the effect of shock waves on the regeneration of injured nerve fibers. After compression of a muscle nerve in rats the effects of shock wave treatment on the sequelae of the lesion were tested. In non-anesthetized animals, pressure pain thresholds and exploratory activity were determined. The influence of the treatment on the distance of nerve regeneration was studied in immunohistochemical experiments. Both behavioral and immunohistochemical data show that shock wave treatment accelerates the recovery of muscle sensitivity and functionality and promotes regeneration of injured nerve fibers. Treatment with focused shock waves induces an improvement of nerve regeneration in a rodent model of nerve compression. Copyright © 2012 Wiley Periodicals, Inc.

  10. Heat-shock-specific phosphorylation and transcriptional activity of RNA polymerase II.

    PubMed

    Egyházi, E; Ossoinak, A; Lee, J M; Greenleaf, A L; Mäkelä, T P; Pigon, A

    1998-07-10

    The carboxyl-terminal domain (CTD) of the largest RNA polymerase II (pol II) subunit is a target for extensive phosphorylation in vivo. Using in vitro kinase assays it was found that several different protein kinases can phosphorylate the CTD including the transcription factor IIH-associated CDK-activating CDK7 kinase (R. Roy, J. P. Adamczewski, T. Seroz, W. Vermeulen, J. P. Tassan, L. Schaeffer, E. A. Nigg, J. H. Hoeijmakers, and J. M. Egly, 1994, Cell 79, 1093-1101). Here we report the colocalization of CDK7 and the phosphorylated form of CTD (phosphoCTD) to actively transcribing genes in intact salivary gland cells of Chironomus tentans. Following a heat-shock treatment, both CDK7 and pol II staining disappear from non-heat-shock genes concomitantly with the abolishment of transcriptional activity of these genes. In contrast, the actively transcribing heat-shock genes, manifested as chromosomal puff 5C on chromosome IV (IV-5C), stain intensely for phosphoCTD, but are devoid of CDK7. Furthermore, the staining of puff IV-5C with anti-PCTD antibodies was not detectably influenced by the TFIIH kinase and transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Following heat-shock treatment, the transcription of non-heat-shock genes was completely eliminated, while newly formed heat-shock gene transcripts emerged in a DRB-resistant manner. Thus, heat shock in these cells induces a rapid clearance of CDK7 from the non-heat-shock genes, indicating a lack of involvement of CDK7 in the induction and function of the heat-induced genes. The results taken together suggest the existence of heat-shock-specific CTD phosphorylation in living cells. This phosphorylation is resistant to DRB treatment, suggesting that not only phosphorylation but also transcription of heat-shock genes is DRB resistant and that CDK7 in heat shock cells is not associated with TFIIH.

  11. Severe leptospirosis with multiple organ failure successfully treated by plasma exchange and high-volume hemofiltration.

    PubMed

    Bourquin, Vincent; Ponte, Belén; Hirschel, Bernard; Pugin, Jérôme; Martin, Pierre-Yves; Saudan, Patrick

    2011-01-01

    Background. Leptospirosis is a spirochetal zoonosis with complex clinical features including renal and liver failure. Case report. We report the case of a Swiss fisherman presenting with leptospirosis. After initial improvement, refractory septic shock and severe liver and kidney failure developed. The expected mortality was estimated at 90% with clinical scores. The patient underwent plasma exchanges and high-volume hemofiltration (HVHF) with complete recovery of hepatic and kidney functions. Discussion. Plasma exchanges and HVHF may confer survival benefit on patients with severe leptospirosis, refractory septic shock, and multiple-organ failure.

  12. On the interplay between cosmological shock waves and their environment

    NASA Astrophysics Data System (ADS)

    Martin-Alvarez, Sergio; Planelles, Susana; Quilis, Vicent

    2017-05-01

    Cosmological shock waves are tracers of the thermal history of the structures in the Universe. They play a crucial role in redistributing the energy within the cosmic structures and are also amongst the main ingredients of galaxy and galaxy cluster formation. Understanding this important function requires a proper description of the interplay between shocks and the different environments where they can be found. In this paper, an Adaptive Mesh Refinement (AMR) Eulerian cosmological simulation is analysed by means of a shock-finding algorithm that allows to generate shock wave maps. Based on the population of dark matter halos and on the distribution of density contrast in the simulation, we classify the shocks in five different environments. These range from galaxy clusters to voids. The shock distribution function and the shocks power spectrum are studied for these environments dynamics. We find that shock waves on different environments undergo different formation and evolution processes, showing as well different characteristics. We identify three different phases of formation, evolution and dissipation of these shock waves, and an intricate migration between distinct environments and scales. Shock waves initially form at external, low density regions and are merged and amplified through the collapse of structures. Shock waves and cosmic structures follow a parallel evolution. Later on, shocks start to detach from them and dissipate. We also find that most of the power that shock waves dissipate is found at scales of k ˜0.5 Mpc^{-1}, with a secondary peak at k ˜8 Mpc^{-1}. The evolution of the shocks power spectrum confirms that shock waves evolution is coupled and conditioned by their environment.

  13. Shock-driven transition to turbulence: Emergence of power-law scaling

    DOE PAGES

    Olmstead, D.; Wayne, P.; Simons, D.; ...

    2017-05-25

    Here, we consider two cases of interaction between a planar shock and a cylindrical density interface. In the first case (planar normal shock), the axis of the gas cylinder is parallel to the shock front and baroclinic vorticity deposited by the shock is predominantly two dimensional (directed along the axis of the cylinder). In the second case, the cylinder is tilted, resulting in an oblique shock interaction and a fully-three-dimensional shock-induced vorticity field. Furthermore, the statistical properties of the flow for both cases are analyzed based on images from two orthogonal visualization planes, using structure functions of the intensity mapsmore » of fluorescent tracer premixed with heavy gas. And at later times, these structure functions exhibit power-law-like behavior over a considerable range of scales. Manifestation of this behavior is remarkably consistent in terms of dimensionless time τ defined based on Richtmyer's linear theory within the range of Mach numbers from 1.1 to 2.0 and the range of gas cylinder tilt angles with respect to the plane of the shock front (0–30°).« less

  14. Research on the fiber Bragg grating sensor for the shock stress measurement

    PubMed Central

    Deng, Xiangyang; Chen, Guanghua; Peng, Qixian; Li, Zeren; Meng, Jianhua; Liu, Jun

    2011-01-01

    A fiber Bragg grating (FBG) sensor with an unbalanced Mach-Zehnder fiber interferometer for the shock stress measurement is proposed and demonstrated. An analysis relationship between the shock stress and the central reflection wavelength shift of the FBG is firstly derived. In this sensor, the optical path difference of the unbalanced Mach-Zehnder fiber interferometer is ∼3.1 mm and the length of the FBG is 2 mm. An arctangent function reduction method, which can avoid sine function's insensitive zone where the shock stress measurement has a reduced accuracy, is presented. A shock stress measurement of water driven by one stage gun (up to 1.4 GPa), with good theoretical accuracy (∼10%), is launched. PMID:22047282

  15. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  16. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Highly Efficient Lattice Boltzmann Model for Compressible Fluids: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Xu, Ai-Guo; Zhang, Guang-Cai; Gan, Yan-Biao; Cheng, Tao; Li, Ying-Jun

    2009-10-01

    We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the von Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials.

  17. Heat shock protein 83 plays pleiotropic roles in embryogenesis, longevity, and fecundity of the pea aphid Acyrthosiphon pisum.

    PubMed

    Will, Torsten; Schmidtberg, Henrike; Skaljac, Marisa; Vilcinskas, Andreas

    2017-01-01

    Heat shock protein 83 (HSP83) is homologous to the chaperone HSP90. It has pleiotropic functions in Drosophila melanogaster, including the control of longevity and fecundity, and facilitates morphological evolution by buffering cryptic deleterious mutations in wild populations. In the pea aphid Acyrthosiphon pisum, HSP83 expression is moderately induced by bacterial infection but upregulated more strongly in response to heat stress and fungal infection. Stress-inducible heat shock proteins are of considerable evolutionary and ecological importance because they are known to buffer environmental variation and to influence fitness under non-optimal conditions. To investigate the functions of HSP83 in viviparous aphids, we used RNA interference to attenuate its expression and studied the impact on complex parameters. The RNA interference (RNAi)-mediated depletion of HSP83 expression in A. pisum reduced both longevity and fecundity, suggesting this chaperone has an evolutionarily conserved function in insects. Surprisingly, HSP83 depletion reduced the number of viviparous offspring while simultaneously increasing the number of premature nymphs developing in the ovaries, suggesting an unexpected role in aphid embryogenesis and eclosion. The present study indicates that reduced HSP83 expression in A. pisum reveals both functional similarities and differences compared with its reported roles in holometabolous insects. Its impact on aphid lifespan, fecundity, and embryogenesis suggests a function that determines their fitness. This could be achieved by targeting different client proteins, recruiting distinct co-chaperones or transposon activation.

  18. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock.

    PubMed

    Chen, L-J; Wang, S; Wilson, L B; Schwartz, S; Bessho, N; Moore, T; Gershman, D; Giles, B; Malaspina, D; Wilder, F D; Ergun, R E; Hesse, M; Lai, H; Russell, C; Strangeway, R; Torbert, R B; F-Vinas, A; Burch, J; Lee, S; Pollock, C; Dorelli, J; Paterson, W; Ahmadi, N; Goodrich, K; Lavraud, B; Le Contel, O; Khotyaintsev, Yu V; Lindqvist, P-A; Boardsen, S; Wei, H; Le, A; Avanov, L

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  19. Electron Bulk Acceleration and Thermalization at Earth's Quasiperpendicular Bow Shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B.; Schwartz, S.; Bessho, N.; Moore, T.; Gershman, D.; Giles, B.; Malaspina, D.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C.; Strangeway, R.; Torbert, R. B.; F.-Vinas, A.; Burch, J.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W.; Ahmadi, N.; Goodrich, K.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L.

    2018-06-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  20. Electron bulk acceleration and thermalization at Earth's quasi-perpendicular bow shock

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wang, S.; Wilson, L. B., III; Schwartz, S. J.; Bessho, N.; Moore, T. E.; Gershman, D. J.; Giles, B. L.; Malaspina, D. M.; Wilder, F. D.; Ergun, R. E.; Hesse, M.; Lai, H.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Vinas, A. F.-; Burch, J. L.; Lee, S.; Pollock, C.; Dorelli, J.; Paterson, W. R.; Ahmadi, N.; Goodrich, K. A.; Lavraud, B.; Le Contel, O.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Boardsen, S.; Wei, H.; Le, A.; Avanov, L. A.

    2018-05-01

    Electron heating at Earth's quasiperpendicular bow shock has been surmised to be due to the combined effects of a quasistatic electric potential and scattering through wave-particle interaction. Here we report the observation of electron distribution functions indicating a new electron heating process occurring at the leading edge of the shock front. Incident solar wind electrons are accelerated parallel to the magnetic field toward downstream, reaching an electron-ion relative drift speed exceeding the electron thermal speed. The bulk acceleration is associated with an electric field pulse embedded in a whistler-mode wave. The high electron-ion relative drift is relaxed primarily through a nonlinear current-driven instability. The relaxed distributions contain a beam traveling toward the shock as a remnant of the accelerated electrons. Similar distribution functions prevail throughout the shock transition layer, suggesting that the observed acceleration and thermalization is essential to the cross-shock electron heating.

  1. Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery.

    PubMed

    Hall, Jessica A; Seedarala, Sahithi; Rice, Nichole; Kopel, Lucas; Halaweish, Fathi; Blagg, Brian S J

    2015-04-24

    Heat shock protein 90 (Hsp90) facilitates the maturation of many newly synthesized and unfolded proteins (clients) via the Hsp90 chaperone cycle, in which Hsp90 forms a heteroprotein complex and relies upon cochaperones, immunophilins, etc., for assistance in client folding. Hsp90 inhibition has emerged as a strategy for anticancer therapies due to the involvement of clients in many oncogenic pathways. Inhibition of chaperone function results in client ubiquitinylation and degradation via the proteasome, ultimately leading to tumor digression. Small molecule inhibitors perturb ATPase activity at the N-terminus and include derivatives of the natural product geldanamycin. However, N-terminal inhibition also leads to induction of the pro-survival heat shock response (HSR), in which displacement of the Hsp90-bound transcription factor, heat shock factor-1, translocates to the nucleus and induces transcription of heat shock proteins, including Hsp90. An alternative strategy for Hsp90 inhibition is disruption of the Hsp90 heteroprotein complex. Disruption of the Hsp90 heteroprotein complex is an effective strategy to prevent client maturation without induction of the HSR. Cucurbitacin D, isolated from Cucurbita texana, and 3-epi-isocucurbitacin D prevented client maturation without induction of the HSR. Cucurbitacin D also disrupted interactions between Hsp90 and two cochaperones, Cdc37 and p23.

  2. CUCURBITACIN D IS A DISRUPTOR OF THE HSP90 CHAPERONE MACHINERY

    PubMed Central

    Hall, Jessica A.; Seedarala, Sahithi; Rice, Nichole; Kopel, Lucas; Halaweish, Fathi; Blagg, Brian S. J.

    2018-01-01

    Heat shock protein 90 (Hsp90) facilitates the maturation of many newly synthesized and unfolded proteins (clients) via the Hsp90 chaperone cycle, in which Hsp90 forms a heteroprotein complex and relies upon co-chaperones, immunophilins, etc. for assistance in client folding. Hsp90 inhibition has emerged as a strategy for anticancer therapies due to the involvement of clients in many oncogenic pathways. Inhibition of chaperone function results in client ubiquitinylation and degradation via the proteasome, ultimately leading to tumor digression. Small molecule inhibitors perturb ATPase activity at the N-terminus and include derivatives of the natural product geldanamycin. However, N-terminal inhibition also leads to induction of the pro-survival heat shock response (HSR), in which displacement of the Hsp90-bound transcription factor, Heat Shock Factor-1 translocates to the nucleus and induces transcription of heat shock proteins, including Hsp90. An alternative strategy for Hsp90 inhibition is disruption of the Hsp90 heteroprotein complex. Disruption of the Hsp90 heteroprotein complex is an effective strategy to prevent client maturation without induction of the HSR. Cucurbitacin D, isolated from Cucurbita texana, and 3-epi-isocucurbitacin D prevented client maturation without induction of the HSR. Cucurbitacin D also disrupted interactions between Hsp90 and two co-chaperones, Cdc37 and p23. PMID:25756299

  3. Prognostic value of adrenal gland volume after cardiac arrest: Association of CT-scan evaluation with shock and mortality.

    PubMed

    Mongardon, Nicolas; Savary, Guillaume; Geri, Guillaume; El Bejjani, Marie-Rose; Silvera, Stéphane; Dumas, Florence; Charpentier, Julien; Pène, Frédéric; Mira, Jean-Paul; Cariou, Alain

    2018-05-28

    Adrenal gland volume is associated with survival in septic shock. As sepsis and post-cardiac arrest syndrome share many pathophysiological features, we assessed the association between adrenal gland volume measured by computerized tomography (CT)-scan and post-cardiac arrest shock and intensive care unit (ICU) mortality, in a large cohort of out-of-hospital cardiac arrest (OHCA) patients. We also investigated the association between adrenal hormonal function and both adrenal gland volume and outcomes. Prospective analysis of CT-scan performed at hospital admission in patients admitted after OHCA (2007-2012). A pair of blinded radiologist calculated manually adrenal gland volume. In a subgroup of patients, plasma cortisol was measured at admission and 60 min after a cosyntropin test. Factors associated with post-cardiac arrest shock and ICU mortality were identified using multivariate logistic regression. Among 775 patients admitted during this period after OHCA, 138 patients were included: 72 patients (52.2%) developed a post-cardiac arrest shock, and 98 patients (71.1%) died. In univariate analysis, adrenal gland volume was not different between patients with and without post-cardiac arrest shock: 10.6 and 11.3 cm 3 , respectively (p = 0.9) and between patients discharged alive or dead: 10.2 and 11.8 cm 3 , respectively (p = 0.4). Multivariate analysis confirmed that total adrenal gland volume was associated neither with post-cardiac arrest shock nor mortality. Neither baseline cortisol level nor delta between baseline and after cosyntropin test cortisol levels were associated with adrenal volume, post-cardiac arrest shock onset or mortality. After OHCA, adrenal gland volume is not associated with post-cardiac arrest shock onset or ICU mortality. Adrenal gland volume does not predict adrenal gland hormonal response. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. AGN Heating in Simulated Cool-core Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan; Ruszkowski, Mateusz; Bryan, Greg L., E-mail: yuanlium@umich.edu

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss.more » However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.« less

  5. ATHENA: system studies and optics accommodation

    NASA Astrophysics Data System (ADS)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Fransen, S.; Stefanescu, A.; Linder, M.

    2016-07-01

    ATHENA is currently in Phase A, with a view to adoption upon a successful Mission Adoption Review in 2019/2020. After a brief presentation of the reference spacecraft (SC) design, this paper will focus on the functional and environmental requirements, the thermo-mechanical design and the Assembly, Integration, Verification & Test (AIVT) considerations related to housing the Silicon Pore Optics (SPO) Mirror Modules (MM) in the very large Mirror Assembly Module (MAM). Initially functional requirements on the MM accommodation are presented, with the Effective Area and Half Energy Width (HEW) requirements leading to a MAM comprising (depending on final mirror size selected) between 700-1000 MMs, co-aligned with exquisite accuracy to provide a common focus. A preliminary HEW budget allocated across the main error-contributors is presented, and this is then used as a reference to derive subsequent requirements and engineering considerations, including: The procedures and technologies for MM-integration into the Mirror Structure (MS) to achieve the required alignment accuracies in a timely manner; stiffness requirements and handling scheme required to constrain deformation under gravity during x-ray testing; temperature control to constrain thermo-elastic deformation during flight; and the role of the Instrument Switching Mechanism (ISM) in constraining HEW and Effective Area errors. Next, we present the key environmental requirements of the MMs, and the need to minimise shock-loading of the MMs is stressed. Methods to achieve this Ø are presented, including: Selection of a large clamp-band launch vehicle interface (LV I/F); lengthening of the shock-path from the LV I/F to the MAM I/F; modal-tuning of the MAM to act as a low-pass filter during launch shock events; use of low-shock HDRMs for the MAM; and the possibility to deploy a passive vibration solution at the LV I/F to reduce loads.

  6. A non-synonymous SNP in the NOS2 associated with septic shock in patients with sepsis in Chinese populations.

    PubMed

    Wang, Zhifu; Feng, Kai; Yue, Maoxing; Lu, Xiaoguang; Zheng, Qihan; Zhang, Hongxing; Zhai, Yun; Li, Peiyao; Yu, Lixia; Cai, Mi; Zhang, Xiumei; Kang, Xin; Shi, Weihai; Xia, Xia; Chen, Xi; Cao, Pengbo; Li, Yuanfeng; Chen, Huipeng; Ling, Yan; Li, Yuxia; He, Fuchu; Zhou, Gangqiao

    2013-03-01

    Sepsis represents a systemic inflammatory response to infection and its sequelae include severe sepsis, septic shock, multiple organ dysfunction syndrome (MODS) and death. Studies in mice and humans indicate that the inducible nitric oxide synthase (iNOS, NOS2) plays an important role in the development of sepsis and its sequelae. It was reported that several single nucleotide polymorphisms (SNPs) within NOS2 could influence the production or activity of NOS2. In this study, we assessed whether SNPs within NOS2 gene were associated with severity of sepsis in Chinese populations. A case-control study was conducted, which included 299 and 280 unrelated patients with sepsis recruited from Liaoning and Jiangsu provinces in China, respectively. Six SNPs within NOS2 were genotyped using Sequenom MassARRAY system. The associations between the SNPs and risk of sepsis complications were estimated by a binary logistic regression model adjusted for confounding factors. Functional assay was performed to assess the biological significance. The GA + AA genotype of a non-synonymous SNP in the exon 16 of NOS2 (rs2297518: G>A) was significantly associated with increased susceptibility to septic shock compared with GG genotype in Liaoning population (OR = 3.29, 95% CI = 1.40-7.72, P = 0.0047). This association was confirmed in the Jiangsu population (OR = 3.49, 95% CI = 1.57-7.79, P = 0.0019). Furthermore, the functional assay performed in the immortalized lymphocyte cell lines indicated that the at-risk GA genotype had a tendency of higher NOS2 activity than the GG genotype (P = 0.32). Our findings suggest that the NOS2 rs2297518 may play a role in mediating the susceptibility to septic shock in patients with sepsis in Chinese populations.

  7. An experimental model for the study of cognitive disorders: the hippocampus and associative learning in mice.

    PubMed

    Delgado-García, José M; Gruart, Agnès

    2008-12-01

    The availability of transgenic mice mimicking selective human neurodegenerative and psychiatric disorders calls for new electrophysiological and microstimulation techniques capable of being applied in vivo in this species. In this article, we will concentrate on experiments and techniques developed in our laboratory during the past few years. Thus we have developed different techniques for the study of learning and memory capabilities of wild-type and transgenic mice with deficits in cognitive functions, using classical conditioning procedures. These techniques include different trace (tone/SHOCK and shock/SHOCK) conditioning procedures ? that is, a classical conditioning task involving the cerebral cortex, including the hippocampus. We have also developed implantation and recording techniques for evoking long-term potentiation (LTP) in behaving mice and for recording the evolution of field excitatory postsynaptic potentials (fEPSP) evoked in the hippocampal CA1 area by the electrical stimulation of the commissural/Schaffer collateral pathway across conditioning sessions. Computer programs have also been developed to quantify the appearance and evolution of eyelid conditioned responses and the slope of evoked fEPSPs. According to the present results, the in vivo recording of the electrical activity of selected hippocampal sites during classical conditioning of eyelid responses appears to be a suitable experimental procedure for studying learning capabilities in genetically modified mice, and an excellent model for the study of selected neuropsychiatric disorders compromising cerebral cortex functioning.

  8. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient.

    PubMed

    David, Sascha; Thamm, Kristina; Schmidt, Bernhard M W; Falk, Christine S; Kielstein, Jan T

    2017-01-01

    Sepsis and septic shock are major healthcare problems, affecting millions of individuals around the world each year. Pathophysiologically, septic multiple organ dysfunction (MOD) is a life-threatening condition caused by an overwhelming systemic inflammatory response of the host's organism to an infection. We experimentally tested if high circulating cytokine levels might increase vascular permeability-a critical hallmark of the disease-and if this phenomenon can be reversed by therapeutic cytokine removal (CytoSorb®) in an exemplary patient. A 32-year-old Caucasian female presented with septic shock and accompanying acute kidney injury (Sequential Organ Failure Assessment (SOFA) = 18) to our ICU. In spite of a broad anti-infective regimen, adequate fluid resuscitation, and high doses of inotropics and catecholamines, she remained refractory hypotensive. The extraordinary severity of septic shock suggested an immense overwhelming host response assumingly accompanied by a notable cytokine storm such as known from patients with toxic shock syndrome. Thus, a CytoSorb® filter was added to the dialysis circuit to remove excess shock-perpetuating cytokines. To analyze the endothelial phenotype in vitro before and after extracorporeal cytokine removal, we tested the septic shock patient's serum on human umbilical vein endothelial cells (HUVECs). The effect on endothelial integrity was assessed both on the morphological (fluorescent immunocytochemistry for VE-cadherin and F-actin) and functional (transendothelial electrical resistance (TER)) level that was recorded in real time with an "electric cell-substrate impedance sensing" (ECIS) system (ibidi). We found (1) severe alterations of cell-cell contacts and the cytoskeletal architecture and (2) profound functional permeability changes, the putative cellular correlate of the clinical vascular leakage syndrome. However, the endothelial barrier was protected from these profound adverse effects when HUVECs were challenged with septic shock serum that was collected after extracorporeal cytokine removal. Beneficial observations of extracorporeal cytokine removal in septic shock patients might-at least in part-be promoted via protection of vascular barrier function.

  9. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  10. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  11. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals.

    PubMed

    He, Lan; Sewell, Thomas D; Thompson, Donald L

    2011-03-28

    The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (~15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (~6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated as a function of time since shock wave passage in planes perpendicular to the direction of shock propagation, show that the molecular translational mobility in the picoseconds following shock wave passage is greatest for [001] and least for the [010] case. In all cases the root-mean-square center-of-mass displacement is small compared to the molecular diameter of nitromethane on the time scale of the simulations. The calculated time scales for the approach to thermal equilibrium are generally consistent with the predictions of a recent theoretical analysis due to Hooper [J. Chem. Phys. 132, 014507 (2010)].

  12. A Transmission Electron Microscope Study of Experimentally Shocked Pregraphitic Carbon

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1995-01-01

    A transmission electron microscope study of experimental shock metamorphism in natural pre-graphitic carbon simulates the response of the most common natural carbons to increased shock pressure. The d-spacings of this carbon are insensitive to the shock pressure and have no apparent diagnostic value, but progressive comminution occurs in response to increased shock pressure up to 59.6 GPa. The function, P = 869.1 x (size(sub minimum )(exp -0.83), describes the relationship between the minimum root-mean-square subgrain size (nm) and shock pressure (GPa). While a subgrain texture of natural pregraphitic carbons carries little information when pre-shock textures are unknown, this texture may go unnoticed as a shock metamorphic feature.

  13. Alfven Profile in the Lower Corona: Implications for Shock Formation

    NASA Astrophysics Data System (ADS)

    Evans, R. M.; Opher, M.; Manchester, W. B.; Velli, M.; Gombosi, T. I.

    2007-12-01

    Recent events (e.g. Tylka et al. 2005) indicate that CME-driven shocks can form at 1-3 solar radii and are responsible for the GeV/nucleon energies observed in some ground level solar energetic particle events. The formation of shocks depends crucially on the background solar wind environment, in particular on the profile of the background Alfvén speed in the corona. Significant strides have been made in the effort to develop realistic models of CME events; however, there is no consensus as to the profile of the Alfvén speed in the lower corona. Here we provide an overview of ten state-of-the-art models, which includes various methods to model magnetic field and density, as well as different strategies for accelerating the solar wind. We present the Alfvén speed profile for each model in the lower corona. We find that the "valley" and "hump" structures anticipated by Mann et al. (2003) are sometimes present, but in some models the Alfvén profiles drop off quickly. We discuss the implications of these profiles, such as whether it will allow a shock to form, dissipate, and form again (i.e. multiple shocks). Our study indicates that it is crucial to establish the Alfvén speed as a function of height before determining if shocks can form in the lower corona.

  14. Increased expression of proenkephalin and prodynorphin mRNAs in the nucleus accumbens of compulsive methamphetamine taking rats.

    PubMed

    Cadet, Jean Lud; Krasnova, Irina N; Walther, Donna; Brannock, Christie; Ladenheim, Bruce; McCoy, Michael T; Collector, Daniel; Torres, Oscar V; Terry, Ndeah; Jayanthi, Subramaniam

    2016-11-14

    Addiction is associated with neuroadaptive changes in the brain. In the present paper, we used a model of methamphetamine self-administration during which we used footshocks to divide rats into animals that continue to press a lever to get methamphetamine (shock-resistant) and those that significantly reduce pressing the lever (shock-sensitive) despite the shocks. We trained male Sprague-Dawley rats to self-administer methamphetamine (0.1 mg/kg/infusion) for 9 hours daily for 20 days. Control group self-administered saline. Subsequently, methamphetamine self-administration rats were punished by mild electric footshocks for 10 days with gradual increases in shock intensity. Two hours after stopping behavioral experiments, we euthanized rats and isolated nucleus accumbens (NAc) samples. Affymetrix Array experiments revealed 24 differentially expressed genes between the shock-resistant and shock-sensitive rats, with 15 up- and 9 downregulated transcripts. Ingenuity pathway analysis showed that these transcripts belong to classes of genes involved in nervous system function, behavior, and disorders of the basal ganglia. These genes included prodynorphin (PDYN) and proenkephalin (PENK), among others. Because PDYN and PENK are expressed in dopamine D1- and D2-containing NAc neurons, respectively, these findings suggest that mechanisms, which impact both cell types may play a role in the regulation of compulsive methamphetamine taking by rats.

  15. Pathophysiological roles of peroxynitrite in circulatory shock

    PubMed Central

    Szabó, Csaba; Módis, Katalin

    2014-01-01

    Summary Peroxynitrite is a reactive oxidant produced from nitric oxide (NO) and superoxide, which reacts with proteins, lipids and DNA and promotes cytotoxic and pro-inflammatory responses. Here we overview the role of peroxynitrite in various forms of circulatory shock. Immunohistochemical and biochemical evidence demonstrate the production of peroxynitrite in various experimental models of endotoxic and hemorrhagic shock, both in rodents and in large animals. In addition, biological markers of peroxynitrite have been identified in human tissues after circulatory shock. Peroxynitrite can initiate toxic oxidative reactions in vitro and in vivo. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of peroxynitrite. In addition, peroxynitrite is a potent trigger of DNA strand breakage, with subsequent activation of the nuclear enzyme poly (ADP-ribose) polymerase (PARP), which promotes cellular energetic collapse and cellular necrosis. Additional actions of peroxynitrite that contribute to the pathogenesis of shock include inactivation of catecholamines and catecholamine receptors (leading to vascular failure), endothelial and epithelial injury (leading to endothelial and epithelial hyper-permeability and barrier dysfunction) as well as myocyte injury (contributing to loss of cardiac contractile function). Neutralization of peroxynitrite with potent peroxynitrite decomposition catalysts provides cytoprotective and beneficial effects in rodent and large animal models of circulatory shock. PMID:20523270

  16. Characterization of Depleted-Uranium Strength and Damage Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, III, George T.; Chen, Shuh-Rong; Bronkhorst, Curt A.

    2012-12-17

    The intent of this report is to document the status of our knowledge of the mechanical and damage behavior of Depleted Uranium(DU hereafter). This report briefly summaries the motivation of the experimental and modeling research conducted at Los Alamos National Laboratory(LANL) on DU since the early 1980’s and thereafter the current experimental data quantifying the strength and damage behavior of DU as a function of a number of experimental variables including processing, strain rate, temperature, stress state, and shock prestraining. The effect of shock prestraining on the structure-property response of DU is described and the effect on post-shock mechanical behaviormore » of DU is discussed. The constitutive experimental data utilized to support the derivation of two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, for both annealed and shock prestrained DU are detailed and the Taylor cylinder validation tests and finite-element modeling (FEM) utilized to validate these strength models is discussed. The similarities and differences in the PTW and MTS model descriptions for DU are discussed for both the annealed and shock prestrained conditions. Quasi-static tensile data as a function of triaxial constraint and spallation test data are described. An appendix additionally briefly describes low-pressure equation-of-state data for DU utilized to support the spallation experiments. The constitutive behavior of DU screw/bolt material is presented. The response of DU subjected to dynamic tensile extrusion testing as a function of temperature is also described. This integrated experimental technique is planned to provide an additional validation test in the future. The damage data as a function of triaxiality, tensile and spallation data, is thereafter utilized to support derivation of the Tensile Plasticity (TEPLA) damage model and simulations for comparison to the DU spallation data are presented. Finally, a discussion of future needs in the area of needed DU strength and damage research at LANL is presented to support the development of physically-based predictive strength and damage modeling capability.« less

  17. The chromosomal association/dissociation of the chromatin insulator protein Cp190 of Drosophila melanogaster is mediated by the BTB/POZ domain and two acidic regions.

    PubMed

    Oliver, Daniel; Sheehan, Brian; South, Heather; Akbari, Omar; Pai, Chi-Yun

    2010-12-31

    Chromatin insulators or boundary elements are a class of functional elements in the eukaryotic genome. They regulate gene transcription by interfering with promoter-enhancer communication. The Cp190 protein of Drosophila melanogaster is essential to the function of at least three-types of chromatin insulator complexes organized by Su(Hw), CTCF and BEAF32. We mapped functional regions of Cp190 in vivo and identified three domains that are essential for the insulator function and for the viability of flies: the BTB/POZ domain, an aspartic acid-rich (D-rich) region and a C-terminal glutamic acid-rich (E-rich) region. Other domains including the centrosomal targeting domain and the zinc fingers are dispensable. The N-terminal CP190BTB-D fragment containing the BTB/POZ domain and the D-rich region is sufficient to mediate association with all three types of insulator complexes. The fragment however is not sufficient for insulator activity or viability. The Cp190 and CP190BTB-D are regulated differently in cells treated with heat-shock. The Cp190 dissociated from chromosomes during heat-shock, indicating that dissociation of Cp190 with chromosomes can be regulated. In contrast, the CP190BTB-D fragment didn't dissociate from chromosomes in the same heat-shocked condition, suggesting that the deleted C-terminal regions have a role in regulating the dissociation of Cp190 with chromosomes. The N-terminal fragment of Cp190 containing the BTB/POZ domain and the D-rich region mediates association of Cp190 with all three types of insulator complexes and that the E-rich region of Cp190 is required for dissociation of Cp190 from chromosomes during heat-shock. The heat-shock-induced dissociation is strong evidence indicating that dissociation of the essential insulator protein Cp190 from chromosomes is regulated. Our results provide a mechanism through which activities of an insulator can be modulated by internal and external cues.

  18. Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion.

    PubMed

    Yang, Yongil; Karlson, Dale

    2012-08-01

    The cold shock domain is among the most evolutionarily conserved nucleic acid binding domains from prokaryotes to higher eukaryotes, including plants. Although eukaryotic cold shock domain proteins have been extensively studied as transcriptional and post-transcriptional regulators during various developmental processes, their functional roles in plants remains poorly understood. In this study, AtCSP3 (At2g17870), which is one of four Arabidopsis thaliana c old s hock domain proteins (AtCSPs), was functionally characterized. Quantitative RT-PCR analysis confirmed high expression of AtCSP3 in reproductive and meristematic tissues. A homozygous atcsp3 loss-of-function mutant exhibits an overall reduced seedling size, stunted and orbicular rosette leaves, reduced petiole length, and curled leaf blades. Palisade mesophyll cells are smaller and more circular in atcsp3 leaves. Cell size analysis indicated that the reduced size of the circular mesophyll cells appears to be generated by a reduction of cell length along the leaf-length axis, resulting in an orbicular leaf shape. It was also determined that leaf cell expansion is impaired for lateral leaf development in the atcsp3 loss-of-function mutant, but leaf cell proliferation is not affected. AtCSP3 loss-of-function resulted in a dramatic reduction of LNG1 transcript, a gene that is involved in two-dimensional leaf polarity regulation. Transient subcellular localization of AtCSP3 in onion epidermal cells confirmed a nucleocytoplasmic localization pattern. Collectively, these data suggest that AtCSP3 is functionally linked to the regulation of leaf length by affecting LNG1 transcript accumulation during leaf development. A putative function of AtCSP3 as an RNA binding protein is also discussed in relation to leaf development.

  19. Phenol removal performance and microbial community shift during pH shock in a moving bed biofilm reactor (MBBR).

    PubMed

    Zhou, Hao; Wang, Guochen; Wu, Minghuo; Xu, Weiping; Zhang, Xuwang; Liu, Lifen

    2018-06-05

    A moving bed biofilm reactor (MBBR) effectively removes pollutants and even runs under extreme conditions. However, the pH shock resistance of a biofilm in MBBRs has been rarely reported. In this study, simulated phenol wastewater with acidic shock (pH 7.5-3.0) was used. In the pH shock phase, the phenol and COD removal efficiencies initially decreased and gradually increased to more than 90%. Microscopic studies showed that the superficial biofilm was mainly composed of fungi (yeasts) in the acidic pH shock phase. The microbial community composition in the acidic pH shock phase was significantly different from those in other phases. Firmicutes and Ascomycota were the dominant bacterial and fungal phyla in this stage, respectively. 16S rRNA gene-based functional annotation indicated that functional profiles related to aromatic compound degradation existed in all of the stages. Therefore, MBBRs show potential for the treatment of phenolic wastewater exposed to pH shock. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmstead, D.; Wayne, P.; Simons, D.

    Here, we consider two cases of interaction between a planar shock and a cylindrical density interface. In the first case (planar normal shock), the axis of the gas cylinder is parallel to the shock front and baroclinic vorticity deposited by the shock is predominantly two dimensional (directed along the axis of the cylinder). In the second case, the cylinder is tilted, resulting in an oblique shock interaction and a fully-three-dimensional shock-induced vorticity field. Furthermore, the statistical properties of the flow for both cases are analyzed based on images from two orthogonal visualization planes, using structure functions of the intensity mapsmore » of fluorescent tracer premixed with heavy gas. And at later times, these structure functions exhibit power-law-like behavior over a considerable range of scales. Manifestation of this behavior is remarkably consistent in terms of dimensionless time τ defined based on Richtmyer's linear theory within the range of Mach numbers from 1.1 to 2.0 and the range of gas cylinder tilt angles with respect to the plane of the shock front (0–30°).« less

  1. Shock-wave structure in a partially ionized gas

    NASA Technical Reports Server (NTRS)

    Lu, C. S.; Huang, A. B.

    1974-01-01

    The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.

  2. Numerical evaluation of propeller noise including nonlinear effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Von Lavante, E.; Bober, L. J.

    1986-01-01

    Propeller noise in the acoustic near field is presently determined through the integration of the pressure-time history in the tangential direction of a numerically generated flowfield around a propfan of SR-3 type, including the shock wave system in the vicinity of the propeller tip. This acoustic analysis yields overall sound pressure levels, and the associated frequency spectra, as a function of observer location.

  3. Analytical and experimental study of axisymmetric truncated plug nozzle flow fields

    NASA Technical Reports Server (NTRS)

    Muller, T. J.; Sule, W. P.; Fanning, A. E.; Giel, T. V.; Galanga, F. L.

    1972-01-01

    Experimental and analytical investigation of the flow field and base pressure of internal-external-expansion truncated plug nozzles are discussed. Experimental results for two axisymmetric, conical plug-cylindrical shroud, truncated plug nozzles are presented for both open and closed wake operations. These results include extensive optical and pressure data covering nozzle flow field and base pressure characteristics, diffuser effects, lip shock strength, Mach disc behaviour, and the recompression and reverse flow regions. Transonic experiments for a special planar transonic section are presented. An extension of the analytical method of Hall and Mueller to include the internal shock wave from the shroud exit is presented for closed wake operation. Results of this analysis include effects on the flow field and base pressure of ambient pressure ratio, nozzle geometry, and the ratio of specific heats. Static thrust is presented as a function of ambient pressure ratio and nozzle geometry. A new transonic solution method is also presented.

  4. Myocardial Dysfunction and Shock after Cardiac Arrest

    PubMed Central

    Jentzer, Jacob C.; Chonde, Meshe D.; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies. PMID:26421284

  5. Myocardial Dysfunction and Shock after Cardiac Arrest.

    PubMed

    Jentzer, Jacob C; Chonde, Meshe D; Dezfulian, Cameron

    2015-01-01

    Postarrest myocardial dysfunction includes the development of low cardiac output or ventricular systolic or diastolic dysfunction after cardiac arrest. Impaired left ventricular systolic function is reported in nearly two-thirds of patients resuscitated after cardiac arrest. Hypotension and shock requiring vasopressor support are similarly common after cardiac arrest. Whereas shock requiring vasopressor support is consistently associated with an adverse outcome after cardiac arrest, the association between myocardial dysfunction and outcomes is less clear. Myocardial dysfunction and shock after cardiac arrest develop as the result of preexisting cardiac pathology with multiple superimposed insults from resuscitation. The pathophysiology involves cardiovascular ischemia/reperfusion injury and cardiovascular toxicity from excessive levels of inflammatory cytokine activation and catecholamines, among other contributing factors. Similar mechanisms occur in myocardial dysfunction after cardiopulmonary bypass, in sepsis, and in stress-induced cardiomyopathy. Hemodynamic stabilization after resuscitation from cardiac arrest involves restoration of preload, vasopressors to support arterial pressure, and inotropic support if needed to reverse the effects of myocardial dysfunction and improve systemic perfusion. Further research is needed to define the role of postarrest myocardial dysfunction on cardiac arrest outcomes and identify therapeutic strategies.

  6. Coagulopathy and traumatic shock: Characterizing hemostatic function during the critical period prior to fluid resuscitation

    PubMed Central

    White, Nathan J.; Martin, Erika J.; Brophy, Donald F.; Ward, Kevin R.

    2009-01-01

    Aims Identifying early changes in hemostatic clot function as a result of tissue injury and hypoperfusion may provide important information regarding the mechanisms of traumatic coagulopathy. A combat-relevant swine model was used to investigate the development of coagulopathy during trauma by monitoring hemostatic function during increasing severity of shock. Methods Swine were injured (soft tissue + femur fracture) and hemorrhaged while continuously monitoring Oxygen Debt (OD) by indirect calorimetry at the airway. Hemostatic function was assessed by Thrombelastography (TEG), prothrombin time (PT), partial Thromboplastin time (PTT), and fibrinogen concentration and compared before hemorrhage (D0) and during shock when OD= 40 and 80 ml/kg. An instrumented sham group was used for comparison. Results N=23 swine (n=18 hemorrhage, n=5 sham) weighing 45+/−6 Kg were studied after removing an average of 34+/−14% of blood volume during hemorrhage. Hgb, Hct, platelet counts, PT and PTT did not change with increasing OD (p>0.05). Fibrinogen was reduced significantly by OD=40 ml/kg (mean diff =−59.9 mg/dl, 95% CI diff [−95.1, −24.6]). TEG parameters representing clot initiation (R) and polymerization (K and Alpha Angle) did not change with increasing OD during shock (p>0.053). Clot strength (MA) was reduced in the hemorrhage group by OD=80 ml/kg (mean diff = −4.1 mm, 95% CI diff [−7.4, −0.8]). Conclusion In this swine model of traumatic shock, fibrinogen was significantly reduced and an isolated reduction in clot strength (MA) was found with increasing OD. Fibrinogen consumption and altered platelet function may account for the earliest changes in hemostatic function during traumatic shock. PMID:19854556

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Y.; Neal, C.; Salari, K.

    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less

  8. The role of milrinone in children with cardiovascular compromise: review of the literature.

    PubMed

    Meyer, Sascha; Gortner, Ludwig; Brown, Kate; Abdul-Khaliq, Hashim

    2011-04-01

    Cardiovascular instability is a common complication in children after cardiac surgery and in various forms of shock. Systematic literature review. Four randomized controlled trials (RCTs) were included in this systematic literature review. In children after corrective surgery for congenital heart disease milrinone significantly reduced the risk of development of LCOS compared with placebo. In another study in children with high pulmonary vascular resistance and impaired oxygenation after Fontan operation, inhalation of NO with milrinone led to the most significant reduction of pulmonary vascular resistance and improvement of oxygenation. When only milrinone was given these changes were less pronounced. In non-hyperdynamic septic shock, CI, SVI, and DO₂ significantly increased while SVRI significantly decreased after milrinone when compared to placebo. There are a limited number of RCTs in children that suggest a beneficial effect of milrinone in the optimization of cardiovascular function after cardiac surgery and in septic shock.

  9. Initial resuscitation and management of pediatric septic shock

    PubMed Central

    Martin, Kelly; Weiss, Scott L.

    2015-01-01

    The pediatric sepsis syndrome remains a common cause of morbidity, mortality, and health care utilization costs worldwide. The initial resuscitation and management of pediatric sepsis is focused on 1) rapid recognition of abnormal tissue perfusion and restoration of adequate cardiovascular function, 2) eradication of the inciting invasive infection, including prompt administration of empiric broad-spectrum antimicrobial medications, and 3) supportive care of organ system dysfunction. Efforts to improve early and aggressive initial resuscitation and ongoing management strategies have improved outcomes in pediatric severe sepsis and septic shock, though many questions still remain as to the optimal therapeutic strategies for many patients. In this article, we will briefly review the definitions, epidemiology, clinical manifestations, and pathophysiology of sepsis and provide an extensive overview of both current and novel therapeutic strategies used to resuscitate and manage pediatric patients with severe sepsis and septic shock. PMID:25604591

  10. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1984-01-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed.

  11. How does temperature affect the function of tissue macrophages?

    NASA Astrophysics Data System (ADS)

    Lee, Chen-Ting; Repasky, Elizabeth A.

    2011-03-01

    Macrophages create a major danger signal following injury or infection and upon activation release pro-inflammatory cytokines, which in turn help to generate febrile conditions. Thus, like other cells of the body, tissue macrophages are often exposed to naturally occurring elevations in tissue temperature during inflammation and fever. However, whether macrophages sense and respond to temperature changes in a specific manner which modulates their function is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of temperatures on macrophage function, and summarize the possible underlying molecular mechanisms which have been identified. Mild, physiological range hyperthermia has been shown to have both pro- and anti-inflammatory roles in regulating macrophage inflammatory cytokine production and at the meeting presentation, we will show new data demonstrating that hyperthermia can indeed exert both positive and negative signals to macrophages. While some thermal effects are correlated with the induction of heat shock factors/heat shock proteins, overall it is not clear how mild hyperthermia can exert both pro- and anti-inflammatory functions. We also summarize data which shows that hyperthermia can affect other macrophage effector functions, including the anti-tumor cytotoxicity. Overall, these studies may help us to better understand the immunological role of tissue temperature and may provide important information needed to maximize the application of heat in the treatment of various diseases including cancer.

  12. Shock waves; Proceedings of the 18th International Symposium, Sendai, Japan, July 21-26, 1991. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.

  13. Entropy jump across an inviscid shock wave

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  14. Cosmic-ray shock acceleration in oblique MHD shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  15. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals: plane-specific effects.

    PubMed

    He, Lan; Sewell, Thomas D; Thompson, Donald L

    2012-01-21

    Molecular dynamics simulations of supported shock waves (shock pressure P(s) ∼ 15 GPa) propagating along the [110], [011], [101], and [111] directions in crystalline nitromethane initially at T = 200 K were performed using the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. These simulations, combined with those from a preceding study of shocks propagating along [100], [010], and [001] directions in nitromethane for similar conditions of temperature and shock pressure [L. He, T. D. Sewell, and D. L. Thompson, J. Chem. Phys. 134, 124506 (2011)], have been used to study the post-shock relaxation phenomena. Shocks along [010] and [101] lead to a crystal-crystal structure transformation. Shocks propagating along [011], [110], [111], [100], and [001] exhibit plane-specific disordering, which was characterized by calculating as functions of time the 1D mean square displacement (MSD), 2D radial distribution function (RDF), and 2D orientation order parameter P(2)(θ) in orthogonal planes mutually perpendicular to the shock plane; and by calculating as functions of distance behind the shock front the Cartesian components of intermolecular, intramolecular, and total kinetic energies. The 2D RDF results show that the structural disordering for shocks along [100], [110], and [111] is strongly plane-specific; whereas for shocks along [001] and [011], the loss of crystal structural order is almost equivalent in the orthogonal planes perpendicular to the shock plane. Based on the entire set of simulations, there is a trend for the most extensive disordering to occur in the (010) and (110) planes, less extensive disordering to occur in the (100) plane, and essentially no disordering to occur in the (001) plane. The 2D P(2)(θ) and 1D MSD profiles show, respectively, that the orientational and translational disordering is plane-specific, which results in the plane-specific structural disordering observed in the 2D RDF. By contrast, the kinetic energy partitioning and redistribution do not exhibit plane specificity, as shown by the similarity of spatial profiles of the Cartesian components of the intermolecular, intramolecular, and total kinetic energies in orthogonal planes perpendicular to the shock plane. © 2012 American Institute of Physics

  16. Penile Low-Intensity Shock Wave Therapy: A Promising Novel Modality for Erectile Dysfunction

    PubMed Central

    Kitrey, Noam D.; Gruenwald, Ilan; Appel, Boaz; Vardi, Yoram

    2014-01-01

    Penile extracorporeal low-intensity shock wave therapy (LIST) to the penis has recently emerged as a novel and promising modality in the treatment of erectile dysfunction (ED). LIST has angiogenic properties and stimulates neovascularization. If applied to the corpora cavernosa, LIST can improve penile blood flow and endothelial function. In a series of clinical trials, including randomized double-blind sham-controlled studies, LIST has been shown to have a substantial effect on penile hemodynamics and erectile function in patients with vasculogenic ED. LIST is effective in patients who are responsive to phosphodiesterase 5 inhibitors (PDE5i) and can also convert PDE5i nonresponders to responders. The response to LIST wanes gradually over time, and after 2 years, about half of the patients maintain their function. Extensive research is needed to understand the effect of LIST on erectile tissue, to modify the treatment protocol to maximize its outcomes, and to identify the patients who will benefit the most from this treatment. PMID:24868332

  17. Penile low-intensity shock wave therapy: a promising novel modality for erectile dysfunction.

    PubMed

    Abu-Ghanem, Yasmin; Kitrey, Noam D; Gruenwald, Ilan; Appel, Boaz; Vardi, Yoram

    2014-05-01

    Penile extracorporeal low-intensity shock wave therapy (LIST) to the penis has recently emerged as a novel and promising modality in the treatment of erectile dysfunction (ED). LIST has angiogenic properties and stimulates neovascularization. If applied to the corpora cavernosa, LIST can improve penile blood flow and endothelial function. In a series of clinical trials, including randomized double-blind sham-controlled studies, LIST has been shown to have a substantial effect on penile hemodynamics and erectile function in patients with vasculogenic ED. LIST is effective in patients who are responsive to phosphodiesterase 5 inhibitors (PDE5i) and can also convert PDE5i nonresponders to responders. The response to LIST wanes gradually over time, and after 2 years, about half of the patients maintain their function. Extensive research is needed to understand the effect of LIST on erectile tissue, to modify the treatment protocol to maximize its outcomes, and to identify the patients who will benefit the most from this treatment.

  18. The Significance of Shocks in Implantable Cardioverter Defibrillator Recipients

    PubMed Central

    Li, Anthony; Kaura, Amit; Sunderland, Nicholas; Dhillon, Paramdeep S

    2016-01-01

    Large-scale implantable cardioverter defibrillator (ICD) trials have unequivocally shown a reduction in mortality in appropriately selected patients with heart failure and depressed left ventricular function. However, there is a strong association between shocks and increased mortality in ICD recipients. It is unclear if shocks are merely a marker of a more severe cardiovascular disease or directly contribute to the increase in mortality. The aim of this review is to examine the relationship between ICD shocks and mortality, and explore possible mechanisms. Data examining the effect of shocks in the absence of spontaneous arrhythmias as well as studies of non-shock therapy and strategies to reduce shocks are analysed to try and disentangle the shocks versus substrate debate. PMID:27617089

  19. LC-MS/MS based proteomic analysis and functional inference of hypothetical proteins in Desulfovibrio vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Weiwen; Culley, David E.; Gritsenko, Marina A.

    2006-11-03

    ABSTRACT In the previous study, the whole-genome gene expression profiles of D. vulgaris in response to oxidative stress and heat shock were determined. The results showed 24-28% of the responsive genes were hypothetical proteins that have not been experimentally characterized or whose function can not be deduced by simple sequence comparison. To further explore the protecting mechanisms employed in D. vulgaris against the oxidative stress and heat shock, attempt was made in this study to infer functions of these hypothetical proteins by phylogenomic profiling along with detailed sequence comparison against various publicly available databases. By this approach we were abletomore » assign possible functions to 25 responsive hypothetical proteins. The findings included that DVU0725, induced by oxidative stress, may be involved in lipopolysaccharide biosynthesis, implying that the alternation of lipopolysaccharide on cell surface might service as a mechanism against oxidative stress in D. vulgaris. In addition, two responsive proteins, DVU0024 encoding a putative transcriptional regulator and DVU1670 encoding predicted redox protein, were sharing co-evolution atterns with rubrerythrin in Archaeoglobus fulgidus and Clostridium perfringens, respectively, implying that they might be part of the stress response and protective systems in D. vulgaris. The study demonstrated that phylogenomic profiling is a useful tool in interpretation of experimental genomics data, and also provided further insight on cellular response to oxidative stress and heat shock in D. vulgaris.« less

  20. Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip; Haubold, Hans

    The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.

  1. Chaperokine-induced signal transduction pathways.

    PubMed

    Asea, Alexzander

    2003-01-01

    A turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects--known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise.

  2. Chaperokine-Induced Signal Transduction Pathways

    PubMed Central

    Asea, Alexzander

    2007-01-01

    A turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects - known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise. PMID:14686091

  3. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.

    PubMed

    Heikkila, John J

    2017-01-01

    Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, Sergei Yu; Borodziuk, S; Kasperczuk, A

    2004-11-30

    The results of investigations are presented which are concerned with laser radiation absorption in a target, the plasma state of its ablated material, the energy transfer to the solid target material, the characteristics of the shock wave and craters on the target surface. The investigation involved irradiation of a planar target by a subnanosecond plasma-producing laser pulse. The experiments were carried out with massive aluminium targets using the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the shock wave attenuation and on-target crater formation times (50-200 ns). The investigations were conducted for a laser radiation energymore » of 100 J at two wavelengths of 0.438 and 1.315 {mu}m. For a given pulse energy, the irradiation intensity was varied in a broad range (10{sup 13}-10{sup 16} W cm{sup -2}) by varying the radius of the laser beam. The efficiency of laser radiation-to-shock energy transfer was determined as a function of the intensity and wavelength of laser radiation; also determined were the characteristics of the plasma plume and the shock wave propagating in the solid target, including the experimental conditions under which two-dimensional effects are highly significant. (invited paper)« less

  5. Extracellular small heat shock proteins: exosomal biogenesis and function.

    PubMed

    Reddy, V Sudhakar; Madala, Satish K; Trinath, Jamma; Reddy, G Bhanuprakash

    2018-05-01

    Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.

  6. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  7. Restoration of mitochondria function as a target for cancer therapy

    PubMed Central

    Bhat, Tariq A.; Kumar, Sandeep; Chaudhary, Ajay K.; Yadav, Neelu; Chandra, Dhyan

    2015-01-01

    Defective oxidative phosphorylation has a crucial role in the attenuation of mitochondrial function, which confers therapy resistance in cancer. Various factors, including endogenous heat shock proteins (HSPs) and exogenous agents such as dichloroacetate, restore respiratory and other physiological functions of mitochondria in cancer cells. Functional mitochondria might ultimately lead to the restoration of apoptosis in cancer cells that are refractory to current anticancer agents. Here, we summarize the key reasons contributing to mitochondria dysfunction in cancer cells and whether and/or how restoration of mitochondrial function could be exploited for cancer therapeutics. PMID:25766095

  8. Numerical Simulation of Shock Interaction with Deformable Particles Using a Constrained Interface Reinitialization Scheme

    NASA Astrophysics Data System (ADS)

    Jackson, Thomas L.; Sridharan, Prashanth; Zhang, Ju; Balachandar, S.

    2015-11-01

    In this work we present axisymmetric numerical simulations of shock propagating in nitromethane over an aluminum particle for post-shock pressures up to 10 GPa. The numerical method is a finite-volume based solver on a Cartesian grid, which allows for multi-material interfaces and shocks. To preserve particle mass and volume, a novel constraint reinitialization scheme is introduced. We compute the unsteady drag coefficient as a function of post-shock pressure, and show that when normalized by post-shock conditions, the maximum drag coefficient decreases with increasing post-shock pressure. Using this information, we also present a simplified point-particle force model that can be used for mesoscale simulations.

  9. Electron and ion acceleration in relativistic shocks with applications to GRB afterglows

    NASA Astrophysics Data System (ADS)

    Warren, Donald C.; Ellison, Donald C.; Bykov, Andrei M.; Lee, Shiu-Hang

    2015-09-01

    We have modelled the simultaneous first-order Fermi shock acceleration of protons, electrons, and helium nuclei by relativistic shocks. By parametrizing the particle diffusion, our steady-state Monte Carlo simulation allows us to follow particles from particle injection at non-relativistic thermal energies to above PeV energies, including the non-linear smoothing of the shock structure due to cosmic ray (CR) backpressure. We observe the mass-to-charge (A/Z) enhancement effect believed to occur in efficient Fermi acceleration in non-relativistic shocks and we parametrize the transfer of ion energy to electrons seen in particle-in-cell (PIC) simulations. For a given set of environmental and model parameters, the Monte Carlo simulation determines the absolute normalization of the particle distributions and the resulting synchrotron, inverse Compton, and pion-decay emission in a largely self-consistent manner. The simulation is flexible and can be readily used with a wide range of parameters typical of γ-ray burst (GRB) afterglows. We describe some preliminary results for photon emission from shocks of different Lorentz factors and outline how the Monte Carlo simulation can be generalized and coupled to hydrodynamic simulations of GRB blast waves. We assume Bohm diffusion for simplicity but emphasize that the non-linear effects we describe stem mainly from an extended shock precursor where higher energy particles diffuse further upstream. Quantitative differences will occur with different diffusion models, particularly for the maximum CR energy and photon emission, but these non-linear effects should be qualitatively similar as long as the scattering mean-free path is an increasing function of momentum.

  10. The interaction of turbulence with parallel and perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.

    2016-11-01

    Interplanetary shocks exist in most astrophysical flows, and modify the properties of the background flow. We apply the Zank et al 2012 six coupled turbulence transport model equations to study the interaction of turbulence with parallel and perpendicular shock waves in the solar wind. We model the 1D structure of a stationary perpendicular or parallel shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions. A reduced turbulence transport model (the 4-equation model) is applied to parallel and perpendicular shock waves, and solved using a 4th- order Runge Kutta method. We compare the model results with ACE spacecraft observations. We identify one quasi-parallel and one quasi-perpendicular event in the ACE spacecraft data sets, and compute various turbulent observed values such as the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy in the upstream and downstream of the shock. We also calculate the error associated with each turbulent observed value, and fit the observed values by a least square method and use a Fourier series fitting function. We find that the theoretical results are in reasonable agreement with observations. The energy in turbulent fluctuations is enhanced and the correlation length is approximately constant at the shock. Similarly, the normalized cross helicity increases across a perpendicular shock, and decreases across a parallel shock.

  11. Comparative analysis of survival between elderly and non-elderly severe sepsis and septic shock resuscitated patients

    PubMed Central

    Palomba, Henrique; Corrêa, Thiago Domingos; Silva, Eliézer; Pardini, Andreia; de Assuncao, Murillo Santucci Cesar

    2015-01-01

    Objective To compare outcomes between elderly (≥65 years old) and non-elderly (<65 years old) resuscitated severe sepsis and septic shock patients and determine predictors of death among elderly patients. Methods Retrospective cohort study including 848 severe sepsis and septic shock patients admitted to the intensive care unit between January 2006 and March 2012. Results Elderly patients accounted for 62.6% (531/848) and non-elderly patients for 37.4% (317/848). Elderly patients had a higher APACHE II score [22 (18-28) versus 19 (15-24); p<0.001], compared to non-elderly patients, although the number of organ dysfunctions did not differ between the groups. No significant differences were found in 28-day and in-hospital mortality rates between elderly and non-elderly patients. The length of hospital stay was higher in elderly compared to non-elderly patients admitted with severe sepsis and septic shock [18 (10-41) versus 14 (8-29) days, respectively; p=0.0001]. Predictors of death among elderly patients included age, site of diagnosis, APACHE II score, need for mechanical ventilation and vasopressors. Conclusion In this study population early resuscitation of elderly patients was not associated with increased in-hospital mortality. Prospective studies addressing the long-term impact on functional status and quality of life are necessary. PMID:26313436

  12. Shock-induced damage in rocks: Application to impact cratering

    NASA Astrophysics Data System (ADS)

    Ai, Huirong

    Shock-induced damage beneath impact craters is studied in this work. Two representative terrestrial rocks, San Marcos granite and Bedford limestone, are chosen as test target. Impacts into the rock targets with different combinations of projectile material, size, impact angle, and impact velocity are carried out at cm scale in the laboratory. Shock-induced damage and fracturing would cause large-scale compressional wave velocity reduction in the recovered target beneath the impact crater. The shock-induced damage is measured by mapping the compressional wave velocity reduction in the recovered target. A cm scale nondestructive tomography technique is developed for this purpose. This technique is proved to be effective in mapping the damage in San Marcos granite, and the inverted velocity profile is in very good agreement with the result from dicing method and cut open directly. Both compressional velocity and attenuation are measured in three orthogonal directions on cubes prepared from one granite target impacted by a lead bullet at 1200 m/s. Anisotropy is observed from both results, but the attenuation seems to be a more useful parameter than acoustic velocity in studying orientation of cracks. Our experiments indicate that the shock-induced damage is a function of impact conditions including projectile type and size, impact velocity, and target properties. Combined with other crater phenomena such as crater diameter, depth, ejecta, etc., shock-induced damage would be used as an important yet not well recognized constraint for impact history. The shock-induced damage is also calculated numerically to be compared with the experiments for a few representative shots. The Johnson-Holmquist strength and failure model, initially developed for ceramics, is applied to geological materials. Strength is a complicated function of pressure, strain, strain rate, and damage. The JH model, coupled with a crack softening model, is used to describe both the inelastic response of rocks in the compressive field near the impact source and the tensile failure in the far field. The model parameters are determined either from direct static measurements, or from indirect numerical adjustment. The agreement between the simulation and experiment is very encouraging.

  13. Reversible increase in maximal cortisol secretion rate in septic shock.

    PubMed

    Dorin, Richard I; Qualls, Clifford R; Torpy, David J; Schrader, Ronald M; Urban, Frank K

    2015-03-01

    Cortisol clearance is reduced in sepsis and may contribute to the development of impaired adrenocortical function that is thought to contribute to the pathophysiology of critical illness-related corticosteroid insufficiency. We sought to assess adrenocortical function using computer-assisted numerical modeling methodology to characterize and compare maximal cortisol secretion rate and free cortisol half-life in septic shock, sepsis, and healthy control subjects. Post hoc analysis of previously published total cortisol, free cortisol, corticosteroid-binding globulin, and albumin concentration data. Single academic medical center. Subjects included septic shock (n = 45), sepsis (n = 25), and healthy controls (n = 10). I.v. cosyntropin (250 μg). Solutions for maximal cortisol secretion rate and free cortisol half-life were obtained by least squares solution of simultaneous, nonlinear differential equations that account for free cortisol appearance and elimination as well as reversible binding to corticosteroid-binding globulin and albumin. Maximal cortisol secretion rate was significantly greater in septic shock (0.83 nM/s [0.44, 1.58 nM/s] reported as median [lower quartile, upper quartile]) compared with sepsis (0.51 nM/s [0.36, 0.62 nM/s]; p = 0.007) and controls (0.49 nM/s [0.42, 0.62 nM/s]; p = 0.04). The variance of maximal cortisol secretion rate in septic shock was also greater than that of sepsis or control groups (F test, p < 0.001). Free cortisol half-life was significantly increased in septic shock (4.6 min [2.2, 6.3 min]) and sepsis (3.0 min [2.3, 4.8 min] when compared with controls (2.0 min [1.2, 2.6 min]) (both p < 0.004). Results obtained by numerical modeling are consistent with comparable measures obtained by the gold standard stable isotope dilution method. Septic shock is associated with generally not only higher levels but also greater variance of maximal cortisol secretion rate when compared with control and sepsis groups. Additional studies would be needed to determine whether assessment of cortisol kinetic parameters such as maximal cortisol secretion rate and free cortisol half-life is useful in the diagnosis or management of critical illness-related corticosteroid insufficiency.

  14. Temporal patterns of cardiac performance and genes encoding heat shock proteins and metabolic sensors of an intertidal limpet Cellana toreuma during sublethal heat stress.

    PubMed

    Zhang, Shu; Han, Guo-dong; Dong, Yun-wei

    2014-04-01

    Intertidal invertebrates develop effective physiological adaptations to cope with the rapidly changing thermal environment in the intertidal zone. In the present study, the temporal patterns of heart rate, protein carbonyl groups, and genes encoding heat shock proteins (hsp70 and hsp90) and metabolic sensors (ampkα, ampkβ and sirt1) were measured to study the effect of sublethal heat stress on the cardiac function, oxidative stress, heat shock response and cellular metabolism of an intertidal limpet Cellana toreuma. All the physiological parameters are sensitive to temperature and duration of heat stress. Spearman correlation analysis revealed that the correlations between heart rate and levels of heat shock proteins mRNA and metabolic sensors mRNA were statistically significant. These results further suggest that cardiac function plays crucial roles in cellular energy metabolism and heat shock responses. The significant increase of protein carbonyl groups at 34°C after 4h exposure indicated that the failure of cardiac function and the increase of anaerobic metabolism partly leads to the increase of protein carbonyl groups. Generally, the physiological responses to heat stress are sensitive to temperature and are energy-consumptive, as indicated by the upregulation of metabolic sensors mRNA. However, the upregulation of heat shock proteins and metabolic sensors at the post-transcriptional level and related functions need to be confirmed in further experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Impact of Threat of Shock-Induced Anxiety on Memory Encoding and Retrieval

    ERIC Educational Resources Information Center

    Bolton, Sorcha; Robinson, Oliver J.

    2017-01-01

    Anxiety disorders are the most common mental health disorders, and daily transient feelings of anxiety (or "stress") are ubiquitous. However, the precise impact of both transient and pathological anxiety on higher-order cognitive functions, including short- and long-term memory, is poorly understood. A clearer understanding of the…

  16. Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic-Plastic Theories

    DTIC Science & Technology

    2014-11-01

    incorporate the right Cauchy–Green strain tensor E, a function of the ( elas - tic) deformation gradient and its transpose. Such theories have been used...been compared for several anisotropic metallic single crystals (Al, Cu and Mg), with elas - tic constants of up to order four included. Differences

  17. Principles and application of shock-tubes and shock tunnels

    NASA Technical Reports Server (NTRS)

    Ried, R. C.; Clauss, H. G., Jr.

    1963-01-01

    The principles, theoretical flow equations, calculation techniques, limitations and practical performance characteristics of basic and high performance shock tubes and shock tunnels are presented. Selected operating curves are included.

  18. Melatonin and human mitochondrial diseases

    PubMed Central

    Sharafati-Chaleshtori, Reza; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud; Soltani, Amin

    2017-01-01

    Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function. PMID:28400824

  19. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli

    PubMed Central

    Kim, Jin Sun; Park, Su Jung; Kwak, Kyung Jin; Kim, Yeon Ok; Kim, Joo Yeol; Song, Jinkyung; Jang, Boseung; Jung, Che-Hun; Kang, Hunseung

    2007-01-01

    Despite the fact that cold shock domain proteins (CSDPs) and glycine-rich RNA-binding proteins (GRPs) have been implicated to play a role during the cold adaptation process, their importance and function in eukaryotes, including plants, are largely unknown. To understand the functional role of plant CSDPs and GRPs in the cold response, two CSDPs (CSDP1 and CSDP2) and three GRPs (GRP2, GRP4 and GRP7) from Arabidopsis thaliana were investigated. Heterologous expression of CSDP1 or GRP7 complemented the cold sensitivity of BX04 mutant Escherichia coli that lack four cold shock proteins (CSPs) and is highly sensitive to cold stress, and resulted in better survival rate than control cells during incubation at low temperature. In contrast, CSDP2 and GRP4 had very little ability. Selective evolution of ligand by exponential enrichment (SELEX) revealed that GRP7 does not recognize specific RNAs but binds preferentially to G-rich RNA sequences. CSDP1 and GRP7 had DNA melting activity, and enhanced RNase activity. In contrast, CSDP2 and GRP4 had no DNA melting activity and did not enhance RNAase activity. Together, these results indicate that CSDPs and GRPs help E.coli grow and survive better during cold shock, and strongly imply that CSDP1 and GRP7 exhibit RNA chaperone activity during the cold adaptation process. PMID:17169986

  20. Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review.

    PubMed

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Amaya-Farfan, Jaime

    2018-05-28

    Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.

  1. Anisotropic shock jump conditions: Theory and observations

    NASA Technical Reports Server (NTRS)

    Chao, J. K.; Zhang, X. X.; Song, P.

    1995-01-01

    The MHD Rankine-Hugoniot (RH) relations for shock waves in a collisionless plasma with bi-Maxwellian distribution functions are considered. While by introducing the pressure anisotropy parameter xi in the RH relations, the number of unknowns -- B, V, n, p and xi (a total of 9) -- becomes one more than the total number of the conservation equations, it is possible to use the observed quantities on both sides of the shock to study the anisotropy changes across the shock. A simple relation for the anisotropy change across the shock is derived as a function of the ratio of magnetic fields m(= B'/B), the shock normal angle theta(sub Bn) and the plasma beta and beta' (primes are downstream values). Since m and theta(sub Bn) can be determined accurately in observation, the reliability of the anisotropy change deduced is mostly dependent on the accuracy of the measurements beta and beta'. We have applied the results to six low-beta quasi-perpendicular (Q perpendicular) laminar bow shock crossings with temperature anisotropy measured in the magnetosheath. In the six test cases, it is found that the predicted pressure anisotropies agree well with those observed in the magnetosheath.

  2. Interaction of a shock with a longitudinal vortex

    NASA Technical Reports Server (NTRS)

    Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang

    1996-01-01

    In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.

  3. C. elegans sym-1 is a downstream target of the hunchback-like-1 developmental timing transcription factor

    PubMed Central

    Niwa, Ryusuke; Hada, Kazumasa; Moliyama, Kouichi; Ohniwa, Ryosuke L.; Tan, Yi-Meng; Olsson-Carter, Katherine; Chi, Woo; Reinke, Valerie; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) and its family members control the timing of key developmental events in part by directly regulating expression of hunchback-like-1 (hbl-1). C. elegans hbl-1 mutants display multiple developmental timing deficiencies, including cell cycle defects during larval development. While hbl-1 is predicted to encode a transcriptional regulator, downstream targets of HBL-1 have not been fully elucidated. Here we report using microarray analysis to uncover genes downstream of HBL-1. We established a transgenic strain that overexpresses hbl-1 under the control of a heat shock promoter. Heat shock-induced hbl-1 overexpression led to retarded hypodermal structures at the adult stage, opposite to the effect seen in loss of function (lf) hbl-1 mutants. The microarray screen identified numerous potential genes that are upregulated or downregulated by HBL-1, including sym-1, which encodes a leucine-rich repeat protein with a signal sequence. We found an increase in sym-1 transcription in the heat shock-induced hbl-1 overexpression strain, while loss of hbl-1 function caused a decrease in sym-1 expression levels. Furthermore, we found that sym-1(lf) modified the hypodermal abnormalities in hbl-1 mutants. Given that SYM-1 is a protein secreted from hypodermal cells to the surrounding cuticle, we propose that the adult-specific cuticular structures may be under the temporal control of HBL-1 through regulation of sym-1 transcription. PMID:19923914

  4. Thermodynamic and Kinetic Properties of Shocks in Two-Dimensional Yukawa Systems [Thermodynamic and Kinetic Properties of Shocks in 2D Yukawa Systems

    DOE PAGES

    Marciante, Mathieu; Murillo, Michael Sean

    2017-01-10

    Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less

  5. Thermodynamic and Kinetic Properties of Shocks in Two-Dimensional Yukawa Systems [Thermodynamic and Kinetic Properties of Shocks in 2D Yukawa Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marciante, Mathieu; Murillo, Michael Sean

    Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less

  6. Investigating the ability of solar coronal shocks to accelerate solar energetic particles

    NASA Astrophysics Data System (ADS)

    Kwon, R. Y.; Vourlidas, A.

    2017-12-01

    We estimate the density compression ratio of shocks associated with coronal mass ejections (CMEs) and investigate whether they can accelerate solar energetic particles (SEPs). Using remote-sensing, multi-viewpoint coronagraphic observations, we have developed a method to extract the sheath electron density profiles along the shock normal and estimate the density compression ratio. Our method uses the ellipsoid model to derive the 3D geometry of the sheaths, including the line-of-sight (LOS) depth. The sheath density profiles along the shock normal are modeled with double-Gaussian functions, and the modeled densities are integrated along the LOSs to be compared with the observed brightness in STEREO COR2-Ahead. The upstream densities are derived from either the pB-inversion of the brightness in a pre-event image or an empirical model. We analyze two fast halo CMEs observed on 2011 March 7 and 2014 February 25 that are associated with SEP events detected by multiple spacecraft located over a broad range of heliolongitudes. We find that the density compression peaks around the CME nose and decreases at larger position angles. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes) than past reports. This finding implies that CME shocks may be capable of accelerating energetic particles in the corona over extended spatial and temporal scales and may, therefore, be responsible for the wide longitudinal distribution of these particles in the inner heliosphere.

  7. Acceleration from short-duration blast

    NASA Astrophysics Data System (ADS)

    Ritzel, D. V.; Van Albert, S.; Sajja, V.; Long, J.

    2018-01-01

    The blast-induced motion of spheres has been studied experimentally where the shock wave is rapidly decaying during the period that quasi-steady acceleration would be developed in the case of a step-function shock wave as considered in most shock-tube studies. The motion of sphere models ranging from 39 to 251 mm in diameter and having a range of densities was assessed using the "free-flight" method in a simulator specially designed to replicate the decaying shock wave profile of spherical blast including negative phase and positive entropy gradient. A standardized blast-wave simulation of 125 kPa and 6-ms positive-phase duration was applied for all experiments. In all cases, there are three phases to the motion: a relatively low "kickoff" velocity from the shock diffraction, acceleration or deceleration during the positive duration, then deceleration through the negative phase and subsequent quiescent air. The unexpected deceleration of larger spheres after their kickoff velocity during the decaying yet high-speed flow of the blast wave seems associated with the persistence of a ring vortex on the downstream side of the sphere. The flow is entirely unsteady with initial forces dominated by the shock diffraction; therefore, the early motion of spheres under such conditions is not governed by quasi-steady drag as in classical aerodynamics. The work will help establish scaling rules for model studies of blast-induced motion relevant to improvised explosive devices, and preliminary results are shown for motion imparted to a human skull surrogate.

  8. [Prognostic analysis of plantar fasciitis treated by pneumatic ballistic extracorporeal shock wave versus ultrasound guided intervention].

    PubMed

    Huo, Xiu-Lin; Wang, Ke-Tao; Zhang, Xiao-Ying; Yang, Yi-Tian; Cao, Fu-Yang; Yang, Jing; Yuan, Wei-Xiu; Mi, Wei-Dong

    2018-02-20

    To compare the medium- and long-term effect of pneumatic ballistic extracorporeal shock wave versus ultrasound-guided hormone injection in the treatment of plantar fasciitis. The clinical data were collected from patients with plantar fasciitis admitted to PLA General Hospital pain department from September, 2015 to February, 2017. The patients were randomly divided into ultrasound-guided drug injection group and shock wave group. The therapeutic parameters including the numerical rating scale (NRS) scores in the first step pain in the morning, American Orthopedic Foot and Ankle Society (AOFAS) Ankle Hindfoot Scale, and thickness of the plantar fascia were monitored before and at 1 week, 1 month, 3 months, and 6 months after the treatment. The recurrence rate, effectiveness, and patient satisfaction were compared between the two groups at 6 months after the treatment. Thirty-nine patients were enrolled in shock wave group and 38 patients in ultrasound group. The NRS scores in the first step pain in the morning were lowered after treatment in both groups (P<0.05), and the scores were significantly lower in ultrasound group than in shock wave group at 1 week and 1 month (P<0.01), but significantly higher in ultrasound group than in shock wave group at 3 and 6 months after treatment (P<0.05). The AOFAS functional scores were increased in both groups (P<0.05) at 6 months after treatment, was significantly lower in ultrasound group than in shock wave group than group B (90.44∓13.27 vs 75.76∓21.40; P<0.05). The effective rates in shock wave group and ultrasound group were 92.31% and 76.32%, respectively (P<0.05). Recurrence was found in 1 patient (2.56%) in shock wave group and in 8 (21.05%) in ultrasound group (P<0.05). The patient satisfaction scores were significantly higher in shock wave group than in ultrasound group (8.13∓2.67 vs 6.63∓3.75, P=0.048). Pneumatic ballistic extracorporeal shock achieves better medium- and long-term outcomes than ultrasound-guided hormone injection in the treatment of plantar fasciitis.

  9. Shock loading predictions from application of indicial theory to shock-turbulence interactions

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R.; Nixon, David

    1991-01-01

    A sequence of steps that permits prediction of some of the characteristics of the pressure field beneath a fluctuating shock wave from knowledge of the oncoming turbulent boundary layer is presented. The theory first predicts the power spectrum and pdf of the position and velocity of the shock wave, which are then used to obtain the shock frequency distribution, and the pdf of the pressure field, as a function of position within the interaction region. To test the validity of the crucial assumption of linearity, the indicial response of a normal shock is calculated from numerical simulation. This indicial response, after being fit by a simple relaxation model, is used to predict the shock position and velocity spectra, along with the shock passage frequency distribution. The low frequency portion of the shock spectra, where most of the energy is concentrated, is satisfactorily predicted by this method.

  10. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  11. Measurement of fluid properties using rapid-double-exposure and time-average holographic interferometry

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1984-01-01

    The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three-dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed. Previously announced in STAR as N84-21849

  12. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock.

    PubMed

    Braga, D; Barcella, M; D'Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, M H; DeLano, F A; Baselli, G; Schmid-Schönbein, G W; Kistler, E B; Aletti, F; Barlassina, C

    2017-08-01

    Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger's shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients.

  13. Dynamic pressure sensitivity determination with Mach number method

    NASA Astrophysics Data System (ADS)

    Sarraf, Christophe; Damion, Jean-Pierre

    2018-05-01

    Measurements of pressure in fast transient conditions are often performed even if the dynamic characteristic of the transducer are not traceable to international standards. Moreover, the question of a primary standard in dynamic pressure is still open, especially for gaseous applications. The question is to improve dynamic standards in order to respond to expressed industrial needs. In this paper, the method proposed in the EMRP IND09 ‘Dynamic’ project, which can be called the ‘ideal shock tube method’, is compared with the ‘collective standard method’ currently used in the Laboratoire de Métrologie Dynamique (LNE/ENSAM). The input is a step of pressure generated by a shock tube. The transducer is a piezoelectric pressure sensor. With the ‘ideal shock tube method’ the sensitivity of a pressure sensor is first determined dynamically. This method requires a shock tube implemented with piezoelectric shock wave detectors. The measurement of the Mach number in the tube allows an evaluation of the incident pressure amplitude of a step using a theoretical 1D model of the shock tube. Heat transfer, other actual effects and effects of the shock tube imperfections are not taken into account. The amplitude of the pressure step is then used to determine the sensitivity in dynamic conditions. The second method uses a frequency bandwidth comparison to determine pressure at frequencies from quasi-static conditions, traceable to static pressure standards, to higher frequencies (up to 10 kHz). The measurand is also a step of pressure generated by a supposed ideal shock tube or a fast-opening device. The results are provided as a transfer function with an uncertainty budget assigned to a frequency range, also deliverable frequency by frequency. The largest uncertainty in the bandwidth of comparison is used to trace the final pressure step level measured in dynamic conditions, owing that this pressure is not measurable in a steady state on a shock tube. A reference sensor thereby calibrated can be used in a comparison measurement process. At high frequencies the most important component of the uncertainty in this method is due to actual shock tube complex effects not already functionalized nowadays or thought not to be functionalized in this kind of direct method. After a brief review of both methods and a brief review of the determination of the transfer function of pressure transducers, and the budget of associated uncertainty for the dynamic calibration of a pressure transducer in gas, this paper presents a comparison of the results obtained with the ‘ideal shock tube’ and the ‘collective standard’ methods.

  14. Silkworm Thermal Biology: A Review of Heat Shock Response, Heat Shock Proteins and Heat Acclimation in the Domesticated Silkworm, Bombyx mori

    PubMed Central

    Manjunatha, H. B.; Rajesh, R. K.; Aparna, H. S.

    2010-01-01

    Heat shock proteins (HSPs) are known to play ecological and evolutionary roles in this postgenomic era. Recent research suggests that HSPs are implicated in cardiovascular biology and disease development, proliferation and regulation of cancer cells, cell death via apoptosis, and several other key cellular functions. These activities have generated great interest amongst cell and molecular biologists, and these biologists are keen to unravel other hitherto unknown potential functions of this group of proteins. Consequently, the biological significance of HSPs has led to cloning and characterization of genes encoding HSPs in many organisms including the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). However, most of the past investigations in B. mori were confined to expression of HSPs in tissues and cell lines, whereas information on their specific functional roles in biological, physiological, and molecular processes is scarce. Naturally occurring or domesticated polyvoltines (known to be the tropical race) are more resistant to high temperatures and diseases than bi- or univoltines (temperate races). The mechanism of ecological or evolutionary modification of HSPs during the course of domestication of B. mori - particularly in relation to thermotolerance in geographically distinct races/strains - is still unclear. In addition, the heat shock response, thermal acclimation, and hardening have not been studied extensively in B. mori compared to other organisms. Towards this, recent investigations on differential expression of HSPs at various stages of development, considering the concept of the whole organism, open ample scope to evaluate their biological and commercial importance in B. mori which has not been addressed in any of the representative organisms studied so far. Comparatively, heat shock response among different silkworm races/strains of poly-, bi-, and univoltines varies significantly and thermotolerance increases as the larval development proceeds. Hence, this being the first review in this area, an attempt has been made to collate all available information on the heat shock response, HSPs expression, associated genes, amino acid sequences, and acquired/unacquired thermotolerance. The aim is to present this as a valuable resource for addressing the gap in knowledge and understanding evolutionary significance of HSPs between domesticated (B. mori) and non-domesticated insects. It is believed that the information presented here will also help researchers/breeders to design appropriate strategies for developing novel strains for the tropics. PMID:21265618

  15. Bow and Oblique Shock Formation in Soap Film

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Mandre, Shreyas; Sane, Aakash

    2015-11-01

    In recent years, soap films have been exploited primarily to approximate two-dimensional flows while their three-dimensional character is relatively unattended. An example of the three-dimensional character of the flow in a soap film is the observed Marangoni shock wave when the flow speed exceeds the wave speed. In this study, we investigated the formation of bow and oblique shocks in soap films generated by wedges with different deflection angles. When the wedge deflection angle is small and the film flows fast, oblique shocks are observed. When the oblique shock cannot exists, bow shock is formed upstream the wedge. We characterized the oblique shock angle as a function of the wedge deflection angle and the flow speed, and we also present the criteria for transition between bow and oblique Marangoni shocks in soap films.

  16. Properties of Shocked Polymers: Mbar experiments on Z and multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2010-03-01

    Significant progress has been made over the last few years in understanding properties of matter subject to strong shocks and other extreme conditions. High-accuracy multi-Mbar experiments and first-principles theoretical studies together provide detailed insights into the physics and chemistry of high energy-density matter. While comprehensive advances have been made for pure elements like deuterium, helium, and carbon, progress has been slower for equally important, albeit more challenging, materials like molecular crystals, polymers, and foams. Hydrocarbon based polymer foams are common materials and in particular they are used in designing shock- and inertial confinement fusion experiments. Depending on their initial density, foams shock to relatively higher pressure and temperature compared to shocked dense polymers/plastics. As foams and polymers are shocked, they exhibit both structural and chemical transitions. We will present experimental and theoretical results for shocked polymers in the Mbar regime. By shock impact of magnetically launched flyer plates on poly(4-methyl-1-pentene) foams, we create multi-Mbar pressures in a dense plasma mixture of hydrogen, carbon, at temperatures of several eV. Concurrently with executing experiments, we analyze the system by multi-scale simulations, from density functional theory to continuum magneto-hydrodynamics simulations. In particular, density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot will be presented in detail for two hydrocarbon polymers: polyethylene (PE) and poly(4-methyl-1-pentene) (PMP).

  17. Longitudinal Dependence of SEP Peak Intensities as Evidence of CME-Driven Shock Particle Acceleration

    NASA Astrophysics Data System (ADS)

    Lario, D.; Roelof, E. C.; Decker, R. B.

    2014-05-01

    Multi-spacecraft observations of solar energetic particle (SEP) events allow us to estimate the longitudinal distributions of SEP peak intensities. By fitting a Gaussian functional form to the ensemble of SEP peak intensities measured by two or more spacecraft as a function of the longitudinal distance between the associated parent solar flare and the footpoint labels of the magnetic field lines connecting each spacecraft with the Sun, we found that such distributions are not centered at nominal well-connected flare longitudes but slightly offset to the west of the associated flare (Lario et al. 2006, 2013). We offer an interpretation of this result in terms of long-lived particle injection from shocks driven by the associated coronal mass ejections (CMEs). By assuming that (i) CME-driven shocks are centered on the longitude of the associated solar flare, (ii) the injection of shock accelerated particles maximizes at the nose of the shock which propagates radially outward from the Sun, and (iii) SEP particle injection from the shock starts at a certain distance above the solar surface, we infer an average radial distance where shocks are located when peak intensities in the prompt component of the SEP events are observed. We estimate the heliocentric distance of the CME-driven shock when particle injection from the shock maximizes and conclude that the injection of ˜20 MeV protons and near-relativistic electrons maximizes well inside ˜0.2 AU.

  18. Direct Numerical Simulation of Passive Scalar Mixing in Shock Turbulence Interaction

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyu; Bermejo-Moreno, Ivan; Larsson, Johan

    2017-11-01

    Passive scalar mixing in the canonical shock-turbulence interaction configuration is investigated through shock-capturing Direct Numerical Simulations (DNS). Scalar fields with different Schmidt numbers are transported by an initially isotropic turbulent flow field passing across a nominally planar shock wave. A solution-adaptive hybrid numerical scheme on Cartesian structured grids is used, that combines a fifth-order WENO scheme near shocks and a sixth-order central-difference scheme away from shocks. The simulations target variations in the shock Mach number, M (from 1.5 to 3), turbulent Mach number, Mt (from 0.1 to 0.4, including wrinkled- and broken-shock regimes), and scalar Schmidt numbers, Sc (from 0.5 to 2), while keeping the Taylor microscale Reynolds number constant (Reλ 40). The effects on passive scalar statistics are investigated, including the streamwise evolution of scalar variance budgets, pdfs and spectra, in comparison with their temporal evolution in decaying isotropic turbulence.

  19. The impact of anxiety upon cognition: perspectives from human threat of shock studies

    PubMed Central

    Robinson, Oliver J.; Vytal, Katherine; Cornwell, Brian R.; Grillon, Christian

    2013-01-01

    Anxiety disorders constitute a sizeable worldwide health burden with profound social and economic consequences. The symptoms are wide-ranging; from hyperarousal to difficulties with concentrating. This latter effect falls under the broad category of altered cognitive performance which is the focus of this review. Specifically, we examine the interaction between anxiety and cognition focusing on the translational threat of unpredictable shock paradigm; a method previously used to characterize emotional responses and defensive mechanisms that is now emerging as valuable tool for examining the interaction between anxiety and cognition. In particular, we compare the impact of threat of shock on cognition in humans to that of pathological anxiety disorders. We highlight that both threat of shock and anxiety disorders promote mechanisms associated with harm avoidance across multiple levels of cognition (from perception to attention to learning and executive function)—a “hot” cognitive function which can be both adaptive and maladaptive depending upon the circumstances. This mechanism comes at a cost to other functions such as working memory, but leaves some functions, such as planning, unperturbed. We also highlight a number of cognitive effects that differ across anxiety disorders and threat of shock. These discrepant effects are largely seen in “cold” cognitive functions involving control mechanisms and may reveal boundaries between adaptive (e.g., response to threat) and maladaptive (e.g., pathological) anxiety. We conclude by raising a number of unresolved questions regarding the role of anxiety in cognition that may provide fruitful avenues for future research. PMID:23730279

  20. Resveratrol Rescues Kidney Mitochondrial Function Following Hemorrhagic Shock

    PubMed Central

    Wang, Hao; Guan, Yuxia; Karamercan, Mehmet Akif; Ye, Lan; Bhatti, Tricia; Becker, Lance B.; Baur, Joseph A.; Sims, Carrie A.

    2015-01-01

    Objective Hemorrhagic shock may contribute to acute kidney injury by profoundly altering renal mitochondrial function. Resveratrol (RSV), a naturally occurring sirtuin-1 (SIRT1) activator, has been shown to promote mitochondrial function and reduce oxidative damage in a variety of aging-related disease states. We hypothesized that RSV treatment during resuscitation would ameliorate kidney mitochondrial dysfunction and decrease oxidative damage following hemorrhagic shock. Method Using a decompensated hemorrhagic shock model, male Long-Evans rats (n=6 per group) were sacrificed prior to hemorrhage (Sham), at severe shock, and following either lactated Ringer’s (LR) Resuscitation or LR+RSV Resuscitation (RSV: 30mg/kg). At each time point, blood samples were assayed for arterial blood gases, lactate, blood urea nitrogen (BUN) and serum creatinine. Mitochondria were also isolated from kidney samples in order to assess individual electron transport complexes (CI, CII, and CIV) using high-resolution respirometry. Total mitochondria reactive oxygen species (ROS) were measured using fluorometry and lipid peroxidation was assessed by measuring 4-hydroxynonenal by Western blot. qPCR was used quantify mRNA from PGC1-α, SIRT1, and proteins known to mitigate oxidative damage and promote mitochondrial biogenesis. Results RSV supplementation during resuscitation restored mitochondrial respiratory capacity, decreased mitochondrial ROS and lipid peroxidation. Compared to standard LR resuscitation, RSV treatment significantly increased SIRT1 and PGC1-α expression and significantly increased both SOD2 and catalase expression. Although RSV was associated with decreased lactate production, pH, BUN and serum creatinine values did not differ between resuscitation strategies. Conclusions Resuscitation with RSV significantly restored renal mitochondrial function and decreased oxidative damage following hemorrhagic shock. PMID:25895148

  1. Inhibition of glycogen synthase kinase (GSK)-3-β improves liver microcirculation and hepatocellular function after hemorrhagic shock.

    PubMed

    Jellestad, Lena; Fink, Tobias; Pradarutti, Sascha; Kubulus, Darius; Wolf, Beate; Bauer, Inge; Thiemermann, Chris; Rensing, Hauke

    2014-02-05

    Ischemia and reperfusion may cause liver injury and are characterized by hepatic microperfusion failure and a decreased hepatocellular function. Inhibition of glycogen synthase kinase (GSK)-3β, a serine-threonine kinase that has recently emerged as a key regulator in the modulation of the inflammatory response after stress events, may be protective in conditions like sepsis, inflammation and shock. Therefore, aim of the study was to assess the role of GSK-3β in liver microcirculation and hepatocellular function after hemorrhagic shock and resuscitation (H/R). Anesthetized male Sprague-Dawley rats underwent pretreatment with Ringer´s solution, vehicle (DMSO) or TDZD-8 (1 mg/kg), a selective GSK-3β inhibitor, 30 min before induction of hemorrhagic shock (mean arterial pressure 35±5 mmHg for 90 min) and were resuscitated with shed blood and Ringer´s solution (2h). 5h after resuscitation hepatic microcirculation was assessed by intravital microscopy. Propidium iodide (PI) positive cells, liver enzymes and alpha-GST were measured as indicators of hepatic injury. Liver function was estimated by assessment of indocyanine green plasma disappearance rate. H/R led to a significant decrease in sinusoidal diameters and impairment of liver function compared to sham operation. Furthermore, the number of PI positive cells in the liver as well as serum activities of liver enzymes and alpha-GST increased significantly after H/R. Pretreatment with TDZD-8 prevented the changes in liver microcirculation, hepatocellular injury and liver function after H/R. A significant rise in the plasma level of IL-10 was observed. Thus, inhibition of GSK-3β before hemorrhagic shock modulates the inflammatory response and improves hepatic microcirculation and hepatocellular function. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Design evolution of a low shock release nut

    NASA Technical Reports Server (NTRS)

    Otth, D. H.; Gordon, W.

    1976-01-01

    Design improvements and detailed functional analyses are reviewed to trace the development of a pyroactuated release device with segmented thread design from its intermediate design into one that reduces the levels of shock spectra generated during its operation by 50%. Comparisons of shock output and internal load distribution are presented, along with descriptions of mechanical operation for both designs. Results also show the potential areas where design development activity can gain further progress in lowering actuation shock levels.

  3. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  4. DFT modeling of chemistry on the Z machine

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas

    2013-06-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression for a wide-range of elements and compounds: from hydrogen to xenon via water. Materials where chemistry plays a role are of particular interest for many applications. For example the deep interiors of Neptune, Uranus, and hundreds of similar exoplanets are composed of molecular ices of carbon, hydrogen, oxygen, and nitrogen at pressures of several hundred GPa and temperatures of many thousand Kelvin. High-quality thermophysical experimental data and high-fidelity simulations including chemical reaction are necessary to constrain planetary models over a large range of conditions. As examples of where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa, shock compression of the hydrocarbon polymers polyethylene (PE) and poly(4-methyl-1-pentene) (PMP), and finally simulations of shock compression of glow discharge polymer (GDP) including the effects of doping with germanium. Experimental results from Sandia's Z machine have time and again validated the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds like CO2 and polymers like PE, PMP, and GDP. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. The effects of extracorporeal shock wave therapy on stroke patients with plantar fasciitis

    PubMed Central

    Kim, Tae Gon; Bae, Sea Hyun; Kim, Gye Yeop; Kim, Kyung Yoon

    2015-01-01

    [Purpose] The purpose of this research was to analyze the efficacy of extracorporeal shock wave therapy for the treatment of stroke patients with plantar fasciitis. [Subjects and Methods] This study included 10 stroke patients diagnosed with plantar fasciitis who were administered 3 sessions of extracorporeal shock wave therapy per week. After the last session, they performed stretching exercises for their Achilles tendon and plantar fascia for 30 min/day, 5 times a week for 6 months. The following parameters were measured and compared prior to therapy, 6 weeks after therapy, and 6 months after therapy: thickness of the plantar fascia, using an ultrasonic imaging system; degree of spasticity, using a muscle tension measuring instrument; degree of pain, using the visual analogue scale; and gait ability, using the Functional Gait Assessment. [Results] Decreased plantar fascia thickness, spasticity, and pain and increased gait ability were noted after therapy. These changes were significantly greater at 6 months after therapy than at 6 weeks after therapy. [Conclusion] These results indicated that extracorporeal shock wave therapy reduced tension in the plantar fascia, relieving pain and improving gait ability in stroke patients. PMID:25729207

  6. FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Heeg, Jennifer; Wieseman, Carol D.; Florance, Jennifer P.

    2013-01-01

    This paper presents the computational aeroelastic results generated in support of the first Aeroelastic Prediction Workshop for the Benchmark Supercritical Wing (BSCW) and the HIgh REynolds Number AeroStructural Dynamics (HIRENASD) configurations and compares them to the experimental data. The computational results are obtained using FUN3D, an unstructured grid Reynolds-averaged Navier-Stokes solver developed at NASA Langley Research Center. The analysis results for both configurations include aerodynamic coefficients and surface pressures obtained for steady-state or static aeroelastic equilibrium (BSCW and HIRENASD, respectively) and for unsteady flow due to a pitching wing (BSCW) or modally-excited wing (HIRENASD). Frequency response functions of the pressure coefficients with respect to displacement are computed and compared with the experimental data. For the BSCW, the shock location is computed aft of the experimentally-located shock position. The pressure distribution upstream of this shock is in excellent agreement with the experimental data, but the pressure downstream of the shock in the separated flow region does not match as well. For HIRENASD, very good agreement between the numerical results and the experimental data is observed at the mid-span wing locations.

  7. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.

  8. Shock-Induced phase transition of single crystal copper

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2017-05-01

    We have carried out a series of multi-million atoms non-equilibrium molecular dynamics simulations to investigate the effect of crystal orientation over the shock induced plasticity and phase transformation in single crystal copper. Crystallographic orientation of [100], [110] and [111] has been studied for various intensity of shock ranging from 1.0 km/s to 3.0 km/s. During shock wave propagation along <100> and <110>, a FCC-to-BCC phase transformation has been observed to occur behind the shock front at higher intensity of shock. Nucleated body centered phase is identified through common neighbor analysis, polyhedral matching template method, radial distribution function and also from the energetic of the particles.

  9. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.

    PubMed

    Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G

    2017-04-20

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  10. Ultrafast shock compression of self-assembled monolayers: a molecular picture.

    PubMed

    Patterson, James E; Dlott, Dana D

    2005-03-24

    Simulations of self-assembled monolayers (SAMs) are performed to interpret experimental measurements of ultrafast approximately 1 GPa (volume compression deltaV approximately 0.1) planar shock compression dynamics probed by vibrational sum-frequency generation (SFG) spectroscopy (Lagutchev, A. S.; Patterson, J. E.; Huang, W.; Dlott, D. D. J. Phys. Chem. B 2005, 109, XXXX). The SAMs investigated are octadecanethiol (ODT) and pentadecanethiol (PDT) on Au(111) and Ag(111) substrates, and benzyl mercaptan (BMT) on Au(111). In the alkane SAMs, SFG is sensitive to the instantaneous orientation of the terminal methyl; in BMT it is sensitive to the phenyl orientation. Computed structures of alkane SAMs are in good agreement with experiment. In alkanes, the energies of gauche defects increase with increasing number and depth below the methyl plane, with the exception of ODT/Au where both single and double gauche defects at the two uppermost dihedrals have similar energies. Simulations of isothermal uniaxial compression of SAM lattices show that chain and methyl tilting is predominant in PDT/Au, ODT/Ag and PDT/Ag, whereas single and double gauche defect formation is predominant in ODT/Au. Time-resolved shock data showing transient SFG signal loss of ODT/Au and PDT/Au are fit by calculations of the terminal group orientations as a function of deltaV and their contributions to the SFG hyperpolarizability. The highly elastic response of PDT/Au results from shock-generated methyl and chain tilting. The viscoelastic response of ODT/Au results from shock generation of single and double gauche defects. Isothermal compression simulations help explain and fit the time dependence of shock spectra but generally underestimate the magnitude of SFG signal loss because they do not include effects of high-strain-rate dynamics and shock front and surface irregularities.

  11. CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES

    PubMed Central

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.

    2018-01-01

    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167

  12. Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    NASA Technical Reports Server (NTRS)

    Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.

    2017-01-01

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.

  13. Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus

    2017-04-20

    Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less

  14. Life after the Shock! The Impact on Families of Caring for Young Children with Chronic Illness

    ERIC Educational Resources Information Center

    Ashton, Jean

    2004-01-01

    The stresses experienced by most families include limitations on time, conditions of employment, financial burdens and sibling rivalry. For the families of a child with a chronic illness, these stresses are often compounded, making family functioning problematic. Chronic illness is marked by permanency and the need for ongoing vigilance with…

  15. Calculated shock pressures in the aquarium test

    NASA Astrophysics Data System (ADS)

    Johnson, J. N.

    1982-04-01

    A new method of analysis has been developed for determintion of shock pressures in aquarium tests on commercial explosives. This test consists of photographing the expanding cylindrical tube wall (which contains the detonation products) and the shock wave in water surrounding the explosive charge. By making a least-squares fit to the shock-front data, it is possible to determine the peak shock-front pressure as a function of distance from the cylinder wall. This has been done for 10-cm and 20-cm-diam ANFO (ammonium nitrate/fuel oil) and aluminized ANFO (7.5 wt% Al) aquarium test data.

  16. Heat Shock Response of Archaeoglobus fulgidus†

    PubMed Central

    Rohlin, Lars; Trent, Jonathan D.; Salmon, Kirsty; Kim, Unmi; Gunsalus, Robert P.; Liao, James C.

    2005-01-01

    The heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using whole-genome microarrays. On the basis of the resulting expression profiles, approximately 350 of the 2,410 open reading frames (ORFs) (ca. 14%) exhibited increased or decreased transcript abundance. These span a range of cell functions, including energy production, amino acid metabolism, and signal transduction, where the majority are uncharacterized. One ORF called AF1298 was identified that contains a putative helix-turn-helix DNA binding motif. The gene product, HSR1, was expressed and purified from Escherichia coli and was used to characterize specific DNA recognition regions upstream of two A. fulgidus genes, AF1298 and AF1971. The results indicate that AF1298 is autoregulated and is part of an operon with two downstream genes that encode a small heat shock protein, Hsp20, and cdc48, an AAA+ ATPase. The DNase I footprints using HSR1 suggest the presence of a cis-binding motif upstream of AF1298 consisting of CTAAC-N5-GTTAG. Since AF1298 is negatively regulated in response to heat shock and encodes a protein only distantly related to the N-terminal DNA binding domain of Phr of Pyrococcus furiosus, these results suggest that HSR1 and Phr may belong to an evolutionarily diverse protein family involved in heat shock regulation in hyperthermophilic and mesophilic Archaea organisms. PMID:16109946

  17. Genome-Level Longitudinal Expression of Signaling Pathways and Gene Networks in Pediatric Septic Shock

    PubMed Central

    Shanley, Thomas P; Cvijanovich, Natalie; Lin, Richard; Allen, Geoffrey L; Thomas, Neal J; Doctor, Allan; Kalyanaraman, Meena; Tofil, Nancy M; Penfil, Scott; Monaco, Marie; Odoms, Kelli; Barnes, Michael; Sakthivel, Bhuvaneswari; Aronow, Bruce J; Wong, Hector R

    2007-01-01

    We have conducted longitudinal studies focused on the expression profiles of signaling pathways and gene networks in children with septic shock. Genome-level expression profiles were generated from whole blood-derived RNA of children with septic shock (n = 30) corresponding to day one and day three of septic shock, respectively. Based on sequential statistical and expression filters, day one and day three of septic shock were characterized by differential regulation of 2,142 and 2,504 gene probes, respectively, relative to controls (n = 15). Venn analysis demonstrated 239 unique genes in the day one dataset, 598 unique genes in the day three dataset, and 1,906 genes common to both datasets. Functional analyses demonstrated time-dependent, differential regulation of genes involved in multiple signaling pathways and gene networks primarily related to immunity and inflammation. Notably, multiple and distinct gene networks involving T cell- and MHC antigen-related biology were persistently downregulated on both day one and day three. Further analyses demonstrated large scale, persistent downregulation of genes corresponding to functional annotations related to zinc homeostasis. These data represent the largest reported cohort of patients with septic shock subjected to longitudinal genome-level expression profiling. The data further advance our genome-level understanding of pediatric septic shock and support novel hypotheses. PMID:17932561

  18. Extracorporeal shock wave therapy without local anesthesia for chronic lateral epicondylitis.

    PubMed

    Pettrone, Frank A; McCall, Brian R

    2005-06-01

    The use of extracorporeal shock wave therapy for the treatment of lateral epicondylitis is controversial. The purpose of this study was to evaluate the use of extracorporeal shock wave therapy without local anesthesia to treat chronic lateral epicondylitis. One hundred and fourteen patients with a minimum six-month history of lateral epicondylitis that was unresponsive to conventional therapy were randomized into double-blind active treatment and placebo groups. The protocol consisted of three weekly treatments of either low-dose shock wave therapy without anesthetic or a sham treatment. Patients had a physical examination, including provocation testing and dynamometry, at one, four, eight, and twelve weeks and at six and twelve months after treatment. Radiographs, laboratory studies, and electrocardiograms were also evaluated prior to participation and at twelve weeks. A visual analog scale was used to evaluate pain, and an upper extremity functional scale was used to assess function. Crossover to active treatment was initiated for nonresponsive patients who had received the placebo and met the inclusion criteria after twelve weeks. A total of 108 of the 114 randomized patients completed all treatments and the twelve weeks of follow-up required by the protocol. Sixty-one patients completed one year of follow-up, whereas thirty-four patients crossed over to receive active treatment. A significant difference (p = 0.001) in pain reduction was observed at twelve weeks in the intent-to-treat cohort, with an improvement in the pain score of at least 50% seen in 61% (thirty-four) of the fifty-six patients in the active treatment group who were treated according to protocol compared with 29% (seventeen) of the fifty-eight subjects in the placebo group. This improvement persisted in those followed to one year. Functional activity scores, activity-specific evaluation, and the overall impression of the disease state all showed significant improvement as well (p < 0.05). Crossover patients also showed significant improvement after twelve weeks of active treatment, with 56% (nineteen of thirty-four) achieving an improvement in the pain score of at least 50% (p < 0.0001). These results demonstrate that low-dose shock wave therapy without anesthetic is a safe and effective treatment for chronic lateral epicondylitis.

  19. First-principles calculation of the reflectance of shock-compressed xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, G. E.; Saitov, I. M., E-mail: saitovilnur@gmail.com; Stegailov, V. V.

    2015-05-15

    Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.

  20. Nonholonomic Hamiltonian Method for Molecular Dynamics Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Bass, Joseph

    2015-06-01

    Conventional molecular dynamics simulations of reacting shocks employ a holonomic Hamiltonian formulation: the breaking and forming of covalent bonds is described by potential functions. In general these potential functions: (a) are algebraically complex, (b) must satisfy strict smoothness requirements, and (c) contain many fitted parameters. In recent research the authors have developed a new noholonomic formulation of reacting molecular dynamics. In this formulation bond orders are determined by rate equations and the bonding-debonding process need not be described by differentiable functions. This simplifies the representation of complex chemistry and reduces the number of fitted model parameters. Example applications of the method show molecular level shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  1. Linear shock wave therapy in the treatment of erectile dysfunction.

    PubMed

    Pelayo-Nieto, M; Linden-Castro, E; Alias-Melgar, A; Espinosa-Pérez Grovas, D; Carreño-de la Rosa, F; Bertrand-Noriega, F; Cortez-Betancourt, R

    2015-09-01

    Linear Shock Wave Therapy (LSWT) is a new noninvasive therapy that uses low-intensity shock waves to induce local angiogenesis promising modality in the treatment of erectile dysfunction (ED). To evaluate the effectiveness of LSWT in men with vasculogenic erectile dysfunction (ED), in a Tertiary Care Center. Included 15 men aged 45-70 years, sexually active with mild and moderate vascular ED evaluated with the International Index of Erectile Function (IIEF). The study was conducted in three stage: screening, treatment and results. Treatment stage: 4 weekly sessions LSWT (RENOVA ®) 5000 waves (.09mJ/mm(2)). Erectile function was assessed with IIEFF-EF, SEP (Sexual Encounter Profile) and GAQ (Global Assessment Questions) at one and six months after treatment. The rate of success was 80% (12/15). Patients with mild ED (6/15) 40% and moderate ED (9/15) 60%. We found a positive association between IIEF-Basal (average 14.23 pts) and IIEF at one month and six months after therapy (19.69 pts) a difference of 5.46 pts. (P<.013). The feasibility and tolerability of this treatment, and rehabilitation potential features, make it this an attractive new treatment option for patients with ED. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Particle acceleration by quasi-parallel shocks in the solar wind

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2008-11-01

    The theoretical study of proton acceleration at a quasi-parallel shock due to interaction with Alfven waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model [1]. The model uses conservation laws and resonance conditions to find where waves will be generated or dumped and hence particles will be pitch--angle scattered as well as the change of the wave energy due to instability or damping. It includes in consideration the total distribution function (the bulk plasma and high energy tail), so no any assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles) are required. The dynamics of ion acceleration by the November 11-12, 1978 interplanetary traveling shock was investigated and compared with the observations [2] as well as with solution obtained using the so-called convection-diffusion equation for distribution function of accelerated particles [3]. [1] Galinsky, V.L., and V.I. Shevchenko, Astrophys. J., 669, L109, 2007. [2] Kennel, C.F., F.W. Coroniti, F.L. Scarf, W.A. Livesey, C.T. Russell, E.J. Smith, K.P. Wenzel, and M. Scholer, J. Geophys. Res. 91, 11,917, 1986. [3] Gordon B.E., M.A. Lee, E. Mobius, and K.J. Trattner, J. Geophys. Res., 104, 28,263, 1990.

  3. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  4. A Novel Small Heat Shock Protein Gene, vis1, Contributes to Pectin Depolymerization and Juice Viscosity in Tomato Fruit1

    PubMed Central

    Ramakrishna, Wusirika; Deng, Zhiping; Ding, Chang-Kui; Handa, Avtar K.; Ozminkowski, Richard H.

    2003-01-01

    We have characterized a novel small heat shock protein gene, viscosity 1 (vis1) from tomato (Lycopersicon esculentum) and provide evidence that it plays a role in pectin depolymerization and juice viscosity in ripening fruits. Expression of vis1 is negatively associated with juice viscosity in diverse tomato genotypes. vis1 exhibits DNA polymorphism among tomato genotypes, and the alleles vis1-hta (high-transcript accumulator; accession no. AY128101) and vis1-lta (low transcript accumulator; accession no. AY128102) are associated with thinner and thicker juice, respectively. Segregation of tomato lines heterogeneous for vis1 alleles indicates that vis1 influences pectin depolymerization and juice viscosity in ripening fruits. vis1 is regulated by fruit ripening and high temperature and exhibits a typical heat shock protein chaperone function when expressed in bacterial cells. We propose that VIS1 contributes to physiochemical properties of juice, including pectin depolymerization, by reducing thermal denaturation of depolymerizing enzymes during daytime elevated temperatures. PMID:12586896

  5. Heat shock proteins and toll-like receptors.

    PubMed

    Asea, Alexzander

    2008-01-01

    Researchers have only just begun to elucidate the relationship between heat shock proteins (HSP) and Toll-like receptors (TLR). HSP were originally described as an intracellular molecular chaperone of naïve, aberrantly folded, or mutated proteins and primarily implicated as a cytoprotective protein when cells are exposed to stressful stimuli. However, recent studies have ascribed novel functions to the Hsp70 protein depending on its localization: Surface-bound Hsp70 specifically activate natural killer (NK) cells, while Hsp70 released into the extracellular milieu specifically bind to Toll-like receptors (TLR) 2 and 4 on antigen-presenting cells (APC) and exerts immunoregulatory effects, including upregulation of adhesion molecules, co-stimulatory molecule expression, and cytokine and chemokine release-a process known as the chaperokine activity of Hsp70. This chapter discusses the most recent advances in the understanding of heat shock protein (HSP) and TLR interactions in general and highlights recent findings that demonstrate Hsp70 is a ligand for TLR and its biological significance.

  6. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.

    PubMed

    Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca; Mok, Sue-Ann; Makley, Leah N; Southworth, Daniel R; Gestwicki, Jason E

    2017-01-06

    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Understanding Effects of Traumatic Insults on Brain Structure and Function

    DTIC Science & Technology

    2016-08-01

    42 Fig. 33 The supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The...For instance, although the pressure front of a shock wave travels at supersonic speeds (the speed of sound in water is 1,497 m/s), the shock wave... supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The Mach number is 1.49. b) The pressure profile at t

  8. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    NASA Technical Reports Server (NTRS)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters used, solution planes, and a description of the shock waves. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series machine with a central memory requirement of 110K (octal) of 60 bit words when it is overlayed. This flow analysis program was developed in 1978.

  9. A Mass Tracking Formulation for Bubbles in Incompressible Flow

    DTIC Science & Technology

    2012-10-14

    incompressible flow to fully nonlinear compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of...using the ideas from [19] to couple together incompressible flow with fully nonlinear compressible flow including shocks and rarefactions . The results...compressible flow including the effects of shocks and rarefactions , and then subsequently making a number of simplifying assumptions on the air flow

  10. Effective testing of personal protective equipment in blast loading conditions in shock tube: Comparison of three different testing locations

    PubMed Central

    Alay, Eren; Zheng, James Q.; Chandra, Namas

    2018-01-01

    We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521

  11. Dynamics and acoustics of a cavitating Venturi flow using a homogeneous air-propylene glycol mixture

    NASA Astrophysics Data System (ADS)

    Navarrete, M.; Naude, J.; Mendez, F.; Godínez, F. A.

    2015-12-01

    Dynamics and acoustics generated in a cavitating Venturi tube are followed up as a function of the input power of a centrifugal pump. The pump of 5 hp with a modified impeller to produce uniform bubbly flow, pumps 70 liters of propylene glycol in a closed loop (with a water cooling system), in which the Venturi is arranged. The goal was to obtain correlations among acoustical emission, dynamics of the shock waves and the light emission from cavitation bubbles. The instrumentation includes: two piezoelectric transducers, a digital camera, a high-speed video camera, and photomultipliers. As results, we show the cavitation patterns as function of the pump power, and a graphical template of the distribution of the Venturi conditions as a function of the cavitation parameter. Our observations show for the first time the sudden formation of bubble clouds in the straight portion of the pipe after the diverging section of the Venturi. We assume that this is due to pre-existing of nuclei-cloud structures which suddenly grow up by the tensile tails of propagating shock waves (producing a sudden drop in pressure).

  12. Equation of state of Mo from shock compression experiments on preheated samples

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2017-03-01

    We present a reanalysis of reported Hugoniot data for Mo, including both experiments shocked from ambient temperature (T) and those preheated to 1673 K, using the most general methods of least-squares fitting to constrain the Grüneisen model. This updated Mie-Grüneisen equation of state (EOS) is used to construct a family of maximum likelihood Hugoniots of Mo from initial temperatures of 298 to 2350 K and a parameterization valid over this range. We adopted a single linear function at each initial temperature over the entire range of particle velocities considered. Total uncertainties of all the EOS parameters and correlation coefficients for these uncertainties are given. The improved predictive capabilities of our EOS for Mo are confirmed by (1) better agreement between calculated bulk sound speeds and published measurements along the principal Hugoniot, (2) good agreement between our Grüneisen data and three reported high-pressure γ ( V ) functions obtained from shock-compression of porous samples, and (3) very good agreement between our 1 bar Grüneisen values and γ ( T ) at ambient pressure recalculated from reported experimental data on the adiabatic bulk modulus K s ( T ) . Our analysis shows that an EOS constructed from shock compression data allows a much more accurate prediction of γ ( T ) values at 1 bar than those based on static compression measurements or first-principles calculations. Published calibrations of the Mie-Grüneisen EOS for Mo using static compression measurements only do not reproduce even low-pressure asymptotic values of γ ( T ) at 1 bar, where the most accurate experimental data are available.

  13. Feature Detection and Curve Fitting Using Fast Walsh Transforms for Shock Tracking: Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2017-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. Square waves make the system well suited for detecting and representing functions with discontinuities. Given a uniform distribution of 2p cells on a one-dimensional element, it has been proven that the inner product of the Walsh Root function for group p with every polynomial of degree < or = (p - 1) across the element is identically zero. It has also been proven that the magnitude and location of a discontinuous jump, as represented by a Heaviside function, are explicitly identified by its Fast Walsh Transform (FWT) coefficients. These two proofs enable an algorithm that quickly provides a Weighted Least Squares fit to distributions across the element that include a discontinuity. The detection of a discontinuity enables analytic relations to locally describe its evolution and provide increased accuracy. Time accurate examples are provided for advection, Burgers equation, and Riemann problems (diaphragm burst) in closed tubes and de Laval nozzles. New algorithms to detect up to two C0 and/or C1 discontinuities within a single element are developed for application to the Riemann problem, in which a contact discontinuity and shock wave form after the diaphragm bursts.

  14. Effect of Shock Waves on Dielectric Properties of KDP Crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.

    2018-05-01

    An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

  15. Progress in the Development of a Class of Efficient Low Dissipative High Order Shock-capturing Methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.; Sandham, N. D.; Hadjadj, A.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries, and the corresponding development of the discrete analogue of nonlinear stable high order schemes, including boundary schemes, were developed, extended and evaluated for various fluid flows. High order here refers to spatial schemes that are essentially fourth-order or higher away from shock and shear regions. The objective of this paper is to give an overview of the progress of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b, 2000). This class of schemes consists of simple non-dissipative high order compact or non-compact central spatial differencings and adaptive nonlinear numerical dissipation operators to minimize the use of numerical dissipation. The amount of numerical dissipation is further minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives, and by rewriting the viscous terms to minimize odd-even decoupling before the application of the central scheme (Sandham & Yee). The efficiency and accuracy of these scheme are compared with spectral, TVD and fifth- order WENO schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate amount of numerical dissipation to be added to the non-dissipative high order spatial scheme at each grid point will be discussed. Numerical experiments of long time integration of smooth flows, shock-turbulence interactions, direct numerical simulations of a 3-D compressible turbulent plane channel flow, and various mixing layer problems indicate that these schemes are especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dynamics, direct numerical simulation or large eddy simulation of compressible turbulent flows at various speeds including high-speed shock-turbulence interactions, and general long time wave propagation problems. These schemes, including entropy splitting, have also been extended to freestream preserving schemes on curvilinear moving grids for a thermally perfect gas (Vinokur & Yee 2000).

  16. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.

    2016-06-15

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wavemore » pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.« less

  17. In situ insights into shock-driven reactive flow

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana

    2017-06-01

    Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.

  18. Force wave transmission through the human locomotor system.

    PubMed

    Voloshin, A; Wosk, J; Brull, M

    1981-02-01

    A method to measure the capability of the human shock absorber system to attenuate input dynamic loading during the gait is presented. The experiments were carried out with two groups: healthy subjects and subjects with various pathological conditions. The results of the experiments show a considerable difference in the capability of each group's shock absorbers to attenuate force transmitted through the locomotor system. Comparison shows that healthy subjects definitely possess a more efficient shock-absorbing capacity than do those subjects with joint disorders. Presented results show that degenerative changes in joints reduce their shock absorbing capacity, which leads to overloading of the next shock absorber in the locomotor system. So, the development of osteoarthritis may be expected to result from overloading of a shock absorber's functional capacity.

  19. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  20. Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock.

    PubMed

    Weiss, Scott L; Cvijanovich, Natalie Z; Allen, Geoffrey L; Thomas, Neal J; Freishtat, Robert J; Anas, Nick; Meyer, Keith; Checchia, Paul A; Shanley, Thomas P; Bigham, Michael T; Fitzgerald, Julie; Banschbach, Sharon; Beckman, Eileen; Howard, Kelli; Frank, Erin; Harmon, Kelli; Wong, Hector R

    2014-11-19

    Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis. We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤ 10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock. In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C. Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis.

  1. Effects of AED device features on performance by untrained laypersons.

    PubMed

    Mosesso, Vincent N; Shapiro, Alan H; Stein, Karen; Burkett, Kelly; Wang, Henry

    2009-11-01

    Our study evaluates the impact of features of automated external defibrillators (AEDs) on the performance and speed of untrained laypersons to deliver a shock and initiate CPR after a shock. This was a randomized trial of volunteer laypersons without AED or advanced medical training. Subjects were assigned to use one of six different models of AEDs on a manikin in simulated cardiac arrest. No instructions on AED operation were provided. Primary endpoints were shock delivery and elapsed time from start to shock. Secondary endpoints included time to power-on, initiation of CPR, adequacy of pad placement and subjects' ratings of ease of use (1=very easy, 5=very difficult). Most subjects (109/120; 91%) were able to deliver a shock. Median time from start of scenario to shock delivery was 79 s (IQR: 67-99). Of the 11 participants who did not deliver shock, eight never powered on the device. Time to power-on was shorter in devices with open lid (median 12s, IQR 8-27 s) and pull handle (17s, IQR 9-20s) mechanisms than with a push button (37s, IQR 18-69 s; p=0.000). Pad position on the manikin was judged adequate for 86 (77%) of the 111 subjects who placed pads. Devices which gave more detailed voice instruction for pad placement had higher rates of adequate pad position [38/39 (97%) versus 50/73 (68%), p=0.001]. With AEDs that provided step-by-step CPR instruction, 49/58 (84%) subjects began CPR compared to 26/51 (51%) with AEDs that only prompted to start CPR (p=0.01). Participants rated all the models easy to use (overall mean 1.48; individual device means 1.28-1.71). Most untrained laypersons were successful in delivering a shock. Device features had the most impact on these functions: ability and time to power-on device, adequacy of pad position and initiation of CPR.

  2. Effect of dobutamine on extravascular lung water index, ventilator function, and perfusion parameters in acute respiratory distress syndrome associated with septic shock.

    PubMed

    Zhou, Min; Dai, Ji; Du, Min; Wang, Wei; Guo, Changxing; Wang, Yi; Tang, Rui; Xu, Fengling; Rao, Zhuqing; Sun, Gengyun

    2016-08-01

    The role of dobutamine in the relief of pulmonary edema during septic shock-induced acute respiratory distress syndrome (ARDS) remains undetermined, due to a lack of controllable and quantitative clinical studies. Our objective was to assess the potential effects of dobutamine on extravascular lung water index (ELWI) in septic shock-induced ARDS, reflecting its importance in pulmonary edema. At the same time, ventilator function and perfusion parameters were evaluated. We designed a prospective, non-randomized, non-blinded, controlled study to compare the differences in PiCCO parameters after 6 h of constant dobutamine infusion (15 μg/kg/min), in the baseline parameters in 26 septic shock-related ARDS patients with cardiac index ≥ 2.5I/min/m(2) and hyperlactatemia. These patients (12 survivors/14 non-survivors) were monitored using the PiCCO catheter system within 48 h of onset of septic shock. The dynamic changes in ELWI, which is typically used for quantifying the extent of pulmonary edema, were evaluated, and the corresponding ventilator function and tissue perfusion parameters were also measured. Decreasing ELWI (p = 0.0376) was accompanied by significantly decreased SVRI (p < 0.0001). Despite a significant increase in cardiac output (p < 0.0001), no differences were found in ITBI or GEDI. Moreover, the required dose of norepinephrine was decreased (p = 0.0389), and urine output was increased (p = 0.0358), accompanied by stabilized lactacidemia and MAP. Additionally, airway pressure was moderately improved. During the early stage of septic shock-induced ARDS, dobutamine treatment demonstrated a beneficial effect by relieving pulmonary edema in patients, without a negative elevation in preload or hemodynamics, which might account for the improvements in ventilator function and tissue hypoperfusion.

  3. Theoretical Insight into Shocked Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiding, Jeffery Allen

    2016-09-29

    I present the results of statistical mechanical calculations on shocked molecular gases. This work provides insight into the general behavior of shock Hugoniots of gas phase molecular targets with varying initial pressures. The dissociation behavior of the molecules is emphasized. Impedance matching calculations are performed to determine the maximum degree of dissociation accessible for a given flyer velocity as a function of initial gas pressure.

  4. Emergence of power-law scalings in shock-driven mixing transition

    NASA Astrophysics Data System (ADS)

    Vorobieff, Peter; Wayne, Patrick; Olmstead, Dell; Simons, Dylan; Truman, C. Randall; Kumar, Sanjay

    2016-11-01

    We present an experimental study of transition to turbulence due to shock-driven instability evolving on an initially cylindrical, diffuse density interface between air and a mixture of sulfur hexafluoride (SF6) and acetone. The plane of the shock is at an initial angle θ with the axis of the heavy-gas cylinder. We present the cases of planar normal (θ = 0) and oblique (θ =20°) shock interaction with the initial conditions. Flow is visualized in two perpendicular planes with planar laser-induced fluorescence (PLIF) triggered in acetone with a pulsed ultraviolet laser. Statistics of the flow are characterized in terms of the second-order structure function of the PLIF intensity. As instabilities in the flow evolve, the structure functions begin to develop power-law scalings, at late times manifesting over a range of scales spanning more than two orders of magnitude. We discuss the effects of the initial conditions on the emergence of these scalings, comparing the fully three-dimensional case (oblique shock interaction) with the quasi-two-dimensional case (planar normal shock interaction). We also discuss the flow anisotropy apparent in statistical differences in data from the two visualization planes. This work is funded by NNSA Grant DE-NA0002913.

  5. A molecular dynamic investigation for shock induced phase transition of water

    NASA Astrophysics Data System (ADS)

    Mitra, Nilanjan; Neogi, Anupam

    2015-06-01

    Atomistic equilibrium molecular dynamics (EMD) was carried out to investigate shock induced phase transition of bulk liquid water. Multi-scale shock technique (MSST) was utilized to investigate low (US = 2 . 5km /s) to strong (US = 6 . 5km /s) intensity shock response on an extended flexible three point model up to 100 ns. The thermodynamic pathway of phase transition from liquid water to ice VII was investigated using temporal variation of thermodynamic state variables, power spectrum analyses of O-H bond vibration along with temporal evolution of pair correlation function between O-O, O-H and H-H atoms. Static structure factor along with pair-distribution function extended up to 20 Å was calculated and compared against the ideal ice VII to get information regarding long range ordering. Bragg reflection at different crystal planes were evaluated to investigate percentage of crystallinity of the shocked sample. Specific questions answered in this work involves: What is the exact time frame after the passage of shock at certain intensity in which nucleation of solid phase can be observed? Is it a complete or partial phase transition? Are external nucleators essential for this transformation? What is the percentage of crystallinity of the nucleated phase?

  6. Reorganization of pathological control functions of memory-A neural model for tissue healing by shock waves

    NASA Astrophysics Data System (ADS)

    Wess, Othmar

    2005-04-01

    Since 1980 shock waves have proven effective in the field of extracorporeal lithotripsy. More than 10 years ago shock waves were successfully applied for various indications such as chronic pain, non-unions and, recently, for angina pectoris. These fields do not profit from the disintegration power but from stimulating and healing effects of shock waves. Increased metabolism and neo-vascularization are reported after shock wave application. According to C. J. Wang, a biological cascade is initiated, starting with a stimulating effect of physical energy resulting in increased circulation and metabolism. Pathological memory of neural control patterns is considered the reason for different pathologies characterized by insufficient metabolism. This paper presents a neural model for reorganization of pathological reflex patterns. The model acts on associative memory functions of the brain based on modification of synaptic junctions. Accordingly, pathological memory effects of the autonomous nervous system are reorganized by repeated application of shock waves followed by development of normal reflex patterns. Physiologic control of muscle and vascular tone is followed by increased metabolism and tissue repair. The memory model may explain hyper-stimulation effects in pain therapy.

  7. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation

    NASA Astrophysics Data System (ADS)

    Shao, Zhiqiang

    2018-04-01

    The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.

  8. Turning up the heat in the lungs. A key mechanism to preserve their function.

    PubMed

    Sartori, Claudio; Scherrer, Urs

    2003-01-01

    Life threatening events cause important alterations in the structure of proteins creating the urgent need of repair to preserve function and ensure survival of the cell. In eukariotic cells, an intrinsic mechanism allows them to defend against external stress. Heat shock proteins are a group of highly preserved molecular chaperones, playing a crucial role in maintaining proper protein assembly, transport and function. Stress-induced upregulation of heat shock proteins provides a unique defense system to ensure survival and function of the cell in many organ systems during conditions such as high temperature, ischemia, hypoxia, inflammation, and exposure to endotoxin or reactive oxygen species. Induction of this cellular defense mechanism prior to imposing one of these noxious insults, allows the cell/organ to withstand a subsequent insult that would otherwise be lethal, a phenomenon referred to as "thermo-tolerance" or "preconditioning". In the lung, stress-induced heat shock protein synthesis, in addition to its cyto-protective and anti-inflammatory effect, helps to preserve vectorial ion transport and alveolar fluid clearance. In this review, we describe the function of heat shock proteins in the lung, with particular emphasis on their role in the pathophysiology of experimental pulmonary edema, and their potential beneficial effects in the prevention and/or treatment of this life-threatening disease in humans.

  9. A hypersonic lift mechanism with decoupled lift and drag surfaces

    NASA Astrophysics Data System (ADS)

    Xu, YiZhe; Xu, ZhiQi; Li, ShaoGuang; Li, Juan; Bai, ChenYuan; Wu, ZiNiu

    2013-05-01

    In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.

  10. Shock Wave Treatment Protects From Neuronal Degeneration via a Toll-Like Receptor 3 Dependent Mechanism: Implications of a First-Ever Causal Treatment for Ischemic Spinal Cord Injury.

    PubMed

    Lobenwein, Daniela; Tepeköylü, Can; Kozaryn, Radoslaw; Pechriggl, Elisabeth J; Bitsche, Mario; Graber, Michael; Fritsch, Helga; Semsroth, Severin; Stefanova, Nadia; Paulus, Patrick; Czerny, Martin; Grimm, Michael; Holfeld, Johannes

    2015-10-27

    Paraplegia following spinal cord ischemia represents a devastating complication of both aortic surgery and endovascular aortic repair. Shock wave treatment was shown to induce angiogenesis and regeneration in ischemic tissue by modulation of early inflammatory response via Toll-like receptor (TLR) 3 signaling. In preclinical and clinical studies, shock wave treatment had a favorable effect on ischemic myocardium. We hypothesized that shock wave treatment also may have a beneficial effect on spinal cord ischemia. A spinal cord ischemia model in mice and spinal slice cultures ex vivo were performed. Treatment groups received immediate shock wave therapy, which resulted in decreased neuronal degeneration and improved motor function. In spinal slice cultures, the activation of TLR3 could be observed. Shock wave effects were abolished in spinal slice cultures from TLR3(-/-) mice, whereas the effect was still present in TLR4(-/-) mice. TLR4 protein was found to be downregulated parallel to TLR3 signaling. Shock wave-treated animals showed significantly better functional outcome and survival. The protective effect on neurons could be reproduced in human spinal slices. Shock wave treatment protects from neuronal degeneration via TLR3 signaling and subsequent TLR4 downregulation. Consequently, it represents a promising treatment option for the devastating complication of spinal cord ischemia after aortic repair. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  11. Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.

    PubMed

    Bensaddek, Dalila; Narayan, Vikram; Nicolas, Armel; Murillo, Alejandro Brenes; Gartner, Anton; Kenyon, Cynthia J; Lamond, Angus I

    2016-02-01

    Proteomics studies typically analyze proteins at a population level, using extracts prepared from tens of thousands to millions of cells. The resulting measurements correspond to average values across the cell population and can mask considerable variation in protein expression and function between individual cells or organisms. Here, we report the development of micro-proteomics for the analysis of Caenorhabditis elegans, a eukaryote composed of 959 somatic cells and ∼1500 germ cells, measuring the worm proteome at a single organism level to a depth of ∼3000 proteins. This includes detection of proteins across a wide dynamic range of expression levels (>6 orders of magnitude), including many chromatin-associated factors involved in chromosome structure and gene regulation. We apply the micro-proteomics workflow to measure the global proteome response to heat-shock in individual nematodes. This shows variation between individual animals in the magnitude of proteome response following heat-shock, including variable induction of heat-shock proteins. The micro-proteomics pipeline thus facilitates the investigation of stochastic variation in protein expression between individuals within an isogenic population of C. elegans. All data described in this study are available online via the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd), an open access, searchable database resource. © 2015 The Authors. PROTEOMICS Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Implications for paediatric shock management in resource-limited settings: a perspective from the FEAST trial.

    PubMed

    Houston, Kirsty Anne; George, Elizabeth C; Maitland, Kathryn

    2018-05-04

    Although the African "Fluid Expansion as Supportive therapy" (FEAST) trial showed fluid resuscitation was harmful in children with severe febrile illness managed in resource-limited hospitals, the most recent evidence reviewed World Health Organization (WHO) guidelines continue to recommend fluid boluses in children with shock according to WHO criteria "WHO shock", arguing that the numbers included in the FEAST trial were too small to provide reasonable certainty. We re-analysed the FEAST trial results for all international definitions for paediatric shock including hypotensive (or decompensated shock) and the WHO criteria. In addition, we examined the clinical relevance of the WHO criteria to published and unpublished observational studies reporting shock in resource-limited settings. We established that hypotension was rare in children with severe febrile illness complicating only 29/3170 trial participants (0.9%). We confirmed that fluid boluses were harmful irrespective of the definitions of shock including the very small number with WHO shock (n = 65). In this subgroup 48% of bolus recipients died at 48 h compared to 20% of the non-bolus control group, an increased absolute risk of 28%, but translating to an increased relative risk of 240% (p = 0.07 (two-sided Fisher's exact test)). Examining studies describing the prevalence of the stringent WHO shock criteria in children presenting to hospital we found this was rare (~ 0.1%) and in these children mortality was very high (41.5-100%). The updated WHO guidelines continue to recommend boluses for a very limited number of children presenting at hospital with the strict definition of WHO shock. Nevertheless, the 3% increased mortality from boluses seen across FEAST trial participants would also include this subgroup of children receiving boluses. Recommendations aiming to differentiate WHO shock from other definitions will invariably lead to "slippage" at the bedside, with the potential of exposing a wider group of children to the harm of fluid-bolus therapy.

  13. The Content and Functions of Labor Education in the Soviet Union.

    ERIC Educational Resources Information Center

    Boyle, George V.

    Labor unions in the U.S.S.R.--having emerged in Russia about 100 years after U.S. labor unions and been called by Lenin the "shock troops of the revolution"--do not much resemble their U.S. counterparts. Union members, including factory managers, constitute 99.3 percent of the work force, and place of employment or profession determines…

  14. Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine.

    PubMed

    Bondi, Corina O; Barrera, Gabriel; Lapiz, M Danet S; Bedard, Tania; Mahan, Amy; Morilak, David A

    2007-03-30

    We have previously shown that acute stress-induced release of norepinephrine (NE) facilitates anxiety-like behavioral responses to stress, such as reduction in open-arm exploration on the elevated-plus maze and in social behavior on the social interaction test. Since these responses represent inhibition of ongoing behavior, it is important to also address whether NE facilitates a response that represents an activation of behavior. Correspondingly, it is unknown how a chronic elevation in tonic steady-state noradrenergic (NA) neurotransmission induced by NE reuptake blockade might alter this acute modulatory function, a regulatory process that may be pertinent to the anxiolytic effects of NE reuptake blockers such as desipramine (DMI). Therefore, in this study, we investigated noradrenergic modulation of the shock-probe defensive burying response in the lateral septum (LS). In experiment 1, shock-probe exposure induced an acute 3-fold increase in NE levels measured in LS of male Sprague-Dawley rats by microdialysis. Shock-probe exposure also induced a modest rise in plasma ACTH, taken as an indicator of perceived stress, that returned to baseline more rapidly in rats that were allowed to bury the probe compared to rats prevented from burying by providing them with minimal bedding, indicating that the active defensive burying behavior is an effective coping strategy that reduces the impact of acute shock probe-induced stress. In experiment 2, blockade of either alpha(1)- or beta-adrenergic receptors in LS by local antagonist microinjection immediately before testing reduced defensive burying and increased immobility. In the next experiment, chronic DMI treatment increased basal extracellular NE levels in LS, and attenuated the acute shock probe-induced increase in NE release in LS relative to baseline. Chronic DMI treatment decreased shock-probe defensive burying behavior in a time-dependent manner, apparent only after 2 weeks or more of drug treatment. Moreover, rats treated chronically with DMI showed no significant rise of plasma ACTH in response to shock-probe exposure. Thus, acute stress-induced release of NE in LS facilitated defensive burying, an active, adaptive behavioral coping response. Chronic treatment with the NE reuptake blocker and antidepressant drug DMI attenuated acute noradrenergic facilitation of the active burying response, and also attenuated the level of perceived stress driving that response. These results suggest that long-term regulation of the acute modulatory function of NE by chronic treatment with reuptake blockers may contribute to the mechanisms by which such drugs exert their anxiolytic effects in the treatment of stress-related psychiatric conditions, including depression and anxiety.

  15. Urinary extracorporeal shock wave lithotripsy: equipment, techniques, and overview.

    PubMed

    Pfister, R C; Papanicolaou, N; Yoder, I C

    1988-01-01

    Second generation urinary lithotriptors are characterized by extensive technical alterations and significant equipment improvement in the functional, logistical, and medical aspects of shock wave lithotripsy (SWL). These newer devices feature a water bath-free environment, a reduced anesthesia requirement, improved imaging, functional uses in addition to lithotripsy, or combinations thereof. Shock wave generation by spark gap, electromagnetic, piezoelectric and microexplosive techniques are related to their peak energy, frequency, and total energy capabilities which impacts on both anesthesia needs and the length and number of treatment sessions required to pulverize calculi. A master table summarizes the types of SW energy, coupling, imaging systems, patient transport, functional features, cost, and treatment effectiveness of 12 worldwide lithotriptors in various stages of investigative and clinical trials as monitored by the Food and Drug Administration (FDA) of America.

  16. HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene.

    PubMed

    He, H; Chen, C; Xie, Y; Asea, A; Calderwood, S K

    2000-11-01

    Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation.

  17. In Vitro Comparison of a Novel Single Probe Dual-Energy Lithotripter to Current Devices.

    PubMed

    Carlos, Evan C; Wollin, Daniel A; Winship, Brenton B; Jiang, Ruiyang; Radvak, Daniela; Chew, Ben H; Gustafson, Michael R; Simmons, W Neal; Zhong, Pei; Preminger, Glenn M; Lipkin, Michael E

    2018-06-01

    The LithoClast Trilogy is a novel single probe, dual-energy lithotripter with ultrasonic (US) vibration and electromagnetic impact forces. ShockPulse and LithoClast Select are existing lithotripters that also use a combination of US and mechanical impact energies. We compared the efficacy and tip motion of these devices in an in vitro setting. Begostones, in the ratio 15:3, were used in all trials. Test groups were Trilogy, ShockPulse, Select ultrasound (US) only, and Select ultrasound with pneumatic (USP). For clearance testing, a single investigator facile with each lithotripter fragmented 10 stones per device. For drill testing, a hands-free apparatus with a submerged balance was used to apply 1 or 2 lbs of pressure on a stone in contact with the device tip. High-speed photography was used to assess Trilogy and ShockPulse's probe tip motion. Select-USP was slowest and Trilogy fastest on clearance testing (p < 0.01). On 1 lbs drill testing, Select-US was slowest (p = 0.001). At 2 lbs, ShockPulse was faster than Select US (p = 0.027), but did not significantly outpace Trilogy nor Select-USP. At either weight, there was no significant difference between Trilogy and ShockPulse. During its US function, Trilogy's maximum downward tip displacement was 0.041 mm relative to 0.0025 mm with ShockPulse. Trilogy had 0.25 mm of maximum downward displacement during its impactor function while ShockPulse had 0.01 mm. Single probe dual-energy devices, such as Trilogy and ShockPulse, represent the next generation of lithotripters. Trilogy more efficiently cleared stone than currently available devices, which could be explained by its larger probe diameter and greater downward tip displacement during both US and impactor functions.

  18. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock

    PubMed Central

    Braga, D; Barcella, M; D’Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, MH; DeLano, FA; Baselli, G; Schmid-Schönbein, GW; Kistler, EB; Aletti, F

    2017-01-01

    Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger’s shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients. PMID:28661205

  19. A Green's function formulation for a nonlinear potential flow solution applicable to transonic flow

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Fox, C. H., Jr.

    1977-01-01

    Routine determination of inviscid subsonic flow fields about wing-body-tail configurations employing a Green's function approach for numerical solution of the perturbation velocity potential equation is successfully extended into the high subsonic subcritical flow regime and into the shock-free supersonic flow regime. A modified Green's function formulation, valid throughout a range of Mach numbers including transonic, that takes an explicit accounting of the intrinsic nonlinearity in the parent governing partial differential equations is developed. Some considerations pertinent to flow field predictions in the transonic flow regime are discussed.

  20. Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft.

    PubMed

    Yordanova, E; Vaivads, A; André, M; Buchert, S C; Vörös, Z

    2008-05-23

    We study the plasma turbulence, at scales larger than the ion inertial length scale, downstream of a quasiparallel bow shock using Cluster multispacecraft measurements. We show that turbulence is intermittent and well described by the extended structure function model, which takes into account the spatial inhomogeneity of the cascade rate. For the first time we use multispacecraft observations to characterize the evolution of magnetosheath turbulence, particularly its intermittency, as a function of the distance from the bow shock. The intermittency significantly changes over the distance of the order of 100 ion inertial lengths, being increasingly stronger and anisotropic away from the bow shock.

  1. Shock & Anaphylactic Shock. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on shock and anaphylactic shock is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  2. The Application of Nonstandard Analysis to the Study of Inviscid Shock Wave Jump Conditions

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Baty, R. S.

    1998-01-01

    The use of conservation laws in nonconservative form for deriving shock jump conditions by Schwartz distribution theory leads to ambiguous products of generalized functions. Nonstandard analysis is used to define a class of Heaviside functions where the jump from zero to one occurs on an infinitesimal interval. These Heaviside functions differ by their microstructure near x = 0, i.e., by the nature of the rise within the infinitesimal interval it is shown that the conservation laws in nonconservative form can relate the different Heaviside functions used to define jumps in different flow parameters. There are no mathematical or logical ambiguities in the derivation of the jump conditions. An important result is that the microstructure of the Heaviside function of the jump in entropy has a positive peak greater than one within the infinitesimal interval where the jump occurs. This phenomena is known from more sophisticated studies of the structure of shock waves using viscous fluid assumption. However, the present analysis is simpler and more direct.

  3. Comparison of Separation Shock for Explosive and Nonexplosive Release Actuators on a Small Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.; Buehrle, R. D.; Woolley, J. P.

    1996-01-01

    Functional shock, safety, overall system costs, and emergence of new technologies, have raised concerns regarding continued use of pyrotechnics on spacecraft. NASA Headquarters-Office of Chief Engineer requested Langley Research Center (LaRC) study pyrotechnic alternatives using non-explosive actuators (NEA's), and LARC participated with Lockheed Martin Missile and Space Co. (LMMSC)-Sunnyvale, CA in objectively evaluating applicability of some NEA mechanisms to reduce small spacecraft and booster separation event shock. Comparative tests were conducted on a structural simulator using five different separation nut mechanisms, consisting of three pyrotechnics from OEA-Aerospace and Hi-Shear Technology and two NEA's from G&H Technology and Lockheed Martin Astronautics (LMA)-Denver, CO. Multiple actuations were performed with preloads up to 7000 pounds, 7000 being the comparison standard. All devices except LMA's NEA rotary flywheel-nut concept were available units with no added provisions to attenuate shock. Accelerometer measurements were recorded, reviewed, processed into Shock Response Spectra (SRS), and comparisons performed. For the standard preload, pyrotechnics produced the most severe and the G&H NEA the least severe functional shock levels. Comparing all results, the LMA concept produced the lowest levels, with preload limited to approximately 4200 pounds. Testing this concept over a range of 3000 to 4200 pounds indicated no effect of preload on shock response levels. This report presents data from these tests and the comparative results.

  4. A spatial paradigm, the allothetic place avoidance alternation task, for testing visuospatial working memory and skill learning in rats.

    PubMed

    Dockery, Colleen A; Wesierska, Malgorzata J

    2010-08-30

    We present a paradigm for assessing visuospatial working memory and skill learning in a rodent model, based on the place avoidance test. In our allothetic place avoidance alternation task (APAAT) the paradigm is comprised of minimal training sessions, tests various aspects of learning and memory and provides a rich set of parameters. A single working memory session consists of four conditions: habituation (no shock), two place avoidance training intervals (shock activated) and a retrieval test (shock inactivated). The location of the shock sector is alternated for each training day which initially requires extinction of previous representations and further working memory to achieve effective place avoidance across sessions. Visuospatial skill memory was evaluated by the shock/entrance ratio by tracking locomotor activity which is essential to execute a place avoidance strategy. For each day rats learned to avoid a new place with shock, as shown by a decreased number of entrances, and an increased time to the first entrance and maximum avoidance time. Skill learning improved according to the decreased number of shocks per entrance across conditions. These results indicate that complex cognitive functions are captured by this behavioral method. This APAAT paradigm expands and complements existing tools for studying hippocampal-prefrontal dependent functions to support development of treatment interventions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. The Effects of FUV Radiation on C-Shocks: Implications for Water and Other O-bearing Species

    NASA Astrophysics Data System (ADS)

    Kaufman, Michael; Melick, Gary; Tolls, Volker

    2015-08-01

    Protostellar outflows have long been known to drive endothermic reactions that produce high abundances of oxygen-bearing species. Models of shocks in well-shielded gas made the strong prediction that essentially all of the pre-shock oxygen gets driven into water, so that the post-shock water abundances are order 10-4. Herschel observations, however, including those from the key program “Water in Star Forming Regions with Herschel (WISH)” show that for most sources, the shocked gas water abundances of are far lower, 10-7 - 10-5.This pattern of lower-than-predicted water abundance has led us to consider that our C-shock model (Kaufman & Neufeld 1996) is incomplete. In particular, we did not previously take into account that many outflow sources have higher than average far-ultraviolet radiation fields within their outflow cavities. Strong FUV radiation has important effects on the structure of C-shocks: the ionization fraction is larger than in well-shielded gas, decreasing the coupling length between neutrals and ions, and leading to higher temperatures and a lower breakdown speeds; the pre-shock gas composition, including the presence of ice mantles and the dominant charge carriers, is strongly affected; and abundant species such as water are diminished by photodissociation in the cooled down stream gas.In addition to the normal parameters of density, shock velocity, and magnetic field strength, we now include the external FUV field strength and the extinction between the FUV source and the shock. We use the results of a detailed PDR model to compute pre-shock chemical conditions, including the ionization fraction, the increase of which decreases the maximum velocities of C- shocks. FUV also keeps oxygen in the gas phase, making more available for H2O formarion ; however, photodissociation beyond the temperature peak keeps the average H2O abundance down. We present comparisons of our model results with the inferred water abundances and with observations of H2O, CO, O and OH lines from the Herschel archive.

  6. Entropy Generation Across Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; hide

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  7. Electron velocity distributions near the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Anderson, R. C.; Bame, S. J.; Gary, S. P.; Gosling, J. T.; Mccomas, D. J.; Thomsen, M. F.; Paschmann, G.; Hoppe, M. M.

    1983-01-01

    New information is presented on the general characteristics of electron distribution functions upstream, within, and downstream of the earth's bow shock, thereby providing new insights into the instabilities in collisionless shocks. The results presented are from a survey of electron velocity distributions measured near the earth's bow shock between October 1977 and December 1978 using the Los Alamos/Garching plasma instrumentation aboard ISEE 2. A wide variety of distribution shapes is found within the different plasma regions in close proximity to the bow shock. It is found that these shapes can be classified into general types that are characteristic of three different plasma regions, namely the upstream region or electron foreshock, the shock proper where most of the heating occurs, and the downstream region or the magnetosheath. Evidence is provided that field-aligned, rather than cross-field, instabilities are the major source of electron dissipation in the earth's bow shock.

  8. The Divergent AmoC3 Subunit of Ammonia Monooxygenase Functions as Part of a Stress Response System in Nitrosomonas europaea

    PubMed Central

    Berube, Paul M.

    2012-01-01

    The ammonia monooxygenase of chemolithotrophic ammonia-oxidizing bacteria (AOB) catalyzes the first step in ammonia oxidation by converting ammonia to hydroxylamine. The monooxygenase of Nitrosomonas europaea is encoded by two nearly identical operon copies (amoCAB1,2). Several AOB, including N. europaea, also possess a divergent monocistronic copy of amoC (amoC3) of unknown function. Previous work suggested a possible functional role for amoC3 as part of the σE stress response regulon during the recovery of N. europaea from extended ammonia starvation, thus indicating its importance during the exit of cells from starvation. We here used global transcription analysis to show that expression of amoC3 is part of a general poststarvation cellular response system in N. europaea. We also found that amoC3 is required for an efficient response to some stress conditions, as deleting this gene impaired growth at elevated temperatures and recovery following starvation under high oxygen tensions. Deletion of the σ32 global stress response regulator demonstrated that the heat shock regulon plays a significant role in mediating the recovery of N. europaea from starvation. These findings provide the first described phenotype associated with the divergent AmoC3 subunit which appears to function as a stress-responsive subunit capable of maintaining ammonia oxidation activity under stress conditions. While this study was limited to starvation and heat shock, it is possible that the AmoC3 subunit may be responsive to other membrane stressors (e.g., solvent or osmotic shocks) that are prevalent in the environments of AOB. PMID:22544266

  9. Evaluation of outpatients experiencing implantable cardioverter defibrillator shocks associated with minimal symptoms.

    PubMed

    Hamer, M E; Clair, W K; Wilkinson, W E; Greenfield, R A; Pritchett, E L; Page, R L

    1994-05-01

    Patients receiving minimally symptomatic shocks from their implantable cardioverter defibrillators were studied prospectively using transtelephonic ECG loop monitoring. The time course to the first subsequent shock was evaluated. Twenty-nine consecutive patients who received a shock preceded by mild palpitations or no symptoms were given a transtelephonic ECG loop monitor and instructed to activate the monitor if a subsequent shock occurred. Kaplan-Meier analysis was used to quantitate the time to first shock during the study period. The point estimate +/- standard error of patients receiving a shock during the study period was 31% +/- 9% at 30 days, 41% +/- 9% at 60 days, and 60% +/- 9% at 120 days. The ECG was successfully transmitted in 7 of 13 patients who had shocks in the 60-day monitoring period, and demonstrated inappropriate shocks in 6 of 7. Determination of the cause of shock led to a change in subsequent management in all 7 patients. We conclude that the incidence of inappropriate shocks may be higher than estimated previously in patients with minimal symptoms prior to the shock. There are thousands of patients with implantable cardioverter defibrillators that have no storage function for treated tachycardias; transtelephonic ECG loop monitoring can determine the cause of implantable cardioverter defibrillator discharge in these patients, and the diagnosis is invaluable in their management.

  10. Spherical shock waves in general relativity

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1991-11-01

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-N vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-N Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the C0-form of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.

  11. Concepts for radically increasing the numerical convergence rate of the Euler equations

    NASA Technical Reports Server (NTRS)

    Nixon, David; Tzuoo, Keh-Lih; Caruso, Steven C.; Farshchi, Mohammad; Klopfer, Goetz H.; Ayoub, Alfred

    1987-01-01

    Integral equation and finite difference methods have been developed for solving transonic flow problems using linearized forms of the transonic small disturbance and Euler equations. A key element is the use of a strained coordinate system in which the shock remains fixed. Additional criteria are developed to determine the free parameters in the coordinate straining; these free parameters are functions of the shock location. An integral equation analysis showed that the shock is located by ensuring that no expansion shocks exist in the solution. The expansion shock appears as oscillations in the solution near the sonic line, and the correct shock location is determined by removing these oscillations. A second objective was to study the ability of the Euler equation to model separated flow.

  12. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster)

    PubMed Central

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    Background The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. Principal Findings We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. Conclusions The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperaures below -8°C. PMID:26034990

  13. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster).

    PubMed

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperatures below -8°C.

  14. Identification of ideal resuscitation pressure with concurrent traumatic brain injury in a rat model of hemorrhagic shock.

    PubMed

    Hu, Yi; Wu, Yue; Tian, Kunlun; Lan, Dan; Chen, Xiangyun; Xue, Mingying; Liu, Liangming; Li, Tao

    2015-05-01

    Traumatic brain injury (TBI) is often associated with uncontrolled hemorrhagic shock (UHS), which contributes significantly to the mortality of severe trauma. Studies have demonstrated that permissive hypotension resuscitation improves the survival for uncontrolled hemorrhage. What the ideal target mean arterial pressure (MAP) is for TBI with UHS remains unclear. With the rat model of TBI in combination with UHS, we investigated the effects of a series of target resuscitation pressures (MAP from 50-90 mm Hg) on animal survival, brain perfusion, and organ function before hemorrhage controlled. Rats in 50-, 60-, and 70-mm Hg target MAP groups had less blood loss and less fluid requirement, a better vital organ including mitochondrial function and better cerebral blood flow, and animal survival (8, 6, and 7 of 10, respectively) than 80- and 90-mm Hg groups. The 70-mm Hg group had a better cerebral blood flow and cerebral mitochondrial function than in 50- and 60-mm Hg groups. In contrast, 80- and 90-mm Hg groups resulted in an excessive hemodilution, a decreased blood flow, an increased brain water content, and more severe cerebral edema. A 50-mm Hg target MAP is not suitable for the resuscitation of TBI combined with UHS. A 70 mm Hg of MAP is the ideal target resuscitation pressure for this trauma, which can keep sufficient perfusion to the brain and keep good organ function including cerebral mitochondrial function. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Time-resolved spectroscopic measurements of shock-wave induced decomposition in cyclotrimethylene trinitramine (RDX) crystals: anisotropic response.

    PubMed

    Dang, Nhan C; Dreger, Zbigniew A; Gupta, Yogendra M; Hooks, Daniel E

    2010-11-04

    Plate impact experiments on the (210), (100), and (111) planes were performed to examine the role of crystalline anisotropy on the shock-induced decomposition of cyclotrimethylenetrinitramine (RDX) crystals. Time-resolved emission spectroscopy was used to probe the decomposition of single crystals shocked to peak stresses ranging between 7 and 20 GPa. Emission produced by decomposition intermediates was analyzed in terms of induction time to emission, emission intensity, and the emission spectra shapes as a function of stress and time. Utilizing these features, we found that the shock-induced decomposition of RDX crystals exhibits considerable anisotropy. Crystals shocked on the (210) and (100) planes were more sensitive to decomposition than crystals shocked on the (111) plane. The possible sources of the observed anisotropy are discussed with regard to the inelastic deformation mechanisms of shocked RDX. Our results suggest that, despite the anisotropy observed for shock initiation, decomposition pathways for all three orientations are similar.

  16. Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

    1993-01-01

    We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

  17. Stress, fighting and neuroendocrine function.

    NASA Technical Reports Server (NTRS)

    Conner, R. L.; Levine, S.; Vernikos-Danellis, J.

    1971-01-01

    Plasma concentrations of pituitary adrenocorticotrophic hormone (ACTH) and adrenocortical steroids in rats after testing in the shock-induced fighting paradigm were examined. The investigations provide data consistent with the view that psychological aspects of the stressful situation are important in determining the effects of shock on physiological function. The data indicate that the pituitary-adrenal response can be attenuated by the expression of an organized pattern of behavior.

  18. Global MHD Simulations of the Earth's Bow Shock Shape and Motion Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.

    2018-01-01

    Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.

  19. Numerical solution of the Navier-Stokes equations for blunt nosed bodies in supersonic flows

    NASA Technical Reports Server (NTRS)

    Warsi, Z. U. A.; Devarayalu, K.; Thompson, J. F.

    1978-01-01

    A time dependent, two dimensional Navier-Stokes code employing the method of body fitted coordinate technique was developed for supersonic flows past blunt bodies of arbitrary shapes. The bow shock ahead of the body is obtained as part of the solution, viz., by shock capturing. A first attempt at mesh refinement in the shock region was made by using the forcing function in the coordinate generating equations as a linear function of the density gradients. The technique displaces a few lines from the neighboring region into the shock region. Numerical calculations for Mach numbers 2 and 4.6 and Reynolds numbers from 320 to 10,000 were performed for a circular cylinder with and without a fairing. Results of Mach number 4.6 and Reynolds number 10,000 for an isothermal wall temperature of 556 K are presented in detail.

  20. Anxiety promotes memory for mood-congruent faces but does not alter loss aversion

    PubMed Central

    Charpentier, Caroline J.; Hindocha, Chandni; Roiser, Jonathan P.; Robinson, Oliver J.

    2016-01-01

    Pathological anxiety is associated with disrupted cognitive processing, including working memory and decision-making. In healthy individuals, experimentally-induced state anxiety or high trait anxiety often results in the deployment of adaptive harm-avoidant behaviours. However, how these processes affect cognition is largely unknown. To investigate this question, we implemented a translational within-subjects anxiety induction, threat of shock, in healthy participants reporting a wide range of trait anxiety scores. Participants completed a gambling task, embedded within an emotional working memory task, with some blocks under unpredictable threat and others safe from shock. Relative to the safe condition, threat of shock improved recall of threat-congruent (fearful) face location, especially in highly trait anxious participants. This suggests that threat boosts working memory for mood-congruent stimuli in vulnerable individuals, mirroring memory biases in clinical anxiety. By contrast, Bayesian analysis indicated that gambling decisions were better explained by models that did not include threat or treat anxiety, suggesting that: (i) higher-level executive functions are robust to these anxiety manipulations; and (ii) decreased risk-taking may be specific to pathological anxiety. These findings provide insight into the complex interactions between trait anxiety, acute state anxiety and cognition, and may help understand the cognitive mechanisms underlying adaptive anxiety. PMID:27098489

  1. Anxiety promotes memory for mood-congruent faces but does not alter loss aversion.

    PubMed

    Charpentier, Caroline J; Hindocha, Chandni; Roiser, Jonathan P; Robinson, Oliver J

    2016-04-21

    Pathological anxiety is associated with disrupted cognitive processing, including working memory and decision-making. In healthy individuals, experimentally-induced state anxiety or high trait anxiety often results in the deployment of adaptive harm-avoidant behaviours. However, how these processes affect cognition is largely unknown. To investigate this question, we implemented a translational within-subjects anxiety induction, threat of shock, in healthy participants reporting a wide range of trait anxiety scores. Participants completed a gambling task, embedded within an emotional working memory task, with some blocks under unpredictable threat and others safe from shock. Relative to the safe condition, threat of shock improved recall of threat-congruent (fearful) face location, especially in highly trait anxious participants. This suggests that threat boosts working memory for mood-congruent stimuli in vulnerable individuals, mirroring memory biases in clinical anxiety. By contrast, Bayesian analysis indicated that gambling decisions were better explained by models that did not include threat or treat anxiety, suggesting that: (i) higher-level executive functions are robust to these anxiety manipulations; and (ii) decreased risk-taking may be specific to pathological anxiety. These findings provide insight into the complex interactions between trait anxiety, acute state anxiety and cognition, and may help understand the cognitive mechanisms underlying adaptive anxiety.

  2. Probabilistic models for reactive behaviour in heterogeneous condensed phase media

    NASA Astrophysics Data System (ADS)

    Baer, M. R.; Gartling, D. K.; DesJardin, P. E.

    2012-02-01

    This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.

  3. Hypersonic Shock Wave Computations Using the Generalized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh; Chen, Rui; Cheremisin, Felix G.

    2006-11-01

    Hypersonic shock structure in diatomic gases is computed by solving the Generalized Boltzmann Equation (GBE), where the internal and translational degrees of freedom are considered in the framework of quantum and classical mechanics respectively [1]. The computational framework available for the standard Boltzmann equation [2] is extended by including both the rotational and vibrational degrees of freedom in the GBE. There are two main difficulties encountered in computation of high Mach number flows of diatomic gases with internal degrees of freedom: (1) a large velocity domain is needed for accurate numerical description of the distribution function resulting in enormous computational effort in calculation of the collision integral, and (2) about 50 energy levels are needed for accurate representation of the rotational spectrum of the gas. Our methodology addresses these problems, and as a result the efficiency of calculations has increased by several orders of magnitude. The code has been validated by computing the shock structure in Nitrogen for Mach numbers up to 25 including the translational and rotational degrees of freedom. [1] Beylich, A., ``An Interlaced System for Nitrogen Gas,'' Proc. of CECAM Workshop, ENS de Lyon, France, 2000. [2] Cheremisin, F., ``Solution of the Boltzmann Kinetic Equation for High Speed Flows of a Rarefied Gas,'' Proc. of the 24th Int. Symp. on Rarefied Gas Dynamics, Bari, Italy, 2004.

  4. Bio-inspired Armor Protective Material Systems for Ballistic Shock Mitigation

    DTIC Science & Technology

    2011-01-01

    Coupon testing a b s t r a c t Severe transient ballistic shocks from projectile impacts, mine blasts , or overhead artillery attacks can incapacitate an...past two decades [1]. A ballistic shock results from a significant amount of concentrated energy deposited from caliber projectile impacts, mine blasts ...LS- Dyna , has been predominately utilized to calculate the target shock responses including acceleration histo- ries, shock response spectra

  5. Cellular Mechanisms of Myocardial Depression in Porcine Septic Shock.

    PubMed

    Jarkovska, Dagmar; Markova, Michaela; Horak, Jan; Nalos, Lukas; Benes, Jan; Al-Obeidallah, Mahmoud; Tuma, Zdenek; Sviglerova, Jitka; Kuncova, Jitka; Matejovic, Martin; Stengl, Milan

    2018-01-01

    The complex pathogenesis of sepsis and septic shock involves myocardial depression, the pathophysiology of which, however, remains unclear. In this study, cellular mechanisms of myocardial depression were addressed in a clinically relevant, large animal (porcine) model of sepsis and septic shock. Sepsis was induced by fecal peritonitis in eight anesthetized, mechanically ventilated, and instrumented pigs of both sexes and continued for 24 h. In eight control pigs, an identical experiment but without sepsis induction was performed. In vitro analysis of cardiac function included measurements of action potentials and contractions in the right ventricle trabeculae, measurements of sarcomeric contractions, calcium transients and calcium current in isolated cardiac myocytes, and analysis of mitochondrial respiration by ultrasensitive oxygraphy. Increased values of modified sequential organ failure assessment score and serum lactate levels documented the development of sepsis/septic shock, accompanied by hyperdynamic circulation with high heart rate, increased cardiac output, peripheral vasodilation, and decreased stroke volume. In septic trabeculae, action potential duration was shortened and contraction force reduced. In septic cardiac myocytes, sarcomeric contractions, calcium transients, and L-type calcium current were all suppressed. Similar relaxation trajectory of the intracellular calcium-cell length phase-plane diagram indicated unchanged calcium responsiveness of myofilaments. Mitochondrial respiration was diminished through inhibition of Complex II and Complex IV. Defective calcium handling with reduced calcium current and transients, together with inhibition of mitochondrial respiration, appears to represent the dominant cellular mechanisms of myocardial depression in porcine septic shock.

  6. Radial shock wave treatment alone is less efficient than radial shock wave treatment combined with tissue-specific plantar fascia-stretching in patients with chronic plantar heel pain.

    PubMed

    Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola

    2015-12-01

    Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p < 0.001), as well as individually for item 2 (p < 0.001). Twenty-four patients in Group 1 (32%) versus forty-seven patients in Group 2 (59%) were satisfied with the treatment (p < 0.001). Significant differences persisted at four months, but not at twenty-four months. A program of manual stretching exercises specific to the plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  7. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  8. The Prediction of Scattered Broadband Shock-Associated Noise

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    A mathematical model is developed for the prediction of scattered broadband shock-associated noise. Model arguments are dependent on the vector Green's function of the linearized Euler equations, steady Reynolds-averaged Navier-Stokes solutions, and the two-point cross-correlation of the equivalent source. The equivalent source is dependent on steady Reynolds-averaged Navier-Stokes solutions of the jet flow, that capture the nozzle geometry and airframe surface. Contours of the time-averaged streamwise velocity component and turbulent kinetic energy are examined with varying airframe position relative to the nozzle exit. Propagation effects are incorporated by approximating the vector Green's function of the linearized Euler equations. This approximation involves the use of ray theory and an assumption that broadband shock-associated noise is relatively unaffected by the refraction of the jet shear layer. A non-dimensional parameter is proposed that quantifies the changes of the broadband shock-associated noise source with varying jet operating condition and airframe position. Scattered broadband shock-associated noise possesses a second set of broadband lobes that are due to the effect of scattering. Presented predictions demonstrate relatively good agreement compared to a wide variety of measurements.

  9. Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2000-01-01

    The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.

  10. Analysis of the dynamic response of a supersonic inlet to flow-field perturbations upstream of the normal shock

    NASA Technical Reports Server (NTRS)

    Cole, G. L.; Willoh, R. G.

    1975-01-01

    A linearized mathematical analysis is presented for determining the response of normal shock position and subsonic duct pressures to flow-field perturbations upstream of the normal shock in mixed-compression supersonic inlets. The inlet duct cross-sectional area variation is approximated by constant-area sections; this approximation results in one-dimensional wave equations. A movable normal shock separates the supersonic and subsonic flow regions, and a choked exit is assumed for the inlet exit condition. The analysis leads to a closed-form matrix solution for the shock position and pressure transfer functions. Analytical frequency response results are compared with experimental data and a method of characteristics solution.

  11. 3D Printed Shock Mitigating Structures

    NASA Astrophysics Data System (ADS)

    Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit

    Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.

  12. Regional variations in upper mantle compressional velocities beneath southern California 1. Post-shock temperatures: Their experimental determination, calculation, and implications, 2.. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Raikes, S. A.

    1978-01-01

    The compressional velocity within the upper mantle beneath Southern California is investigated through observations of the dependence of teleseismic P-delays at all stations of the array on the distance and azimuth to the event. The variation of residuals with azimuth was found to be as large as 1.3 sec at a single station; the delays were stable as a function of time, and no evidence was found for temporal velocity variations related to seismic activity in the area. These delays were used in the construction of models for the upper mantle P-velocity structure to depths of 150 km, both by ray tracing and inversion techniques. The models exhibit considerable lateral heterogeneity including a region of low velocity beneath the Imperial Valley, and regions of increased velocity beneath the Sierra Nevada and much of the Transverse Ranges. The development is described of a technique for the experimental determination of post-shock temperatures, and its application to several metals and silicates shocked to pressures in the range 5 to 30 GPa. The technique utilizes an infra-red radiation detector to determine the brightness temperature of the free surface of the sample after the shock wave has passed through it.

  13. Initial Results from the Variable Intensity Sonic Boom Propagation Database

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Bunce, Thomas J.; Gabrielson, Thomas B.; Sparrow, Victor W.; Locey, Lance L.

    2008-01-01

    An extensive sonic boom propagation database with low- to normal-intensity booms (overpressures of 0.08 lbf/sq ft to 2.20 lbf/sq ft) was collected for propagation code validation, and initial results and flight research techniques are presented. Several arrays of microphones were used, including a 10 m tall tower to measure shock wave directionality and the effect of height above ground on acoustic level. A sailplane was employed to measure sonic booms above and within the atmospheric turbulent boundary layer, and the sailplane was positioned to intercept the shock waves between the supersonic airplane and the ground sensors. Sailplane and ground-level sonic boom recordings were used to generate atmospheric turbulence filter functions showing excellent agreement with ground measurements. The sonic boom prediction software PCBoom4 was employed as a preflight planning tool using preflight weather data. The measured data of shock wave directionality, arrival time, and overpressure gave excellent agreement with the PCBoom4-calculated results using the measured aircraft and atmospheric data as inputs. C-weighted acoustic levels generally decreased with increasing height above the ground. A-weighted and perceived levels usually were at a minimum for a height where the elevated microphone pressure rise time history was the straightest, which is a result of incident and ground-reflected shock waves interacting.

  14. On the Nonlinear Dynamics of a Tunable Shock Micro-switch

    NASA Astrophysics Data System (ADS)

    Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa

    2016-12-01

    A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.

  15. Ion-acoustic shocks with reflected ions: modelling and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Liseykina, T. V.; Dudnikova, G. I.; Vshivkov, V. A.; Malkov, M. A.

    2015-10-01

    > Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles, remains incomplete. We present here the results of numerical modelling of an ion-acoustic collisionless shock based on the one-dimensional kinetic approximation for both electrons and ions with a real mass ratio. Special emphasis is paid to the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, the velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.

  16. Shock-free turbomachinery blade design

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. P.; Seebass, A. R.

    1985-01-01

    A computational method for designing shock-free, quasi-three-dimensional, transonic, turbomachinery blades is described. Shock-free designs are found by implementing Sobieczky's fictitious gas principle in the analysis of a baseline shape, resulting in an elliptic solution that is incorrect in the supersonic domain. Shock-free designs are obtained by combining the subsonic portion of this solution with a characteristic calculation of the correct supersonic flow using the sonic line data from the fictitious elliptic solution. This provides a new, shock-free blade design. Examples presented include the removal of shocks from two blades in quasi-three-dimensional flow and the development of a series of shock-free two-dimensional stators. The new designs all include modifications to the upper surface of an experimental stator blade developed at NASA Lewis Research Center. While the designs presented here are for inviscid flow, the same concepts have been successfully applied to the shock-free design of airfoils and three-dimensional wings with viscous effects. The extension of the present method to viscous flows is straightforward given a suitable analysis algorithm for the flow.

  17. Modeling normal shock velocity curvature relations for heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Yoo, Sunhee; Crochet, Michael; Pemberton, Steven

    2017-01-01

    The theory of Detonation Shock Dynamics (DSD) is, in part, an asymptotic method to model a functional form of the relation between the shock normal, its time rate and shock curvature κ. In addition, the shock polar analysis provides a relation between shock angle θ and the detonation velocity Dn that is dependent on the equations of state (EOS) of two adjacent materials. For the axial detonation of an explosive material confined by a cylinder, the shock angle is defined as the angle between the shock normal and the normal to the cylinder liner, located at the intersection of the shock front and cylinder inner wall. Therefore, given an ideal explosive such as PBX-9501 with two functional models determined, a unique, smooth detonation front shape ψ can be determined that approximates the steady state detonation shock front of the explosive. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 [D. K. Kennedy, 2000] are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of many possibilities the asymmetric character may be attributed to the heterogeneity of the explosives; here, material heterogeneity refers to compositions with multiple components and having a grain morphology that can be modeled statistically. Therefore in extending the formulation of DSD to modern novel explosives, we pose two questions: (1) is there any simple hydrodynamic model that can simulate such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart [1] studied constitutive models for derivation of the Dn(κ) relation for porous homogeneous explosives and carried out simulations in a spherical coordinate frame. In this paper we extend their model to account for heterogeneity and present shock evolutions in heterogeneous explosives using 2-D hydrodynamic simulations with some statistical examination. As an initial work, we assume that the heterogeneity comes from the local density variation or porosity only.

  18. The shock waves in decaying supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Mac Low, M.-M.; Zuev, J. M.

    2000-04-01

    We here analyse numerical simulations of supersonic, hypersonic and magnetohydrodynamic turbulence that is free to decay. Our goals are to understand the dynamics of the decay and the characteristic properties of the shock waves produced. This will be useful for interpretation of observations of both motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail of fast shocks and an exponential decay in time, i.e. the number of shocks is proportional to t exp (-ktv) for shock velocity jump v and mean initial wavenumber k. In contrast to the velocity gradients, the velocity Probability Distribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Mach number shocks. The power loss peaks near a low-speed turn-over in an exponential distribution. An analytical extension of the mapping closure technique is able to predict the basic decay features. Our analytic description of the distribution of shock strengths should prove useful for direct modeling of observable emission. We note that an exponential distribution of shocks such as we find will, in general, generate very low excitation shock signatures.

  19. Experiential, Autonomic, and Neural Responses During Threat Anticipation Vary as a Function of Threat Intensity and Neuroticism

    PubMed Central

    Drabant, Emily M; Kuo, Janice R; Ramel, Wiveka; Blechert, Jens; Edge, Michael D; Cooper, Jeff R; Goldin, Philippe R; Hariri, Ahmad R; Gross, James J

    2011-01-01

    Anticipatory emotional responses play a crucial role in preparing individuals for impending challenges. They do this by triggering a coordinated set of changes in behavioral, autonomic, and neural response systems. In the present study, we examined the biobehavioral impact of varying levels of anticipatory anxiety, using a shock anticipation task in which unpredictable electric shocks were threatened and delivered to the wrist at variable intervals and intensities (safe, medium, strong). This permitted investigation of a dynamic range of anticipatory anxiety responses. In two studies, 95 and 51 healthy female participants, respectively, underwent this shock anticipation task while providing continuous ratings of anxiety experience and electrodermal responding (Study 1) and during fMRI BOLD neuroimaging (Study 2). Results indicated a step-wise pattern of responding in anxiety experience and electrodermal responses. Several brain regions showed robust responses to shock anticipation relative to safe trials, including the hypothalamus, periaqueductal gray, caudate, precentral gyrus, thalamus, insula, ventrolateral PFC, dorsomedial PFC, and ACC. A subset of these regions demonstrated a linear pattern of increased responding from safe to medium to strong trials, including the bilateral insula, ACC, and inferior frontal gyrus. These responses were modulated by individual differences in neuroticism, such that those high in neuroticism showed exaggerated anxiety experience across the entire task, and reduced brain activation from medium to strong trials in a subset of brain regions. These findings suggest that individual differences in neuroticism may influence sensitivity to anticipatory threat and provide new insights into the mechanism through which neuroticism may confer risk for developing anxiety disorders via dysregulated anticipatory responses. PMID:21093595

  20. HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene

    PubMed Central

    He, Haiying; Chen, Changmin; Xie, Yue; Asea, Alexzander; Calderwood, Stuart K.

    2000-01-01

    Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation. PMID:11189444

  1. Genetic variation in heat shock protein 70 is associated with septic shock: narrowing the association to a specific haplotype.

    PubMed

    Kee, C; Cheong, K Y; Pham, K; Waterer, G W; Temple, S E L

    2008-12-01

    Heat shock protein 70 (HSP70) plays a major role in immune responses. Polymorphisms within the gene have been associated with development of septic shock. This study refines the region of the HSP70 gene associated with development of septic shock and confirms its functionality. Subjects (n = 31) were grouped into one of three haplotypes based on their HSPA1B-179C>T and HSPA1B1267A>G genotypes. Mononuclear cells from these subjects were stimulated with heat-killed bacteria (10(7 )colony-forming units/mL Escherichia coli or Streptococcus pneumoniae) for 8 and 21 h. HSP70 and tumour necrosis factor (TNF) mRNA and protein levels were measured by reverse transcriptase-polymerase chain reaction and ELISA, respectively. The HSPA1B-179*C:1267*A haplotype was associated with significantly lower levels of HSPA1B mRNA and protein and higher production of TNF mRNA and protein compared to the other haplotypes. Induction of HSP70 was TNF independent. These results suggest that the HSPA1B-179C>T:1267A>G haplotype is functional and may explain the association of the HSP70 gene with development of septic shock.

  2. Response Functions to Critical Shocks in Social Sciences:

    NASA Astrophysics Data System (ADS)

    Roehner, B. M.; Sornette, D.; Andersen, J. V.

    We show that, provided one focuses on properly selected episodes, one can apply to the social sciences the same observational strategy that has proved successful in natural sciences such as astrophysics or geodynamics. For instance, in order to probe the cohesion of a society, one can, in different countries, study the reactions to some huge and sudden exogenous shocks, which we call Dirac shocks. This approach naturally leads to the notion of structural (as opposed or complementary to temporal) forecast. Although structural predictions are by far the most common way to test theories in the natural sciences, they have been much less used in the social sciences. The Dirac shock approach opens the way to testing structural predictions in the social sciences. The examples reported here suggest that critical events are able to reveal pre-existing "cracks" because they probe the social cohesion which is an indicator and predictor of future evolution of the system, and in some cases they foreshadow a bifurcation. We complement our empirical work with numerical simulations of the response function ("damage spreading") to Dirac shocks in the Sznajd model of consensus build-up. We quantify the slow relaxation of the difference between perturbed and unperturbed systems, the conditions under which the consensus is modified by the shock and the large variability from one realization to another.

  3. Effects of Stomach Inflation on Cardiopulmonary Function and Survival During Hemorrhagic Shock: A Randomized, Controlled, Porcine Study.

    PubMed

    Braun, Patrick; Putzer, Gabriel; Strapazzon, Giacomo; Wimmer, Angela; Schnell, Hermann; Arnold, Henrik; Neururer, Sabrina; Brugger, Hermann; Wenzel, Volker; Paal, Peter

    2016-07-01

    Ventilation of an unprotected airway may result in stomach inflation. The purpose of this study was to evaluate the effect of clinically realistic stomach inflation on cardiopulmonary function during hemorrhagic shock in a porcine model. Pigs were randomized to a sham control group (n = 9), hemorrhagic shock (35 mL kg over 15 min [n = 9]), and hemorrhagic shock combined with stomach inflation (35 mL kg over 15 min and 5 L stomach inflation [n = 10]). When compared with the control group, hemorrhagic shock (n = 9) increased heart rate (103 ± 11 vs. 146 ± 37 beats min; P = 0.002) and lactate (1.4 ± 0.5 vs. 4.0 ± 1.9 mmol L; P < 0.001), and decreased mean arterial blood pressure (81.3 ± 12.8 vs. 35.4 ± 8.1 mmHg; P < 0.001) and stroke-volume index (38.1 ± 6.4 vs. 13.6 ± 4.8 mL min m; P < 0.001). Hemorrhagic shock combined with stomach inflation (n = 10) versus hemorrhagic shock only (n = 9) increased intra-abdominal pressure (27.0 ± 9.3 vs. 1.1 ± 1.0 mmHg; P < 0.001), and decreased stroke-volume index (9.9 ± 6.0 vs. 20.8 ± 8.5 mL min m; P = 0.007), and dynamic respiratory system compliance (10.8 ± 4.5 vs. 38.1 ± 6.1 mL cmH2O; P < 0.001). Before versus after stomach evacuation during hemorrhagic shock, intra-abdominal pressure decreased (27.0 ± 9.3 vs. 9.8 ± 5.4 mmHg; P = 0.042). Survival in the sham control and hemorrhagic shock group was 9 of 9, respectively, and 3 of 10 after hemorrhagic shock and stomach inflation (P < 0.001). During hemorrhagic shock stomach inflation caused an abdominal compartment syndrome and thereby impaired cardiopulmonary function and aerobic metabolism, and increased mortality. Subsequent stomach evacuation partly reversed adverse stomach-inflation triggered effects.

  4. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation.

    PubMed

    Assimon, Victoria A; Southworth, Daniel R; Gestwicki, Jason E

    2015-12-08

    Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.

  5. [Physical factors in the treatment and rehabilitation of patients with chronic prostatitis complicated by impotence].

    PubMed

    Karpukhin, I V; Bogomol'nyĭ, V A

    1999-01-01

    103 patients with chronic prostatitis complicated by erectile impotence were given combined treatment including shock-wave massage, mud applications, local vacuum magnetotherapy. This combination was found to stimulate copulative function, urodynamics of the lower urinary tracts, to produce an antiinflammatory effect. These benefits allow to recommend the above physical factors for management of chronic prostatitis patients with copulative dysfunction.

  6. Ablation and radiation coupled viscous hypersonic shock layers, volume 1

    NASA Technical Reports Server (NTRS)

    Engel, C. D.

    1971-01-01

    The results for a stagnation-line analysis of the radiative heating of a phenolic-nylon ablator are presented. The analysis includes flow field coupling with the ablator surface, equilibrium chemistry, a step-function diffusion model and a coupled line and continuum radiation calculation. This report serves as the documentation, i e. users manual and operating instructions for the computer programs listed in the report.

  7. Extracorporeal shock wave therapy does not improve hypertensive nephropathy.

    PubMed

    Caron, Jonathan; Michel, Pierre-Antoine; Dussaule, Jean-Claude; Chatziantoniou, Christos; Ronco, Pierre; Boffa, Jean-Jacques

    2016-06-01

    Low-energy extracorporeal shock wave therapy (SWT) has been shown to improve myocardial dysfunction, hind limb ischemia, erectile function, and to facilitate cell therapy and healing process. These therapeutic effects were mainly due to promoting angiogenesis. Since chronic kidney diseases are characterized by renal fibrosis and capillaries rarefaction, they may benefit from a proangiogenic treatment. The objective of our study was to determine whether SWT could ameliorate renal repair and favor angiogenesis in L-NAME-induced hypertensive nephropathy in rats. SWT was started when proteinuria exceeded 1 g/mmol of creatinine and 1 week after L-NAME removal. SWT consisted of implying 0.09 mJ/mm(2) (400 shots), 3 times per week. After 4 weeks of SWT, blood pressure, renal function and urinary protein excretion did not differ between treated (LN + SWT) and untreated rats (LN). Histological lesions including glomerulosclerosis and arteriolosclerosis scores, tubular dilatation and interstitial fibrosis were similar in both groups. In addition, peritubular capillaries and eNOS, VEGF, VEGF-R, SDF-1 gene expressions did not increase in SWT-treated compared to untreated animals. No procedural complications or adverse effects were observed in control (C + SWT) and hypertensive rats (LN + SWT). These results suggest that extracorporeal kidney shock wave therapy does not induce angiogenesis and does not improve renal function and structure, at least in the model of hypertensive nephropathy although the treatment is well tolerated. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  8. Polarized bow shocks reveal features of the winds and environments of massive stars

    NASA Astrophysics Data System (ADS)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the implications of these model for the stellar winds and interstellar environments of these influential objects.

  9. Spherical shock waves in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.

    1991-11-15

    We present the metric appropriate to a spherical shock wave in the framework of general relativity. This is a Petrov type-{ital N} vacuum solution of the Einstein field equations where the metric is continuous across the shock and the Riemann tensor suffers a step-function discontinuity. Spherical gravitational waves are described by type-{ital N} Robinson-Trautman metrics. However, for shock waves the Robinson-Trautman solutions are unacceptable because the metric becomes discontinuous in the Robinson-Trautman coordinate system. Other coordinate systems that have so far been introduced for describing Robinson-Trautman solutions also suffer from the same defect. We shall present the {ital C}{sup 0}-formmore » of the metric appropriate to spherical shock waves using Penrose's approach of identification with warp. Further extensions of Penrose's method yield accelerating, as well as coupled electromagnetic-gravitational shock-wave solutions.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Jeffrey J.; Park, Samuel; Kohl, Ian Thomas

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insightsmore » regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.« less

  11. Evaluation of the Effect of Different Doses of Low Energy Shock Wave Therapy on the Erectile Function of Streptozotocin (STZ)-Induced Diabetic Rats

    PubMed Central

    Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng

    2013-01-01

    To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment. PMID:23698784

  12. Evaluation of the effect of different doses of low energy shock wave therapy on the erectile function of streptozotocin (STZ)-induced diabetic rats.

    PubMed

    Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng

    2013-05-21

    To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment.

  13. An analysis of shock coalescence including three-dimensional effects with application to sonic boom extrapolation. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1984-01-01

    A method for analyzing shock coalescence which includes three dimensional effects was developed. The method is based on an extension of the axisymmetric solution, with asymmetric effects introduced through an additional set of governing equations, derived by taking the second circumferential derivative of the standard shock equations in the plane of symmetry. The coalescence method is consistent with and has been combined with a nonlinear sonic boom extrapolation program which is based on the method of characteristics. The extrapolation program, is able to extrapolate pressure signatures which include embedded shocks from an initial data line in the plane of symmetry at approximately one body length from the axis of the aircraft to the ground. The axisymmetric shock coalescence solution, the asymmetric shock coalescence solution, the method of incorporating these solutions into the extrapolation program, and the methods used to determine spatial derivatives needed in the coalescence solution are described. Results of the method are shown for a body of revolution at a small, positive angle of attack.

  14. Shock tunnel studies of scramjet phenomena, supplement 5

    NASA Technical Reports Server (NTRS)

    Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.

    1990-01-01

    A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.

  15. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  16. Culture Shock: Information Packet for Developing Stress/Culture Shock Programs for Students in Overseas Schools.

    ERIC Educational Resources Information Center

    Robinson, John

    This booklet, written for elementary teachers and counselors, provides information for a three-session stress and culture shock program for fifth and sixth grade students in overseas schools. Session 1 presents an introduction to the program, including discussion questions. Session 2 focuses on stress and culture shock through examples and…

  17. Monte Carlo simulation of steady state shock structure including cosmic ray mediation and particle escape

    NASA Technical Reports Server (NTRS)

    Ellison, D. C.; Jones, F. C.; Eichler, D.

    1983-01-01

    Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.

  18. Monte Carlo simulation of steady state shock structure including cosmic ray mediation and particle escape

    NASA Astrophysics Data System (ADS)

    Ellison, D. C.; Jones, F. C.; Eichler, D.

    1983-08-01

    Both hydrodynamic calculations (Drury and Volk, 1981, and Axford et al., 1982) and kinetic simulations imply the existence of thermal subshocks in high-Mach-number cosmic-ray-mediated shocks. The injection efficiency of particles from the thermal background into the diffusive shock-acceleration process is determined in part by the sharpness and compression ratio of these subshocks. Results are reported for a Monte Carlo simulation that includes both the back reaction of accelerated particles on the inflowing plasma, producing a smoothing of the shock transition, and the free escape of particles allowing arbitrarily large overall compression ratios in high-Mach-number steady-state shocks. Energy spectra and estimates of the proportion of thermal ions accelerated to high energy are obtained.

  19. Heat Shock Proteins Promote Cancer: It's a Protection Racket.

    PubMed

    Calderwood, Stuart K; Gong, Jianlin

    2016-04-01

    Heat shock proteins (HSP) are expressed at high levels in cancer and form a fostering environment that is essential for tumor development. Here, we review the recent data in this area, concentrating mainly on Hsp27, Hsp70, and Hsp90. The overriding role of HSPs in cancer is to stabilize the active functions of overexpressed and mutated cancer genes. Thus, elevated HSPs are required for many of the traits that underlie the morbidity of cancer, including increased growth, survival, and formation of secondary cancers. In addition, HSPs participate in the evolution of cancer treatment resistance. HSPs are also released from cancer cells and influence malignant properties by receptor-mediated signaling. Current data strongly support efforts to target HSPs in cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Multi-parametric studies of electrically-driven flyer plates

    NASA Astrophysics Data System (ADS)

    Neal, William; Bowden, Michael; Explosive Trains; Devices Collaboration

    2015-06-01

    Exploding foil initiator (EFI) detonators function by the acceleration of a flyer plate, by the electrical explosion of a metallic bridge, into an explosive pellet. The length, and therefore time, scales of this shock initation process is dominated by the magnitude and duration of the imparted shock pulse. To predict the dynamics of this initiation, it is critical to further understand the velocity, shape and thickness of this flyer plate. This study uses multi-parametric diagnostics to investigate the geometry and velocity of the flyer plate upon impact including the imparted electrical energy: photon Doppler velocimetry (PDV), dual axis imaging, time-resolved impact imaging, voltage and current. The investigation challenges the validity of traditional assumptions about the state of the flyer plate at impact and discusses the improved understanding of the process.

  1. Switch-off slow shock/rotational discontinuity structures in collisionless magnetic reconnection: What to look for in satellite observations

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Cazzola, E.; Mistry, R.; Eastwood, J. P.; Goldman, M. V.; Newman, D. L.; Markidis, S.; Lapenta, G.

    2017-04-01

    In Innocenti et al. (2015) we have observed and characterized for the first time Petschek-like switch-off slow shock/rotational discontinuity (SO-SS/RD) compound structures in a 2-D fully kinetic simulation of collisionless magnetic reconnection. Observing these structures in the solar wind or in the magnetotail would corroborate the possibility that Petschek exhausts develop in collisionless media as a result of single X point collisionless reconnection. Here we highlight their signatures in simulations with the aim of easing their identification in observations. The most notable signatures include a four-peaked ion current profile in the out-of-plane direction, associated ion distribution functions, increased electron and ion anisotropy downstream the SS, and increased electron agyrotropy downstream the RDs.

  2. Recent developments in shock tube research; Proceedings of the Ninth International Symposium, Stanford University, Stanford, Calif., July 16-19, 1973

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Griffith, W.

    1973-01-01

    Recent advances in shock tube research are described in papers dealing with the design and performance features of new devices as well as applications in aerodynamic, chemical, and physics experiments. Topics considered include a cryogenic shock tube for studying liquid helium fluid mechanics, studies of shock focusing and nonlinear resonance in shock tubes, applications in gas laser studies, very-low and very-high temperature chemical kinetic measurements, shock tube studies of ionization and recombination phenomena, applications in bioacoustic research, shock-tube simulation studies of sonic booms, and plasma research. Individual items are announced in this issue.

  3. Roles of heat shock factors in gametogenesis and development.

    PubMed

    Abane, Ryma; Mezger, Valérie

    2010-10-01

    Heat shock factors form a family of transcription factors (four in mammals), which were named according to the first discovery of their activation by heat shock. As a result of the universality and robustness of their response to heat shock, the stress-dependent activation of heat shock factor became a ‘paradigm’: by binding to conserved DNA sequences (heat shock elements), heat shock factors trigger the expression of genes encoding heat shock proteins that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stress and in several pathological conditions. Besides their roles in the stress response, heat shock factors perform crucial roles during gametogenesis and development in physiological conditions. First, during these process, in stress conditions, they are either proactive for survival or, conversely, for apoptotic process, allowing elimination or, inversely, protection of certain cell populations in a way that prevents the formation of damaged gametes and secure future reproductive success. Second, heat shock factors display subtle interplay in a tissue- and stage-specific manner, in regulating very specific sets of heat shock genes, but also many other genes encoding growth factors or involved in cytoskeletal dynamics. Third, they act not only by their classical transcription factor activities, but are necessary for the establishment of chromatin structure and, likely, genome stability. Finally, in contrast to the heat shock gene paradigm, heat shock elements bound by heat shock factors in developmental process turn out to be extremely dispersed in the genome, which is susceptible to lead to the future definition of ‘developmental heat shock element’.

  4. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  5. Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.

    1986-04-01

    In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.

  6. Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1987-01-01

    Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.

  7. Can shock waves on helicopter rotors generate noise? - A study of the quadrupole source

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Tadghighi, H.

    1990-01-01

    An analysis has previously established that local shock surfaces attached to helicopter rotor blades moving at high subsonic speeds are potent noise generators; in pursuit of this insight, a novel formulation is presented for the prediction of the noise of a deformable shock, whose area changes as a function of the azimuthal position of the blade. The derivation of this formulation has its basis in a mapping of the moving shock to a time-independent region. In virtue of this mapping, the implementation of the main result on a computer becomes straightforward enough for incorporation into the available rotor-noise prediction code. A problem illustrating the importance of rotor shocks in the generation of high-intensity noise is presented.

  8. Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2003-01-01

    We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.

  9. Corticosteroid therapy in refractory shock following cardiac arrest: a randomized, double-blind, placebo-controlled, trial.

    PubMed

    Donnino, Michael W; Andersen, Lars W; Berg, Katherine M; Chase, Maureen; Sherwin, Robert; Smithline, Howard; Carney, Erin; Ngo, Long; Patel, Parth V; Liu, Xiaowen; Cutlip, Donald; Zimetbaum, Peter; Cocchi, Michael N

    2016-04-03

    The purpose of this study was to determine whether the provision of corticosteroids improves time to shock reversal and outcomes in patients with post-cardiac arrest shock. We conducted a randomized, double-blind trial of post-cardiac arrest patients in shock, defined as vasopressor support for a minimum of 1 hour. Patients were randomized to intravenous hydrocortisone 100 mg or placebo every 8 hours for 7 days or until shock reversal. The primary endpoint was time to shock reversal. Fifty patients were included with 25 in each group. There was no difference in time to shock reversal between groups (hazard ratio: 0.83 [95% CI: 0.40-1.75], p = 0.63). We found no difference in secondary outcomes including shock reversal (52% vs. 60%, p = 0.57), good neurological outcome (24% vs. 32%, p = 0.53) or survival to discharge (28% vs. 36%, p = 0.54) between the hydrocortisone and placebo groups. Of the patients with a baseline cortisol < 15 ug/dL, 100% (6/6) in the hydrocortisone group achieved shock reversal compared to 33% (1/3) in the placebo group (p = 0.08). All patients in the placebo group died (100%; 3/3) whereas 50% (3/6) died in the hydrocortisone group (p = 0.43). In a population of cardiac arrest patients with vasopressor-dependent shock, treatment with hydrocortisone did not improve time to shock reversal, rate of shock reversal, or clinical outcomes when compared to placebo. Clinicaltrials.gov: NCT00676585, registration date: May 9, 2008.

  10. Effectiveness of anisodamine for the treatment of critically ill patients with septic shock (ACIdoSIS study): study protocol for randomized controlled trial

    PubMed Central

    Zhou, Jiancang; Shang, You; Wang, Xin’an; Yin, Rui; Zhu, Zhenhua; Chen, Wensen; Tian, Xin; Yu, Yuetian; Zuo, Xiangrong; Chen, Kun; Ji, Xuqing; Ni, Hongying

    2015-01-01

    Background Septic shock is an important contributor of mortality in the intensive care unit (ICU). Although strenuous effort has been made to improve its outcome, the mortality rate is only marginally decreased. The present study aimed to investigate the effectiveness of anisodamine in the treatment of septic shock, in the hope that the drug will provide alternatives to the treatment of septic shock. Methods The study is a multi-center randomized controlled clinical trial. Study population will include critically ill patients with septic shock requiring vasopressor use. Blocked randomization was performed where anisodamine and control treatments were allocated at random in a ratio of 1:1 in blocks of sizes 2, 4, 6, 8, and 10 to 354 subjects. Interim analysis will be performed. The primary study end point is the hospital mortality, and other secondary study endpoints include ICU mortality, length of stay in ICU and hospital, organ failure free days. Adverse events including new onset psychosis, urinary retention, significant hypotension and tachycardia will be reported. Discussion The study will provide new insight into the treatment of septic shock and can help to reduce mortality rate of septic shock. Trial registration NCT02442440 (https://register.clinicaltrials.gov/). PMID:26605292

  11. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  12. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  13. Computation of nonstationary strong shock diffraction by curved surfaces

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.; Lombard, C. K.; Bershader, D.

    1986-01-01

    A two-dimensional, high resolution shock-capturing algorithm was used on a supercomputer to solve Eulerian gasdynamic equations in order to simulate nonstationary strong shock diffraction by a circular arc model in a shock tube. The hypersonic Mach shock wave was assumed to arrive at a high angle of incidence, and attention was given to the effect of varying values of the ratio of specific heats on the shock diffraction process. Details of the conservation equations of the numerical algorithm, written in curvilinear coordinates, are provided, and model output is illustrated with the results generated for a Mach shock encountering a 15 deg circular arc. The sample graphics include isopycnics, a shock surface density profile, and pressure and Mach number contours.

  14. Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure

    NASA Technical Reports Server (NTRS)

    Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2003-01-01

    Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid velocity profile due to the contribution of energetic particles to the momentum and energy fluxes.

  15. Shock Structure: Application to the heliospheric termination shock and an interstellar shock

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.

    2017-12-01

    The structure of parallel and perpendicular shocks is often mediated by energetic particles. Here we describe shock structure when mediated by energetic particle heat flux and viscosity. We present a general theoretical model of shock mediation, which is then applied to Voyager 2 observations of the heliospheric termination shock (HTS) and Voyage 1 observations of a shock in very local interstellar medium (VLISM). Voyager 2 observations showed that the downstream HTS flow remained supersonic with respect to the thermal gas [Richardson et al., 2008]. Thus the thermal gas remains cold through the HTS and does not provide the dissipation to account for the deceleration of the supersonic solar wind. We show that PUIs are the primary dissipation mechanism and gain most of the solar wind kinetic energy in crossing the HTS. The interstellar shock observed by Voyager 1 [Burlaga et al., 2013] was extremely broad and so far there no theoretical explanation has been provided that describes the VLISM shock structure. Using the Chandrasekhar function, we show that the VLISM is collisional with respect to the thermal plasma and that electron and proton collisional mean free paths are very small. Thus, thermal collisionality should determine the structure of VLISM shocks. PUIs outside the heliosphere are generated by secondary charge exchange and contribute a very small pressure. Since PUIs and the dissipation associated with them cannot mediate the shock observed in the VLISM, we suggest that the thickness of the shock observed in the VLISM is due to collisional thermal gas dissipation.

  16. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 3

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    The computer programs developed to calculate the shock wave precursor and the method of using them are described. This method calculated the precursor flow field in a nitrogen gas including the effects of emission and absorption of radiation on the energy and composition of gas. The radiative transfer is calculated including the effects of absorption and emission through the line as well as the continuum process in the shock layer and through the continuum processes only in the precursor. The effects of local thermodynamic nonequilibrium in the shock layer and precursor regions are also included in the radiative transfer calculations. Three computer programs utilized by this computational scheme to calculate the precursor flow field solution for a given shock layer flow field are discussed.

  17. Non-lethal Clostridium sordellii bacteraemia in an immunocompromised patient with pleomorphic sarcoma.

    PubMed

    Bonnecaze, Alex K; Stephens, Sarah Ellen Elza; Miller, Peter John

    2016-08-03

    Clostridium sordellii is a spore-forming anaerobic Gram-positive rod that has rarely been reported to cause disease in humans. Resultant mortality from infection is estimated at nearly 70% and is most often correlated with gynaecological procedures, intravenous drug abuse or trauma. C. sordellii infection often presents similarly to toxic shock syndrome (TSS); notable features of infection include refractory hypotension, haemoconcentration and marked leucocytosis. Although clinically similar to TSS, a notable difference is C. sordellii infections rarely involve fever. The organism's major toxins include haemorrhagic (TcsH) and lethal factor (TcsL), which function to disrupt cytoskeletal integrity. Current literature suggests treating C. sordelli infection with a broad-spectrum penicillin, metronidazole and clindamycin. We present a case of C. sordellii bacteraemia and septic shock in an immunocompromised patient who was recently diagnosed with pleomorphic gluteal sarcoma. Despite presenting in critical condition, the patient improved after aggressive hemodynamic resuscitation, source control and intravenous antibiotic therapy. 2016 BMJ Publishing Group Ltd.

  18. Depressed left ventricular performance. Response to volume infusion in patients with sepsis and septic shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ognibene, F.P.; Parker, M.M.; Natanson, C.

    Volume infusion, to increase preload and to enhance ventricular performance, is accepted as initial management of septic shock. Recent evidence has demonstrated depressed myocardial function in human septic shock. We analyzed left ventricular performance during volume infusion using serial data from simultaneously obtained pulmonary artery catheter hemodynamic measurements and radionuclide cineangiography. Critically ill control subjects (n = 14), patients with sepsis but without shock (n = 21), and patients with septic shock (n = 21) had prevolume infusion hemodynamic measurements determined and received statistically similar volumes of fluid resulting in similar increases in pulmonary capillary wedge pressure. There was amore » strong trend (p = 0.004) toward less of a change in left ventricular stroke work index (LVSWI) after volume infusion in patients with sepsis and septic shock compared with control subjects. The LVSWI response after volume infusion was significantly less in patients with septic shock when compared with critically ill control subjects (p less than 0.05). These data demonstrate significantly altered ventricular performance, as measured by LVSWI, in response to volume infusion in patients with septic shock.« less

  19. Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1977-01-01

    The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.

  20. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less

  1. Dynamic compression and volatile release of carbonates

    NASA Technical Reports Server (NTRS)

    Tyburczy, J. A.; Ahrens, T. J.

    1984-01-01

    Particle velocity profiles upon shock compression and isentropic releases were measured for polycrystalline calcite. The Solenhofen limestone release paths lie, close to the Hugoniot. Calcite 3 to 2 transition, upon release, was observed, but rarefaction shocks were not detected. The equation of state is used to predict the fraction of material devolatilized upon isentropic release as a function of shock pressure. The effect of ambient partial pressure of CO2 on the calculations is demonstrated and considered in models of atmospheric evolution by impact induced mineral devolatilization. The radiative characteristics of shocked calcite indicate that localization of thermal energy occurs under shock compression. Shock entropy calculations result in a minimum estimate of 90% devolatilization upon complete release from 10 GPa. Isentropic release paths from calculated continuum Hugoniot temperatures cross into the CaO (solid) + CO2 (vapor) field at improbably low pressures. It is found that release paths from measured shock temperatures cross into the melt plus vapor field at pressures greater than .5 GPa, which suggests that devolatilization is initiated at the shear banding sites.

  2. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scalesmore » that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.« less

  3. Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves

    NASA Astrophysics Data System (ADS)

    Qiu, Shi; Liu, Kuang; Eliasson, Veronica

    2016-10-01

    Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.

  4. The earth's foreshock, bow shock, and magnetosheath

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.

    1991-01-01

    Studies directly pertaining to the earth's foreshock, bow shock, and magnetosheath are reviewed, and some comparisons are made with data on other planets. Topics considered in detail include the electron foreshock, the ion foreshock, the quasi-parallel shock, the quasi-perpendicular shock, and the magnetosheath. Information discussed spans a broad range of disciplines, from large-scale macroscopic plasma phenomena to small-scale microphysical interactions.

  5. On conductivity changes in shocked potassium chloride

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Townsend, D.; Braithwaite, M.

    2005-06-01

    A previous work has reported that shock loading of ionic crystals produces an induced polarization and changes in electrical conductivity. However, previous measurements recorded an integrated electrical signal comprising the induced electrical field and that due to current flow. For this reason a differential system was designed to separate these effects that was adapted from that used in the investigation of the conductivity of hydrogen under shock. The measurement removes voltages produced in the shock-induced electrical field, allowing determination of those resulting from resistance changes. Although the mechanical response of potassium chloride to shock has been studied extensively, the electrical response is less studied. Here, experiments are reported in which it is shocked to various stresses in order to observe conductivity changes. The range of stresses induced includes several mechanical thresholds, including the elastic-plastic transition, the B1:B2 phase transformation, and the overdriving of the shock faster than the elastic wave. The behavior observed when single crystal and targets pressed from granular material (to close to full density) are shocked around each of these thresholds is presented. The effects of loading to a particular stress in a single step or in multiple steps are discussed.

  6. Density and delay of punishment of free-operant avoidance1

    PubMed Central

    Baron, Alan; Kaufman, Arnold; Fazzini, Dan

    1969-01-01

    In two experiments, the free-operant shock-avoidance behavior of rats was punished by electric shock. Two aspects of the schedule of response-produced shock were varied: the frequency of punishment over time (punishment density) and the temporal interval between the punished response and the punishment (punishment delay). The general finding was that response-produced shock suppressed avoidance responding under most of the density-delay combinations studied, and suppression increased as a function of increases in density and decreases in delay. Rate increases of small magnitude also were observed, usually as an initial reaction to the lesser densities and longer delays. Response suppression, while decreasing the number of punishment shocks received, also increased the number of avoidance shocks, so that the total number of shocks received usually was greater than the minimal number possible. The results were discussed from the standpoint of similarities between the effects of punishing positively and negatively reinforced behavior. The finding that subjects did not minimize the total number of shocks suggested that when avoidance behavior is punished, responding is controlled more by the local consequences of responding than by overall shock frequencies during the course of the session. PMID:16811408

  7. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Viñas, A. F.-; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R. E.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Yu. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We 'image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  8. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    NASA Astrophysics Data System (ADS)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  9. Hemorrhagic shock-induced cerebral bioenergetic imbalance is corrected by pharmacologic treatment with EF24 in a rat model.

    PubMed

    Rao, Geeta; Xie, Jun; Hedrick, Andria; Awasthi, Vibhudutta

    2015-12-01

    Maintenance of cerebral viability and function is an important goal of critical care in victims of injury due to ischemia and hypovolemia. As part of the multiple organ dysfunction syndrome, the brain function after trauma is influenced by the systemic inflammatory response. We investigated the effect of EF24, an anti-inflammatory bis-chalcone, on cerebral bioenergetics in a rat model of 45% hemorrhagic shock. The rats were treated with EF24 (0.4 mg/kg) or EF24 with an artificial oxygen carrier liposome-encapsulated hemoglobin (LEH). The volume of LEH administered was equal to the shed blood. The brain was collected after 6 h of shock for biochemical assays. EF24 treatment showed significant recovery of ATP, phosphocreatine, and NAD/NADH ratio. It also increased citrate synthase activity and cytochrome c oxidase subunit IV expression which were reduced in shock brain. Furthermore, it reduced the shock-induced accumulation of pyruvate and pyruvate dehydrogenase kinase-1 expression, suggesting that EF24 treatment improves cerebral energetics by restoring perturbed pyruvate metabolism in the mitochondria. These effects of EF24 were associated with reduced poly(ADP-ribose) polymerase cleavage and a significant improvement in the levels of nerve growth factor and brain-derived neurotrophic factor in shock brain. Co-administration of LEH with EF24 was only marginally more effective as compared to the treatment with EF24 alone. These results show that EF24 treatment sets up a pro-survival phenotype in shock by resurrecting cerebral bioenergetics. Since EF24 was effective in the absence of accompanying fluid resuscitation, it has potential utility as a pre-hospital pharmacotherapy in shock due to accidental blood loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Selective melanocortin MC4 receptor agonists reverse haemorrhagic shock and prevent multiple organ damage

    PubMed Central

    Giuliani, D; Mioni, C; Bazzani, C; Zaffe, D; Botticelli, A R; Capolongo, S; Sabba, A; Galantucci, M; Iannone, A; Grieco, P; Novellino, E; Colombo, G; Tomasi, A; Catania, A; Guarini, S

    2007-01-01

    Background and purpose: In circulatory shock, melanocortins have life-saving effects likely to be mediated by MC4 receptors. To gain direct insight into the role of melanocortin MC4 receptors in haemorrhagic shock, we investigated the effects of two novel selective MC4 receptor agonists. Experimental approach: Severe haemorrhagic shock was produced in rats under general anaesthesia. Rats were then treated with either the non-selective agonist [Nle4, D-Phe7]α-melanocyte-stimulating hormone (NDP-α-MSH) or with the selective MC4 agonists RO27-3225 and PG-931. Cardiovascular and respiratory functions were continuously monitored for 2 h; survival rate was recorded up to 24 h. Free radicals in blood were measured using electron spin resonance spectrometry; tissue damage was evaluated histologically 25 min or 24 h after treatment. Key results: All shocked rats treated with saline died within 30-35 min. Treatment with NDP-α-MSH, RO27-3225 and PG-931 produced a dose-dependent (13-108 nmol kg-1 i.v.) restoration of cardiovascular and respiratory functions, and improved survival. The three melanocortin agonists also markedly reduced circulating free radicals relative to saline-treated shocked rats. All these effects were prevented by i.p. pretreatment with the selective MC4 receptor antagonist HS024. Moreover, treatment with RO27-3225 prevented morphological and immunocytochemical changes in heart, lung, liver, and kidney, at both early (25 min) and late (24 h) intervals. Conclusions and Implications: Stimulation of MC4 receptors reversed haemorrhagic shock, reduced multiple organ damage and improved survival. Our findings suggest that selective MC4 receptor agonists could have a protective role against multiple organ failure following circulatory shock. PMID:17245369

  11. Hemorrhagic shock-induced cerebral bioenergetic imbalance is corrected by pharmacologic treatment with EF24 in a rat model

    PubMed Central

    Rao, Geeta; Xie, Jun; Hedrick, Andria; Awasthi, Vibhudutta

    2015-01-01

    Maintenance of cerebral viability and function is an important goal of critical care in victims of injury due to ischemia and hypovolemia. As part of the multiple organ dysfunction syndrome, the brain function after trauma is influenced by systemic inflammatory response. We investigated the effect of EF24, an anti-inflammatory bis-chalcone, on cerebral bioenergetics in a rat model of 45% hemorrhagic shock. The rats were treated with EF24 (0.4 mg/kg) or EF24 with an artificial oxygen carrier liposome-encapsulated hemoglobin (LEH). The volume of LEH administered was equal to the shed blood. The brain was collected after 6 h of shock for biochemical assays. EF24 treatment showed significant recovery of ATP, phosphocreatine, and NAD/NADH ratio. It also increased citrate synthase activity and cytochrome c oxidase subunit IV expression which were reduced in shock brain. Furthermore, it reduced the shock-induced accumulation of pyruvate and pyruvate dehydrogenase kinase-1 expression, suggesting that EF24 treatment improves cerebral energetics by restoring perturbed pyruvate metabolism in the mitochondria. These effects of EF24 were associated with reduced poly(ADP-ribose) polymerase cleavage and a significant improvement in the levels of nerve growth factor and brain-derived neurotrophic factor in shock brain. Co-administration of LEH with EF24 was only marginally more effective as compared to the treatment with EF24 alone. These results show that EF24 treatment sets up a pro-survival phenotype in shock by resurrecting cerebral bioenergetics. Since EF24 was effective in the absence of accompanying fluid resuscitation, it has potential utility as a pre-hospital pharmacotherapy in shock due to accidental blood loss. PMID:26232641

  12. How to build a molecular shock absorber.

    PubMed

    McGough, A

    1999-12-02

    Newly determined structures of the alpha-helical repeats that make up the key 'rod' domains of spectrin and alpha-actinin - which serve as spacers between their actin-binding domains - have provided important insights into how these proteins function as molecular shock absorbers in cells.

  13. Comparison of tissue injury from focused ultrasonic propulsion of kidney stones versus extracorporeal shock wave lithotripsy.

    PubMed

    Connors, Bret A; Evan, Andrew P; Blomgren, Philip M; Hsi, Ryan S; Harper, Jonathan D; Sorensen, Mathew D; Wang, Yak-Nam; Simon, Julianna C; Paun, Marla; Starr, Frank; Cunitz, Bryan W; Bailey, Michael R; Lingeman, James E

    2014-01-01

    Focused ultrasonic propulsion is a new noninvasive technique designed to move kidney stones and stone fragments out of the urinary collecting system. However, to our knowledge the extent of tissue injury associated with this technique is not known. We quantitated the amount of tissue injury produced by focused ultrasonic propulsion under simulated clinical treatment conditions and under conditions of higher power or continuous duty cycles. We compared those results to extracorporeal shock wave lithotripsy injury. A human calcium oxalate monohydrate stone and/or nickel beads were implanted by ureteroscopy in 3 kidneys of live pigs weighing 45 to 55 kg and repositioned using focused ultrasonic propulsion. Additional pig kidneys were exposed to extracorporeal shock wave lithotripsy level pulse intensity or continuous ultrasound exposure 10 minutes in duration using an ultrasound probe transcutaneously or on the kidney. These kidneys were compared to 6 treated with an unmodified Dornier HM3 lithotripter (Dornier Medical Systems, Kennesaw, Georgia) using 2,400 shocks at 120 shock waves per minute and 24 kV. Histological analysis was performed to assess the volume of hemorrhagic tissue injury created by each technique according to the percent of functional renal volume. Extracorporeal shock wave lithotripsy produced a mean ± SEM lesion of 1.56% ± 0.45% of functional renal volume. Ultrasonic propulsion produced no detectable lesion with simulated clinical treatment. A lesion of 0.46% ± 0.37% or 1.15% ± 0.49% of functional renal volume was produced when excessive treatment parameters were used with the ultrasound probe placed on the kidney. Focused ultrasonic propulsion produced no detectable morphological injury to the renal parenchyma when using clinical treatment parameters but produced injury comparable in size to that of extracorporeal shock wave lithotripsy when using excessive treatment parameters. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Expansion shock waves in regularized shallow-water theory

    NASA Astrophysics Data System (ADS)

    El, Gennady A.; Hoefer, Mark A.; Shearer, Michael

    2016-05-01

    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin-Bona-Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock.

  15. Free boundary problems in shock reflection/diffraction and related transonic flow problems

    PubMed Central

    Chen, Gui-Qiang; Feldman, Mikhail

    2015-01-01

    Shock waves are steep wavefronts that are fundamental in nature, especially in high-speed fluid flows. When a shock hits an obstacle, or a flying body meets a shock, shock reflection/diffraction phenomena occur. In this paper, we show how several long-standing shock reflection/diffraction problems can be formulated as free boundary problems, discuss some recent progress in developing mathematical ideas, approaches and techniques for solving these problems, and present some further open problems in this direction. In particular, these shock problems include von Neumann's problem for shock reflection–diffraction by two-dimensional wedges with concave corner, Lighthill's problem for shock diffraction by two-dimensional wedges with convex corner, and Prandtl-Meyer's problem for supersonic flow impinging onto solid wedges, which are also fundamental in the mathematical theory of multidimensional conservation laws. PMID:26261363

  16. An Equation of State for Polymethylpentene (TPX) including Multi-Shock Response

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq; Gustavsen, Richard; Sanchez, Nathaniel; Bartram, Brian

    2011-06-01

    The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total-variation-diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Gruneisen EOS based off a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.

  17. An equation of state for polymethylpentene (TPX) including multi-shock response

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.; Gustavsen, Rick; Sanchez, Nathaniel; Bartram, Brian D.

    2012-03-01

    The equation of state (EOS) of polymethylpentene (TPX) is examined through both single shock Hugoniot data as well as more recent multi-shock compression and release experiments. Results from the recent multi-shock experiments on LANL's two-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme utilizing total variation diminishing interpolation and an approximate Riemann solver will be presented as well as the methodology of calibration. It is shown that a simple Mie-Grüneisen EOS based on a Keane fitting form for the isentrope can replicate both the single shock and multi-shock experiments.

  18. Hepatic Shock Differential Diagnosis and Risk Factors: A Review Article.

    PubMed

    Soleimanpour, Hassan; Safari, Saeid; Rahmani, Farzad; Nejabatian, Arezu; Alavian, Seyed Moayed

    2015-10-01

    Liver as an important organ has a vital role in physiological processes in the body. Different causes can disrupt normal function of liver. Factors such as hypo-perfusion, hypoxemia, infections and some others can cause hepatic injury and hepatic shock. Published research resources from 2002 to May 2015 in some databases (PubMed, Scopus, Index Copernicus, DOAJ, EBSCO-CINAHL, Science direct, Cochrane library and Google scholar and Iranian search database like SID and Iranmedex) were investigated for the present study. Different causes can lead to hepatic shock. Most of these causes can be prevented by early resuscitation and treatment of underlying factors. Hepatic shock is detected in ill patients, especially those with hemodynamic disorders. It can be prevented by early treatment of underlying disease. There is no definite treatment for hepatic shock and should be managed conservatively. Hepatic shock in patients can increase the mortality rate.

  19. Hepatic Shock Differential Diagnosis and Risk Factors: A Review Article

    PubMed Central

    Soleimanpour, Hassan; Safari, Saeid; Rahmani, Farzad; Nejabatian, Arezu; Alavian, Seyed Moayed

    2015-01-01

    Context: Liver as an important organ has a vital role in physiological processes in the body. Different causes can disrupt normal function of liver. Factors such as hypo-perfusion, hypoxemia, infections and some others can cause hepatic injury and hepatic shock. Evidence Acquisition: Published research resources from 2002 to May 2015 in some databases (PubMed, Scopus, Index Copernicus, DOAJ, EBSCO-CINAHL, Science direct, Cochrane library and Google scholar and Iranian search database like SID and Iranmedex) were investigated for the present study. Results: Different causes can lead to hepatic shock. Most of these causes can be prevented by early resuscitation and treatment of underlying factors. Conclusions: Hepatic shock is detected in ill patients, especially those with hemodynamic disorders. It can be prevented by early treatment of underlying disease. There is no definite treatment for hepatic shock and should be managed conservatively. Hepatic shock in patients can increase the mortality rate. PMID:26587034

  20. Density-transition scale at quasiperpendicular collisionless shocks.

    PubMed

    Bale, S D; Mozer, F S; Horbury, T S

    2003-12-31

    Measurements of a spacecraft floating potential, on the four Cluster spacecraft, are used as a proxy for electron plasma density to study, for the first time, the macroscopic density transition scale at 98 crossings of the quasiperpendicular terrestrial bow shock. A timing analysis gives shock speeds and normals; the shock speed is used to convert the temporal measurement to a spatial one. A hyperbolic tangent function is fitted to each density transition, which captures the main shock transition, but not overshoot or undershoot nor foot features. We find that, at a low Mach number M, the density transition is consistent with both ion inertial scales c/omega(pi) and convected gyroradii v(sh,n)/Omega(ci,2), while at M>/=4-5 only the convected gyroradius is the preferred scale for the shock density transition and takes the value L approximately 0.4v(sh,n)/Omega(ci,2).

  1. Global Effects of Transmitted Shock Wave Propagation Through the Earth's Inner Magnetosphere: First Results from 3-D Hybrid Kinetic Modeling

    NASA Technical Reports Server (NTRS)

    Lipatov, A. S.; Sibeck, D. G.

    2016-01-01

    We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.

  2. Antiarrhythmic Drugs for Nonshockable-Turned-Shockable Out-of-Hospital Cardiac Arrest: The ALPS Study (Amiodarone, Lidocaine, or Placebo).

    PubMed

    Kudenchuk, Peter J; Leroux, Brian G; Daya, Mohamud; Rea, Thomas; Vaillancourt, Christian; Morrison, Laurie J; Callaway, Clifton W; Christenson, James; Ornato, Joseph P; Dunford, James V; Wittwer, Lynn; Weisfeldt, Myron L; Aufderheide, Tom P; Vilke, Gary M; Idris, Ahamed H; Stiell, Ian G; Colella, M Riccardo; Kayea, Tami; Egan, Debra; Desvigne-Nickens, Patrice; Gray, Pamela; Gray, Randal; Straight, Ron; Dorian, Paul

    2017-11-28

    Out-of-hospital cardiac arrest (OHCA) commonly presents with nonshockable rhythms (asystole and pulseless electric activity). It is unknown whether antiarrhythmic drugs are safe and effective when nonshockable rhythms evolve to shockable rhythms (ventricular fibrillation/pulseless ventricular tachycardia [VF/VT]) during resuscitation. Adults with nontraumatic OHCA, vascular access, and VF/VT anytime after ≥1 shock(s) were prospectively randomized, double-blind, to receive amiodarone, lidocaine, or placebo by paramedics. Patients presenting with initial shock-refractory VF/VT were previously reported. The current study was a prespecified analysis in a separate cohort that initially presented with nonshockable OHCA and was randomized on subsequently developing shock-refractory VF/VT. The primary outcome was survival to hospital discharge. Secondary outcomes included discharge functional status and adverse drug-related effects. Of 37 889 patients with OHCA, 3026 with initial VF/VT and 1063 with initial nonshockable-turned-shockable rhythms were treatment-eligible, were randomized, and received their assigned drug. Baseline characteristics among patients with nonshockable-turned-shockable rhythms were balanced across treatment arms, except that recipients of a placebo included fewer men and were less likely to receive bystander cardiopulmonary resuscitation. Active-drug recipients in this cohort required fewer shocks, supplemental doses of their assigned drug, and ancillary antiarrhythmic drugs than recipients of a placebo ( P <0.05). In all, 16 (4.1%) amiodarone, 11 (3.1%) lidocaine, and 6 (1.9%) placebo-treated patients survived to hospital discharge ( P =0.24). No significant interaction between treatment assignment and discharge survival occurred with the initiating OHCA rhythm (asystole, pulseless electric activity, or VF/VT). Survival in each of these categories was consistently higher with active drugs, although the trends were not statistically significant. Adjusted absolute differences (95% confidence interval) in survival from nonshockable-turned-shockable arrhythmias with amiodarone versus placebo were 2.3% (-0.3, 4.8), P =0.08, and for lidocaine versus placebo 1.2% (-1.1, 3.6), P =0.30. More than 50% of these survivors were functionally independent or required minimal assistance. Drug-related adverse effects were infrequent. Outcome from nonshockable-turned-shockable OHCA is poor but not invariably fatal. Although not statistically significant, point estimates for survival were greater after amiodarone or lidocaine than placebo, without increased risk of adverse effects or disability and consistent with previously observed favorable trends from treatment of initial shock-refractory VF/VT with these drugs. Together the findings may signal a clinical benefit that invites further investigation. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01401647. © 2017 American Heart Association, Inc.

  3. Dynamic compression of water to 700 GPa: single- and double shock experiments on Sandia's Z machine, first principles simulations, and structure of water planets

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2011-11-01

    Significant progress has over the last few years been made in high energy density physics (HEDP) by executing high-precision multi-Mbar experiments and performing first-principles simulations for elements ranging from carbon [1] to xenon [2]. The properties of water under HEDP conditions are of particular importance in planetary science due to the existence of ice-giants like Neptune and Uranus. Modeling the two planets, as well as water-rich exoplanets, requires knowing the equation of state (EOS), the pressure as a function of density and temperature, of water with high accuracy. Although extensive density functional theory (DFT) simulations have been performed for water under planetary conditions [3] experimental validation has been lacking. Accessing thermodynamic states along planetary isentropes in dynamic compression experiments is challenging because the principal Hugoniot follows a significantly different path in the phase diagram. In this talk, we present experimental data for dynamic compression of water up to 700 GPa, including in a regime of the phase-diagram intersected by the Neptune isentrope and water-rich models for the exoplanet GJ436b. The data was obtained on the Z-accelerator at Sandia National Laboratories by performing magnetically accelerated flyer plate impact experiments measuring both the shock and re-shock in the sample. The high accuracy makes it possible for the data to be used for detailed model validation: the results validate first principles based thermodynamics as a reliable foundation for planetary modeling and confirm the fine effect of including nuclear quantum effects on the shock pressure. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. [4pt] [1] M.D. Knudson, D.H. Dolan, and M.P. Desjarlais, SCIENCE 322, 1822 (2008).[0pt] [2] S. Root, et al., Phys. Rev. Lett. 105, 085501 (2010).[0pt] [3] M. French, et al., Phys. Rev. B 79, 054107 (2009).

  4. The Interaction of Turbulence with Parallel and Perpendicular Shocks: Theory and Observations at 1 au

    NASA Astrophysics Data System (ADS)

    Adhikari, L.; Zank, G. P.; Hunana, P.; Hu, Q.

    2016-12-01

    Shocks are thought to be responsible for the amplification of turbulence as well as for generating turbulence throughout the heliosphere. We study the interaction of turbulence with parallel and perpendicular shock waves using the six-coupled-equation turbulence transport model of Zank et al. We model a 1D stationary shock wave using a hyperbolic tangent function and the Rankine-Hugoniot conditions for both a reduced model with four coupled equations and the full model. Eight quasi-parallel and five quasi-perpendicular events in the WIND spacecraft data sets are identified, and we compute the fluctuating magnetic and kinetic energy, the energy in forward and backward propagating modes, the total turbulent energy, the normalized residual energy, and the normalized cross helicity upstream and downstream of the observed shocks. We compare the observed fitted values upstream and downstream of the shock with numerical solutions to our model equations. The comparison shows that our theoretical results are in reasonable agreement with observations for both quasi-parallel and perpendicular shocks. We find that (1) the total turbulent energy, the energy in forward and backward propagating modes, and the normalized residual energy increase across the shock, (2) the normalized cross helicity increases or decreases across the shock, and (3) the correlation length increases upstream and downstream of the shock, and slightly flattens or decreases across the shock.

  5. THE INTERACTION OF TURBULENCE WITH PARALLEL AND PERPENDICULAR SHOCKS: THEORY AND OBSERVATIONS AT 1 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, L.; Zank, G. P.; Hunana, P.

    Shocks are thought to be responsible for the amplification of turbulence as well as for generating turbulence throughout the heliosphere. We study the interaction of turbulence with parallel and perpendicular shock waves using the six-coupled-equation turbulence transport model of Zank et al. We model a 1D stationary shock wave using a hyperbolic tangent function and the Rankine–Hugoniot conditions for both a reduced model with four coupled equations and the full model. Eight quasi-parallel and five quasi-perpendicular events in the WIND spacecraft data sets are identified, and we compute the fluctuating magnetic and kinetic energy, the energy in forward and backwardmore » propagating modes, the total turbulent energy, the normalized residual energy, and the normalized cross helicity upstream and downstream of the observed shocks. We compare the observed fitted values upstream and downstream of the shock with numerical solutions to our model equations. The comparison shows that our theoretical results are in reasonable agreement with observations for both quasi-parallel and perpendicular shocks. We find that (1) the total turbulent energy, the energy in forward and backward propagating modes, and the normalized residual energy increase across the shock, (2) the normalized cross helicity increases or decreases across the shock, and (3) the correlation length increases upstream and downstream of the shock, and slightly flattens or decreases across the shock.« less

  6. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  7. Pavlovian conditioning of shock-induced suppression of lymphocyte reactivity: acquisition, extinction, and preexposure effects.

    PubMed

    Lysle, D T; Cunnick, J E; Fowler, H; Rabin, B S

    1988-01-01

    Recent research has indicated that physical stressors, such as electric shock, can suppress immune function in rats. The present study investigated whether a nonaversive stimulus that had been associated with electric shock would also impair immune function. Presentation of that conditioned stimulus (CS) by itself produced a pronounced suppression of lymphocyte proliferation in response to the nonspecific mitogens, Concanavalin-A (ConA) and Phytohemagglutinin (PHA). In further evidence of a conditioning effect, the suppression was attenuated by extinction and preexposure manipulations that degraded the associative value of the CS. These results indicate that a psychological or learned stressor can suppress immune reactivity independently of the direct effect of physically aversive stimulation or of ancillary changes in dietary and health-related habits.

  8. Enlightened Multiscale Simulation of Biochemical Networks. Core Theory, Validating Experiments, and Implementation in Open Software

    DTIC Science & Technology

    2006-10-01

    organisms that can either be in the lysogenic (latent) or lytic (active) state. If following its infection of E . coli , the λ-phage virus enters the...and unfolded proteins (b) in the heat shock response system . . . . . 31 3 Robust stability of the model of Heat Shock in E - coli ...stochastic reachability analysis, all in the context of two biologically motivated and functionally important systems: the heat shock response in E . coli and

  9. Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats.

    PubMed Central

    Pannen, B H; Köhler, N; Hole, B; Bauer, M; Clemens, M G; Geiger, K K

    1998-01-01

    Maintenance of hepatic microcirculatory flow after ischemia of the liver is essential to prevent hepatic dysfunction. Thus, we determined the differential role of carbon monoxide (CO) and nitric oxide (NO) in the intrinsic control of sinusoidal perfusion, mitochondrial redox state, and bile production in the isolated perfused rat liver after hemorrhagic shock. Administration of tin protoporphyrin-IX (50 microM), a specific inhibitor of the CO generating enzyme heme oxygenase, caused a decrease in sinusoidal flow that was more pronounced after shock compared with sham shock, as determined by in situ epifluorescence microscopy. This was associated with a shift in hepatocellular redox potential to a more reduced state (increased fluorescence intensity of reduced pyridine nucleotides in hepatocytes, decreased acetoacetate/beta-hydroxybutyrate ratio in the perfusate) and a profound reduction in bile flow. In sharp contrast, the preferential inhibitor of the inducible isoform of NO synthase S-methylisothiourea sulfate (100 microM) did not affect sinusoidal flow, hepatic redox state, or function. This indicates that 1.) endogenously generated CO preserves sinusoidal perfusion after hemorrhagic shock, 2.) protection of the hepatic microcirculation by CO may serve to limit shock-induced liver dysfunction, and 3.) in contrast to CO, inducible NO synthase-derived NO is of only minor importance for the intrinsic control of hepatic perfusion and function under these conditions. PMID:9739056

  10. Derivation of an applied nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  11. Particle acceleration at shocks in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations

  12. Shapes of strong shock fronts in an inhomogeneous solar wind

    NASA Technical Reports Server (NTRS)

    Heinemann, M. A.; Siscoe, G. L.

    1974-01-01

    The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.

  13. First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves.

    PubMed

    Chaussy, Christian; Schmiedt, Egbert; Jocham, Dieter; Brendel, Walter; Forssmann, Bernd; Walther, Volker

    2017-02-01

    We performed extracorporeally induced destruction of kidney stones on 72 patients. No complications have resulted from the tissue exposure to high energy shock waves. Clearance studies before and after the shock wave treatment indicate no changes in renal function. The method was used successfully in all patients with stones in the renal pelvis. In none of these patients was an open operation required. Two patients with ureteral stones also were treated with shock waves but had to be operated upon because of insufficient destruction of the stone. Copyright © 2002 American Urological Association, Inc.®. Published by Elsevier Inc. All rights reserved.

  14. Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy

    NASA Astrophysics Data System (ADS)

    Bekhet, Hussain A.; Yusoff, Nora Yusma Mohamed

    2013-06-01

    The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.

  15. Lack of species-specific difference in pulmonary function when using mouse versus human plasma in a mouse model of hemorrhagic shock.

    PubMed

    Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A

    2016-11-01

    Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.

  16. Giotto magnetic field observations at the outbound quasi-parallel bow shock of Comet Halley

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.; Glassmeier, K. H.; Acuna, M. H.; Mariani, F.; Musmann, G.

    1990-01-01

    The investigation of the outbound bow shock of Comet Halley using Giotto magnetometer data leads to the following results: the shock is characterized by strong magnetic turbulence associated with an increasing background magnetic field and a change in direction by 60 deg as one goes inward. In HSE-coordinates, the observed normal turned out to be (0.544, - 0.801, 0.249). The thickness of the quasi-parallel shock was 120,000 km. The shock is shown to be a new type of shock transition called a 'draping shock'. In a draping shock with high beta in the transonic transition region, the transonic region is characterized by strong directional variations of the magnetic field. The magnetic turbulence ahead of the shock is characterized by k-vectors parallel or antiparallel to the average field (and, therefore, also to the normal of the quasi-parallel shock) and almost isotropic magnetic turbulence in the shock transition region. A model of the draping shock is proposed which also includes a hypothetical subshock in which the supersonic-subsonic transition is accomplished.

  17. Shocks and finite-time singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan; Wiegmann, P; Lee, S-y

    Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most genericmore » (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.« less

  18. Non-linear shipboard shock analysis of the Tomahawk missile shock isolation system

    NASA Technical Reports Server (NTRS)

    Leifer, Joel; Gross, Michael

    1987-01-01

    The identification, quantification, computer modeling and verification of the Tomahawk nonlinear liquid spring shock isolation system in a surface ship Vertical Launch System (VLS) are discussed. The isolation system hardware and mode of operation is detailed in an effort to understand the nonlinearities. These nonlinearities are then quantified and modeled using the MSC/NASTRAN finite element code. The model was verified using experimental data from the Navel Ordnance Systems Center MIL-S-901 medium weight shock tests of August 1986. The model was then used to predict the Tomahawk response to the CG-53 USS Mobile Bay shock trials of May-June 1987. Results indicate that the model is an accurate mathematical representation of the physical system either functioning as designed or in an impaired condition due to spring failure.

  19. Generalized self-similar unsteady gas flows behind the strong shock wave front

    NASA Astrophysics Data System (ADS)

    Bogatko, V. I.; Potekhina, E. A.

    2018-05-01

    Two-dimensional (plane and axially symmetric) nonstationary gas flows behind the front of a strong shock wave are considered. All the gas parameters are functions of the ratio of Cartesian coordinates to some degree of time tn, where n is a self-similarity index. The problem is solved in Lagrangian variables. It is shown that the resulting system of partial differential equations is suitable for constructing an iterative process. ¢he "thin shock layer" method is used to construct an approximate analytical solution of the problem. The limit solution of the problem is constructed. A formula for determining the path traversed by a gas particle in the shock layer along the front of a shock wave is obtained. A system of equations for determining the first approximation corrections is constructed.

  20. Transient hot-film sensor response in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.

    1989-01-01

    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation.

  1. Economic impacts of health shocks on households in low and middle income countries: a review of the literature

    PubMed Central

    2014-01-01

    Poor health is a source of impoverishment among households in low -and middle- income countries (LMICs) and a subject of voluminous literature in recent years. This paper reviews recent empirical literature on measuring the economic impacts of health shocks on households. Key inclusion criteria were studies that explored household level economic outcomes (burden of out-of-pocket (OOP) health spending, labour supply responses and non-medical consumption) of health shocks and sought to correct for the likely endogeneity of health shocks, in addition to studies that measured catastrophic and impoverishment effects of ill health. The review only considered literature in the English language and excluded studies published before 2000 since these have been included in previous reviews. We identified 105 relevant articles, reports, and books. Our review confirmed the major conclusion of earlier reviews based on the pre-2000 literature - that households in LMICs bear a high but variable burden of OOP health expenditure. Households use a range of sources such as income, savings, borrowing, using loans or mortgages, and selling assets and livestock to meet OOP health spending. Health shocks also cause significant reductions in labour supply among households in LMICs, and households (particularly low-income ones) are unable to fully smooth income losses from moderate and severe health shocks. Available evidence rejects the hypothesis of full consumption insurance in the face of major health shocks. Our review suggests additional research on measuring and harmonizing indicators of health shocks and economic outcomes, measuring economic implications of non-communicable diseases for households and analyses based on longitudinal data. Policymakers need to include non-health system interventions, including access to credit and disability insurance in addition to support formal insurance programs to ameliorate the economic impacts of health shocks. PMID:24708831

  2. Economic impacts of health shocks on households in low and middle income countries: a review of the literature.

    PubMed

    Alam, Khurshid; Mahal, Ajay

    2014-04-03

    Poor health is a source of impoverishment among households in low -and middle- income countries (LMICs) and a subject of voluminous literature in recent years. This paper reviews recent empirical literature on measuring the economic impacts of health shocks on households. Key inclusion criteria were studies that explored household level economic outcomes (burden of out-of-pocket (OOP) health spending, labour supply responses and non-medical consumption) of health shocks and sought to correct for the likely endogeneity of health shocks, in addition to studies that measured catastrophic and impoverishment effects of ill health. The review only considered literature in the English language and excluded studies published before 2000 since these have been included in previous reviews. We identified 105 relevant articles, reports, and books. Our review confirmed the major conclusion of earlier reviews based on the pre-2000 literature--that households in LMICs bear a high but variable burden of OOP health expenditure. Households use a range of sources such as income, savings, borrowing, using loans or mortgages, and selling assets and livestock to meet OOP health spending. Health shocks also cause significant reductions in labour supply among households in LMICs, and households (particularly low-income ones) are unable to fully smooth income losses from moderate and severe health shocks. Available evidence rejects the hypothesis of full consumption insurance in the face of major health shocks. Our review suggests additional research on measuring and harmonizing indicators of health shocks and economic outcomes, measuring economic implications of non-communicable diseases for households and analyses based on longitudinal data. Policymakers need to include non-health system interventions, including access to credit and disability insurance in addition to support formal insurance programs to ameliorate the economic impacts of health shocks.

  3. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    PubMed Central

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  4. Different Recovery Profiles of Coagulation Factors, Thrombin Generation, and Coagulation Function After Hemorrhagic Shock in Pigs

    DTIC Science & Technology

    2012-06-06

    Different recovery profiles of coagulation factors, thrombin generation, and coagulation function after hemorrhagic shock in pigs Wenjun Z. Martini ...Defense. Address for reprints: Wenjun Z. Martini , PhD, The US Army Institute of Surgical Research, 3698 Chambers Pass, Ft. Sam Houston, San Antonio, TX...control number 1. REPORT DATE 01 SEP 2015 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Different recovery profiles of

  5. Expansion shock waves in regularized shallow-water theory

    PubMed Central

    El, Gennady A.; Shearer, Michael

    2016-01-01

    We identify a new type of shock wave by constructing a stationary expansion shock solution of a class of regularized shallow-water equations that include the Benjamin–Bona–Mahony and Boussinesq equations. An expansion shock exhibits divergent characteristics, thereby contravening the classical Lax entropy condition. The persistence of the expansion shock in initial value problems is analysed and justified using matched asymptotic expansions and numerical simulations. The expansion shock's existence is traced to the presence of a non-local dispersive term in the governing equation. We establish the algebraic decay of the shock as it is gradually eroded by a simple wave on either side. More generally, we observe a robustness of the expansion shock in the presence of weak dissipation and in simulations of asymmetric initial conditions where a train of solitary waves is shed from one side of the shock. PMID:27279780

  6. Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach.

    PubMed

    Xu, Yan-Ming; Huang, Dong-Yang; Chiu, Jen-Fu; Lau, Andy T Y

    2012-05-04

    Heat shock factors (HSFs) are vital for modulating stress and heat shock-related gene expression in cells. The activity of HSFs is controlled largely by post-translational modifications (PTMs). For example, basal phosphorylation of HSF1 on three serine sites suppresses the heat shock response, and hyperphosphorylation of HSF1 on several other serine and threonine sites by stress-activated kinases results in its activation, while acetylation on K80 inhibits its DNA-binding ability. Sumoylation of HSF2 on K82 regulates its DNA-binding ability, whereas sumoylation of HSF4B on K293 represses its transcriptional activity. With the advancement of proteomic technology, novel PTM sites on various HSFs have been identified with the use of tandem mass spectrometry (MS/MS), but the functions of many of these PTMs are still unclear. Yet, it should be noted that the discovery of these novel PTM sites provided the necessary evidence for the existence of these PTM marks in vivo. Followed by subsequent functional analysis, this would ultimately lead to a better understanding of these PTM marks. MS/MS-based proteomic approach is becoming a gold standard in PTM validation in the field of life science. Here, the recent literature of all known PTMs reported on human HSFs and the resulting functions will be discussed.

  7. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  8. Neurotoxicity induced by arsenic in Gallus Gallus: Regulation of oxidative stress and heat shock protein response.

    PubMed

    Zhao, Panpan; Guo, Ying; Zhang, Wen; Chai, Hongliang; Xing, Houjuan; Xing, Mingwei

    2017-01-01

    Arsenic, a naturally occurring heavy metal pollutant, is one of the functioning risk factors for neurological toxicity in humans. However, little is known about the effects of arsenic on the nervous system of Gallus Gallus. To investigate whether arsenic induce neurotoxicity and influence the oxidative stress and heat shock proteins (Hsps) response in chickens, seventy-two 1-day-old male Hy-line chickens were treated with different doses of arsenic trioxide (As 2 O 3 ). The histological changes, antioxidant enzyme activity, and the expressions of Hsps were detected. Results showed slightly histology changes were obvious in the brain tissues exposure to arsenic. The activities of Glutathione peroxidase (GSH-Px) and catalase (CAT) were decreased compared to the control, whereas the malondialdehyde (MDA) content was increased gradually along with increase in diet-arsenic. The mRNA levels of Hsps and protein expressions of Hsp60 and Hsp70 were up-regulated. These results suggested that sub-chronic exposure to arsenic induced neurotoxicity in chickens. Arsenic exposure disturbed the balance of oxidants and antioxidants. Increased heat shock response tried to protect chicken brain tissues from tissues damage caused by oxidative stress. The mechanisms of neurotoxicity induced by arsenic include oxidative stress and heat shock protein response in chicken brain tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Triiodothyronine Administration in a Model of Septic Shock: A Randomized Blinded Placebo-Controlled Trial.

    PubMed

    Maiden, Matthew J; Chapman, Marianne J; Torpy, David J; Kuchel, Timothy R; Clarke, Iain J; Nash, Coralie H; Fraser, Jonathan D; Ludbrook, Guy L

    2016-06-01

    Triiodothyronine concentration in plasma decreases during septic shock and may contribute to multiple organ dysfunction. We sought to determine the safety and efficacy of administering triiodothyronine, with and without hydrocortisone, in a model of septic shock. Randomized blinded placebo-controlled trial. Preclinical research laboratory. Thirty-two sheep rendered septic with IV Escherichia coli and receiving protocol-guided sedation, ventilation, IV fluids, and norepinephrine infusion. Two hours following induction of sepsis, 32 sheep received a 24-hour IV infusion of 1) placebo + placebo, 2) triiodothyronine + placebo, 3) hydrocortisone + placebo, or 4) triiodothyronine + hydrocortisone. Primary outcome was the total amount of norepinephrine required to maintain a target mean arterial pressure; secondary outcomes included hemodynamic and metabolic indices. Plasma triiodothyronine levels increased to supraphysiological concentrations with hormonal therapy. Following 24 hours of study drug infusion, the amount of norepinephrine required was no different between the study groups (mean ± SD μg/kg; placebo + placebo group 208 ± 392; triiodothyronine + placebo group 501 ± 370; hydrocortisone + placebo group 167 ± 286; triiodothyronine + hydrocortisone group 466 ± 495; p = 0.20). There was no significant treatment effect on any hemodynamic variable, metabolic parameter, or measure of organ function. A 24-hour infusion of triiodothyronine, with or without hydrocortisone, in an ovine model of septic shock did not markedly alter norepinephrine requirement or any other physiological parameter.

  10. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation

    PubMed Central

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D. Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-01-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4–8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.—Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation. PMID:27317670

  11. The impact of threat of shock-induced anxiety on memory encoding and retrieval

    PubMed Central

    Bolton, Sorcha

    2017-01-01

    Anxiety disorders are the most common mental health disorders, and daily transient feelings of anxiety (or “stress”) are ubiquitous. However, the precise impact of both transient and pathological anxiety on higher-order cognitive functions, including short- and long-term memory, is poorly understood. A clearer understanding of the anxiety–memory relationship is important as one of the core symptoms of anxiety, most prominently in post-traumatic stress disorder (PTSD), is intrusive reexperiencing of traumatic events in the form of vivid memories. This study therefore aimed to examine the impact of induced anxiety (threat of shock) on memory encoding and retrieval. Eighty-six healthy participants completed tasks assessing: visuospatial working memory, verbal recognition, face recognition, and associative memory. Critically, anxiety was manipulated within-subjects: information was both encoded and retrieved under threat of shock and safe (no shock) conditions. Results revealed that visuospatial working memory was enhanced when information was encoded and subsequently retrieved under threat, and that threat impaired the encoding of faces regardless of the condition in which it was retrieved. Episodic memory and verbal short-term recognition were, however, unimpaired. These findings indicate that transient anxiety in healthy individuals has domain-specific, rather than domain-general, impacts on memory. Future studies would benefit from expanding these findings into anxiety disorder patients to delineate the differences between adaptive and maladaptive responding. PMID:28916628

  12. Experiential, autonomic, and neural responses during threat anticipation vary as a function of threat intensity and neuroticism.

    PubMed

    Drabant, Emily M; Kuo, Janice R; Ramel, Wiveka; Blechert, Jens; Edge, Michael D; Cooper, Jeff R; Goldin, Philippe R; Hariri, Ahmad R; Gross, James J

    2011-03-01

    Anticipatory emotional responses play a crucial role in preparing individuals for impending challenges. They do this by triggering a coordinated set of changes in behavioral, autonomic, and neural response systems. In the present study, we examined the biobehavioral impact of varying levels of anticipatory anxiety, using a shock anticipation task in which unpredictable electric shocks were threatened and delivered to the wrist at variable intervals and intensities (safe, medium, strong). This permitted investigation of a dynamic range of anticipatory anxiety responses. In two studies, 95 and 51 healthy female participants, respectively, underwent this shock anticipation task while providing continuous ratings of anxiety experience and electrodermal responding (Study 1) and during fMRI BOLD neuroimaging (Study 2). Results indicated a step-wise pattern of responding in anxiety experience and electrodermal responses. Several brain regions showed robust responses to shock anticipation relative to safe trials, including the hypothalamus, periaqueductal gray, caudate, precentral gyrus, thalamus, insula, ventrolateral PFC, dorsomedial PFC, and ACC. A subset of these regions demonstrated a linear pattern of increased responding from safe to medium to strong trials, including the bilateral insula, ACC, and inferior frontal gyrus. These responses were modulated by individual differences in neuroticism, such that those high in neuroticism showed exaggerated anxiety experience across the entire task, and reduced brain activation from medium to strong trials in a subset of brain regions. These findings suggest that individual differences in neuroticism may influence sensitivity to anticipatory threat and provide new insights into the mechanism through which neuroticism may confer risk for developing anxiety disorders via dysregulated anticipatory responses. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Serotonin transporter deficient mice are vulnerable to escape deficits following inescapable shocks.

    PubMed

    Muller, J M; Morelli, E; Ansorge, M; Gingrich, J A

    2011-03-01

    Modulation of serotonin transporter (5-HTT) function causes changes in affective behavior, both in humans and rodents. Stressful life events likewise affect emotional behavior. In humans, a low-expressing genetic 5-htt variant, the s allele of the 5-htt linked promoter region, has been associated with increased risk for depression only where there was a history of stressful life events. To investigate this gene by environment interaction in mice, we compared the effects of inescapable shocks on the behavior of wild-type (5-htt+/+), heterozygote (5-htt+/-) and serotonin transporter deficient (5-htt-/-) mice. Inescapable shocks induce behavioral changes including a shock escape deficit, in a subsequent test when escape is possible. Confirming a gene by environment interaction, we found that stress increases escape latencies in a gene-dose dependent manner (5-htt-/->5-htt+/->5-htt +/+), where as there were no differences among the genotypes in the unstressed condition. The vulnerability to increased escape latency could not be accounted for by enhanced fear learning, as 5-htt-/- mice did not show heightened fear conditioning. The interaction of 5-htt genotype and stress appeared to produce a selective behavioral vulnerability, because no interaction of 5-htt genotype and stress was observed in other measures of anxiety and depression-linked behavior, including the open field, novelty suppressed feeding, and forced swim tests. We replicated prior findings that the 5-htt-/- displays heightened anxiety and depression-like behavior at baseline (unstressed condition). In conclusion, our data offer the possibility for future investigation of the neural basis underlying 5-htt genotype-by-stress interaction shown here. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  14. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    PubMed

    Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan

    2016-01-01

    Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and ultimately affect viral replication.

  15. When the heart gets the flu: Fulminant influenza B myocarditis: A case-series report and review of the literature.

    PubMed

    Hékimian, Guillaume; Jovanovic, Tamara; Bréchot, Nicolas; Lebreton, Guillaume; Leprince, Pascal; Trouillet, Jean-Louis; Schmidt, Matthieu; Nieszkowska, Ania; Besset, Sébastien; Chastre, Jean; Combes, Alain; Luyt, Charles-Edouard

    2018-06-09

    To describe patients with refractory cardiogenic shock related to influenza B virus myocarditis rescued by venoarterial Extracorporeal Membrane Oxygenation (VA-ECMO). Consecutive patients hospitalized in our unit for influenza-associated myocarditis were prospectively included. We also conducted a systematic MEDLINE database literature review through the PubMed search engine, between 1946 and 2017. We report the cases of 4 young patients with fulminant myocarditis requiring VA-ECMO for 6 [5-8] days. Influenza B virus was detected in all patients, either in nasopharyngeal sampling or bronchoalveolar lavage fluid. The 4 patients received oseltamivir. Heart function recovery allowed ECMO device removal without cardiac sequelae in all 4 patients. Systematic review retrieved 184 cases of influenza-associated myocarditis, most cases associated with H1N1 type-A infection during the 2009 pandemic. Forty eight cases of influenza myocarditis-associated cardiogenic shock requiring mechanical circulatory support including 3 cases due to influenza B virus were described. Mean duration of mechanical circulatory support was 8.5 ± 6 days and mortality rate was 33%. Influenza myocarditis is a rare but reversible cause of cardiogenic shock amenable to VA-ECMO rescue. Early antiviral therapy and ECMO support should be considered for patients with fulminant myocarditis during an influenza epidemic. Copyright © 2018. Published by Elsevier Inc.

  16. Shell shock at Queen Square: Lewis Yealland 100 years on

    PubMed Central

    Jones, Edgar; Lees, Andrew J.

    2013-01-01

    This article reviews the treatment of functional neurological symptoms during World War I by Lewis Yealland at the National Hospital for the Paralysed and Epileptic in London. Yealland was among the first doctors in Britain to incorporate electricity in the systematic treatment of shell shock. Our analysis is based on the original case records of his treatment of 196 soldiers with functional motor and sensory symptoms, functional seizures and somatoform disorders. Yealland’s treatment approach integrated peripheral and central electrical stimulation with a variety of other—psychological and physical—interventions. A combination of electrical stimulation of affected muscles with suggestion of imminent improvement was the hallmark of his approach. Although his reported success rates were high, Yealland conducted no formal follow-up. Many of the principles of his treatment, including the emphasis on suggestion, demonstration of preserved function and the communication of a physiological illness model, are encountered in current therapeutic approaches to functional motor and sensory symptoms. Yealland has been attacked for his use of electrical stimulation and harsh disciplinary procedures in popular and scientific literature during and after World War I. This criticism reflects changing views on patient autonomy and the social role of doctors and directly impacts on current debates on ethical justification of suggestive therapies. We argue that knowledge of the historical approaches to diagnosis and management of functional neurological syndromes can inform both aetiological models and treatment concepts for these challenging conditions. PMID:23384604

  17. A facility for gas- and condensed-phase measurements behind shock waves

    NASA Astrophysics Data System (ADS)

    Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.

    2005-09-01

    A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.

  18. Performance predictions for an SSME configuration with an enlarged throat

    NASA Technical Reports Server (NTRS)

    Nickerson, G. R.; Dang, L. D.

    1985-01-01

    The Two Dimensional Kinetics (TDK) computer program that was recently developed for NASA was used to predict the performance of a Large Throat Configuration of the Space Shuttle Main Engine (SSME). Calculations indicate that the current design SSME contains a shock wave that is induced by the nozzle wall shape. In the Large Throat design an even stronger shock wave is predicted. Because of the presence of this shock wave, earlier performance predictions that have neglected shock wave effects have been questioned. The JANNAF thrust chamber performance prediction procedures given in a reference were applied. The analysis includes the effects of two dimensional reacting flow with a shock wave. The effects of the boundary layer with a regenatively cooled wall are also included. A Purdue computer program was used to compute axially symmetric supersonic nozzle flows with an induced shock, but is restricted to flows with a constant ratio of specific heats. Thus, the TDK program was also run with ths assumption and the results of the two programs were compared.

  19. Shock whilst gardening--implantable defibrillators & lawn mowers.

    PubMed

    Von Olshausen, G; Lennerz, C; Grebmer, C; Pavaci, H; Kolb, C

    2014-02-01

    Electromagnetic interference with implantable cardioverter defibrillators (ICDs) can cause inappropriate shock delivery or temporary inhibition of ICD functions. We present a case of electromagnetic interference between a lawn mower and an ICD resulting in an inappropriate discharge of the device due to erroneous detection of ventricular fibrillation.

  20. An introduction to generalized functions with some applications in aerodynamics and aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1994-01-01

    In this paper, we start with the definition of generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support. The concept of generalization differentiation is introduced next. This is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some of the results of classical analysis, such as Leibniz rule of differentiation under the integral sign and the divergence theorem, are derived using the generalized function theory. It is shown that the divergence theorem remains valid for discontinuous vector fields provided that the derivatives are all viewed as generalized derivatives. This implies that all conservation laws of fluid mechanics are valid as they stand for discontinuous fields with all derivatives treated as generalized deriatives. Once these derivatives are written as ordinary derivatives and jumps in the field parameters across discontinuities, the jump conditions can be easily found. For example, the unsteady shock jump conditions can be derived from mass and momentum conservation laws. By using a generalized function theory, this derivative becomes trivial. Other applications of the generalized function theory in aerodynamics discussed in this paper are derivation of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of finite part of divergent integrals, derivation of Oswatiitsch integral equation of transonic flow, and analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics presented here include the derivation of the Kirchoff formula for moving surfaces,the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  1. The intensity recovery of Forbush-type decreases as a function of heliocentric distance and its relationship to the 11-year variation

    NASA Astrophysics Data System (ADS)

    Lockwood, J. A.; Webber, W. R.; Jokipii, J. R.

    1985-08-01

    Recent data indicating that the solar modulation effects are propagated outward in the heliospheric cavity suggest that the 11-year cosmic ray modulation can best be described by a dynamic time dependent model. In this context an understanding of the recovery characteristics of large transient Forbush type decreases is important. This includes the typical recovery time at a fixed energy at 1 AU as well as at large heliocentric radial distances, the energy dependence of the recovery time at 1 Au, and the dependence of the time for the intensity to decrease to the minimum in the transient decreases as a function of distance. These transient decreases are characterized by their asymmetrical decrease and recovery times, generally 1 to 2 days and 3 to 10 days respectively at approx. 1 AU. Near earth these are referred to as Forbush decreases, associated witha shock or blast wave passage. At R equal to or greater than + or - 10 AU, these transient decreases may represent the combined effects of several shock waves that have merged together.

  2. Transmission and Emission of Solar Energetic Particles in Semi-transparent Shocks

    NASA Astrophysics Data System (ADS)

    Kocharov, Leon; Laitinen, Timo; Usoskin, Ilya; Vainio, Rami

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  3. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  4. Shatter cones - An outstanding problem in shock mechanics. [geological impact fracture surface in cratering

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1977-01-01

    Shatter cone characteristics are surveyed. Shatter cones, a form of rock fracture in impact structures, apparently form as a shock front interacts with inhomogeneities or discontinuities in the rock. Topics discussed include morphology, conditions of formation, shock pressure of formation, and theories of formation. It is thought that shatter cones are produced within a limited range of shock pressures extending from about 20 to perhaps 250 kbar. Apical angles range from less than 70 deg to over 120 deg. Tentative hypotheses concerning the physical process of shock coning are considered. The range in shock pressures which produce shatter cones might correspond to the range in which shock waves decompose into elastic and deformational fronts.

  5. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  6. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Astrophysics Data System (ADS)

    Bershader, D.; Hanson, R.

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  7. Flexible Multi-Shock Shield

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L. (Inventor); Crews, Jeanne L. (Inventor)

    2005-01-01

    Flexible multi-shock shield system and method are disclosed for defending against hypervelocity particles. The flexible multi-shock shield system and method may include a number of flexible bumpers or shield layers spaced apart by one or more resilient support layers, all of which may be encapsulated in a protective cover. Fasteners associated with the protective cover allow the flexible multi-shock shield to be secured to the surface of a structure to be protected.

  8. Experimental Study of Shock-Induced Compression and Vortex Generation in the Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2006-11-01

    Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4

  9. Cost of Oil and Biomass Supply Shocks under Different Biofuel Supply Chain Configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uria Martinez, Rocio; Leiby, Paul Newsome; Brown, Maxwell L.

    This analysis estimates the cost of selected oil and biomass supply shocks for producers and consumers in the light-duty vehicle fuel market under various supply chain configurations using a mathematical programing model, BioTrans. The supply chain configurations differ by whether they include selected flexibility levers: multi-feedstock biorefineries; advanced biomass logistics; and the ability to adjust ethanol content of low-ethanol fuel blends, from E10 to E15 or E05. The simulated scenarios explore market responses to supply shocks including substitution between gasoline and ethanol, substitution between different sources of ethanol supply, biorefinery capacity additions or idling, and price adjustments. Welfare effects formore » the various market participants represented in BioTrans are summarized into a net shock cost measure. As oil accounts for a larger fraction of fuel by volume, its supply shocks are costlier than biomass supply shocks. Corn availability and the high cost of adding biorefinery capacity limit increases in ethanol use during gasoline price spikes. During shocks that imply sudden decreases in the price of gasoline, the renewable fuel standard (RFS) biofuel blending mandate limits the extent to which flexibility can be exercised to reduce ethanol use. The selected flexibility levers are most useful in response to cellulosic biomass supply shocks.« less

  10. Capabilities of electrodynamic shakers when used for mechanical shock testing

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1973-01-01

    The results of a research task to investigate the capabilities of electrodynamic vibrators (shakers) to perform mechanical shock tests are presented. The simulation method employed was that of developing a transient whose shock response spectrum matched the desired shock response spectrum. Areas investigated included the maximum amplitude capabilities of the shaker systems, the ability to control the shape of the resultant shock response spectrum, the response levels induced at frequencies outside the controlled bandwidth, and the nonlinearities in structural response induced by a change in test level.

  11. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pusztai, Istvan; TenBarge, Jason; Csapó, Aletta N.

    The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock propertiesmore » significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.« less

  12. Low Mach-number collisionless electrostatic shocks and associated ion acceleration

    DOE PAGES

    Pusztai, Istvan; TenBarge, Jason; Csapó, Aletta N.; ...

    2017-12-19

    The existence and properties of low Mach-number (M >~ 1) electrostatic collisionless shocks are investigated with a semi-analytical solution for the shock structure. We show that the properties of the shock obtained in the semi-analytical model can be well reproduced in fully kinetic Eulerian Vlasov-Poisson simulations, where the shock is generated by the decay of an initial density discontinuity. By using this semi-analytical model, we also study the effect of electron-to-ion temperature ratio and presence of impurities on both the maximum shock potential and Mach number. We find that even a small amount of impurities can influence the shock propertiesmore » significantly, including the reflected light ion fraction, which can change several orders of magnitude. Electrostatic shocks in heavy ion plasmas reflect most of the hydrogen impurity ions.« less

  13. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    PubMed

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved understanding of the roles of the Hsf gene family during stress responses and fiber development.

  14. The Investigations of Nitric Oxide Influence on Lifespan of Fruit Fly D. melanogaster Transgenic Strain dNOS4

    PubMed Central

    Begmanova, Mamura; Mit, Nata; Amirgaliyeva, Anara; Tolebayeva, A.; Djansugurova, Leyla

    2014-01-01

    Introduction Aging and longevity control are among the greatest problems in biology and medicine. The fruit fly Drosophila melanogaster is a nice model organism for longevity investigations because of its biological features. Many D. melanogaster genes have their orthologs, similar in other eukaryotes, including human. The role of nitric oxide (NO) in the D. melanogaster lifespan has been analyzed. Methods Virgin flies of dNOS4 transgenic strain were used for the experiment. This strain contains non-functional additional copies of nitric oxide synthase (NOS) gene under heat shock promoter. For promoter activation, transgenic flies on their second day of life were exposed to heat shock (37°C) for an hour. After heat shock, flies were maintained on standard medium temperatures at 25°C, with females separate from males. Two types of control were used: Oregon R wild-type strain and Oregon R strain exposed to heat shock. The average lifespan was evaluated. Results It was revealed that the longevity of females was significantly higher than males in each series of experiments (p < 0.05). The survival rate of females and males was similar in the first month of their life, but in the second month the mortality among males was much higher than among females in all series of experiments. The average lifespan of dNOS4 imago was 31 days (34 days for females and 28 days for males), maximum lifespan was 63 days. In controls, the average lifespan of Oregon R flies was 54 days (58 days for females and 50 days for males), and the maximum lifespan was 94 days. The average lifespan of Oregon R flies exposed to heat shock was 45 days (48 days for females and 41 days for males), and the maximum lifespan was 72 days. The difference between average lifespan in all studied groups is statistically significant (p < 0.05). Conclusion Thus, NOS-transgene activation results in formation of non-functional dNOS4-transcripts and NO deficiency. In turn, NO deficiency decreases dNOS4 imago lifespan. PMID:29805886

  15. Vorticity dynamics after the shock–turbulence interaction

    DOE PAGES

    Livescu, Daniel; Ryu, Jaiyoung

    2015-07-23

    In this article, the interaction of a shock wave with quasi-vortical isotropic turbulence (IT) represents a basic problem for studying some of the phenomena associated with high speed flows, such as hypersonic flight, supersonic combustion and Inertial Confinement Fusion (ICF). In general, in practical applications, the shock width is much smaller than the turbulence scales and the upstream turbulent Mach number is modest. In this case, recent high resolution shock-resolved Direct Numerical Simulations (DNS) (Ryu and Livescu, J Fluid Mech 756, R1, 2014) show that the interaction can be described by the Linear Interaction Approximation (LIA). Using LIA to alleviatemore » the need to resolve the shock, DNS post-shock data can be generated at much higher Reynolds numbers than previously possible. Here, such results with Taylor Reynolds number approximately 180 are used to investigate the changes in the vortical structure as a function of the shock Mach number, M s, up to M s = 10. It is shown that, as M s increases, the shock interaction induces a tendency towards a local axisymmetric state perpendicular to the shock front, which has a profound influence on the vortex-stretching mechanism and divergence of the Lamb vector and, ultimately, on the flow evolution away from the shock.« less

  16. Anaerobicity Prepares Saccharomyces cerevisiae Cells for Faster Adaptation to Osmotic Shock†

    PubMed Central

    Krantz, Marcus; Nordlander, Bodil; Valadi, Hadi; Johansson, Mikael; Gustafsson, Lena; Hohmann, Stefan

    2004-01-01

    Yeast cells adapt to hyperosmotic shock by accumulating glycerol and altering expression of hundreds of genes. This transcriptional response of Saccharomyces cerevisiae to osmotic shock encompasses genes whose products are implicated in protection from oxidative damage. We addressed the question of whether osmotic shock caused oxidative stress. Osmotic shock did not result in the generation of detectable levels of reactive oxygen species (ROS). To preclude any generation of ROS, osmotic shock treatments were performed in anaerobic cultures. Global gene expression response profiles were compared by employing a novel two-dimensional cluster analysis. The transcriptional profiles following osmotic shock under anaerobic and aerobic conditions were qualitatively very similar. In particular, it appeared that expression of the oxidative stress genes was stimulated upon osmotic shock even if there was no apparent need for their function. Interestingly, cells adapted to osmotic shock much more rapidly under anaerobiosis, and the signaling as well as the transcriptional response was clearly attenuated under these conditions. This more rapid adaptation is due to an enhanced glycerol production capacity in anaerobic cells, which is caused by the need for glycerol production in redox balancing. Artificially enhanced glycerol production led to an attenuated response even under aerobic conditions. These observations demonstrate the crucial role of glycerol accumulation and turgor recovery in determining the period of osmotic shock-induced signaling and the profile of cellular adaptation to osmotic shock. PMID:15590813

  17. Comparative Analysis of Hepatic CD14 Expression between Two Different Endotoxin Shock Model Mice: Relation between Hepatic Injury and CD14 Expression

    PubMed Central

    Hozumi, Hiroyasu; Tada, Rui; Murakami, Taisuke; Adachi, Yoshiyuki; Ohno, Naohito

    2013-01-01

    CD14 is a glycoprotein that recognizes gram-negative bacterial lipopolysaccharide (LPS) and exists in both membrane-bound and soluble forms. Infectious and/or inflammatory diseases induce CD14 expression, which may be involved in the pathology of endotoxin shock. We previously found that the expression of CD14 protein differs among the endotoxin shock models used, although the reasons for these differences are unclear. We hypothesized that the differences in CD14 expression might be due to liver injury, because the hepatic tissue produces CD14 protein. We investigated CD14 expression in the plasma and liver in the carrageenan (CAR)-primed and D-galN-primed mouse models of endotoxin shock. Our results showed that severe liver injury was not induced in CAR-primed endotoxin shock model mice. In this CAR-primed model, the higher mRNA and protein expression of CD14 was observed in the liver, especially in the interlobular bile duct in contrast to D-galN-primed-endotoxin shock model mice. Our findings indicated that the molecular mechanism(s) underlying septic shock in CAR-primed and D-galN-primed endotoxin shock models are quite different. Because CD14 expression is correlated with clinical observations, the CAR-primed endotoxin shock model might be useful for studying the functions of CD14 during septic shock in vivo. PMID:23308276

  18. Supplemental arginine vasopressin during the resuscitation of severe hemorrhagic shock preserves renal mitochondrial function

    PubMed Central

    Yuxia, Guan; Singh, Khushboo; Reilly, Patrick M.

    2017-01-01

    Arginine vasopressin (AVP), a hormone secreted by the posterior pituitary, plays a vital role in maintaining vasomotor tone during acute blood loss. We hypothesized that decompensated hemorrhagic shock is associated with decreased AVP stores and supplementation during resuscitation would improve both blood pressure and renal function. Using a decompensated hemorrhagic shock model, male Long-Evans rats were bled to mean arterial blood pressure (MAP) of 40mmHg and maintained until the MAP could not be sustained without fluid. Once 40% of the shed volume was returned in lactated Ringer’s (Severe Shock), animals were resuscitated over 60 minutes with 4x the shed volume in lactated Ringer’s (LR) or the same fluids with AVP (0.5 units/kg+ 0.03 units/kg/min). Animals (n = 6-9/group) were sacrificed before hemorrhage (Sham), at Severe Shock, following resuscitation (60R, 60R with AVP) or 18 hours post-resuscitation (18hr, 18hr with AVP). Blood samples were taken to measure AVP levels and renal function. Pituitaries were harvested and assayed for AVP. Kidney samples were taken to assess mitochondrial function, histology, and oxidative damage. Baseline pituitary AVP stores (30,364 ± 5311 pg/mg) decreased with severe shock and were significantly depressed post-resuscitation (13,910 ± 3016 pg/ml. p<0.05) and at 18hr (15,592 ±1169 pg/ml, p<0.05). Resuscitation with LR+AVP led to higher serum AVP levels at 60R (31±8 vs 79±12; p<0.01) with an improved MAP both at 60R (125±3 vs 77±7mmHg; p<0.01) and 18hr (82±6 vs 69±5mmHg;p<0.05). AVP supplementation preserved complex I respiratory capacity at 60R and both complex I and II function at 18hr (p<0.05). AVP was also associated with decreased reactive oxygen species at 60R (856±67 vs 622±48F RFU) and significantly decreased oxidative damage as measured by mitochondrial lipid peroxidation (0.9±0.1 vs 1.7±0.1 fold change, p<0.01) and nitrosylation (0.9±0.1 vs 1.4±0.2 fold change, p<0.05). With AVP, renal damage was mitigated at 60R and histologic architecture was conserved at 18 hours. In conclusion, pituitary and serum AVP levels decrease during severe hemorrhage and may contribute to the development of decompensated hemorrhagic shock. Supplementing exogenous AVP during resuscitation improves blood pressure, preserves renal mitochondrial function, and mitigates acute kidney injury. PMID:29065123

  19. Implementation of a Cardiogenic Shock Team and Clinical Outcomes (INOVA-SHOCK Registry): Observational and Retrospective Study.

    PubMed

    Tehrani, Behnam; Truesdell, Alexander; Singh, Ramesh; Murphy, Charles; Saulino, Patricia

    2018-06-28

    The development and implementation of a Cardiogenic Shock initiative focused on increased disease awareness, early multidisciplinary team activation, rapid initiation of mechanical circulatory support, and hemodynamic-guided management and improvement of outcomes in cardiogenic shock. The objectives of this study are (1) to collect retrospective clinical outcomes for acute decompensated heart failure cardiogenic shock and acute myocardial infarction cardiogenic shock, and compare current versus historical survival rates and clinical outcomes; (2) to evaluate Inova Heart and Vascular Institute site specific outcomes before and after initiation of the Cardiogenic Shock team on January 1, 2017; (3) to compare outcomes related to early implementation of mechanical circulatory support and hemodynamic-guided management versus historical controls; (4) to assess survival to discharge rate in patients receiving intervention from the designated shock team and (5) create a clinical archive of Cardiogenic Shock patient characteristics for future analysis and the support of translational research studies. This is an observational, retrospective, single center study. Retrospective and prospective data will be collected in patients treated at the Inova Heart and Vascular Institute with documented cardiogenic shock as a result of acute decompensated heart failure or acute myocardial infarction. This registry will include data from patients prior to and after the initiation of the multidisciplinary Cardiogenic Shock team on January 1, 2017. Clinical outcomes associated with early multidisciplinary team intervention will be analyzed. In the study group, all patients evaluated for documented cardiogenic shock (acute decompensated heart failure cardiogenic shock, acute myocardial infarction cardiogenic shock) treated at the Inova Heart and Vascular Institute by the Cardiogenic Shock team will be included. An additional historical Inova Heart and Vascular Institute control group will be analyzed as a comparator. Means with standard deviations will be reported for outcomes. For categorical variables, frequencies and percentages will be presented. For continuous variables, the number of subjects, mean, standard deviation, minimum, 25th percentile, median, 75th percentile and maximum will be reported. Reported differences will include standard errors and 95% CI. Preliminary data analysis for the year 2017 has been completed. Compared to a baseline 2016 survival rate of 47.0%, from 2017 to 2018, CS survival rates were increased to 57.9% (58/110) and 81.3% (81/140), respectively (P=.01 for both). Study data will continue to be collected until December 31, 2018. The preliminary results of this study demonstrate that the INOVA SHOCK team approach to the treatment of Cardiogenic Shock with early team activation, rapid initiation of mechanical circulatory support, hemodynamic-guided management, and strict protocol adherence is associated with superior clinical outcomes: survival to discharge and overall survival when compared to 2015 and 2016 outcomes prior to Shock team initiation. What may limit the generalization of these results of this study to other populations are site specific; expertise of the team, strict algorithm adherence based on the INOVA SHOCK protocol, and staff commitment to timely team activation. Retrospective clinical outcomes (acute decompensated heart failure cardiogenic shock, acute myocardial infarction cardiogenic shock) demonstrated an increase in current survival rates when compared to pre-Cardiogenic Shock team initiation, rapid team activation and diagnosis and timely utilization of mechanical circulatory support. ClinicalTrials.gov NCT03378739; https://clinicaltrials.gov/ct2/show/NCT03378739 (Archived by WebCite at http://www.webcitation.org/701vstDGd). ©Behnam Tehrani, Alexander Truesdell, Ramesh Singh, Charles Murphy, Patricia Saulino. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 28.06.2018.

  20. Electrostatic potential jump across fast-mode collisionless shocks

    NASA Technical Reports Server (NTRS)

    Mandt, M. E.; Kan, J. R.

    1991-01-01

    The electrostatic potential jump across fast-mode collisionless shocks is examined by comparing published observations, hybrid simulations, and a simple model, in order to better characterize its dependence on the various shock parameters. In all three, it is assumed that the electrons can be described by an isotropic power-law equation of state. The observations show that the cross-shock potential jump correlates well with the shock strength but shows very little correlation with other shock parameters. Assuming that the electrons obey an isotropic power law equation of state, the correlation of the potential jump with the shock strength follows naturally from the increased shock compression and an apparent dependence of the power law exponent on the Mach number which the observations indicate. It is found that including a Mach number dependence for the power law exponent in the electron equation of state in the simple model produces a potential jump which better fits the observations. On the basis of the simulation results and theoretical estimates of the cross-shock potential, it is discussed how the cross-shock potential might be expected to depend on the other shock parameters.

  1. A Walsh Function Module Users' Manual

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2014-01-01

    The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to simulate many challenging problems in mathematical physics. The approach was developed to better simulate hypersonic flows with shocks on unstructured grids. It is unique in that integrals and derivatives are computed using simple matrix multiplication of series representations of functions without the need for divided differences. The product of any two Walsh functions is another Walsh function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module for supporting Walsh function simulations is documented. A FORTRAN code is also documented with options for solving time-dependent problems: an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the usage of the Walsh function module including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a Fast Walsh reciprocal.

  2. Minimizing pre- and post-defibrillation pauses increases the likelihood of return of spontaneous circulation (ROSC).

    PubMed

    Sell, Rebecca E; Sarno, Renee; Lawrence, Brenna; Castillo, Edward M; Fisher, Roger; Brainard, Criss; Dunford, James V; Davis, Daniel P

    2010-07-01

    The three-phase model of ventricular fibrillation (VF) arrest suggests a period of compressions to "prime" the heart prior to defibrillation attempts. In addition, post-shock compressions may increase the likelihood of return of spontaneous circulation (ROSC). The optimal intervals for shock delivery following cessation of compressions (pre-shock interval) and resumption of compressions following a shock (post-shock interval) remain unclear. To define optimal pre- and post-defibrillation compression pauses for out-of-hospital cardiac arrest (OOHCA). All patients suffering OOHCA from VF were identified over a 1-month period. Defibrillator data were abstracted and analyzed using the combination of ECG, impedance, and audio recording. Receiver-operator curve (ROC) analysis was used to define the optimal pre- and post-shock compression intervals. Multiple logistic regression analysis was used to quantify the relationship between these intervals and ROSC. Covariates included cumulative number of defibrillation attempts, intubation status, and administration of epinephrine in the immediate pre-shock compression cycle. Cluster adjustment was performed due to the possibility of multiple defibrillation attempts for each patient. A total of 36 patients with 96 defibrillation attempts were included. The ROC analysis identified an optimal pre-shock interval of <3s and an optimal post-shock interval of <6s. Increased likelihood of ROSC was observed with a pre-shock interval <3s (adjusted OR 6.7, 95% CI 2.0-22.3, p=0.002) and a post-shock interval of <6s (adjusted OR 10.7, 95% CI 2.8-41.4, p=0.001). Likelihood of ROSC was substantially increased with the optimization of both pre- and post-shock intervals (adjusted OR 13.1, 95% CI 3.4-49.9, p<0.001). Decreasing pre- and post-shock compression intervals increases the likelihood of ROSC in OOHCA from VF.

  3. Shock Waves in a Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Zak, Michail

    2005-01-01

    A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.

  4. Computation of Thermally Perfect Properties of Oblique Shock Waves

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.

    1996-01-01

    A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).

  5. Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip A.; Betney, M. R.; Doyle, H. W.; Tully, B.; Ventikos, Y.; Hawker, N. A.; Roy, Ronald A.

    2017-05-01

    The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ˜10 % at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.

  6. Molecular Dynamics Simulations of Shock Wave Propagation across the Nitromethane Crystal-Melt Interface

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Sewell, Thomas D.; Thompson, Donald L.

    2015-06-01

    We are interested in understanding the fundamental processes that occur during propagation of shock waves across the crystal-melt interface in molecular substances. We have carried out molecular dynamics simulations of shock passage from the nitromethane (100)-oriented crystal into the melt and vice versa using the fully flexible, non-reactive Sorescu, Rice, and Thompson force field. A stable interface was established for a temperature near the melting point by using a combination of isobaric-isothermal (NPT) and isochoric-isothermal (NVT) simulations. The equilibrium bulk and interfacial regions were characterized using spatial-temporal distributions of molecular number density, kinetic and potential energy, and C-N bond orientations. Those same properties were calculated as functions of time during shock propagation. As expected, the local temperatures (intermolecular, intramolecular, and total) and stress states differed significantly between the liquid and crystal regions and depending on the direction of shock propagation. Substantial differences in the spatial distribution of shock-induced defect structures in the crystalline region were observed depending on the direction of shock propagation. Research supported by the U.S. Army Research Office.

  7. Shock response of poly[methyl methacrylate] (PMMA) measured with embedded electromagnetic gauges

    NASA Astrophysics Data System (ADS)

    Lacina, David; Neel, Christopher; Dattelbaum, Dana

    2018-05-01

    The shock response of poly[methyl methacrylate] (PMMA) acquired from two providers, Spartech and Rohm & Haas, has been measured to investigate the shock response variations related to material pedigree. These measurements have also been used to examine the effects of viscoelasticity on Spartech PMMA. Measurements of the Hugoniot curves, release wave speeds, and index of refraction have been acquired up to previously unexplored stresses, ˜10.7 GPa, for Spartech PMMA. In-situ, time-resolved particle velocity wave profiles, as a function of time and depth, were obtained using twelve separate electromagnetic gauge elements embedded at different depths in the PMMA. A comparison of the new data to the shock response data for Rohm and Haas PMMA, used as a "standard" material in shock compression studies, shows that there are no significant differences in shock response for the two materials. From the index of refraction measurements, the apparent particle velocity correction for a PMMA window exhibits an interesting oscillation, increasing at up = 0.3 km/s after decreasing up to that point. The results are generalized into guidelines for sourcing PMMA for use in shock studies.

  8. Modeling magnetic field amplification in nonlinear diffusive shock acceleration

    NASA Astrophysics Data System (ADS)

    Vladimirov, Andrey

    2009-02-01

    This research was motivated by the recent observations indicating very strong magnetic fields at some supernova remnant shocks, which suggests in-situ generation of magnetic turbulence. The dissertation presents a numerical model of collisionless shocks with strong amplification of stochastic magnetic fields, self-consistently coupled to efficient shock acceleration of charged particles. Based on a Monte Carlo simulation of particle transport and acceleration in nonlinear shocks, the model describes magnetic field amplification using the state-of-the-art analytic models of instabilities in magnetized plasmas in the presence of non-thermal particle streaming. The results help one understand the complex nonlinear connections between the thermal plasma, the accelerated particles and the stochastic magnetic fields in strong collisionless shocks. Also, predictions regarding the efficiency of particle acceleration and magnetic field amplification, the impact of magnetic field amplification on the maximum energy of accelerated particles, and the compression and heating of the thermal plasma by the shocks are presented. Particle distribution functions and turbulence spectra derived with this model can be used to calculate the emission of observable nonthermal radiation.

  9. The role of distinct parameters of interplanetary shocks in their propagation into and within the Earth's dayside magnetosphere, and their impact on magnetospheric particle populations

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Cattell, C. A.

    2016-12-01

    Interplanetary (IP) shocks are abrupt changes in the solar wind velocity and/or magnetic field. When an IP shock impacts the Earth's magnetosphere, it can trigger a number of responses including geomagnetic storms and substorms that affect radiation to satellites and aircraft, and ground currents that disrupt the power grid. There are a wide variety of IP shocks, and they interact with the magnetosphere in different ways depending on their orientation, speed and other factors. The distinct individual characteristics of IP shocks can have a dramatic effect on their impact on the near-earth environment. While some research has been done on the impact of shock parameters on their geo-effectiveness, these studies primarily utilized ground magnetometer derived indices such as Dst, AE and SME or signals at geosynchronous satellites. The current unprecedented satellite coverage of the magnetosphere, particularly on the dayside, presents an opportunity to directly measure how different shocks propagate into and within the magnetosphere, and how they affect the various particle populations therein. Initial case studies reveal that smaller shocks can have unexpected impacts in the dayside magnetosphere, including unusual particle and electric field signatures, depending on shock parameters. We have recently compiled a database of sudden impulses from 2012-2016, and the location of satellites in the dayside magnetosphere at the impulse times. We are currently combining and comparing this with existing databases compiled at UNH, Harvard and others, as well as solar wind data from ACE, Wind and other solar wind monitors, to generate a complete and accurate list of IP shocks, cataloguing parameters such as the type of shock (CME, CIR etc.), strength (Mach number, solar wind velocity etc.) and shock normal angle. We are investigating the magnetospheric response to these shocks using GOES, ARTEMIS and Cluster data, augmented with RBSP and MMS data where available, to determine what effect the various shock parameters have on their propagation through and impact on the magnetosphere. We will present several case studies from our database that show how different parameters affect how shocks propagate in the dayside and how they affect the particles therein.

  10. Validation of MCDS by comparison of predicted with experimental velocity distribution functions in rarefied normal shocks

    NASA Technical Reports Server (NTRS)

    Pham-Van-diep, Gerald C.; Erwin, Daniel A.

    1989-01-01

    Velocity distribution functions in normal shock waves in argon and helium are calculated using Monte Carlo direct simulation. These are compared with experimental results for argon at M = 7.18 and for helium at M = 1.59 and 20. For both argon and helium, the variable-hard-sphere (VHS) model is used for the elastic scattering cross section, with the velocity dependence derived from a viscosity-temperature power-law relationship in the way normally used by Bird (1976).

  11. A quantitative relationship for the shock sensitivities of energetic compounds based on X-NO(2) (X=C, N, O) bond dissociation energy.

    PubMed

    Li, Jinshan

    2010-08-15

    The ZPE-corrected X-NO(2) (X=C, N, O) bond dissociation energies (BDEs(ZPE)) of 11 energetic nitrocompounds of different types have been calculated employing density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is less than the UB3P86. For these typical energetic nitrocompounds the shock-initiated pressure (P(98)) is strongly related to the BDE(ZPE) indeed, and a polynomial correlation of ln(P(98)) with the BDE(ZPE) has been established successfully at different density functional theory levels, which provides a method to address the shock sensitivity problem. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Application of updated guidelines on diastolic dysfunction in patients with severe sepsis and septic shock.

    PubMed

    Clancy, David J; Scully, Timothy; Slama, Michel; Huang, Stephen; McLean, Anthony S; Orde, Sam R

    2017-12-19

    Left ventricular diastolic dysfunction is suggested to be associated with higher mortality in severe sepsis and septic shock, yet the methods of diagnosis described in the literature are often inconsistent. The recently published 2016 American Society of Echocardiography and European Association of Cardiovascular Imaging (ASE/EACVI) guidelines offer the opportunity to apply a simple pragmatic diagnostic algorithm for the detection of diastolic dysfunction; however, it has not been tested in this cohort. We sought to assess the applicability in septic patients of recently published 2016 ASE/EACVI guidelines on diastolic dysfunction compared with the 2009 ASE guidelines. Our hypothesis was that there would be poor agreement in classifying patients. Prospective observational study includes patients identified as having severe sepsis and septic shock. Patients underwent transthoracic echocardiography on day 1 and day 3 of their ICU admission. Patients with normal and abnormal (ejection fraction < 52%) systolic function had their diastolic function stratified according to both the 2009 ASE and 2016 ASE/EACVI guidelines. On day 1 echocardiography, of the 62 patients analysed, 37 (60%) had diastolic dysfunction according to the 2016 ASE/EACVI guideline with a further 23% having indeterminate diastolic function, compared to the 2009 ASE guidelines where only 13 (21%) had confirmed diastolic dysfunction with 46 (74%) having indeterminate diastolic dysfunction. On day 3, of the 55 patients studied, 22 patients (40%) were defined as having diastolic dysfunction, with 6 (11%) having indeterminate diastolic dysfunction according to the 2016 ASE/EACVI guidelines, compared to the 2009 guidelines where 11 (20%) were confirmed to have diastolic dysfunction and 41 (75%) had indeterminate diastolic function. Systolic dysfunction was identified in 18 of 62 patients (29%) on day 1 and 18 of 55 (33%) on day 3. These patients were classified as having abnormal diastolic function in 94 and 89% with the 2016 guidelines on day 1 and day 3, respectively, compared with 50 and 28% using the 2009 guidelines. The 2016 guidelines had less patients with indeterminate diastolic function on days 1 and 3 (11 and 6%) compared to the 2009 guidelines (50 and 72%). Normal systolic function was identified in 44 patients on day 1 and 37 on day 3. In this group, abnormal diastolic function was present in 45 and 54% on days 1 and 3 according to the 2016 ASE/EACVI guidelines, compared with 9 and 16% using the 2009 guidelines, respectively. In those with normal systolic function, the 2016 guidelines had less indeterminate patients with 30 and 16% on days 1 and 3, respectively, compared to 84 and 76% in the 2009 guidelines. The 2016 ASE/EACVI diastolic function guidelines identify a significantly higher incidence of dysfunction in patients with severe sepsis and septic shock compared to the previous 2009 guidelines. Although the new guidelines seem to be an improvement, issues remain with the application of guidelines using traditional measures of diastolic dysfunction in this cohort.

  13. Biological Effects of Shock Waves on Infection

    NASA Astrophysics Data System (ADS)

    Gnanadhas, Divya Prakash; Janardhanraj, S.; Chakravortty, Dipshikha; Gopalan, Jagadeesh

    Shock waves have been successfully used for disintegrating kidney stones[1], noninvasive angiogenic approach[2] and for the treatment of osteoporosis[3]. Recently shock waves have been used to treat different medical conditions including intestinal anastomosis[4], wound healing[5], Kienböck's disease[6] and articular cartilage defects[7].

  14. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases.

    PubMed

    Vilquin, A; Boudet, J F; Kellay, H

    2016-08-01

    Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a supersonic and a subsonic population) in the shock front, can be modified by adding a third subpopulation. Our experiments show that this additional population results from collisions between the supersonic and subsonic subpopulations. We propose a simple approach incorporating the role of this third intermediate population to model the measured probability distributions and apply it to granular shocks as well as shocks in molecular gases.

  15. Gain curves and hydrodynamic modeling for shock ignition

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-05-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  16. A HIRES analysis of the FIR emission of supernova remnants

    NASA Technical Reports Server (NTRS)

    Wang, Zhong

    1994-01-01

    The high resolution (HiRes) algorithm has been used to analyze the far infrared emission of shocked gas and dust in supernova remnants. In the case of supernova remnant IC 443, we find a very good match between the resolved features in the deconvolved images and the emissions of shocked gas mapped in other wavelengths (lines of H2, CO, HCO+, and HI). Dust emission is also found to be surrounding hot bubbles of supernova remnants which are seen in soft X-ray maps. Optical spectroscopy on the emission of the shocked gas suggests a close correlation between the FIR color and local shock speed, which is a strong function of the ambient (preshock) gas density. These provide a potentially effective way to identify regions of strong shock interaction, and thus facilitate studies of kinematics and energetics in the interstellar medium.

  17. Hormetic heat shock and HSF-1 overexpression improve C. elegans survival and proteostasis by inducing autophagy.

    PubMed

    Kumsta, Caroline; Hansen, Malene

    2017-06-03

    The cellular recycling process of macroautophagy/autophagy is an essential homeostatic system induced by various stresses, but it remains unclear how autophagy contributes to organismal stress resistance. In a recent study, we report that a mild and physiologically beneficial ("hormetic") heat shock as well as overexpression of the heat-shock responsive transcription factor HSF-1 systemically increases autophagy in C. elegans. Accordingly, we found HSF-1- and heat stress-inducible autophagy to be required for C. elegans thermoresistance and longevity. Moreover, a hormetic heat shock or HSF-1 overexpression alleviated PolyQ protein aggregation in an autophagy-dependent manner. Collectively, we demonstrate a critical role for autophagy in C. elegans stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1 regulated functions in the heat-shock response, proteostasis, and aging.

  18. Reversible electron heating vs. wave-particle interactions in quasi-perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Veltri, P.; Mangeney, A.; Scudder, J. D.

    1992-01-01

    The energy necessary to explain the electron heating in quasi-perpendicular collisionless shocks can be derived either from the electron acceleration in the d.c. cross shock electric potential, or by the interactions between the electrons and the waves existing in the shock. A Monte Carlo simulation has been performed to study the electron distribution function evolution through the shock structure, with and without particle diffusion on waves. This simulation has allowed us to clarify the relative importance of the two possible energy sources; in particular it has been shown that the electron parallel temperature is determined by the d.c. electromagnetic field and not by any wave-particle-induced heating. Wave particle interactions are effective in smoothing out the large gradients in phase space produced by the 'reversible' motion of the electrons, thus producing a 'cooling' of the electrons.

  19. Hypoglycemic depression of RES function.

    PubMed

    Buchanan, B J; Filkins, J P

    1976-07-01

    The intravascular removal rates of colloidal carbon and of biologically active endotoxin by the reticuloendothelial system (RES) were evaluated as a function of blood-glucose levels. There was a significant negative correlation of carbon clearance half time on blood glucose in both saline-treated and insulin-treated rats. Insulin hypoglycemia depressed RES carbon clearance with the maximal effect occurring at blood glucose values below 30 mg/dl. Insulin hypoglycemia also severely impaired the intravascular removal of endotoxin as evaluated by lethality bioassay in lead-sensitized rats. It is concluded that blood glucose may modulate RES phagocytic function and that the hypoglycemia of endotoxin shock may augment the shock state due to impairment of RES host defense clearance functions.

  20. Case report: use caution when applying magnets to pacemakers or defibrillators for surgery.

    PubMed

    Schulman, Peter M; Rozner, Marc A

    2013-08-01

    The application of a magnet to a pacemaker (intended to cause asynchronous pacing) or implanted cardioverter defibrillator (intended to prevent shocks) during surgery without a clear understanding of actual magnet function(s) or precautions can have unexpected, untoward, or harmful consequences. In this report, we present 3 cases in which inadequate assessment of cardiac implanted electronic device (CIED) function, coupled with magnet application, contributed to or resulted in inappropriate antitachycardia pacing or shocks, CIED damage, or patient injury. Although these cases might be rare, they reinforce the need for a timely, detailed preoperative review of CIED function and programming as recommended by the American Society of Anesthesiologists and the Heart Rhythm Society.

  1. Laboratory Observation of High-Mach Number, Laser-Driven Magnetized Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek; Fox, Will; Haberberger, Dan; Fiksel, Gennady; Bhattacharjee, Amitava; Barnak, Daniel; Hu, Suxing; Germaschewski, Kai

    2017-06-01

    Collisionless shocks are common phenomena in space and astrophysical systems, including solar and planetary winds, coronal mass ejections, supernovae remnants, and the jets of active galactic nuclei, and in many the shocks are believed to efficiently accelerate particles to some of the highest observed energies. Only recently, however, have laser and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of collisionless shocks over a large parameter regime. We present the first laboratory generation of high-Mach number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number Mms≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on timescales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier, between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration. The platform is also flexible, allowing us to study shocks in different magnetic field geometries, in different ambient plasma conditions, and in relation to other effects in magnetized, high-Mach number plasmas such as magnetic reconnection or the Weibel instability.

  2. Laboratory studies of stagnating plasma flows with applications to inner solar system and stellar bow shocks

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.

    2016-10-01

    Supercritical magnetized collisionless shocks are thought to play a dominant role in the overall partition of energy throughout the universe by converting flow kinetic energy to other forms such as thermal and supra-thermal populations, magnetic field enhancement, turbulence, and energetic particles. The Magnetized Shock Experiment (MSX) at LANL creates conditions similar to those of inner solar system and stellar bow shocks by accelerating hot (100s of eV during translation) dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids to 100s of km/s; resulting in β 1, collisionless plasma flows with Msonic and MAlfvén 10. The drifting FRC can be made to impinge upon a variety of static obstacles including: a strong mirror or cusp magnetic field (mimicking magnetically excited shocks such as the Earth's bow shock), plasma pileup from a solid obstacle (similar to the bow shocks of Mercury and the Moon), and a neural gas puff (bow shocks of Venus or the comets). Characteristic shock length and time scales that are both large enough to observe yet small enough to fit within the experiment, enabling study of the complex interplay of kinetic and fluid processes that mediate cosmic shocks and can generate non-thermal distributions, produce density and magnetic field enhancements much greater than predicted by fluid theory, and accelerate particles. An overview of the experimental program will be presented, including recent results. This work is supported by the U.S. DOE, Office of Science, Office of Fusion Energy Sciences under Contract No. DE-AC52-06NA25369.

  3. Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected

    NASA Astrophysics Data System (ADS)

    Wouchuk, J. G.

    2001-05-01

    An analytic model is presented to calculate the growth rate of the linear Richtmyer-Meshkov instability in the shock-reflected case. The model allows us to calculate the asymptotic contact surface perturbation velocity for any value of the incident shock intensity, arbitrary fluids compressibilities, and for any density ratio at the interface. The growth rate comes out as the solution of a system of two coupled functional equations and is expressed formally as an infinite series. The distinguishing feature of the procedure shown here is the high speed of convergence of the intermediate calculations. There is excellent agreement with previous linear simulations and experiments done in shock tubes.

  4. Index of Refraction Measurements and Window Corrections for PMMA under Shock Compression

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Williamson, David; Proud, William

    2011-06-01

    Symmetric plate impact experiments were performed to investigate the change in the refractive index of PMMA under shock loading. Flyer and target geometries allowed the measurement of shock velocity, particle velocity, and refractive index in the shocked state, using the simultaneous application of VISAR (532 nm) and Het-V (1550 nm). The change in refractive index of PMMA as a function of density is generally considered to be well described by the Gladstone-Dale relationship, meaning that the ``apparent'' velocity measured by a laser velocity interferometer is the ``true'' velocity, and hence there is no window correction. The results presented characterise the accuracy of this assumption at peak stresses up to 2 GPa.

  5. Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.

    PubMed

    Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S

    1996-03-19

    Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.

  6. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Geballe, Theodore H.; Maple, M. Brian

    1990-01-01

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

  7. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, W.J.; Geballe, T.H.; Maple, M.B.

    1990-03-13

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

  8. Microbial communities involved in biogas production exhibit high resilience to heat shocks.

    PubMed

    Abendroth, Christian; Hahnke, Sarah; Simeonov, Claudia; Klocke, Michael; Casani-Miravalls, Sonia; Ramm, Patrice; Bürger, Christoph; Luschnig, Olaf; Porcar, Manuel

    2018-02-01

    We report here the impact of heat-shock treatments (55 and 70 °C) on the biogas production within the acidification stage of a two-stage reactor system for anaerobic digestion and biomethanation of grass. The microbiome proved both taxonomically and functionally very robust, since heat shocks caused minor community shifts compared to the controls, and biogas yield was not decreased. The strongest impact on the microbial profile was observed with a combination of heat shock and low pH. Since no transient reduction of microbial diversity occured after the shock, biogas keyplayers, but also potential pathogens, survived the treatment. All along the experiment, the heat-resistant bacterial profile consisted mainly of Firmicutes, Bacteroidetes and Proteobacteria. Bacteroides and Acholeplasma were reduced after heat shocks. An increase was observed for Aminobacterium. Our results prove the stability to thermal stresses of the microbial communities involved in acidification, and the resilience in biogas production irrespectively of the thermal treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The analytical solution of the problem of a shock focusing in a gas for one-dimensional case

    NASA Astrophysics Data System (ADS)

    Shestakovskaya, E. S.; Magazov, F. G.

    2018-03-01

    The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.

  10. Thinner plantar fascia predicts decreased pain after extracorporeal shock wave therapy.

    PubMed

    Liang, Huey-Wen; Wang, Tyng-Guey; Chen, Wen-Shiang; Hou, Sheng-Mou

    2007-07-01

    Increased plantar fascia thickness is common with chronic plantar fasciitis, and reduction of the thickness after extracorporeal shock wave therapy or steroid injection has been reported. We hypothesized a decrease of plantar fascia thickness was associated with pain reduction after extracorporeal shock wave therapy. Fifty-three eligible patients with 78 symptomatic feet were randomly treated with piezoelectric-type extracorporeal shock wave therapy of two intensity levels (0.12 and 0.56 mJ/mm2). Two thousand shock waves for three consecutive sessions were applied at weekly intervals. A visual analog scale for pain, the Foot Function Index, the Short Form-36 Health Survey, and ultrasonographic measurement of plantar fascia thickness were evaluated at baseline and 3 and 6 months after treatment. We analyzed the association between pain level and plantar fascia thickness with generalized estimating equation analysis and adjusted for demographic and treatment-related variables. Patients with thinner plantar fascia experienced less pain after treatment; high-intensity treatment and regular exercise were associated with lower pain level. The overall success rates were 63% and 60% at the 3- and 6-month followups. High- and low-intensity treatments were associated with similar improvements in pain and function. Receiving high-intensity treatment, although associated with less pain at followup, did not provide a higher success rate.

  11. Microbial Diversity of Impact-Generated Habitats

    NASA Astrophysics Data System (ADS)

    Pontefract, Alexandra; Osinski, Gordon R.; Cockell, Charles S.; Southam, Gordon; McCausland, Phil J. A.; Umoh, Joseph; Holdsworth, David W.

    2016-10-01

    Impact-generated lithologies have recently been identified as viable and important microbial habitats, especially within cold and arid regions such as the polar deserts on Earth. These unique habitats provide protection from environmental stressors, such as freeze-thaw events, desiccation, and UV radiation, and act to trap aerially deposited detritus within the fissures and pore spaces, providing necessary nutrients for endoliths. This study provides the first culture-independent analysis of the microbial community structure within impact-generated lithologies in a Mars analog environment, involving the analysis of 44,534 16S rRNA sequences from an assemblage of 21 rock samples that comprises three shock metamorphism categories. We find that species diversity increases (H = 2.4-4.6) with exposure to higher shock pressures, which leads to the development of three distinct populations. In each population, Actinobacteria were the most abundant (41%, 65%, and 59%), and the dominant phototrophic taxa came from the Chloroflexi. Calculated porosity (a function of shock metamorphism) for these samples correlates (R2 = 0.62) with inverse Simpson indices, accounting for overlap in populations in the higher shock levels. The results of our study show that microbial diversity is tied to the amount of porosity in the target substrate (as a function of shock metamorphism), resulting in the formation of distinct microbial populations.

  12. Modeling of ion acceleration through drift and diffusion at interplanetary shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.; Vlahos, L.

    1986-01-01

    A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.

  13. A preliminary investigation on the effect of extracorporeal shock wave therapy as a treatment for neurogenic heterotopic ossification following traumatic brain injury. Part II: Effects on function.

    PubMed

    Reznik, J E; Biros, E; Sacher, Y; Kibrik, O; Milanese, S; Gordon, S; Galea, M P

    2017-01-01

    Neurogenic heterotopic ossification (NHO) occurs as a complication of traumatic brain injury (TBI). Management of clinically significant NHO remains variable. Complications of mature NHO include limitation of mobility. The effect of the extracorporeal shock wave therapy (ESWT) on range of motion at hip and knee, and function in patients with TBI with chronic NHO was investigated. A series of single-case studies applying ESWT to chronic NHO at the hip or knee of 11 patients with TBI were undertaken at a rehabilitation hospital. Participants received four applications of high-energy EWST delivered to the affected hip or knee over a period of 8 weeks. Two-weekly follow- up assessments were carried out; final assessments were made 3 and 6 months post-intervention. Range of motion (ROM) and Functional Reach (FR) or Modified Functional Reach (MFR) were measured. Application of high-energy ESWT was associated with significant improvement in ROM (flexion) of the NHO-affected knee (Tau = 0.833, 95% CI 0.391-1.276, p = 0.002) and significant improvement of FR (Overall Tau 0.486, 95% CI 0.141-0.832, p = 0.006); no significant improvement in hip ROM or MFR. ESWT may improve mobility and balance of patients with TBI who have chronic NHO.

  14. Measurement of the Shock Velocity and Symmetry History in Decaying Shock Pulses

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; Milovich, Jose; Jones, Oggie; Robey, Harry; Smalyuk, Vladimir; Casey, Daniel; Celliers, Peter; Clark, Dan; Giraldez, Emilio; Haan, Steve; Hamza, Alex; Berzak-Hopkins, Laura; Jancaitis, Ken; Kroll, Jeremy; Lafortune, Kai; MacGowan, Brian; Macphee, Andrew; Moody, John; Nikroo, Abbas; Peterson, Luc; Raman, Kumar; Weber, Chris; Widmayer, Clay

    2014-10-01

    Decaying first shock pulses are predicted in simulations to provide more stable implosions and still achieve a low adiabat in the fuel, enabling a higher fuel compression similar to ``low foot'' laser pulses. The first step in testing these predictions was to measure the shock velocity for both a three shock and a four shock adiabat-shaped pulse in a keyhole experimental platform. We present measurements of the shock velocity history, including the decaying shock velocity inside the ablator, and compare it with simulations, as well as with previous low and high foot pulses. Using the measured pulse shape, the predicted adiabat from simulations is presented and compared with the calculated adiabat from low and high foot laser pulse shapes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  15. Demographic and clinical characteristics of patients with anaphylactic shock after surgery for cystic echinococcosis.

    PubMed

    Li, Yimei; Zheng, Hong; Cao, Xinghua; Liu, Zaoling; Chen, Lili

    2011-09-01

    We reviewed the records of 446 patients who were treated surgically for cystic echinococcosis (CE) to identify risk factors for anaphylactic shock. Of 446 patients, 10 had final diagnoses of anaphylactic shock induced by CE; none died. The incidence of anaphylactic shock was significantly higher in younger age groups (P < 0.001) and in patients with pulmonary cysts. Anaphylactic shock induced by CE appears to differ from type I immediate hypersensitivity shock, which suggests that in CE, shock may be caused by a combination of immediate hypersensitivity and endotoxic shock. This possibility suggests that additional precautions should be taken during surgery. These precautions include reducing intracystic pressure, which would prevent possible leaked liquid from reaching other organs by surrounding the cyst with sterile gauze and decrease the chance of spreading the echinococcus; preventing antigen from contacting other tissues where it might trigger anaphylaxis; and resecting the cyst completely when feasible.

  16. A shock absorber model for structure-borne noise analyses

    NASA Astrophysics Data System (ADS)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  17. Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, N.L.; Officer, C.B.; Chesner, C.A.

    1986-05-01

    Plagioclase and biotite phenocrysts in ignimbrites erupted from the Toba caldera, Sumatra, show microstructures and textures indicative of shock stress levels higher than 10 GPa. Strong dynamic deformation has resulted in intense kinking in biotite and, with increasing shock intensity, the development of plagioclase of planar features, shock mosaicism, incipient recrystallization, and possible partial melting. Microstructures in quartz indicative of strong shock deformation are rare, however, and many shock lamellae, if formed, may have healed during post-shock residence in the hot ignimbrite; they might be preserved in ash falls. Peak shock stresses from explosive silicic volcanism and other endogenous processesmore » may be high and if so would obviate the need for extraterrestrial impacts to produce all dynamically deformed structures, possibly including shock features observed near the Cretaceous/Tertiary boundary. 38 references, 3 figures.« less

  18. Astrophysical Connections to Collapsing Radiative Shock Experiments

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.

    2005-10-01

    Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  19. Laser measurements of bacterial endospore destruction from shock waves

    NASA Astrophysics Data System (ADS)

    Lappas, Petros P.; McCartt, A. Daniel; Gates, Sean D.; Jeffries, Jay B.; Hanson, Ronald K.

    2013-12-01

    The effects of shock waves on bioaerosols containing endospores were measured by combined laser absorption and scattering. Experiments were conducted in the Stanford aerosol shock tube for post-shock temperatures ranging from 400 K to 1100 K. Laser intensity measurements through the test section of the shock tube at wavelengths of 266 and 665 nm provided real-time monitoring of the morphological changes (includes changes in shape, structure and optical properties) in the endospores. Scatter of the visible light measured the integrity of endospore structure, while absorption of the UV light provided a measure of biochemicals released when endospores ruptured. For post-shock temperatures above 750 K the structural breakdown of Bacillus atrophaeus (BA) endospores was observed. A simple theoretical model using laser extinction is presented for determining the fraction of endospores that are ruptured by the shock waves. In addition, mechanisms of endospore mortality preceding their disintegration due to shock waves are discussed.

  20. Healthcare Utilization and Expenditures Associated With Appropriate and Inappropriate Implantable Defibrillator Shocks.

    PubMed

    Turakhia, Mintu P; Zweibel, Steven; Swain, Andrea L; Mollenkopf, Sarah A; Reynolds, Matthew R

    2017-02-01

    In patients with implantable cardioverter-defibrillators, healthcare utilization (HCU) and expenditures related to shocks have not been quantified. We performed a retrospective cohort study of patients with implantable cardioverter-defibrillators identified from commercial and Medicare supplemental claims databases linked to adjudicated shock events from remote monitoring data. A shock event was defined as ≥1 spontaneous shocks delivered by an implanted device. Shock-related HCU was ascertained from inpatient and outpatient claims within 7 days following a shock event. Shock events were adjudicated and classified as inappropriate or appropriate, and HCU and expenditures, stratified by shock type, were quantified. Of 10 266 linked patients, 963 (9.4%) patients (61.3±13.6 years; 81% male) had 1885 shock events (56% appropriate, 38% inappropriate, and 6% indeterminate). Of these events, 867 (46%) had shock-related HCU (14% inpatient and 32% outpatient). After shocks, inpatient cardiovascular procedures were common, including echocardiography (59%), electrophysiology study or ablation (34%), stress testing (16%), and lead revision (11%). Cardiac catheterization was common (71% and 51%), but percutaneous coronary intervention was low (6.5% and 5.0%) after appropriate and inappropriate shocks. Expenditures related to appropriate and inappropriate shocks were not significantly different. After implantable cardioverter-defibrillator shock, related HCU was common, with 1 in 3 shock events followed by outpatient HCU and 1 in 7 followed by hospitalization. Use of invasive cardiovascular procedures was substantial, even after inappropriate shocks, which comprised 38% of all shocks. Implantable cardioverter-defibrillator shocks seem to trigger a cascade of health care. Strategies to reduce shocks could result in cost savings. © 2017 American Heart Association, Inc.

  1. Ideal resuscitation pressure for uncontrolled hemorrhagic shock in different ages and sexes of rats

    PubMed Central

    2013-01-01

    Introduction Our previous studies demonstrated that 50-60 mmHg mean arterial blood pressure was the ideal target hypotension for uncontrolled hemorrhagic shock during the active hemorrhage in sexually mature rats. The ideal target resuscitation pressure for immature and older rats has not been determined. Methods To elucidate this issue, using uncontrolled hemorrhagic-shock rats of different ages and sexes (6 weeks, 14 weeks and 1.5 years representing pre-adult, adult and older rats, respectively), the resuscitation effects of different target pressures (40, 50, 60, 70 and 80 mmHg) on uncontrolled hemorrhagic shock during active hemorrhage and the age and sex differences were observed. Results Different target resuscitation pressures had different resuscitation outcomes for the same age and sex of rats. The optimal target resuscitation pressures for 6-week-old, 14-week-old and 1.5-year-old rats were 40 to 50 mmHg, 50 to 60 mmHg and 70 mmHg respectively. Ideal target resuscitation pressures were significantly superior to other resuscitation pressures in improving the hemodynamics, blood perfusion, organ function and animal survival of uncontrolled hemorrhagic-shock rats (P < 0.01). For same target resuscitation pressures, the beneficial effect on hemorrhagic shock had a significant age difference (P < 0.01) but no sex difference (P > 0.05). Different resuscitation pressures had no effect on coagulation function. Conclusion Hemorrhagic-shock rats at different ages have different target resuscitation pressures during active hemorrhage. The ideal target resuscitation hypotension for 6-week-old, 14-week-old and 1.5-year-old rats was 40 to 50 mmHg, 50 to 60 mmHg and 70 mmHg, respectively. Their resuscitation effects have significant age difference but had no sex difference. PMID:24020401

  2. How Human Amygdala and Bed Nucleus of the Stria Terminalis May Drive Distinct Defensive Responses.

    PubMed

    Klumpers, Floris; Kroes, Marijn C W; Baas, Johanna M P; Fernández, Guillén

    2017-10-04

    The ability to adaptively regulate responses to the proximity of potential danger is critical to survival and imbalance in this system may contribute to psychopathology. The bed nucleus of the stria terminalis (BNST) is implicated in defensive responding during uncertain threat anticipation whereas the amygdala may drive responding upon more acute danger. This functional dissociation between the BNST and amygdala is however controversial, and human evidence scarce. Here we used data from two independent functional magnetic resonance imaging studies [ n = 108 males and n = 70 (45 females)] to probe how coordination between the BNST and amygdala may regulate responses during shock anticipation and actual shock confrontation. In a subset of participants from Sample 2 ( n = 48) we demonstrate that anticipation and confrontation evoke bradycardic and tachycardic responses, respectively. Further, we show that in each sample when going from shock anticipation to the moment of shock confrontation neural activity shifted from a region anatomically consistent with the BNST toward the amygdala. Comparisons of functional connectivity during threat processing showed overlapping yet also consistently divergent functional connectivity profiles for the BNST and amygdala. Finally, childhood maltreatment levels predicted amygdala, but not BNST, hyperactivity during shock anticipation. Our results support an evolutionary conserved, defensive distance-dependent dynamic balance between BNST and amygdala activity. Shifts in this balance may enable shifts in defensive reactions via the demonstrated differential functional connectivity. Our results indicate that early life stress may tip the neural balance toward acute threat responding and via that route predispose for affective disorder. SIGNIFICANCE STATEMENT Previously proposed differential contributions of the BNST and amygdala to fear and anxiety have been recently debated. Despite the significance of understanding their contributions to defensive reactions, there is a paucity of human studies that directly compared these regions on activity and connectivity during threat processing. We show strong evidence for a dissociable role of the BNST and amygdala in threat processing by demonstrating in two large participant samples that they show a distinct temporal signature of threat responding as well as a discriminable pattern of functional connections and differential sensitivity to early life threat. Copyright © 2017 the authors 0270-6474/17/379645-12$15.00/0.

  3. Does low intensity extracorporeal shock wave therapy have a physiological effect on erectile function? Short-term results of a randomized, double-blind, sham controlled study.

    PubMed

    Vardi, Yoram; Appel, Boaz; Kilchevsky, Amichai; Gruenwald, Ilan

    2012-05-01

    We investigated the clinical and physiological effect of low intensity extracorporeal shock wave therapy on men with organic erectile dysfunction who are phosphodiesterase type 5 inhibitor responders. After a 1-month phosphodiesterase type 5 inhibitor washout period, 67 men were randomized in a 2:1 ratio to receive 12 sessions of low intensity extracorporeal shock wave therapy or sham therapy. Erectile function and penile hemodynamics were assessed before the first treatment (visit 1) and 1 month after the final treatment (followup 1) using validated sexual function questionnaires and venoocclusive strain gauge plethysmography. Clinically we found a significantly greater increase in the International Index of Erectile Function-Erectile Function domain score from visit 1 to followup 1 in the treated group than in the sham treated group (mean ± SEM 6.7 ± 0.9 vs 3.0 ± 1.4, p = 0.0322). There were 19 men in the treated group who were initially unable to achieve erections hard enough for penetration (Erection Hardness Score 2 or less) who were able to achieve erections sufficiently firm for penetration (Erection Hardness Score 3 or greater) after low intensity extracorporeal shock wave therapy, compared to none in the sham group. Physiologically penile hemodynamics significantly improved in the treated group but not in the sham group (maximal post-ischemic penile blood flow 8.2 vs 0.1 ml per minute per dl, p <0.0001). None of the men experienced discomfort or reported any adverse effects from the treatment. This is the first randomized, double-blind, sham controlled study to our knowledge that shows that low intensity extracorporeal shock wave therapy has a positive short-term clinical and physiological effect on the erectile function of men who respond to oral phosphodiesterase type 5 inhibitor therapy. The feasibility and tolerability of this treatment, coupled with its potential rehabilitative characteristics, make it an attractive new therapeutic option for men with erectile dysfunction. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. The effect of varying Mach number on crossing, glancing shocks/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Williams, K. E.

    1991-01-01

    Two crossing side-wall shocks interacting with a supersonic tunnel wall boundary layer have been investigated over a Mach number range of 2.5 to 4.0. The investigation included a range of equal shock strengths produced by shock generators at angles from 4.0 to 12.0 degrees. Results of flow visualization show that the interaction is unseparated at the low shock generator angles. With increasing shock strength, the flow begins to form a separated region that grows in size and moves forward and eventually the model unstarts. The wall static pressures show a symmetrical compression that merges on the centerline upstream of the inviscid shock locations and becomes more 1D downstream. The region of the 1D pressure gradient moves upstream with increasing shock strengths until it coincides with the leading edge of the shock generators at the limit before model unstart. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  5. Global climate shocks to agriculture from 1950 - 2015

    NASA Astrophysics Data System (ADS)

    Jackson, N. D.; Konar, M.; Debaere, P.; Sheffield, J.

    2016-12-01

    Climate shocks represent a major disruption to crop yields and agricultural production, yet a consistent and comprehensive database of agriculturally relevant climate shocks does not exist. To this end, we conduct a spatially and temporally disaggregated analysis of climate shocks to agriculture from 1950-2015 using a new gridded dataset. We quantify the occurrence and magnitude of climate shocks for all global agricultural areas during the growing season using a 0.25-degree spatial grid and daily time scale. We include all major crops and both temperature and precipitation extremes in our analysis. Critically, we evaluate climate shocks to all potential agricultural areas to improve projections within our time series. To do this, we use Global Agro-Ecological Zones maps from the Food and Agricultural Organization, the Princeton Global Meteorological Forcing dataset, and crop calendars from Sacks et al. (2010). We trace the dynamic evolution of climate shocks to agriculture, evaluate the spatial heterogeneity in agriculturally relevant climate shocks, and identify the crops and regions that are most prone to climate shocks.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelsen, Nicholas H.; Kolb, James D.; Kulkarni, Akshay G.

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms thatmore » activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum« less

  7. Adiponectin in Fresh Frozen Plasma Contributes to Restoration of Vascular Barrier Function after Hemorrhagic Shock

    PubMed Central

    Huby, Maria P.; Duan, Chaojun; Baer, Lisa; Peng, Zhanglong; Kozar, Rosemary A.; Doursout, Marie-Francoise; Holcomb, John B.; Wade, Charles E.; Ko, Tien C.

    2015-01-01

    Hemorrhagic shock is the leading cause of preventable deaths in civilian and military trauma. Use of fresh frozen plasma (FFP) in patients requiring massive transfusion is associated with improved outcomes. FFP contains significant amounts of adiponectin, which is known to have vascular protective function. We hypothesize that FFP improves vascular barrier function largely via adiponectin. Plasma adiponectin levels were measured in 19 severely injured patients in hemorrhagic shock (HS). Compared to normal individuals, plasma adiponectin levels decreased to 49% in HS patients prior to resuscitation (p<0.05) and increased to 64% post resuscitation (but not significant). In a HS mouse model, we demonstrated a similar decrease in plasma adiponectin to 54% but a significant increase to 79% by FFP resuscitation compared to baseline (p<0.05). HS disrupted lung vascular barrier function, leading to an increase in permeability. FFP resuscitation reversed these HS-induced effects. Immunodepletion of adiponectin from FFP abolished FFP's effects on blocking endothelial hyperpermeability in vitro, and on improving lung vascular barrier function in HS mice. Replenishment with adiponectin rescued FFP's effects. These findings suggest that adiponectin is an important component in FFP resuscitation contributing to the beneficial effects on vascular barrier function after HS. PMID:26263440

  8. Rotor-generated unsteady aerodynamic interactions in a 1½ stage compressor

    NASA Astrophysics Data System (ADS)

    Papalia, John J.

    Because High Cycle Fatigue (HCF) remains the predominant surprise failure mode in gas turbine engines, HCF avoidance design systems are utilized to identify possible failures early in the engine development process. A key requirement of these analyses is accurate determination of the aerodynamic forcing function and corresponding airfoil unsteady response. The current study expands the limited experimental database of blade row interactions necessary for calibration of predictive HCF analyses, with transonic axial-flow compressors of particular interest due to the presence of rotor leading edge shocks. The majority of HCF failures in aircraft engines occur at off-design operating conditions. Therefore, experiments focused on rotor-IGV interactions at off-design are conducted in the Purdue Transonic Research Compressor. The rotor-generated IGV unsteady aerodynamics are quantified when the IGV reset angle causes the vane trailing edge to be nearly aligned with the rotor leading edge shocks. A significant vane response to the impulsive static pressure perturbation associated with a shock is evident in the point measurements at 90% span, with details of this complex interaction revealed in the corresponding time-variant vane-to-vane flow field data. Industry wide implementation of Controlled Diffusion Airfoils (CDA) in modern compressors motivated an investigation of upstream propagating CDA rotor-generated forcing functions. Whole field velocity measurements in the reconfigured Purdue Transonic Research Compressor along the design speedline reveal steady loading had a considerable effect on the rotor shock structure. A detached rotor leading edge shock exists at low loading, with an attached leading edge and mid-chord suction surface normal shock present at nominal loading. These CDA forcing functions are 3--4 times smaller than those generated by the baseline NACA 65 rotor at their respective operating points. However, the IGV unsteady aerodynamic response to the CDA forcing functions remains significant. The intra-vane transport of NACA 65 and CDA rotor wakes is also observed within the time-variant passage velocity data. In general, the wake width and decay rate increase with rotor speed and compressor steady loading respectively.

  9. Model for the broadband Crab nebula spectrum with injection of a log-parabola electron distribution at the wind termination shock

    NASA Astrophysics Data System (ADS)

    Fraschetti, F.; Pohl, M.

    2017-10-01

    We develop a model of the steady-state spectrum of the Crab nebula encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting photon differential energy spectrum. We find an impressive agreement with the observations in the synchrotron region. The predicted synchrotron self-Compton accommodates the previously unsolved origin of the broad 200 GeV peak that matches the Fermi/LAT data beyond 1 GeV with the MAGIC data. A natural interpretation of the deviation from power-law of the photon spectrum customarily fit with empirical broken power-laws is provided. This model can be applied to the radio-to- multi-TeV spectra of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants. We also show that MeV-range energetic particle distribution at interplanetary shocks typically fit with broken-power laws or Band function can be accurately reproduced by log-parabolas.

  10. Individual Differences in Anticipatory Somatosensory Cortex Activity for Shock is Positively Related with Trait Anxiety and Multisensory Integration

    PubMed Central

    Greening, Steven G.; Lee, Tae-Ho; Mather, Mara

    2016-01-01

    Anxiety is associated with an exaggerated expectancy of harm, including overestimation of how likely a conditioned stimulus (CS+) predicts a harmful unconditioned stimulus (US). In the current study we tested whether anxiety-associated expectancy of harm increases primary sensory cortex (S1) activity on non-reinforced (i.e., no shock) CS+ trials. Twenty healthy volunteers completed a differential-tone trace conditioning task while undergoing fMRI, with shock delivered to the left hand. We found a positive correlation between trait anxiety and activity in right, but not left, S1 during CS+ versus CS− conditions. Right S1 activity also correlated with individual differences in both primary auditory cortices (A1) and amygdala activity. Lastly, a seed-based functional connectivity analysis demonstrated that trial-wise S1 activity was positively correlated with regions of dorsolateral prefrontal cortex (dlPFC), suggesting that higher-order cognitive processes contribute to the anticipatory sensory reactivity. Our findings indicate that individual differences in trait anxiety relate to anticipatory reactivity for the US during associative learning. This anticipatory reactivity is also integrated along with emotion-related sensory signals into a brain network implicated in fear-conditioned responding. PMID:26751483

  11. Individual Differences in Anticipatory Somatosensory Cortex Activity for Shock is Positively Related with Trait Anxiety and Multisensory Integration.

    PubMed

    Greening, Steven G; Lee, Tae-Ho; Mather, Mara

    2016-01-06

    Anxiety is associated with an exaggerated expectancy of harm, including overestimation of how likely a conditioned stimulus (CS+) predicts a harmful unconditioned stimulus (US). In the current study we tested whether anxiety-associated expectancy of harm increases primary sensory cortex (S1) activity on non-reinforced (i.e., no shock) CS+ trials. Twenty healthy volunteers completed a differential-tone trace conditioning task while undergoing fMRI, with shock delivered to the left hand. We found a positive correlation between trait anxiety and activity in right, but not left, S1 during CS+ versus CS- conditions. Right S1 activity also correlated with individual differences in both primary auditory cortices (A1) and amygdala activity. Lastly, a seed-based functional connectivity analysis demonstrated that trial-wise S1 activity was positively correlated with regions of dorsolateral prefrontal cortex (dlPFC), suggesting that higher-order cognitive processes contribute to the anticipatory sensory reactivity. Our findings indicate that individual differences in trait anxiety relate to anticipatory reactivity for the US during associative learning. This anticipatory reactivity is also integrated along with emotion-related sensory signals into a brain network implicated in fear-conditioned responding.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, K., E-mail: nagayama@aero.kyushu-u.ac.jp

    The dimensionless material parameter R introduced by Wu and Jing into the Rice-Walsh equation of state (EOS) has been deduced from the LASL shock Hugoniot data for porous Al and Cu. It was found that the parameter R/p decays smoothly with shock pressure p and displays small experimental scatter in the high pressure region. This finding led to the conclusion that the parameter has only a weak temperature dependence and is well approximated by a function of pressure alone, and the Grüneisen parameter should be temperature dependent under compression. The thermodynamic formulation of the Rice-Walsh EOS for Al and Cumore » was realized using the empirically determined function R(p) for each material and their known shock Hugoniot. It was then possible to reproduce porous shock Hugoniot for these metals. For most degrees of porosity, agreement between the porous data and the calculated Hugoniots using the empirical function described was very good. However, slight discrepancies were seen for Hugoniots with very high porosity. Two new thermal variables were introduced after further analysis, which enabled the calculation of the cold compression curve for these metals. The Grüneisen parameters along full-density and porous Hugoniot curve were calculated using a thermodynamic identity connecting R and the Grüneisen parameter. It was shown that the Grüneisen parameter is strongly temperature dependent. The present analysis suggested that the Rice-Walsh type EOS is a preferable choice for the analysis with its simple form, pressure-dependent empirical Wu-Jing parameter, and its compatibility with porous shock data.« less

  13. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.

    PubMed

    Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter

    2015-09-01

    Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.

  14. Validation of High Speed Earth Atmospheric Entry Radiative Heating from 9.5 to 15.5 km/s

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Johnston, C. O.; Cruden, B. A.; Prabhu, D. K.

    2016-01-01

    This paper presents an overview of the analysis and measurements of equilibrium radiation obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility as a part of recent testing aimed at reaching shock velocities up to 15.5 km/s. The goal of these experiments was to measure the level of radiation encountered during high speed Earth entry conditions, such as would be relevant for an asteroid, inter-planetary or lunar return mission. These experiments provide the first spectrally and spatially resolved data for high speed Earth entry and cover conditions ranging from 9.5 to 15.5 km/s at 13.3 and 26.6 Pa (0.1 and 0.2 Torr). The present analysis endeavors to provide a validation of shock tube radiation measurements and simulations at high speed conditions. A comprehensive comparison between the spectrally resolved absolute equilibrium radiance measured in EAST and the predictive tools, NEQAIR and HARA, is presented. In order to provide a more accurate representation of the agreement between the experimental and simulation results, the integrated value of radiance has been compared across four spectral regions (VUV, UV/Vis, Vis/NIR and IR) as a function of velocity. Results have generally shown excellent agreement between the two codes and EAST data for the Vis through IR spectral regions, however, discrepancies have been identified in the VUV and parts of the UV spectral regions. As a result of the analysis presented in this paper, an updated parametric uncertainty for high speed radiation in air has been evaluated to be [9.0%, -6.3%]. Furthermore, due to the nature of the radiating environment at these high shock speeds, initial calculations aimed at modeling phenomena that become more significant with increasing shock speed have been performed. These phenomena include analyzing the radiating species emitting ahead of the shock and the increased significance of radiative cooling mechanisms.

  15. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures

    NASA Technical Reports Server (NTRS)

    French, Bevan M.

    1998-01-01

    This handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures emphasizes terrestrial impact structures, field geology, and particularly the recognition and petrographic study of shock-metamorphic effects in terrestrial rocks. Individual chapters include: 1) Landscapes with Craters: Meteorite Impacts, Earth, and the Solar System; 2) Target Earth: Present, Past and Future; 3) Formation of Impact Craters; 4) Shock-Metamorphic Effects in Rocks and Minerals; 5) Shock-Metamorphosed Rocks (Impactities) in Impact Structures; 6) Impact Melts; 7) How to Find Impact Structures; and 8) What Next? Current Problems and Future Investigations.

  16. Cardiac dysfunctions following spinal cord injury

    PubMed Central

    Sandu, AM; Popescu, M; Iacobini, MA; Stoian, R; Neascu, C; Popa, F

    2009-01-01

    The aim of this article is to analyze cardiac dysfunctions occurring after spinal cord injury (SCI). Cardiac dysfunctions are common complications following SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. We reviewed epidemiology of cardiac disturbances after SCI, and neuroanatomy and pathophysiology of autonomic nervous system, sympathetic and parasympathetic. SCI causes disruption of descendent pathways from central control centers to spinal sympathetic neurons, originating into intermediolateral nuclei of T1–L2 spinal cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant cardiac dysfunction. Impairment of autonomic nervous control system, mostly in patients with cervical or high thoracic SCI, causes cardiac dysrrhythmias, especially bradycardia and, rarely, cardiac arrest, or tachyarrhytmias and hypotension. Specific complication dependent on the period of time after trauma like spinal shock and autonomic dysreflexia are also reviewed. Spinal shock occurs during the acute phase following SCI and is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe bradycardia and hypotension. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Besides all this, additional cardiac complications, such as cardiac deconditioning and coronary heart disease may also occur. Proper prophylaxis, including nonpharmacologic and pharmacological strategies and cardiac rehabilitation diminish occurrence of the cardiac dysfunction following SCI. Each type of cardiac disturbance requires specific treatment. PMID:20108532

  17. High-energy emissions from the gamma-ray binary LS 5039

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, J.; Leung, Gene C. K.; Cheng, K. S.

    2014-07-20

    We study mechanisms of multi-wavelength emissions (X-ray, GeV, and TeV gamma-rays) from the gamma-ray binary LS 5039. This paper is composed of two parts. In the first part, we report on results of observational analysis using 4 yr data of the Fermi Large Area Telescope. Due to the improvement of instrumental response function and increase of the statistics, the observational uncertainties of the spectrum in the ∼100-300 MeV bands and >10 GeV bands are significantly improved. The present data analysis suggests that the 0.1-100 GeV emissions from LS 5039 contain three different components: (1) the first component contributes to <1more » GeV emissions around superior conjunction, (2) the second component dominates in the 1-10 GeV energy bands, and (3) the third component is compatible with the lower-energy tail of the TeV emissions. In the second part, we develop an emission model to explain the properties of the phase-resolved emissions in multi-wavelength observations. Assuming that LS 5039 includes a pulsar, we argue that emissions from both the magnetospheric outer gap and the inverse-Compton scattering process of cold-relativistic pulsar wind contribute to the observed GeV emissions. We assume that the pulsar is wrapped by two kinds of termination shock: Shock-I due to the interaction between the pulsar wind and the stellar wind and Shock-II due to the effect of the orbital motion. We propose that the X-rays are produced by the synchrotron radiation at the Shock-I region and the TeV gamma-rays are produced by the inverse-Compton scattering process at the Shock-II region.« less

  18. Pattern of heat shock factor and heat shock protein expression in lymphocytes of bipolar patients: increased HSP70-glucocorticoid receptor heterocomplex.

    PubMed

    Bei, E S; Salpeas, V; Alevizos, B; Anagnostara, C; Pappa, D; Moutsatsou, P

    2013-11-01

    Bipolar disorder (BD), a stress-related disease, is characterized by altered glucocorticoid receptor (GR) signalling. Stress response includes activation of heat shock factor (HSF) and subsequent heat shock protein (HSP) synthesis which regulate GR folding and function. The objective of this study was to investigate the possible role of HSFs, HSPs and their interaction with GR in BD. We applied immunoprecipitation, SDS-PAGE/Western blot analysis and electrophoretic mobility shift assay (EMSA) in lymphocytes (whole cell or nuclear extracts) from BD patients and healthy subjects and determined the HSPs (HSP90 and HSP70), the heterocomplexes HSP90-GR and HSP70-GR, the HSFs (HSF1 and HSF4) as well as the HSF-DNA binding. The HSP70-GR heterocomplex was elevated (p < 0.05) in BD patients vs healthy subjects, and nuclear HSP70 was reduced (p ≤ 0.01) in bipolar manic patients. Protein levels of HSF1, HSF4, HSP90, HSP90-GR heterocomplex, and HSF-DNA binding remained unaltered in BD patients vs healthy subjects. The corresponding effect sizes (ES) indicated a large ES for HSP70-GR, HSP70, HSF-DNA binding and HSF4, and a medium ES for HSP90, HSF1 and HSP90-GR between healthy subjects and bipolar patients. Significant correlations among HSFs, HSPs, GR and HSP70-GR heterocomplex were observed in healthy subjects, which were abrogated in bipolar patients. The higher interaction between GR and HSP70 and the disturbances in the relations among heat shock response parameters and GR as observed in our BD patients may provide novel insights into the contribution of these factors in BD aetiopathogenesis. Copyright © 2013. Published by Elsevier Ltd.

  19. Prompt Injections of Highly Relativistic Electrons Induced by Interplanetary Shocks: A Statistical Study of Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Schiller, Q.; Kanekal, S. G.; Jian, L. K,; Li, X.; Jones, A.; Baker, D. N.; Jaynes, A.; Spence, H. E.

    2016-01-01

    We conduct a statistical study on the sudden response of outer radiation belt electrons due to interplanetary (IP) shocks during the Van Allen Probes era, i.e., 2012 to 2015. Data from the Relativistic Electron-Proton Telescope instrument on board Van Allen Probes are used to investigate the highly relativistic electron response (E greater than 1.8 MeV) within the first few minutes after shock impact. We investigate the relationship of IP shock parameters, such as Mach number, with the highly relativistic electron response, including spectral properties and radial location of the shock-induced injection. We find that the driving solar wind structure of the shock does not affect occurrence for enhancement events, 25% of IP shocks are associated with prompt energization, and 14% are associated with MeV electron depletion. Parameters that represent IP shock strength are found to correlate best with highest levels of energization, suggesting that shock strength may play a key role in the severity of the enhancements. However, not every shock results in an enhancement, indicating that magnetospheric preconditioning may be required.

  20. Saccharomyces cerevisiae Hsp30 is necessary for homeostasis of a set of thermal stress response functions.

    PubMed

    Thakur, Suresh; Chakrabarti, Amitabha

    2010-02-01

    Saccharomyces cerevisiae Hsp30 is a plasma membrane heat shock protein which is induced by various environmental stress conditions. However functional role of Hsp30 during diverse environmental stressors is not presently known. To gain insight into its function during thermal stress, we have constructed and characterized a hsp30 strain during heat stress. BY4741Deltahsp30 cells were found to be more sensitive compared to BY4741 cells when exposed to a lethal heat stress at 50 degrees Celsius. When budding yeast is exposed to either heat shock or weak organic acid, it inhibits Pma1p activity. In this study we measured the levels of Pma1p in mutant and Wt cells both during optimal temperature and heat shock temperature. We observed that BY4741Deltahsp30 cells showed constitutive reduction of Pma1p. To gain further insights into the role of Hsp30 during heat stress, we compared total protein profile by 2D gel electrophoresis followed by identification of differentially expressed spots by LC-MS. We observed that contrary to that expected from thermal stress induced changes in gene expression, the Deltahsp30mutant maintained elevated levels of Pdc1p, Trx1p and Nbp35p and reduced levels of Atp2p and Sod1p during heat shock. In conclusion, Hsp30 is necessary during lethal heat stress, for the maintenance of Pma1p and a set of thermal stress response functions.

  1. Relationships among physical properties as indicators of high temperature deformation or post-shock thermal annealing in ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.; Ruzicka, Alex; Macke, Robert J.; Thostenson, James O.; Rudolph, Rebecca A.; Rivers, Mark L.; Ebel, Denton S.

    2017-04-01

    Collisions and attendant shock compaction must have been important for the accretion and lithification of planetesimals, including the parent bodies of chondrites, but the conditions under which these occurred are not well constrained. A simple model for the compaction of chondrites predicts that shock intensity as recorded by shock stage should be related to porosity and grain fabric. To test this model, we studied sixteen ordinary chondrites of different groups (H, L, LL) using X-ray computed microtomography (μCT) to measure porosity and metal fabric, ideal gas pycnometry and 3D laser scanning to determine porosity, and optical microscopy (OM) to determine shock stage. These included a subsample of six chondrites previously studied using transmission electron microscopy (TEM) to characterize microstructures in olivine. Combining with previous data, results support the simple model in general, but not for chondrites with low shock-porosity-foliation (low-SPF chondrites). These include Kernouvé (H6), Portales Valley (H6/7), Butsura (H6), Park (L6), GRO 85209 (L6), Estacado (H6), MIL 99301 (LL6), Spade (H6), and Queen's Mercy (H6), among others. The data for these meteorites are best explained by high ambient heat during or after shock. Low-SPF chondrites tend to have older 40Ar/39Ar ages (∼4435-4526 Ma) than other, non-low-SPF type 6 chondrites in this study. We conclude that the H, L, and LL asteroids all were shock-compacted at an early stage while warm, with collisions occurring during metamorphic heating of the parent bodies. Results ultimately bear on whether chondrite parent bodies have internal structures more akin to a metamorphosed onion shell or metamorphosed rubble pile, and on the nature of accretion and lithification processes for planetesimals.

  2. Searching for Spectroscopic Signs of Termination Shocks in Solar Flares

    NASA Astrophysics Data System (ADS)

    Galan, G.; Polito, V.; Reeves, K.

    2017-12-01

    The standard flare model predicts the presence of a termination shock located above the flare loop tops, however terminations shocks have not yet been well observed. We analyze flare observations by the Interface Region Imaging Spectrograph (IRIS), which provides cotemporal UV imaging and spectral data. Specifically, we study plasma emissions in the Fe XXI line, formed at the very hot plasma temperatures in flares (> 10 MK). Imaging observations that point to shocks include fast hot reconnection downflows above the loop tops and localized dense, bright plasma at the loop tops; spectral signatures that suggest shocks in the locality of the loop tops include redshifts and nonthermal broadening of the Fe XXI line. We identify possibly significant redshifts in some on-disk flare events observed by IRIS. Redshifts are observed in the vicinity of the bright loop top source that is thought to coincide with the site of the shock. In these events, the Fe XXI emissions at the time of the redshifted structures are dominated by at the at-rest components. The much more less intense redshifted components are broader, with velocities of 200 km/s. The spatial location of these shifts might indicate plasma motions and speeds indicative of termination shocks. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313, and by NASA Grant NNX15AJ93G. Keywords: Solar flares, Solar magnetic reconnection, Termination shocks

  3. Extracorporeal shock wave stimulates expression of the angiogenic genes via mechanosensory complex in endothelial cells: mimetic effect of fluid shear stress in endothelial cells.

    PubMed

    Ha, Chang Hoon; Kim, Sunghyen; Chung, Jihwa; An, Shung Hyen; Kwon, Kihwan

    2013-10-09

    Extracorporeal shock wave has been used in the noninvasive treatment of various diseases including musculoskeletal disorders. In particular, shock wave with low energy level showed anti-inflammatory effect and increased angiogenesis in ischemic tissues. However, the detailed cellular pathway in endothelial signaling is not fully understood. We investigate the role of shock wave with low energy level in angiogenic gene expression and underlying molecular mechanism by comparing the laminar and oscillatory fluid shear stresses in endothelial cells. We show that shock wave with low energy level (0.012-0.045 mJ/mm(2)) stimulated phosphorylation of Akt, eNOS and Erk 1/2 in a time-dependent manner which is similar to the effect of laminar fluid shear stress. The transfection of endothelial cells with siRNA encoding VEGFR2, VE-cadherin and PECAM-1 inhibited shock wave-induced phosphorylation of Akt, eNOS and Erk 1/2 and angiogenic gene expressions, including Akt, eNOS, KLF2/4, and Nur77. Moreover, mechanical stimulation through extracorporeal shock wave induced endothelial cell migration and tube formation. Our results demonstrate that shock wave-induced Akt/eNOS phosphorylation and angiogenic gene expression were mediated through the mechanosensory complex formation involving VEGFR-2, VE-cadherin and PECAM-1 which was similar to the effect of laminar shear stress. © 2013.

  4. Plasma granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor levels in critical illness including sepsis and septic shock: relation to disease severity, multiple organ dysfunction, and mortality.

    PubMed

    Presneill, J J; Waring, P M; Layton, J E; Maher, D W; Cebon, J; Harley, N S; Wilson, J W; Cade, J F

    2000-07-01

    To define the circulating levels of granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) during critical illness and to determine their relationship to the severity of illness as measured by the Acute Physiology and Chronic Health Evaluation (APACHE) II score, the development of multiple organ dysfunction, or mortality. Prospective cohort study. University hospital intensive care unit. A total of 82 critically ill adult patients in four clinically defined groups, namely septic shock (n = 29), sepsis without shock (n = 17), shock without sepsis (n = 22), and nonseptic, nonshock controls (n = 14). None. During day 1 of septic shock, peak plasma levels of G-CSF, interleukin (IL)-6, and leukemia inhibitory factor (LIF), but not GM-CSF, were greater than in sepsis or shock alone (p < .001), and were correlated among themselves (rs = 0.44-0.77; p < .02) and with the APACHE II score (rs = 0.25-0.40; p = .03 to .18). G-CSF, IL-6, and UF, and sepsis, shock, septic shock, and APACHE II scores were strongly associated with organ dysfunction or 5-day mortality by univariate analysis. However, multiple logistic regression analysis showed that only septic shock remained significantly associated with organ dysfunction and only APACHE II scores and shock with 5-day mortality. Similarly, peak G-CSF, IL-6, and LIF were poorly predictive of 30-day mortality. Plasma levels of G-CSF, IL-6, and LIF are greatly elevated in critical illness, including septic shock, and are correlated with one another and with the severity of illness. However, they are not independently predictive of mortality, or the development of multiple organ dysfunction. GM-CSF was rarely elevated, suggesting different roles for G-CSF and GM-CSF in human septic shock.

  5. EXPRESSION OF INDUCIBLE HSP70 ENHANCES THE PROLIFERATION OF MCF-7 BREAST CANCER CELLS AND PROTECTS AGAINST THE CYTOTOXIC EFFECTS OF HYPERTHERMIA

    EPA Science Inventory

    Heat shock proteins (HSPs) are ubiquitous proteins that are induced following exposure to sub-lethal heat shock, are highly conserved during evolution and protect cells from damage through their function as molecular chaperones. Some cancers demonstrate elevated levels of Hsp70 ...

  6. Electric foot shock stress adaptation: Does it exist or not?

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-06-01

    Stress adaptation is a protective phenomenon against repeated stress exposure and is characterized by a decreased responsiveness to a repeated stress stimulus. The adaptation is associated with a complex cascade of events, including the changes in behavior, neurotransmitter and gene expression levels. The non-adaptation or maladaptation to stress may underlie the affective disorders, such as anxiety, depression and post-traumatic stress disorder (PTSD). Electric foot shock is a complex stressor, which includes both physical and emotional components. Unlike immobilization, restraint and cold immersion stress, the phenomenon of stress adaptation is not very well defined in response to electric foot shock. A number of preclinical studies have reported the development of adaptation to electric foot shock stress. However, evidence also reveals the non-adaptive behavior in response to foot shocks. The distinct adaptive/non-adaptive responses may be possibly influenced by the type, intensity, and duration of the stress. The present review discusses the existence or non-existence of adaptation to electric foot shock stress along with possible mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Flow morphologies after oblique shock acceelration of a cylindrical density interface

    NASA Astrophysics Data System (ADS)

    Wayne, Patrick; Simons, Dylan; Olmstead, Dell; Truman, C. Randall; Vorobieff, Peter; Kumar, Sanjay

    2015-11-01

    We present an experimental study of instabilities developing after an oblique shock interaction with a heavy gas column. The heavy gas in our experiments is sulfur hexafluoride infused with 11% acetone by mass. A misalignment of the pressure and density gradients results in three-dimensional vorticity deposition on the gaseous interface, dtriggering the onset of Richtmyer-Meshkov instability (RMI). Shortly thereafter, other instabilities develop along the interface, including a shear-driven instability that presents itself on the leading (with respect to the shock) and trailing edges of the column. This leads to the development of rows of co-rotating ``cat's eye'' vortices, characteristic of Kelvin-Helmholtz instability (KHI). Characteristics of the KHI, such as growth rate and wavelength, depend on several factors including the Mach number of the shock, the shock tube angle of inclination α (equal to the angle between the axis of the column and the plane of the shock), and the Atwood number. This work is supported by the US National Nuclear Security Agency (NNSA) via grant DE-NA0002913.

  8. Protracted immune disorders at one year after ICU discharge in patients with septic shock.

    PubMed

    Riché, Florence; Chousterman, Benjamin G; Valleur, Patrice; Mebazaa, Alexandre; Launay, Jean-Marie; Gayat, Etienne

    2018-02-21

    Sepsis is a leading cause of mortality and critical illness worldwide and is associated with an increased mortality rate in the months following hospital discharge. The occurrence of persistent or new organ dysfunction(s) after septic shock raises questions about the mechanisms involved in the post-sepsis status. The present study aimed to explore the immune profiles of patients one year after being discharged from the intensive care unit (ICU) following treatment for abdominal septic shock. We conducted a prospective, single-center, observational study in the surgical ICU of a university hospital. Eighty-six consecutive patients admitted for septic shock of abdominal origin were included in this study. Fifteen different plasma biomarkers were measured at ICU admission, at ICU discharge and at one year after ICU discharge. Three different clusters of biomarkers were distinguished according to their functions, namely: (1) inflammatory response, (2) cell damage and apoptosis, (3) immunosuppression and resolution of inflammation. The primary objective was to characterize variations in the immune status of septic shock patients admitted to ICU up to one year after ICU discharge. The secondary objective was to evaluate the relationship between these biomarker variations and patient outcomes. At the onset of septic shock, we observed a cohesive pro-inflammatory profile and low levels of inflammation resolution markers. At ICU discharge, the immune status demonstrated decreased but persistent inflammation and increased immunosuppression, with elevated programmed cell death protein-1 (PD-1) levels, and a counterbalanced resolution process, with elevated levels of interleukin-10 (IL-10), resolvin D5 (RvD5), and IL-7. One year after hospital discharge, homeostasis was not completely restored with several markers of inflammation remaining elevated. Remarkably, IL-7 was persistently elevated, with levels comparable to those observed after ICU discharge, and PD-1, while lower, remained in the elevated abnormal range. In this study, protracted immune disturbances were observed one year after ICU discharge. The study results suggested the presence of long-lasting immune illness disorders following a long-term septic insult, indicating the need for long-term patient follow up after ICU discharge and questioning the use of immune intervention to restore immune homeostasis after abdominal septic shock.

  9. Particle-based simulations of bilayer membranes: self-assembly, structural analysis, and shock-wave damage

    NASA Astrophysics Data System (ADS)

    Steinhauser, Martin O.; Schindler, Tanja

    2017-01-01

    We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ _B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self-repairing membranes (reducing their damage after impact) and permanent (irreversible) damage, depending on the shock front speed. The here presented idea of using coarse-grained (CG) particle models for soft matter systems in combination with the investigation of shock-wave effects in these systems is a quite new approach.

  10. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse

    NASA Astrophysics Data System (ADS)

    Kuramitsu, Y.; Nakanii, N.; Kondo, K.; Sakawa, Y.; Mori, Y.; Miura, E.; Tsuji, K.; Kimura, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Takeda, K.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.; Hoshino, M.; Takabe, H.

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  11. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Jianchun; Wan, Minping; Chen, Song; Xie, Chenyue; Chen, Shiyi

    2018-04-01

    The statistics and scaling of compressible isotropic turbulence in the presence of large-scale shock waves are investigated by using numerical simulations at turbulent Mach number Mt ranging from 0.30 to 0.65. The spectra of the compressible velocity component, density, pressure, and temperature exhibit a k-2 scaling at different turbulent Mach numbers. The scaling exponents for structure functions of the compressible velocity component and thermodynamic variables are close to 1 at high orders n ≥3 . The probability density functions of increments of the compressible velocity component and thermodynamic variables exhibit a power-law region with the exponent -2 . Models for the conditional average of increments of the compressible velocity component and thermodynamic variables are developed based on the ideal shock relations and are verified by numerical simulations. The overall statistics of the compressible velocity component and thermodynamic variables are similar to one another at different turbulent Mach numbers. It is shown that the effect of shock waves on the compressible velocity spectrum and kinetic energy transfer is different from that of acoustic waves.

  12. Emission lifetimes of a fluorescent dye under shock compression

    DOE PAGES

    Liu, Wei-long; Bassett, Will P.; Christensen, James M.; ...

    2015-10-15

    The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa -1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less

  13. Numerical study on dusty shock reflection over a double wedge

    NASA Astrophysics Data System (ADS)

    Yin, Jingyue; Ding, Juchun; Luo, Xisheng

    2018-01-01

    The dusty shock reflection over a double wedge with different length scales is systematically studied using an adaptive multi-phase solver. The non-equilibrium effect caused by the particle relaxation is found to significantly influence the shock reflection process. Specifically, it behaves differently for double wedges with different length scales of the first wedge L1. For a double wedge with L1 relatively longer than the particle relaxation length λ, the equilibrium shock dominates the shock reflection and seven typical reflection processes are obtained, which is similar to the pure gas counterpart. For a double wedge with L1 shorter than λ, the non-equilibrium effect manifests more evidently, i.e., three parts of the dusty shock system including the frozen shock, the relaxation zone, and the equilibrium shock together dominate the reflection process. As a result, the shock reflection is far more complicated than the pure gas counterpart and eleven transition processes are found under various wedge angles. These findings give a complete description of all possible processes of dusty shock reflection over a double wedge and may be useful for better understanding the non-equilibrium shock reflection over complex structures.

  14. The Shock and Vibration Bulletin. Part 4. Vibration Testing, Instrumentation, Loads and Environments, Tracked Vehicles

    DTIC Science & Technology

    1978-09-01

    self with a nonlinear (thermocouple) function, the limits X os nu 2O being: x Enables Temperature Controller to command heat 0 Code Temnperature ___6...34 Shock and Vi- bration Bulletin 42, 1970. (2) R.T. Fandrich, " Self -Tuning Re- • sonant Fixtures", 47th Shock andVibration Symposium, October 1976. . " (3...is given in Fig. 4. timTit for "ysem From the shape of some of these it is apparent linear respose that in some tests dampino ratios of the order 0 of

  15. Role of echocardiography/Doppler in cardiogenic shock: silent mitral regurgitation.

    PubMed

    Goldman, A P; Glover, M U; Mick, W; Pupello, D F; Hiro, S P; Lopez-Cuenca, E; Maniscalco, B S

    1991-08-01

    Two cases of cardiogenic shock and pulmonary edema due to acute, severe, silent mitral regurgitation are discussed. The mechanism for the mitral regurgitation was papillary muscle rupture in the setting of acute myocardial infarction. Echocardiography established the presence, severity, and cause of the mitral regurgitation and the associated hyperdynamic left ventricular function in the setting of cardiogenic shock. Transesophageal echocardiography is excellent for assessing the mitral valve in critically ill patients in whom transthoracic echocardiography may be inadequate or misleading. This allowed for emergency mitral valve replacement without prolonged attempts at medical stabilization.

  16. Shock-Wave Pulse Compression and Stretching of Dodecane and Mineral Oils

    NASA Astrophysics Data System (ADS)

    Bannikova, I. A.; Zubareva, A. N.; Utkin, A. V.

    2018-04-01

    The behavior of dodecane, vacuum, and transformer oils under shock-wave pulse compression and stretching are studied experimentally. The wave profiles are registered using a VISAR laser interferometer. The shock adiabats, the dependence of the sound velocity on the pressure, and the maximum negative pressures developed in the studied liquids are determined. It is shown that the negative pressure value does not depend on the deformation rate in the case of oils and is a strong function of the compression pulse amplitude in the case of dodecane.

  17. Simulations of High-Gain Shock-Ignited Inertial-Confinement-Fusion Implosions Using Less Than 1 MJ of Direct KrF Laser Energy

    DTIC Science & Technology

    2009-05-01

    transport, and thermonuclear burn. Using FAST, three classes of shock-ignited targets were designed that achieve one-dimensional fusion - energy gains in the...MJ) G a in Figure 1: Results of one-dimensional simulations showing the fusion energy gain as a function of KrF laser energy for three classes of...rises smoothly (according to a double power (a) Spike width: 160 ps (b) Spike power: 1530 TW Figure 4: Examples of fusion - energy gain contours for a shock

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei-long; Bassett, Will P.; Christensen, James M.

    The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa -1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less

  19. Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial

    PubMed Central

    2012-01-01

    Introduction To evaluate whether alkaline phosphatase (AP) treatment improves renal function in sepsis-induced acute kidney injury (AKI), a prospective, double-blind, randomized, placebo-controlled study in critically ill patients with severe sepsis or septic shock with evidence of AKI was performed. Methods Thirty-six adult patients with severe sepsis or septic shock according to Systemic Inflammatory Response Syndrome criteria and renal injury defined according to the AKI Network criteria were included. Dialysis intervention was standardized according to Acute Dialysis Quality Initiative consensus. Intravenous infusion of alkaline phosphatase (bolus injection of 67.5 U/kg body weight followed by continuous infusion of 132.5 U/kg/24 h for 48 hours, or placebo) starting within 48 hours of AKI onset and followed up to 28 days post-treatment. The primary outcome variable was progress in renal function variables (endogenous creatinine clearance, requirement and duration of renal replacement therapy, RRT) after 28 days. The secondary outcome variables included changes in circulating inflammatory mediators, urinary excretion of biomarkers of tubular injury, and safety. Results There was a significant (P = 0.02) difference in favor of AP treatment relative to controls for the primary outcome variable. Individual renal parameters showed that endogenous creatinine clearance (baseline to Day 28) was significantly higher in the treated group relative to placebo (from 50 ± 27 to 108 ± 73 mL/minute (mean ± SEM) for the AP group; and from 40 ± 37 to 65 ± 30 mL/minute for placebo; P = 0.01). Reductions in RRT requirement and duration did not reach significance. The results in renal parameters were supported by significantly more pronounced reductions in the systemic markers C-reactive protein, Interleukin-6, LPS-binding protein and in the urinary excretion of Kidney Injury Molecule-1 and Interleukin-18 in AP-treated patients relative to placebo. The Drug Safety Monitoring Board did not raise any issues throughout the trial. Conclusions The improvements in renal function suggest alkaline phosphatase is a promising new treatment for patients with severe sepsis or septic shock with AKI. Trial Registration www.clinicaltrials.gov: NCTNCT00511186 PMID:22269279

  20. Analyzing Raman - Infrared spectral correlation in the recently found meteorite Csátalja

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.; Gyollai, I.; Kereszty, Zs.; Kiss, K.; Szabó, M.; Szalai, Z.; Ringer, M.; Veres, M.

    2017-02-01

    Correlating the Raman and infrared spectra of shocked minerals in Csátalja ordinary chondrite (H4, S2, W2) with controlling the composition by EPMA measurements, we identified and improved various shock indicators, as infrared spectro-microscopic analysis has been poorly used for shock impact alteration studies of meteorites to date. We also provide reference spectra as SOM for the community with local mineralogical and shock alteration related context to support further standardization of the IR ATR based measurements. Raman band positions shifted in conjunction with the increase in full width half maximum (FWHM) with shock stage in olivine minerals while in the infrared spectra when comparing the IR band positions and IR maximal absorbance, increasing correlation was found as a function of increasing shock effects. This is the first observational confirmation with the ATR method of the already expected shock related disordering. In the case of shocked pyroxenes the well-known peak broadening and peak shift was confirmed by Raman method, beyond the level that could have been produced by only chemical changes. With increasing shock level the 852-864 cm- 1 and 1055-1071 cm- 1 FTIR bands finally disappeared. From the shock effect occasionally mixed mineral structures formed, especially feldspars together with pyroxene. Feldspars were only present in the shock melted volumes, thus produced by the shock effect itself. Based on the above mentioned observations in Csátalja meteorite the less shocked (only fractured) part witnessed 2-6 GPa shock pressure with temperature below 100 °C. The moderately shocked parts (minerals with mosaicism and mechanical twins) witnessed 5-10 GPa pressure and 900 °C temperature. The strongly shocked area (many olivine and pyroxene grains) was subject to 10-15 GPa and 1000 °C. The existence of broad peak near 510 cm- 1 and disappearance of other peaks of feldspar at 480 and 570 cm- 1 indicate the presence of maskelynite, which proposes that the peak shock pressure could reach 20 GPa at certain locations. We identified higher shock levels than earlier works in this meteorite and provided examples how heterogeneous the shock effect and level could be at small spatial scale. The provided reference spectra support the future improvement for the standardization of infrared ATR based methods and the understanding of shock-related mineral alterations beyond the optical appearance.

Top